Commit | Line | Data |
---|---|---|
c942fddf | 1 | // SPDX-License-Identifier: GPL-2.0-or-later |
133ff0ea JG |
2 | /* |
3 | * Copyright 2013 Red Hat Inc. | |
4 | * | |
f813f219 | 5 | * Authors: Jérôme Glisse <jglisse@redhat.com> |
133ff0ea JG |
6 | */ |
7 | /* | |
8 | * Refer to include/linux/hmm.h for information about heterogeneous memory | |
9 | * management or HMM for short. | |
10 | */ | |
a520110e | 11 | #include <linux/pagewalk.h> |
133ff0ea | 12 | #include <linux/hmm.h> |
8cad4713 | 13 | #include <linux/hmm-dma.h> |
858b54da | 14 | #include <linux/init.h> |
da4c3c73 JG |
15 | #include <linux/rmap.h> |
16 | #include <linux/swap.h> | |
133ff0ea JG |
17 | #include <linux/slab.h> |
18 | #include <linux/sched.h> | |
4ef589dc JG |
19 | #include <linux/mmzone.h> |
20 | #include <linux/pagemap.h> | |
da4c3c73 JG |
21 | #include <linux/swapops.h> |
22 | #include <linux/hugetlb.h> | |
4ef589dc | 23 | #include <linux/memremap.h> |
c8a53b2d | 24 | #include <linux/sched/mm.h> |
7b2d55d2 | 25 | #include <linux/jump_label.h> |
55c0ece8 | 26 | #include <linux/dma-mapping.h> |
8cad4713 | 27 | #include <linux/pci-p2pdma.h> |
c0b12405 | 28 | #include <linux/mmu_notifier.h> |
4ef589dc JG |
29 | #include <linux/memory_hotplug.h> |
30 | ||
b756a3b5 AP |
31 | #include "internal.h" |
32 | ||
74eee180 JG |
33 | struct hmm_vma_walk { |
34 | struct hmm_range *range; | |
35 | unsigned long last; | |
74eee180 JG |
36 | }; |
37 | ||
a3eb13c1 JG |
38 | enum { |
39 | HMM_NEED_FAULT = 1 << 0, | |
40 | HMM_NEED_WRITE_FAULT = 1 << 1, | |
41 | HMM_NEED_ALL_BITS = HMM_NEED_FAULT | HMM_NEED_WRITE_FAULT, | |
42 | }; | |
43 | ||
285e8718 LR |
44 | enum { |
45 | /* These flags are carried from input-to-output */ | |
8cad4713 LR |
46 | HMM_PFN_INOUT_FLAGS = HMM_PFN_DMA_MAPPED | HMM_PFN_P2PDMA | |
47 | HMM_PFN_P2PDMA_BUS, | |
285e8718 LR |
48 | }; |
49 | ||
d28c2c9a | 50 | static int hmm_pfns_fill(unsigned long addr, unsigned long end, |
2733ea14 | 51 | struct hmm_range *range, unsigned long cpu_flags) |
da4c3c73 | 52 | { |
2733ea14 | 53 | unsigned long i = (addr - range->start) >> PAGE_SHIFT; |
da4c3c73 | 54 | |
285e8718 LR |
55 | for (; addr < end; addr += PAGE_SIZE, i++) { |
56 | range->hmm_pfns[i] &= HMM_PFN_INOUT_FLAGS; | |
57 | range->hmm_pfns[i] |= cpu_flags; | |
58 | } | |
da4c3c73 JG |
59 | return 0; |
60 | } | |
61 | ||
5504ed29 | 62 | /* |
f8c888a3 | 63 | * hmm_vma_fault() - fault in a range lacking valid pmd or pte(s) |
d2e8d551 | 64 | * @addr: range virtual start address (inclusive) |
5504ed29 | 65 | * @end: range virtual end address (exclusive) |
a3eb13c1 | 66 | * @required_fault: HMM_NEED_* flags |
5504ed29 | 67 | * @walk: mm_walk structure |
f8c888a3 | 68 | * Return: -EBUSY after page fault, or page fault error |
5504ed29 JG |
69 | * |
70 | * This function will be called whenever pmd_none() or pte_none() returns true, | |
71 | * or whenever there is no page directory covering the virtual address range. | |
72 | */ | |
f8c888a3 | 73 | static int hmm_vma_fault(unsigned long addr, unsigned long end, |
a3eb13c1 | 74 | unsigned int required_fault, struct mm_walk *walk) |
da4c3c73 | 75 | { |
74eee180 | 76 | struct hmm_vma_walk *hmm_vma_walk = walk->private; |
5a0c38d3 | 77 | struct vm_area_struct *vma = walk->vma; |
5a0c38d3 | 78 | unsigned int fault_flags = FAULT_FLAG_REMOTE; |
da4c3c73 | 79 | |
a3eb13c1 | 80 | WARN_ON_ONCE(!required_fault); |
74eee180 | 81 | hmm_vma_walk->last = addr; |
63d5066f | 82 | |
a3eb13c1 | 83 | if (required_fault & HMM_NEED_WRITE_FAULT) { |
5a0c38d3 CH |
84 | if (!(vma->vm_flags & VM_WRITE)) |
85 | return -EPERM; | |
86 | fault_flags |= FAULT_FLAG_WRITE; | |
74eee180 JG |
87 | } |
88 | ||
53bfe17f | 89 | for (; addr < end; addr += PAGE_SIZE) |
bce617ed PX |
90 | if (handle_mm_fault(vma, addr, fault_flags, NULL) & |
91 | VM_FAULT_ERROR) | |
53bfe17f | 92 | return -EFAULT; |
f8c888a3 | 93 | return -EBUSY; |
2aee09d8 JG |
94 | } |
95 | ||
a3eb13c1 | 96 | static unsigned int hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk, |
2733ea14 JG |
97 | unsigned long pfn_req_flags, |
98 | unsigned long cpu_flags) | |
2aee09d8 | 99 | { |
f88a1e90 JG |
100 | struct hmm_range *range = hmm_vma_walk->range; |
101 | ||
023a019a JG |
102 | /* |
103 | * So we not only consider the individual per page request we also | |
104 | * consider the default flags requested for the range. The API can | |
