Merge tag 'ext4_for_linus_stable' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / mm / huge_memory.c
CommitLineData
71e3aac0
AA
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
ae3a8c1c
AM
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
71e3aac0
AA
10#include <linux/mm.h>
11#include <linux/sched.h>
f7ccbae4 12#include <linux/sched/coredump.h>
6a3827d7 13#include <linux/sched/numa_balancing.h>
71e3aac0
AA
14#include <linux/highmem.h>
15#include <linux/hugetlb.h>
16#include <linux/mmu_notifier.h>
17#include <linux/rmap.h>
18#include <linux/swap.h>
97ae1749 19#include <linux/shrinker.h>
ba76149f 20#include <linux/mm_inline.h>
e9b61f19 21#include <linux/swapops.h>
4897c765 22#include <linux/dax.h>
ba76149f 23#include <linux/khugepaged.h>
878aee7d 24#include <linux/freezer.h>
f25748e3 25#include <linux/pfn_t.h>
a664b2d8 26#include <linux/mman.h>
3565fce3 27#include <linux/memremap.h>
325adeb5 28#include <linux/pagemap.h>
49071d43 29#include <linux/debugfs.h>
4daae3b4 30#include <linux/migrate.h>
43b5fbbd 31#include <linux/hashtable.h>
6b251fc9 32#include <linux/userfaultfd_k.h>
33c3fc71 33#include <linux/page_idle.h>
baa355fd 34#include <linux/shmem_fs.h>
6b31d595 35#include <linux/oom.h>
97ae1749 36
71e3aac0
AA
37#include <asm/tlb.h>
38#include <asm/pgalloc.h>
39#include "internal.h"
40
ba76149f 41/*
b14d595a
MD
42 * By default, transparent hugepage support is disabled in order to avoid
43 * risking an increased memory footprint for applications that are not
44 * guaranteed to benefit from it. When transparent hugepage support is
45 * enabled, it is for all mappings, and khugepaged scans all mappings.
8bfa3f9a
JW
46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
47 * for all hugepage allocations.
ba76149f 48 */
71e3aac0 49unsigned long transparent_hugepage_flags __read_mostly =
13ece886 50#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 51 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
52#endif
53#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55#endif
444eb2a4 56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
79da5407
KS
57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f 59
9a982250 60static struct shrinker deferred_split_shrinker;
f000565a 61
97ae1749 62static atomic_t huge_zero_refcount;
56873f43 63struct page *huge_zero_page __read_mostly;
4a6c1297 64
7635d9cb
MH
65bool transparent_hugepage_enabled(struct vm_area_struct *vma)
66{
67 if (vma_is_anonymous(vma))
68 return __transparent_hugepage_enabled(vma);
69 if (vma_is_shmem(vma) && shmem_huge_enabled(vma))
70 return __transparent_hugepage_enabled(vma);
71
72 return false;
73}
74
6fcb52a5 75static struct page *get_huge_zero_page(void)
97ae1749
KS
76{
77 struct page *zero_page;
78retry:
79 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
4db0c3c2 80 return READ_ONCE(huge_zero_page);
97ae1749
KS
81
82 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 83 HPAGE_PMD_ORDER);
d8a8e1f0
KS
84 if (!zero_page) {
85 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
5918d10a 86 return NULL;
d8a8e1f0
KS
87 }
88 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 89 preempt_disable();
5918d10a 90 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749 91 preempt_enable();
5ddacbe9 92 __free_pages(zero_page, compound_order(zero_page));
97ae1749
KS
93 goto retry;
94 }
95
96 /* We take additional reference here. It will be put back by shrinker */
97 atomic_set(&huge_zero_refcount, 2);
98 preempt_enable();
4db0c3c2 99 return READ_ONCE(huge_zero_page);
4a6c1297
KS
100}
101
6fcb52a5 102static void put_huge_zero_page(void)
4a6c1297 103{
97ae1749
KS
104 /*
105 * Counter should never go to zero here. Only shrinker can put
106 * last reference.
107 */
108 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
109}
110
6fcb52a5
AL
111struct page *mm_get_huge_zero_page(struct mm_struct *mm)
112{
113 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
114 return READ_ONCE(huge_zero_page);
115
116 if (!get_huge_zero_page())
117 return NULL;
118
119 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
120 put_huge_zero_page();
121
122 return READ_ONCE(huge_zero_page);
123}
124
125void mm_put_huge_zero_page(struct mm_struct *mm)
126{
127 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
128 put_huge_zero_page();
129}
130
48896466
GC
131static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
132 struct shrink_control *sc)
4a6c1297 133{
48896466
GC
134 /* we can free zero page only if last reference remains */
135 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
136}
97ae1749 137
48896466
GC
138static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
139 struct shrink_control *sc)
140{
97ae1749 141 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
142 struct page *zero_page = xchg(&huge_zero_page, NULL);
143 BUG_ON(zero_page == NULL);
5ddacbe9 144 __free_pages(zero_page, compound_order(zero_page));
48896466 145 return HPAGE_PMD_NR;
97ae1749
KS
146 }
147
148 return 0;
4a6c1297
KS
149}
150
97ae1749 151static struct shrinker huge_zero_page_shrinker = {
48896466
GC
152 .count_objects = shrink_huge_zero_page_count,
153 .scan_objects = shrink_huge_zero_page_scan,
97ae1749
KS
154 .seeks = DEFAULT_SEEKS,
155};
156
71e3aac0 157#ifdef CONFIG_SYSFS
71e3aac0
AA
158static ssize_t enabled_show(struct kobject *kobj,
159 struct kobj_attribute *attr, char *buf)
160{
444eb2a4
MG
161 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
162 return sprintf(buf, "[always] madvise never\n");
163 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
164 return sprintf(buf, "always [madvise] never\n");
165 else
166 return sprintf(buf, "always madvise [never]\n");
71e3aac0 167}
444eb2a4 168
71e3aac0
AA
169static ssize_t enabled_store(struct kobject *kobj,
170 struct kobj_attribute *attr,
171 const char *buf, size_t count)
172{
21440d7e 173 ssize_t ret = count;
ba76149f 174
21440d7e
DR
175 if (!memcmp("always", buf,
176 min(sizeof("always")-1, count))) {
177 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
178 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
179 } else if (!memcmp("madvise", buf,
180 min(sizeof("madvise")-1, count))) {
181 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
182 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
183 } else if (!memcmp("never", buf,
184 min(sizeof("never")-1, count))) {
185 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
186 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
187 } else
188 ret = -EINVAL;
ba76149f
AA
189
190 if (ret > 0) {
b46e756f 191 int err = start_stop_khugepaged();
ba76149f
AA
192 if (err)
193 ret = err;
194 }
ba76149f 195 return ret;
71e3aac0
AA
196}
197static struct kobj_attribute enabled_attr =
198 __ATTR(enabled, 0644, enabled_show, enabled_store);
199
b46e756f 200ssize_t single_hugepage_flag_show(struct kobject *kobj,
71e3aac0
AA
201 struct kobj_attribute *attr, char *buf,
202 enum transparent_hugepage_flag flag)
203{
e27e6151
BH
204 return sprintf(buf, "%d\n",
205 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 206}
e27e6151 207
b46e756f 208ssize_t single_hugepage_flag_store(struct kobject *kobj,
71e3aac0
AA
209 struct kobj_attribute *attr,
210 const char *buf, size_t count,
211 enum transparent_hugepage_flag flag)
212{
e27e6151
BH
213 unsigned long value;
214 int ret;
215
216 ret = kstrtoul(buf, 10, &value);
217 if (ret < 0)
218 return ret;
219 if (value > 1)
220 return -EINVAL;
221
222 if (value)
71e3aac0 223 set_bit(flag, &transparent_hugepage_flags);
e27e6151 224 else
71e3aac0 225 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
226
227 return count;
228}
229
71e3aac0
AA
230static ssize_t defrag_show(struct kobject *kobj,
231 struct kobj_attribute *attr, char *buf)
232{
444eb2a4 233 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
21440d7e 234 return sprintf(buf, "[always] defer defer+madvise madvise never\n");
444eb2a4 235 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
21440d7e
DR
236 return sprintf(buf, "always [defer] defer+madvise madvise never\n");
237 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
238 return sprintf(buf, "always defer [defer+madvise] madvise never\n");
239 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
240 return sprintf(buf, "always defer defer+madvise [madvise] never\n");
241 return sprintf(buf, "always defer defer+madvise madvise [never]\n");
71e3aac0 242}
21440d7e 243
71e3aac0
AA
244static ssize_t defrag_store(struct kobject *kobj,
245 struct kobj_attribute *attr,
246 const char *buf, size_t count)
247{
21440d7e
DR
248 if (!memcmp("always", buf,
249 min(sizeof("always")-1, count))) {
250 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
251 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
252 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
253 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
21440d7e
DR
254 } else if (!memcmp("defer+madvise", buf,
255 min(sizeof("defer+madvise")-1, count))) {
256 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
257 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
258 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
259 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
4fad7fb6
DR
260 } else if (!memcmp("defer", buf,
261 min(sizeof("defer")-1, count))) {
262 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
263 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
264 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
265 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
21440d7e
DR
266 } else if (!memcmp("madvise", buf,
267 min(sizeof("madvise")-1, count))) {
268 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
269 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
270 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
271 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
272 } else if (!memcmp("never", buf,
273 min(sizeof("never")-1, count))) {
274 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
275 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
276 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
277 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
278 } else
279 return -EINVAL;
280
281 return count;
71e3aac0
AA
282}
283static struct kobj_attribute defrag_attr =
284 __ATTR(defrag, 0644, defrag_show, defrag_store);
285
79da5407
KS
286static ssize_t use_zero_page_show(struct kobject *kobj,
287 struct kobj_attribute *attr, char *buf)
288{
b46e756f 289 return single_hugepage_flag_show(kobj, attr, buf,
79da5407
KS
290 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
291}
292static ssize_t use_zero_page_store(struct kobject *kobj,
293 struct kobj_attribute *attr, const char *buf, size_t count)
294{
b46e756f 295 return single_hugepage_flag_store(kobj, attr, buf, count,
79da5407
KS
296 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
297}
298static struct kobj_attribute use_zero_page_attr =
299 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
49920d28
HD
300
301static ssize_t hpage_pmd_size_show(struct kobject *kobj,
302 struct kobj_attribute *attr, char *buf)
303{
304 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
305}
306static struct kobj_attribute hpage_pmd_size_attr =
307 __ATTR_RO(hpage_pmd_size);
308
71e3aac0
AA
309#ifdef CONFIG_DEBUG_VM
310static ssize_t debug_cow_show(struct kobject *kobj,
311 struct kobj_attribute *attr, char *buf)
312{
b46e756f 313 return single_hugepage_flag_show(kobj, attr, buf,
71e3aac0
AA
314 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
315}
316static ssize_t debug_cow_store(struct kobject *kobj,
317 struct kobj_attribute *attr,
318 const char *buf, size_t count)
319{
b46e756f 320 return single_hugepage_flag_store(kobj, attr, buf, count,
71e3aac0
AA
321 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
322}
323static struct kobj_attribute debug_cow_attr =
324 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
325#endif /* CONFIG_DEBUG_VM */
326
327static struct attribute *hugepage_attr[] = {
328 &enabled_attr.attr,
329 &defrag_attr.attr,
79da5407 330 &use_zero_page_attr.attr,
49920d28 331 &hpage_pmd_size_attr.attr,
e496cf3d 332#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
5a6e75f8
KS
333 &shmem_enabled_attr.attr,
334#endif
71e3aac0
AA
335#ifdef CONFIG_DEBUG_VM
336 &debug_cow_attr.attr,
337#endif
338 NULL,
339};
340
8aa95a21 341static const struct attribute_group hugepage_attr_group = {
71e3aac0 342 .attrs = hugepage_attr,
ba76149f
AA
343};
344
569e5590 345static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 346{
71e3aac0
AA
347 int err;
348
569e5590
SL
349 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
350 if (unlikely(!*hugepage_kobj)) {
ae3a8c1c 351 pr_err("failed to create transparent hugepage kobject\n");
569e5590 352 return -ENOMEM;
ba76149f
AA
353 }
354
569e5590 355 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 356 if (err) {
ae3a8c1c 357 pr_err("failed to register transparent hugepage group\n");
569e5590 358 goto delete_obj;
ba76149f
AA
359 }
360
569e5590 361 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 362 if (err) {
ae3a8c1c 363 pr_err("failed to register transparent hugepage group\n");
569e5590 364 goto remove_hp_group;
ba76149f 365 }
569e5590
SL
366
367 return 0;
368
369remove_hp_group:
370 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
371delete_obj:
372 kobject_put(*hugepage_kobj);
373 return err;
374}
375
376static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
377{
378 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
379 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
380 kobject_put(hugepage_kobj);
381}
382#else
383static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
384{
385 return 0;
386}
387
388static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
389{
390}
391#endif /* CONFIG_SYSFS */
392
393static int __init hugepage_init(void)
394{
395 int err;
396 struct kobject *hugepage_kobj;
397
398 if (!has_transparent_hugepage()) {
399 transparent_hugepage_flags = 0;
400 return -EINVAL;
401 }
402
ff20c2e0
KS
403 /*
404 * hugepages can't be allocated by the buddy allocator
405 */
406 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
407 /*
408 * we use page->mapping and page->index in second tail page
409 * as list_head: assuming THP order >= 2
410 */
411 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
412
569e5590
SL
413 err = hugepage_init_sysfs(&hugepage_kobj);
414 if (err)
65ebb64f 415 goto err_sysfs;
ba76149f 416
b46e756f 417 err = khugepaged_init();
ba76149f 418 if (err)
65ebb64f 419 goto err_slab;
ba76149f 420
65ebb64f
KS
421 err = register_shrinker(&huge_zero_page_shrinker);
422 if (err)
423 goto err_hzp_shrinker;
9a982250
KS
424 err = register_shrinker(&deferred_split_shrinker);
425 if (err)
426 goto err_split_shrinker;
97ae1749 427
97562cd2
RR
428 /*
429 * By default disable transparent hugepages on smaller systems,
430 * where the extra memory used could hurt more than TLB overhead
431 * is likely to save. The admin can still enable it through /sys.
