mm/hmm: fix race between hmm_mirror_unregister() and mmu_notifier callback
[linux-2.6-block.git] / mm / huge_memory.c
CommitLineData
71e3aac0
AA
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
ae3a8c1c
AM
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
71e3aac0
AA
10#include <linux/mm.h>
11#include <linux/sched.h>
f7ccbae4 12#include <linux/sched/coredump.h>
6a3827d7 13#include <linux/sched/numa_balancing.h>
71e3aac0
AA
14#include <linux/highmem.h>
15#include <linux/hugetlb.h>
16#include <linux/mmu_notifier.h>
17#include <linux/rmap.h>
18#include <linux/swap.h>
97ae1749 19#include <linux/shrinker.h>
ba76149f 20#include <linux/mm_inline.h>
e9b61f19 21#include <linux/swapops.h>
4897c765 22#include <linux/dax.h>
ba76149f 23#include <linux/khugepaged.h>
878aee7d 24#include <linux/freezer.h>
f25748e3 25#include <linux/pfn_t.h>
a664b2d8 26#include <linux/mman.h>
3565fce3 27#include <linux/memremap.h>
325adeb5 28#include <linux/pagemap.h>
49071d43 29#include <linux/debugfs.h>
4daae3b4 30#include <linux/migrate.h>
43b5fbbd 31#include <linux/hashtable.h>
6b251fc9 32#include <linux/userfaultfd_k.h>
33c3fc71 33#include <linux/page_idle.h>
baa355fd 34#include <linux/shmem_fs.h>
6b31d595 35#include <linux/oom.h>
97ae1749 36
71e3aac0
AA
37#include <asm/tlb.h>
38#include <asm/pgalloc.h>
39#include "internal.h"
40
ba76149f 41/*
b14d595a
MD
42 * By default, transparent hugepage support is disabled in order to avoid
43 * risking an increased memory footprint for applications that are not
44 * guaranteed to benefit from it. When transparent hugepage support is
45 * enabled, it is for all mappings, and khugepaged scans all mappings.
8bfa3f9a
JW
46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
47 * for all hugepage allocations.
ba76149f 48 */
71e3aac0 49unsigned long transparent_hugepage_flags __read_mostly =
13ece886 50#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 51 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
52#endif
53#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55#endif
444eb2a4 56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
79da5407
KS
57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f 59
9a982250 60static struct shrinker deferred_split_shrinker;
f000565a 61
97ae1749 62static atomic_t huge_zero_refcount;
56873f43 63struct page *huge_zero_page __read_mostly;
4a6c1297 64
6fcb52a5 65static struct page *get_huge_zero_page(void)
97ae1749
KS
66{
67 struct page *zero_page;
68retry:
69 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
4db0c3c2 70 return READ_ONCE(huge_zero_page);
97ae1749
KS
71
72 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 73 HPAGE_PMD_ORDER);
d8a8e1f0
KS
74 if (!zero_page) {
75 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
5918d10a 76 return NULL;
d8a8e1f0
KS
77 }
78 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 79 preempt_disable();
5918d10a 80 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749 81 preempt_enable();
5ddacbe9 82 __free_pages(zero_page, compound_order(zero_page));
97ae1749
KS
83 goto retry;
84 }
85
86 /* We take additional reference here. It will be put back by shrinker */
87 atomic_set(&huge_zero_refcount, 2);
88 preempt_enable();
4db0c3c2 89 return READ_ONCE(huge_zero_page);
4a6c1297
KS
90}
91
6fcb52a5 92static void put_huge_zero_page(void)
4a6c1297 93{
97ae1749
KS
94 /*
95 * Counter should never go to zero here. Only shrinker can put
96 * last reference.
97 */
98 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
99}
100
6fcb52a5
AL
101struct page *mm_get_huge_zero_page(struct mm_struct *mm)
102{
103 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
104 return READ_ONCE(huge_zero_page);
105
106 if (!get_huge_zero_page())
107 return NULL;
108
109 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
110 put_huge_zero_page();
111
112 return READ_ONCE(huge_zero_page);
113}
114
115void mm_put_huge_zero_page(struct mm_struct *mm)
116{
117 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
118 put_huge_zero_page();
119}
120
48896466
GC
121static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
122 struct shrink_control *sc)
4a6c1297 123{
48896466
GC
124 /* we can free zero page only if last reference remains */
125 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
126}
97ae1749 127
48896466
GC
128static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
129 struct shrink_control *sc)
130{
97ae1749 131 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
132 struct page *zero_page = xchg(&huge_zero_page, NULL);
133 BUG_ON(zero_page == NULL);
5ddacbe9 134 __free_pages(zero_page, compound_order(zero_page));
48896466 135 return HPAGE_PMD_NR;
97ae1749
KS
136 }
137
138 return 0;
4a6c1297
KS
139}
140
97ae1749 141static struct shrinker huge_zero_page_shrinker = {
48896466
GC
142 .count_objects = shrink_huge_zero_page_count,
143 .scan_objects = shrink_huge_zero_page_scan,
97ae1749
KS
144 .seeks = DEFAULT_SEEKS,
145};
146
71e3aac0 147#ifdef CONFIG_SYSFS
71e3aac0
AA
148static ssize_t enabled_show(struct kobject *kobj,
149 struct kobj_attribute *attr, char *buf)
150{
444eb2a4
MG
151 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
152 return sprintf(buf, "[always] madvise never\n");
153 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
154 return sprintf(buf, "always [madvise] never\n");
155 else
156 return sprintf(buf, "always madvise [never]\n");
71e3aac0 157}
444eb2a4 158
71e3aac0
AA
159static ssize_t enabled_store(struct kobject *kobj,
160 struct kobj_attribute *attr,
161 const char *buf, size_t count)
162{
21440d7e 163 ssize_t ret = count;
ba76149f 164
21440d7e
DR
165 if (!memcmp("always", buf,
166 min(sizeof("always")-1, count))) {
167 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
168 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
169 } else if (!memcmp("madvise", buf,
170 min(sizeof("madvise")-1, count))) {
171 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
172 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
173 } else if (!memcmp("never", buf,
174 min(sizeof("never")-1, count))) {
175 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
176 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
177 } else
178 ret = -EINVAL;
ba76149f
AA
179
180 if (ret > 0) {
b46e756f 181 int err = start_stop_khugepaged();
ba76149f
AA
182 if (err)
183 ret = err;
184 }
ba76149f 185 return ret;
71e3aac0
AA
186}
187static struct kobj_attribute enabled_attr =
188 __ATTR(enabled, 0644, enabled_show, enabled_store);
189
b46e756f 190ssize_t single_hugepage_flag_show(struct kobject *kobj,
71e3aac0
AA
191 struct kobj_attribute *attr, char *buf,
192 enum transparent_hugepage_flag flag)
193{
e27e6151
BH
194 return sprintf(buf, "%d\n",
195 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 196}
e27e6151 197
b46e756f 198ssize_t single_hugepage_flag_store(struct kobject *kobj,
71e3aac0
AA
199 struct kobj_attribute *attr,
200 const char *buf, size_t count,
201 enum transparent_hugepage_flag flag)
202{
e27e6151
BH
203 unsigned long value;
204 int ret;
205
206 ret = kstrtoul(buf, 10, &value);
207 if (ret < 0)
208 return ret;
209 if (value > 1)
210 return -EINVAL;
211
212 if (value)
71e3aac0 213 set_bit(flag, &transparent_hugepage_flags);
e27e6151 214 else
71e3aac0 215 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
216
217 return count;
218}
219
71e3aac0
AA
220static ssize_t defrag_show(struct kobject *kobj,
221 struct kobj_attribute *attr, char *buf)
222{
444eb2a4 223 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
21440d7e 224 return sprintf(buf, "[always] defer defer+madvise madvise never\n");
444eb2a4 225 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
21440d7e
DR
226 return sprintf(buf, "always [defer] defer+madvise madvise never\n");
227 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
228 return sprintf(buf, "always defer [defer+madvise] madvise never\n");
229 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
230 return sprintf(buf, "always defer defer+madvise [madvise] never\n");
231 return sprintf(buf, "always defer defer+madvise madvise [never]\n");
71e3aac0 232}
21440d7e 233
71e3aac0
AA
234static ssize_t defrag_store(struct kobject *kobj,
235 struct kobj_attribute *attr,
236 const char *buf, size_t count)
237{
21440d7e
DR
238 if (!memcmp("always", buf,
239 min(sizeof("always")-1, count))) {
240 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
241 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
242 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
243 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
21440d7e
DR
244 } else if (!memcmp("defer+madvise", buf,
245 min(sizeof("defer+madvise")-1, count))) {
246 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
247 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
248 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
249 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
4fad7fb6
DR
250 } else if (!memcmp("defer", buf,
251 min(sizeof("defer")-1, count))) {
252 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
253 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
254 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
255 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
21440d7e
DR
256 } else if (!memcmp("madvise", buf,
257 min(sizeof("madvise")-1, count))) {
258 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
259 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
260 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
261 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
262 } else if (!memcmp("never", buf,
263 min(sizeof("never")-1, count))) {
264 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
265 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
266 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
268 } else
269 return -EINVAL;
270
271 return count;
71e3aac0
AA
272}
273static struct kobj_attribute defrag_attr =
274 __ATTR(defrag, 0644, defrag_show, defrag_store);
275
79da5407
KS
276static ssize_t use_zero_page_show(struct kobject *kobj,
277 struct kobj_attribute *attr, char *buf)
278{
b46e756f 279 return single_hugepage_flag_show(kobj, attr, buf,
79da5407
KS
280 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
281}
282static ssize_t use_zero_page_store(struct kobject *kobj,
283 struct kobj_attribute *attr, const char *buf, size_t count)
284{
b46e756f 285 return single_hugepage_flag_store(kobj, attr, buf, count,
79da5407
KS
286 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
287}
288static struct kobj_attribute use_zero_page_attr =
289 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
49920d28
HD
290
291static ssize_t hpage_pmd_size_show(struct kobject *kobj,
292 struct kobj_attribute *attr, char *buf)
293{
294 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
295}
296static struct kobj_attribute hpage_pmd_size_attr =
297 __ATTR_RO(hpage_pmd_size);
298
71e3aac0
AA
299#ifdef CONFIG_DEBUG_VM
300static ssize_t debug_cow_show(struct kobject *kobj,
301 struct kobj_attribute *attr, char *buf)
302{
b46e756f 303 return single_hugepage_flag_show(kobj, attr, buf,
71e3aac0
AA
304 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
305}
306static ssize_t debug_cow_store(struct kobject *kobj,
307 struct kobj_attribute *attr,
308 const char *buf, size_t count)
309{
b46e756f 310 return single_hugepage_flag_store(kobj, attr, buf, count,
71e3aac0
AA
311 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
312}
313static struct kobj_attribute debug_cow_attr =
314 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
315#endif /* CONFIG_DEBUG_VM */
316
317static struct attribute *hugepage_attr[] = {
318 &enabled_attr.attr,
319 &defrag_attr.attr,
79da5407 320 &use_zero_page_attr.attr,
49920d28 321 &hpage_pmd_size_attr.attr,
e496cf3d 322#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
5a6e75f8
KS
323 &shmem_enabled_attr.attr,
324#endif
71e3aac0
AA
325#ifdef CONFIG_DEBUG_VM
326 &debug_cow_attr.attr,
327#endif
328 NULL,
329};
330
8aa95a21 331static const struct attribute_group hugepage_attr_group = {
71e3aac0 332 .attrs = hugepage_attr,
ba76149f
AA
333};
334
569e5590 335static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 336{
71e3aac0
AA
337 int err;
338
569e5590
SL
339 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
340 if (unlikely(!*hugepage_kobj)) {
ae3a8c1c 341 pr_err("failed to create transparent hugepage kobject\n");
569e5590 342 return -ENOMEM;
ba76149f
AA
343 }
344
569e5590 345 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 346 if (err) {
ae3a8c1c 347 pr_err("failed to register transparent hugepage group\n");
569e5590 348 goto delete_obj;
ba76149f
AA
349 }
350
569e5590 351 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 352 if (err) {
ae3a8c1c 353 pr_err("failed to register transparent hugepage group\n");
569e5590 354 goto remove_hp_group;
ba76149f 355 }
569e5590
SL
356
357 return 0;
358
359remove_hp_group:
360 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
361delete_obj:
362 kobject_put(*hugepage_kobj);
363 return err;
364}
365
366static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
367{
368 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
369 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
370 kobject_put(hugepage_kobj);
371}
372#else
373static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
374{
375 return 0;
376}
377
378static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
379{
380}
381#endif /* CONFIG_SYSFS */
382
383static int __init hugepage_init(void)
384{
385 int err;
386 struct kobject *hugepage_kobj;
387
388 if (!has_transparent_hugepage()) {
389 transparent_hugepage_flags = 0;
390 return -EINVAL;
391 }
392
ff20c2e0
KS
393 /*
394 * hugepages can't be allocated by the buddy allocator
395 */
396 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
397 /*
398 * we use page->mapping and page->index in second tail page
399 * as list_head: assuming THP order >= 2
400 */
401 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
402
569e5590
SL
403 err = hugepage_init_sysfs(&hugepage_kobj);
404 if (err)
65ebb64f 405 goto err_sysfs;
ba76149f 406
b46e756f 407 err = khugepaged_init();
ba76149f 408 if (err)
65ebb64f 409 goto err_slab;
ba76149f 410
65ebb64f
KS
411 err = register_shrinker(&huge_zero_page_shrinker);
412 if (err)
413 goto err_hzp_shrinker;
9a982250
KS
414 err = register_shrinker(&deferred_split_shrinker);
415 if (err)
416 goto err_split_shrinker;
97ae1749 417
97562cd2
RR
418 /*
419 * By default disable transparent hugepages on smaller systems,
420 * where the extra memory used could hurt more than TLB overhead
421 * is likely to save. The admin can still enable it through /sys.