d2e8d551 RC |
105 | * be used 2 ways. The first one where the HMM user coalesces |
106 | * multiple page faults into one request and sets flags per pfn for | |
107 | * those faults. The second one where the HMM user wants to pre- | |
023a019a JG |
108 | * fault a range with specific flags. For the latter one it is a |
109 | * waste to have the user pre-fill the pfn arrays with a default | |
110 | * flags value. | |
111 | */ | |
2733ea14 JG |
112 | pfn_req_flags &= range->pfn_flags_mask; |
113 | pfn_req_flags |= range->default_flags; | |
023a019a | 114 | |
2aee09d8 | 115 | /* We aren't ask to do anything ... */ |
2733ea14 | 116 | if (!(pfn_req_flags & HMM_PFN_REQ_FAULT)) |
a3eb13c1 | 117 | return 0; |
f88a1e90 | 118 | |
f88a1e90 | 119 | /* Need to write fault ? */ |
2733ea14 JG |
120 | if ((pfn_req_flags & HMM_PFN_REQ_WRITE) && |
121 | !(cpu_flags & HMM_PFN_WRITE)) | |
a3eb13c1 JG |
122 | return HMM_NEED_FAULT | HMM_NEED_WRITE_FAULT; |
123 | ||
124 | /* If CPU page table is not valid then we need to fault */ | |
2733ea14 | 125 | if (!(cpu_flags & HMM_PFN_VALID)) |
a3eb13c1 JG |
126 | return HMM_NEED_FAULT; |
127 | return 0; | |
2aee09d8 JG |
128 | } |
129 | ||
a3eb13c1 JG |
130 | static unsigned int |
131 | hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk, | |
2733ea14 JG |
132 | const unsigned long hmm_pfns[], unsigned long npages, |
133 | unsigned long cpu_flags) | |
2aee09d8 | 134 | { |
6bfef2f9 | 135 | struct hmm_range *range = hmm_vma_walk->range; |
a3eb13c1 | 136 | unsigned int required_fault = 0; |
2aee09d8 JG |
137 | unsigned long i; |
138 | ||
6bfef2f9 JG |
139 | /* |
140 | * If the default flags do not request to fault pages, and the mask does | |
141 | * not allow for individual pages to be faulted, then | |
142 | * hmm_pte_need_fault() will always return 0. | |
143 | */ | |
144 | if (!((range->default_flags | range->pfn_flags_mask) & | |
2733ea14 | 145 | HMM_PFN_REQ_FAULT)) |
a3eb13c1 | 146 | return 0; |
2aee09d8 JG |
147 | |
148 | for (i = 0; i < npages; ++i) { | |
2733ea14 JG |
149 | required_fault |= hmm_pte_need_fault(hmm_vma_walk, hmm_pfns[i], |
150 | cpu_flags); | |
a3eb13c1 JG |
151 | if (required_fault == HMM_NEED_ALL_BITS) |
152 | return required_fault; | |
2aee09d8 | 153 | } |
a3eb13c1 | 154 | return required_fault; |
2aee09d8 JG |
155 | } |
156 | ||
157 | static int hmm_vma_walk_hole(unsigned long addr, unsigned long end, | |
b7a16c7a | 158 | __always_unused int depth, struct mm_walk *walk) |
2aee09d8 JG |
159 | { |
160 | struct hmm_vma_walk *hmm_vma_walk = walk->private; | |
161 | struct hmm_range *range = hmm_vma_walk->range; | |
a3eb13c1 | 162 | unsigned int required_fault; |
2aee09d8 | 163 | unsigned long i, npages; |
2733ea14 | 164 | unsigned long *hmm_pfns; |
2aee09d8 JG |
165 | |
166 | i = (addr - range->start) >> PAGE_SHIFT; | |
167 | npages = (end - addr) >> PAGE_SHIFT; | |
2733ea14 JG |
168 | hmm_pfns = &range->hmm_pfns[i]; |
169 | required_fault = | |
170 | hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0); | |
bd5d3587 JG |
171 | if (!walk->vma) { |
172 | if (required_fault) | |
173 | return -EFAULT; | |
174 | return hmm_pfns_fill(addr, end, range, HMM_PFN_ERROR); | |
175 | } | |
a3eb13c1 JG |
176 | if (required_fault) |
177 | return hmm_vma_fault(addr, end, required_fault, walk); | |
2733ea14 | 178 | return hmm_pfns_fill(addr, end, range, 0); |
2aee09d8 JG |
179 | } |
180 | ||
3b50a6e5 RC |
181 | static inline unsigned long hmm_pfn_flags_order(unsigned long order) |
182 | { | |
183 | return order << HMM_PFN_ORDER_SHIFT; | |
184 | } | |
185 | ||
2733ea14 JG |
186 | static inline unsigned long pmd_to_hmm_pfn_flags(struct hmm_range *range, |
187 | pmd_t pmd) | |
2aee09d8 JG |
188 | { |
189 | if (pmd_protnone(pmd)) | |
190 | return 0; | |
3b50a6e5 RC |
191 | return (pmd_write(pmd) ? (HMM_PFN_VALID | HMM_PFN_WRITE) : |
192 | HMM_PFN_VALID) | | |
193 | hmm_pfn_flags_order(PMD_SHIFT - PAGE_SHIFT); | |
da4c3c73 JG |
194 | } |
195 | ||
992de9a8 | 196 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
9d3973d6 | 197 | static int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr, |
2733ea14 JG |
198 | unsigned long end, unsigned long hmm_pfns[], |
199 | pmd_t pmd) | |
9d3973d6 | 200 | { |
53f5c3f4 | 201 | struct hmm_vma_walk *hmm_vma_walk = walk->private; |
f88a1e90 | 202 | struct hmm_range *range = hmm_vma_walk->range; |