432 */
ca79b0c2 433 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
97562cd2 434 transparent_hugepage_flags = 0;
79553da2
KS
435 return 0;
436 }
97562cd2 437
79553da2 438 err = start_stop_khugepaged();
65ebb64f
KS
439 if (err)
440 goto err_khugepaged;
ba76149f 441
569e5590 442 return 0;
65ebb64f 443err_khugepaged:
9a982250
KS
444 unregister_shrinker(&deferred_split_shrinker);
445err_split_shrinker:
65ebb64f
KS
446 unregister_shrinker(&huge_zero_page_shrinker);
447err_hzp_shrinker:
b46e756f 448 khugepaged_destroy();
65ebb64f 449err_slab:
569e5590 450 hugepage_exit_sysfs(hugepage_kobj);
65ebb64f 451err_sysfs:
ba76149f 452 return err;
71e3aac0 453}
a64fb3cd 454subsys_initcall(hugepage_init);
71e3aac0
AA
455
456static int __init setup_transparent_hugepage(char *str)
457{
458 int ret = 0;
459 if (!str)
460 goto out;
461 if (!strcmp(str, "always")) {
462 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
463 &transparent_hugepage_flags);
464 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
465 &transparent_hugepage_flags);
466 ret = 1;
467 } else if (!strcmp(str, "madvise")) {
468 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
469 &transparent_hugepage_flags);
470 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
471 &transparent_hugepage_flags);
472 ret = 1;
473 } else if (!strcmp(str, "never")) {
474 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
475 &transparent_hugepage_flags);
476 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
477 &transparent_hugepage_flags);
478 ret = 1;
479 }
480out:
481 if (!ret)
ae3a8c1c 482 pr_warn("transparent_hugepage= cannot parse, ignored\n");
71e3aac0
AA
483 return ret;
484}
485__setup("transparent_hugepage=", setup_transparent_hugepage);
486
f55e1014 487pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0 488{
f55e1014 489 if (likely(vma->vm_flags & VM_WRITE))
71e3aac0
AA
490 pmd = pmd_mkwrite(pmd);
491 return pmd;
492}
493
9a982250
KS
494static inline struct list_head *page_deferred_list(struct page *page)
495{
fa3015b7
MW
496 /* ->lru in the tail pages is occupied by compound_head. */
497 return &page[2].deferred_list;
9a982250
KS
498}
499
500void prep_transhuge_page(struct page *page)
501{
502 /*
503 * we use page->mapping and page->indexlru in second tail page
504 * as list_head: assuming THP order >= 2
505 */
9a982250
KS
506
507 INIT_LIST_HEAD(page_deferred_list(page));
508 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
509}
510
74d2fad1
TK
511unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
512 loff_t off, unsigned long flags, unsigned long size)
513{
514 unsigned long addr;
515 loff_t off_end = off + len;
516 loff_t off_align = round_up(off, size);
517 unsigned long len_pad;
518
519 if (off_end <= off_align || (off_end - off_align) < size)
520 return 0;
521
522 len_pad = len + size;
523 if (len_pad < len || (off + len_pad) < off)
524 return 0;
525
526 addr = current->mm->get_unmapped_area(filp, 0, len_pad,
527 off >> PAGE_SHIFT, flags);
528 if (IS_ERR_VALUE(addr))
529 return 0;
530
531 addr += (off - addr) & (size - 1);
532 return addr;
533}
534
535unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
536 unsigned long len, unsigned long pgoff, unsigned long flags)
537{
538 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
539
540 if (addr)
541 goto out;
542 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
543 goto out;
544
545 addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
546 if (addr)
547 return addr;
548
549 out:
550 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
551}
552EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
553
2b740303
SJ
554static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
555 struct page *page, gfp_t gfp)
71e3aac0 556{
82b0f8c3 557 struct vm_area_struct *vma = vmf->vma;
00501b53 558 struct mem_cgroup *memcg;
71e3aac0 559 pgtable_t pgtable;
82b0f8c3 560 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2b740303 561 vm_fault_t ret = 0;
71e3aac0 562
309381fe 563 VM_BUG_ON_PAGE(!PageCompound(page), page);
00501b53 564
2cf85583 565 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) {
6b251fc9
AA
566 put_page(page);
567 count_vm_event(THP_FAULT_FALLBACK);
568 return VM_FAULT_FALLBACK;
569 }
00501b53 570
4cf58924 571 pgtable = pte_alloc_one(vma->vm_mm);
00501b53 572 if (unlikely(!pgtable)) {
6b31d595
MH
573 ret = VM_FAULT_OOM;
574 goto release;
00501b53 575 }
71e3aac0 576
c79b57e4 577 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
52f37629
MK
578 /*
579 * The memory barrier inside __SetPageUptodate makes sure that
580 * clear_huge_page writes become visible before the set_pmd_at()
581 * write.
582 */
71e3aac0
AA
583 __SetPageUptodate(page);
584
82b0f8c3
JK
585 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
586 if (unlikely(!pmd_none(*vmf->pmd))) {
6b31d595 587 goto unlock_release;
71e3aac0
AA
588 } else {
589 pmd_t entry;
6b251fc9 590
6b31d595
MH
591 ret = check_stable_address_space(vma->vm_mm);
592 if (ret)
593 goto unlock_release;
594
6b251fc9
AA
595 /* Deliver the page fault to userland */
596 if (userfaultfd_missing(vma)) {
2b740303 597 vm_fault_t ret2;
6b251fc9 598
82b0f8c3 599 spin_unlock(vmf->ptl);
f627c2f5 600 mem_cgroup_cancel_charge(page, memcg, true);
6b251fc9 601 put_page(page);
bae473a4 602 pte_free(vma->vm_mm, pgtable);
2b740303
SJ
603 ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
604 VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
605 return ret2;
6b251fc9
AA
606 }
607
3122359a 608 entry = mk_huge_pmd(page, vma->vm_page_prot);
f55e1014 609 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
d281ee61 610 page_add_new_anon_rmap(page, vma, haddr, true);
f627c2f5 611 mem_cgroup_commit_charge(page, memcg, false, true);
00501b53 612 lru_cache_add_active_or_unevictable(page, vma);
82b0f8c3
JK
613 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
614 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
bae473a4 615 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
c4812909 616 mm_inc_nr_ptes(vma->vm_mm);
82b0f8c3 617 spin_unlock(vmf->ptl);
6b251fc9 618 count_vm_event(THP_FAULT_ALLOC);
71e3aac0
AA
619 }
620
aa2e878e 621 return 0;
6b31d595
MH
622unlock_release:
623 spin_unlock(vmf->ptl);
624release:
625 if (pgtable)
626 pte_free(vma->vm_mm, pgtable);
627 mem_cgroup_cancel_charge(page, memcg, true);
628 put_page(page);
629 return ret;
630
71e3aac0
AA
631}
632
444eb2a4 633/*
21440d7e
DR
634 * always: directly stall for all thp allocations
635 * defer: wake kswapd and fail if not immediately available
636 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
637 * fail if not immediately available
638 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
639 * available
640 * never: never stall for any thp allocation
444eb2a4 641 */
356ff8a9 642static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
444eb2a4 643{
21440d7e 644 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
25160354 645
2f0799a0 646 /* Always do synchronous compaction */
21440d7e 647 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
356ff8a9 648 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
2f0799a0
DR
649
650 /* Kick kcompactd and fail quickly */
21440d7e 651 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
356ff8a9 652 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
2f0799a0
DR
653
654 /* Synchronous compaction if madvised, otherwise kick kcompactd */
21440d7e 655 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
356ff8a9
DR
656 return GFP_TRANSHUGE_LIGHT |
657 (vma_madvised ? __GFP_DIRECT_RECLAIM :
658 __GFP_KSWAPD_RECLAIM);
2f0799a0
DR
659
660 /* Only do synchronous compaction if madvised */
21440d7e 661 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
356ff8a9
DR
662 return GFP_TRANSHUGE_LIGHT |
663 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
2f0799a0 664
356ff8a9 665 return GFP_TRANSHUGE_LIGHT;
444eb2a4
MG
666}
667
c4088ebd 668/* Caller must hold page table lock. */
d295e341 669static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 670 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 671 struct page *zero_page)
fc9fe822
KS
672{
673 pmd_t entry;
7c414164
AM
674 if (!pmd_none(*pmd))
675 return false;
5918d10a 676 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822 677 entry = pmd_mkhuge(entry);
12c9d70b
MW
678 if (pgtable)
679 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 680 set_pmd_at(mm, haddr, pmd, entry);
c4812909 681 mm_inc_nr_ptes(mm);
7c414164 682 return true;
fc9fe822
KS
683}
684
2b740303 685vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
71e3aac0 686{
82b0f8c3 687 struct vm_area_struct *vma = vmf->vma;
077fcf11 688 gfp_t gfp;
71e3aac0 689 struct page *page;
82b0f8c3 690 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
71e3aac0 691
128ec037 692 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
c0292554 693 return VM_FAULT_FALLBACK;
128ec037
KS
694 if (unlikely(anon_vma_prepare(vma)))
695 return VM_FAULT_OOM;
6d50e60c 696 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
128ec037 697 return VM_FAULT_OOM;
82b0f8c3 698 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 699 !mm_forbids_zeropage(vma->vm_mm) &&
128ec037
KS
700 transparent_hugepage_use_zero_page()) {
701 pgtable_t pgtable;
702 struct page *zero_page;
703 bool set;
2b740303 704 vm_fault_t ret;
4cf58924 705 pgtable = pte_alloc_one(vma->vm_mm);
128ec037 706 if (unlikely(!pgtable))
ba76149f 707 return VM_FAULT_OOM;
6fcb52a5 708 zero_page = mm_get_huge_zero_page(vma->vm_mm);
128ec037 709 if (unlikely(!zero_page)) {
bae473a4 710 pte_free(vma->vm_mm, pgtable);
81ab4201 711 count_vm_event(THP_FAULT_FALLBACK);
c0292554 712 return VM_FAULT_FALLBACK;
b9bbfbe3 713 }
82b0f8c3 714 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
6b251fc9
AA
715 ret = 0;
716 set = false;
82b0f8c3 717 if (pmd_none(*vmf->pmd)) {
6b31d595
MH
718 ret = check_stable_address_space(vma->vm_mm);
719 if (ret) {
720 spin_unlock(vmf->ptl);
721 } else if (userfaultfd_missing(vma)) {
82b0f8c3
JK
722 spin_unlock(vmf->ptl);
723 ret = handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
724 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
725 } else {
bae473a4 726 set_huge_zero_page(pgtable, vma->vm_mm, vma,
82b0f8c3
JK
727 haddr, vmf->pmd, zero_page);
728 spin_unlock(vmf->ptl);
6b251fc9
AA
729 set = true;
730 }
731 } else
82b0f8c3 732 spin_unlock(vmf->ptl);
6fcb52a5 733 if (!set)
bae473a4 734 pte_free(vma->vm_mm, pgtable);
6b251fc9 735 return ret;
71e3aac0 736 }
356ff8a9
DR
737 gfp = alloc_hugepage_direct_gfpmask(vma);
738 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
128ec037
KS
739 if (unlikely(!page)) {
740 count_vm_event(THP_FAULT_FALLBACK);
c0292554 741 return VM_FAULT_FALLBACK;
128ec037 742 }
9a982250 743 prep_transhuge_page(page);
82b0f8c3 744 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
71e3aac0
AA
745}
746
ae18d6dc 747static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
3b6521f5
OH
748 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
749 pgtable_t pgtable)
5cad465d
MW
750{
751 struct mm_struct *mm = vma->vm_mm;
752 pmd_t entry;
753 spinlock_t *ptl;
754
755 ptl = pmd_lock(mm, pmd);
f25748e3
DW
756 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
757 if (pfn_t_devmap(pfn))
758 entry = pmd_mkdevmap(entry);
01871e59 759 if (write) {
f55e1014
LT
760 entry = pmd_mkyoung(pmd_mkdirty(entry));
761 entry = maybe_pmd_mkwrite(entry, vma);
5cad465d 762 }
3b6521f5
OH
763
764 if (pgtable) {
765 pgtable_trans_huge_deposit(mm, pmd, pgtable);
c4812909 766 mm_inc_nr_ptes(mm);
3b6521f5
OH
767 }
768
01871e59
RZ
769 set_pmd_at(mm, addr, pmd, entry);
770 update_mmu_cache_pmd(vma, addr, pmd);
5cad465d 771 spin_unlock(ptl);
5cad465d
MW
772}
773
226ab561 774vm_fault_t vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
f25748e3 775 pmd_t *pmd, pfn_t pfn, bool write)
5cad465d
MW
776{
777 pgprot_t pgprot = vma->vm_page_prot;
3b6521f5 778 pgtable_t pgtable = NULL;
5cad465d
MW
779 /*
780 * If we had pmd_special, we could avoid all these restrictions,
781 * but we need to be consistent with PTEs and architectures that
782 * can't support a 'special' bit.
