kasan: use error_report_end tracepoint
[linux-block.git] / mm / huge_memory.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
71e3aac0
AA
2/*
3 * Copyright (C) 2009 Red Hat, Inc.
71e3aac0
AA
4 */
5
ae3a8c1c
AM
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
71e3aac0
AA
8#include <linux/mm.h>
9#include <linux/sched.h>
f7ccbae4 10#include <linux/sched/coredump.h>
6a3827d7 11#include <linux/sched/numa_balancing.h>
71e3aac0
AA
12#include <linux/highmem.h>
13#include <linux/hugetlb.h>
14#include <linux/mmu_notifier.h>
15#include <linux/rmap.h>
16#include <linux/swap.h>
97ae1749 17#include <linux/shrinker.h>
ba76149f 18#include <linux/mm_inline.h>
e9b61f19 19#include <linux/swapops.h>
4897c765 20#include <linux/dax.h>
ba76149f 21#include <linux/khugepaged.h>
878aee7d 22#include <linux/freezer.h>
f25748e3 23#include <linux/pfn_t.h>
a664b2d8 24#include <linux/mman.h>
3565fce3 25#include <linux/memremap.h>
325adeb5 26#include <linux/pagemap.h>
49071d43 27#include <linux/debugfs.h>
4daae3b4 28#include <linux/migrate.h>
43b5fbbd 29#include <linux/hashtable.h>
6b251fc9 30#include <linux/userfaultfd_k.h>
33c3fc71 31#include <linux/page_idle.h>
baa355fd 32#include <linux/shmem_fs.h>
6b31d595 33#include <linux/oom.h>
98fa15f3 34#include <linux/numa.h>
f7da677b 35#include <linux/page_owner.h>
97ae1749 36
71e3aac0
AA
37#include <asm/tlb.h>
38#include <asm/pgalloc.h>
39#include "internal.h"
40
ba76149f 41/*
b14d595a
MD
42 * By default, transparent hugepage support is disabled in order to avoid
43 * risking an increased memory footprint for applications that are not
44 * guaranteed to benefit from it. When transparent hugepage support is
45 * enabled, it is for all mappings, and khugepaged scans all mappings.
8bfa3f9a
JW
46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
47 * for all hugepage allocations.
ba76149f 48 */
71e3aac0 49unsigned long transparent_hugepage_flags __read_mostly =
13ece886 50#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 51 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
52#endif
53#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55#endif
444eb2a4 56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
79da5407
KS
57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f 59
9a982250 60static struct shrinker deferred_split_shrinker;
f000565a 61
97ae1749 62static atomic_t huge_zero_refcount;
56873f43 63struct page *huge_zero_page __read_mostly;
4a6c1297 64
7635d9cb
MH
65bool transparent_hugepage_enabled(struct vm_area_struct *vma)
66{
c0630669
YS
67 /* The addr is used to check if the vma size fits */
68 unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
69
70 if (!transhuge_vma_suitable(vma, addr))
71 return false;
7635d9cb
MH
72 if (vma_is_anonymous(vma))
73 return __transparent_hugepage_enabled(vma);
c0630669
YS
74 if (vma_is_shmem(vma))
75 return shmem_huge_enabled(vma);
7635d9cb
MH
76
77 return false;
78}
79
6fcb52a5 80static struct page *get_huge_zero_page(void)
97ae1749
KS
81{
82 struct page *zero_page;
83retry:
84 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
4db0c3c2 85 return READ_ONCE(huge_zero_page);
97ae1749
KS
86
87 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 88 HPAGE_PMD_ORDER);
d8a8e1f0
KS
89 if (!zero_page) {
90 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
5918d10a 91 return NULL;
d8a8e1f0
KS
92 }
93 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 94 preempt_disable();
5918d10a 95 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749 96 preempt_enable();
5ddacbe9 97 __free_pages(zero_page, compound_order(zero_page));
97ae1749
KS
98 goto retry;
99 }
100
101 /* We take additional reference here. It will be put back by shrinker */
102 atomic_set(&huge_zero_refcount, 2);
103 preempt_enable();
4db0c3c2 104 return READ_ONCE(huge_zero_page);
4a6c1297
KS
105}
106
6fcb52a5 107static void put_huge_zero_page(void)
4a6c1297 108{
97ae1749
KS
109 /*
110 * Counter should never go to zero here. Only shrinker can put
111 * last reference.
112 */
113 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
114}
115
6fcb52a5
AL
116struct page *mm_get_huge_zero_page(struct mm_struct *mm)
117{
118 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
119 return READ_ONCE(huge_zero_page);
120
121 if (!get_huge_zero_page())
122 return NULL;
123
124 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
125 put_huge_zero_page();
126
127 return READ_ONCE(huge_zero_page);
128}
129
130void mm_put_huge_zero_page(struct mm_struct *mm)
131{
132 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
133 put_huge_zero_page();
134}
135
48896466
GC
136static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
137 struct shrink_control *sc)
4a6c1297 138{
48896466
GC
139 /* we can free zero page only if last reference remains */
140 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
141}
97ae1749 142
48896466
GC
143static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
144 struct shrink_control *sc)
145{
97ae1749 146 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
147 struct page *zero_page = xchg(&huge_zero_page, NULL);
148 BUG_ON(zero_page == NULL);
5ddacbe9 149 __free_pages(zero_page, compound_order(zero_page));
48896466 150 return HPAGE_PMD_NR;
97ae1749
KS
151 }
152
153 return 0;
4a6c1297
KS
154}
155
97ae1749 156static struct shrinker huge_zero_page_shrinker = {
48896466
GC
157 .count_objects = shrink_huge_zero_page_count,
158 .scan_objects = shrink_huge_zero_page_scan,
97ae1749
KS
159 .seeks = DEFAULT_SEEKS,
160};
161
71e3aac0 162#ifdef CONFIG_SYSFS
71e3aac0
AA
163static ssize_t enabled_show(struct kobject *kobj,
164 struct kobj_attribute *attr, char *buf)
165{
bfb0ffeb
JP
166 const char *output;
167
444eb2a4 168 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
bfb0ffeb
JP
169 output = "[always] madvise never";
170 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
171 &transparent_hugepage_flags))
172 output = "always [madvise] never";
444eb2a4 173 else
bfb0ffeb
JP
174 output = "always madvise [never]";
175
176 return sysfs_emit(buf, "%s\n", output);
71e3aac0 177}
444eb2a4 178
71e3aac0
AA
179static ssize_t enabled_store(struct kobject *kobj,
180 struct kobj_attribute *attr,
181 const char *buf, size_t count)
182{
21440d7e 183 ssize_t ret = count;
ba76149f 184
f42f2552 185 if (sysfs_streq(buf, "always")) {
21440d7e
DR
186 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
187 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
f42f2552 188 } else if (sysfs_streq(buf, "madvise")) {
21440d7e
DR
189 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
190 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
f42f2552 191 } else if (sysfs_streq(buf, "never")) {
21440d7e
DR
192 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
193 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
194 } else
195 ret = -EINVAL;
ba76149f
AA
196
197 if (ret > 0) {
b46e756f 198 int err = start_stop_khugepaged();
ba76149f
AA
199 if (err)
200 ret = err;
201 }
ba76149f 202 return ret;
71e3aac0
AA
203}
204static struct kobj_attribute enabled_attr =
205 __ATTR(enabled, 0644, enabled_show, enabled_store);
206
b46e756f 207ssize_t single_hugepage_flag_show(struct kobject *kobj,
bfb0ffeb
JP
208 struct kobj_attribute *attr, char *buf,
209 enum transparent_hugepage_flag flag)
71e3aac0 210{
bfb0ffeb
JP
211 return sysfs_emit(buf, "%d\n",
212 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 213}
e27e6151 214
b46e756f 215ssize_t single_hugepage_flag_store(struct kobject *kobj,
71e3aac0
AA
216 struct kobj_attribute *attr,
217 const char *buf, size_t count,
218 enum transparent_hugepage_flag flag)
219{
e27e6151
BH
220 unsigned long value;
221 int ret;
222
223 ret = kstrtoul(buf, 10, &value);
224 if (ret < 0)
225 return ret;
226 if (value > 1)
227 return -EINVAL;
228
229 if (value)
71e3aac0 230 set_bit(flag, &transparent_hugepage_flags);
e27e6151 231 else
71e3aac0 232 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
233
234 return count;
235}
236
71e3aac0
AA
237static ssize_t defrag_show(struct kobject *kobj,
238 struct kobj_attribute *attr, char *buf)
239{
bfb0ffeb
JP
240 const char *output;
241
242 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
243 &transparent_hugepage_flags))
244 output = "[always] defer defer+madvise madvise never";
245 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
246 &transparent_hugepage_flags))
247 output = "always [defer] defer+madvise madvise never";
248 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
249 &transparent_hugepage_flags))
250 output = "always defer [defer+madvise] madvise never";
251 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
252 &transparent_hugepage_flags))
253 output = "always defer defer+madvise [madvise] never";
254 else
255 output = "always defer defer+madvise madvise [never]";
256
257 return sysfs_emit(buf, "%s\n", output);
71e3aac0 258}
21440d7e 259
71e3aac0
AA
260static ssize_t defrag_store(struct kobject *kobj,
261 struct kobj_attribute *attr,
262 const char *buf, size_t count)
263{
f42f2552 264 if (sysfs_streq(buf, "always")) {
21440d7e
DR
265 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
266 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
268 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
f42f2552 269 } else if (sysfs_streq(buf, "defer+madvise")) {
21440d7e
DR
270 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
271 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
272 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
273 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
f42f2552 274 } else if (sysfs_streq(buf, "defer")) {
4fad7fb6
DR
275 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
276 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
277 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
278 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
f42f2552 279 } else if (sysfs_streq(buf, "madvise")) {
21440d7e
DR
280 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
281 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
282 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
283 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
f42f2552 284 } else if (sysfs_streq(buf, "never")) {
21440d7e
DR
285 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
286 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
287 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
288 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
289 } else
290 return -EINVAL;
291
292 return count;
71e3aac0
AA
293}
294static struct kobj_attribute defrag_attr =
295 __ATTR(defrag, 0644, defrag_show, defrag_store);
296
79da5407 297static ssize_t use_zero_page_show(struct kobject *kobj,
ae7a927d 298 struct kobj_attribute *attr, char *buf)
79da5407 299{
b46e756f 300 return single_hugepage_flag_show(kobj, attr, buf,
ae7a927d 301 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
79da5407
KS
302}
303static ssize_t use_zero_page_store(struct kobject *kobj,
304 struct kobj_attribute *attr, const char *buf, size_t count)
305{
b46e756f 306 return single_hugepage_flag_store(kobj, attr, buf, count,
79da5407
KS
307 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
308}
309static struct kobj_attribute use_zero_page_attr =
310 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
49920d28
HD
311
312static ssize_t hpage_pmd_size_show(struct kobject *kobj,
ae7a927d 313 struct kobj_attribute *attr, char *buf)
49920d28 314{
ae7a927d 315 return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
49920d28
HD
316}
317static struct kobj_attribute hpage_pmd_size_attr =
318 __ATTR_RO(hpage_pmd_size);
319
71e3aac0
AA
320static struct attribute *hugepage_attr[] = {
321 &enabled_attr.attr,
322 &defrag_attr.attr,
79da5407 323 &use_zero_page_attr.attr,
49920d28 324 &hpage_pmd_size_attr.attr,
396bcc52 325#ifdef CONFIG_SHMEM
5a6e75f8 326 &shmem_enabled_attr.attr,
71e3aac0
AA
327#endif
328 NULL,
329};
330
8aa95a21 331static const struct attribute_group hugepage_attr_group = {
71e3aac0 332 .attrs = hugepage_attr,
ba76149f
AA
333};
334
569e5590 335static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 336{
71e3aac0
AA
337 int err;
338
569e5590
SL
339 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
340 if (unlikely(!*hugepage_kobj)) {
ae3a8c1c 341 pr_err("failed to create transparent hugepage kobject\n");
569e5590 342 return -ENOMEM;
ba76149f
AA
343 }
344
569e5590 345 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 346 if (err) {
ae3a8c1c 347 pr_err("failed to register transparent hugepage group\n");
569e5590 348 goto delete_obj;
ba76149f
AA
349 }
350
569e5590 351 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 352 if (err) {
ae3a8c1c 353 pr_err("failed to register transparent hugepage group\n");
569e5590 354 goto remove_hp_group;
ba76149f 355 }
569e5590
SL
356
357 return 0;
358
359remove_hp_group:
360 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
361delete_obj:
362 kobject_put(*hugepage_kobj);
363 return err;
364}
365
366static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
367{
368 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
369 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
370 kobject_put(hugepage_kobj);
371}
372#else
373static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
374{
375 return 0;
376}
377
378static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
379{
380}
381#endif /* CONFIG_SYSFS */
382
383static int __init hugepage_init(void)
384{
385 int err;
386 struct kobject *hugepage_kobj;
387
388 if (!has_transparent_hugepage()) {
bae84953
AK
389 /*
390 * Hardware doesn't support hugepages, hence disable
391 * DAX PMD support.
392 */
393 transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX;
569e5590
SL
394 return -EINVAL;
395 }
396
ff20c2e0
KS
397 /*
398 * hugepages can't be allocated by the buddy allocator
399 */
400 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
401 /*
402 * we use page->mapping and page->index in second tail page
403 * as list_head: assuming THP order >= 2
404 */
405 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
406
569e5590
SL
407 err = hugepage_init_sysfs(&hugepage_kobj);
408 if (err)
65ebb64f 409 goto err_sysfs;
ba76149f 410
b46e756f 411 err = khugepaged_init();
ba76149f 412 if (err)
65ebb64f 413 goto err_slab;
ba76149f 414
65ebb64f
KS
415 err = register_shrinker(&huge_zero_page_shrinker);
416 if (err)
417 goto err_hzp_shrinker;
9a982250
KS
418 err = register_shrinker(&deferred_split_shrinker);
419 if (err)
420 goto err_split_shrinker;
97ae1749 421
97562cd2
RR
422 /*
423 * By default disable transparent hugepages on smaller systems,
424 * where the extra memory used could hurt more than TLB overhead
425 * is likely to save. The admin can still enable it through /sys.