422 */
79553da2 423 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
97562cd2 424 transparent_hugepage_flags = 0;
79553da2
KS
425 return 0;
426 }
97562cd2 427
79553da2 428 err = start_stop_khugepaged();
65ebb64f
KS
429 if (err)
430 goto err_khugepaged;
ba76149f 431
569e5590 432 return 0;
65ebb64f 433err_khugepaged:
9a982250
KS
434 unregister_shrinker(&deferred_split_shrinker);
435err_split_shrinker:
65ebb64f
KS
436 unregister_shrinker(&huge_zero_page_shrinker);
437err_hzp_shrinker:
b46e756f 438 khugepaged_destroy();
65ebb64f 439err_slab:
569e5590 440 hugepage_exit_sysfs(hugepage_kobj);
65ebb64f 441err_sysfs:
ba76149f 442 return err;
71e3aac0 443}
a64fb3cd 444subsys_initcall(hugepage_init);
71e3aac0
AA
445
446static int __init setup_transparent_hugepage(char *str)
447{
448 int ret = 0;
449 if (!str)
450 goto out;
451 if (!strcmp(str, "always")) {
452 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
453 &transparent_hugepage_flags);
454 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
455 &transparent_hugepage_flags);
456 ret = 1;
457 } else if (!strcmp(str, "madvise")) {
458 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
459 &transparent_hugepage_flags);
460 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
461 &transparent_hugepage_flags);
462 ret = 1;
463 } else if (!strcmp(str, "never")) {
464 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
465 &transparent_hugepage_flags);
466 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
467 &transparent_hugepage_flags);
468 ret = 1;
469 }
470out:
471 if (!ret)
ae3a8c1c 472 pr_warn("transparent_hugepage= cannot parse, ignored\n");
71e3aac0
AA
473 return ret;
474}
475__setup("transparent_hugepage=", setup_transparent_hugepage);
476
f55e1014 477pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0 478{
f55e1014 479 if (likely(vma->vm_flags & VM_WRITE))
71e3aac0
AA
480 pmd = pmd_mkwrite(pmd);
481 return pmd;
482}
483
9a982250
KS
484static inline struct list_head *page_deferred_list(struct page *page)
485{
fa3015b7
MW
486 /* ->lru in the tail pages is occupied by compound_head. */
487 return &page[2].deferred_list;
9a982250
KS
488}
489
490void prep_transhuge_page(struct page *page)
491{
492 /*
493 * we use page->mapping and page->indexlru in second tail page
494 * as list_head: assuming THP order >= 2
495 */
9a982250
KS
496
497 INIT_LIST_HEAD(page_deferred_list(page));
498 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
499}
500
74d2fad1
TK
501unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
502 loff_t off, unsigned long flags, unsigned long size)
503{
504 unsigned long addr;
505 loff_t off_end = off + len;
506 loff_t off_align = round_up(off, size);
507 unsigned long len_pad;
508
509 if (off_end <= off_align || (off_end - off_align) < size)
510 return 0;
511
512 len_pad = len + size;
513 if (len_pad < len || (off + len_pad) < off)
514 return 0;
515
516 addr = current->mm->get_unmapped_area(filp, 0, len_pad,
517 off >> PAGE_SHIFT, flags);
518 if (IS_ERR_VALUE(addr))
519 return 0;
520
521 addr += (off - addr) & (size - 1);
522 return addr;
523}
524
525unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
526 unsigned long len, unsigned long pgoff, unsigned long flags)
527{
528 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
529
530 if (addr)
531 goto out;
532 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
533 goto out;
534
535 addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
536 if (addr)
537 return addr;
538
539 out:
540 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
541}
542EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
543
2b740303
SJ
544static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
545 struct page *page, gfp_t gfp)
71e3aac0 546{
82b0f8c3 547 struct vm_area_struct *vma = vmf->vma;
00501b53 548 struct mem_cgroup *memcg;
71e3aac0 549 pgtable_t pgtable;
82b0f8c3 550 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2b740303 551 vm_fault_t ret = 0;
71e3aac0 552
309381fe 553 VM_BUG_ON_PAGE(!PageCompound(page), page);
00501b53 554
2cf85583 555 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) {
6b251fc9
AA
556 put_page(page);
557 count_vm_event(THP_FAULT_FALLBACK);
558 return VM_FAULT_FALLBACK;
559 }
00501b53 560
bae473a4 561 pgtable = pte_alloc_one(vma->vm_mm, haddr);
00501b53 562 if (unlikely(!pgtable)) {
6b31d595
MH
563 ret = VM_FAULT_OOM;
564 goto release;
00501b53 565 }
71e3aac0 566
c79b57e4 567 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
52f37629
MK
568 /*
569 * The memory barrier inside __SetPageUptodate makes sure that
570 * clear_huge_page writes become visible before the set_pmd_at()
571 * write.
572 */
71e3aac0
AA
573 __SetPageUptodate(page);
574
82b0f8c3
JK
575 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
576 if (unlikely(!pmd_none(*vmf->pmd))) {
6b31d595 577 goto unlock_release;
71e3aac0
AA
578 } else {
579 pmd_t entry;
6b251fc9 580
6b31d595
MH
581 ret = check_stable_address_space(vma->vm_mm);
582 if (ret)
583 goto unlock_release;
584
6b251fc9
AA
585 /* Deliver the page fault to userland */
586 if (userfaultfd_missing(vma)) {
2b740303 587 vm_fault_t ret2;
6b251fc9 588
82b0f8c3 589 spin_unlock(vmf->ptl);
f627c2f5 590 mem_cgroup_cancel_charge(page, memcg, true);
6b251fc9 591 put_page(page);
bae473a4 592 pte_free(vma->vm_mm, pgtable);
2b740303
SJ
593 ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
594 VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
595 return ret2;
6b251fc9
AA
596 }
597
3122359a 598 entry = mk_huge_pmd(page, vma->vm_page_prot);
f55e1014 599 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
d281ee61 600 page_add_new_anon_rmap(page, vma, haddr, true);
f627c2f5 601 mem_cgroup_commit_charge(page, memcg, false, true);
00501b53 602 lru_cache_add_active_or_unevictable(page, vma);
82b0f8c3
JK
603 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
604 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
bae473a4 605 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
c4812909 606 mm_inc_nr_ptes(vma->vm_mm);
82b0f8c3 607 spin_unlock(vmf->ptl);
6b251fc9 608 count_vm_event(THP_FAULT_ALLOC);
71e3aac0
AA
609 }
610
aa2e878e 611 return 0;
6b31d595
MH
612unlock_release:
613 spin_unlock(vmf->ptl);
614release:
615 if (pgtable)
616 pte_free(vma->vm_mm, pgtable);
617 mem_cgroup_cancel_charge(page, memcg, true);
618 put_page(page);
619 return ret;
620
71e3aac0
AA
621}
622
444eb2a4 623/*
21440d7e
DR
624 * always: directly stall for all thp allocations
625 * defer: wake kswapd and fail if not immediately available
626 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
627 * fail if not immediately available
628 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
629 * available
630 * never: never stall for any thp allocation
444eb2a4
MG
631 */
632static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
633{
21440d7e 634 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
25160354 635
21440d7e 636 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
25160354 637 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
21440d7e
DR
638 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
639 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
640 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
641 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
642 __GFP_KSWAPD_RECLAIM);
643 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
644 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
645 0);
25160354 646 return GFP_TRANSHUGE_LIGHT;
444eb2a4
MG
647}
648
c4088ebd 649/* Caller must hold page table lock. */
d295e341 650static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 651 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 652 struct page *zero_page)
fc9fe822
KS
653{
654 pmd_t entry;
7c414164
AM
655 if (!pmd_none(*pmd))
656 return false;
5918d10a 657 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822 658 entry = pmd_mkhuge(entry);
12c9d70b
MW
659 if (pgtable)
660 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 661 set_pmd_at(mm, haddr, pmd, entry);
c4812909 662 mm_inc_nr_ptes(mm);
7c414164 663 return true;
fc9fe822
KS
664}
665
2b740303 666vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
71e3aac0 667{
82b0f8c3 668 struct vm_area_struct *vma = vmf->vma;
077fcf11 669 gfp_t gfp;
71e3aac0 670 struct page *page;
82b0f8c3 671 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
71e3aac0 672
128ec037 673 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
c0292554 674 return VM_FAULT_FALLBACK;
128ec037
KS
675 if (unlikely(anon_vma_prepare(vma)))
676 return VM_FAULT_OOM;
6d50e60c 677 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
128ec037 678 return VM_FAULT_OOM;
82b0f8c3 679 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 680 !mm_forbids_zeropage(vma->vm_mm) &&
128ec037
KS
681 transparent_hugepage_use_zero_page()) {
682 pgtable_t pgtable;
683 struct page *zero_page;
684 bool set;
2b740303 685 vm_fault_t ret;
bae473a4 686 pgtable = pte_alloc_one(vma->vm_mm, haddr);
128ec037 687 if (unlikely(!pgtable))
ba76149f 688 return VM_FAULT_OOM;
6fcb52a5 689 zero_page = mm_get_huge_zero_page(vma->vm_mm);
128ec037 690 if (unlikely(!zero_page)) {
bae473a4 691 pte_free(vma->vm_mm, pgtable);
81ab4201 692 count_vm_event(THP_FAULT_FALLBACK);
c0292554 693 return VM_FAULT_FALLBACK;
b9bbfbe3 694 }
82b0f8c3 695 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
6b251fc9
AA
696 ret = 0;
697 set = false;
82b0f8c3 698 if (pmd_none(*vmf->pmd)) {
6b31d595
MH
699 ret = check_stable_address_space(vma->vm_mm);
700 if (ret) {
701 spin_unlock(vmf->ptl);
702 } else if (userfaultfd_missing(vma)) {
82b0f8c3
JK
703 spin_unlock(vmf->ptl);
704 ret = handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
705 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
706 } else {
bae473a4 707 set_huge_zero_page(pgtable, vma->vm_mm, vma,
82b0f8c3
JK
708 haddr, vmf->pmd, zero_page);
709 spin_unlock(vmf->ptl);
6b251fc9
AA
710 set = true;
711 }
712 } else
82b0f8c3 713 spin_unlock(vmf->ptl);
6fcb52a5 714 if (!set)
bae473a4 715 pte_free(vma->vm_mm, pgtable);
6b251fc9 716 return ret;
71e3aac0 717 }
444eb2a4 718 gfp = alloc_hugepage_direct_gfpmask(vma);
077fcf11 719 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
128ec037
KS
720 if (unlikely(!page)) {
721 count_vm_event(THP_FAULT_FALLBACK);
c0292554 722 return VM_FAULT_FALLBACK;
128ec037 723 }
9a982250 724 prep_transhuge_page(page);
82b0f8c3 725 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
71e3aac0
AA
726}
727
ae18d6dc 728static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
3b6521f5
OH
729 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
730 pgtable_t pgtable)
5cad465d
MW
731{
732 struct mm_struct *mm = vma->vm_mm;
733 pmd_t entry;
734 spinlock_t *ptl;
735
736 ptl = pmd_lock(mm, pmd);
f25748e3
DW
737 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
738 if (pfn_t_devmap(pfn))
739 entry = pmd_mkdevmap(entry);
01871e59 740 if (write) {
f55e1014
LT
741 entry = pmd_mkyoung(pmd_mkdirty(entry));
742 entry = maybe_pmd_mkwrite(entry, vma);
5cad465d 743 }
3b6521f5
OH
744
745 if (pgtable) {
746 pgtable_trans_huge_deposit(mm, pmd, pgtable);
c4812909 747 mm_inc_nr_ptes(mm);
3b6521f5
OH
748 }
749
01871e59
RZ
750 set_pmd_at(mm, addr, pmd, entry);
751 update_mmu_cache_pmd(vma, addr, pmd);
5cad465d 752 spin_unlock(ptl);
5cad465d
MW
753}
754
226ab561 755vm_fault_t vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
f25748e3 756 pmd_t *pmd, pfn_t pfn, bool write)
5cad465d
MW
757{
758 pgprot_t pgprot = vma->vm_page_prot;
3b6521f5 759 pgtable_t pgtable = NULL;
5cad465d
MW
760 /*
761 * If we had pmd_special, we could avoid all these restrictions,
762 * but we need to be consistent with PTEs and architectures that
763 * can't support a 'special' bit.
764 */
e1fb4a08
DJ
765 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
766 !pfn_t_devmap(pfn));
5cad465d
MW
767 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
768 (VM_PFNMAP|VM_MIXEDMAP));
769 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
5cad465d
MW
770
771 if (addr < vma->vm_start || addr >= vma->vm_end)
772 return VM_FAULT_SIGBUS;
308a047c 773
3b6521f5
OH
774 if (arch_needs_pgtable_deposit()) {
775 pgtable = pte_alloc_one(vma->vm_mm, addr);
776 if (!pgtable)
777 return VM_FAULT_OOM;
778 }
779
308a047c
BP
780 track_pfn_insert(vma, &pgprot, pfn);
781
3b6521f5 782 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write, pgtable);
ae18d6dc 783 return VM_FAULT_NOPAGE;
5cad465d 784}
dee41079 785EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
5cad465d 786
a00cc7d9 787#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
f55e1014 788static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
a00cc7d9 789{
f55e1014 790 if (likely(vma->vm_flags & VM_WRITE))
a00cc7d9
MW
791 pud = pud_mkwrite(pud);
792 return pud;
793}
794
795static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
796 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
797{
798 struct mm_struct *mm = vma->vm_mm;
799 pud_t entry;
800 spinlock_t *ptl;
801
802 ptl = pud_lock(mm, pud);
803 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
804 if (pfn_t_devmap(pfn))
805 entry = pud_mkdevmap(entry);
806 if (write) {
f55e1014
LT
807 entry = pud_mkyoung(pud_mkdirty(entry));
808 entry = maybe_pud_mkwrite(entry, vma);
a00cc7d9
MW
809 }
810 set_pud_at(mm, addr, pud, entry);
811 update_mmu_cache_pud(vma, addr, pud);
812 spin_unlock(ptl);
813}
814
226ab561 815vm_fault_t vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
a00cc7d9
MW
816 pud_t *pud, pfn_t pfn, bool write)
817{
818 pgprot_t pgprot = vma->vm_page_prot;
819 /*
820 * If we had pud_special, we could avoid all these restrictions,
821 * but we need to be consistent with PTEs and architectures that
822 * can't support a 'special' bit.