783 */
e1fb4a08
DJ
784 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
785 !pfn_t_devmap(pfn));
5cad465d
MW
786 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
787 (VM_PFNMAP|VM_MIXEDMAP));
788 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
5cad465d
MW
789
790 if (addr < vma->vm_start || addr >= vma->vm_end)
791 return VM_FAULT_SIGBUS;
308a047c 792
3b6521f5 793 if (arch_needs_pgtable_deposit()) {
4cf58924 794 pgtable = pte_alloc_one(vma->vm_mm);
3b6521f5
OH
795 if (!pgtable)
796 return VM_FAULT_OOM;
797 }
798
308a047c
BP
799 track_pfn_insert(vma, &pgprot, pfn);
800
3b6521f5 801 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write, pgtable);
ae18d6dc 802 return VM_FAULT_NOPAGE;
5cad465d 803}
dee41079 804EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
5cad465d 805
a00cc7d9 806#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
f55e1014 807static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
a00cc7d9 808{
f55e1014 809 if (likely(vma->vm_flags & VM_WRITE))
a00cc7d9
MW
810 pud = pud_mkwrite(pud);
811 return pud;
812}
813
814static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
815 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
816{
817 struct mm_struct *mm = vma->vm_mm;
818 pud_t entry;
819 spinlock_t *ptl;
820
821 ptl = pud_lock(mm, pud);
822 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
823 if (pfn_t_devmap(pfn))
824 entry = pud_mkdevmap(entry);
825 if (write) {
f55e1014
LT
826 entry = pud_mkyoung(pud_mkdirty(entry));
827 entry = maybe_pud_mkwrite(entry, vma);
a00cc7d9
MW
828 }
829 set_pud_at(mm, addr, pud, entry);
830 update_mmu_cache_pud(vma, addr, pud);
831 spin_unlock(ptl);
832}
833
226ab561 834vm_fault_t vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
a00cc7d9
MW
835 pud_t *pud, pfn_t pfn, bool write)
836{
837 pgprot_t pgprot = vma->vm_page_prot;
838 /*
839 * If we had pud_special, we could avoid all these restrictions,
840 * but we need to be consistent with PTEs and architectures that
841 * can't support a 'special' bit.
842 */
62ec0d8c
DJ
843 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
844 !pfn_t_devmap(pfn));
a00cc7d9
MW
845 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
846 (VM_PFNMAP|VM_MIXEDMAP));
847 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
a00cc7d9
MW
848
849 if (addr < vma->vm_start || addr >= vma->vm_end)
850 return VM_FAULT_SIGBUS;
851
852 track_pfn_insert(vma, &pgprot, pfn);
853
854 insert_pfn_pud(vma, addr, pud, pfn, pgprot, write);
855 return VM_FAULT_NOPAGE;
856}
857EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
858#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
859
3565fce3 860static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
a8f97366 861 pmd_t *pmd, int flags)
3565fce3
DW
862{
863 pmd_t _pmd;
864
a8f97366
KS
865 _pmd = pmd_mkyoung(*pmd);
866 if (flags & FOLL_WRITE)
867 _pmd = pmd_mkdirty(_pmd);
3565fce3 868 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
a8f97366 869 pmd, _pmd, flags & FOLL_WRITE))
3565fce3
DW
870 update_mmu_cache_pmd(vma, addr, pmd);
871}
872
873struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
df06b37f 874 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
3565fce3
DW
875{
876 unsigned long pfn = pmd_pfn(*pmd);
877 struct mm_struct *mm = vma->vm_mm;
3565fce3
DW
878 struct page *page;
879
880 assert_spin_locked(pmd_lockptr(mm, pmd));
881
8310d48b
KF
882 /*
883 * When we COW a devmap PMD entry, we split it into PTEs, so we should
884 * not be in this function with `flags & FOLL_COW` set.
885 */
886 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
887
f6f37321 888 if (flags & FOLL_WRITE && !pmd_write(*pmd))
3565fce3
DW
889 return NULL;
890
891 if (pmd_present(*pmd) && pmd_devmap(*pmd))
892 /* pass */;
893 else
894 return NULL;
895
896 if (flags & FOLL_TOUCH)
a8f97366 897 touch_pmd(vma, addr, pmd, flags);
3565fce3
DW
898
899 /*
900 * device mapped pages can only be returned if the
901 * caller will manage the page reference count.
902 */
903 if (!(flags & FOLL_GET))
904 return ERR_PTR(-EEXIST);
905
906 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
df06b37f
KB
907 *pgmap = get_dev_pagemap(pfn, *pgmap);
908 if (!*pgmap)
3565fce3
DW
909 return ERR_PTR(-EFAULT);
910 page = pfn_to_page(pfn);
911 get_page(page);
3565fce3
DW
912
913 return page;
914}
915
71e3aac0
AA
916int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
917 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
918 struct vm_area_struct *vma)
919{
c4088ebd 920 spinlock_t *dst_ptl, *src_ptl;
71e3aac0
AA
921 struct page *src_page;
922 pmd_t pmd;
12c9d70b 923 pgtable_t pgtable = NULL;
628d47ce 924 int ret = -ENOMEM;
71e3aac0 925
628d47ce
KS
926 /* Skip if can be re-fill on fault */
927 if (!vma_is_anonymous(vma))
928 return 0;
929
4cf58924 930 pgtable = pte_alloc_one(dst_mm);
628d47ce
KS
931 if (unlikely(!pgtable))
932 goto out;
71e3aac0 933
c4088ebd
KS
934 dst_ptl = pmd_lock(dst_mm, dst_pmd);
935 src_ptl = pmd_lockptr(src_mm, src_pmd);
936 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
71e3aac0
AA
937
938 ret = -EAGAIN;
939 pmd = *src_pmd;
84c3fc4e
ZY
940
941#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
942 if (unlikely(is_swap_pmd(pmd))) {
943 swp_entry_t entry = pmd_to_swp_entry(pmd);
944
945 VM_BUG_ON(!is_pmd_migration_entry(pmd));
946 if (is_write_migration_entry(entry)) {
947 make_migration_entry_read(&entry);
948 pmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
949 if (pmd_swp_soft_dirty(*src_pmd))
950 pmd = pmd_swp_mksoft_dirty(pmd);
84c3fc4e
ZY
951 set_pmd_at(src_mm, addr, src_pmd, pmd);
952 }
dd8a67f9 953 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
af5b0f6a 954 mm_inc_nr_ptes(dst_mm);
dd8a67f9 955 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
84c3fc4e
ZY
956 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
957 ret = 0;
958 goto out_unlock;
959 }
960#endif
961
628d47ce 962 if (unlikely(!pmd_trans_huge(pmd))) {
71e3aac0
AA
963 pte_free(dst_mm, pgtable);
964 goto out_unlock;
965 }
fc9fe822 966 /*
c4088ebd 967 * When page table lock is held, the huge zero pmd should not be
fc9fe822
KS
968 * under splitting since we don't split the page itself, only pmd to
969 * a page table.
970 */
971 if (is_huge_zero_pmd(pmd)) {
5918d10a 972 struct page *zero_page;
97ae1749
KS
973 /*
974 * get_huge_zero_page() will never allocate a new page here,
975 * since we already have a zero page to copy. It just takes a
976 * reference.
977 */
6fcb52a5 978 zero_page = mm_get_huge_zero_page(dst_mm);
6b251fc9 979 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
5918d10a 980 zero_page);
fc9fe822
KS
981 ret = 0;
982 goto out_unlock;
983 }
de466bd6 984
628d47ce
KS
985 src_page = pmd_page(pmd);
986 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
987 get_page(src_page);
988 page_dup_rmap(src_page, true);
989 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
c4812909 990 mm_inc_nr_ptes(dst_mm);
628d47ce 991 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
71e3aac0
AA
992
993 pmdp_set_wrprotect(src_mm, addr, src_pmd);
994 pmd = pmd_mkold(pmd_wrprotect(pmd));
995 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
71e3aac0
AA
996
997 ret = 0;
998out_unlock:
c4088ebd
KS
999 spin_unlock(src_ptl);
1000 spin_unlock(dst_ptl);
71e3aac0
AA
1001out:
1002 return ret;
1003}
1004
a00cc7d9
MW
1005#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1006static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
a8f97366 1007 pud_t *pud, int flags)
a00cc7d9
MW
1008{
1009 pud_t _pud;
1010
a8f97366
KS
1011 _pud = pud_mkyoung(*pud);
1012 if (flags & FOLL_WRITE)
1013 _pud = pud_mkdirty(_pud);
a00cc7d9 1014 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
a8f97366 1015 pud, _pud, flags & FOLL_WRITE))
a00cc7d9
MW
1016 update_mmu_cache_pud(vma, addr, pud);
1017}
1018
1019struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
df06b37f 1020 pud_t *pud, int flags, struct dev_pagemap **pgmap)
a00cc7d9
MW
1021{
1022 unsigned long pfn = pud_pfn(*pud);
1023 struct mm_struct *mm = vma->vm_mm;
a00cc7d9
MW
1024 struct page *page;
1025
1026 assert_spin_locked(pud_lockptr(mm, pud));
1027
f6f37321 1028 if (flags & FOLL_WRITE && !pud_write(*pud))
a00cc7d9
MW
1029 return NULL;
1030
1031 if (pud_present(*pud) && pud_devmap(*pud))
1032 /* pass */;
1033 else
1034 return NULL;
1035
1036 if (flags & FOLL_TOUCH)
a8f97366 1037 touch_pud(vma, addr, pud, flags);
a00cc7d9
MW
1038
1039 /*
1040 * device mapped pages can only be returned if the
1041 * caller will manage the page reference count.
1042 */
1043 if (!(flags & FOLL_GET))
1044 return ERR_PTR(-EEXIST);
1045
1046 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
df06b37f
KB
1047 *pgmap = get_dev_pagemap(pfn, *pgmap);
1048 if (!*pgmap)
a00cc7d9
MW
1049 return ERR_PTR(-EFAULT);
1050 page = pfn_to_page(pfn);
1051 get_page(page);
a00cc7d9
MW
1052
1053 return page;
1054}
1055
1056int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1057 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1058 struct vm_area_struct *vma)
1059{
1060 spinlock_t *dst_ptl, *src_ptl;
1061 pud_t pud;
1062 int ret;
1063
1064 dst_ptl = pud_lock(dst_mm, dst_pud);
1065 src_ptl = pud_lockptr(src_mm, src_pud);
1066 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1067
1068 ret = -EAGAIN;
1069 pud = *src_pud;
1070 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1071 goto out_unlock;
1072
1073 /*
1074 * When page table lock is held, the huge zero pud should not be
1075 * under splitting since we don't split the page itself, only pud to
1076 * a page table.
1077 */
1078 if (is_huge_zero_pud(pud)) {
1079 /* No huge zero pud yet */
1080 }
1081
1082 pudp_set_wrprotect(src_mm, addr, src_pud);
1083 pud = pud_mkold(pud_wrprotect(pud));
1084 set_pud_at(dst_mm, addr, dst_pud, pud);
1085
1086 ret = 0;
1087out_unlock:
1088 spin_unlock(src_ptl);
1089 spin_unlock(dst_ptl);
1090 return ret;
1091}
1092
1093void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1094{
1095 pud_t entry;
1096 unsigned long haddr;
1097 bool write = vmf->flags & FAULT_FLAG_WRITE;
1098
1099 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1100 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1101 goto unlock;
1102
1103 entry = pud_mkyoung(orig_pud);
1104 if (write)
1105 entry = pud_mkdirty(entry);
1106 haddr = vmf->address & HPAGE_PUD_MASK;
1107 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1108 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1109
1110unlock:
1111 spin_unlock(vmf->ptl);
1112}
1113#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1114
82b0f8c3 1115void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
a1dd450b
WD
1116{
1117 pmd_t entry;
1118 unsigned long haddr;
20f664aa 1119 bool write = vmf->flags & FAULT_FLAG_WRITE;
a1dd450b 1120
82b0f8c3
JK
1121 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1122 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
a1dd450b
WD
1123 goto unlock;
1124
1125 entry = pmd_mkyoung(orig_pmd);
20f664aa
MK
1126 if (write)
1127 entry = pmd_mkdirty(entry);
82b0f8c3 1128 haddr = vmf->address & HPAGE_PMD_MASK;
20f664aa 1129 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
82b0f8c3 1130 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
a1dd450b
WD
1131
1132unlock:
82b0f8c3 1133 spin_unlock(vmf->ptl);
a1dd450b
WD
1134}
1135
2b740303
SJ
1136static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf,
1137 pmd_t orig_pmd, struct page *page)
71e3aac0 1138{
82b0f8c3
JK
1139 struct vm_area_struct *vma = vmf->vma;
1140 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
00501b53 1141 struct mem_cgroup *memcg;
71e3aac0
AA
1142 pgtable_t pgtable;
1143 pmd_t _pmd;
2b740303
SJ
1144 int i;
1145 vm_fault_t ret = 0;
71e3aac0 1146 struct page **pages;
ac46d4f3 1147 struct mmu_notifier_range range;
71e3aac0 1148
6da2ec56
KC
1149 pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
1150 GFP_KERNEL);
71e3aac0
AA
1151 if (unlikely(!pages)) {
1152 ret |= VM_FAULT_OOM;
1153 goto out;
1154 }
1155
1156 for (i = 0; i < HPAGE_PMD_NR; i++) {
41b6167e 1157 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 1158 vmf->address, page_to_nid(page));
b9bbfbe3 1159 if (unlikely(!pages[i] ||
2cf85583 1160 mem_cgroup_try_charge_delay(pages[i], vma->vm_mm,
bae473a4 1161 GFP_KERNEL, &memcg, false))) {
b9bbfbe3 1162 if (pages[i])
71e3aac0 1163 put_page(pages[i]);
b9bbfbe3 1164 while (--i >= 0) {
00501b53
JW
1165 memcg = (void *)page_private(pages[i]);
1166 set_page_private(pages[i], 0);
f627c2f5
KS
1167 mem_cgroup_cancel_charge(pages[i], memcg,
1168 false);
b9bbfbe3
AA
1169 put_page(pages[i]);
1170 }
71e3aac0
AA
1171 kfree(pages);
1172 ret |= VM_FAULT_OOM;
1173 goto out;
1174 }
00501b53 1175 set_page_private(pages[i], (unsigned long)memcg);
71e3aac0
AA
1176 }
1177
1178 for (i = 0; i < HPAGE_PMD_NR; i++) {
1179 copy_user_highpage(pages[i], page + i,
0089e485 1180 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
1181 __SetPageUptodate(pages[i]);
1182 cond_resched();
1183 }
1184
ac46d4f3
JG
1185 mmu_notifier_range_init(&range, vma->vm_mm, haddr,
1186 haddr + HPAGE_PMD_SIZE);
1187 mmu_notifier_invalidate_range_start(&range);
2ec74c3e 1188
82b0f8c3
JK
1189 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1190 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
71e3aac0 1191 goto out_free_pages;
309381fe 1192 VM_BUG_ON_PAGE(!PageHead(page), page);
71e3aac0 1193
0f10851e
JG
1194 /*
1195 * Leave pmd empty until pte is filled note we must notify here as
1196 * concurrent CPU thread might write to new page before the call to
1197 * mmu_notifier_invalidate_range_end() happens which can lead to a
1198 * device seeing memory write in different order than CPU.