426 */
ca79b0c2 427 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
97562cd2 428 transparent_hugepage_flags = 0;
79553da2
KS
429 return 0;
430 }
97562cd2 431
79553da2 432 err = start_stop_khugepaged();
65ebb64f
KS
433 if (err)
434 goto err_khugepaged;
ba76149f 435
569e5590 436 return 0;
65ebb64f 437err_khugepaged:
9a982250
KS
438 unregister_shrinker(&deferred_split_shrinker);
439err_split_shrinker:
65ebb64f
KS
440 unregister_shrinker(&huge_zero_page_shrinker);
441err_hzp_shrinker:
b46e756f 442 khugepaged_destroy();
65ebb64f 443err_slab:
569e5590 444 hugepage_exit_sysfs(hugepage_kobj);
65ebb64f 445err_sysfs:
ba76149f 446 return err;
71e3aac0 447}
a64fb3cd 448subsys_initcall(hugepage_init);
71e3aac0
AA
449
450static int __init setup_transparent_hugepage(char *str)
451{
452 int ret = 0;
453 if (!str)
454 goto out;
455 if (!strcmp(str, "always")) {
456 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
457 &transparent_hugepage_flags);
458 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
459 &transparent_hugepage_flags);
460 ret = 1;
461 } else if (!strcmp(str, "madvise")) {
462 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
463 &transparent_hugepage_flags);
464 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
465 &transparent_hugepage_flags);
466 ret = 1;
467 } else if (!strcmp(str, "never")) {
468 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
469 &transparent_hugepage_flags);
470 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
471 &transparent_hugepage_flags);
472 ret = 1;
473 }
474out:
475 if (!ret)
ae3a8c1c 476 pr_warn("transparent_hugepage= cannot parse, ignored\n");
71e3aac0
AA
477 return ret;
478}
479__setup("transparent_hugepage=", setup_transparent_hugepage);
480
f55e1014 481pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0 482{
f55e1014 483 if (likely(vma->vm_flags & VM_WRITE))
71e3aac0
AA
484 pmd = pmd_mkwrite(pmd);
485 return pmd;
486}
487
87eaceb3
YS
488#ifdef CONFIG_MEMCG
489static inline struct deferred_split *get_deferred_split_queue(struct page *page)
9a982250 490{
bcfe06bf 491 struct mem_cgroup *memcg = page_memcg(compound_head(page));
87eaceb3
YS
492 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
493
494 if (memcg)
495 return &memcg->deferred_split_queue;
496 else
497 return &pgdat->deferred_split_queue;
9a982250 498}
87eaceb3
YS
499#else
500static inline struct deferred_split *get_deferred_split_queue(struct page *page)
501{
502 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
503
504 return &pgdat->deferred_split_queue;
505}
506#endif
9a982250
KS
507
508void prep_transhuge_page(struct page *page)
509{
510 /*
511 * we use page->mapping and page->indexlru in second tail page
512 * as list_head: assuming THP order >= 2
513 */
9a982250
KS
514
515 INIT_LIST_HEAD(page_deferred_list(page));
516 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
517}
518
005ba37c
SC
519bool is_transparent_hugepage(struct page *page)
520{
521 if (!PageCompound(page))
fa1f68cc 522 return false;
005ba37c
SC
523
524 page = compound_head(page);
525 return is_huge_zero_page(page) ||
526 page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
527}
528EXPORT_SYMBOL_GPL(is_transparent_hugepage);
529
97d3d0f9
KS
530static unsigned long __thp_get_unmapped_area(struct file *filp,
531 unsigned long addr, unsigned long len,
74d2fad1
TK
532 loff_t off, unsigned long flags, unsigned long size)
533{
74d2fad1
TK
534 loff_t off_end = off + len;
535 loff_t off_align = round_up(off, size);
97d3d0f9 536 unsigned long len_pad, ret;
74d2fad1
TK
537
538 if (off_end <= off_align || (off_end - off_align) < size)
539 return 0;
540
541 len_pad = len + size;
542 if (len_pad < len || (off + len_pad) < off)
543 return 0;
544
97d3d0f9 545 ret = current->mm->get_unmapped_area(filp, addr, len_pad,
74d2fad1 546 off >> PAGE_SHIFT, flags);
97d3d0f9
KS
547
548 /*
549 * The failure might be due to length padding. The caller will retry
550 * without the padding.
551 */
552 if (IS_ERR_VALUE(ret))
74d2fad1
TK
553 return 0;
554
97d3d0f9
KS
555 /*
556 * Do not try to align to THP boundary if allocation at the address
557 * hint succeeds.
558 */
559 if (ret == addr)
560 return addr;
561
562 ret += (off - ret) & (size - 1);
563 return ret;
74d2fad1
TK
564}
565
566unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
567 unsigned long len, unsigned long pgoff, unsigned long flags)
568{
97d3d0f9 569 unsigned long ret;
74d2fad1
TK
570 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
571
74d2fad1
TK
572 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
573 goto out;
574
97d3d0f9
KS
575 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
576 if (ret)
577 return ret;
578out:
74d2fad1
TK
579 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
580}
581EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
582
2b740303
SJ
583static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
584 struct page *page, gfp_t gfp)
71e3aac0 585{
82b0f8c3 586 struct vm_area_struct *vma = vmf->vma;
71e3aac0 587 pgtable_t pgtable;
82b0f8c3 588 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2b740303 589 vm_fault_t ret = 0;
71e3aac0 590
309381fe 591 VM_BUG_ON_PAGE(!PageCompound(page), page);
00501b53 592
d9eb1ea2 593 if (mem_cgroup_charge(page, vma->vm_mm, gfp)) {
6b251fc9
AA
594 put_page(page);
595 count_vm_event(THP_FAULT_FALLBACK);
85b9f46e 596 count_vm_event(THP_FAULT_FALLBACK_CHARGE);
6b251fc9
AA
597 return VM_FAULT_FALLBACK;
598 }
9d82c694 599 cgroup_throttle_swaprate(page, gfp);
00501b53 600
4cf58924 601 pgtable = pte_alloc_one(vma->vm_mm);
00501b53 602 if (unlikely(!pgtable)) {
6b31d595
MH
603 ret = VM_FAULT_OOM;
604 goto release;
00501b53 605 }
71e3aac0 606
c79b57e4 607 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
52f37629
MK
608 /*
609 * The memory barrier inside __SetPageUptodate makes sure that
610 * clear_huge_page writes become visible before the set_pmd_at()
611 * write.
612 */
71e3aac0
AA
613 __SetPageUptodate(page);
614
82b0f8c3
JK
615 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
616 if (unlikely(!pmd_none(*vmf->pmd))) {
6b31d595 617 goto unlock_release;
71e3aac0
AA
618 } else {
619 pmd_t entry;
6b251fc9 620
6b31d595
MH
621 ret = check_stable_address_space(vma->vm_mm);
622 if (ret)
623 goto unlock_release;
624
6b251fc9
AA
625 /* Deliver the page fault to userland */
626 if (userfaultfd_missing(vma)) {
2b740303 627 vm_fault_t ret2;
6b251fc9 628
82b0f8c3 629 spin_unlock(vmf->ptl);
6b251fc9 630 put_page(page);
bae473a4 631 pte_free(vma->vm_mm, pgtable);
2b740303
SJ
632 ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
633 VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
634 return ret2;
6b251fc9
AA
635 }
636
3122359a 637 entry = mk_huge_pmd(page, vma->vm_page_prot);
f55e1014 638 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
d281ee61 639 page_add_new_anon_rmap(page, vma, haddr, true);
b518154e 640 lru_cache_add_inactive_or_unevictable(page, vma);
82b0f8c3
JK
641 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
642 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
fca40573 643 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
bae473a4 644 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
c4812909 645 mm_inc_nr_ptes(vma->vm_mm);
82b0f8c3 646 spin_unlock(vmf->ptl);
6b251fc9 647 count_vm_event(THP_FAULT_ALLOC);
9d82c694 648 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
71e3aac0
AA
649 }
650
aa2e878e 651 return 0;
6b31d595
MH
652unlock_release:
653 spin_unlock(vmf->ptl);
654release:
655 if (pgtable)
656 pte_free(vma->vm_mm, pgtable);
6b31d595
MH
657 put_page(page);
658 return ret;
659
71e3aac0
AA
660}
661
444eb2a4 662/*
21440d7e
DR
663 * always: directly stall for all thp allocations
664 * defer: wake kswapd and fail if not immediately available
665 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
666 * fail if not immediately available
667 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
668 * available
669 * never: never stall for any thp allocation
444eb2a4 670 */
164cc4fe 671gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
444eb2a4 672{
164cc4fe 673 const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
2f0799a0 674
ac79f78d 675 /* Always do synchronous compaction */
a8282608
AA
676 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
677 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
ac79f78d
DR
678
679 /* Kick kcompactd and fail quickly */
21440d7e 680 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
19deb769 681 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
ac79f78d
DR
682
683 /* Synchronous compaction if madvised, otherwise kick kcompactd */
21440d7e 684 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
19deb769
DR
685 return GFP_TRANSHUGE_LIGHT |
686 (vma_madvised ? __GFP_DIRECT_RECLAIM :
687 __GFP_KSWAPD_RECLAIM);
ac79f78d
DR
688
689 /* Only do synchronous compaction if madvised */
21440d7e 690 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
19deb769
DR
691 return GFP_TRANSHUGE_LIGHT |
692 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
ac79f78d 693
19deb769 694 return GFP_TRANSHUGE_LIGHT;
444eb2a4
MG
695}
696
c4088ebd 697/* Caller must hold page table lock. */
2efeb8da 698static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 699 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 700 struct page *zero_page)
fc9fe822
KS
701{
702 pmd_t entry;
7c414164 703 if (!pmd_none(*pmd))
2efeb8da 704 return;
5918d10a 705 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822 706 entry = pmd_mkhuge(entry);
12c9d70b
MW
707 if (pgtable)
708 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 709 set_pmd_at(mm, haddr, pmd, entry);
c4812909 710 mm_inc_nr_ptes(mm);
fc9fe822
KS
711}
712
2b740303 713vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
71e3aac0 714{
82b0f8c3 715 struct vm_area_struct *vma = vmf->vma;
077fcf11 716 gfp_t gfp;
71e3aac0 717 struct page *page;
82b0f8c3 718 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
71e3aac0 719
43675e6f 720 if (!transhuge_vma_suitable(vma, haddr))
c0292554 721 return VM_FAULT_FALLBACK;
128ec037
KS
722 if (unlikely(anon_vma_prepare(vma)))
723 return VM_FAULT_OOM;
6d50e60c 724 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
128ec037 725 return VM_FAULT_OOM;
82b0f8c3 726 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 727 !mm_forbids_zeropage(vma->vm_mm) &&
128ec037
KS
728 transparent_hugepage_use_zero_page()) {
729 pgtable_t pgtable;
730 struct page *zero_page;
2b740303 731 vm_fault_t ret;
4cf58924 732 pgtable = pte_alloc_one(vma->vm_mm);
128ec037 733 if (unlikely(!pgtable))
ba76149f 734 return VM_FAULT_OOM;
6fcb52a5 735 zero_page = mm_get_huge_zero_page(vma->vm_mm);
128ec037 736 if (unlikely(!zero_page)) {
bae473a4 737 pte_free(vma->vm_mm, pgtable);
81ab4201 738 count_vm_event(THP_FAULT_FALLBACK);
c0292554 739 return VM_FAULT_FALLBACK;
b9bbfbe3 740 }
82b0f8c3 741 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
6b251fc9 742 ret = 0;
82b0f8c3 743 if (pmd_none(*vmf->pmd)) {
6b31d595
MH
744 ret = check_stable_address_space(vma->vm_mm);
745 if (ret) {
746 spin_unlock(vmf->ptl);
bfe8cc1d 747 pte_free(vma->vm_mm, pgtable);
6b31d595 748 } else if (userfaultfd_missing(vma)) {
82b0f8c3 749 spin_unlock(vmf->ptl);
bfe8cc1d 750 pte_free(vma->vm_mm, pgtable);
82b0f8c3 751 ret = handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
752 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
753 } else {
bae473a4 754 set_huge_zero_page(pgtable, vma->vm_mm, vma,
82b0f8c3 755 haddr, vmf->pmd, zero_page);
fca40573 756 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
82b0f8c3 757 spin_unlock(vmf->ptl);
6b251fc9 758 }
bfe8cc1d 759 } else {
82b0f8c3 760 spin_unlock(vmf->ptl);
bae473a4 761 pte_free(vma->vm_mm, pgtable);
bfe8cc1d 762 }
6b251fc9 763 return ret;
71e3aac0 764 }
164cc4fe 765 gfp = vma_thp_gfp_mask(vma);
19deb769 766 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
128ec037
KS
767 if (unlikely(!page)) {
768 count_vm_event(THP_FAULT_FALLBACK);
c0292554 769 return VM_FAULT_FALLBACK;
128ec037 770 }
9a982250 771 prep_transhuge_page(page);
82b0f8c3 772 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
71e3aac0
AA
773}
774
ae18d6dc 775static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
3b6521f5
OH
776 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
777 pgtable_t pgtable)
5cad465d
MW
778{
779 struct mm_struct *mm = vma->vm_mm;
780 pmd_t entry;
781 spinlock_t *ptl;
782
783 ptl = pmd_lock(mm, pmd);
c6f3c5ee
AK
784 if (!pmd_none(*pmd)) {
785 if (write) {
786 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
787 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
788 goto out_unlock;
789 }
790 entry = pmd_mkyoung(*pmd);
791 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
792 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
793 update_mmu_cache_pmd(vma, addr, pmd);
794 }
795
796 goto out_unlock;
797 }
798
f25748e3
DW
799 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
800 if (pfn_t_devmap(pfn))
801 entry = pmd_mkdevmap(entry);
01871e59 802 if (write) {
f55e1014
LT
803 entry = pmd_mkyoung(pmd_mkdirty(entry));
804 entry = maybe_pmd_mkwrite(entry, vma);
5cad465d 805 }
3b6521f5
OH
806
807 if (pgtable) {
808 pgtable_trans_huge_deposit(mm, pmd, pgtable);
c4812909 809 mm_inc_nr_ptes(mm);
c6f3c5ee 810 pgtable = NULL;
3b6521f5
OH
811 }
812
01871e59
RZ
813 set_pmd_at(mm, addr, pmd, entry);
814 update_mmu_cache_pmd(vma, addr, pmd);
c6f3c5ee
AK
815
816out_unlock:
5cad465d 817 spin_unlock(ptl);
c6f3c5ee
AK
818 if (pgtable)
819 pte_free(mm, pgtable);
5cad465d
MW
820}
821
9a9731b1
THV
822/**
823 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
824 * @vmf: Structure describing the fault
825 * @pfn: pfn to insert
826 * @pgprot: page protection to use
827 * @write: whether it's a write fault
828 *
829 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
830 * also consult the vmf_insert_mixed_prot() documentation when
831 * @pgprot != @vmf->vma->vm_page_prot.