2aee09d8 | 203 | unsigned long pfn, npages, i; |
a3eb13c1 | 204 | unsigned int required_fault; |
2733ea14 | 205 | unsigned long cpu_flags; |
53f5c3f4 | 206 | |
2aee09d8 | 207 | npages = (end - addr) >> PAGE_SHIFT; |
f88a1e90 | 208 | cpu_flags = pmd_to_hmm_pfn_flags(range, pmd); |
a3eb13c1 | 209 | required_fault = |
2733ea14 | 210 | hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, cpu_flags); |
a3eb13c1 JG |
211 | if (required_fault) |
212 | return hmm_vma_fault(addr, end, required_fault, walk); | |
53f5c3f4 | 213 | |
309f9a4f | 214 | pfn = pmd_pfn(pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); |
285e8718 LR |
215 | for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++) { |
216 | hmm_pfns[i] &= HMM_PFN_INOUT_FLAGS; | |
217 | hmm_pfns[i] |= pfn | cpu_flags; | |
218 | } | |
53f5c3f4 JG |
219 | return 0; |
220 | } | |
9d3973d6 CH |
221 | #else /* CONFIG_TRANSPARENT_HUGEPAGE */ |
222 | /* stub to allow the code below to compile */ | |
223 | int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr, | |
2733ea14 | 224 | unsigned long end, unsigned long hmm_pfns[], pmd_t pmd); |
9d3973d6 | 225 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |
53f5c3f4 | 226 | |
2733ea14 JG |
227 | static inline unsigned long pte_to_hmm_pfn_flags(struct hmm_range *range, |
228 | pte_t pte) | |
2aee09d8 | 229 | { |
789c2af8 | 230 | if (pte_none(pte) || !pte_present(pte) || pte_protnone(pte)) |
2aee09d8 | 231 | return 0; |
2733ea14 | 232 | return pte_write(pte) ? (HMM_PFN_VALID | HMM_PFN_WRITE) : HMM_PFN_VALID; |
2aee09d8 JG |
233 | } |
234 | ||
53f5c3f4 JG |
235 | static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr, |
236 | unsigned long end, pmd_t *pmdp, pte_t *ptep, | |
2733ea14 | 237 | unsigned long *hmm_pfn) |
53f5c3f4 JG |
238 | { |
239 | struct hmm_vma_walk *hmm_vma_walk = walk->private; | |
f88a1e90 | 240 | struct hmm_range *range = hmm_vma_walk->range; |
a3eb13c1 | 241 | unsigned int required_fault; |
2733ea14 | 242 | unsigned long cpu_flags; |
c33c7948 | 243 | pte_t pte = ptep_get(ptep); |
2733ea14 | 244 | uint64_t pfn_req_flags = *hmm_pfn; |
285e8718 | 245 | uint64_t new_pfn_flags = 0; |
53f5c3f4 | 246 | |
5c041f5d | 247 | if (pte_none_mostly(pte)) { |
2733ea14 JG |
248 | required_fault = |
249 | hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0); | |
a3eb13c1 | 250 | if (required_fault) |
53f5c3f4 | 251 | goto fault; |
285e8718 | 252 | goto out; |
53f5c3f4 JG |
253 | } |
254 | ||
255 | if (!pte_present(pte)) { | |
256 | swp_entry_t entry = pte_to_swp_entry(pte); | |
257 | ||
53f5c3f4 | 258 | /* |
8a295dbb RC |
259 | * Don't fault in device private pages owned by the caller, |
260 | * just report the PFN. | |
53f5c3f4 | 261 | */ |
8a295dbb | 262 | if (is_device_private_entry(entry) && |
82ba975e | 263 | page_pgmap(pfn_swap_entry_to_page(entry))->owner == |
8a295dbb | 264 | range->dev_private_owner) { |
2733ea14 | 265 | cpu_flags = HMM_PFN_VALID; |
4dd845b5 | 266 | if (is_writable_device_private_entry(entry)) |
2733ea14 | 267 | cpu_flags |= HMM_PFN_WRITE; |
285e8718 LR |
268 | new_pfn_flags = swp_offset_pfn(entry) | cpu_flags; |
269 | goto out; | |
53f5c3f4 JG |
270 | } |
271 | ||
2733ea14 JG |
272 | required_fault = |
273 | hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0); | |
285e8718 LR |
274 | if (!required_fault) |
275 | goto out; | |
76612d6c JG |
276 | |
277 | if (!non_swap_entry(entry)) | |
278 | goto fault; | |
279 | ||
8a295dbb RC |
280 | if (is_device_private_entry(entry)) |
281 | goto fault; | |
282 | ||
b756a3b5 AP |
283 | if (is_device_exclusive_entry(entry)) |
284 | goto fault; | |
285 | ||
76612d6c JG |
286 | if (is_migration_entry(entry)) { |
287 | pte_unmap(ptep); | |
288 | hmm_vma_walk->last = addr; | |
289 | migration_entry_wait(walk->mm, pmdp, addr); | |
290 | return -EBUSY; | |
53f5c3f4 JG |
291 | } |
292 | ||
293 | /* Report error for everything else */ | |
dfdc2207 | 294 | pte_unmap(ptep); |
53f5c3f4 JG |
295 | return -EFAULT; |
296 | } | |
297 | ||
76612d6c | 298 | cpu_flags = pte_to_hmm_pfn_flags(range, pte); |
2733ea14 JG |
299 | required_fault = |
300 | hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, cpu_flags); | |
a3eb13c1 | 301 | if (required_fault) |
53f5c3f4 JG |
302 | goto fault; |
303 | ||
40550627 | 304 | /* |
4b42fb21 LZ |
305 | * Bypass devmap pte such as DAX page when all pfn requested |
306 | * flags(pfn_req_flags) are fulfilled. | |