1199 *
ad56b738 1200 * See Documentation/vm/mmu_notifier.rst
0f10851e 1201 */
82b0f8c3 1202 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
71e3aac0 1203
82b0f8c3 1204 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
bae473a4 1205 pmd_populate(vma->vm_mm, &_pmd, pgtable);
71e3aac0
AA
1206
1207 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
bae473a4 1208 pte_t entry;
71e3aac0
AA
1209 entry = mk_pte(pages[i], vma->vm_page_prot);
1210 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
00501b53
JW
1211 memcg = (void *)page_private(pages[i]);
1212 set_page_private(pages[i], 0);
82b0f8c3 1213 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
f627c2f5 1214 mem_cgroup_commit_charge(pages[i], memcg, false, false);
00501b53 1215 lru_cache_add_active_or_unevictable(pages[i], vma);
82b0f8c3
JK
1216 vmf->pte = pte_offset_map(&_pmd, haddr);
1217 VM_BUG_ON(!pte_none(*vmf->pte));
1218 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1219 pte_unmap(vmf->pte);
71e3aac0
AA
1220 }
1221 kfree(pages);
1222
71e3aac0 1223 smp_wmb(); /* make pte visible before pmd */
82b0f8c3 1224 pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
d281ee61 1225 page_remove_rmap(page, true);
82b0f8c3 1226 spin_unlock(vmf->ptl);
71e3aac0 1227
4645b9fe
JG
1228 /*
1229 * No need to double call mmu_notifier->invalidate_range() callback as
1230 * the above pmdp_huge_clear_flush_notify() did already call it.
1231 */
ac46d4f3 1232 mmu_notifier_invalidate_range_only_end(&range);
2ec74c3e 1233
71e3aac0
AA
1234 ret |= VM_FAULT_WRITE;
1235 put_page(page);
1236
1237out:
1238 return ret;
1239
1240out_free_pages:
82b0f8c3 1241 spin_unlock(vmf->ptl);
ac46d4f3 1242 mmu_notifier_invalidate_range_end(&range);
b9bbfbe3 1243 for (i = 0; i < HPAGE_PMD_NR; i++) {
00501b53
JW
1244 memcg = (void *)page_private(pages[i]);
1245 set_page_private(pages[i], 0);
f627c2f5 1246 mem_cgroup_cancel_charge(pages[i], memcg, false);
71e3aac0 1247 put_page(pages[i]);
b9bbfbe3 1248 }
71e3aac0
AA
1249 kfree(pages);
1250 goto out;
1251}
1252
2b740303 1253vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
71e3aac0 1254{
82b0f8c3 1255 struct vm_area_struct *vma = vmf->vma;
93b4796d 1256 struct page *page = NULL, *new_page;
00501b53 1257 struct mem_cgroup *memcg;
82b0f8c3 1258 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
ac46d4f3 1259 struct mmu_notifier_range range;
3b363692 1260 gfp_t huge_gfp; /* for allocation and charge */
2b740303 1261 vm_fault_t ret = 0;
71e3aac0 1262
82b0f8c3 1263 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
81d1b09c 1264 VM_BUG_ON_VMA(!vma->anon_vma, vma);
93b4796d
KS
1265 if (is_huge_zero_pmd(orig_pmd))
1266 goto alloc;
82b0f8c3
JK
1267 spin_lock(vmf->ptl);
1268 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
71e3aac0
AA
1269 goto out_unlock;
1270
1271 page = pmd_page(orig_pmd);
309381fe 1272 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1f25fe20
KS
1273 /*
1274 * We can only reuse the page if nobody else maps the huge page or it's
6d0a07ed 1275 * part.
1f25fe20 1276 */
ba3c4ce6
HY
1277 if (!trylock_page(page)) {
1278 get_page(page);
1279 spin_unlock(vmf->ptl);
1280 lock_page(page);
1281 spin_lock(vmf->ptl);
1282 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1283 unlock_page(page);
1284 put_page(page);
1285 goto out_unlock;
1286 }
1287 put_page(page);
1288 }
1289 if (reuse_swap_page(page, NULL)) {
71e3aac0
AA
1290 pmd_t entry;
1291 entry = pmd_mkyoung(orig_pmd);
f55e1014 1292 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
82b0f8c3
JK
1293 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1294 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
71e3aac0 1295 ret |= VM_FAULT_WRITE;
ba3c4ce6 1296 unlock_page(page);
71e3aac0
AA
1297 goto out_unlock;
1298 }
ba3c4ce6 1299 unlock_page(page);
ddc58f27 1300 get_page(page);
82b0f8c3 1301 spin_unlock(vmf->ptl);
93b4796d 1302alloc:
7635d9cb 1303 if (__transparent_hugepage_enabled(vma) &&
077fcf11 1304 !transparent_hugepage_debug_cow()) {
356ff8a9
DR
1305 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1306 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
077fcf11 1307 } else
71e3aac0
AA
1308 new_page = NULL;
1309
9a982250
KS
1310 if (likely(new_page)) {
1311 prep_transhuge_page(new_page);
1312 } else {
eecc1e42 1313 if (!page) {
82b0f8c3 1314 split_huge_pmd(vma, vmf->pmd, vmf->address);
e9b71ca9 1315 ret |= VM_FAULT_FALLBACK;
93b4796d 1316 } else {
82b0f8c3 1317 ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
9845cbbd 1318 if (ret & VM_FAULT_OOM) {
82b0f8c3 1319 split_huge_pmd(vma, vmf->pmd, vmf->address);
9845cbbd
KS
1320 ret |= VM_FAULT_FALLBACK;
1321 }
ddc58f27 1322 put_page(page);
93b4796d 1323 }
17766dde 1324 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0
AA
1325 goto out;
1326 }
1327
2cf85583 1328 if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm,
2a70f6a7 1329 huge_gfp, &memcg, true))) {
b9bbfbe3 1330 put_page(new_page);
82b0f8c3 1331 split_huge_pmd(vma, vmf->pmd, vmf->address);
bae473a4 1332 if (page)
ddc58f27 1333 put_page(page);
9845cbbd 1334 ret |= VM_FAULT_FALLBACK;
17766dde 1335 count_vm_event(THP_FAULT_FALLBACK);
b9bbfbe3
AA
1336 goto out;
1337 }
1338
17766dde
DR
1339 count_vm_event(THP_FAULT_ALLOC);
1340
eecc1e42 1341 if (!page)
c79b57e4 1342 clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
93b4796d 1343 else
c9f4cd71
HY
1344 copy_user_huge_page(new_page, page, vmf->address,
1345 vma, HPAGE_PMD_NR);
71e3aac0
AA
1346 __SetPageUptodate(new_page);
1347
ac46d4f3
JG
1348 mmu_notifier_range_init(&range, vma->vm_mm, haddr,
1349 haddr + HPAGE_PMD_SIZE);
1350 mmu_notifier_invalidate_range_start(&range);
2ec74c3e 1351
82b0f8c3 1352 spin_lock(vmf->ptl);
93b4796d 1353 if (page)
ddc58f27 1354 put_page(page);
82b0f8c3
JK
1355 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1356 spin_unlock(vmf->ptl);
f627c2f5 1357 mem_cgroup_cancel_charge(new_page, memcg, true);
71e3aac0 1358 put_page(new_page);
2ec74c3e 1359 goto out_mn;
b9bbfbe3 1360 } else {
71e3aac0 1361 pmd_t entry;
3122359a 1362 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
f55e1014 1363 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
82b0f8c3 1364 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
d281ee61 1365 page_add_new_anon_rmap(new_page, vma, haddr, true);
f627c2f5 1366 mem_cgroup_commit_charge(new_page, memcg, false, true);
00501b53 1367 lru_cache_add_active_or_unevictable(new_page, vma);
82b0f8c3
JK
1368 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1369 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
eecc1e42 1370 if (!page) {
bae473a4 1371 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
97ae1749 1372 } else {
309381fe 1373 VM_BUG_ON_PAGE(!PageHead(page), page);
d281ee61 1374 page_remove_rmap(page, true);
93b4796d
KS
1375 put_page(page);
1376 }
71e3aac0
AA
1377 ret |= VM_FAULT_WRITE;
1378 }
82b0f8c3 1379 spin_unlock(vmf->ptl);
2ec74c3e 1380out_mn:
4645b9fe
JG
1381 /*
1382 * No need to double call mmu_notifier->invalidate_range() callback as
1383 * the above pmdp_huge_clear_flush_notify() did already call it.
1384 */
ac46d4f3 1385 mmu_notifier_invalidate_range_only_end(&range);
71e3aac0
AA
1386out:
1387 return ret;
2ec74c3e 1388out_unlock:
82b0f8c3 1389 spin_unlock(vmf->ptl);
2ec74c3e 1390 return ret;
71e3aac0
AA
1391}
1392
8310d48b
KF
1393/*
1394 * FOLL_FORCE can write to even unwritable pmd's, but only
1395 * after we've gone through a COW cycle and they are dirty.
1396 */
1397static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1398{
f6f37321 1399 return pmd_write(pmd) ||
8310d48b
KF
1400 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1401}
1402
b676b293 1403struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1404 unsigned long addr,
1405 pmd_t *pmd,
1406 unsigned int flags)
1407{
b676b293 1408 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1409 struct page *page = NULL;
1410
c4088ebd 1411 assert_spin_locked(pmd_lockptr(mm, pmd));
71e3aac0 1412
8310d48b 1413 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
71e3aac0
AA
1414 goto out;
1415
85facf25
KS
1416 /* Avoid dumping huge zero page */
1417 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1418 return ERR_PTR(-EFAULT);
1419
2b4847e7 1420 /* Full NUMA hinting faults to serialise migration in fault paths */
8a0516ed 1421 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
2b4847e7
MG
1422 goto out;
1423
71e3aac0 1424 page = pmd_page(*pmd);
ca120cf6 1425 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
3565fce3 1426 if (flags & FOLL_TOUCH)
a8f97366 1427 touch_pmd(vma, addr, pmd, flags);
de60f5f1 1428 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
1429 /*
1430 * We don't mlock() pte-mapped THPs. This way we can avoid
1431 * leaking mlocked pages into non-VM_LOCKED VMAs.
1432 *
9a73f61b
KS
1433 * For anon THP:
1434 *
e90309c9
KS
1435 * In most cases the pmd is the only mapping of the page as we
1436 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1437 * writable private mappings in populate_vma_page_range().
1438 *
1439 * The only scenario when we have the page shared here is if we
1440 * mlocking read-only mapping shared over fork(). We skip
1441 * mlocking such pages.
9a73f61b
KS
1442 *
1443 * For file THP:
1444 *
1445 * We can expect PageDoubleMap() to be stable under page lock:
1446 * for file pages we set it in page_add_file_rmap(), which
1447 * requires page to be locked.
e90309c9 1448 */
9a73f61b
KS
1449
1450 if (PageAnon(page) && compound_mapcount(page) != 1)
1451 goto skip_mlock;
1452 if (PageDoubleMap(page) || !page->mapping)
1453 goto skip_mlock;
1454 if (!trylock_page(page))
1455 goto skip_mlock;
1456 lru_add_drain();
1457 if (page->mapping && !PageDoubleMap(page))
1458 mlock_vma_page(page);
1459 unlock_page(page);
b676b293 1460 }
9a73f61b 1461skip_mlock:
71e3aac0 1462 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
ca120cf6 1463 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
71e3aac0 1464 if (flags & FOLL_GET)
ddc58f27 1465 get_page(page);
71e3aac0
AA
1466
1467out:
1468 return page;
1469}
1470
d10e63f2 1471/* NUMA hinting page fault entry point for trans huge pmds */
2b740303 1472vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
d10e63f2 1473{
82b0f8c3 1474 struct vm_area_struct *vma = vmf->vma;
b8916634 1475 struct anon_vma *anon_vma = NULL;
b32967ff 1476 struct page *page;
82b0f8c3 1477 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
8191acbd 1478 int page_nid = -1, this_nid = numa_node_id();
90572890 1479 int target_nid, last_cpupid = -1;
8191acbd
MG
1480 bool page_locked;
1481 bool migrated = false;
b191f9b1 1482 bool was_writable;
6688cc05 1483 int flags = 0;
d10e63f2 1484
82b0f8c3
JK
1485 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1486 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
d10e63f2
MG
1487 goto out_unlock;
1488
de466bd6
MG
1489 /*
1490 * If there are potential migrations, wait for completion and retry
1491 * without disrupting NUMA hinting information. Do not relock and
1492 * check_same as the page may no longer be mapped.