832 *
833 * Return: vm_fault_t value.
834 */
835vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
836 pgprot_t pgprot, bool write)
5cad465d 837{
fce86ff5
DW
838 unsigned long addr = vmf->address & PMD_MASK;
839 struct vm_area_struct *vma = vmf->vma;
3b6521f5 840 pgtable_t pgtable = NULL;
fce86ff5 841
5cad465d
MW
842 /*
843 * If we had pmd_special, we could avoid all these restrictions,
844 * but we need to be consistent with PTEs and architectures that
845 * can't support a 'special' bit.
846 */
e1fb4a08
DJ
847 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
848 !pfn_t_devmap(pfn));
5cad465d
MW
849 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
850 (VM_PFNMAP|VM_MIXEDMAP));
851 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
5cad465d
MW
852
853 if (addr < vma->vm_start || addr >= vma->vm_end)
854 return VM_FAULT_SIGBUS;
308a047c 855
3b6521f5 856 if (arch_needs_pgtable_deposit()) {
4cf58924 857 pgtable = pte_alloc_one(vma->vm_mm);
3b6521f5
OH
858 if (!pgtable)
859 return VM_FAULT_OOM;
860 }
861
308a047c
BP
862 track_pfn_insert(vma, &pgprot, pfn);
863
fce86ff5 864 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
ae18d6dc 865 return VM_FAULT_NOPAGE;
5cad465d 866}
9a9731b1 867EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
5cad465d 868
a00cc7d9 869#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
f55e1014 870static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
a00cc7d9 871{
f55e1014 872 if (likely(vma->vm_flags & VM_WRITE))
a00cc7d9
MW
873 pud = pud_mkwrite(pud);
874 return pud;
875}
876
877static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
878 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
879{
880 struct mm_struct *mm = vma->vm_mm;
881 pud_t entry;
882 spinlock_t *ptl;
883
884 ptl = pud_lock(mm, pud);
c6f3c5ee
AK
885 if (!pud_none(*pud)) {
886 if (write) {
887 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
888 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
889 goto out_unlock;
890 }
891 entry = pud_mkyoung(*pud);
892 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
893 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
894 update_mmu_cache_pud(vma, addr, pud);
895 }
896 goto out_unlock;
897 }
898
a00cc7d9
MW
899 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
900 if (pfn_t_devmap(pfn))
901 entry = pud_mkdevmap(entry);
902 if (write) {
f55e1014
LT
903 entry = pud_mkyoung(pud_mkdirty(entry));
904 entry = maybe_pud_mkwrite(entry, vma);
a00cc7d9
MW
905 }
906 set_pud_at(mm, addr, pud, entry);
907 update_mmu_cache_pud(vma, addr, pud);
c6f3c5ee
AK
908
909out_unlock:
a00cc7d9
MW
910 spin_unlock(ptl);
911}
912
9a9731b1
THV
913/**
914 * vmf_insert_pfn_pud_prot - insert a pud size pfn
915 * @vmf: Structure describing the fault
916 * @pfn: pfn to insert
917 * @pgprot: page protection to use
918 * @write: whether it's a write fault
919 *
920 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
921 * also consult the vmf_insert_mixed_prot() documentation when
922 * @pgprot != @vmf->vma->vm_page_prot.
923 *
924 * Return: vm_fault_t value.
925 */
926vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
927 pgprot_t pgprot, bool write)
a00cc7d9 928{
fce86ff5
DW
929 unsigned long addr = vmf->address & PUD_MASK;
930 struct vm_area_struct *vma = vmf->vma;
fce86ff5 931
a00cc7d9
MW
932 /*
933 * If we had pud_special, we could avoid all these restrictions,
934 * but we need to be consistent with PTEs and architectures that
935 * can't support a 'special' bit.
936 */
62ec0d8c
DJ
937 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
938 !pfn_t_devmap(pfn));
a00cc7d9
MW
939 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
940 (VM_PFNMAP|VM_MIXEDMAP));
941 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
a00cc7d9
MW
942
943 if (addr < vma->vm_start || addr >= vma->vm_end)
944 return VM_FAULT_SIGBUS;
945
946 track_pfn_insert(vma, &pgprot, pfn);
947
fce86ff5 948 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
a00cc7d9
MW
949 return VM_FAULT_NOPAGE;
950}
9a9731b1 951EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
a00cc7d9
MW
952#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
953
3565fce3 954static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
a8f97366 955 pmd_t *pmd, int flags)
3565fce3
DW
956{
957 pmd_t _pmd;
958
a8f97366
KS
959 _pmd = pmd_mkyoung(*pmd);
960 if (flags & FOLL_WRITE)
961 _pmd = pmd_mkdirty(_pmd);
3565fce3 962 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
a8f97366 963 pmd, _pmd, flags & FOLL_WRITE))
3565fce3
DW
964 update_mmu_cache_pmd(vma, addr, pmd);
965}
966
967struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
df06b37f 968 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
3565fce3
DW
969{
970 unsigned long pfn = pmd_pfn(*pmd);
971 struct mm_struct *mm = vma->vm_mm;
3565fce3
DW
972 struct page *page;
973
974 assert_spin_locked(pmd_lockptr(mm, pmd));
975
8310d48b
KF
976 /*
977 * When we COW a devmap PMD entry, we split it into PTEs, so we should
978 * not be in this function with `flags & FOLL_COW` set.
979 */
980 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
981
3faa52c0
JH
982 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
983 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
984 (FOLL_PIN | FOLL_GET)))
985 return NULL;
986
f6f37321 987 if (flags & FOLL_WRITE && !pmd_write(*pmd))
3565fce3
DW
988 return NULL;
989
990 if (pmd_present(*pmd) && pmd_devmap(*pmd))
991 /* pass */;
992 else
993 return NULL;
994
995 if (flags & FOLL_TOUCH)
a8f97366 996 touch_pmd(vma, addr, pmd, flags);
3565fce3
DW
997
998 /*
999 * device mapped pages can only be returned if the
1000 * caller will manage the page reference count.
1001 */
3faa52c0 1002 if (!(flags & (FOLL_GET | FOLL_PIN)))
3565fce3
DW
1003 return ERR_PTR(-EEXIST);
1004
1005 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
df06b37f
KB
1006 *pgmap = get_dev_pagemap(pfn, *pgmap);
1007 if (!*pgmap)
3565fce3
DW
1008 return ERR_PTR(-EFAULT);
1009 page = pfn_to_page(pfn);
3faa52c0
JH
1010 if (!try_grab_page(page, flags))
1011 page = ERR_PTR(-ENOMEM);
3565fce3
DW
1012
1013 return page;
1014}
1015
71e3aac0
AA
1016int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1017 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1018 struct vm_area_struct *vma)
1019{
c4088ebd 1020 spinlock_t *dst_ptl, *src_ptl;
71e3aac0
AA
1021 struct page *src_page;
1022 pmd_t pmd;
12c9d70b 1023 pgtable_t pgtable = NULL;
628d47ce 1024 int ret = -ENOMEM;
71e3aac0 1025
628d47ce
KS
1026 /* Skip if can be re-fill on fault */
1027 if (!vma_is_anonymous(vma))
1028 return 0;
1029
4cf58924 1030 pgtable = pte_alloc_one(dst_mm);
628d47ce
KS
1031 if (unlikely(!pgtable))
1032 goto out;
71e3aac0 1033
c4088ebd
KS
1034 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1035 src_ptl = pmd_lockptr(src_mm, src_pmd);
1036 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
71e3aac0
AA
1037
1038 ret = -EAGAIN;
1039 pmd = *src_pmd;
84c3fc4e 1040
b569a176
PX
1041 /*
1042 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
1043 * does not have the VM_UFFD_WP, which means that the uffd
1044 * fork event is not enabled.
1045 */
1046 if (!(vma->vm_flags & VM_UFFD_WP))
1047 pmd = pmd_clear_uffd_wp(pmd);
1048
84c3fc4e
ZY
1049#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1050 if (unlikely(is_swap_pmd(pmd))) {
1051 swp_entry_t entry = pmd_to_swp_entry(pmd);
1052
1053 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1054 if (is_write_migration_entry(entry)) {
1055 make_migration_entry_read(&entry);
1056 pmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
1057 if (pmd_swp_soft_dirty(*src_pmd))
1058 pmd = pmd_swp_mksoft_dirty(pmd);
84c3fc4e
ZY
1059 set_pmd_at(src_mm, addr, src_pmd, pmd);
1060 }
dd8a67f9 1061 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
af5b0f6a 1062 mm_inc_nr_ptes(dst_mm);
dd8a67f9 1063 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
84c3fc4e
ZY
1064 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1065 ret = 0;
1066 goto out_unlock;
1067 }
1068#endif
1069
628d47ce 1070 if (unlikely(!pmd_trans_huge(pmd))) {
71e3aac0
AA
1071 pte_free(dst_mm, pgtable);
1072 goto out_unlock;
1073 }
fc9fe822 1074 /*
c4088ebd 1075 * When page table lock is held, the huge zero pmd should not be
fc9fe822
KS
1076 * under splitting since we don't split the page itself, only pmd to
1077 * a page table.
1078 */
1079 if (is_huge_zero_pmd(pmd)) {
5918d10a 1080 struct page *zero_page;
97ae1749
KS
1081 /*
1082 * get_huge_zero_page() will never allocate a new page here,
1083 * since we already have a zero page to copy. It just takes a
1084 * reference.
1085 */
6fcb52a5 1086 zero_page = mm_get_huge_zero_page(dst_mm);
6b251fc9 1087 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
5918d10a 1088 zero_page);
fc9fe822
KS
1089 ret = 0;
1090 goto out_unlock;
1091 }
de466bd6 1092
628d47ce
KS
1093 src_page = pmd_page(pmd);
1094 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
d042035e
PX
1095
1096 /*
1097 * If this page is a potentially pinned page, split and retry the fault
1098 * with smaller page size. Normally this should not happen because the
1099 * userspace should use MADV_DONTFORK upon pinned regions. This is a
1100 * best effort that the pinned pages won't be replaced by another
1101 * random page during the coming copy-on-write.
1102 */
1103 if (unlikely(is_cow_mapping(vma->vm_flags) &&
1104 atomic_read(&src_mm->has_pinned) &&
1105 page_maybe_dma_pinned(src_page))) {
1106 pte_free(dst_mm, pgtable);
1107 spin_unlock(src_ptl);
1108 spin_unlock(dst_ptl);
1109 __split_huge_pmd(vma, src_pmd, addr, false, NULL);
1110 return -EAGAIN;
1111 }
1112
628d47ce
KS
1113 get_page(src_page);
1114 page_dup_rmap(src_page, true);
1115 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
c4812909 1116 mm_inc_nr_ptes(dst_mm);
628d47ce 1117 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
71e3aac0
AA
1118
1119 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1120 pmd = pmd_mkold(pmd_wrprotect(pmd));
1121 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
71e3aac0
AA
1122
1123 ret = 0;
1124out_unlock:
c4088ebd
KS
1125 spin_unlock(src_ptl);
1126 spin_unlock(dst_ptl);
71e3aac0
AA
1127out:
1128 return ret;
1129}
1130
a00cc7d9
MW
1131#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1132static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
a8f97366 1133 pud_t *pud, int flags)
a00cc7d9
MW
1134{
1135 pud_t _pud;
1136
a8f97366
KS
1137 _pud = pud_mkyoung(*pud);
1138 if (flags & FOLL_WRITE)
1139 _pud = pud_mkdirty(_pud);
a00cc7d9 1140 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
a8f97366 1141 pud, _pud, flags & FOLL_WRITE))
a00cc7d9
MW
1142 update_mmu_cache_pud(vma, addr, pud);
1143}
1144
1145struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
df06b37f 1146 pud_t *pud, int flags, struct dev_pagemap **pgmap)
a00cc7d9
MW
1147{
1148 unsigned long pfn = pud_pfn(*pud);
1149 struct mm_struct *mm = vma->vm_mm;
a00cc7d9
MW
1150 struct page *page;
1151
1152 assert_spin_locked(pud_lockptr(mm, pud));
1153
f6f37321 1154 if (flags & FOLL_WRITE && !pud_write(*pud))
a00cc7d9
MW
1155 return NULL;
1156
3faa52c0
JH
1157 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
1158 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1159 (FOLL_PIN | FOLL_GET)))
1160 return NULL;
1161
a00cc7d9
MW
1162 if (pud_present(*pud) && pud_devmap(*pud))
1163 /* pass */;
1164 else
1165 return NULL;
1166
1167 if (flags & FOLL_TOUCH)
a8f97366 1168 touch_pud(vma, addr, pud, flags);
a00cc7d9
MW
1169
1170 /*
1171 * device mapped pages can only be returned if the
1172 * caller will manage the page reference count.
3faa52c0
JH
1173 *
1174 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
a00cc7d9 1175 */
3faa52c0 1176 if (!(flags & (FOLL_GET | FOLL_PIN)))
a00cc7d9
MW
1177 return ERR_PTR(-EEXIST);
1178
1179 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
df06b37f
KB
1180 *pgmap = get_dev_pagemap(pfn, *pgmap);
1181 if (!*pgmap)
a00cc7d9
MW
1182 return ERR_PTR(-EFAULT);
1183 page = pfn_to_page(pfn);
3faa52c0
JH
1184 if (!try_grab_page(page, flags))
1185 page = ERR_PTR(-ENOMEM);
a00cc7d9
MW
1186
1187 return page;
1188}
1189
1190int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1191 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1192 struct vm_area_struct *vma)
1193{
1194 spinlock_t *dst_ptl, *src_ptl;
1195 pud_t pud;
1196 int ret;
1197
1198 dst_ptl = pud_lock(dst_mm, dst_pud);
1199 src_ptl = pud_lockptr(src_mm, src_pud);
1200 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1201
1202 ret = -EAGAIN;
1203 pud = *src_pud;
1204 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1205 goto out_unlock;
1206
1207 /*
1208 * When page table lock is held, the huge zero pud should not be
1209 * under splitting since we don't split the page itself, only pud to
1210 * a page table.