40550627 JG |
307 | * Since each architecture defines a struct page for the zero page, just |
308 | * fall through and treat it like a normal page. | |
309 | */ | |
87c01d57 AP |
310 | if (!vm_normal_page(walk->vma, addr, pte) && |
311 | !pte_devmap(pte) && | |
4b42fb21 | 312 | !is_zero_pfn(pte_pfn(pte))) { |
2733ea14 | 313 | if (hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0)) { |
dfdc2207 | 314 | pte_unmap(ptep); |
ac541f25 RC |
315 | return -EFAULT; |
316 | } | |
285e8718 LR |
317 | new_pfn_flags = HMM_PFN_ERROR; |
318 | goto out; | |
992de9a8 JG |
319 | } |
320 | ||
285e8718 LR |
321 | new_pfn_flags = pte_pfn(pte) | cpu_flags; |
322 | out: | |
323 | *hmm_pfn = (*hmm_pfn & HMM_PFN_INOUT_FLAGS) | new_pfn_flags; | |
53f5c3f4 JG |
324 | return 0; |
325 | ||
326 | fault: | |
327 | pte_unmap(ptep); | |
328 | /* Fault any virtual address we were asked to fault */ | |
a3eb13c1 | 329 | return hmm_vma_fault(addr, end, required_fault, walk); |
53f5c3f4 JG |
330 | } |
331 | ||
da4c3c73 JG |
332 | static int hmm_vma_walk_pmd(pmd_t *pmdp, |
333 | unsigned long start, | |
334 | unsigned long end, | |
335 | struct mm_walk *walk) | |
336 | { | |
74eee180 JG |
337 | struct hmm_vma_walk *hmm_vma_walk = walk->private; |
338 | struct hmm_range *range = hmm_vma_walk->range; | |
2733ea14 JG |
339 | unsigned long *hmm_pfns = |
340 | &range->hmm_pfns[(start - range->start) >> PAGE_SHIFT]; | |
2288a9a6 JG |
341 | unsigned long npages = (end - start) >> PAGE_SHIFT; |
342 | unsigned long addr = start; | |
da4c3c73 | 343 | pte_t *ptep; |
d08faca0 | 344 | pmd_t pmd; |
da4c3c73 | 345 | |
da4c3c73 | 346 | again: |
26e1a0c3 | 347 | pmd = pmdp_get_lockless(pmdp); |
d08faca0 | 348 | if (pmd_none(pmd)) |
b7a16c7a | 349 | return hmm_vma_walk_hole(start, end, -1, walk); |
da4c3c73 | 350 | |
d08faca0 | 351 | if (thp_migration_supported() && is_pmd_migration_entry(pmd)) { |
2733ea14 | 352 | if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0)) { |
d08faca0 | 353 | hmm_vma_walk->last = addr; |
d2e8d551 | 354 | pmd_migration_entry_wait(walk->mm, pmdp); |
73231612 | 355 | return -EBUSY; |
d08faca0 | 356 | } |
2733ea14 | 357 | return hmm_pfns_fill(start, end, range, 0); |
2288a9a6 JG |
358 | } |
359 | ||
360 | if (!pmd_present(pmd)) { | |
2733ea14 | 361 | if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0)) |
2288a9a6 | 362 | return -EFAULT; |
d28c2c9a | 363 | return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR); |
2288a9a6 | 364 | } |
da4c3c73 | 365 | |
d08faca0 | 366 | if (pmd_devmap(pmd) || pmd_trans_huge(pmd)) { |
da4c3c73 | 367 | /* |
d2e8d551 | 368 | * No need to take pmd_lock here, even if some other thread |
da4c3c73 JG |
369 | * is splitting the huge pmd we will get that event through |
370 | * mmu_notifier callback. | |
371 | * | |
d2e8d551 | 372 | * So just read pmd value and check again it's a transparent |
da4c3c73 JG |
373 | * huge or device mapping one and compute corresponding pfn |
374 | * values. | |
375 | */ | |
dab6e717 | 376 | pmd = pmdp_get_lockless(pmdp); |
da4c3c73 JG |
377 | if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd)) |
378 | goto again; | |
74eee180 | 379 | |
2733ea14 | 380 | return hmm_vma_handle_pmd(walk, addr, end, hmm_pfns, pmd); |
da4c3c73 JG |
381 | } |
382 | ||
d08faca0 | 383 | /* |
d2e8d551 | 384 | * We have handled all the valid cases above ie either none, migration, |
d08faca0 JG |
385 | * huge or transparent huge. At this point either it is a valid pmd |
386 | * entry pointing to pte directory or it is a bad pmd that will not | |
387 | * recover. | |
388 | */ | |
2288a9a6 | 389 | if (pmd_bad(pmd)) { |
2733ea14 | 390 | if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0)) |
2288a9a6 | 391 | return -EFAULT; |
d28c2c9a | 392 | return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR); |
2288a9a6 | 393 | } |
da4c3c73 JG |
394 | |
395 | ptep = pte_offset_map(pmdp, addr); | |
6ec1905f HD |
396 | if (!ptep) |
397 | goto again; | |
2733ea14 | 398 | for (; addr < end; addr += PAGE_SIZE, ptep++, hmm_pfns++) { |
53f5c3f4 | 399 | int r; |
74eee180 | 400 | |
2733ea14 | 401 | r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, hmm_pfns); |
53f5c3f4 | 402 | if (r) { |
dfdc2207 | 403 | /* hmm_vma_handle_pte() did pte_unmap() */ |
53f5c3f4 | 404 | return r; |
74eee180 | 405 | } |
da4c3c73 JG |
406 | } |
407 | pte_unmap(ptep - 1); | |
da4c3c73 JG |