1493 */
82b0f8c3
JK
1494 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1495 page = pmd_page(*vmf->pmd);
3c226c63
MR
1496 if (!get_page_unless_zero(page))
1497 goto out_unlock;
82b0f8c3 1498 spin_unlock(vmf->ptl);
9a1ea439 1499 put_and_wait_on_page_locked(page);
de466bd6
MG
1500 goto out;
1501 }
1502
d10e63f2 1503 page = pmd_page(pmd);
a1a46184 1504 BUG_ON(is_huge_zero_page(page));
8191acbd 1505 page_nid = page_to_nid(page);
90572890 1506 last_cpupid = page_cpupid_last(page);
03c5a6e1 1507 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 1508 if (page_nid == this_nid) {
03c5a6e1 1509 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
1510 flags |= TNF_FAULT_LOCAL;
1511 }
4daae3b4 1512
bea66fbd 1513 /* See similar comment in do_numa_page for explanation */
288bc549 1514 if (!pmd_savedwrite(pmd))
6688cc05
PZ
1515 flags |= TNF_NO_GROUP;
1516
ff9042b1
MG
1517 /*
1518 * Acquire the page lock to serialise THP migrations but avoid dropping
1519 * page_table_lock if at all possible
1520 */
b8916634
MG
1521 page_locked = trylock_page(page);
1522 target_nid = mpol_misplaced(page, vma, haddr);
1523 if (target_nid == -1) {
1524 /* If the page was locked, there are no parallel migrations */
a54a407f 1525 if (page_locked)
b8916634 1526 goto clear_pmdnuma;
2b4847e7 1527 }
4daae3b4 1528
de466bd6 1529 /* Migration could have started since the pmd_trans_migrating check */
2b4847e7 1530 if (!page_locked) {
3c226c63
MR
1531 page_nid = -1;
1532 if (!get_page_unless_zero(page))
1533 goto out_unlock;
82b0f8c3 1534 spin_unlock(vmf->ptl);
9a1ea439 1535 put_and_wait_on_page_locked(page);
b8916634
MG
1536 goto out;
1537 }
1538
2b4847e7
MG
1539 /*
1540 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1541 * to serialises splits
1542 */
b8916634 1543 get_page(page);
82b0f8c3 1544 spin_unlock(vmf->ptl);
b8916634 1545 anon_vma = page_lock_anon_vma_read(page);
4daae3b4 1546
c69307d5 1547 /* Confirm the PMD did not change while page_table_lock was released */
82b0f8c3
JK
1548 spin_lock(vmf->ptl);
1549 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
b32967ff
MG
1550 unlock_page(page);
1551 put_page(page);
a54a407f 1552 page_nid = -1;
4daae3b4 1553 goto out_unlock;
b32967ff 1554 }
ff9042b1 1555
c3a489ca
MG
1556 /* Bail if we fail to protect against THP splits for any reason */
1557 if (unlikely(!anon_vma)) {
1558 put_page(page);
1559 page_nid = -1;
1560 goto clear_pmdnuma;
1561 }
1562
8b1b436d
PZ
1563 /*
1564 * Since we took the NUMA fault, we must have observed the !accessible
1565 * bit. Make sure all other CPUs agree with that, to avoid them
1566 * modifying the page we're about to migrate.
1567 *
1568 * Must be done under PTL such that we'll observe the relevant
ccde85ba
PZ
1569 * inc_tlb_flush_pending().
1570 *
1571 * We are not sure a pending tlb flush here is for a huge page
1572 * mapping or not. Hence use the tlb range variant
8b1b436d 1573 */
7066f0f9 1574 if (mm_tlb_flush_pending(vma->vm_mm)) {
ccde85ba 1575 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
7066f0f9
AA
1576 /*
1577 * change_huge_pmd() released the pmd lock before
1578 * invalidating the secondary MMUs sharing the primary
1579 * MMU pagetables (with ->invalidate_range()). The
1580 * mmu_notifier_invalidate_range_end() (which
1581 * internally calls ->invalidate_range()) in
1582 * change_pmd_range() will run after us, so we can't
1583 * rely on it here and we need an explicit invalidate.
1584 */
1585 mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1586 haddr + HPAGE_PMD_SIZE);
1587 }
8b1b436d 1588
a54a407f
MG
1589 /*
1590 * Migrate the THP to the requested node, returns with page unlocked
8a0516ed 1591 * and access rights restored.
a54a407f 1592 */
82b0f8c3 1593 spin_unlock(vmf->ptl);
8b1b436d 1594
bae473a4 1595 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
82b0f8c3 1596 vmf->pmd, pmd, vmf->address, page, target_nid);
6688cc05
PZ
1597 if (migrated) {
1598 flags |= TNF_MIGRATED;
8191acbd 1599 page_nid = target_nid;
074c2381
MG
1600 } else
1601 flags |= TNF_MIGRATE_FAIL;
b32967ff 1602
8191acbd 1603 goto out;
b32967ff 1604clear_pmdnuma:
a54a407f 1605 BUG_ON(!PageLocked(page));
288bc549 1606 was_writable = pmd_savedwrite(pmd);
4d942466 1607 pmd = pmd_modify(pmd, vma->vm_page_prot);
b7b04004 1608 pmd = pmd_mkyoung(pmd);
b191f9b1
MG
1609 if (was_writable)
1610 pmd = pmd_mkwrite(pmd);
82b0f8c3
JK
1611 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1612 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
a54a407f 1613 unlock_page(page);
d10e63f2 1614out_unlock:
82b0f8c3 1615 spin_unlock(vmf->ptl);
b8916634
MG
1616
1617out:
1618 if (anon_vma)
1619 page_unlock_anon_vma_read(anon_vma);
1620
8191acbd 1621 if (page_nid != -1)
82b0f8c3 1622 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
9a8b300f 1623 flags);
8191acbd 1624
d10e63f2
MG
1625 return 0;
1626}
1627
319904ad
HY
1628/*
1629 * Return true if we do MADV_FREE successfully on entire pmd page.
1630 * Otherwise, return false.
1631 */
1632bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
b8d3c4c3 1633 pmd_t *pmd, unsigned long addr, unsigned long next)
b8d3c4c3
MK
1634{
1635 spinlock_t *ptl;
1636 pmd_t orig_pmd;
1637 struct page *page;
1638 struct mm_struct *mm = tlb->mm;
319904ad 1639 bool ret = false;
b8d3c4c3 1640
07e32661
AK
1641 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1642
b6ec57f4
KS
1643 ptl = pmd_trans_huge_lock(pmd, vma);
1644 if (!ptl)
25eedabe 1645 goto out_unlocked;
b8d3c4c3
MK
1646
1647 orig_pmd = *pmd;
319904ad 1648 if (is_huge_zero_pmd(orig_pmd))
b8d3c4c3 1649 goto out;
b8d3c4c3 1650
84c3fc4e
ZY
1651 if (unlikely(!pmd_present(orig_pmd))) {
1652 VM_BUG_ON(thp_migration_supported() &&
1653 !is_pmd_migration_entry(orig_pmd));
1654 goto out;
1655 }
1656
b8d3c4c3
MK
1657 page = pmd_page(orig_pmd);
1658 /*
1659 * If other processes are mapping this page, we couldn't discard
1660 * the page unless they all do MADV_FREE so let's skip the page.
1661 */
1662 if (page_mapcount(page) != 1)
1663 goto out;
1664
1665 if (!trylock_page(page))
1666 goto out;
1667
1668 /*
1669 * If user want to discard part-pages of THP, split it so MADV_FREE
1670 * will deactivate only them.
1671 */
1672 if (next - addr != HPAGE_PMD_SIZE) {
1673 get_page(page);
1674 spin_unlock(ptl);
9818b8cd 1675 split_huge_page(page);
b8d3c4c3 1676 unlock_page(page);
bbf29ffc 1677 put_page(page);
b8d3c4c3
MK
1678 goto out_unlocked;
1679 }
1680
1681 if (PageDirty(page))
1682 ClearPageDirty(page);
1683 unlock_page(page);
1684
b8d3c4c3 1685 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
58ceeb6b 1686 pmdp_invalidate(vma, addr, pmd);
b8d3c4c3
MK
1687 orig_pmd = pmd_mkold(orig_pmd);
1688 orig_pmd = pmd_mkclean(orig_pmd);
1689
1690 set_pmd_at(mm, addr, pmd, orig_pmd);
1691 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1692 }
802a3a92
SL
1693
1694 mark_page_lazyfree(page);
319904ad 1695 ret = true;
b8d3c4c3
MK
1696out:
1697 spin_unlock(ptl);
1698out_unlocked:
1699 return ret;
1700}
1701
953c66c2
AK
1702static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1703{
1704 pgtable_t pgtable;
1705
1706 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1707 pte_free(mm, pgtable);
c4812909 1708 mm_dec_nr_ptes(mm);
953c66c2
AK
1709}
1710
71e3aac0 1711int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1712 pmd_t *pmd, unsigned long addr)
71e3aac0 1713{
da146769 1714 pmd_t orig_pmd;
bf929152 1715 spinlock_t *ptl;
71e3aac0 1716
07e32661
AK
1717 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1718
b6ec57f4
KS
1719 ptl = __pmd_trans_huge_lock(pmd, vma);
1720 if (!ptl)
da146769
KS
1721 return 0;
1722 /*
1723 * For architectures like ppc64 we look at deposited pgtable
1724 * when calling pmdp_huge_get_and_clear. So do the
1725 * pgtable_trans_huge_withdraw after finishing pmdp related
1726 * operations.
1727 */
1728 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1729 tlb->fullmm);
1730 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1731 if (vma_is_dax(vma)) {
3b6521f5
OH
1732 if (arch_needs_pgtable_deposit())
1733 zap_deposited_table(tlb->mm, pmd);
da146769
KS
1734 spin_unlock(ptl);
1735 if (is_huge_zero_pmd(orig_pmd))
c0f2e176 1736 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769 1737 } else if (is_huge_zero_pmd(orig_pmd)) {
c14a6eb4 1738 zap_deposited_table(tlb->mm, pmd);
da146769 1739 spin_unlock(ptl);
c0f2e176 1740 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769 1741 } else {
616b8371
ZY
1742 struct page *page = NULL;
1743 int flush_needed = 1;
1744
1745 if (pmd_present(orig_pmd)) {
1746 page = pmd_page(orig_pmd);
1747 page_remove_rmap(page, true);
1748 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1749 VM_BUG_ON_PAGE(!PageHead(page), page);
1750 } else if (thp_migration_supported()) {
1751 swp_entry_t entry;
1752
1753 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1754 entry = pmd_to_swp_entry(orig_pmd);
1755 page = pfn_to_page(swp_offset(entry));
1756 flush_needed = 0;
1757 } else
1758 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1759
b5072380 1760 if (PageAnon(page)) {
c14a6eb4 1761 zap_deposited_table(tlb->mm, pmd);
b5072380
KS
1762 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1763 } else {
953c66c2
AK
1764 if (arch_needs_pgtable_deposit())
1765 zap_deposited_table(tlb->mm, pmd);
fadae295 1766 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
b5072380 1767 }
616b8371 1768
da146769 1769 spin_unlock(ptl);
616b8371
ZY
1770 if (flush_needed)
1771 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
025c5b24 1772 }
da146769 1773 return 1;
71e3aac0
AA
1774}
1775
1dd38b6c
AK
1776#ifndef pmd_move_must_withdraw
1777static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1778 spinlock_t *old_pmd_ptl,
1779 struct vm_area_struct *vma)
1780{
1781 /*
1782 * With split pmd lock we also need to move preallocated
1783 * PTE page table if new_pmd is on different PMD page table.
1784 *
1785 * We also don't deposit and withdraw tables for file pages.
1786 */
1787 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1788}
1789#endif
1790
ab6e3d09
NH
1791static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1792{
1793#ifdef CONFIG_MEM_SOFT_DIRTY
1794 if (unlikely(is_pmd_migration_entry(pmd)))
1795 pmd = pmd_swp_mksoft_dirty(pmd);
1796 else if (pmd_present(pmd))
1797 pmd = pmd_mksoft_dirty(pmd);
1798#endif
1799 return pmd;
1800}
1801
bf8616d5 1802bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
37a1c49a 1803 unsigned long new_addr, unsigned long old_end,
eb66ae03 1804 pmd_t *old_pmd, pmd_t *new_pmd)
37a1c49a 1805{
bf929152 1806 spinlock_t *old_ptl, *new_ptl;
37a1c49a 1807 pmd_t pmd;
37a1c49a 1808 struct mm_struct *mm = vma->vm_mm;
5d190420 1809 bool force_flush = false;
37a1c49a
AA
1810
1811 if ((old_addr & ~HPAGE_PMD_MASK) ||
1812 (new_addr & ~HPAGE_PMD_MASK) ||
bf8616d5 1813 old_end - old_addr < HPAGE_PMD_SIZE)
4b471e88 1814 return false;
37a1c49a
AA
1815
1816 /*
1817 * The destination pmd shouldn't be established, free_pgtables()
1818 * should have release it.
1819 */
1820 if (WARN_ON(!pmd_none(*new_pmd))) {
1821 VM_BUG_ON(pmd_trans_huge(*new_pmd));
4b471e88 1822 return false;
37a1c49a
AA
1823 }
1824
bf929152
KS
1825 /*
1826 * We don't have to worry about the ordering of src and dst
1827 * ptlocks because exclusive mmap_sem prevents deadlock.
1828 */
b6ec57f4
KS
1829 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1830 if (old_ptl) {
bf929152
KS
1831 new_ptl = pmd_lockptr(mm, new_pmd);
1832 if (new_ptl != old_ptl)
1833 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
8809aa2d 1834 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
eb66ae03 1835 if (pmd_present(pmd))
a2ce2666 1836 force_flush = true;
025c5b24 1837 VM_BUG_ON(!pmd_none(*new_pmd));
3592806c 1838
1dd38b6c 1839 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
b3084f4d 1840 pgtable_t pgtable;
3592806c
KS
1841 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1842 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
3592806c 1843 }
ab6e3d09
NH
1844 pmd = move_soft_dirty_pmd(pmd);
1845 set_pmd_at(mm, new_addr, new_pmd, pmd);
5d190420
AL
1846 if (force_flush)
1847 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
eb66ae03
LT
1848 if (new_ptl != old_ptl)
1849 spin_unlock(new_ptl);
bf929152 1850 spin_unlock(old_ptl);
4b471e88 1851 return true;
37a1c49a 1852 }
4b471e88 1853 return false;
37a1c49a
AA
1854}
1855
f123d74a
MG
1856/*
1857 * Returns
1858 * - 0 if PMD could not be locked
1859 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1860 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1861 */
cd7548ab 1862int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
e944fd67 1863 unsigned long addr, pgprot_t newprot, int prot_numa)
cd7548ab
JW
1864{
1865 struct mm_struct *mm = vma->vm_mm;
bf929152 1866 spinlock_t *ptl;
0a85e51d
KS
1867 pmd_t entry;
1868 bool preserve_write;
1869 int ret;
cd7548ab 1870
b6ec57f4 1871 ptl = __pmd_trans_huge_lock(pmd, vma);
0a85e51d
KS
1872 if (!ptl)
1873 return 0;
e944fd67 1874
0a85e51d
KS
1875 preserve_write = prot_numa && pmd_write(*pmd);
1876 ret = 1;
e944fd67 1877
84c3fc4e
ZY
1878#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1879 if (is_swap_pmd(*pmd)) {
1880 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1881
1882 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1883 if (is_write_migration_entry(entry)) {
1884 pmd_t newpmd;
1885 /*
1886 * A protection check is difficult so
1887 * just be safe and disable write
1888 */
1889 make_migration_entry_read(&entry);
1890 newpmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
1891 if (pmd_swp_soft_dirty(*pmd))
1892 newpmd = pmd_swp_mksoft_dirty(newpmd);
84c3fc4e
ZY
1893 set_pmd_at(mm, addr, pmd, newpmd);
1894 }
1895 goto unlock;
1896 }
1897#endif
1898
0a85e51d
KS
1899 /*
1900 * Avoid trapping faults against the zero page. The read-only
1901 * data is likely to be read-cached on the local CPU and
1902 * local/remote hits to the zero page are not interesting.