1211 */
1212 if (is_huge_zero_pud(pud)) {
1213 /* No huge zero pud yet */
1214 }
1215
d042035e
PX
1216 /* Please refer to comments in copy_huge_pmd() */
1217 if (unlikely(is_cow_mapping(vma->vm_flags) &&
1218 atomic_read(&src_mm->has_pinned) &&
1219 page_maybe_dma_pinned(pud_page(pud)))) {
1220 spin_unlock(src_ptl);
1221 spin_unlock(dst_ptl);
1222 __split_huge_pud(vma, src_pud, addr);
1223 return -EAGAIN;
1224 }
1225
a00cc7d9
MW
1226 pudp_set_wrprotect(src_mm, addr, src_pud);
1227 pud = pud_mkold(pud_wrprotect(pud));
1228 set_pud_at(dst_mm, addr, dst_pud, pud);
1229
1230 ret = 0;
1231out_unlock:
1232 spin_unlock(src_ptl);
1233 spin_unlock(dst_ptl);
1234 return ret;
1235}
1236
1237void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1238{
1239 pud_t entry;
1240 unsigned long haddr;
1241 bool write = vmf->flags & FAULT_FLAG_WRITE;
1242
1243 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1244 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1245 goto unlock;
1246
1247 entry = pud_mkyoung(orig_pud);
1248 if (write)
1249 entry = pud_mkdirty(entry);
1250 haddr = vmf->address & HPAGE_PUD_MASK;
1251 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1252 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1253
1254unlock:
1255 spin_unlock(vmf->ptl);
1256}
1257#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1258
82b0f8c3 1259void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
a1dd450b
WD
1260{
1261 pmd_t entry;
1262 unsigned long haddr;
20f664aa 1263 bool write = vmf->flags & FAULT_FLAG_WRITE;
a1dd450b 1264
82b0f8c3
JK
1265 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1266 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
a1dd450b
WD
1267 goto unlock;
1268
1269 entry = pmd_mkyoung(orig_pmd);
20f664aa
MK
1270 if (write)
1271 entry = pmd_mkdirty(entry);
82b0f8c3 1272 haddr = vmf->address & HPAGE_PMD_MASK;
20f664aa 1273 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
82b0f8c3 1274 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
a1dd450b
WD
1275
1276unlock:
82b0f8c3 1277 spin_unlock(vmf->ptl);
a1dd450b
WD
1278}
1279
2b740303 1280vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
71e3aac0 1281{
82b0f8c3 1282 struct vm_area_struct *vma = vmf->vma;
3917c802 1283 struct page *page;
82b0f8c3 1284 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
71e3aac0 1285
82b0f8c3 1286 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
81d1b09c 1287 VM_BUG_ON_VMA(!vma->anon_vma, vma);
3917c802 1288
93b4796d 1289 if (is_huge_zero_pmd(orig_pmd))
3917c802
KS
1290 goto fallback;
1291
82b0f8c3 1292 spin_lock(vmf->ptl);
3917c802
KS
1293
1294 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1295 spin_unlock(vmf->ptl);
1296 return 0;
1297 }
71e3aac0
AA
1298
1299 page = pmd_page(orig_pmd);
309381fe 1300 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
3917c802
KS
1301
1302 /* Lock page for reuse_swap_page() */
ba3c4ce6
HY
1303 if (!trylock_page(page)) {
1304 get_page(page);
1305 spin_unlock(vmf->ptl);
1306 lock_page(page);
1307 spin_lock(vmf->ptl);
1308 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
3917c802 1309 spin_unlock(vmf->ptl);
ba3c4ce6
HY
1310 unlock_page(page);
1311 put_page(page);
3917c802 1312 return 0;
ba3c4ce6
HY
1313 }
1314 put_page(page);
1315 }
3917c802
KS
1316
1317 /*
1318 * We can only reuse the page if nobody else maps the huge page or it's
1319 * part.
1320 */
ba3c4ce6 1321 if (reuse_swap_page(page, NULL)) {
71e3aac0
AA
1322 pmd_t entry;
1323 entry = pmd_mkyoung(orig_pmd);
f55e1014 1324 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3917c802 1325 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
82b0f8c3 1326 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
ba3c4ce6 1327 unlock_page(page);
82b0f8c3 1328 spin_unlock(vmf->ptl);
3917c802 1329 return VM_FAULT_WRITE;
71e3aac0 1330 }
3917c802
KS
1331
1332 unlock_page(page);
82b0f8c3 1333 spin_unlock(vmf->ptl);
3917c802
KS
1334fallback:
1335 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1336 return VM_FAULT_FALLBACK;
71e3aac0
AA
1337}
1338
8310d48b 1339/*
a308c71b
PX
1340 * FOLL_FORCE can write to even unwritable pmd's, but only
1341 * after we've gone through a COW cycle and they are dirty.
8310d48b
KF
1342 */
1343static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1344{
a308c71b
PX
1345 return pmd_write(pmd) ||
1346 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
8310d48b
KF
1347}
1348
b676b293 1349struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1350 unsigned long addr,
1351 pmd_t *pmd,
1352 unsigned int flags)
1353{
b676b293 1354 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1355 struct page *page = NULL;
1356
c4088ebd 1357 assert_spin_locked(pmd_lockptr(mm, pmd));
71e3aac0 1358
8310d48b 1359 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
71e3aac0
AA
1360 goto out;
1361
85facf25
KS
1362 /* Avoid dumping huge zero page */
1363 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1364 return ERR_PTR(-EFAULT);
1365
2b4847e7 1366 /* Full NUMA hinting faults to serialise migration in fault paths */
8a0516ed 1367 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
2b4847e7
MG
1368 goto out;
1369
71e3aac0 1370 page = pmd_page(*pmd);
ca120cf6 1371 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
3faa52c0
JH
1372
1373 if (!try_grab_page(page, flags))
1374 return ERR_PTR(-ENOMEM);
1375
3565fce3 1376 if (flags & FOLL_TOUCH)
a8f97366 1377 touch_pmd(vma, addr, pmd, flags);
3faa52c0 1378
de60f5f1 1379 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
1380 /*
1381 * We don't mlock() pte-mapped THPs. This way we can avoid
1382 * leaking mlocked pages into non-VM_LOCKED VMAs.
1383 *
9a73f61b
KS
1384 * For anon THP:
1385 *
e90309c9
KS
1386 * In most cases the pmd is the only mapping of the page as we
1387 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1388 * writable private mappings in populate_vma_page_range().
1389 *
1390 * The only scenario when we have the page shared here is if we
1391 * mlocking read-only mapping shared over fork(). We skip
1392 * mlocking such pages.
9a73f61b
KS
1393 *
1394 * For file THP:
1395 *
1396 * We can expect PageDoubleMap() to be stable under page lock:
1397 * for file pages we set it in page_add_file_rmap(), which
1398 * requires page to be locked.
e90309c9 1399 */
9a73f61b
KS
1400
1401 if (PageAnon(page) && compound_mapcount(page) != 1)
1402 goto skip_mlock;
1403 if (PageDoubleMap(page) || !page->mapping)
1404 goto skip_mlock;
1405 if (!trylock_page(page))
1406 goto skip_mlock;
9a73f61b
KS
1407 if (page->mapping && !PageDoubleMap(page))
1408 mlock_vma_page(page);
1409 unlock_page(page);
b676b293 1410 }
9a73f61b 1411skip_mlock:
71e3aac0 1412 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
ca120cf6 1413 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
71e3aac0
AA
1414
1415out:
1416 return page;
1417}
1418
d10e63f2 1419/* NUMA hinting page fault entry point for trans huge pmds */
2b740303 1420vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
d10e63f2 1421{
82b0f8c3 1422 struct vm_area_struct *vma = vmf->vma;
b8916634 1423 struct anon_vma *anon_vma = NULL;
b32967ff 1424 struct page *page;
82b0f8c3 1425 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
98fa15f3 1426 int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
90572890 1427 int target_nid, last_cpupid = -1;
8191acbd
MG
1428 bool page_locked;
1429 bool migrated = false;
b191f9b1 1430 bool was_writable;
6688cc05 1431 int flags = 0;
d10e63f2 1432
82b0f8c3
JK
1433 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1434 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
d10e63f2
MG
1435 goto out_unlock;
1436
de466bd6
MG
1437 /*
1438 * If there are potential migrations, wait for completion and retry
1439 * without disrupting NUMA hinting information. Do not relock and
1440 * check_same as the page may no longer be mapped.
1441 */
82b0f8c3
JK
1442 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1443 page = pmd_page(*vmf->pmd);
3c226c63
MR
1444 if (!get_page_unless_zero(page))
1445 goto out_unlock;
82b0f8c3 1446 spin_unlock(vmf->ptl);
48054625 1447 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
de466bd6
MG
1448 goto out;
1449 }
1450
d10e63f2 1451 page = pmd_page(pmd);
a1a46184 1452 BUG_ON(is_huge_zero_page(page));
8191acbd 1453 page_nid = page_to_nid(page);
90572890 1454 last_cpupid = page_cpupid_last(page);
03c5a6e1 1455 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 1456 if (page_nid == this_nid) {
03c5a6e1 1457 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
1458 flags |= TNF_FAULT_LOCAL;
1459 }
4daae3b4 1460
bea66fbd 1461 /* See similar comment in do_numa_page for explanation */
288bc549 1462 if (!pmd_savedwrite(pmd))
6688cc05
PZ
1463 flags |= TNF_NO_GROUP;
1464
ff9042b1
MG
1465 /*
1466 * Acquire the page lock to serialise THP migrations but avoid dropping
1467 * page_table_lock if at all possible
1468 */
b8916634
MG
1469 page_locked = trylock_page(page);
1470 target_nid = mpol_misplaced(page, vma, haddr);
98fa15f3 1471 if (target_nid == NUMA_NO_NODE) {
b8916634 1472 /* If the page was locked, there are no parallel migrations */
a54a407f 1473 if (page_locked)
b8916634 1474 goto clear_pmdnuma;
2b4847e7 1475 }
4daae3b4 1476
de466bd6 1477 /* Migration could have started since the pmd_trans_migrating check */
2b4847e7 1478 if (!page_locked) {
98fa15f3 1479 page_nid = NUMA_NO_NODE;
3c226c63
MR
1480 if (!get_page_unless_zero(page))
1481 goto out_unlock;
82b0f8c3 1482 spin_unlock(vmf->ptl);
48054625 1483 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
b8916634
MG
1484 goto out;
1485 }
1486
2b4847e7
MG
1487 /*
1488 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1489 * to serialises splits
1490 */
b8916634 1491 get_page(page);
82b0f8c3 1492 spin_unlock(vmf->ptl);
b8916634 1493 anon_vma = page_lock_anon_vma_read(page);
4daae3b4 1494
c69307d5 1495 /* Confirm the PMD did not change while page_table_lock was released */
82b0f8c3
JK
1496 spin_lock(vmf->ptl);
1497 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
b32967ff
MG
1498 unlock_page(page);
1499 put_page(page);
98fa15f3 1500 page_nid = NUMA_NO_NODE;
4daae3b4 1501 goto out_unlock;
b32967ff 1502 }
ff9042b1 1503
c3a489ca
MG
1504 /* Bail if we fail to protect against THP splits for any reason */
1505 if (unlikely(!anon_vma)) {
1506 put_page(page);
98fa15f3 1507 page_nid = NUMA_NO_NODE;
c3a489ca
MG
1508 goto clear_pmdnuma;
1509 }
1510
8b1b436d
PZ
1511 /*
1512 * Since we took the NUMA fault, we must have observed the !accessible
1513 * bit. Make sure all other CPUs agree with that, to avoid them
1514 * modifying the page we're about to migrate.
1515 *
1516 * Must be done under PTL such that we'll observe the relevant
ccde85ba
PZ
1517 * inc_tlb_flush_pending().
1518 *
1519 * We are not sure a pending tlb flush here is for a huge page
1520 * mapping or not. Hence use the tlb range variant
8b1b436d 1521 */
7066f0f9 1522 if (mm_tlb_flush_pending(vma->vm_mm)) {
ccde85ba 1523 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
7066f0f9
AA
1524 /*
1525 * change_huge_pmd() released the pmd lock before
1526 * invalidating the secondary MMUs sharing the primary
1527 * MMU pagetables (with ->invalidate_range()). The
1528 * mmu_notifier_invalidate_range_end() (which
1529 * internally calls ->invalidate_range()) in
1530 * change_pmd_range() will run after us, so we can't
1531 * rely on it here and we need an explicit invalidate.
1532 */
1533 mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1534 haddr + HPAGE_PMD_SIZE);
1535 }
8b1b436d 1536
a54a407f
MG
1537 /*
1538 * Migrate the THP to the requested node, returns with page unlocked
8a0516ed 1539 * and access rights restored.
a54a407f 1540 */
82b0f8c3 1541 spin_unlock(vmf->ptl);
8b1b436d 1542
bae473a4 1543 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
82b0f8c3 1544 vmf->pmd, pmd, vmf->address, page, target_nid);
6688cc05
PZ
1545 if (migrated) {
1546 flags |= TNF_MIGRATED;
8191acbd 1547 page_nid = target_nid;
074c2381
MG
1548 } else
1549 flags |= TNF_MIGRATE_FAIL;
b32967ff 1550
8191acbd 1551 goto out;
b32967ff 1552clear_pmdnuma:
a54a407f 1553 BUG_ON(!PageLocked(page));
288bc549 1554 was_writable = pmd_savedwrite(pmd);
4d942466 1555 pmd = pmd_modify(pmd, vma->vm_page_prot);
b7b04004 1556 pmd = pmd_mkyoung(pmd);
b191f9b1
MG
1557 if (was_writable)
1558 pmd = pmd_mkwrite(pmd);
82b0f8c3
JK
1559 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1560 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
a54a407f 1561 unlock_page(page);
d10e63f2 1562out_unlock:
82b0f8c3 1563 spin_unlock(vmf->ptl);
b8916634
MG
1564
1565out:
1566 if (anon_vma)
1567 page_unlock_anon_vma_read(anon_vma);
1568
98fa15f3 1569 if (page_nid != NUMA_NO_NODE)
82b0f8c3 1570 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
9a8b300f 1571 flags);
8191acbd 1572
d10e63f2
MG
1573 return 0;
1574}
1575
319904ad
HY
1576/*
1577 * Return true if we do MADV_FREE successfully on entire pmd page.
1578 * Otherwise, return false.