408 | return 0; |
409 | } | |
410 | ||
f0b3c45c CH |
411 | #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && \ |
412 | defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) | |
2733ea14 JG |
413 | static inline unsigned long pud_to_hmm_pfn_flags(struct hmm_range *range, |
414 | pud_t pud) | |
f0b3c45c CH |
415 | { |
416 | if (!pud_present(pud)) | |
417 | return 0; | |
3b50a6e5 RC |
418 | return (pud_write(pud) ? (HMM_PFN_VALID | HMM_PFN_WRITE) : |
419 | HMM_PFN_VALID) | | |
420 | hmm_pfn_flags_order(PUD_SHIFT - PAGE_SHIFT); | |
f0b3c45c CH |
421 | } |
422 | ||
423 | static int hmm_vma_walk_pud(pud_t *pudp, unsigned long start, unsigned long end, | |
424 | struct mm_walk *walk) | |
992de9a8 JG |
425 | { |
426 | struct hmm_vma_walk *hmm_vma_walk = walk->private; | |
427 | struct hmm_range *range = hmm_vma_walk->range; | |
3afc4236 | 428 | unsigned long addr = start; |
992de9a8 | 429 | pud_t pud; |
3afc4236 SP |
430 | spinlock_t *ptl = pud_trans_huge_lock(pudp, walk->vma); |
431 | ||
432 | if (!ptl) | |
433 | return 0; | |
434 | ||
435 | /* Normally we don't want to split the huge page */ | |
436 | walk->action = ACTION_CONTINUE; | |
992de9a8 | 437 | |
992de9a8 | 438 | pud = READ_ONCE(*pudp); |
9abc71b4 | 439 | if (!pud_present(pud)) { |
05fc1df9 JG |
440 | spin_unlock(ptl); |
441 | return hmm_vma_walk_hole(start, end, -1, walk); | |
3afc4236 | 442 | } |
992de9a8 | 443 | |
1965e933 | 444 | if (pud_leaf(pud) && pud_devmap(pud)) { |
992de9a8 | 445 | unsigned long i, npages, pfn; |
a3eb13c1 | 446 | unsigned int required_fault; |
2733ea14 JG |
447 | unsigned long *hmm_pfns; |
448 | unsigned long cpu_flags; | |
992de9a8 | 449 | |
992de9a8 JG |
450 | i = (addr - range->start) >> PAGE_SHIFT; |
451 | npages = (end - addr) >> PAGE_SHIFT; | |
2733ea14 | 452 | hmm_pfns = &range->hmm_pfns[i]; |
992de9a8 JG |
453 | |
454 | cpu_flags = pud_to_hmm_pfn_flags(range, pud); | |
2733ea14 | 455 | required_fault = hmm_range_need_fault(hmm_vma_walk, hmm_pfns, |
a3eb13c1 JG |
456 | npages, cpu_flags); |
457 | if (required_fault) { | |
05fc1df9 | 458 | spin_unlock(ptl); |
a3eb13c1 | 459 | return hmm_vma_fault(addr, end, required_fault, walk); |
3afc4236 | 460 | } |
992de9a8 | 461 | |
992de9a8 | 462 | pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); |
285e8718 LR |
463 | for (i = 0; i < npages; ++i, ++pfn) { |
464 | hmm_pfns[i] &= HMM_PFN_INOUT_FLAGS; | |
465 | hmm_pfns[i] |= pfn | cpu_flags; | |
466 | } | |
3afc4236 | 467 | goto out_unlock; |
992de9a8 JG |
468 | } |
469 | ||
3afc4236 SP |
470 | /* Ask for the PUD to be split */ |
471 | walk->action = ACTION_SUBTREE; | |
992de9a8 | 472 | |
3afc4236 SP |
473 | out_unlock: |
474 | spin_unlock(ptl); | |
d0977efa | 475 | return 0; |
992de9a8 | 476 | } |
f0b3c45c CH |
477 | #else |
478 | #define hmm_vma_walk_pud NULL | |
479 | #endif | |
992de9a8 | 480 | |
251bbe59 | 481 | #ifdef CONFIG_HUGETLB_PAGE |
63d5066f JG |
482 | static int hmm_vma_walk_hugetlb_entry(pte_t *pte, unsigned long hmask, |
483 | unsigned long start, unsigned long end, | |
484 | struct mm_walk *walk) | |
485 | { | |
05c23af4 | 486 | unsigned long addr = start, i, pfn; |
63d5066f JG |
487 | struct hmm_vma_walk *hmm_vma_walk = walk->private; |
488 | struct hmm_range *range = hmm_vma_walk->range; | |
489 | struct vm_area_struct *vma = walk->vma; | |
a3eb13c1 | 490 | unsigned int required_fault; |
2733ea14 JG |
491 | unsigned long pfn_req_flags; |
492 | unsigned long cpu_flags; | |
63d5066f JG |
493 | spinlock_t *ptl; |
494 | pte_t entry; | |
63d5066f | 495 | |
d2e8d551 | 496 | ptl = huge_pte_lock(hstate_vma(vma), walk->mm, pte); |
e6c0c032 | 497 | entry = huge_ptep_get(walk->mm, addr, pte); |
63d5066f | 498 | |
7f08263d | 499 | i = (start - range->start) >> PAGE_SHIFT; |
2733ea14 | 500 | pfn_req_flags = range->hmm_pfns[i]; |
3b50a6e5 RC |
501 | cpu_flags = pte_to_hmm_pfn_flags(range, entry) | |
502 | hmm_pfn_flags_order(huge_page_order(hstate_vma(vma))); | |
2733ea14 JG |
503 | required_fault = |
504 | hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, cpu_flags); | |
a3eb13c1 | 505 | if (required_fault) { |
dd361e50 PX |
506 | int ret; |
507 | ||
45050692 | 508 | spin_unlock(ptl); |
dd361e50 PX |
509 | hugetlb_vma_unlock_read(vma); |
510 | /* | |
511 | * Avoid deadlock: drop the vma lock before calling | |
512 | * hmm_vma_fault(), which will itself potentially take and | |