823 */
62ec0d8c
DJ
824 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
825 !pfn_t_devmap(pfn));
a00cc7d9
MW
826 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
827 (VM_PFNMAP|VM_MIXEDMAP));
828 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
a00cc7d9
MW
829
830 if (addr < vma->vm_start || addr >= vma->vm_end)
831 return VM_FAULT_SIGBUS;
832
833 track_pfn_insert(vma, &pgprot, pfn);
834
835 insert_pfn_pud(vma, addr, pud, pfn, pgprot, write);
836 return VM_FAULT_NOPAGE;
837}
838EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
839#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
840
3565fce3 841static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
a8f97366 842 pmd_t *pmd, int flags)
3565fce3
DW
843{
844 pmd_t _pmd;
845
a8f97366
KS
846 _pmd = pmd_mkyoung(*pmd);
847 if (flags & FOLL_WRITE)
848 _pmd = pmd_mkdirty(_pmd);
3565fce3 849 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
a8f97366 850 pmd, _pmd, flags & FOLL_WRITE))
3565fce3
DW
851 update_mmu_cache_pmd(vma, addr, pmd);
852}
853
854struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
df06b37f 855 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
3565fce3
DW
856{
857 unsigned long pfn = pmd_pfn(*pmd);
858 struct mm_struct *mm = vma->vm_mm;
3565fce3
DW
859 struct page *page;
860
861 assert_spin_locked(pmd_lockptr(mm, pmd));
862
8310d48b
KF
863 /*
864 * When we COW a devmap PMD entry, we split it into PTEs, so we should
865 * not be in this function with `flags & FOLL_COW` set.
866 */
867 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
868
f6f37321 869 if (flags & FOLL_WRITE && !pmd_write(*pmd))
3565fce3
DW
870 return NULL;
871
872 if (pmd_present(*pmd) && pmd_devmap(*pmd))
873 /* pass */;
874 else
875 return NULL;
876
877 if (flags & FOLL_TOUCH)
a8f97366 878 touch_pmd(vma, addr, pmd, flags);
3565fce3
DW
879
880 /*
881 * device mapped pages can only be returned if the
882 * caller will manage the page reference count.
883 */
884 if (!(flags & FOLL_GET))
885 return ERR_PTR(-EEXIST);
886
887 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
df06b37f
KB
888 *pgmap = get_dev_pagemap(pfn, *pgmap);
889 if (!*pgmap)
3565fce3
DW
890 return ERR_PTR(-EFAULT);
891 page = pfn_to_page(pfn);
892 get_page(page);
3565fce3
DW
893
894 return page;
895}
896
71e3aac0
AA
897int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
898 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
899 struct vm_area_struct *vma)
900{
c4088ebd 901 spinlock_t *dst_ptl, *src_ptl;
71e3aac0
AA
902 struct page *src_page;
903 pmd_t pmd;
12c9d70b 904 pgtable_t pgtable = NULL;
628d47ce 905 int ret = -ENOMEM;
71e3aac0 906
628d47ce
KS
907 /* Skip if can be re-fill on fault */
908 if (!vma_is_anonymous(vma))
909 return 0;
910
911 pgtable = pte_alloc_one(dst_mm, addr);
912 if (unlikely(!pgtable))
913 goto out;
71e3aac0 914
c4088ebd
KS
915 dst_ptl = pmd_lock(dst_mm, dst_pmd);
916 src_ptl = pmd_lockptr(src_mm, src_pmd);
917 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
71e3aac0
AA
918
919 ret = -EAGAIN;
920 pmd = *src_pmd;
84c3fc4e
ZY
921
922#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
923 if (unlikely(is_swap_pmd(pmd))) {
924 swp_entry_t entry = pmd_to_swp_entry(pmd);
925
926 VM_BUG_ON(!is_pmd_migration_entry(pmd));
927 if (is_write_migration_entry(entry)) {
928 make_migration_entry_read(&entry);
929 pmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
930 if (pmd_swp_soft_dirty(*src_pmd))
931 pmd = pmd_swp_mksoft_dirty(pmd);
84c3fc4e
ZY
932 set_pmd_at(src_mm, addr, src_pmd, pmd);
933 }
dd8a67f9 934 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
af5b0f6a 935 mm_inc_nr_ptes(dst_mm);
dd8a67f9 936 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
84c3fc4e
ZY
937 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
938 ret = 0;
939 goto out_unlock;
940 }
941#endif
942
628d47ce 943 if (unlikely(!pmd_trans_huge(pmd))) {
71e3aac0
AA
944 pte_free(dst_mm, pgtable);
945 goto out_unlock;
946 }
fc9fe822 947 /*
c4088ebd 948 * When page table lock is held, the huge zero pmd should not be
fc9fe822
KS
949 * under splitting since we don't split the page itself, only pmd to
950 * a page table.
951 */
952 if (is_huge_zero_pmd(pmd)) {
5918d10a 953 struct page *zero_page;
97ae1749
KS
954 /*
955 * get_huge_zero_page() will never allocate a new page here,
956 * since we already have a zero page to copy. It just takes a
957 * reference.
958 */
6fcb52a5 959 zero_page = mm_get_huge_zero_page(dst_mm);
6b251fc9 960 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
5918d10a 961 zero_page);
fc9fe822
KS
962 ret = 0;
963 goto out_unlock;
964 }
de466bd6 965
628d47ce
KS
966 src_page = pmd_page(pmd);
967 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
968 get_page(src_page);
969 page_dup_rmap(src_page, true);
970 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
c4812909 971 mm_inc_nr_ptes(dst_mm);
628d47ce 972 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
71e3aac0
AA
973
974 pmdp_set_wrprotect(src_mm, addr, src_pmd);
975 pmd = pmd_mkold(pmd_wrprotect(pmd));
976 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
71e3aac0
AA
977
978 ret = 0;
979out_unlock:
c4088ebd
KS
980 spin_unlock(src_ptl);
981 spin_unlock(dst_ptl);
71e3aac0
AA
982out:
983 return ret;
984}
985
a00cc7d9
MW
986#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
987static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
a8f97366 988 pud_t *pud, int flags)
a00cc7d9
MW
989{
990 pud_t _pud;
991
a8f97366
KS
992 _pud = pud_mkyoung(*pud);
993 if (flags & FOLL_WRITE)
994 _pud = pud_mkdirty(_pud);
a00cc7d9 995 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
a8f97366 996 pud, _pud, flags & FOLL_WRITE))
a00cc7d9
MW
997 update_mmu_cache_pud(vma, addr, pud);
998}
999
1000struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
df06b37f 1001 pud_t *pud, int flags, struct dev_pagemap **pgmap)
a00cc7d9
MW
1002{
1003 unsigned long pfn = pud_pfn(*pud);
1004 struct mm_struct *mm = vma->vm_mm;
a00cc7d9
MW
1005 struct page *page;
1006
1007 assert_spin_locked(pud_lockptr(mm, pud));
1008
f6f37321 1009 if (flags & FOLL_WRITE && !pud_write(*pud))
a00cc7d9
MW
1010 return NULL;
1011
1012 if (pud_present(*pud) && pud_devmap(*pud))
1013 /* pass */;
1014 else
1015 return NULL;
1016
1017 if (flags & FOLL_TOUCH)
a8f97366 1018 touch_pud(vma, addr, pud, flags);
a00cc7d9
MW
1019
1020 /*
1021 * device mapped pages can only be returned if the
1022 * caller will manage the page reference count.
1023 */
1024 if (!(flags & FOLL_GET))
1025 return ERR_PTR(-EEXIST);
1026
1027 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
df06b37f
KB
1028 *pgmap = get_dev_pagemap(pfn, *pgmap);
1029 if (!*pgmap)
a00cc7d9
MW
1030 return ERR_PTR(-EFAULT);
1031 page = pfn_to_page(pfn);
1032 get_page(page);
a00cc7d9
MW
1033
1034 return page;
1035}
1036
1037int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1038 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1039 struct vm_area_struct *vma)
1040{
1041 spinlock_t *dst_ptl, *src_ptl;
1042 pud_t pud;
1043 int ret;
1044
1045 dst_ptl = pud_lock(dst_mm, dst_pud);
1046 src_ptl = pud_lockptr(src_mm, src_pud);
1047 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1048
1049 ret = -EAGAIN;
1050 pud = *src_pud;
1051 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1052 goto out_unlock;
1053
1054 /*
1055 * When page table lock is held, the huge zero pud should not be
1056 * under splitting since we don't split the page itself, only pud to
1057 * a page table.
1058 */
1059 if (is_huge_zero_pud(pud)) {
1060 /* No huge zero pud yet */
1061 }
1062
1063 pudp_set_wrprotect(src_mm, addr, src_pud);
1064 pud = pud_mkold(pud_wrprotect(pud));
1065 set_pud_at(dst_mm, addr, dst_pud, pud);
1066
1067 ret = 0;
1068out_unlock:
1069 spin_unlock(src_ptl);
1070 spin_unlock(dst_ptl);
1071 return ret;
1072}
1073
1074void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1075{
1076 pud_t entry;
1077 unsigned long haddr;
1078 bool write = vmf->flags & FAULT_FLAG_WRITE;
1079
1080 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1081 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1082 goto unlock;
1083
1084 entry = pud_mkyoung(orig_pud);
1085 if (write)
1086 entry = pud_mkdirty(entry);
1087 haddr = vmf->address & HPAGE_PUD_MASK;
1088 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1089 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1090
1091unlock:
1092 spin_unlock(vmf->ptl);
1093}
1094#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1095
82b0f8c3 1096void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
a1dd450b
WD
1097{
1098 pmd_t entry;
1099 unsigned long haddr;
20f664aa 1100 bool write = vmf->flags & FAULT_FLAG_WRITE;
a1dd450b 1101
82b0f8c3
JK
1102 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1103 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
a1dd450b
WD
1104 goto unlock;
1105
1106 entry = pmd_mkyoung(orig_pmd);
20f664aa
MK
1107 if (write)
1108 entry = pmd_mkdirty(entry);
82b0f8c3 1109 haddr = vmf->address & HPAGE_PMD_MASK;
20f664aa 1110 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
82b0f8c3 1111 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
a1dd450b
WD
1112
1113unlock:
82b0f8c3 1114 spin_unlock(vmf->ptl);
a1dd450b
WD
1115}
1116
2b740303
SJ
1117static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf,
1118 pmd_t orig_pmd, struct page *page)
71e3aac0 1119{
82b0f8c3
JK
1120 struct vm_area_struct *vma = vmf->vma;
1121 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
00501b53 1122 struct mem_cgroup *memcg;
71e3aac0
AA
1123 pgtable_t pgtable;
1124 pmd_t _pmd;
2b740303
SJ
1125 int i;
1126 vm_fault_t ret = 0;
71e3aac0 1127 struct page **pages;
2ec74c3e
SG
1128 unsigned long mmun_start; /* For mmu_notifiers */
1129 unsigned long mmun_end; /* For mmu_notifiers */
71e3aac0 1130
6da2ec56
KC
1131 pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
1132 GFP_KERNEL);
71e3aac0
AA
1133 if (unlikely(!pages)) {
1134 ret |= VM_FAULT_OOM;
1135 goto out;
1136 }
1137
1138 for (i = 0; i < HPAGE_PMD_NR; i++) {
41b6167e 1139 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 1140 vmf->address, page_to_nid(page));
b9bbfbe3 1141 if (unlikely(!pages[i] ||
2cf85583 1142 mem_cgroup_try_charge_delay(pages[i], vma->vm_mm,
bae473a4 1143 GFP_KERNEL, &memcg, false))) {
b9bbfbe3 1144 if (pages[i])
71e3aac0 1145 put_page(pages[i]);
b9bbfbe3 1146 while (--i >= 0) {
00501b53
JW
1147 memcg = (void *)page_private(pages[i]);
1148 set_page_private(pages[i], 0);
f627c2f5
KS
1149 mem_cgroup_cancel_charge(pages[i], memcg,
1150 false);
b9bbfbe3
AA
1151 put_page(pages[i]);
1152 }
71e3aac0
AA
1153 kfree(pages);
1154 ret |= VM_FAULT_OOM;
1155 goto out;
1156 }
00501b53 1157 set_page_private(pages[i], (unsigned long)memcg);
71e3aac0
AA
1158 }
1159
1160 for (i = 0; i < HPAGE_PMD_NR; i++) {
1161 copy_user_highpage(pages[i], page + i,
0089e485 1162 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
1163 __SetPageUptodate(pages[i]);
1164 cond_resched();
1165 }
1166
2ec74c3e
SG
1167 mmun_start = haddr;
1168 mmun_end = haddr + HPAGE_PMD_SIZE;
bae473a4 1169 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
2ec74c3e 1170
82b0f8c3
JK
1171 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1172 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
71e3aac0 1173 goto out_free_pages;
309381fe 1174 VM_BUG_ON_PAGE(!PageHead(page), page);
71e3aac0 1175
0f10851e
JG
1176 /*
1177 * Leave pmd empty until pte is filled note we must notify here as
1178 * concurrent CPU thread might write to new page before the call to
1179 * mmu_notifier_invalidate_range_end() happens which can lead to a
1180 * device seeing memory write in different order than CPU.
