mm/hmm: don't handle the non-fault case in hmm_vma_walk_hole_()
[linux-2.6-block.git] / mm / hmm.c
CommitLineData
c942fddf 1// SPDX-License-Identifier: GPL-2.0-or-later
133ff0ea
JG
2/*
3 * Copyright 2013 Red Hat Inc.
4 *
f813f219 5 * Authors: Jérôme Glisse <jglisse@redhat.com>
133ff0ea
JG
6 */
7/*
8 * Refer to include/linux/hmm.h for information about heterogeneous memory
9 * management or HMM for short.
10 */
a520110e 11#include <linux/pagewalk.h>
133ff0ea 12#include <linux/hmm.h>
858b54da 13#include <linux/init.h>
da4c3c73
JG
14#include <linux/rmap.h>
15#include <linux/swap.h>
133ff0ea
JG
16#include <linux/slab.h>
17#include <linux/sched.h>
4ef589dc
JG
18#include <linux/mmzone.h>
19#include <linux/pagemap.h>
da4c3c73
JG
20#include <linux/swapops.h>
21#include <linux/hugetlb.h>
4ef589dc 22#include <linux/memremap.h>
c8a53b2d 23#include <linux/sched/mm.h>
7b2d55d2 24#include <linux/jump_label.h>
55c0ece8 25#include <linux/dma-mapping.h>
c0b12405 26#include <linux/mmu_notifier.h>
4ef589dc
JG
27#include <linux/memory_hotplug.h>
28
74eee180
JG
29struct hmm_vma_walk {
30 struct hmm_range *range;
992de9a8 31 struct dev_pagemap *pgmap;
74eee180 32 unsigned long last;
9a4903e4 33 unsigned int flags;
74eee180
JG
34};
35
2aee09d8
JG
36static int hmm_vma_do_fault(struct mm_walk *walk, unsigned long addr,
37 bool write_fault, uint64_t *pfn)
74eee180 38{
9b1ae605 39 unsigned int flags = FAULT_FLAG_REMOTE;
74eee180 40 struct hmm_vma_walk *hmm_vma_walk = walk->private;
f88a1e90 41 struct hmm_range *range = hmm_vma_walk->range;
74eee180 42 struct vm_area_struct *vma = walk->vma;
50a7ca3c 43 vm_fault_t ret;
74eee180 44
6c64f2bb
RC
45 if (!vma)
46 goto err;
47
9a4903e4
CH
48 if (write_fault)
49 flags |= FAULT_FLAG_WRITE;
50
50a7ca3c 51 ret = handle_mm_fault(vma, addr, flags);
6c64f2bb
RC
52 if (ret & VM_FAULT_ERROR)
53 goto err;
74eee180 54
73231612 55 return -EBUSY;
6c64f2bb
RC
56
57err:
58 *pfn = range->values[HMM_PFN_ERROR];
59 return -EFAULT;
74eee180
JG
60}
61
d28c2c9a
RC
62static int hmm_pfns_fill(unsigned long addr, unsigned long end,
63 struct hmm_range *range, enum hmm_pfn_value_e value)
da4c3c73 64{
ff05c0c6 65 uint64_t *pfns = range->pfns;
da4c3c73
JG
66 unsigned long i;
67
68 i = (addr - range->start) >> PAGE_SHIFT;
69 for (; addr < end; addr += PAGE_SIZE, i++)
d28c2c9a 70 pfns[i] = range->values[value];
da4c3c73
JG
71
72 return 0;
73}
74
5504ed29 75/*
f8c888a3 76 * hmm_vma_fault() - fault in a range lacking valid pmd or pte(s)
d2e8d551 77 * @addr: range virtual start address (inclusive)
5504ed29 78 * @end: range virtual end address (exclusive)
2aee09d8
JG
79 * @fault: should we fault or not ?
80 * @write_fault: write fault ?