513 | * drop the vma lock. This is also correct from a | |
514 | * protection point of view, because there is no further | |
515 | * use here of either pte or ptl after dropping the vma | |
516 | * lock. | |
517 | */ | |
518 | ret = hmm_vma_fault(addr, end, required_fault, walk); | |
519 | hugetlb_vma_lock_read(vma); | |
520 | return ret; | |
63d5066f JG |
521 | } |
522 | ||
05c23af4 | 523 | pfn = pte_pfn(entry) + ((start & ~hmask) >> PAGE_SHIFT); |
285e8718 LR |
524 | for (; addr < end; addr += PAGE_SIZE, i++, pfn++) { |
525 | range->hmm_pfns[i] &= HMM_PFN_INOUT_FLAGS; | |
526 | range->hmm_pfns[i] |= pfn | cpu_flags; | |
527 | } | |
2733ea14 | 528 | |
63d5066f | 529 | spin_unlock(ptl); |
45050692 | 530 | return 0; |
63d5066f | 531 | } |
251bbe59 CH |
532 | #else |
533 | #define hmm_vma_walk_hugetlb_entry NULL | |
534 | #endif /* CONFIG_HUGETLB_PAGE */ | |
63d5066f | 535 | |
d28c2c9a RC |
536 | static int hmm_vma_walk_test(unsigned long start, unsigned long end, |
537 | struct mm_walk *walk) | |
33cd47dc | 538 | { |
d28c2c9a RC |
539 | struct hmm_vma_walk *hmm_vma_walk = walk->private; |
540 | struct hmm_range *range = hmm_vma_walk->range; | |
541 | struct vm_area_struct *vma = walk->vma; | |
542 | ||
87c01d57 | 543 | if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)) && |
a3eb13c1 JG |
544 | vma->vm_flags & VM_READ) |
545 | return 0; | |
546 | ||
d28c2c9a | 547 | /* |
a3eb13c1 JG |
548 | * vma ranges that don't have struct page backing them or map I/O |
549 | * devices directly cannot be handled by hmm_range_fault(). | |
c2579c9c | 550 | * |
d28c2c9a | 551 | * If the vma does not allow read access, then assume that it does not |
c2579c9c JG |
552 | * allow write access either. HMM does not support architectures that |
553 | * allow write without read. | |
a3eb13c1 JG |
554 | * |
555 | * If a fault is requested for an unsupported range then it is a hard | |
556 | * failure. | |
d28c2c9a | 557 | */ |
a3eb13c1 | 558 | if (hmm_range_need_fault(hmm_vma_walk, |
2733ea14 | 559 | range->hmm_pfns + |
a3eb13c1 JG |
560 | ((start - range->start) >> PAGE_SHIFT), |
561 | (end - start) >> PAGE_SHIFT, 0)) | |
562 | return -EFAULT; | |
d28c2c9a | 563 | |
a3eb13c1 | 564 | hmm_pfns_fill(start, end, range, HMM_PFN_ERROR); |
d28c2c9a | 565 | |
a3eb13c1 JG |
566 | /* Skip this vma and continue processing the next vma. */ |
567 | return 1; | |
33cd47dc JG |
568 | } |
569 | ||
7b86ac33 CH |
570 | static const struct mm_walk_ops hmm_walk_ops = { |
571 | .pud_entry = hmm_vma_walk_pud, | |
572 | .pmd_entry = hmm_vma_walk_pmd, | |
573 | .pte_hole = hmm_vma_walk_hole, | |
574 | .hugetlb_entry = hmm_vma_walk_hugetlb_entry, | |
d28c2c9a | 575 | .test_walk = hmm_vma_walk_test, |
49b06385 | 576 | .walk_lock = PGWALK_RDLOCK, |
7b86ac33 CH |
577 | }; |
578 | ||
9a4903e4 CH |
579 | /** |
580 | * hmm_range_fault - try to fault some address in a virtual address range | |
f970b977 | 581 | * @range: argument structure |
9a4903e4 | 582 | * |
be957c88 | 583 | * Returns 0 on success or one of the following error codes: |
73231612 | 584 | * |
9a4903e4 CH |
585 | * -EINVAL: Invalid arguments or mm or virtual address is in an invalid vma |
586 | * (e.g., device file vma). | |
587 | * -ENOMEM: Out of memory. | |
588 | * -EPERM: Invalid permission (e.g., asking for write and range is read | |
589 | * only). | |
9a4903e4 CH |
590 | * -EBUSY: The range has been invalidated and the caller needs to wait for |
591 | * the invalidation to finish. | |
f970b977 JG |
592 | * -EFAULT: A page was requested to be valid and could not be made valid |
593 | * ie it has no backing VMA or it is illegal to access | |
74eee180 | 594 | * |
f970b977 JG |
595 | * This is similar to get_user_pages(), except that it can read the page tables |
596 | * without mutating them (ie causing faults). | |
74eee180 | 597 | */ |
be957c88 | 598 | int hmm_range_fault(struct hmm_range *range) |
74eee180 | 599 | { |
d28c2c9a RC |
600 | struct hmm_vma_walk hmm_vma_walk = { |
601 | .range = range, | |
602 | .last = range->start, | |
d28c2c9a | 603 | }; |
a22dd506 | 604 | struct mm_struct *mm = range->notifier->mm; |
74eee180 JG |
605 | int ret; |
606 | ||
42fc5414 | 607 | mmap_assert_locked(mm); |
704f3f2c | 608 | |
a3e0d41c JG |
609 | do { |
610 | /* If range is no longer valid force retry. */ | |
a22dd506 JG |
611 | if (mmu_interval_check_retry(range->notifier, |