1579 */
1580bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
b8d3c4c3 1581 pmd_t *pmd, unsigned long addr, unsigned long next)
b8d3c4c3
MK
1582{
1583 spinlock_t *ptl;
1584 pmd_t orig_pmd;
1585 struct page *page;
1586 struct mm_struct *mm = tlb->mm;
319904ad 1587 bool ret = false;
b8d3c4c3 1588
ed6a7935 1589 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
07e32661 1590
b6ec57f4
KS
1591 ptl = pmd_trans_huge_lock(pmd, vma);
1592 if (!ptl)
25eedabe 1593 goto out_unlocked;
b8d3c4c3
MK
1594
1595 orig_pmd = *pmd;
319904ad 1596 if (is_huge_zero_pmd(orig_pmd))
b8d3c4c3 1597 goto out;
b8d3c4c3 1598
84c3fc4e
ZY
1599 if (unlikely(!pmd_present(orig_pmd))) {
1600 VM_BUG_ON(thp_migration_supported() &&
1601 !is_pmd_migration_entry(orig_pmd));
1602 goto out;
1603 }
1604
b8d3c4c3
MK
1605 page = pmd_page(orig_pmd);
1606 /*
1607 * If other processes are mapping this page, we couldn't discard
1608 * the page unless they all do MADV_FREE so let's skip the page.
1609 */
1610 if (page_mapcount(page) != 1)
1611 goto out;
1612
1613 if (!trylock_page(page))
1614 goto out;
1615
1616 /*
1617 * If user want to discard part-pages of THP, split it so MADV_FREE
1618 * will deactivate only them.
1619 */
1620 if (next - addr != HPAGE_PMD_SIZE) {
1621 get_page(page);
1622 spin_unlock(ptl);
9818b8cd 1623 split_huge_page(page);
b8d3c4c3 1624 unlock_page(page);
bbf29ffc 1625 put_page(page);
b8d3c4c3
MK
1626 goto out_unlocked;
1627 }
1628
1629 if (PageDirty(page))
1630 ClearPageDirty(page);
1631 unlock_page(page);
1632
b8d3c4c3 1633 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
58ceeb6b 1634 pmdp_invalidate(vma, addr, pmd);
b8d3c4c3
MK
1635 orig_pmd = pmd_mkold(orig_pmd);
1636 orig_pmd = pmd_mkclean(orig_pmd);
1637
1638 set_pmd_at(mm, addr, pmd, orig_pmd);
1639 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1640 }
802a3a92
SL
1641
1642 mark_page_lazyfree(page);
319904ad 1643 ret = true;
b8d3c4c3
MK
1644out:
1645 spin_unlock(ptl);
1646out_unlocked:
1647 return ret;
1648}
1649
953c66c2
AK
1650static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1651{
1652 pgtable_t pgtable;
1653
1654 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1655 pte_free(mm, pgtable);
c4812909 1656 mm_dec_nr_ptes(mm);
953c66c2
AK
1657}
1658
71e3aac0 1659int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1660 pmd_t *pmd, unsigned long addr)
71e3aac0 1661{
da146769 1662 pmd_t orig_pmd;
bf929152 1663 spinlock_t *ptl;
71e3aac0 1664
ed6a7935 1665 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
07e32661 1666
b6ec57f4
KS
1667 ptl = __pmd_trans_huge_lock(pmd, vma);
1668 if (!ptl)
da146769
KS
1669 return 0;
1670 /*
1671 * For architectures like ppc64 we look at deposited pgtable
1672 * when calling pmdp_huge_get_and_clear. So do the
1673 * pgtable_trans_huge_withdraw after finishing pmdp related
1674 * operations.
1675 */
93a98695
AK
1676 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1677 tlb->fullmm);
da146769 1678 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
2484ca9b 1679 if (vma_is_special_huge(vma)) {
3b6521f5
OH
1680 if (arch_needs_pgtable_deposit())
1681 zap_deposited_table(tlb->mm, pmd);
da146769
KS
1682 spin_unlock(ptl);
1683 if (is_huge_zero_pmd(orig_pmd))
c0f2e176 1684 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769 1685 } else if (is_huge_zero_pmd(orig_pmd)) {
c14a6eb4 1686 zap_deposited_table(tlb->mm, pmd);
da146769 1687 spin_unlock(ptl);
c0f2e176 1688 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769 1689 } else {
616b8371
ZY
1690 struct page *page = NULL;
1691 int flush_needed = 1;
1692
1693 if (pmd_present(orig_pmd)) {
1694 page = pmd_page(orig_pmd);
1695 page_remove_rmap(page, true);
1696 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1697 VM_BUG_ON_PAGE(!PageHead(page), page);
1698 } else if (thp_migration_supported()) {
1699 swp_entry_t entry;
1700
1701 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1702 entry = pmd_to_swp_entry(orig_pmd);
1703 page = pfn_to_page(swp_offset(entry));
1704 flush_needed = 0;
1705 } else
1706 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1707
b5072380 1708 if (PageAnon(page)) {
c14a6eb4 1709 zap_deposited_table(tlb->mm, pmd);
b5072380
KS
1710 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1711 } else {
953c66c2
AK
1712 if (arch_needs_pgtable_deposit())
1713 zap_deposited_table(tlb->mm, pmd);
fadae295 1714 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
b5072380 1715 }
616b8371 1716
da146769 1717 spin_unlock(ptl);
616b8371
ZY
1718 if (flush_needed)
1719 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
025c5b24 1720 }
da146769 1721 return 1;
71e3aac0
AA
1722}
1723
1dd38b6c
AK
1724#ifndef pmd_move_must_withdraw
1725static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1726 spinlock_t *old_pmd_ptl,
1727 struct vm_area_struct *vma)
1728{
1729 /*
1730 * With split pmd lock we also need to move preallocated
1731 * PTE page table if new_pmd is on different PMD page table.
1732 *
1733 * We also don't deposit and withdraw tables for file pages.
1734 */
1735 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1736}
1737#endif
1738
ab6e3d09
NH
1739static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1740{
1741#ifdef CONFIG_MEM_SOFT_DIRTY
1742 if (unlikely(is_pmd_migration_entry(pmd)))
1743 pmd = pmd_swp_mksoft_dirty(pmd);
1744 else if (pmd_present(pmd))
1745 pmd = pmd_mksoft_dirty(pmd);
1746#endif
1747 return pmd;
1748}
1749
bf8616d5 1750bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
b8aa9d9d 1751 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
37a1c49a 1752{
bf929152 1753 spinlock_t *old_ptl, *new_ptl;
37a1c49a 1754 pmd_t pmd;
37a1c49a 1755 struct mm_struct *mm = vma->vm_mm;
5d190420 1756 bool force_flush = false;
37a1c49a 1757
37a1c49a
AA
1758 /*
1759 * The destination pmd shouldn't be established, free_pgtables()
1760 * should have release it.
1761 */
1762 if (WARN_ON(!pmd_none(*new_pmd))) {
1763 VM_BUG_ON(pmd_trans_huge(*new_pmd));
4b471e88 1764 return false;
37a1c49a
AA
1765 }
1766
bf929152
KS
1767 /*
1768 * We don't have to worry about the ordering of src and dst
c1e8d7c6 1769 * ptlocks because exclusive mmap_lock prevents deadlock.
bf929152 1770 */
b6ec57f4
KS
1771 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1772 if (old_ptl) {
bf929152
KS
1773 new_ptl = pmd_lockptr(mm, new_pmd);
1774 if (new_ptl != old_ptl)
1775 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
8809aa2d 1776 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
eb66ae03 1777 if (pmd_present(pmd))
a2ce2666 1778 force_flush = true;
025c5b24 1779 VM_BUG_ON(!pmd_none(*new_pmd));
3592806c 1780
1dd38b6c 1781 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
b3084f4d 1782 pgtable_t pgtable;
3592806c
KS
1783 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1784 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
3592806c 1785 }
ab6e3d09
NH
1786 pmd = move_soft_dirty_pmd(pmd);
1787 set_pmd_at(mm, new_addr, new_pmd, pmd);
5d190420
AL
1788 if (force_flush)
1789 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
eb66ae03
LT
1790 if (new_ptl != old_ptl)
1791 spin_unlock(new_ptl);
bf929152 1792 spin_unlock(old_ptl);
4b471e88 1793 return true;
37a1c49a 1794 }
4b471e88 1795 return false;
37a1c49a
AA
1796}
1797
f123d74a
MG
1798/*
1799 * Returns
1800 * - 0 if PMD could not be locked
1801 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1802 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1803 */
cd7548ab 1804int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
58705444 1805 unsigned long addr, pgprot_t newprot, unsigned long cp_flags)
cd7548ab
JW
1806{
1807 struct mm_struct *mm = vma->vm_mm;
bf929152 1808 spinlock_t *ptl;
0a85e51d
KS
1809 pmd_t entry;
1810 bool preserve_write;
1811 int ret;
58705444 1812 bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
292924b2
PX
1813 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1814 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
cd7548ab 1815
b6ec57f4 1816 ptl = __pmd_trans_huge_lock(pmd, vma);
0a85e51d
KS
1817 if (!ptl)
1818 return 0;
e944fd67 1819
0a85e51d
KS
1820 preserve_write = prot_numa && pmd_write(*pmd);
1821 ret = 1;
e944fd67 1822
84c3fc4e
ZY
1823#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1824 if (is_swap_pmd(*pmd)) {
1825 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1826
1827 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1828 if (is_write_migration_entry(entry)) {
1829 pmd_t newpmd;
1830 /*
1831 * A protection check is difficult so
1832 * just be safe and disable write
1833 */
1834 make_migration_entry_read(&entry);
1835 newpmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
1836 if (pmd_swp_soft_dirty(*pmd))
1837 newpmd = pmd_swp_mksoft_dirty(newpmd);
84c3fc4e
ZY
1838 set_pmd_at(mm, addr, pmd, newpmd);
1839 }
1840 goto unlock;
1841 }
1842#endif
1843
0a85e51d
KS
1844 /*
1845 * Avoid trapping faults against the zero page. The read-only
1846 * data is likely to be read-cached on the local CPU and
1847 * local/remote hits to the zero page are not interesting.
1848 */
1849 if (prot_numa && is_huge_zero_pmd(*pmd))
1850 goto unlock;
025c5b24 1851
0a85e51d
KS
1852 if (prot_numa && pmd_protnone(*pmd))
1853 goto unlock;
1854
ced10803 1855 /*
3e4e28c5 1856 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
ced10803 1857 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
3e4e28c5 1858 * which is also under mmap_read_lock(mm):
ced10803
KS
1859 *
1860 * CPU0: CPU1:
1861 * change_huge_pmd(prot_numa=1)
1862 * pmdp_huge_get_and_clear_notify()
1863 * madvise_dontneed()
1864 * zap_pmd_range()
1865 * pmd_trans_huge(*pmd) == 0 (without ptl)
1866 * // skip the pmd
1867 * set_pmd_at();
1868 * // pmd is re-established
1869 *
1870 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1871 * which may break userspace.
1872 *
1873 * pmdp_invalidate() is required to make sure we don't miss
1874 * dirty/young flags set by hardware.
1875 */
a3cf988f 1876 entry = pmdp_invalidate(vma, addr, pmd);
ced10803 1877
0a85e51d
KS
1878 entry = pmd_modify(entry, newprot);
1879 if (preserve_write)
1880 entry = pmd_mk_savedwrite(entry);
292924b2
PX
1881 if (uffd_wp) {
1882 entry = pmd_wrprotect(entry);
1883 entry = pmd_mkuffd_wp(entry);
1884 } else if (uffd_wp_resolve) {
1885 /*
1886 * Leave the write bit to be handled by PF interrupt
1887 * handler, then things like COW could be properly
1888 * handled.
1889 */
1890 entry = pmd_clear_uffd_wp(entry);
1891 }
0a85e51d
KS
1892 ret = HPAGE_PMD_NR;
1893 set_pmd_at(mm, addr, pmd, entry);
1894 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1895unlock:
1896 spin_unlock(ptl);
025c5b24
NH
1897 return ret;
1898}
1899
1900/*
8f19b0c0 1901 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
025c5b24 1902 *
8f19b0c0
HY
1903 * Note that if it returns page table lock pointer, this routine returns without
1904 * unlocking page table lock. So callers must unlock it.
025c5b24 1905 */
b6ec57f4 1906spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
025c5b24 1907{
b6ec57f4
KS
1908 spinlock_t *ptl;
1909 ptl = pmd_lock(vma->vm_mm, pmd);
84c3fc4e
ZY
1910 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1911 pmd_devmap(*pmd)))
b6ec57f4
KS
1912 return ptl;
1913 spin_unlock(ptl);
1914 return NULL;
cd7548ab
JW
1915}
1916
a00cc7d9
MW
1917/*
1918 * Returns true if a given pud maps a thp, false otherwise.
1919 *
1920 * Note that if it returns true, this routine returns without unlocking page
1921 * table lock. So callers must unlock it.
1922 */
1923spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1924{
1925 spinlock_t *ptl;
1926
1927 ptl = pud_lock(vma->vm_mm, pud);
1928 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1929 return ptl;
1930 spin_unlock(ptl);
1931 return NULL;
1932}
1933
1934#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1935int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1936 pud_t *pud, unsigned long addr)
1937{
a00cc7d9
MW
1938 spinlock_t *ptl;
1939
1940 ptl = __pud_trans_huge_lock(pud, vma);
1941 if (!ptl)
1942 return 0;
1943 /*
1944 * For architectures like ppc64 we look at deposited pgtable
1945 * when calling pudp_huge_get_and_clear. So do the
1946 * pgtable_trans_huge_withdraw after finishing pudp related
1947 * operations.
1948 */
70516b93 1949 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
a00cc7d9 1950 tlb_remove_pud_tlb_entry(tlb, pud, addr);
2484ca9b 1951 if (vma_is_special_huge(vma)) {
a00cc7d9
MW
1952 spin_unlock(ptl);
1953 /* No zero page support yet */
1954 } else {
1955 /* No support for anonymous PUD pages yet */
1956 BUG();
1957 }
1958 return 1;
1959}
1960
1961static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1962 unsigned long haddr)
1963{
1964 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1965 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1966 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1967 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1968
ce9311cf 1969 count_vm_event(THP_SPLIT_PUD);
a00cc7d9
MW
1970
1971 pudp_huge_clear_flush_notify(vma, haddr, pud);
1972}
1973
1974void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1975 unsigned long address)
1976{
1977 spinlock_t *ptl;
ac46d4f3 1978 struct mmu_notifier_range range;
a00cc7d9 1979
7269f999 1980 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1981 address & HPAGE_PUD_MASK,
ac46d4f3
JG
1982 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
1983 mmu_notifier_invalidate_range_start(&range);
1984 ptl = pud_lock(vma->vm_mm, pud);
a00cc7d9
MW
1985 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1986 goto out;
ac46d4f3 1987 __split_huge_pud_locked(vma, pud, range.start);
a00cc7d9
MW
1988
1989out:
1990 spin_unlock(ptl);
4645b9fe
JG
1991 /*
1992 * No need to double call mmu_notifier->invalidate_range() callback as
1993 * the above pudp_huge_clear_flush_notify() did already call it.