5504ed29 81 * @walk: mm_walk structure
f8c888a3 82 * Return: -EBUSY after page fault, or page fault error
5504ed29
JG
83 *
84 * This function will be called whenever pmd_none() or pte_none() returns true,
85 * or whenever there is no page directory covering the virtual address range.
86 */
f8c888a3 87static int hmm_vma_fault(unsigned long addr, unsigned long end,
2aee09d8
JG
88 bool fault, bool write_fault,
89 struct mm_walk *walk)
da4c3c73 90{
74eee180
JG
91 struct hmm_vma_walk *hmm_vma_walk = walk->private;
92 struct hmm_range *range = hmm_vma_walk->range;
ff05c0c6 93 uint64_t *pfns = range->pfns;
f8c888a3 94 unsigned long i = (addr - range->start) >> PAGE_SHIFT;
da4c3c73 95
f8c888a3 96 WARN_ON_ONCE(!fault && !write_fault);
74eee180 97 hmm_vma_walk->last = addr;
63d5066f 98
c18ce674
RC
99 if (write_fault && walk->vma && !(walk->vma->vm_flags & VM_WRITE))
100 return -EPERM;
101
7f08263d 102 for (; addr < end; addr += PAGE_SIZE, i++) {
f8c888a3 103 int ret;
da4c3c73 104
f8c888a3
CH
105 ret = hmm_vma_do_fault(walk, addr, write_fault, &pfns[i]);
106 if (ret != -EBUSY)
107 return ret;
74eee180
JG
108 }
109
f8c888a3 110 return -EBUSY;
2aee09d8
JG
111}
112
113static inline void hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
114 uint64_t pfns, uint64_t cpu_flags,
115 bool *fault, bool *write_fault)
116{
f88a1e90
JG
117 struct hmm_range *range = hmm_vma_walk->range;
118
d45d464b 119 if (hmm_vma_walk->flags & HMM_FAULT_SNAPSHOT)
2aee09d8
JG
120 return;
121
023a019a
JG
122 /*
123 * So we not only consider the individual per page request we also
124 * consider the default flags requested for the range. The API can
d2e8d551
RC
125 * be used 2 ways. The first one where the HMM user coalesces
126 * multiple page faults into one request and sets flags per pfn for
127 * those faults. The second one where the HMM user wants to pre-
023a019a
JG
128 * fault a range with specific flags. For the latter one it is a
129 * waste to have the user pre-fill the pfn arrays with a default
130 * flags value.
131 */
132 pfns = (pfns & range->pfn_flags_mask) | range->default_flags;
133
2aee09d8 134 /* We aren't ask to do anything ... */
f88a1e90 135 if (!(pfns & range->flags[HMM_PFN_VALID]))
2aee09d8 136 return;
d2e8d551 137 /* If this is device memory then only fault if explicitly requested */
f88a1e90
JG
138 if ((cpu_flags & range->flags[HMM_PFN_DEVICE_PRIVATE])) {
139 /* Do we fault on device memory ? */
140 if (pfns & range->flags[HMM_PFN_DEVICE_PRIVATE]) {
141 *write_fault = pfns & range->flags[HMM_PFN_WRITE];
142 *fault = true;
143 }
2aee09d8
JG
144 return;
145 }
f88a1e90
JG
146
147 /* If CPU page table is not valid then we need to fault */
148 *fault = !(cpu_flags & range->flags[HMM_PFN_VALID]);
149 /* Need to write fault ? */
150 if ((pfns & range->flags[HMM_PFN_WRITE]) &&
151 !(cpu_flags & range->flags[HMM_PFN_WRITE])) {
152 *write_fault = true;
2aee09d8
JG
153 *fault = true;
154 }
155}
156
157static void hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