1903 */
1904 if (prot_numa && is_huge_zero_pmd(*pmd))
1905 goto unlock;
025c5b24 1906
0a85e51d
KS
1907 if (prot_numa && pmd_protnone(*pmd))
1908 goto unlock;
1909
ced10803
KS
1910 /*
1911 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1912 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1913 * which is also under down_read(mmap_sem):
1914 *
1915 * CPU0: CPU1:
1916 * change_huge_pmd(prot_numa=1)
1917 * pmdp_huge_get_and_clear_notify()
1918 * madvise_dontneed()
1919 * zap_pmd_range()
1920 * pmd_trans_huge(*pmd) == 0 (without ptl)
1921 * // skip the pmd
1922 * set_pmd_at();
1923 * // pmd is re-established
1924 *
1925 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1926 * which may break userspace.
1927 *
1928 * pmdp_invalidate() is required to make sure we don't miss
1929 * dirty/young flags set by hardware.
1930 */
a3cf988f 1931 entry = pmdp_invalidate(vma, addr, pmd);
ced10803 1932
0a85e51d
KS
1933 entry = pmd_modify(entry, newprot);
1934 if (preserve_write)
1935 entry = pmd_mk_savedwrite(entry);
1936 ret = HPAGE_PMD_NR;
1937 set_pmd_at(mm, addr, pmd, entry);
1938 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1939unlock:
1940 spin_unlock(ptl);
025c5b24
NH
1941 return ret;
1942}
1943
1944/*
8f19b0c0 1945 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
025c5b24 1946 *
8f19b0c0
HY
1947 * Note that if it returns page table lock pointer, this routine returns without
1948 * unlocking page table lock. So callers must unlock it.
025c5b24 1949 */
b6ec57f4 1950spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
025c5b24 1951{
b6ec57f4
KS
1952 spinlock_t *ptl;
1953 ptl = pmd_lock(vma->vm_mm, pmd);
84c3fc4e
ZY
1954 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1955 pmd_devmap(*pmd)))
b6ec57f4
KS
1956 return ptl;
1957 spin_unlock(ptl);
1958 return NULL;
cd7548ab
JW
1959}
1960
a00cc7d9
MW
1961/*
1962 * Returns true if a given pud maps a thp, false otherwise.
1963 *
1964 * Note that if it returns true, this routine returns without unlocking page
1965 * table lock. So callers must unlock it.
1966 */
1967spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1968{
1969 spinlock_t *ptl;
1970
1971 ptl = pud_lock(vma->vm_mm, pud);
1972 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1973 return ptl;
1974 spin_unlock(ptl);
1975 return NULL;
1976}
1977
1978#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1979int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1980 pud_t *pud, unsigned long addr)
1981{
1982 pud_t orig_pud;
1983 spinlock_t *ptl;
1984
1985 ptl = __pud_trans_huge_lock(pud, vma);
1986 if (!ptl)
1987 return 0;
1988 /*
1989 * For architectures like ppc64 we look at deposited pgtable
1990 * when calling pudp_huge_get_and_clear. So do the
1991 * pgtable_trans_huge_withdraw after finishing pudp related
1992 * operations.
1993 */
1994 orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
1995 tlb->fullmm);
1996 tlb_remove_pud_tlb_entry(tlb, pud, addr);
1997 if (vma_is_dax(vma)) {
1998 spin_unlock(ptl);
1999 /* No zero page support yet */
2000 } else {
2001 /* No support for anonymous PUD pages yet */
2002 BUG();
2003 }
2004 return 1;
2005}
2006
2007static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2008 unsigned long haddr)
2009{
2010 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2011 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2012 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2013 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2014
ce9311cf 2015 count_vm_event(THP_SPLIT_PUD);
a00cc7d9
MW
2016
2017 pudp_huge_clear_flush_notify(vma, haddr, pud);
2018}
2019
2020void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2021 unsigned long address)
2022{
2023 spinlock_t *ptl;
ac46d4f3 2024 struct mmu_notifier_range range;
a00cc7d9 2025
ac46d4f3
JG
2026 mmu_notifier_range_init(&range, vma->vm_mm, address & HPAGE_PUD_MASK,
2027 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2028 mmu_notifier_invalidate_range_start(&range);
2029 ptl = pud_lock(vma->vm_mm, pud);
a00cc7d9
MW
2030 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2031 goto out;
ac46d4f3 2032 __split_huge_pud_locked(vma, pud, range.start);
a00cc7d9
MW
2033
2034out:
2035 spin_unlock(ptl);
4645b9fe
JG
2036 /*
2037 * No need to double call mmu_notifier->invalidate_range() callback as
2038 * the above pudp_huge_clear_flush_notify() did already call it.
2039 */
ac46d4f3 2040 mmu_notifier_invalidate_range_only_end(&range);
a00cc7d9
MW
2041}
2042#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2043
eef1b3ba
KS
2044static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2045 unsigned long haddr, pmd_t *pmd)
2046{
2047 struct mm_struct *mm = vma->vm_mm;
2048 pgtable_t pgtable;
2049 pmd_t _pmd;
2050 int i;
2051
0f10851e
JG
2052 /*
2053 * Leave pmd empty until pte is filled note that it is fine to delay
2054 * notification until mmu_notifier_invalidate_range_end() as we are
2055 * replacing a zero pmd write protected page with a zero pte write
2056 * protected page.
2057 *
ad56b738 2058 * See Documentation/vm/mmu_notifier.rst
0f10851e
JG
2059 */
2060 pmdp_huge_clear_flush(vma, haddr, pmd);
eef1b3ba
KS
2061
2062 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2063 pmd_populate(mm, &_pmd, pgtable);
2064
2065 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2066 pte_t *pte, entry;
2067 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2068 entry = pte_mkspecial(entry);
2069 pte = pte_offset_map(&_pmd, haddr);
2070 VM_BUG_ON(!pte_none(*pte));
2071 set_pte_at(mm, haddr, pte, entry);
2072 pte_unmap(pte);
2073 }
2074 smp_wmb(); /* make pte visible before pmd */
2075 pmd_populate(mm, pmd, pgtable);
eef1b3ba
KS
2076}
2077
2078static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
ba988280 2079 unsigned long haddr, bool freeze)
eef1b3ba
KS
2080{
2081 struct mm_struct *mm = vma->vm_mm;
2082 struct page *page;
2083 pgtable_t pgtable;
423ac9af 2084 pmd_t old_pmd, _pmd;
a3cf988f 2085 bool young, write, soft_dirty, pmd_migration = false;
2ac015e2 2086 unsigned long addr;
eef1b3ba
KS
2087 int i;
2088
2089 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2090 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2091 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
84c3fc4e
ZY
2092 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2093 && !pmd_devmap(*pmd));
eef1b3ba
KS
2094
2095 count_vm_event(THP_SPLIT_PMD);
2096
d21b9e57
KS
2097 if (!vma_is_anonymous(vma)) {
2098 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
953c66c2
AK
2099 /*
2100 * We are going to unmap this huge page. So
2101 * just go ahead and zap it
2102 */
2103 if (arch_needs_pgtable_deposit())
2104 zap_deposited_table(mm, pmd);
d21b9e57
KS
2105 if (vma_is_dax(vma))
2106 return;
2107 page = pmd_page(_pmd);
e1f1b157
HD
2108 if (!PageDirty(page) && pmd_dirty(_pmd))
2109 set_page_dirty(page);
d21b9e57
KS
2110 if (!PageReferenced(page) && pmd_young(_pmd))
2111 SetPageReferenced(page);
2112 page_remove_rmap(page, true);
2113 put_page(page);
fadae295 2114 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
eef1b3ba
KS
2115 return;
2116 } else if (is_huge_zero_pmd(*pmd)) {
4645b9fe
JG
2117 /*
2118 * FIXME: Do we want to invalidate secondary mmu by calling
2119 * mmu_notifier_invalidate_range() see comments below inside
2120 * __split_huge_pmd() ?
2121 *
2122 * We are going from a zero huge page write protected to zero
2123 * small page also write protected so it does not seems useful
2124 * to invalidate secondary mmu at this time.
2125 */
eef1b3ba
KS
2126 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2127 }
2128
423ac9af
AK
2129 /*
2130 * Up to this point the pmd is present and huge and userland has the
2131 * whole access to the hugepage during the split (which happens in
2132 * place). If we overwrite the pmd with the not-huge version pointing
2133 * to the pte here (which of course we could if all CPUs were bug
2134 * free), userland could trigger a small page size TLB miss on the
2135 * small sized TLB while the hugepage TLB entry is still established in
2136 * the huge TLB. Some CPU doesn't like that.
2137 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2138 * 383 on page 93. Intel should be safe but is also warns that it's
2139 * only safe if the permission and cache attributes of the two entries
2140 * loaded in the two TLB is identical (which should be the case here).
2141 * But it is generally safer to never allow small and huge TLB entries
2142 * for the same virtual address to be loaded simultaneously. So instead
2143 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2144 * current pmd notpresent (atomically because here the pmd_trans_huge
2145 * must remain set at all times on the pmd until the split is complete
2146 * for this pmd), then we flush the SMP TLB and finally we write the
2147 * non-huge version of the pmd entry with pmd_populate.
2148 */
2149 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2150
423ac9af 2151 pmd_migration = is_pmd_migration_entry(old_pmd);
2e83ee1d 2152 if (unlikely(pmd_migration)) {
84c3fc4e
ZY
2153 swp_entry_t entry;
2154
423ac9af 2155 entry = pmd_to_swp_entry(old_pmd);
84c3fc4e 2156 page = pfn_to_page(swp_offset(entry));
2e83ee1d
PX
2157 write = is_write_migration_entry(entry);
2158 young = false;
2159 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2160 } else {
423ac9af 2161 page = pmd_page(old_pmd);
2e83ee1d
PX
2162 if (pmd_dirty(old_pmd))
2163 SetPageDirty(page);
2164 write = pmd_write(old_pmd);
2165 young = pmd_young(old_pmd);
2166 soft_dirty = pmd_soft_dirty(old_pmd);
2167 }
eef1b3ba 2168 VM_BUG_ON_PAGE(!page_count(page), page);
fe896d18 2169 page_ref_add(page, HPAGE_PMD_NR - 1);
eef1b3ba 2170
423ac9af
AK
2171 /*
2172 * Withdraw the table only after we mark the pmd entry invalid.
2173 * This's critical for some architectures (Power).
2174 */
eef1b3ba
KS
2175 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2176 pmd_populate(mm, &_pmd, pgtable);
2177
2ac015e2 2178 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
eef1b3ba
KS
2179 pte_t entry, *pte;
2180 /*
2181 * Note that NUMA hinting access restrictions are not
2182 * transferred to avoid any possibility of altering
2183 * permissions across VMAs.
2184 */
84c3fc4e 2185 if (freeze || pmd_migration) {
ba988280
KS
2186 swp_entry_t swp_entry;
2187 swp_entry = make_migration_entry(page + i, write);
2188 entry = swp_entry_to_pte(swp_entry);
804dd150
AA
2189 if (soft_dirty)
2190 entry = pte_swp_mksoft_dirty(entry);
ba988280 2191 } else {
6d2329f8 2192 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
b8d3c4c3 2193 entry = maybe_mkwrite(entry, vma);
ba988280
KS
2194 if (!write)
2195 entry = pte_wrprotect(entry);
2196 if (!young)
2197 entry = pte_mkold(entry);
804dd150
AA
2198 if (soft_dirty)
2199 entry = pte_mksoft_dirty(entry);
ba988280 2200 }
2ac015e2 2201 pte = pte_offset_map(&_pmd, addr);
eef1b3ba 2202 BUG_ON(!pte_none(*pte));
2ac015e2 2203 set_pte_at(mm, addr, pte, entry);
eef1b3ba
KS
2204 atomic_inc(&page[i]._mapcount);
2205 pte_unmap(pte);
2206 }
2207
2208 /*
2209 * Set PG_double_map before dropping compound_mapcount to avoid
2210 * false-negative page_mapped().