1994 */
ac46d4f3 1995 mmu_notifier_invalidate_range_only_end(&range);
a00cc7d9
MW
1996}
1997#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1998
eef1b3ba
KS
1999static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2000 unsigned long haddr, pmd_t *pmd)
2001{
2002 struct mm_struct *mm = vma->vm_mm;
2003 pgtable_t pgtable;
2004 pmd_t _pmd;
2005 int i;
2006
0f10851e
JG
2007 /*
2008 * Leave pmd empty until pte is filled note that it is fine to delay
2009 * notification until mmu_notifier_invalidate_range_end() as we are
2010 * replacing a zero pmd write protected page with a zero pte write
2011 * protected page.
2012 *
ad56b738 2013 * See Documentation/vm/mmu_notifier.rst
0f10851e
JG
2014 */
2015 pmdp_huge_clear_flush(vma, haddr, pmd);
eef1b3ba
KS
2016
2017 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2018 pmd_populate(mm, &_pmd, pgtable);
2019
2020 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2021 pte_t *pte, entry;
2022 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2023 entry = pte_mkspecial(entry);
2024 pte = pte_offset_map(&_pmd, haddr);
2025 VM_BUG_ON(!pte_none(*pte));
2026 set_pte_at(mm, haddr, pte, entry);
2027 pte_unmap(pte);
2028 }
2029 smp_wmb(); /* make pte visible before pmd */
2030 pmd_populate(mm, pmd, pgtable);
eef1b3ba
KS
2031}
2032
2033static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
ba988280 2034 unsigned long haddr, bool freeze)
eef1b3ba
KS
2035{
2036 struct mm_struct *mm = vma->vm_mm;
2037 struct page *page;
2038 pgtable_t pgtable;
423ac9af 2039 pmd_t old_pmd, _pmd;
292924b2 2040 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2ac015e2 2041 unsigned long addr;
eef1b3ba
KS
2042 int i;
2043
2044 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2045 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2046 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
84c3fc4e
ZY
2047 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2048 && !pmd_devmap(*pmd));
eef1b3ba
KS
2049
2050 count_vm_event(THP_SPLIT_PMD);
2051
d21b9e57
KS
2052 if (!vma_is_anonymous(vma)) {
2053 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
953c66c2
AK
2054 /*
2055 * We are going to unmap this huge page. So
2056 * just go ahead and zap it
2057 */
2058 if (arch_needs_pgtable_deposit())
2059 zap_deposited_table(mm, pmd);
2484ca9b 2060 if (vma_is_special_huge(vma))
d21b9e57
KS
2061 return;
2062 page = pmd_page(_pmd);
e1f1b157
HD
2063 if (!PageDirty(page) && pmd_dirty(_pmd))
2064 set_page_dirty(page);
d21b9e57
KS
2065 if (!PageReferenced(page) && pmd_young(_pmd))
2066 SetPageReferenced(page);
2067 page_remove_rmap(page, true);
2068 put_page(page);
fadae295 2069 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
eef1b3ba 2070 return;
ec0abae6 2071 } else if (pmd_trans_huge(*pmd) && is_huge_zero_pmd(*pmd)) {
4645b9fe
JG
2072 /*
2073 * FIXME: Do we want to invalidate secondary mmu by calling
2074 * mmu_notifier_invalidate_range() see comments below inside
2075 * __split_huge_pmd() ?
2076 *
2077 * We are going from a zero huge page write protected to zero
2078 * small page also write protected so it does not seems useful
2079 * to invalidate secondary mmu at this time.
2080 */
eef1b3ba
KS
2081 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2082 }
2083
423ac9af
AK
2084 /*
2085 * Up to this point the pmd is present and huge and userland has the
2086 * whole access to the hugepage during the split (which happens in
2087 * place). If we overwrite the pmd with the not-huge version pointing
2088 * to the pte here (which of course we could if all CPUs were bug
2089 * free), userland could trigger a small page size TLB miss on the
2090 * small sized TLB while the hugepage TLB entry is still established in
2091 * the huge TLB. Some CPU doesn't like that.
42742d9b
AK
2092 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2093 * 383 on page 105. Intel should be safe but is also warns that it's
423ac9af
AK
2094 * only safe if the permission and cache attributes of the two entries
2095 * loaded in the two TLB is identical (which should be the case here).
2096 * But it is generally safer to never allow small and huge TLB entries
2097 * for the same virtual address to be loaded simultaneously. So instead
2098 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2099 * current pmd notpresent (atomically because here the pmd_trans_huge
2100 * must remain set at all times on the pmd until the split is complete
2101 * for this pmd), then we flush the SMP TLB and finally we write the
2102 * non-huge version of the pmd entry with pmd_populate.
2103 */
2104 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2105
423ac9af 2106 pmd_migration = is_pmd_migration_entry(old_pmd);
2e83ee1d 2107 if (unlikely(pmd_migration)) {
84c3fc4e
ZY
2108 swp_entry_t entry;
2109
423ac9af 2110 entry = pmd_to_swp_entry(old_pmd);
84c3fc4e 2111 page = pfn_to_page(swp_offset(entry));
2e83ee1d
PX
2112 write = is_write_migration_entry(entry);
2113 young = false;
2114 soft_dirty = pmd_swp_soft_dirty(old_pmd);
f45ec5ff 2115 uffd_wp = pmd_swp_uffd_wp(old_pmd);
2e83ee1d 2116 } else {
423ac9af 2117 page = pmd_page(old_pmd);
2e83ee1d
PX
2118 if (pmd_dirty(old_pmd))
2119 SetPageDirty(page);
2120 write = pmd_write(old_pmd);
2121 young = pmd_young(old_pmd);
2122 soft_dirty = pmd_soft_dirty(old_pmd);
292924b2 2123 uffd_wp = pmd_uffd_wp(old_pmd);
2e83ee1d 2124 }
eef1b3ba 2125 VM_BUG_ON_PAGE(!page_count(page), page);
fe896d18 2126 page_ref_add(page, HPAGE_PMD_NR - 1);
eef1b3ba 2127
423ac9af
AK
2128 /*
2129 * Withdraw the table only after we mark the pmd entry invalid.
2130 * This's critical for some architectures (Power).
2131 */
eef1b3ba
KS
2132 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2133 pmd_populate(mm, &_pmd, pgtable);
2134
2ac015e2 2135 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
eef1b3ba
KS
2136 pte_t entry, *pte;
2137 /*
2138 * Note that NUMA hinting access restrictions are not
2139 * transferred to avoid any possibility of altering
2140 * permissions across VMAs.
2141 */
84c3fc4e 2142 if (freeze || pmd_migration) {
ba988280
KS
2143 swp_entry_t swp_entry;
2144 swp_entry = make_migration_entry(page + i, write);
2145 entry = swp_entry_to_pte(swp_entry);
804dd150
AA
2146 if (soft_dirty)
2147 entry = pte_swp_mksoft_dirty(entry);
f45ec5ff
PX
2148 if (uffd_wp)
2149 entry = pte_swp_mkuffd_wp(entry);
ba988280 2150 } else {
6d2329f8 2151 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
b8d3c4c3 2152 entry = maybe_mkwrite(entry, vma);
ba988280
KS
2153 if (!write)
2154 entry = pte_wrprotect(entry);
2155 if (!young)
2156 entry = pte_mkold(entry);
804dd150
AA
2157 if (soft_dirty)
2158 entry = pte_mksoft_dirty(entry);
292924b2
PX
2159 if (uffd_wp)
2160 entry = pte_mkuffd_wp(entry);
ba988280 2161 }
2ac015e2 2162 pte = pte_offset_map(&_pmd, addr);
eef1b3ba 2163 BUG_ON(!pte_none(*pte));
2ac015e2 2164 set_pte_at(mm, addr, pte, entry);
ec0abae6 2165 if (!pmd_migration)
eef1b3ba 2166 atomic_inc(&page[i]._mapcount);
ec0abae6 2167 pte_unmap(pte);
eef1b3ba
KS
2168 }
2169
ec0abae6
RC
2170 if (!pmd_migration) {
2171 /*
2172 * Set PG_double_map before dropping compound_mapcount to avoid
2173 * false-negative page_mapped().
2174 */
2175 if (compound_mapcount(page) > 1 &&
2176 !TestSetPageDoubleMap(page)) {
eef1b3ba 2177 for (i = 0; i < HPAGE_PMD_NR; i++)
ec0abae6
RC
2178 atomic_inc(&page[i]._mapcount);
2179 }
2180
2181 lock_page_memcg(page);
2182 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2183 /* Last compound_mapcount is gone. */
69473e5d
MS
2184 __mod_lruvec_page_state(page, NR_ANON_THPS,
2185 -HPAGE_PMD_NR);
ec0abae6
RC
2186 if (TestClearPageDoubleMap(page)) {
2187 /* No need in mapcount reference anymore */
2188 for (i = 0; i < HPAGE_PMD_NR; i++)
2189 atomic_dec(&page[i]._mapcount);
2190 }
eef1b3ba 2191 }
ec0abae6 2192 unlock_page_memcg(page);
eef1b3ba
KS
2193 }
2194
2195 smp_wmb(); /* make pte visible before pmd */
2196 pmd_populate(mm, pmd, pgtable);
e9b61f19
KS
2197
2198 if (freeze) {
2ac015e2 2199 for (i = 0; i < HPAGE_PMD_NR; i++) {
e9b61f19
KS
2200 page_remove_rmap(page + i, false);
2201 put_page(page + i);
2202 }
2203 }
eef1b3ba
KS
2204}
2205
2206void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
33f4751e 2207 unsigned long address, bool freeze, struct page *page)
eef1b3ba
KS
2208{
2209 spinlock_t *ptl;
ac46d4f3 2210 struct mmu_notifier_range range;
1c2f6730 2211 bool do_unlock_page = false;
c444eb56 2212 pmd_t _pmd;
eef1b3ba 2213
7269f999 2214 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 2215 address & HPAGE_PMD_MASK,
ac46d4f3
JG
2216 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2217 mmu_notifier_invalidate_range_start(&range);
2218 ptl = pmd_lock(vma->vm_mm, pmd);
33f4751e
NH
2219
2220 /*
2221 * If caller asks to setup a migration entries, we need a page to check
2222 * pmd against. Otherwise we can end up replacing wrong page.
2223 */
2224 VM_BUG_ON(freeze && !page);
c444eb56
AA
2225 if (page) {
2226 VM_WARN_ON_ONCE(!PageLocked(page));
c444eb56
AA
2227 if (page != pmd_page(*pmd))
2228 goto out;
2229 }
33f4751e 2230
c444eb56 2231repeat:
5c7fb56e 2232 if (pmd_trans_huge(*pmd)) {
c444eb56
AA
2233 if (!page) {
2234 page = pmd_page(*pmd);
1c2f6730
HD
2235 /*
2236 * An anonymous page must be locked, to ensure that a
2237 * concurrent reuse_swap_page() sees stable mapcount;
2238 * but reuse_swap_page() is not used on shmem or file,
2239 * and page lock must not be taken when zap_pmd_range()
2240 * calls __split_huge_pmd() while i_mmap_lock is held.
2241 */
2242 if (PageAnon(page)) {
2243 if (unlikely(!trylock_page(page))) {
2244 get_page(page);
2245 _pmd = *pmd;
2246 spin_unlock(ptl);
2247 lock_page(page);
2248 spin_lock(ptl);
2249 if (unlikely(!pmd_same(*pmd, _pmd))) {
2250 unlock_page(page);
2251 put_page(page);
2252 page = NULL;
2253 goto repeat;
2254 }
c444eb56 2255 put_page(page);
c444eb56 2256 }
1c2f6730 2257 do_unlock_page = true;
c444eb56
AA
2258 }
2259 }
5c7fb56e 2260 if (PageMlocked(page))
5f737714 2261 clear_page_mlock(page);
84c3fc4e 2262 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
e90309c9 2263 goto out;
ac46d4f3 2264 __split_huge_pmd_locked(vma, pmd, range.start, freeze);
e90309c9 2265out:
eef1b3ba 2266 spin_unlock(ptl);
1c2f6730 2267 if (do_unlock_page)
c444eb56 2268 unlock_page(page);
4645b9fe
JG
2269 /*
2270 * No need to double call mmu_notifier->invalidate_range() callback.
2271 * They are 3 cases to consider inside __split_huge_pmd_locked():
2272 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2273 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2274 * fault will trigger a flush_notify before pointing to a new page
2275 * (it is fine if the secondary mmu keeps pointing to the old zero
2276 * page in the meantime)
2277 * 3) Split a huge pmd into pte pointing to the same page. No need
2278 * to invalidate secondary tlb entry they are all still valid.
2279 * any further changes to individual pte will notify. So no need
2280 * to call mmu_notifier->invalidate_range()
2281 */
ac46d4f3 2282 mmu_notifier_invalidate_range_only_end(&range);
eef1b3ba
KS
2283}
2284
fec89c10
KS
2285void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2286 bool freeze, struct page *page)
94fcc585 2287{
f72e7dcd 2288 pgd_t *pgd;
c2febafc 2289 p4d_t *p4d;
f72e7dcd 2290 pud_t *pud;
94fcc585
AA
2291 pmd_t *pmd;
2292
78ddc534 2293 pgd = pgd_offset(vma->vm_mm, address);
f72e7dcd
HD
2294 if (!pgd_present(*pgd))
2295 return;
2296
c2febafc
KS
2297 p4d = p4d_offset(pgd, address);
2298 if (!p4d_present(*p4d))
2299 return;
2300
2301 pud = pud_offset(p4d, address);
f72e7dcd
HD
2302 if (!pud_present(*pud))
2303 return;
2304
2305 pmd = pmd_offset(pud, address);
fec89c10 2306
33f4751e 2307 __split_huge_pmd(vma, pmd, address, freeze, page);
94fcc585
AA
2308}
2309
e1b9996b 2310void vma_adjust_trans_huge(struct vm_area_struct *vma,
94fcc585
AA
2311 unsigned long start,
2312 unsigned long end,
2313 long adjust_next)
2314{
2315 /*
2316 * If the new start address isn't hpage aligned and it could
2317 * previously contain an hugepage: check if we need to split
2318 * an huge pmd.