158 const uint64_t *pfns, unsigned long npages,
159 uint64_t cpu_flags, bool *fault,
160 bool *write_fault)
161{
162 unsigned long i;
163
d45d464b 164 if (hmm_vma_walk->flags & HMM_FAULT_SNAPSHOT) {
2aee09d8
JG
165 *fault = *write_fault = false;
166 return;
167 }
168
a3e0d41c 169 *fault = *write_fault = false;
2aee09d8
JG
170 for (i = 0; i < npages; ++i) {
171 hmm_pte_need_fault(hmm_vma_walk, pfns[i], cpu_flags,
172 fault, write_fault);
a3e0d41c 173 if ((*write_fault))
2aee09d8
JG
174 return;
175 }
176}
177
178static int hmm_vma_walk_hole(unsigned long addr, unsigned long end,
b7a16c7a 179 __always_unused int depth, struct mm_walk *walk)
2aee09d8
JG
180{
181 struct hmm_vma_walk *hmm_vma_walk = walk->private;
182 struct hmm_range *range = hmm_vma_walk->range;
183 bool fault, write_fault;
184 unsigned long i, npages;
185 uint64_t *pfns;
186
187 i = (addr - range->start) >> PAGE_SHIFT;
188 npages = (end - addr) >> PAGE_SHIFT;
189 pfns = &range->pfns[i];
190 hmm_range_need_fault(hmm_vma_walk, pfns, npages,
191 0, &fault, &write_fault);
f8c888a3
CH
192 if (fault || write_fault)
193 return hmm_vma_fault(addr, end, fault, write_fault, walk);
194 hmm_vma_walk->last = addr;
195 return hmm_pfns_fill(addr, end, range, HMM_PFN_NONE);
2aee09d8
JG
196}
197
f88a1e90 198static inline uint64_t pmd_to_hmm_pfn_flags(struct hmm_range *range, pmd_t pmd)
2aee09d8
JG
199{
200 if (pmd_protnone(pmd))
201 return 0;
f88a1e90
JG
202 return pmd_write(pmd) ? range->flags[HMM_PFN_VALID] |
203 range->flags[HMM_PFN_WRITE] :
204 range->flags[HMM_PFN_VALID];
da4c3c73
JG
205}
206
992de9a8 207#ifdef CONFIG_TRANSPARENT_HUGEPAGE
9d3973d6
CH
208static int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr,
209 unsigned long end, uint64_t *pfns, pmd_t pmd)
210{
53f5c3f4 211 struct hmm_vma_walk *hmm_vma_walk = walk->private;
f88a1e90 212 struct hmm_range *range = hmm_vma_walk->range;
2aee09d8 213 unsigned long pfn, npages, i;
2aee09d8 214 bool fault, write_fault;
f88a1e90 215 uint64_t cpu_flags;
53f5c3f4 216
2aee09d8 217 npages = (end - addr) >> PAGE_SHIFT;
f88a1e90 218 cpu_flags = pmd_to_hmm_pfn_flags(range, pmd);
2aee09d8
JG
219 hmm_range_need_fault(hmm_vma_walk, pfns, npages, cpu_flags,
220 &fault, &write_fault);
53f5c3f4 221
24cee8ab 222 if (fault || write_fault)
f8c888a3 223 return hmm_vma_fault(addr, end, fault, write_fault, walk);
53f5c3f4 224
309f9a4f 225 pfn = pmd_pfn(pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
992de9a8
JG
226 for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++) {
227 if (pmd_devmap(pmd)) {
228 hmm_vma_walk->pgmap = get_dev_pagemap(pfn,
229 hmm_vma_walk->pgmap);
230 if (unlikely(!hmm_vma_walk->pgmap))
231 return -EBUSY;
232 }
391aab11 233 pfns[i] = hmm_device_entry_from_pfn(range, pfn) | cpu_flags;
992de9a8
JG
234 }
235 if (hmm_vma_walk->pgmap) {
236 put_dev_pagemap(hmm_vma_walk->pgmap);
237 hmm_vma_walk->pgmap = NULL;
238 }
53f5c3f4
JG
239 hmm_vma_walk->last = end;
240 return 0;
241}
9d3973d6
CH