2211 */
2212 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2213 for (i = 0; i < HPAGE_PMD_NR; i++)
2214 atomic_inc(&page[i]._mapcount);
2215 }
2216
2217 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2218 /* Last compound_mapcount is gone. */
11fb9989 2219 __dec_node_page_state(page, NR_ANON_THPS);
eef1b3ba
KS
2220 if (TestClearPageDoubleMap(page)) {
2221 /* No need in mapcount reference anymore */
2222 for (i = 0; i < HPAGE_PMD_NR; i++)
2223 atomic_dec(&page[i]._mapcount);
2224 }
2225 }
2226
2227 smp_wmb(); /* make pte visible before pmd */
2228 pmd_populate(mm, pmd, pgtable);
e9b61f19
KS
2229
2230 if (freeze) {
2ac015e2 2231 for (i = 0; i < HPAGE_PMD_NR; i++) {
e9b61f19
KS
2232 page_remove_rmap(page + i, false);
2233 put_page(page + i);
2234 }
2235 }
eef1b3ba
KS
2236}
2237
2238void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
33f4751e 2239 unsigned long address, bool freeze, struct page *page)
eef1b3ba
KS
2240{
2241 spinlock_t *ptl;
ac46d4f3 2242 struct mmu_notifier_range range;
eef1b3ba 2243
ac46d4f3
JG
2244 mmu_notifier_range_init(&range, vma->vm_mm, address & HPAGE_PMD_MASK,
2245 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2246 mmu_notifier_invalidate_range_start(&range);
2247 ptl = pmd_lock(vma->vm_mm, pmd);
33f4751e
NH
2248
2249 /*
2250 * If caller asks to setup a migration entries, we need a page to check
2251 * pmd against. Otherwise we can end up replacing wrong page.
2252 */
2253 VM_BUG_ON(freeze && !page);
2254 if (page && page != pmd_page(*pmd))
2255 goto out;
2256
5c7fb56e 2257 if (pmd_trans_huge(*pmd)) {
33f4751e 2258 page = pmd_page(*pmd);
5c7fb56e 2259 if (PageMlocked(page))
5f737714 2260 clear_page_mlock(page);
84c3fc4e 2261 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
e90309c9 2262 goto out;
ac46d4f3 2263 __split_huge_pmd_locked(vma, pmd, range.start, freeze);
e90309c9 2264out:
eef1b3ba 2265 spin_unlock(ptl);
4645b9fe
JG
2266 /*
2267 * No need to double call mmu_notifier->invalidate_range() callback.
2268 * They are 3 cases to consider inside __split_huge_pmd_locked():
2269 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2270 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2271 * fault will trigger a flush_notify before pointing to a new page
2272 * (it is fine if the secondary mmu keeps pointing to the old zero
2273 * page in the meantime)
2274 * 3) Split a huge pmd into pte pointing to the same page. No need
2275 * to invalidate secondary tlb entry they are all still valid.
2276 * any further changes to individual pte will notify. So no need
2277 * to call mmu_notifier->invalidate_range()
2278 */
ac46d4f3 2279 mmu_notifier_invalidate_range_only_end(&range);
eef1b3ba
KS
2280}
2281
fec89c10
KS
2282void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2283 bool freeze, struct page *page)
94fcc585 2284{
f72e7dcd 2285 pgd_t *pgd;
c2febafc 2286 p4d_t *p4d;
f72e7dcd 2287 pud_t *pud;
94fcc585
AA
2288 pmd_t *pmd;
2289
78ddc534 2290 pgd = pgd_offset(vma->vm_mm, address);
f72e7dcd
HD
2291 if (!pgd_present(*pgd))
2292 return;
2293
c2febafc
KS
2294 p4d = p4d_offset(pgd, address);
2295 if (!p4d_present(*p4d))
2296 return;
2297
2298 pud = pud_offset(p4d, address);
f72e7dcd
HD
2299 if (!pud_present(*pud))
2300 return;
2301
2302 pmd = pmd_offset(pud, address);
fec89c10 2303
33f4751e 2304 __split_huge_pmd(vma, pmd, address, freeze, page);
94fcc585
AA
2305}
2306
e1b9996b 2307void vma_adjust_trans_huge(struct vm_area_struct *vma,
94fcc585
AA
2308 unsigned long start,
2309 unsigned long end,
2310 long adjust_next)
2311{
2312 /*
2313 * If the new start address isn't hpage aligned and it could
2314 * previously contain an hugepage: check if we need to split
2315 * an huge pmd.
2316 */
2317 if (start & ~HPAGE_PMD_MASK &&
2318 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2319 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 2320 split_huge_pmd_address(vma, start, false, NULL);
94fcc585
AA
2321
2322 /*
2323 * If the new end address isn't hpage aligned and it could
2324 * previously contain an hugepage: check if we need to split
2325 * an huge pmd.
2326 */
2327 if (end & ~HPAGE_PMD_MASK &&
2328 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2329 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 2330 split_huge_pmd_address(vma, end, false, NULL);
94fcc585
AA
2331
2332 /*
2333 * If we're also updating the vma->vm_next->vm_start, if the new
2334 * vm_next->vm_start isn't page aligned and it could previously
2335 * contain an hugepage: check if we need to split an huge pmd.
2336 */
2337 if (adjust_next > 0) {
2338 struct vm_area_struct *next = vma->vm_next;
2339 unsigned long nstart = next->vm_start;
2340 nstart += adjust_next << PAGE_SHIFT;
2341 if (nstart & ~HPAGE_PMD_MASK &&
2342 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2343 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
fec89c10 2344 split_huge_pmd_address(next, nstart, false, NULL);
94fcc585
AA
2345 }
2346}
e9b61f19 2347
906f9cdf 2348static void unmap_page(struct page *page)
e9b61f19 2349{
baa355fd 2350 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
c7ab0d2f 2351 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
666e5a40 2352 bool unmap_success;
e9b61f19
KS
2353
2354 VM_BUG_ON_PAGE(!PageHead(page), page);
2355
baa355fd 2356 if (PageAnon(page))
b5ff8161 2357 ttu_flags |= TTU_SPLIT_FREEZE;
baa355fd 2358
666e5a40
MK
2359 unmap_success = try_to_unmap(page, ttu_flags);
2360 VM_BUG_ON_PAGE(!unmap_success, page);
e9b61f19
KS
2361}
2362
906f9cdf 2363static void remap_page(struct page *page)
e9b61f19 2364{
fec89c10 2365 int i;
ace71a19
KS
2366 if (PageTransHuge(page)) {
2367 remove_migration_ptes(page, page, true);
2368 } else {
2369 for (i = 0; i < HPAGE_PMD_NR; i++)
2370 remove_migration_ptes(page + i, page + i, true);
2371 }
e9b61f19
KS
2372}
2373
8df651c7 2374static void __split_huge_page_tail(struct page *head, int tail,
e9b61f19
KS
2375 struct lruvec *lruvec, struct list_head *list)
2376{
e9b61f19
KS
2377 struct page *page_tail = head + tail;
2378
8df651c7 2379 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
e9b61f19
KS
2380
2381 /*
605ca5ed
KK
2382 * Clone page flags before unfreezing refcount.
2383 *
2384 * After successful get_page_unless_zero() might follow flags change,
2385 * for exmaple lock_page() which set PG_waiters.
e9b61f19 2386 */
e9b61f19
KS
2387 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2388 page_tail->flags |= (head->flags &
2389 ((1L << PG_referenced) |
2390 (1L << PG_swapbacked) |
38d8b4e6 2391 (1L << PG_swapcache) |
e9b61f19
KS
2392 (1L << PG_mlocked) |
2393 (1L << PG_uptodate) |
2394 (1L << PG_active) |
1899ad18 2395 (1L << PG_workingset) |
e9b61f19 2396 (1L << PG_locked) |
b8d3c4c3
MK
2397 (1L << PG_unevictable) |
2398 (1L << PG_dirty)));
e9b61f19 2399
173d9d9f
HD
2400 /* ->mapping in first tail page is compound_mapcount */
2401 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2402 page_tail);
2403 page_tail->mapping = head->mapping;
2404 page_tail->index = head->index + tail;
2405
605ca5ed 2406 /* Page flags must be visible before we make the page non-compound. */
e9b61f19
KS
2407 smp_wmb();
2408
605ca5ed
KK
2409 /*
2410 * Clear PageTail before unfreezing page refcount.
2411 *
2412 * After successful get_page_unless_zero() might follow put_page()
2413 * which needs correct compound_head().
2414 */
e9b61f19
KS
2415 clear_compound_head(page_tail);
2416
605ca5ed
KK
2417 /* Finally unfreeze refcount. Additional reference from page cache. */
2418 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2419 PageSwapCache(head)));
2420
e9b61f19
KS
2421 if (page_is_young(head))
2422 set_page_young(page_tail);
2423 if (page_is_idle(head))
2424 set_page_idle(page_tail);
2425
e9b61f19 2426 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
94723aaf
MH
2427
2428 /*
2429 * always add to the tail because some iterators expect new
2430 * pages to show after the currently processed elements - e.g.
2431 * migrate_pages
2432 */
e9b61f19 2433 lru_add_page_tail(head, page_tail, lruvec, list);
e9b61f19
KS
2434}
2435
baa355fd 2436static void __split_huge_page(struct page *page, struct list_head *list,
006d3ff2 2437 pgoff_t end, unsigned long flags)
e9b61f19
KS
2438{
2439 struct page *head = compound_head(page);
2440 struct zone *zone = page_zone(head);
2441 struct lruvec *lruvec;
8df651c7 2442 int i;
e9b61f19 2443
599d0c95 2444 lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
e9b61f19
KS
2445
2446 /* complete memcg works before add pages to LRU */
2447 mem_cgroup_split_huge_fixup(head);
2448
baa355fd 2449 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
8df651c7 2450 __split_huge_page_tail(head, i, lruvec, list);
baa355fd
KS
2451 /* Some pages can be beyond i_size: drop them from page cache */
2452 if (head[i].index >= end) {
2d077d4b 2453 ClearPageDirty(head + i);
baa355fd 2454 __delete_from_page_cache(head + i, NULL);
800d8c63
KS
2455 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2456 shmem_uncharge(head->mapping->host, 1);
baa355fd
KS
2457 put_page(head + i);
2458 }
2459 }
e9b61f19
KS
2460
2461 ClearPageCompound(head);
baa355fd
KS
2462 /* See comment in __split_huge_page_tail() */
2463 if (PageAnon(head)) {
aa5dc07f 2464 /* Additional pin to swap cache */
38d8b4e6
HY
2465 if (PageSwapCache(head))
2466 page_ref_add(head, 2);
2467 else
2468 page_ref_inc(head);
baa355fd 2469 } else {
aa5dc07f 2470 /* Additional pin to page cache */
baa355fd 2471 page_ref_add(head, 2);
b93b0163 2472 xa_unlock(&head->mapping->i_pages);
baa355fd
KS
2473 }
2474
a52633d8 2475 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
e9b61f19 2476
906f9cdf 2477 remap_page(head);
e9b61f19
KS
2478
2479 for (i = 0; i < HPAGE_PMD_NR; i++) {
2480 struct page *subpage = head + i;
2481 if (subpage == page)
2482 continue;
2483 unlock_page(subpage);
2484
2485 /*
2486 * Subpages may be freed if there wasn't any mapping
2487 * like if add_to_swap() is running on a lru page that
2488 * had its mapping zapped. And freeing these pages
2489 * requires taking the lru_lock so we do the put_page
2490 * of the tail pages after the split is complete.
2491 */
2492 put_page(subpage);
2493 }
2494}
2495
b20ce5e0
KS
2496int total_mapcount(struct page *page)
2497{
dd78fedd 2498 int i, compound, ret;
b20ce5e0
KS
2499
2500 VM_BUG_ON_PAGE(PageTail(page), page);
2501
2502 if (likely(!PageCompound(page)))
2503 return atomic_read(&page->_mapcount) + 1;
2504
dd78fedd 2505 compound = compound_mapcount(page);
b20ce5e0 2506 if (PageHuge(page))
dd78fedd
KS
2507 return compound;
2508 ret = compound;
b20ce5e0
KS
2509 for (i = 0; i < HPAGE_PMD_NR; i++)
2510 ret += atomic_read(&page[i]._mapcount) + 1;
dd78fedd
KS
2511 /* File pages has compound_mapcount included in _mapcount */
2512 if (!PageAnon(page))
2513 return ret - compound * HPAGE_PMD_NR;
b20ce5e0
KS
2514 if (PageDoubleMap(page))
2515 ret -= HPAGE_PMD_NR;
2516 return ret;
2517}
2518
6d0a07ed
AA
2519/*
2520 * This calculates accurately how many mappings a transparent hugepage
2521 * has (unlike page_mapcount() which isn't fully accurate). This full
2522 * accuracy is primarily needed to know if copy-on-write faults can
2523 * reuse the page and change the mapping to read-write instead of
2524 * copying them. At the same time this returns the total_mapcount too.
2525 *
2526 * The function returns the highest mapcount any one of the subpages
2527 * has. If the return value is one, even if different processes are
2528 * mapping different subpages of the transparent hugepage, they can
2529 * all reuse it, because each process is reusing a different subpage.
2530 *
2531 * The total_mapcount is instead counting all virtual mappings of the
2532 * subpages. If the total_mapcount is equal to "one", it tells the
2533 * caller all mappings belong to the same "mm" and in turn the
2534 * anon_vma of the transparent hugepage can become the vma->anon_vma
2535 * local one as no other process may be mapping any of the subpages.
2536 *
2537 * It would be more accurate to replace page_mapcount() with
2538 * page_trans_huge_mapcount(), however we only use
2539 * page_trans_huge_mapcount() in the copy-on-write faults where we
2540 * need full accuracy to avoid breaking page pinning, because
2541 * page_trans_huge_mapcount() is slower than page_mapcount().
2542 */
2543int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2544{
2545 int i, ret, _total_mapcount, mapcount;
2546
2547 /* hugetlbfs shouldn't call it */
2548 VM_BUG_ON_PAGE(PageHuge(page), page);
2549
2550 if (likely(!PageTransCompound(page))) {
2551 mapcount = atomic_read(&page->_mapcount) + 1;
2552 if (total_mapcount)
2553 *total_mapcount = mapcount;
2554 return mapcount;
2555 }
2556
2557 page = compound_head(page);
2558
2559 _total_mapcount = ret = 0;
2560 for (i = 0; i < HPAGE_PMD_NR; i++) {
2561 mapcount = atomic_read(&page[i]._mapcount) + 1;
2562 ret = max(ret, mapcount);
2563 _total_mapcount += mapcount;
2564 }
2565 if (PageDoubleMap(page)) {
2566 ret -= 1;
2567 _total_mapcount -= HPAGE_PMD_NR;
2568 }
2569 mapcount = compound_mapcount(page);
2570 ret += mapcount;
2571 _total_mapcount += mapcount;
2572 if (total_mapcount)
2573 *total_mapcount = _total_mapcount;
2574 return ret;
2575}
2576
b8f593cd
HY
2577/* Racy check whether the huge page can be split */
2578bool can_split_huge_page(struct page *page, int *pextra_pins)
2579{
2580 int extra_pins;
2581
aa5dc07f 2582 /* Additional pins from page cache */
b8f593cd
HY
2583 if (PageAnon(page))
2584 extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2585 else
2586 extra_pins = HPAGE_PMD_NR;
2587 if (pextra_pins)
2588 *pextra_pins = extra_pins;
2589 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2590}
2591
e9b61f19
KS
2592/*
2593 * This function splits huge page into normal pages. @page can point to any
2594 * subpage of huge page to split. Split doesn't change the position of @page.