2319 */
2320 if (start & ~HPAGE_PMD_MASK &&
2321 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2322 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 2323 split_huge_pmd_address(vma, start, false, NULL);
94fcc585
AA
2324
2325 /*
2326 * If the new end address isn't hpage aligned and it could
2327 * previously contain an hugepage: check if we need to split
2328 * an huge pmd.
2329 */
2330 if (end & ~HPAGE_PMD_MASK &&
2331 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2332 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 2333 split_huge_pmd_address(vma, end, false, NULL);
94fcc585
AA
2334
2335 /*
2336 * If we're also updating the vma->vm_next->vm_start, if the new
f9d86a60 2337 * vm_next->vm_start isn't hpage aligned and it could previously
94fcc585
AA
2338 * contain an hugepage: check if we need to split an huge pmd.
2339 */
2340 if (adjust_next > 0) {
2341 struct vm_area_struct *next = vma->vm_next;
2342 unsigned long nstart = next->vm_start;
f9d86a60 2343 nstart += adjust_next;
94fcc585
AA
2344 if (nstart & ~HPAGE_PMD_MASK &&
2345 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2346 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
fec89c10 2347 split_huge_pmd_address(next, nstart, false, NULL);
94fcc585
AA
2348 }
2349}
e9b61f19 2350
906f9cdf 2351static void unmap_page(struct page *page)
e9b61f19 2352{
013339df 2353 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK |
c7ab0d2f 2354 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
666e5a40 2355 bool unmap_success;
e9b61f19
KS
2356
2357 VM_BUG_ON_PAGE(!PageHead(page), page);
2358
baa355fd 2359 if (PageAnon(page))
b5ff8161 2360 ttu_flags |= TTU_SPLIT_FREEZE;
baa355fd 2361
666e5a40
MK
2362 unmap_success = try_to_unmap(page, ttu_flags);
2363 VM_BUG_ON_PAGE(!unmap_success, page);
e9b61f19
KS
2364}
2365
8cce5475 2366static void remap_page(struct page *page, unsigned int nr)
e9b61f19 2367{
fec89c10 2368 int i;
ace71a19
KS
2369 if (PageTransHuge(page)) {
2370 remove_migration_ptes(page, page, true);
2371 } else {
8cce5475 2372 for (i = 0; i < nr; i++)
ace71a19
KS
2373 remove_migration_ptes(page + i, page + i, true);
2374 }
e9b61f19
KS
2375}
2376
94866635 2377static void lru_add_page_tail(struct page *head, struct page *tail,
88dcb9a3
AS
2378 struct lruvec *lruvec, struct list_head *list)
2379{
94866635
AS
2380 VM_BUG_ON_PAGE(!PageHead(head), head);
2381 VM_BUG_ON_PAGE(PageCompound(tail), head);
2382 VM_BUG_ON_PAGE(PageLRU(tail), head);
6168d0da 2383 lockdep_assert_held(&lruvec->lru_lock);
88dcb9a3 2384
6dbb5741 2385 if (list) {
88dcb9a3 2386 /* page reclaim is reclaiming a huge page */
6dbb5741 2387 VM_WARN_ON(PageLRU(head));
94866635
AS
2388 get_page(tail);
2389 list_add_tail(&tail->lru, list);
88dcb9a3 2390 } else {
6dbb5741
AS
2391 /* head is still on lru (and we have it frozen) */
2392 VM_WARN_ON(!PageLRU(head));
2393 SetPageLRU(tail);
2394 list_add_tail(&tail->lru, &head->lru);
88dcb9a3
AS
2395 }
2396}
2397
8df651c7 2398static void __split_huge_page_tail(struct page *head, int tail,
e9b61f19
KS
2399 struct lruvec *lruvec, struct list_head *list)
2400{
e9b61f19
KS
2401 struct page *page_tail = head + tail;
2402
8df651c7 2403 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
e9b61f19
KS
2404
2405 /*
605ca5ed
KK
2406 * Clone page flags before unfreezing refcount.
2407 *
2408 * After successful get_page_unless_zero() might follow flags change,
8958b249 2409 * for example lock_page() which set PG_waiters.
e9b61f19 2410 */
e9b61f19
KS
2411 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2412 page_tail->flags |= (head->flags &
2413 ((1L << PG_referenced) |
2414 (1L << PG_swapbacked) |
38d8b4e6 2415 (1L << PG_swapcache) |
e9b61f19
KS
2416 (1L << PG_mlocked) |
2417 (1L << PG_uptodate) |
2418 (1L << PG_active) |
1899ad18 2419 (1L << PG_workingset) |
e9b61f19 2420 (1L << PG_locked) |
b8d3c4c3 2421 (1L << PG_unevictable) |
72e6afa0
CM
2422#ifdef CONFIG_64BIT
2423 (1L << PG_arch_2) |
2424#endif
b8d3c4c3 2425 (1L << PG_dirty)));
e9b61f19 2426
173d9d9f
HD
2427 /* ->mapping in first tail page is compound_mapcount */
2428 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2429 page_tail);
2430 page_tail->mapping = head->mapping;
2431 page_tail->index = head->index + tail;
2432
605ca5ed 2433 /* Page flags must be visible before we make the page non-compound. */
e9b61f19
KS
2434 smp_wmb();
2435
605ca5ed
KK
2436 /*
2437 * Clear PageTail before unfreezing page refcount.
2438 *
2439 * After successful get_page_unless_zero() might follow put_page()
2440 * which needs correct compound_head().
2441 */
e9b61f19
KS
2442 clear_compound_head(page_tail);
2443
605ca5ed
KK
2444 /* Finally unfreeze refcount. Additional reference from page cache. */
2445 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2446 PageSwapCache(head)));
2447
e9b61f19
KS
2448 if (page_is_young(head))
2449 set_page_young(page_tail);
2450 if (page_is_idle(head))
2451 set_page_idle(page_tail);
2452
e9b61f19 2453 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
94723aaf
MH
2454
2455 /*
2456 * always add to the tail because some iterators expect new
2457 * pages to show after the currently processed elements - e.g.
2458 * migrate_pages
2459 */
e9b61f19 2460 lru_add_page_tail(head, page_tail, lruvec, list);
e9b61f19
KS
2461}
2462
baa355fd 2463static void __split_huge_page(struct page *page, struct list_head *list,
b6769834 2464 pgoff_t end)
e9b61f19
KS
2465{
2466 struct page *head = compound_head(page);
e9b61f19 2467 struct lruvec *lruvec;
4101196b
MWO
2468 struct address_space *swap_cache = NULL;
2469 unsigned long offset = 0;
8cce5475 2470 unsigned int nr = thp_nr_pages(head);
8df651c7 2471 int i;
e9b61f19 2472
e9b61f19
KS
2473 /* complete memcg works before add pages to LRU */
2474 mem_cgroup_split_huge_fixup(head);
2475
4101196b
MWO
2476 if (PageAnon(head) && PageSwapCache(head)) {
2477 swp_entry_t entry = { .val = page_private(head) };
2478
2479 offset = swp_offset(entry);
2480 swap_cache = swap_address_space(entry);
2481 xa_lock(&swap_cache->i_pages);
2482 }
2483
6168d0da
AS
2484 /* lock lru list/PageCompound, ref freezed by page_ref_freeze */
2485 lruvec = lock_page_lruvec(head);
b6769834 2486
8cce5475 2487 for (i = nr - 1; i >= 1; i--) {
8df651c7 2488 __split_huge_page_tail(head, i, lruvec, list);
baa355fd
KS
2489 /* Some pages can be beyond i_size: drop them from page cache */
2490 if (head[i].index >= end) {
2d077d4b 2491 ClearPageDirty(head + i);
baa355fd 2492 __delete_from_page_cache(head + i, NULL);
800d8c63
KS
2493 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2494 shmem_uncharge(head->mapping->host, 1);
baa355fd 2495 put_page(head + i);
4101196b
MWO
2496 } else if (!PageAnon(page)) {
2497 __xa_store(&head->mapping->i_pages, head[i].index,
2498 head + i, 0);
2499 } else if (swap_cache) {
2500 __xa_store(&swap_cache->i_pages, offset + i,
2501 head + i, 0);
baa355fd
KS
2502 }
2503 }
e9b61f19
KS
2504
2505 ClearPageCompound(head);
6168d0da 2506 unlock_page_lruvec(lruvec);
b6769834 2507 /* Caller disabled irqs, so they are still disabled here */
f7da677b 2508
8cce5475 2509 split_page_owner(head, nr);
f7da677b 2510
baa355fd
KS
2511 /* See comment in __split_huge_page_tail() */
2512 if (PageAnon(head)) {
aa5dc07f 2513 /* Additional pin to swap cache */
4101196b 2514 if (PageSwapCache(head)) {
38d8b4e6 2515 page_ref_add(head, 2);
4101196b
MWO
2516 xa_unlock(&swap_cache->i_pages);
2517 } else {
38d8b4e6 2518 page_ref_inc(head);
4101196b 2519 }
baa355fd 2520 } else {
aa5dc07f 2521 /* Additional pin to page cache */
baa355fd 2522 page_ref_add(head, 2);
b93b0163 2523 xa_unlock(&head->mapping->i_pages);
baa355fd 2524 }
b6769834 2525 local_irq_enable();
e9b61f19 2526
8cce5475 2527 remap_page(head, nr);
e9b61f19 2528
c4f9c701
HY
2529 if (PageSwapCache(head)) {
2530 swp_entry_t entry = { .val = page_private(head) };
2531
2532 split_swap_cluster(entry);
2533 }
2534
8cce5475 2535 for (i = 0; i < nr; i++) {
e9b61f19
KS
2536 struct page *subpage = head + i;
2537 if (subpage == page)
2538 continue;
2539 unlock_page(subpage);
2540
2541 /*
2542 * Subpages may be freed if there wasn't any mapping
2543 * like if add_to_swap() is running on a lru page that
2544 * had its mapping zapped. And freeing these pages
2545 * requires taking the lru_lock so we do the put_page
2546 * of the tail pages after the split is complete.
2547 */
2548 put_page(subpage);
2549 }
2550}
2551
b20ce5e0
KS
2552int total_mapcount(struct page *page)
2553{
86b562b6 2554 int i, compound, nr, ret;
b20ce5e0
KS
2555
2556 VM_BUG_ON_PAGE(PageTail(page), page);
2557
2558 if (likely(!PageCompound(page)))
2559 return atomic_read(&page->_mapcount) + 1;
2560
dd78fedd 2561 compound = compound_mapcount(page);
86b562b6 2562 nr = compound_nr(page);
b20ce5e0 2563 if (PageHuge(page))
dd78fedd
KS
2564 return compound;
2565 ret = compound;
86b562b6 2566 for (i = 0; i < nr; i++)
b20ce5e0 2567 ret += atomic_read(&page[i]._mapcount) + 1;
dd78fedd
KS
2568 /* File pages has compound_mapcount included in _mapcount */
2569 if (!PageAnon(page))
86b562b6 2570 return ret - compound * nr;
b20ce5e0 2571 if (PageDoubleMap(page))
86b562b6 2572 ret -= nr;
b20ce5e0
KS
2573 return ret;
2574}
2575
6d0a07ed
AA
2576/*
2577 * This calculates accurately how many mappings a transparent hugepage
2578 * has (unlike page_mapcount() which isn't fully accurate). This full
2579 * accuracy is primarily needed to know if copy-on-write faults can
2580 * reuse the page and change the mapping to read-write instead of
2581 * copying them. At the same time this returns the total_mapcount too.
2582 *
2583 * The function returns the highest mapcount any one of the subpages
2584 * has. If the return value is one, even if different processes are
2585 * mapping different subpages of the transparent hugepage, they can
2586 * all reuse it, because each process is reusing a different subpage.
2587 *
2588 * The total_mapcount is instead counting all virtual mappings of the
2589 * subpages. If the total_mapcount is equal to "one", it tells the
2590 * caller all mappings belong to the same "mm" and in turn the
2591 * anon_vma of the transparent hugepage can become the vma->anon_vma
2592 * local one as no other process may be mapping any of the subpages.
2593 *
2594 * It would be more accurate to replace page_mapcount() with
2595 * page_trans_huge_mapcount(), however we only use
2596 * page_trans_huge_mapcount() in the copy-on-write faults where we
2597 * need full accuracy to avoid breaking page pinning, because
2598 * page_trans_huge_mapcount() is slower than page_mapcount().
2599 */
2600int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2601{
2602 int i, ret, _total_mapcount, mapcount;
2603
2604 /* hugetlbfs shouldn't call it */
2605 VM_BUG_ON_PAGE(PageHuge(page), page);
2606
2607 if (likely(!PageTransCompound(page))) {
2608 mapcount = atomic_read(&page->_mapcount) + 1;
2609 if (total_mapcount)
2610 *total_mapcount = mapcount;
2611 return mapcount;
2612 }
2613
2614 page = compound_head(page);
2615
2616 _total_mapcount = ret = 0;
65dfe3c3 2617 for (i = 0; i < thp_nr_pages(page); i++) {
6d0a07ed
AA
2618 mapcount = atomic_read(&page[i]._mapcount) + 1;
2619 ret = max(ret, mapcount);
2620 _total_mapcount += mapcount;
2621 }
2622 if (PageDoubleMap(page)) {
2623 ret -= 1;
65dfe3c3 2624 _total_mapcount -= thp_nr_pages(page);
6d0a07ed
AA
2625 }
2626 mapcount = compound_mapcount(page);
2627 ret += mapcount;
2628 _total_mapcount += mapcount;
2629 if (total_mapcount)
2630 *total_mapcount = _total_mapcount;
2631 return ret;
2632}
2633
b8f593cd
HY
2634/* Racy check whether the huge page can be split */
2635bool can_split_huge_page(struct page *page, int *pextra_pins)
2636{
2637 int extra_pins;
2638
aa5dc07f 2639 /* Additional pins from page cache */
b8f593cd 2640 if (PageAnon(page))
e2333dad 2641 extra_pins = PageSwapCache(page) ? thp_nr_pages(page) : 0;
b8f593cd 2642 else
e2333dad 2643 extra_pins = thp_nr_pages(page);
b8f593cd
HY
2644 if (pextra_pins)
2645 *pextra_pins = extra_pins;
2646 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2647}
2648
e9b61f19
KS
2649/*
2650 * This function splits huge page into normal pages. @page can point to any
2651 * subpage of huge page to split. Split doesn't change the position of @page.
2652 *
2653 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2654 * The huge page must be locked.
2655 *
2656 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2657 *
2658 * Both head page and tail pages will inherit mapping, flags, and so on from
2659 * the hugepage.