612 | range->notifier_seq)) | |
2bcbeaef | 613 | return -EBUSY; |
d28c2c9a RC |
614 | ret = walk_page_range(mm, hmm_vma_walk.last, range->end, |
615 | &hmm_walk_ops, &hmm_vma_walk); | |
be957c88 JG |
616 | /* |
617 | * When -EBUSY is returned the loop restarts with | |
618 | * hmm_vma_walk.last set to an address that has not been stored | |
619 | * in pfns. All entries < last in the pfn array are set to their | |
620 | * output, and all >= are still at their input values. | |
621 | */ | |
d28c2c9a | 622 | } while (ret == -EBUSY); |
be957c88 | 623 | return ret; |
74eee180 | 624 | } |
73231612 | 625 | EXPORT_SYMBOL(hmm_range_fault); |
8cad4713 LR |
626 | |
627 | /** | |
628 | * hmm_dma_map_alloc - Allocate HMM map structure | |
629 | * @dev: device to allocate structure for | |
630 | * @map: HMM map to allocate | |
631 | * @nr_entries: number of entries in the map | |
632 | * @dma_entry_size: size of the DMA entry in the map | |
633 | * | |
634 | * Allocate the HMM map structure and all the lists it contains. | |
635 | * Return 0 on success, -ENOMEM on failure. | |
636 | */ | |
637 | int hmm_dma_map_alloc(struct device *dev, struct hmm_dma_map *map, | |
638 | size_t nr_entries, size_t dma_entry_size) | |
639 | { | |
640 | bool dma_need_sync = false; | |
641 | bool use_iova; | |
642 | ||
259e9bd0 | 643 | WARN_ON_ONCE(!(nr_entries * PAGE_SIZE / dma_entry_size)); |
8cad4713 LR |
644 | |
645 | /* | |
646 | * The HMM API violates our normal DMA buffer ownership rules and can't | |
647 | * transfer buffer ownership. The dma_addressing_limited() check is a | |
648 | * best approximation to ensure no swiotlb buffering happens. | |
649 | */ | |
650 | #ifdef CONFIG_DMA_NEED_SYNC | |
651 | dma_need_sync = !dev->dma_skip_sync; | |
652 | #endif /* CONFIG_DMA_NEED_SYNC */ | |
653 | if (dma_need_sync || dma_addressing_limited(dev)) | |
654 | return -EOPNOTSUPP; | |
655 | ||
656 | map->dma_entry_size = dma_entry_size; | |
657 | map->pfn_list = kvcalloc(nr_entries, sizeof(*map->pfn_list), | |
658 | GFP_KERNEL | __GFP_NOWARN); | |
659 | if (!map->pfn_list) | |
660 | return -ENOMEM; | |
661 | ||
662 | use_iova = dma_iova_try_alloc(dev, &map->state, 0, | |
663 | nr_entries * PAGE_SIZE); | |
664 | if (!use_iova && dma_need_unmap(dev)) { | |
665 | map->dma_list = kvcalloc(nr_entries, sizeof(*map->dma_list), | |
666 | GFP_KERNEL | __GFP_NOWARN); | |
667 | if (!map->dma_list) | |
668 | goto err_dma; | |
669 | } | |
670 | return 0; | |
671 | ||
672 | err_dma: | |
673 | kvfree(map->pfn_list); | |
674 | return -ENOMEM; | |
675 | } | |
676 | EXPORT_SYMBOL_GPL(hmm_dma_map_alloc); | |
677 | ||
678 | /** | |
679 | * hmm_dma_map_free - iFree HMM map structure | |
680 | * @dev: device to free structure from | |
681 | * @map: HMM map containing the various lists and state | |
682 | * | |
683 | * Free the HMM map structure and all the lists it contains. | |
684 | */ | |
685 | void hmm_dma_map_free(struct device *dev, struct hmm_dma_map *map) | |
686 | { | |
687 | if (dma_use_iova(&map->state)) | |
688 | dma_iova_free(dev, &map->state); | |
689 | kvfree(map->pfn_list); | |
690 | kvfree(map->dma_list); | |
691 | } | |
692 | EXPORT_SYMBOL_GPL(hmm_dma_map_free); | |
693 | ||
694 | /** | |
695 | * hmm_dma_map_pfn - Map a physical HMM page to DMA address | |
696 | * @dev: Device to map the page for | |
697 | * @map: HMM map | |
698 | * @idx: Index into the PFN and dma address arrays | |
699 | * @p2pdma_state: PCI P2P state. | |
700 | * | |
701 | * dma_alloc_iova() allocates IOVA based on the size specified by their use in | |
702 | * iova->size. Call this function after IOVA allocation to link whole @page | |
703 | * to get the DMA address. Note that very first call to this function | |
704 | * will have @offset set to 0 in the IOVA space allocated from | |
705 | * dma_alloc_iova(). For subsequent calls to this function on same @iova, | |
706 | * @offset needs to be advanced by the caller with the size of previous | |
707 | * page that was linked + DMA address returned for the previous page that was | |
708 | * linked by this function. | |
709 | */ | |
710 | dma_addr_t hmm_dma_map_pfn(struct device *dev, struct hmm_dma_map *map, | |
711 | size_t idx, | |
712 | struct pci_p2pdma_map_state *p2pdma_state) | |
713 | { | |
714 | struct dma_iova_state *state = &map->state; | |
715 | dma_addr_t *dma_addrs = map->dma_list; | |