1181 *
ad56b738 1182 * See Documentation/vm/mmu_notifier.rst
0f10851e 1183 */
82b0f8c3 1184 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
71e3aac0 1185
82b0f8c3 1186 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
bae473a4 1187 pmd_populate(vma->vm_mm, &_pmd, pgtable);
71e3aac0
AA
1188
1189 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
bae473a4 1190 pte_t entry;
71e3aac0
AA
1191 entry = mk_pte(pages[i], vma->vm_page_prot);
1192 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
00501b53
JW
1193 memcg = (void *)page_private(pages[i]);
1194 set_page_private(pages[i], 0);
82b0f8c3 1195 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
f627c2f5 1196 mem_cgroup_commit_charge(pages[i], memcg, false, false);
00501b53 1197 lru_cache_add_active_or_unevictable(pages[i], vma);
82b0f8c3
JK
1198 vmf->pte = pte_offset_map(&_pmd, haddr);
1199 VM_BUG_ON(!pte_none(*vmf->pte));
1200 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1201 pte_unmap(vmf->pte);
71e3aac0
AA
1202 }
1203 kfree(pages);
1204
71e3aac0 1205 smp_wmb(); /* make pte visible before pmd */
82b0f8c3 1206 pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
d281ee61 1207 page_remove_rmap(page, true);
82b0f8c3 1208 spin_unlock(vmf->ptl);
71e3aac0 1209
4645b9fe
JG
1210 /*
1211 * No need to double call mmu_notifier->invalidate_range() callback as
1212 * the above pmdp_huge_clear_flush_notify() did already call it.
1213 */
1214 mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
1215 mmun_end);
2ec74c3e 1216
71e3aac0
AA
1217 ret |= VM_FAULT_WRITE;
1218 put_page(page);
1219
1220out:
1221 return ret;
1222
1223out_free_pages:
82b0f8c3 1224 spin_unlock(vmf->ptl);
bae473a4 1225 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
b9bbfbe3 1226 for (i = 0; i < HPAGE_PMD_NR; i++) {
00501b53
JW
1227 memcg = (void *)page_private(pages[i]);
1228 set_page_private(pages[i], 0);
f627c2f5 1229 mem_cgroup_cancel_charge(pages[i], memcg, false);
71e3aac0 1230 put_page(pages[i]);
b9bbfbe3 1231 }
71e3aac0
AA
1232 kfree(pages);
1233 goto out;
1234}
1235
2b740303 1236vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
71e3aac0 1237{
82b0f8c3 1238 struct vm_area_struct *vma = vmf->vma;
93b4796d 1239 struct page *page = NULL, *new_page;
00501b53 1240 struct mem_cgroup *memcg;
82b0f8c3 1241 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2ec74c3e
SG
1242 unsigned long mmun_start; /* For mmu_notifiers */
1243 unsigned long mmun_end; /* For mmu_notifiers */
3b363692 1244 gfp_t huge_gfp; /* for allocation and charge */
2b740303 1245 vm_fault_t ret = 0;
71e3aac0 1246
82b0f8c3 1247 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
81d1b09c 1248 VM_BUG_ON_VMA(!vma->anon_vma, vma);
93b4796d
KS
1249 if (is_huge_zero_pmd(orig_pmd))
1250 goto alloc;
82b0f8c3
JK
1251 spin_lock(vmf->ptl);
1252 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
71e3aac0
AA
1253 goto out_unlock;
1254
1255 page = pmd_page(orig_pmd);
309381fe 1256 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1f25fe20
KS
1257 /*
1258 * We can only reuse the page if nobody else maps the huge page or it's
6d0a07ed 1259 * part.
1f25fe20 1260 */
ba3c4ce6
HY
1261 if (!trylock_page(page)) {
1262 get_page(page);
1263 spin_unlock(vmf->ptl);
1264 lock_page(page);
1265 spin_lock(vmf->ptl);
1266 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1267 unlock_page(page);
1268 put_page(page);
1269 goto out_unlock;
1270 }
1271 put_page(page);
1272 }
1273 if (reuse_swap_page(page, NULL)) {
71e3aac0
AA
1274 pmd_t entry;
1275 entry = pmd_mkyoung(orig_pmd);
f55e1014 1276 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
82b0f8c3
JK
1277 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1278 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
71e3aac0 1279 ret |= VM_FAULT_WRITE;
ba3c4ce6 1280 unlock_page(page);
71e3aac0
AA
1281 goto out_unlock;
1282 }
ba3c4ce6 1283 unlock_page(page);
ddc58f27 1284 get_page(page);
82b0f8c3 1285 spin_unlock(vmf->ptl);
93b4796d 1286alloc:
71e3aac0 1287 if (transparent_hugepage_enabled(vma) &&
077fcf11 1288 !transparent_hugepage_debug_cow()) {
444eb2a4 1289 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
3b363692 1290 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
077fcf11 1291 } else
71e3aac0
AA
1292 new_page = NULL;
1293
9a982250
KS
1294 if (likely(new_page)) {
1295 prep_transhuge_page(new_page);
1296 } else {
eecc1e42 1297 if (!page) {
82b0f8c3 1298 split_huge_pmd(vma, vmf->pmd, vmf->address);
e9b71ca9 1299 ret |= VM_FAULT_FALLBACK;
93b4796d 1300 } else {
82b0f8c3 1301 ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
9845cbbd 1302 if (ret & VM_FAULT_OOM) {
82b0f8c3 1303 split_huge_pmd(vma, vmf->pmd, vmf->address);
9845cbbd
KS
1304 ret |= VM_FAULT_FALLBACK;
1305 }
ddc58f27 1306 put_page(page);
93b4796d 1307 }
17766dde 1308 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0
AA
1309 goto out;
1310 }
1311
2cf85583 1312 if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm,
2a70f6a7 1313 huge_gfp, &memcg, true))) {
b9bbfbe3 1314 put_page(new_page);
82b0f8c3 1315 split_huge_pmd(vma, vmf->pmd, vmf->address);
bae473a4 1316 if (page)
ddc58f27 1317 put_page(page);
9845cbbd 1318 ret |= VM_FAULT_FALLBACK;
17766dde 1319 count_vm_event(THP_FAULT_FALLBACK);
b9bbfbe3
AA
1320 goto out;
1321 }
1322
17766dde
DR
1323 count_vm_event(THP_FAULT_ALLOC);
1324
eecc1e42 1325 if (!page)
c79b57e4 1326 clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
93b4796d 1327 else
c9f4cd71
HY
1328 copy_user_huge_page(new_page, page, vmf->address,
1329 vma, HPAGE_PMD_NR);
71e3aac0
AA
1330 __SetPageUptodate(new_page);
1331
2ec74c3e
SG
1332 mmun_start = haddr;
1333 mmun_end = haddr + HPAGE_PMD_SIZE;
bae473a4 1334 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
2ec74c3e 1335
82b0f8c3 1336 spin_lock(vmf->ptl);
93b4796d 1337 if (page)
ddc58f27 1338 put_page(page);
82b0f8c3
JK
1339 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1340 spin_unlock(vmf->ptl);
f627c2f5 1341 mem_cgroup_cancel_charge(new_page, memcg, true);
71e3aac0 1342 put_page(new_page);
2ec74c3e 1343 goto out_mn;
b9bbfbe3 1344 } else {
71e3aac0 1345 pmd_t entry;
3122359a 1346 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
f55e1014 1347 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
82b0f8c3 1348 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
d281ee61 1349 page_add_new_anon_rmap(new_page, vma, haddr, true);
f627c2f5 1350 mem_cgroup_commit_charge(new_page, memcg, false, true);
00501b53 1351 lru_cache_add_active_or_unevictable(new_page, vma);
82b0f8c3
JK
1352 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1353 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
eecc1e42 1354 if (!page) {
bae473a4 1355 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
97ae1749 1356 } else {
309381fe 1357 VM_BUG_ON_PAGE(!PageHead(page), page);
d281ee61 1358 page_remove_rmap(page, true);
93b4796d
KS
1359 put_page(page);
1360 }
71e3aac0
AA
1361 ret |= VM_FAULT_WRITE;
1362 }
82b0f8c3 1363 spin_unlock(vmf->ptl);
2ec74c3e 1364out_mn:
4645b9fe
JG
1365 /*
1366 * No need to double call mmu_notifier->invalidate_range() callback as
1367 * the above pmdp_huge_clear_flush_notify() did already call it.
1368 */
1369 mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
1370 mmun_end);
71e3aac0
AA
1371out:
1372 return ret;
2ec74c3e 1373out_unlock:
82b0f8c3 1374 spin_unlock(vmf->ptl);
2ec74c3e 1375 return ret;
71e3aac0
AA
1376}
1377
8310d48b
KF
1378/*
1379 * FOLL_FORCE can write to even unwritable pmd's, but only
1380 * after we've gone through a COW cycle and they are dirty.
1381 */
1382static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1383{
f6f37321 1384 return pmd_write(pmd) ||
8310d48b
KF
1385 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1386}
1387
b676b293 1388struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1389 unsigned long addr,
1390 pmd_t *pmd,
1391 unsigned int flags)
1392{
b676b293 1393 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1394 struct page *page = NULL;
1395
c4088ebd 1396 assert_spin_locked(pmd_lockptr(mm, pmd));
71e3aac0 1397
8310d48b 1398 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
71e3aac0
AA
1399 goto out;
1400
85facf25
KS
1401 /* Avoid dumping huge zero page */
1402 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1403 return ERR_PTR(-EFAULT);
1404
2b4847e7 1405 /* Full NUMA hinting faults to serialise migration in fault paths */
8a0516ed 1406 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
2b4847e7
MG
1407 goto out;
1408
71e3aac0 1409 page = pmd_page(*pmd);
ca120cf6 1410 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
3565fce3 1411 if (flags & FOLL_TOUCH)
a8f97366 1412 touch_pmd(vma, addr, pmd, flags);
de60f5f1 1413 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
1414 /*
1415 * We don't mlock() pte-mapped THPs. This way we can avoid
1416 * leaking mlocked pages into non-VM_LOCKED VMAs.
1417 *
9a73f61b
KS
1418 * For anon THP:
1419 *
e90309c9
KS
1420 * In most cases the pmd is the only mapping of the page as we
1421 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1422 * writable private mappings in populate_vma_page_range().
1423 *
1424 * The only scenario when we have the page shared here is if we
1425 * mlocking read-only mapping shared over fork(). We skip
1426 * mlocking such pages.
9a73f61b
KS
1427 *
1428 * For file THP:
1429 *
1430 * We can expect PageDoubleMap() to be stable under page lock:
1431 * for file pages we set it in page_add_file_rmap(), which
1432 * requires page to be locked.
e90309c9 1433 */
9a73f61b
KS
1434
1435 if (PageAnon(page) && compound_mapcount(page) != 1)
1436 goto skip_mlock;
1437 if (PageDoubleMap(page) || !page->mapping)
1438 goto skip_mlock;
1439 if (!trylock_page(page))
1440 goto skip_mlock;
1441 lru_add_drain();
1442 if (page->mapping && !PageDoubleMap(page))
1443 mlock_vma_page(page);
1444 unlock_page(page);
b676b293 1445 }
9a73f61b 1446skip_mlock:
71e3aac0 1447 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
ca120cf6 1448 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
71e3aac0 1449 if (flags & FOLL_GET)
ddc58f27 1450 get_page(page);
71e3aac0
AA
1451
1452out:
1453 return page;
1454}
1455
d10e63f2 1456/* NUMA hinting page fault entry point for trans huge pmds */
2b740303 1457vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
d10e63f2 1458{
82b0f8c3 1459 struct vm_area_struct *vma = vmf->vma;
b8916634 1460 struct anon_vma *anon_vma = NULL;
b32967ff 1461 struct page *page;
82b0f8c3 1462 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
8191acbd 1463 int page_nid = -1, this_nid = numa_node_id();
90572890 1464 int target_nid, last_cpupid = -1;
8191acbd
MG
1465 bool page_locked;
1466 bool migrated = false;
b191f9b1 1467 bool was_writable;
6688cc05 1468 int flags = 0;
d10e63f2 1469
82b0f8c3
JK
1470 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1471 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
d10e63f2
MG
1472 goto out_unlock;
1473
de466bd6
MG
1474 /*
1475 * If there are potential migrations, wait for completion and retry
1476 * without disrupting NUMA hinting information. Do not relock and
1477 * check_same as the page may no longer be mapped.