2660 *
2661 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2662 * they are not mapped.
2663 *
2664 * Returns 0 if the hugepage is split successfully.
2665 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2666 * us.
2667 */
2668int split_huge_page_to_list(struct page *page, struct list_head *list)
2669{
2670 struct page *head = compound_head(page);
a8803e6c 2671 struct deferred_split *ds_queue = get_deferred_split_queue(head);
baa355fd
KS
2672 struct anon_vma *anon_vma = NULL;
2673 struct address_space *mapping = NULL;
2674 int count, mapcount, extra_pins, ret;
006d3ff2 2675 pgoff_t end;
e9b61f19 2676
cb829624 2677 VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
a8803e6c
WY
2678 VM_BUG_ON_PAGE(!PageLocked(head), head);
2679 VM_BUG_ON_PAGE(!PageCompound(head), head);
e9b61f19 2680
a8803e6c 2681 if (PageWriteback(head))
59807685
HY
2682 return -EBUSY;
2683
baa355fd
KS
2684 if (PageAnon(head)) {
2685 /*
c1e8d7c6 2686 * The caller does not necessarily hold an mmap_lock that would
baa355fd
KS
2687 * prevent the anon_vma disappearing so we first we take a
2688 * reference to it and then lock the anon_vma for write. This
2689 * is similar to page_lock_anon_vma_read except the write lock
2690 * is taken to serialise against parallel split or collapse
2691 * operations.
2692 */
2693 anon_vma = page_get_anon_vma(head);
2694 if (!anon_vma) {
2695 ret = -EBUSY;
2696 goto out;
2697 }
006d3ff2 2698 end = -1;
baa355fd
KS
2699 mapping = NULL;
2700 anon_vma_lock_write(anon_vma);
2701 } else {
2702 mapping = head->mapping;
2703
2704 /* Truncated ? */
2705 if (!mapping) {
2706 ret = -EBUSY;
2707 goto out;
2708 }
2709
baa355fd
KS
2710 anon_vma = NULL;
2711 i_mmap_lock_read(mapping);
006d3ff2
HD
2712
2713 /*
2714 *__split_huge_page() may need to trim off pages beyond EOF:
2715 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2716 * which cannot be nested inside the page tree lock. So note
2717 * end now: i_size itself may be changed at any moment, but
2718 * head page lock is good enough to serialize the trimming.
2719 */
2720 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
e9b61f19 2721 }
e9b61f19
KS
2722
2723 /*
906f9cdf 2724 * Racy check if we can split the page, before unmap_page() will
e9b61f19
KS
2725 * split PMDs
2726 */
b8f593cd 2727 if (!can_split_huge_page(head, &extra_pins)) {
e9b61f19
KS
2728 ret = -EBUSY;
2729 goto out_unlock;
2730 }
2731
906f9cdf 2732 unmap_page(head);
e9b61f19
KS
2733 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2734
b6769834
AS
2735 /* block interrupt reentry in xa_lock and spinlock */
2736 local_irq_disable();
baa355fd 2737 if (mapping) {
aa5dc07f 2738 XA_STATE(xas, &mapping->i_pages, page_index(head));
baa355fd 2739
baa355fd 2740 /*
aa5dc07f 2741 * Check if the head page is present in page cache.
baa355fd
KS
2742 * We assume all tail are present too, if head is there.
2743 */
aa5dc07f
MW
2744 xa_lock(&mapping->i_pages);
2745 if (xas_load(&xas) != head)
baa355fd
KS
2746 goto fail;
2747 }
2748
0139aa7b 2749 /* Prevent deferred_split_scan() touching ->_refcount */
364c1eeb 2750 spin_lock(&ds_queue->split_queue_lock);
e9b61f19
KS
2751 count = page_count(head);
2752 mapcount = total_mapcount(head);
baa355fd 2753 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
9a982250 2754 if (!list_empty(page_deferred_list(head))) {
364c1eeb 2755 ds_queue->split_queue_len--;
9a982250
KS
2756 list_del(page_deferred_list(head));
2757 }
afb97172 2758 spin_unlock(&ds_queue->split_queue_lock);
06d3eff6 2759 if (mapping) {
bf9ecead
MS
2760 int nr = thp_nr_pages(head);
2761
a8803e6c 2762 if (PageSwapBacked(head))
57b2847d
MS
2763 __mod_lruvec_page_state(head, NR_SHMEM_THPS,
2764 -nr);
06d3eff6 2765 else
bf9ecead
MS
2766 __mod_lruvec_page_state(head, NR_FILE_THPS,
2767 -nr);
06d3eff6
KS
2768 }
2769
b6769834 2770 __split_huge_page(page, list, end);
c4f9c701 2771 ret = 0;
e9b61f19 2772 } else {
baa355fd
KS
2773 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2774 pr_alert("total_mapcount: %u, page_count(): %u\n",
2775 mapcount, count);
2776 if (PageTail(page))
2777 dump_page(head, NULL);
2778 dump_page(page, "total_mapcount(head) > 0");
2779 BUG();
2780 }
364c1eeb 2781 spin_unlock(&ds_queue->split_queue_lock);
baa355fd 2782fail: if (mapping)
b93b0163 2783 xa_unlock(&mapping->i_pages);
b6769834 2784 local_irq_enable();
8cce5475 2785 remap_page(head, thp_nr_pages(head));
e9b61f19
KS
2786 ret = -EBUSY;
2787 }
2788
2789out_unlock:
baa355fd
KS
2790 if (anon_vma) {
2791 anon_vma_unlock_write(anon_vma);
2792 put_anon_vma(anon_vma);
2793 }
2794 if (mapping)
2795 i_mmap_unlock_read(mapping);
e9b61f19
KS
2796out:
2797 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2798 return ret;
2799}
9a982250
KS
2800
2801void free_transhuge_page(struct page *page)
2802{
87eaceb3 2803 struct deferred_split *ds_queue = get_deferred_split_queue(page);
9a982250
KS
2804 unsigned long flags;
2805
364c1eeb 2806 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
9a982250 2807 if (!list_empty(page_deferred_list(page))) {
364c1eeb 2808 ds_queue->split_queue_len--;
9a982250
KS
2809 list_del(page_deferred_list(page));
2810 }
364c1eeb 2811 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250
KS
2812 free_compound_page(page);
2813}
2814
2815void deferred_split_huge_page(struct page *page)
2816{
87eaceb3
YS
2817 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2818#ifdef CONFIG_MEMCG
bcfe06bf 2819 struct mem_cgroup *memcg = page_memcg(compound_head(page));
87eaceb3 2820#endif
9a982250
KS
2821 unsigned long flags;
2822
2823 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2824
87eaceb3
YS
2825 /*
2826 * The try_to_unmap() in page reclaim path might reach here too,
2827 * this may cause a race condition to corrupt deferred split queue.
2828 * And, if page reclaim is already handling the same page, it is
2829 * unnecessary to handle it again in shrinker.
2830 *
2831 * Check PageSwapCache to determine if the page is being
2832 * handled by page reclaim since THP swap would add the page into
2833 * swap cache before calling try_to_unmap().
2834 */
2835 if (PageSwapCache(page))
2836 return;
2837
364c1eeb 2838 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
9a982250 2839 if (list_empty(page_deferred_list(page))) {
f9719a03 2840 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
364c1eeb
YS
2841 list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2842 ds_queue->split_queue_len++;
87eaceb3
YS
2843#ifdef CONFIG_MEMCG
2844 if (memcg)
2845 memcg_set_shrinker_bit(memcg, page_to_nid(page),
2846 deferred_split_shrinker.id);
2847#endif
9a982250 2848 }
364c1eeb 2849 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250
KS
2850}
2851
2852static unsigned long deferred_split_count(struct shrinker *shrink,
2853 struct shrink_control *sc)
2854{
a3d0a918 2855 struct pglist_data *pgdata = NODE_DATA(sc->nid);
364c1eeb 2856 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
87eaceb3
YS
2857
2858#ifdef CONFIG_MEMCG
2859 if (sc->memcg)
2860 ds_queue = &sc->memcg->deferred_split_queue;
2861#endif
364c1eeb 2862 return READ_ONCE(ds_queue->split_queue_len);
9a982250
KS
2863}
2864
2865static unsigned long deferred_split_scan(struct shrinker *shrink,
2866 struct shrink_control *sc)
2867{
a3d0a918 2868 struct pglist_data *pgdata = NODE_DATA(sc->nid);
364c1eeb 2869 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
9a982250
KS
2870 unsigned long flags;
2871 LIST_HEAD(list), *pos, *next;
2872 struct page *page;
2873 int split = 0;
2874
87eaceb3
YS
2875#ifdef CONFIG_MEMCG
2876 if (sc->memcg)
2877 ds_queue = &sc->memcg->deferred_split_queue;
2878#endif
2879
364c1eeb 2880 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
9a982250 2881 /* Take pin on all head pages to avoid freeing them under us */
364c1eeb 2882 list_for_each_safe(pos, next, &ds_queue->split_queue) {
9a982250
KS
2883 page = list_entry((void *)pos, struct page, mapping);
2884 page = compound_head(page);
e3ae1953
KS
2885 if (get_page_unless_zero(page)) {
2886 list_move(page_deferred_list(page), &list);
2887 } else {
2888 /* We lost race with put_compound_page() */
9a982250 2889 list_del_init(page_deferred_list(page));
364c1eeb 2890 ds_queue->split_queue_len--;
9a982250 2891 }
e3ae1953
KS
2892 if (!--sc->nr_to_scan)
2893 break;
9a982250 2894 }
364c1eeb 2895 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250
KS
2896
2897 list_for_each_safe(pos, next, &list) {
2898 page = list_entry((void *)pos, struct page, mapping);
fa41b900
KS
2899 if (!trylock_page(page))
2900 goto next;
9a982250
KS
2901 /* split_huge_page() removes page from list on success */
2902 if (!split_huge_page(page))
2903 split++;
2904 unlock_page(page);
fa41b900 2905next:
9a982250
KS
2906 put_page(page);
2907 }
2908
364c1eeb
YS
2909 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2910 list_splice_tail(&list, &ds_queue->split_queue);
2911 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250 2912
cb8d68ec
KS
2913 /*
2914 * Stop shrinker if we didn't split any page, but the queue is empty.
2915 * This can happen if pages were freed under us.
2916 */
364c1eeb 2917 if (!split && list_empty(&ds_queue->split_queue))
cb8d68ec
KS
2918 return SHRINK_STOP;
2919 return split;
9a982250
KS
2920}
2921
2922static struct shrinker deferred_split_shrinker = {
2923 .count_objects = deferred_split_count,
2924 .scan_objects = deferred_split_scan,
2925 .seeks = DEFAULT_SEEKS,
87eaceb3
YS
2926 .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2927 SHRINKER_NONSLAB,
9a982250 2928};
49071d43
KS
2929
2930#ifdef CONFIG_DEBUG_FS
2931static int split_huge_pages_set(void *data, u64 val)
2932{
2933 struct zone *zone;
2934 struct page *page;
2935 unsigned long pfn, max_zone_pfn;
2936 unsigned long total = 0, split = 0;
2937
2938 if (val != 1)
2939 return -EINVAL;
2940
2941 for_each_populated_zone(zone) {
2942 max_zone_pfn = zone_end_pfn(zone);
2943 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2944 if (!pfn_valid(pfn))
2945 continue;
2946
2947 page = pfn_to_page(pfn);
2948 if (!get_page_unless_zero(page))
2949 continue;
2950
2951 if (zone != page_zone(page))
2952 goto next;
2953
baa355fd 2954 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
49071d43
KS
2955 goto next;
2956
2957 total++;
2958 lock_page(page);
2959 if (!split_huge_page(page))
2960 split++;
2961 unlock_page(page);
2962next:
2963 put_page(page);
2964 }
2965 }
2966
145bdaa1 2967 pr_info("%lu of %lu THP split\n", split, total);
49071d43
KS
2968
2969 return 0;
2970}
f1287869 2971DEFINE_DEBUGFS_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
49071d43
KS
2972 "%llu\n");
2973
2974static int __init split_huge_pages_debugfs(void)
2975{
d9f7979c
GKH
2976 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2977 &split_huge_pages_fops);
49071d43
KS
2978 return 0;
2979}
2980late_initcall(split_huge_pages_debugfs);
2981#endif
616b8371
ZY
2982
2983#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2984void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2985 struct page *page)
2986{
2987 struct vm_area_struct *vma = pvmw->vma;
2988 struct mm_struct *mm = vma->vm_mm;
2989 unsigned long address = pvmw->address;
2990 pmd_t pmdval;
2991 swp_entry_t entry;
ab6e3d09 2992 pmd_t pmdswp;
616b8371
ZY
2993
2994 if (!(pvmw->pmd && !pvmw->pte))
2995 return;
2996
616b8371 2997 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
8a8683ad 2998 pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
616b8371
ZY
2999 if (pmd_dirty(pmdval))
3000 set_page_dirty(page);
3001 entry = make_migration_entry(page, pmd_write(pmdval));
ab6e3d09
NH
3002 pmdswp = swp_entry_to_pmd(entry);
3003 if (pmd_soft_dirty(pmdval))
3004 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3005 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
616b8371
ZY
3006 page_remove_rmap(page, true);
3007 put_page(page);
616b8371
ZY
3008}
3009
3010void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3011{
3012 struct vm_area_struct *vma = pvmw->vma;
3013 struct mm_struct *mm = vma->vm_mm;
3014 unsigned long address = pvmw->address;
3015 unsigned long mmun_start = address & HPAGE_PMD_MASK;
3016 pmd_t pmde;
3017 swp_entry_t entry;
3018
3019 if (!(pvmw->pmd && !pvmw->pte))
3020 return;
3021
3022 entry = pmd_to_swp_entry(*pvmw->pmd);
3023 get_page(new);
3024 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
ab6e3d09
NH
3025 if (pmd_swp_soft_dirty(*pvmw->pmd))
3026 pmde = pmd_mksoft_dirty(pmde);
616b8371 3027 if (is_write_migration_entry(entry))
f55e1014 3028 pmde = maybe_pmd_mkwrite(pmde, vma);
616b8371
ZY
3029
3030 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
e71769ae
NH
3031 if (PageAnon(new))
3032 page_add_anon_rmap(new, vma, mmun_start, true);
3033 else
3034 page_add_file_rmap(new, true);
616b8371 3035 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
e125fe40 3036 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
616b8371
ZY
3037 mlock_vma_page(new);
3038 update_mmu_cache_pmd(vma, address, pvmw->pmd);
3039}
3040#endif