716 | unsigned long *pfns = map->pfn_list; | |
717 | struct page *page = hmm_pfn_to_page(pfns[idx]); | |
718 | phys_addr_t paddr = hmm_pfn_to_phys(pfns[idx]); | |
719 | size_t offset = idx * map->dma_entry_size; | |
720 | unsigned long attrs = 0; | |
721 | dma_addr_t dma_addr; | |
722 | int ret; | |
723 | ||
724 | if ((pfns[idx] & HMM_PFN_DMA_MAPPED) && | |
725 | !(pfns[idx] & HMM_PFN_P2PDMA_BUS)) { | |
726 | /* | |
727 | * We are in this flow when there is a need to resync flags, | |
728 | * for example when page was already linked in prefetch call | |
729 | * with READ flag and now we need to add WRITE flag | |
730 | * | |
731 | * This page was already programmed to HW and we don't want/need | |
732 | * to unlink and link it again just to resync flags. | |
733 | */ | |
734 | if (dma_use_iova(state)) | |
735 | return state->addr + offset; | |
736 | ||
737 | /* | |
738 | * Without dma_need_unmap, the dma_addrs array is NULL, thus we | |
739 | * need to regenerate the address below even if there already | |
740 | * was a mapping. But !dma_need_unmap implies that the | |
741 | * mapping stateless, so this is fine. | |
742 | */ | |
743 | if (dma_need_unmap(dev)) | |
744 | return dma_addrs[idx]; | |
745 | ||
746 | /* Continue to remapping */ | |
747 | } | |
748 | ||
749 | switch (pci_p2pdma_state(p2pdma_state, dev, page)) { | |
750 | case PCI_P2PDMA_MAP_NONE: | |
751 | break; | |
752 | case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE: | |
753 | attrs |= DMA_ATTR_SKIP_CPU_SYNC; | |
754 | pfns[idx] |= HMM_PFN_P2PDMA; | |
755 | break; | |
756 | case PCI_P2PDMA_MAP_BUS_ADDR: | |
757 | pfns[idx] |= HMM_PFN_P2PDMA_BUS | HMM_PFN_DMA_MAPPED; | |
758 | return pci_p2pdma_bus_addr_map(p2pdma_state, paddr); | |
759 | default: | |
760 | return DMA_MAPPING_ERROR; | |
761 | } | |
762 | ||
763 | if (dma_use_iova(state)) { | |
764 | ret = dma_iova_link(dev, state, paddr, offset, | |
765 | map->dma_entry_size, DMA_BIDIRECTIONAL, | |
766 | attrs); | |
767 | if (ret) | |
768 | goto error; | |
769 | ||
770 | ret = dma_iova_sync(dev, state, offset, map->dma_entry_size); | |
771 | if (ret) { | |
772 | dma_iova_unlink(dev, state, offset, map->dma_entry_size, | |
773 | DMA_BIDIRECTIONAL, attrs); | |
774 | goto error; | |
775 | } | |
776 | ||
777 | dma_addr = state->addr + offset; | |
778 | } else { | |
779 | if (WARN_ON_ONCE(dma_need_unmap(dev) && !dma_addrs)) | |
780 | goto error; | |
781 | ||
782 | dma_addr = dma_map_page(dev, page, 0, map->dma_entry_size, | |
783 | DMA_BIDIRECTIONAL); | |
784 | if (dma_mapping_error(dev, dma_addr)) | |
785 | goto error; | |
786 | ||
787 | if (dma_need_unmap(dev)) | |
788 | dma_addrs[idx] = dma_addr; | |
789 | } | |
790 | pfns[idx] |= HMM_PFN_DMA_MAPPED; | |
791 | return dma_addr; | |
792 | error: | |
793 | pfns[idx] &= ~HMM_PFN_P2PDMA; | |
794 | return DMA_MAPPING_ERROR; | |
795 | ||
796 | } | |
797 | EXPORT_SYMBOL_GPL(hmm_dma_map_pfn); | |
798 | ||
799 | /** | |
800 | * hmm_dma_unmap_pfn - Unmap a physical HMM page from DMA address | |
801 | * @dev: Device to unmap the page from | |
802 | * @map: HMM map | |
803 | * @idx: Index of the PFN to unmap | |
804 | * | |
805 | * Returns true if the PFN was mapped and has been unmapped, false otherwise. | |
806 | */ | |
807 | bool hmm_dma_unmap_pfn(struct device *dev, struct hmm_dma_map *map, size_t idx) | |
808 | { | |
809 | const unsigned long valid_dma = HMM_PFN_VALID | HMM_PFN_DMA_MAPPED; | |
810 | struct dma_iova_state *state = &map->state; | |
811 | dma_addr_t *dma_addrs = map->dma_list; | |
812 | unsigned long *pfns = map->pfn_list; | |
813 | unsigned long attrs = 0; | |
814 | ||
815 | if ((pfns[idx] & valid_dma) != valid_dma) | |
816 | return false; | |
817 | ||
818 | if (pfns[idx] & HMM_PFN_P2PDMA_BUS) | |
819 | ; /* no need to unmap bus address P2P mappings */ | |
820 | else if (dma_use_iova(state)) { | |
821 | if (pfns[idx] & HMM_PFN_P2PDMA) | |
822 | attrs |= DMA_ATTR_SKIP_CPU_SYNC; | |
823 | dma_iova_unlink(dev, state, idx * map->dma_entry_size, | |
824 | map->dma_entry_size, DMA_BIDIRECTIONAL, attrs); | |
825 | } else if (dma_need_unmap(dev)) | |
826 | dma_unmap_page(dev, dma_addrs[idx], map->dma_entry_size, | |
827 | DMA_BIDIRECTIONAL); | |
828 | ||
829 | pfns[idx] &= | |
830 | ~(HMM_PFN_DMA_MAPPED | HMM_PFN_P2PDMA | HMM_PFN_P2PDMA_BUS); | |
831 | return true; | |
832 | } | |
833 | EXPORT_SYMBOL_GPL(hmm_dma_unmap_pfn); |