1478 */
82b0f8c3
JK
1479 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1480 page = pmd_page(*vmf->pmd);
3c226c63
MR
1481 if (!get_page_unless_zero(page))
1482 goto out_unlock;
82b0f8c3 1483 spin_unlock(vmf->ptl);
5d833062 1484 wait_on_page_locked(page);
3c226c63 1485 put_page(page);
de466bd6
MG
1486 goto out;
1487 }
1488
d10e63f2 1489 page = pmd_page(pmd);
a1a46184 1490 BUG_ON(is_huge_zero_page(page));
8191acbd 1491 page_nid = page_to_nid(page);
90572890 1492 last_cpupid = page_cpupid_last(page);
03c5a6e1 1493 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 1494 if (page_nid == this_nid) {
03c5a6e1 1495 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
1496 flags |= TNF_FAULT_LOCAL;
1497 }
4daae3b4 1498
bea66fbd 1499 /* See similar comment in do_numa_page for explanation */
288bc549 1500 if (!pmd_savedwrite(pmd))
6688cc05
PZ
1501 flags |= TNF_NO_GROUP;
1502
ff9042b1
MG
1503 /*
1504 * Acquire the page lock to serialise THP migrations but avoid dropping
1505 * page_table_lock if at all possible
1506 */
b8916634
MG
1507 page_locked = trylock_page(page);
1508 target_nid = mpol_misplaced(page, vma, haddr);
1509 if (target_nid == -1) {
1510 /* If the page was locked, there are no parallel migrations */
a54a407f 1511 if (page_locked)
b8916634 1512 goto clear_pmdnuma;
2b4847e7 1513 }
4daae3b4 1514
de466bd6 1515 /* Migration could have started since the pmd_trans_migrating check */
2b4847e7 1516 if (!page_locked) {
3c226c63
MR
1517 page_nid = -1;
1518 if (!get_page_unless_zero(page))
1519 goto out_unlock;
82b0f8c3 1520 spin_unlock(vmf->ptl);
b8916634 1521 wait_on_page_locked(page);
3c226c63 1522 put_page(page);
b8916634
MG
1523 goto out;
1524 }
1525
2b4847e7
MG
1526 /*
1527 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1528 * to serialises splits
1529 */
b8916634 1530 get_page(page);
82b0f8c3 1531 spin_unlock(vmf->ptl);
b8916634 1532 anon_vma = page_lock_anon_vma_read(page);
4daae3b4 1533
c69307d5 1534 /* Confirm the PMD did not change while page_table_lock was released */
82b0f8c3
JK
1535 spin_lock(vmf->ptl);
1536 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
b32967ff
MG
1537 unlock_page(page);
1538 put_page(page);
a54a407f 1539 page_nid = -1;
4daae3b4 1540 goto out_unlock;
b32967ff 1541 }
ff9042b1 1542
c3a489ca
MG
1543 /* Bail if we fail to protect against THP splits for any reason */
1544 if (unlikely(!anon_vma)) {
1545 put_page(page);
1546 page_nid = -1;
1547 goto clear_pmdnuma;
1548 }
1549
8b1b436d
PZ
1550 /*
1551 * Since we took the NUMA fault, we must have observed the !accessible
1552 * bit. Make sure all other CPUs agree with that, to avoid them
1553 * modifying the page we're about to migrate.
1554 *
1555 * Must be done under PTL such that we'll observe the relevant
ccde85ba
PZ
1556 * inc_tlb_flush_pending().
1557 *
1558 * We are not sure a pending tlb flush here is for a huge page
1559 * mapping or not. Hence use the tlb range variant
8b1b436d 1560 */
7066f0f9 1561 if (mm_tlb_flush_pending(vma->vm_mm)) {
ccde85ba 1562 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
7066f0f9
AA
1563 /*
1564 * change_huge_pmd() released the pmd lock before
1565 * invalidating the secondary MMUs sharing the primary
1566 * MMU pagetables (with ->invalidate_range()). The
1567 * mmu_notifier_invalidate_range_end() (which
1568 * internally calls ->invalidate_range()) in
1569 * change_pmd_range() will run after us, so we can't
1570 * rely on it here and we need an explicit invalidate.
1571 */
1572 mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1573 haddr + HPAGE_PMD_SIZE);
1574 }
8b1b436d 1575
a54a407f
MG
1576 /*
1577 * Migrate the THP to the requested node, returns with page unlocked
8a0516ed 1578 * and access rights restored.
a54a407f 1579 */
82b0f8c3 1580 spin_unlock(vmf->ptl);
8b1b436d 1581
bae473a4 1582 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
82b0f8c3 1583 vmf->pmd, pmd, vmf->address, page, target_nid);
6688cc05
PZ
1584 if (migrated) {
1585 flags |= TNF_MIGRATED;
8191acbd 1586 page_nid = target_nid;
074c2381
MG
1587 } else
1588 flags |= TNF_MIGRATE_FAIL;
b32967ff 1589
8191acbd 1590 goto out;
b32967ff 1591clear_pmdnuma:
a54a407f 1592 BUG_ON(!PageLocked(page));
288bc549 1593 was_writable = pmd_savedwrite(pmd);
4d942466 1594 pmd = pmd_modify(pmd, vma->vm_page_prot);
b7b04004 1595 pmd = pmd_mkyoung(pmd);
b191f9b1
MG
1596 if (was_writable)
1597 pmd = pmd_mkwrite(pmd);
82b0f8c3
JK
1598 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1599 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
a54a407f 1600 unlock_page(page);
d10e63f2 1601out_unlock:
82b0f8c3 1602 spin_unlock(vmf->ptl);
b8916634
MG
1603
1604out:
1605 if (anon_vma)
1606 page_unlock_anon_vma_read(anon_vma);
1607
8191acbd 1608 if (page_nid != -1)
82b0f8c3 1609 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
9a8b300f 1610 flags);
8191acbd 1611
d10e63f2
MG
1612 return 0;
1613}
1614
319904ad
HY
1615/*
1616 * Return true if we do MADV_FREE successfully on entire pmd page.
1617 * Otherwise, return false.
1618 */
1619bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
b8d3c4c3 1620 pmd_t *pmd, unsigned long addr, unsigned long next)
b8d3c4c3
MK
1621{
1622 spinlock_t *ptl;
1623 pmd_t orig_pmd;
1624 struct page *page;
1625 struct mm_struct *mm = tlb->mm;
319904ad 1626 bool ret = false;
b8d3c4c3 1627
07e32661
AK
1628 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1629
b6ec57f4
KS
1630 ptl = pmd_trans_huge_lock(pmd, vma);
1631 if (!ptl)
25eedabe 1632 goto out_unlocked;
b8d3c4c3
MK
1633
1634 orig_pmd = *pmd;
319904ad 1635 if (is_huge_zero_pmd(orig_pmd))
b8d3c4c3 1636 goto out;
b8d3c4c3 1637
84c3fc4e
ZY
1638 if (unlikely(!pmd_present(orig_pmd))) {
1639 VM_BUG_ON(thp_migration_supported() &&
1640 !is_pmd_migration_entry(orig_pmd));
1641 goto out;
1642 }
1643
b8d3c4c3
MK
1644 page = pmd_page(orig_pmd);
1645 /*
1646 * If other processes are mapping this page, we couldn't discard
1647 * the page unless they all do MADV_FREE so let's skip the page.
1648 */
1649 if (page_mapcount(page) != 1)
1650 goto out;
1651
1652 if (!trylock_page(page))
1653 goto out;
1654
1655 /*
1656 * If user want to discard part-pages of THP, split it so MADV_FREE
1657 * will deactivate only them.
1658 */
1659 if (next - addr != HPAGE_PMD_SIZE) {
1660 get_page(page);
1661 spin_unlock(ptl);
9818b8cd 1662 split_huge_page(page);
b8d3c4c3 1663 unlock_page(page);
bbf29ffc 1664 put_page(page);
b8d3c4c3
MK
1665 goto out_unlocked;
1666 }
1667
1668 if (PageDirty(page))
1669 ClearPageDirty(page);
1670 unlock_page(page);
1671
b8d3c4c3 1672 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
58ceeb6b 1673 pmdp_invalidate(vma, addr, pmd);
b8d3c4c3
MK
1674 orig_pmd = pmd_mkold(orig_pmd);
1675 orig_pmd = pmd_mkclean(orig_pmd);
1676
1677 set_pmd_at(mm, addr, pmd, orig_pmd);
1678 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1679 }
802a3a92
SL
1680
1681 mark_page_lazyfree(page);
319904ad 1682 ret = true;
b8d3c4c3
MK
1683out:
1684 spin_unlock(ptl);
1685out_unlocked:
1686 return ret;
1687}
1688
953c66c2
AK
1689static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1690{
1691 pgtable_t pgtable;
1692
1693 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1694 pte_free(mm, pgtable);
c4812909 1695 mm_dec_nr_ptes(mm);
953c66c2
AK
1696}
1697
71e3aac0 1698int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1699 pmd_t *pmd, unsigned long addr)
71e3aac0 1700{
da146769 1701 pmd_t orig_pmd;
bf929152 1702 spinlock_t *ptl;
71e3aac0 1703
07e32661
AK
1704 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1705
b6ec57f4
KS
1706 ptl = __pmd_trans_huge_lock(pmd, vma);
1707 if (!ptl)
da146769
KS
1708 return 0;
1709 /*
1710 * For architectures like ppc64 we look at deposited pgtable
1711 * when calling pmdp_huge_get_and_clear. So do the
1712 * pgtable_trans_huge_withdraw after finishing pmdp related
1713 * operations.
1714 */
1715 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1716 tlb->fullmm);
1717 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1718 if (vma_is_dax(vma)) {
3b6521f5
OH
1719 if (arch_needs_pgtable_deposit())
1720 zap_deposited_table(tlb->mm, pmd);
da146769
KS
1721 spin_unlock(ptl);
1722 if (is_huge_zero_pmd(orig_pmd))
c0f2e176 1723 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769 1724 } else if (is_huge_zero_pmd(orig_pmd)) {
c14a6eb4 1725 zap_deposited_table(tlb->mm, pmd);
da146769 1726 spin_unlock(ptl);
c0f2e176 1727 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769 1728 } else {
616b8371
ZY
1729 struct page *page = NULL;
1730 int flush_needed = 1;
1731
1732 if (pmd_present(orig_pmd)) {
1733 page = pmd_page(orig_pmd);
1734 page_remove_rmap(page, true);
1735 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1736 VM_BUG_ON_PAGE(!PageHead(page), page);
1737 } else if (thp_migration_supported()) {
1738 swp_entry_t entry;
1739
1740 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1741 entry = pmd_to_swp_entry(orig_pmd);
1742 page = pfn_to_page(swp_offset(entry));
1743 flush_needed = 0;
1744 } else
1745 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1746
b5072380 1747 if (PageAnon(page)) {
c14a6eb4 1748 zap_deposited_table(tlb->mm, pmd);
b5072380
KS
1749 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1750 } else {
953c66c2
AK
1751 if (arch_needs_pgtable_deposit())
1752 zap_deposited_table(tlb->mm, pmd);
fadae295 1753 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
b5072380 1754 }
616b8371 1755
da146769 1756 spin_unlock(ptl);
616b8371
ZY
1757 if (flush_needed)
1758 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
025c5b24 1759 }
da146769 1760 return 1;
71e3aac0
AA
1761}
1762
1dd38b6c
AK
1763#ifndef pmd_move_must_withdraw
1764static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1765 spinlock_t *old_pmd_ptl,
1766 struct vm_area_struct *vma)
1767{
1768 /*
1769 * With split pmd lock we also need to move preallocated
1770 * PTE page table if new_pmd is on different PMD page table.
1771 *
1772 * We also don't deposit and withdraw tables for file pages.
1773 */
1774 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1775}
1776#endif
1777
ab6e3d09
NH
1778static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1779{
1780#ifdef CONFIG_MEM_SOFT_DIRTY
1781 if (unlikely(is_pmd_migration_entry(pmd)))
1782 pmd = pmd_swp_mksoft_dirty(pmd);
1783 else if (pmd_present(pmd))
1784 pmd = pmd_mksoft_dirty(pmd);
1785#endif
1786 return pmd;
1787}
1788
bf8616d5 1789bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
37a1c49a 1790 unsigned long new_addr, unsigned long old_end,
eb66ae03 1791 pmd_t *old_pmd, pmd_t *new_pmd)
37a1c49a 1792{
bf929152 1793 spinlock_t *old_ptl, *new_ptl;
37a1c49a 1794 pmd_t pmd;
37a1c49a 1795 struct mm_struct *mm = vma->vm_mm;
5d190420 1796 bool force_flush = false;
37a1c49a
AA
1797
1798 if ((old_addr & ~HPAGE_PMD_MASK) ||
1799 (new_addr & ~HPAGE_PMD_MASK) ||
bf8616d5 1800 old_end - old_addr < HPAGE_PMD_SIZE)
4b471e88 1801 return false;
37a1c49a
AA
1802
1803 /*
1804 * The destination pmd shouldn't be established, free_pgtables()
1805 * should have release it.
1806 */
1807 if (WARN_ON(!pmd_none(*new_pmd))) {
1808 VM_BUG_ON(pmd_trans_huge(*new_pmd));
4b471e88 1809 return false;
37a1c49a
AA
1810 }
1811
bf929152
KS
1812 /*
1813 * We don't have to worry about the ordering of src and dst
1814 * ptlocks because exclusive mmap_sem prevents deadlock.
1815 */
b6ec57f4
KS
1816 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1817 if (old_ptl) {
bf929152
KS
1818 new_ptl = pmd_lockptr(mm, new_pmd);
1819 if (new_ptl != old_ptl)
1820 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
8809aa2d 1821 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
eb66ae03 1822 if (pmd_present(pmd))
a2ce2666 1823 force_flush = true;
025c5b24 1824 VM_BUG_ON(!pmd_none(*new_pmd));
3592806c 1825
1dd38b6c 1826 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
b3084f4d 1827 pgtable_t pgtable;
3592806c
KS
1828 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1829 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
3592806c 1830 }
ab6e3d09
NH
1831 pmd = move_soft_dirty_pmd(pmd);
1832 set_pmd_at(mm, new_addr, new_pmd, pmd);
5d190420
AL
1833 if (force_flush)
1834 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
eb66ae03
LT
1835 if (new_ptl != old_ptl)
1836 spin_unlock(new_ptl);
bf929152 1837 spin_unlock(old_ptl);
4b471e88 1838 return true;
37a1c49a 1839 }
4b471e88 1840 return false;
37a1c49a
AA
1841}
1842
f123d74a
MG
1843/*
1844 * Returns
1845 * - 0 if PMD could not be locked
1846 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1847 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1848 */
cd7548ab 1849int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
e944fd67 1850 unsigned long addr, pgprot_t newprot, int prot_numa)
cd7548ab
JW
1851{
1852 struct mm_struct *mm = vma->vm_mm;
bf929152 1853 spinlock_t *ptl;
0a85e51d
KS
1854 pmd_t entry;
1855 bool preserve_write;
1856 int ret;
cd7548ab 1857
b6ec57f4 1858 ptl = __pmd_trans_huge_lock(pmd, vma);
0a85e51d
KS
1859 if (!ptl)
1860 return 0;
e944fd67 1861
0a85e51d
KS
1862 preserve_write = prot_numa && pmd_write(*pmd);
1863 ret = 1;
e944fd67 1864
84c3fc4e
ZY
1865#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1866 if (is_swap_pmd(*pmd)) {
1867 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1868
1869 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1870 if (is_write_migration_entry(entry)) {
1871 pmd_t newpmd;
1872 /*
1873 * A protection check is difficult so
1874 * just be safe and disable write
1875 */
1876 make_migration_entry_read(&entry);
1877 newpmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
1878 if (pmd_swp_soft_dirty(*pmd))
1879 newpmd = pmd_swp_mksoft_dirty(newpmd);
84c3fc4e
ZY
1880 set_pmd_at(mm, addr, pmd, newpmd);
1881 }
1882 goto unlock;
1883 }
1884#endif
1885
0a85e51d
KS
1886 /*
1887 * Avoid trapping faults against the zero page. The read-only
1888 * data is likely to be read-cached on the local CPU and
1889 * local/remote hits to the zero page are not interesting.