2595 *
2596 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2597 * The huge page must be locked.
2598 *
2599 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2600 *
2601 * Both head page and tail pages will inherit mapping, flags, and so on from
2602 * the hugepage.
2603 *
2604 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2605 * they are not mapped.
2606 *
2607 * Returns 0 if the hugepage is split successfully.
2608 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2609 * us.
2610 */
2611int split_huge_page_to_list(struct page *page, struct list_head *list)
2612{
2613 struct page *head = compound_head(page);
a3d0a918 2614 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
baa355fd
KS
2615 struct anon_vma *anon_vma = NULL;
2616 struct address_space *mapping = NULL;
2617 int count, mapcount, extra_pins, ret;
d9654322 2618 bool mlocked;
0b9b6fff 2619 unsigned long flags;
006d3ff2 2620 pgoff_t end;
e9b61f19
KS
2621
2622 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
e9b61f19 2623 VM_BUG_ON_PAGE(!PageLocked(page), page);
e9b61f19
KS
2624 VM_BUG_ON_PAGE(!PageCompound(page), page);
2625
59807685
HY
2626 if (PageWriteback(page))
2627 return -EBUSY;
2628
baa355fd
KS
2629 if (PageAnon(head)) {
2630 /*
2631 * The caller does not necessarily hold an mmap_sem that would
2632 * prevent the anon_vma disappearing so we first we take a
2633 * reference to it and then lock the anon_vma for write. This
2634 * is similar to page_lock_anon_vma_read except the write lock
2635 * is taken to serialise against parallel split or collapse
2636 * operations.
2637 */
2638 anon_vma = page_get_anon_vma(head);
2639 if (!anon_vma) {
2640 ret = -EBUSY;
2641 goto out;
2642 }
006d3ff2 2643 end = -1;
baa355fd
KS
2644 mapping = NULL;
2645 anon_vma_lock_write(anon_vma);
2646 } else {
2647 mapping = head->mapping;
2648
2649 /* Truncated ? */
2650 if (!mapping) {
2651 ret = -EBUSY;
2652 goto out;
2653 }
2654
baa355fd
KS
2655 anon_vma = NULL;
2656 i_mmap_lock_read(mapping);
006d3ff2
HD
2657
2658 /*
2659 *__split_huge_page() may need to trim off pages beyond EOF:
2660 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2661 * which cannot be nested inside the page tree lock. So note
2662 * end now: i_size itself may be changed at any moment, but
2663 * head page lock is good enough to serialize the trimming.
2664 */
2665 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
e9b61f19 2666 }
e9b61f19
KS
2667
2668 /*
906f9cdf 2669 * Racy check if we can split the page, before unmap_page() will
e9b61f19
KS
2670 * split PMDs
2671 */
b8f593cd 2672 if (!can_split_huge_page(head, &extra_pins)) {
e9b61f19
KS
2673 ret = -EBUSY;
2674 goto out_unlock;
2675 }
2676
d9654322 2677 mlocked = PageMlocked(page);
906f9cdf 2678 unmap_page(head);
e9b61f19
KS
2679 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2680
d9654322
KS
2681 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2682 if (mlocked)
2683 lru_add_drain();
2684
baa355fd 2685 /* prevent PageLRU to go away from under us, and freeze lru stats */
a52633d8 2686 spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
baa355fd
KS
2687
2688 if (mapping) {
aa5dc07f 2689 XA_STATE(xas, &mapping->i_pages, page_index(head));
baa355fd 2690
baa355fd 2691 /*
aa5dc07f 2692 * Check if the head page is present in page cache.
baa355fd
KS
2693 * We assume all tail are present too, if head is there.
2694 */
aa5dc07f
MW
2695 xa_lock(&mapping->i_pages);
2696 if (xas_load(&xas) != head)
baa355fd
KS
2697 goto fail;
2698 }
2699
0139aa7b 2700 /* Prevent deferred_split_scan() touching ->_refcount */
baa355fd 2701 spin_lock(&pgdata->split_queue_lock);
e9b61f19
KS
2702 count = page_count(head);
2703 mapcount = total_mapcount(head);
baa355fd 2704 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
9a982250 2705 if (!list_empty(page_deferred_list(head))) {
a3d0a918 2706 pgdata->split_queue_len--;
9a982250
KS
2707 list_del(page_deferred_list(head));
2708 }
65c45377 2709 if (mapping)
11fb9989 2710 __dec_node_page_state(page, NR_SHMEM_THPS);
baa355fd 2711 spin_unlock(&pgdata->split_queue_lock);
006d3ff2 2712 __split_huge_page(page, list, end, flags);
59807685
HY
2713 if (PageSwapCache(head)) {
2714 swp_entry_t entry = { .val = page_private(head) };
2715
2716 ret = split_swap_cluster(entry);
2717 } else
2718 ret = 0;
e9b61f19 2719 } else {
baa355fd
KS
2720 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2721 pr_alert("total_mapcount: %u, page_count(): %u\n",
2722 mapcount, count);
2723 if (PageTail(page))
2724 dump_page(head, NULL);
2725 dump_page(page, "total_mapcount(head) > 0");
2726 BUG();
2727 }
2728 spin_unlock(&pgdata->split_queue_lock);
2729fail: if (mapping)
b93b0163 2730 xa_unlock(&mapping->i_pages);
a52633d8 2731 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
906f9cdf 2732 remap_page(head);
e9b61f19
KS
2733 ret = -EBUSY;
2734 }
2735
2736out_unlock:
baa355fd
KS
2737 if (anon_vma) {
2738 anon_vma_unlock_write(anon_vma);
2739 put_anon_vma(anon_vma);
2740 }
2741 if (mapping)
2742 i_mmap_unlock_read(mapping);
e9b61f19
KS
2743out:
2744 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2745 return ret;
2746}
9a982250
KS
2747
2748void free_transhuge_page(struct page *page)
2749{
a3d0a918 2750 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
9a982250
KS
2751 unsigned long flags;
2752
a3d0a918 2753 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2754 if (!list_empty(page_deferred_list(page))) {
a3d0a918 2755 pgdata->split_queue_len--;
9a982250
KS
2756 list_del(page_deferred_list(page));
2757 }
a3d0a918 2758 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2759 free_compound_page(page);
2760}
2761
2762void deferred_split_huge_page(struct page *page)
2763{
a3d0a918 2764 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
9a982250
KS
2765 unsigned long flags;
2766
2767 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2768
a3d0a918 2769 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2770 if (list_empty(page_deferred_list(page))) {
f9719a03 2771 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
a3d0a918
KS
2772 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2773 pgdata->split_queue_len++;
9a982250 2774 }
a3d0a918 2775 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2776}
2777
2778static unsigned long deferred_split_count(struct shrinker *shrink,
2779 struct shrink_control *sc)
2780{
a3d0a918 2781 struct pglist_data *pgdata = NODE_DATA(sc->nid);
6aa7de05 2782 return READ_ONCE(pgdata->split_queue_len);
9a982250
KS
2783}
2784
2785static unsigned long deferred_split_scan(struct shrinker *shrink,
2786 struct shrink_control *sc)
2787{
a3d0a918 2788 struct pglist_data *pgdata = NODE_DATA(sc->nid);
9a982250
KS
2789 unsigned long flags;
2790 LIST_HEAD(list), *pos, *next;
2791 struct page *page;
2792 int split = 0;
2793
a3d0a918 2794 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2795 /* Take pin on all head pages to avoid freeing them under us */
ae026204 2796 list_for_each_safe(pos, next, &pgdata->split_queue) {
9a982250
KS
2797 page = list_entry((void *)pos, struct page, mapping);
2798 page = compound_head(page);
e3ae1953
KS
2799 if (get_page_unless_zero(page)) {
2800 list_move(page_deferred_list(page), &list);
2801 } else {
2802 /* We lost race with put_compound_page() */
9a982250 2803 list_del_init(page_deferred_list(page));
a3d0a918 2804 pgdata->split_queue_len--;
9a982250 2805 }
e3ae1953
KS
2806 if (!--sc->nr_to_scan)
2807 break;
9a982250 2808 }
a3d0a918 2809 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2810
2811 list_for_each_safe(pos, next, &list) {
2812 page = list_entry((void *)pos, struct page, mapping);
fa41b900
KS
2813 if (!trylock_page(page))
2814 goto next;
9a982250
KS
2815 /* split_huge_page() removes page from list on success */
2816 if (!split_huge_page(page))
2817 split++;
2818 unlock_page(page);
fa41b900 2819next:
9a982250
KS
2820 put_page(page);
2821 }
2822
a3d0a918
KS
2823 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2824 list_splice_tail(&list, &pgdata->split_queue);
2825 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250 2826
cb8d68ec
KS
2827 /*
2828 * Stop shrinker if we didn't split any page, but the queue is empty.
2829 * This can happen if pages were freed under us.
2830 */
2831 if (!split && list_empty(&pgdata->split_queue))
2832 return SHRINK_STOP;
2833 return split;
9a982250
KS
2834}
2835
2836static struct shrinker deferred_split_shrinker = {
2837 .count_objects = deferred_split_count,
2838 .scan_objects = deferred_split_scan,
2839 .seeks = DEFAULT_SEEKS,
a3d0a918 2840 .flags = SHRINKER_NUMA_AWARE,
9a982250 2841};
49071d43
KS
2842
2843#ifdef CONFIG_DEBUG_FS
2844static int split_huge_pages_set(void *data, u64 val)
2845{
2846 struct zone *zone;
2847 struct page *page;
2848 unsigned long pfn, max_zone_pfn;
2849 unsigned long total = 0, split = 0;
2850
2851 if (val != 1)
2852 return -EINVAL;
2853
2854 for_each_populated_zone(zone) {
2855 max_zone_pfn = zone_end_pfn(zone);
2856 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2857 if (!pfn_valid(pfn))
2858 continue;
2859
2860 page = pfn_to_page(pfn);
2861 if (!get_page_unless_zero(page))
2862 continue;
2863
2864 if (zone != page_zone(page))
2865 goto next;
2866
baa355fd 2867 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
49071d43
KS
2868 goto next;
2869
2870 total++;
2871 lock_page(page);
2872 if (!split_huge_page(page))
2873 split++;
2874 unlock_page(page);
2875next:
2876 put_page(page);
2877 }
2878 }
2879
145bdaa1 2880 pr_info("%lu of %lu THP split\n", split, total);
49071d43
KS
2881
2882 return 0;
2883}
2884DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2885 "%llu\n");
2886
2887static int __init split_huge_pages_debugfs(void)
2888{
2889 void *ret;
2890
145bdaa1 2891 ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
49071d43
KS
2892 &split_huge_pages_fops);
2893 if (!ret)
2894 pr_warn("Failed to create split_huge_pages in debugfs");
2895 return 0;
2896}
2897late_initcall(split_huge_pages_debugfs);
2898#endif
616b8371
ZY
2899
2900#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2901void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2902 struct page *page)
2903{
2904 struct vm_area_struct *vma = pvmw->vma;
2905 struct mm_struct *mm = vma->vm_mm;
2906 unsigned long address = pvmw->address;
2907 pmd_t pmdval;
2908 swp_entry_t entry;
ab6e3d09 2909 pmd_t pmdswp;
616b8371
ZY
2910
2911 if (!(pvmw->pmd && !pvmw->pte))
2912 return;
2913
616b8371
ZY
2914 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2915 pmdval = *pvmw->pmd;
2916 pmdp_invalidate(vma, address, pvmw->pmd);
2917 if (pmd_dirty(pmdval))
2918 set_page_dirty(page);
2919 entry = make_migration_entry(page, pmd_write(pmdval));
ab6e3d09
NH
2920 pmdswp = swp_entry_to_pmd(entry);
2921 if (pmd_soft_dirty(pmdval))
2922 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2923 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
616b8371
ZY
2924 page_remove_rmap(page, true);
2925 put_page(page);
616b8371
ZY
2926}
2927
2928void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2929{
2930 struct vm_area_struct *vma = pvmw->vma;
2931 struct mm_struct *mm = vma->vm_mm;
2932 unsigned long address = pvmw->address;
2933 unsigned long mmun_start = address & HPAGE_PMD_MASK;
2934 pmd_t pmde;
2935 swp_entry_t entry;
2936
2937 if (!(pvmw->pmd && !pvmw->pte))
2938 return;
2939
2940 entry = pmd_to_swp_entry(*pvmw->pmd);
2941 get_page(new);
2942 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
ab6e3d09
NH
2943 if (pmd_swp_soft_dirty(*pvmw->pmd))
2944 pmde = pmd_mksoft_dirty(pmde);
616b8371 2945 if (is_write_migration_entry(entry))
f55e1014 2946 pmde = maybe_pmd_mkwrite(pmde, vma);
616b8371
ZY
2947
2948 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
e71769ae
NH
2949 if (PageAnon(new))
2950 page_add_anon_rmap(new, vma, mmun_start, true);
2951 else
2952 page_add_file_rmap(new, true);
616b8371 2953 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
e125fe40 2954 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
616b8371
ZY
2955 mlock_vma_page(new);
2956 update_mmu_cache_pmd(vma, address, pvmw->pmd);
2957}
2958#endif