1890 */
1891 if (prot_numa && is_huge_zero_pmd(*pmd))
1892 goto unlock;
025c5b24 1893
0a85e51d
KS
1894 if (prot_numa && pmd_protnone(*pmd))
1895 goto unlock;
1896
ced10803
KS
1897 /*
1898 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1899 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1900 * which is also under down_read(mmap_sem):
1901 *
1902 * CPU0: CPU1:
1903 * change_huge_pmd(prot_numa=1)
1904 * pmdp_huge_get_and_clear_notify()
1905 * madvise_dontneed()
1906 * zap_pmd_range()
1907 * pmd_trans_huge(*pmd) == 0 (without ptl)
1908 * // skip the pmd
1909 * set_pmd_at();
1910 * // pmd is re-established
1911 *
1912 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1913 * which may break userspace.
1914 *
1915 * pmdp_invalidate() is required to make sure we don't miss
1916 * dirty/young flags set by hardware.
1917 */
a3cf988f 1918 entry = pmdp_invalidate(vma, addr, pmd);
ced10803 1919
0a85e51d
KS
1920 entry = pmd_modify(entry, newprot);
1921 if (preserve_write)
1922 entry = pmd_mk_savedwrite(entry);
1923 ret = HPAGE_PMD_NR;
1924 set_pmd_at(mm, addr, pmd, entry);
1925 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1926unlock:
1927 spin_unlock(ptl);
025c5b24
NH
1928 return ret;
1929}
1930
1931/*
8f19b0c0 1932 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
025c5b24 1933 *
8f19b0c0
HY
1934 * Note that if it returns page table lock pointer, this routine returns without
1935 * unlocking page table lock. So callers must unlock it.
025c5b24 1936 */
b6ec57f4 1937spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
025c5b24 1938{
b6ec57f4
KS
1939 spinlock_t *ptl;
1940 ptl = pmd_lock(vma->vm_mm, pmd);
84c3fc4e
ZY
1941 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1942 pmd_devmap(*pmd)))
b6ec57f4
KS
1943 return ptl;
1944 spin_unlock(ptl);
1945 return NULL;
cd7548ab
JW
1946}
1947
a00cc7d9
MW
1948/*
1949 * Returns true if a given pud maps a thp, false otherwise.
1950 *
1951 * Note that if it returns true, this routine returns without unlocking page
1952 * table lock. So callers must unlock it.
1953 */
1954spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1955{
1956 spinlock_t *ptl;
1957
1958 ptl = pud_lock(vma->vm_mm, pud);
1959 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1960 return ptl;
1961 spin_unlock(ptl);
1962 return NULL;
1963}
1964
1965#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1966int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1967 pud_t *pud, unsigned long addr)
1968{
1969 pud_t orig_pud;
1970 spinlock_t *ptl;
1971
1972 ptl = __pud_trans_huge_lock(pud, vma);
1973 if (!ptl)
1974 return 0;
1975 /*
1976 * For architectures like ppc64 we look at deposited pgtable
1977 * when calling pudp_huge_get_and_clear. So do the
1978 * pgtable_trans_huge_withdraw after finishing pudp related
1979 * operations.
1980 */
1981 orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
1982 tlb->fullmm);
1983 tlb_remove_pud_tlb_entry(tlb, pud, addr);
1984 if (vma_is_dax(vma)) {
1985 spin_unlock(ptl);
1986 /* No zero page support yet */
1987 } else {
1988 /* No support for anonymous PUD pages yet */
1989 BUG();
1990 }
1991 return 1;
1992}
1993
1994static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1995 unsigned long haddr)
1996{
1997 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1998 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1999 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2000 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2001
ce9311cf 2002 count_vm_event(THP_SPLIT_PUD);
a00cc7d9
MW
2003
2004 pudp_huge_clear_flush_notify(vma, haddr, pud);
2005}
2006
2007void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2008 unsigned long address)
2009{
2010 spinlock_t *ptl;
2011 struct mm_struct *mm = vma->vm_mm;
2012 unsigned long haddr = address & HPAGE_PUD_MASK;
2013
2014 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
2015 ptl = pud_lock(mm, pud);
2016 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2017 goto out;
2018 __split_huge_pud_locked(vma, pud, haddr);
2019
2020out:
2021 spin_unlock(ptl);
4645b9fe
JG
2022 /*
2023 * No need to double call mmu_notifier->invalidate_range() callback as
2024 * the above pudp_huge_clear_flush_notify() did already call it.
2025 */
2026 mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
2027 HPAGE_PUD_SIZE);
a00cc7d9
MW
2028}
2029#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2030
eef1b3ba
KS
2031static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2032 unsigned long haddr, pmd_t *pmd)
2033{
2034 struct mm_struct *mm = vma->vm_mm;
2035 pgtable_t pgtable;
2036 pmd_t _pmd;
2037 int i;
2038
0f10851e
JG
2039 /*
2040 * Leave pmd empty until pte is filled note that it is fine to delay
2041 * notification until mmu_notifier_invalidate_range_end() as we are
2042 * replacing a zero pmd write protected page with a zero pte write
2043 * protected page.
2044 *
ad56b738 2045 * See Documentation/vm/mmu_notifier.rst
0f10851e
JG
2046 */
2047 pmdp_huge_clear_flush(vma, haddr, pmd);
eef1b3ba
KS
2048
2049 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2050 pmd_populate(mm, &_pmd, pgtable);
2051
2052 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2053 pte_t *pte, entry;
2054 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2055 entry = pte_mkspecial(entry);
2056 pte = pte_offset_map(&_pmd, haddr);
2057 VM_BUG_ON(!pte_none(*pte));
2058 set_pte_at(mm, haddr, pte, entry);
2059 pte_unmap(pte);
2060 }
2061 smp_wmb(); /* make pte visible before pmd */
2062 pmd_populate(mm, pmd, pgtable);
eef1b3ba
KS
2063}
2064
2065static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
ba988280 2066 unsigned long haddr, bool freeze)
eef1b3ba
KS
2067{
2068 struct mm_struct *mm = vma->vm_mm;
2069 struct page *page;
2070 pgtable_t pgtable;
423ac9af 2071 pmd_t old_pmd, _pmd;
a3cf988f 2072 bool young, write, soft_dirty, pmd_migration = false;
2ac015e2 2073 unsigned long addr;
eef1b3ba
KS
2074 int i;
2075
2076 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2077 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2078 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
84c3fc4e
ZY
2079 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2080 && !pmd_devmap(*pmd));
eef1b3ba
KS
2081
2082 count_vm_event(THP_SPLIT_PMD);
2083
d21b9e57
KS
2084 if (!vma_is_anonymous(vma)) {
2085 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
953c66c2
AK
2086 /*
2087 * We are going to unmap this huge page. So
2088 * just go ahead and zap it
2089 */
2090 if (arch_needs_pgtable_deposit())
2091 zap_deposited_table(mm, pmd);
d21b9e57
KS
2092 if (vma_is_dax(vma))
2093 return;
2094 page = pmd_page(_pmd);
e1f1b157
HD
2095 if (!PageDirty(page) && pmd_dirty(_pmd))
2096 set_page_dirty(page);
d21b9e57
KS
2097 if (!PageReferenced(page) && pmd_young(_pmd))
2098 SetPageReferenced(page);
2099 page_remove_rmap(page, true);
2100 put_page(page);
fadae295 2101 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
eef1b3ba
KS
2102 return;
2103 } else if (is_huge_zero_pmd(*pmd)) {
4645b9fe
JG
2104 /*
2105 * FIXME: Do we want to invalidate secondary mmu by calling
2106 * mmu_notifier_invalidate_range() see comments below inside
2107 * __split_huge_pmd() ?
2108 *
2109 * We are going from a zero huge page write protected to zero
2110 * small page also write protected so it does not seems useful
2111 * to invalidate secondary mmu at this time.
2112 */
eef1b3ba
KS
2113 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2114 }
2115
423ac9af
AK
2116 /*
2117 * Up to this point the pmd is present and huge and userland has the
2118 * whole access to the hugepage during the split (which happens in
2119 * place). If we overwrite the pmd with the not-huge version pointing
2120 * to the pte here (which of course we could if all CPUs were bug
2121 * free), userland could trigger a small page size TLB miss on the
2122 * small sized TLB while the hugepage TLB entry is still established in
2123 * the huge TLB. Some CPU doesn't like that.
2124 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2125 * 383 on page 93. Intel should be safe but is also warns that it's
2126 * only safe if the permission and cache attributes of the two entries
2127 * loaded in the two TLB is identical (which should be the case here).
2128 * But it is generally safer to never allow small and huge TLB entries
2129 * for the same virtual address to be loaded simultaneously. So instead
2130 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2131 * current pmd notpresent (atomically because here the pmd_trans_huge
2132 * must remain set at all times on the pmd until the split is complete
2133 * for this pmd), then we flush the SMP TLB and finally we write the
2134 * non-huge version of the pmd entry with pmd_populate.
2135 */
2136 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2137
84c3fc4e 2138#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
423ac9af 2139 pmd_migration = is_pmd_migration_entry(old_pmd);
84c3fc4e
ZY
2140 if (pmd_migration) {
2141 swp_entry_t entry;
2142
423ac9af 2143 entry = pmd_to_swp_entry(old_pmd);
84c3fc4e
ZY
2144 page = pfn_to_page(swp_offset(entry));
2145 } else
2146#endif
423ac9af 2147 page = pmd_page(old_pmd);
eef1b3ba 2148 VM_BUG_ON_PAGE(!page_count(page), page);
fe896d18 2149 page_ref_add(page, HPAGE_PMD_NR - 1);
423ac9af
AK
2150 if (pmd_dirty(old_pmd))
2151 SetPageDirty(page);
2152 write = pmd_write(old_pmd);
2153 young = pmd_young(old_pmd);
2154 soft_dirty = pmd_soft_dirty(old_pmd);
eef1b3ba 2155
423ac9af
AK
2156 /*
2157 * Withdraw the table only after we mark the pmd entry invalid.
2158 * This's critical for some architectures (Power).
2159 */
eef1b3ba
KS
2160 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2161 pmd_populate(mm, &_pmd, pgtable);
2162
2ac015e2 2163 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
eef1b3ba
KS
2164 pte_t entry, *pte;
2165 /*
2166 * Note that NUMA hinting access restrictions are not
2167 * transferred to avoid any possibility of altering
2168 * permissions across VMAs.
2169 */
84c3fc4e 2170 if (freeze || pmd_migration) {
ba988280
KS
2171 swp_entry_t swp_entry;
2172 swp_entry = make_migration_entry(page + i, write);
2173 entry = swp_entry_to_pte(swp_entry);
804dd150
AA
2174 if (soft_dirty)
2175 entry = pte_swp_mksoft_dirty(entry);
ba988280 2176 } else {
6d2329f8 2177 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
b8d3c4c3 2178 entry = maybe_mkwrite(entry, vma);
ba988280
KS
2179 if (!write)
2180 entry = pte_wrprotect(entry);
2181 if (!young)
2182 entry = pte_mkold(entry);
804dd150
AA
2183 if (soft_dirty)
2184 entry = pte_mksoft_dirty(entry);
ba988280 2185 }
2ac015e2 2186 pte = pte_offset_map(&_pmd, addr);
eef1b3ba 2187 BUG_ON(!pte_none(*pte));
2ac015e2 2188 set_pte_at(mm, addr, pte, entry);
eef1b3ba
KS
2189 atomic_inc(&page[i]._mapcount);
2190 pte_unmap(pte);
2191 }
2192
2193 /*
2194 * Set PG_double_map before dropping compound_mapcount to avoid
2195 * false-negative page_mapped().
2196 */
2197 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2198 for (i = 0; i < HPAGE_PMD_NR; i++)
2199 atomic_inc(&page[i]._mapcount);
2200 }
2201
2202 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2203 /* Last compound_mapcount is gone. */
11fb9989 2204 __dec_node_page_state(page, NR_ANON_THPS);
eef1b3ba
KS
2205 if (TestClearPageDoubleMap(page)) {
2206 /* No need in mapcount reference anymore */
2207 for (i = 0; i < HPAGE_PMD_NR; i++)
2208 atomic_dec(&page[i]._mapcount);
2209 }
2210 }
2211
2212 smp_wmb(); /* make pte visible before pmd */
2213 pmd_populate(mm, pmd, pgtable);
e9b61f19
KS
2214
2215 if (freeze) {
2ac015e2 2216 for (i = 0; i < HPAGE_PMD_NR; i++) {
e9b61f19
KS
2217 page_remove_rmap(page + i, false);
2218 put_page(page + i);
2219 }
2220 }
eef1b3ba
KS
2221}
2222
2223void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
33f4751e 2224 unsigned long address, bool freeze, struct page *page)
eef1b3ba
KS
2225{
2226 spinlock_t *ptl;
2227 struct mm_struct *mm = vma->vm_mm;
2228 unsigned long haddr = address & HPAGE_PMD_MASK;
2229
2230 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2231 ptl = pmd_lock(mm, pmd);
33f4751e
NH
2232
2233 /*
2234 * If caller asks to setup a migration entries, we need a page to check
2235 * pmd against. Otherwise we can end up replacing wrong page.
2236 */
2237 VM_BUG_ON(freeze && !page);
2238 if (page && page != pmd_page(*pmd))
2239 goto out;
2240
5c7fb56e 2241 if (pmd_trans_huge(*pmd)) {
33f4751e 2242 page = pmd_page(*pmd);
5c7fb56e 2243 if (PageMlocked(page))
5f737714 2244 clear_page_mlock(page);
84c3fc4e 2245 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
e90309c9 2246 goto out;
fec89c10 2247 __split_huge_pmd_locked(vma, pmd, haddr, freeze);
e90309c9 2248out:
eef1b3ba 2249 spin_unlock(ptl);
4645b9fe
JG
2250 /*
2251 * No need to double call mmu_notifier->invalidate_range() callback.
2252 * They are 3 cases to consider inside __split_huge_pmd_locked():
2253 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2254 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2255 * fault will trigger a flush_notify before pointing to a new page
2256 * (it is fine if the secondary mmu keeps pointing to the old zero
2257 * page in the meantime)
2258 * 3) Split a huge pmd into pte pointing to the same page. No need
2259 * to invalidate secondary tlb entry they are all still valid.
2260 * any further changes to individual pte will notify. So no need
2261 * to call mmu_notifier->invalidate_range()
2262 */
2263 mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
2264 HPAGE_PMD_SIZE);
eef1b3ba
KS
2265}
2266
fec89c10
KS
2267void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2268 bool freeze, struct page *page)
94fcc585 2269{
f72e7dcd 2270 pgd_t *pgd;
c2febafc 2271 p4d_t *p4d;
f72e7dcd 2272 pud_t *pud;
94fcc585
AA
2273 pmd_t *pmd;
2274
78ddc534 2275 pgd = pgd_offset(vma->vm_mm, address);
f72e7dcd
HD
2276 if (!pgd_present(*pgd))
2277 return;
2278
c2febafc
KS
2279 p4d = p4d_offset(pgd, address);
2280 if (!p4d_present(*p4d))
2281 return;
2282
2283 pud = pud_offset(p4d, address);
f72e7dcd
HD
2284 if (!pud_present(*pud))
2285 return;
2286
2287 pmd = pmd_offset(pud, address);
fec89c10 2288
33f4751e 2289 __split_huge_pmd(vma, pmd, address, freeze, page);
94fcc585
AA
2290}
2291
e1b9996b 2292void vma_adjust_trans_huge(struct vm_area_struct *vma,
94fcc585
AA
2293 unsigned long start,
2294 unsigned long end,
2295 long adjust_next)
2296{
2297 /*
2298 * If the new start address isn't hpage aligned and it could
2299 * previously contain an hugepage: check if we need to split
2300 * an huge pmd.
2301 */
2302 if (start & ~HPAGE_PMD_MASK &&
2303 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2304 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 2305 split_huge_pmd_address(vma, start, false, NULL);
94fcc585
AA
2306
2307 /*
2308 * If the new end address isn't hpage aligned and it could
2309 * previously contain an hugepage: check if we need to split
2310 * an huge pmd.
2311 */
2312 if (end & ~HPAGE_PMD_MASK &&
2313 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2314 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 2315 split_huge_pmd_address(vma, end, false, NULL);
94fcc585
AA
2316
2317 /*
2318 * If we're also updating the vma->vm_next->vm_start, if the new
2319 * vm_next->vm_start isn't page aligned and it could previously
2320 * contain an hugepage: check if we need to split an huge pmd.
2321 */
2322 if (adjust_next > 0) {
2323 struct vm_area_struct *next = vma->vm_next;
2324 unsigned long nstart = next->vm_start;
2325 nstart += adjust_next << PAGE_SHIFT;
2326 if (nstart & ~HPAGE_PMD_MASK &&
2327 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2328 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
fec89c10 2329 split_huge_pmd_address(next, nstart, false, NULL);
94fcc585
AA
2330 }
2331}
e9b61f19 2332
fec89c10 2333static void freeze_page(struct page *page)
e9b61f19 2334{
baa355fd 2335 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
c7ab0d2f 2336 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
666e5a40 2337 bool unmap_success;
e9b61f19
KS
2338
2339 VM_BUG_ON_PAGE(!PageHead(page), page);
2340
baa355fd 2341 if (PageAnon(page))
b5ff8161 2342 ttu_flags |= TTU_SPLIT_FREEZE;
baa355fd 2343
666e5a40
MK
2344 unmap_success = try_to_unmap(page, ttu_flags);
2345 VM_BUG_ON_PAGE(!unmap_success, page);
e9b61f19
KS
2346}
2347
fec89c10 2348static void unfreeze_page(struct page *page)
e9b61f19 2349{
fec89c10 2350 int i;
ace71a19
KS
2351 if (PageTransHuge(page)) {
2352 remove_migration_ptes(page, page, true);
2353 } else {
2354 for (i = 0; i < HPAGE_PMD_NR; i++)
2355 remove_migration_ptes(page + i, page + i, true);
2356 }
e9b61f19
KS
2357}
2358
8df651c7 2359static void __split_huge_page_tail(struct page *head, int tail,
e9b61f19
KS
2360 struct lruvec *lruvec, struct list_head *list)
2361{
e9b61f19
KS
2362 struct page *page_tail = head + tail;
2363
8df651c7 2364 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
e9b61f19
KS
2365
2366 /*
605ca5ed
KK
2367 * Clone page flags before unfreezing refcount.
2368 *
2369 * After successful get_page_unless_zero() might follow flags change,
2370 * for exmaple lock_page() which set PG_waiters.
e9b61f19 2371 */
e9b61f19
KS
2372 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2373 page_tail->flags |= (head->flags &
2374 ((1L << PG_referenced) |
2375 (1L << PG_swapbacked) |
38d8b4e6 2376 (1L << PG_swapcache) |
e9b61f19
KS
2377 (1L << PG_mlocked) |
2378 (1L << PG_uptodate) |
2379 (1L << PG_active) |
1899ad18 2380 (1L << PG_workingset) |
e9b61f19 2381 (1L << PG_locked) |
b8d3c4c3
MK
2382 (1L << PG_unevictable) |
2383 (1L << PG_dirty)));
e9b61f19 2384
605ca5ed 2385 /* Page flags must be visible before we make the page non-compound. */
e9b61f19
KS
2386 smp_wmb();
2387
605ca5ed
KK
2388 /*
2389 * Clear PageTail before unfreezing page refcount.
2390 *
2391 * After successful get_page_unless_zero() might follow put_page()
2392 * which needs correct compound_head().
2393 */
e9b61f19
KS
2394 clear_compound_head(page_tail);
2395
605ca5ed
KK
2396 /* Finally unfreeze refcount. Additional reference from page cache. */
2397 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2398 PageSwapCache(head)));
2399
e9b61f19
KS
2400 if (page_is_young(head))
2401 set_page_young(page_tail);
2402 if (page_is_idle(head))
2403 set_page_idle(page_tail);
2404
2405 /* ->mapping in first tail page is compound_mapcount */
9a982250 2406 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
e9b61f19
KS
2407 page_tail);
2408 page_tail->mapping = head->mapping;
2409
2410 page_tail->index = head->index + tail;
2411 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
94723aaf
MH
2412
2413 /*
2414 * always add to the tail because some iterators expect new
2415 * pages to show after the currently processed elements - e.g.
2416 * migrate_pages
2417 */
e9b61f19 2418 lru_add_page_tail(head, page_tail, lruvec, list);
e9b61f19
KS
2419}
2420
baa355fd
KS
2421static void __split_huge_page(struct page *page, struct list_head *list,
2422 unsigned long flags)
e9b61f19
KS
2423{
2424 struct page *head = compound_head(page);
2425 struct zone *zone = page_zone(head);
2426 struct lruvec *lruvec;
baa355fd 2427 pgoff_t end = -1;
8df651c7 2428 int i;
e9b61f19 2429
599d0c95 2430 lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
e9b61f19
KS
2431
2432 /* complete memcg works before add pages to LRU */
2433 mem_cgroup_split_huge_fixup(head);
2434
baa355fd
KS
2435 if (!PageAnon(page))
2436 end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
2437
2438 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
8df651c7 2439 __split_huge_page_tail(head, i, lruvec, list);
baa355fd
KS
2440 /* Some pages can be beyond i_size: drop them from page cache */
2441 if (head[i].index >= end) {
2d077d4b 2442 ClearPageDirty(head + i);
baa355fd 2443 __delete_from_page_cache(head + i, NULL);
800d8c63
KS
2444 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2445 shmem_uncharge(head->mapping->host, 1);
baa355fd
KS
2446 put_page(head + i);
2447 }
2448 }
e9b61f19
KS
2449
2450 ClearPageCompound(head);
baa355fd
KS
2451 /* See comment in __split_huge_page_tail() */
2452 if (PageAnon(head)) {
aa5dc07f 2453 /* Additional pin to swap cache */
38d8b4e6
HY
2454 if (PageSwapCache(head))
2455 page_ref_add(head, 2);
2456 else
2457 page_ref_inc(head);
baa355fd 2458 } else {
aa5dc07f 2459 /* Additional pin to page cache */
baa355fd 2460 page_ref_add(head, 2);
b93b0163 2461 xa_unlock(&head->mapping->i_pages);
baa355fd
KS
2462 }
2463
a52633d8 2464 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
e9b61f19 2465
fec89c10 2466 unfreeze_page(head);
e9b61f19
KS
2467
2468 for (i = 0; i < HPAGE_PMD_NR; i++) {
2469 struct page *subpage = head + i;
2470 if (subpage == page)
2471 continue;
2472 unlock_page(subpage);
2473
2474 /*
2475 * Subpages may be freed if there wasn't any mapping
2476 * like if add_to_swap() is running on a lru page that
2477 * had its mapping zapped. And freeing these pages
2478 * requires taking the lru_lock so we do the put_page
2479 * of the tail pages after the split is complete.
2480 */
2481 put_page(subpage);
2482 }
2483}
2484
b20ce5e0
KS
2485int total_mapcount(struct page *page)
2486{
dd78fedd 2487 int i, compound, ret;
b20ce5e0
KS
2488
2489 VM_BUG_ON_PAGE(PageTail(page), page);
2490
2491 if (likely(!PageCompound(page)))
2492 return atomic_read(&page->_mapcount) + 1;
2493
dd78fedd 2494 compound = compound_mapcount(page);
b20ce5e0 2495 if (PageHuge(page))
dd78fedd
KS
2496 return compound;
2497 ret = compound;
b20ce5e0
KS
2498 for (i = 0; i < HPAGE_PMD_NR; i++)
2499 ret += atomic_read(&page[i]._mapcount) + 1;
dd78fedd
KS
2500 /* File pages has compound_mapcount included in _mapcount */
2501 if (!PageAnon(page))
2502 return ret - compound * HPAGE_PMD_NR;
b20ce5e0
KS
2503 if (PageDoubleMap(page))
2504 ret -= HPAGE_PMD_NR;
2505 return ret;
2506}
2507
6d0a07ed
AA
2508/*
2509 * This calculates accurately how many mappings a transparent hugepage
2510 * has (unlike page_mapcount() which isn't fully accurate). This full
2511 * accuracy is primarily needed to know if copy-on-write faults can
2512 * reuse the page and change the mapping to read-write instead of
2513 * copying them. At the same time this returns the total_mapcount too.
2514 *
2515 * The function returns the highest mapcount any one of the subpages
2516 * has. If the return value is one, even if different processes are
2517 * mapping different subpages of the transparent hugepage, they can
2518 * all reuse it, because each process is reusing a different subpage.
2519 *
2520 * The total_mapcount is instead counting all virtual mappings of the
2521 * subpages. If the total_mapcount is equal to "one", it tells the
2522 * caller all mappings belong to the same "mm" and in turn the
2523 * anon_vma of the transparent hugepage can become the vma->anon_vma
2524 * local one as no other process may be mapping any of the subpages.
2525 *
2526 * It would be more accurate to replace page_mapcount() with
2527 * page_trans_huge_mapcount(), however we only use
2528 * page_trans_huge_mapcount() in the copy-on-write faults where we
2529 * need full accuracy to avoid breaking page pinning, because
2530 * page_trans_huge_mapcount() is slower than page_mapcount().
2531 */
2532int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2533{
2534 int i, ret, _total_mapcount, mapcount;
2535
2536 /* hugetlbfs shouldn't call it */
2537 VM_BUG_ON_PAGE(PageHuge(page), page);
2538
2539 if (likely(!PageTransCompound(page))) {
2540 mapcount = atomic_read(&page->_mapcount) + 1;
2541 if (total_mapcount)
2542 *total_mapcount = mapcount;
2543 return mapcount;
2544 }
2545
2546 page = compound_head(page);
2547
2548 _total_mapcount = ret = 0;
2549 for (i = 0; i < HPAGE_PMD_NR; i++) {
2550 mapcount = atomic_read(&page[i]._mapcount) + 1;
2551 ret = max(ret, mapcount);
2552 _total_mapcount += mapcount;
2553 }
2554 if (PageDoubleMap(page)) {
2555 ret -= 1;
2556 _total_mapcount -= HPAGE_PMD_NR;
2557 }
2558 mapcount = compound_mapcount(page);
2559 ret += mapcount;
2560 _total_mapcount += mapcount;
2561 if (total_mapcount)
2562 *total_mapcount = _total_mapcount;
2563 return ret;
2564}
2565
b8f593cd
HY
2566/* Racy check whether the huge page can be split */
2567bool can_split_huge_page(struct page *page, int *pextra_pins)
2568{
2569 int extra_pins;
2570
aa5dc07f 2571 /* Additional pins from page cache */
b8f593cd
HY
2572 if (PageAnon(page))
2573 extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2574 else
2575 extra_pins = HPAGE_PMD_NR;
2576 if (pextra_pins)
2577 *pextra_pins = extra_pins;
2578 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2579}
2580
e9b61f19
KS
2581/*
2582 * This function splits huge page into normal pages. @page can point to any
2583 * subpage of huge page to split. Split doesn't change the position of @page.
2584 *
2585 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2586 * The huge page must be locked.
2587 *
2588 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2589 *
2590 * Both head page and tail pages will inherit mapping, flags, and so on from
2591 * the hugepage.
2592 *
2593 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2594 * they are not mapped.
2595 *
2596 * Returns 0 if the hugepage is split successfully.
2597 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2598 * us.
2599 */
2600int split_huge_page_to_list(struct page *page, struct list_head *list)
2601{
2602 struct page *head = compound_head(page);
a3d0a918 2603 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
baa355fd
KS
2604 struct anon_vma *anon_vma = NULL;
2605 struct address_space *mapping = NULL;
2606 int count, mapcount, extra_pins, ret;
d9654322 2607 bool mlocked;
0b9b6fff 2608 unsigned long flags;
e9b61f19
KS
2609
2610 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
e9b61f19 2611 VM_BUG_ON_PAGE(!PageLocked(page), page);
e9b61f19
KS
2612 VM_BUG_ON_PAGE(!PageCompound(page), page);
2613
59807685
HY
2614 if (PageWriteback(page))
2615 return -EBUSY;
2616
baa355fd
KS
2617 if (PageAnon(head)) {
2618 /*
2619 * The caller does not necessarily hold an mmap_sem that would
2620 * prevent the anon_vma disappearing so we first we take a
2621 * reference to it and then lock the anon_vma for write. This
2622 * is similar to page_lock_anon_vma_read except the write lock
2623 * is taken to serialise against parallel split or collapse
2624 * operations.
2625 */
2626 anon_vma = page_get_anon_vma(head);
2627 if (!anon_vma) {
2628 ret = -EBUSY;
2629 goto out;
2630 }
baa355fd
KS
2631 mapping = NULL;
2632 anon_vma_lock_write(anon_vma);
2633 } else {
2634 mapping = head->mapping;
2635
2636 /* Truncated ? */
2637 if (!mapping) {
2638 ret = -EBUSY;
2639 goto out;
2640 }
2641
baa355fd
KS
2642 anon_vma = NULL;
2643 i_mmap_lock_read(mapping);
e9b61f19 2644 }
e9b61f19
KS
2645
2646 /*
2647 * Racy check if we can split the page, before freeze_page() will
2648 * split PMDs
2649 */
b8f593cd 2650 if (!can_split_huge_page(head, &extra_pins)) {
e9b61f19
KS
2651 ret = -EBUSY;
2652 goto out_unlock;
2653 }
2654
d9654322 2655 mlocked = PageMlocked(page);
fec89c10 2656 freeze_page(head);
e9b61f19
KS
2657 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2658
d9654322
KS
2659 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2660 if (mlocked)
2661 lru_add_drain();
2662
baa355fd 2663 /* prevent PageLRU to go away from under us, and freeze lru stats */
a52633d8 2664 spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
baa355fd
KS
2665
2666 if (mapping) {
aa5dc07f 2667 XA_STATE(xas, &mapping->i_pages, page_index(head));
baa355fd 2668
baa355fd 2669 /*
aa5dc07f 2670 * Check if the head page is present in page cache.
baa355fd
KS
2671 * We assume all tail are present too, if head is there.
2672 */
aa5dc07f
MW
2673 xa_lock(&mapping->i_pages);
2674 if (xas_load(&xas) != head)
baa355fd
KS
2675 goto fail;
2676 }
2677
0139aa7b 2678 /* Prevent deferred_split_scan() touching ->_refcount */
baa355fd 2679 spin_lock(&pgdata->split_queue_lock);
e9b61f19
KS
2680 count = page_count(head);
2681 mapcount = total_mapcount(head);
baa355fd 2682 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
9a982250 2683 if (!list_empty(page_deferred_list(head))) {
a3d0a918 2684 pgdata->split_queue_len--;
9a982250
KS
2685 list_del(page_deferred_list(head));
2686 }
65c45377 2687 if (mapping)
11fb9989 2688 __dec_node_page_state(page, NR_SHMEM_THPS);
baa355fd
KS
2689 spin_unlock(&pgdata->split_queue_lock);
2690 __split_huge_page(page, list, flags);
59807685
HY
2691 if (PageSwapCache(head)) {
2692 swp_entry_t entry = { .val = page_private(head) };
2693
2694 ret = split_swap_cluster(entry);
2695 } else
2696 ret = 0;
e9b61f19 2697 } else {
baa355fd
KS
2698 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2699 pr_alert("total_mapcount: %u, page_count(): %u\n",
2700 mapcount, count);
2701 if (PageTail(page))
2702 dump_page(head, NULL);
2703 dump_page(page, "total_mapcount(head) > 0");
2704 BUG();
2705 }
2706 spin_unlock(&pgdata->split_queue_lock);
2707fail: if (mapping)
b93b0163 2708 xa_unlock(&mapping->i_pages);
a52633d8 2709 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
fec89c10 2710 unfreeze_page(head);
e9b61f19
KS
2711 ret = -EBUSY;
2712 }
2713
2714out_unlock:
baa355fd
KS
2715 if (anon_vma) {
2716 anon_vma_unlock_write(anon_vma);
2717 put_anon_vma(anon_vma);
2718 }
2719 if (mapping)
2720 i_mmap_unlock_read(mapping);
e9b61f19
KS
2721out:
2722 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2723 return ret;
2724}
9a982250
KS
2725
2726void free_transhuge_page(struct page *page)
2727{
a3d0a918 2728 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
9a982250
KS
2729 unsigned long flags;
2730
a3d0a918 2731 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2732 if (!list_empty(page_deferred_list(page))) {
a3d0a918 2733 pgdata->split_queue_len--;
9a982250
KS
2734 list_del(page_deferred_list(page));
2735 }
a3d0a918 2736 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2737 free_compound_page(page);
2738}
2739
2740void deferred_split_huge_page(struct page *page)
2741{
a3d0a918 2742 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
9a982250
KS
2743 unsigned long flags;
2744
2745 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2746
a3d0a918 2747 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2748 if (list_empty(page_deferred_list(page))) {
f9719a03 2749 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
a3d0a918
KS
2750 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2751 pgdata->split_queue_len++;
9a982250 2752 }
a3d0a918 2753 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2754}
2755
2756static unsigned long deferred_split_count(struct shrinker *shrink,
2757 struct shrink_control *sc)
2758{
a3d0a918 2759 struct pglist_data *pgdata = NODE_DATA(sc->nid);
6aa7de05 2760 return READ_ONCE(pgdata->split_queue_len);
9a982250
KS
2761}
2762
2763static unsigned long deferred_split_scan(struct shrinker *shrink,
2764 struct shrink_control *sc)
2765{
a3d0a918 2766 struct pglist_data *pgdata = NODE_DATA(sc->nid);
9a982250
KS
2767 unsigned long flags;
2768 LIST_HEAD(list), *pos, *next;
2769 struct page *page;
2770 int split = 0;
2771
a3d0a918 2772 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2773 /* Take pin on all head pages to avoid freeing them under us */
ae026204 2774 list_for_each_safe(pos, next, &pgdata->split_queue) {
9a982250
KS
2775 page = list_entry((void *)pos, struct page, mapping);
2776 page = compound_head(page);
e3ae1953
KS
2777 if (get_page_unless_zero(page)) {
2778 list_move(page_deferred_list(page), &list);
2779 } else {
2780 /* We lost race with put_compound_page() */
9a982250 2781 list_del_init(page_deferred_list(page));
a3d0a918 2782 pgdata->split_queue_len--;
9a982250 2783 }
e3ae1953
KS
2784 if (!--sc->nr_to_scan)
2785 break;
9a982250 2786 }
a3d0a918 2787 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2788
2789 list_for_each_safe(pos, next, &list) {
2790 page = list_entry((void *)pos, struct page, mapping);
fa41b900
KS
2791 if (!trylock_page(page))
2792 goto next;
9a982250
KS
2793 /* split_huge_page() removes page from list on success */
2794 if (!split_huge_page(page))
2795 split++;
2796 unlock_page(page);
fa41b900 2797next:
9a982250
KS
2798 put_page(page);
2799 }
2800
a3d0a918
KS
2801 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2802 list_splice_tail(&list, &pgdata->split_queue);
2803 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250 2804
cb8d68ec
KS
2805 /*
2806 * Stop shrinker if we didn't split any page, but the queue is empty.
2807 * This can happen if pages were freed under us.
2808 */
2809 if (!split && list_empty(&pgdata->split_queue))
2810 return SHRINK_STOP;
2811 return split;
9a982250
KS
2812}
2813
2814static struct shrinker deferred_split_shrinker = {
2815 .count_objects = deferred_split_count,
2816 .scan_objects = deferred_split_scan,
2817 .seeks = DEFAULT_SEEKS,
a3d0a918 2818 .flags = SHRINKER_NUMA_AWARE,
9a982250 2819};
49071d43
KS
2820
2821#ifdef CONFIG_DEBUG_FS
2822static int split_huge_pages_set(void *data, u64 val)
2823{
2824 struct zone *zone;
2825 struct page *page;
2826 unsigned long pfn, max_zone_pfn;
2827 unsigned long total = 0, split = 0;
2828
2829 if (val != 1)
2830 return -EINVAL;
2831
2832 for_each_populated_zone(zone) {
2833 max_zone_pfn = zone_end_pfn(zone);
2834 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2835 if (!pfn_valid(pfn))
2836 continue;
2837
2838 page = pfn_to_page(pfn);
2839 if (!get_page_unless_zero(page))
2840 continue;
2841
2842 if (zone != page_zone(page))
2843 goto next;
2844
baa355fd 2845 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
49071d43
KS
2846 goto next;
2847
2848 total++;
2849 lock_page(page);
2850 if (!split_huge_page(page))
2851 split++;
2852 unlock_page(page);
2853next:
2854 put_page(page);
2855 }
2856 }
2857
145bdaa1 2858 pr_info("%lu of %lu THP split\n", split, total);
49071d43
KS
2859
2860 return 0;
2861}
2862DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2863 "%llu\n");
2864
2865static int __init split_huge_pages_debugfs(void)
2866{
2867 void *ret;
2868
145bdaa1 2869 ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
49071d43
KS
2870 &split_huge_pages_fops);
2871 if (!ret)
2872 pr_warn("Failed to create split_huge_pages in debugfs");
2873 return 0;
2874}
2875late_initcall(split_huge_pages_debugfs);
2876#endif
616b8371
ZY
2877
2878#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2879void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2880 struct page *page)
2881{
2882 struct vm_area_struct *vma = pvmw->vma;
2883 struct mm_struct *mm = vma->vm_mm;
2884 unsigned long address = pvmw->address;
2885 pmd_t pmdval;
2886 swp_entry_t entry;
ab6e3d09 2887 pmd_t pmdswp;
616b8371
ZY
2888
2889 if (!(pvmw->pmd && !pvmw->pte))
2890 return;
2891
616b8371
ZY
2892 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2893 pmdval = *pvmw->pmd;
2894 pmdp_invalidate(vma, address, pvmw->pmd);
2895 if (pmd_dirty(pmdval))
2896 set_page_dirty(page);
2897 entry = make_migration_entry(page, pmd_write(pmdval));
ab6e3d09
NH
2898 pmdswp = swp_entry_to_pmd(entry);
2899 if (pmd_soft_dirty(pmdval))
2900 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2901 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
616b8371
ZY
2902 page_remove_rmap(page, true);
2903 put_page(page);
616b8371
ZY
2904}
2905
2906void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2907{
2908 struct vm_area_struct *vma = pvmw->vma;
2909 struct mm_struct *mm = vma->vm_mm;
2910 unsigned long address = pvmw->address;
2911 unsigned long mmun_start = address & HPAGE_PMD_MASK;
2912 pmd_t pmde;
2913 swp_entry_t entry;
2914
2915 if (!(pvmw->pmd && !pvmw->pte))
2916 return;
2917
2918 entry = pmd_to_swp_entry(*pvmw->pmd);
2919 get_page(new);
2920 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
ab6e3d09
NH
2921 if (pmd_swp_soft_dirty(*pvmw->pmd))
2922 pmde = pmd_mksoft_dirty(pmde);
616b8371 2923 if (is_write_migration_entry(entry))
f55e1014 2924 pmde = maybe_pmd_mkwrite(pmde, vma);
616b8371
ZY
2925
2926 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
e71769ae
NH
2927 if (PageAnon(new))
2928 page_add_anon_rmap(new, vma, mmun_start, true);
2929 else
2930 page_add_file_rmap(new, true);
616b8371 2931 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
e125fe40 2932 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
616b8371
ZY
2933 mlock_vma_page(new);
2934 update_mmu_cache_pmd(vma, address, pvmw->pmd);
2935}
2936#endif