242#else /* CONFIG_TRANSPARENT_HUGEPAGE */
243/* stub to allow the code below to compile */
244int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr,
245 unsigned long end, uint64_t *pfns, pmd_t pmd);
246#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
53f5c3f4 247
f88a1e90 248static inline uint64_t pte_to_hmm_pfn_flags(struct hmm_range *range, pte_t pte)
2aee09d8 249{
789c2af8 250 if (pte_none(pte) || !pte_present(pte) || pte_protnone(pte))
2aee09d8 251 return 0;
f88a1e90
JG
252 return pte_write(pte) ? range->flags[HMM_PFN_VALID] |
253 range->flags[HMM_PFN_WRITE] :
254 range->flags[HMM_PFN_VALID];
2aee09d8
JG
255}
256
53f5c3f4
JG
257static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
258 unsigned long end, pmd_t *pmdp, pte_t *ptep,
259 uint64_t *pfn)
260{
261 struct hmm_vma_walk *hmm_vma_walk = walk->private;
f88a1e90 262 struct hmm_range *range = hmm_vma_walk->range;
2aee09d8
JG
263 bool fault, write_fault;
264 uint64_t cpu_flags;
53f5c3f4 265 pte_t pte = *ptep;
f88a1e90 266 uint64_t orig_pfn = *pfn;
53f5c3f4 267
f88a1e90 268 *pfn = range->values[HMM_PFN_NONE];
73231612 269 fault = write_fault = false;
53f5c3f4
JG
270
271 if (pte_none(pte)) {
73231612
JG
272 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, 0,
273 &fault, &write_fault);
2aee09d8 274 if (fault || write_fault)
53f5c3f4
JG
275 goto fault;
276 return 0;
277 }
278
279 if (!pte_present(pte)) {
280 swp_entry_t entry = pte_to_swp_entry(pte);
281
53f5c3f4
JG
282 /*
283 * This is a special swap entry, ignore migration, use
284 * device and report anything else as error.
285 */
286 if (is_device_private_entry(entry)) {
f88a1e90
JG
287 cpu_flags = range->flags[HMM_PFN_VALID] |
288 range->flags[HMM_PFN_DEVICE_PRIVATE];
2aee09d8 289 cpu_flags |= is_write_device_private_entry(entry) ?
f88a1e90
JG
290 range->flags[HMM_PFN_WRITE] : 0;
291 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
292 &fault, &write_fault);
293 if (fault || write_fault)
294 goto fault;
391aab11
JG
295 *pfn = hmm_device_entry_from_pfn(range,
296 swp_offset(entry));
f88a1e90 297 *pfn |= cpu_flags;
53f5c3f4
JG
298 return 0;
299 }
300
76612d6c
JG
301 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, 0, &fault,
302 &write_fault);
303 if (!fault && !write_fault)
53f5c3f4 304 return 0;
76612d6c
JG
305
306 if (!non_swap_entry(entry))
307 goto fault;
308
309 if (is_migration_entry(entry)) {
310 pte_unmap(ptep);
311 hmm_vma_walk->last = addr;
312 migration_entry_wait(walk->mm, pmdp, addr);
313 return -EBUSY;
53f5c3f4
JG
314 }
315
316 /* Report error for everything else */
dfdc2207 317 pte_unmap(ptep);
f88a1e90 318 *pfn = range->values[HMM_PFN_ERROR];
53f5c3f4
JG
319 return -EFAULT;
320 }
321
76612d6c
JG
322 cpu_flags = pte_to_hmm_pfn_flags(range, pte);
323 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags, &fault,
324 &write_fault);
2aee09d8 325 if (fault || write_fault)
53f5c3f4
JG
326 goto fault;
327
992de9a8
JG
328 if (pte_devmap(pte)) {
329 hmm_vma_walk->pgmap = get_dev_pagemap(pte_pfn(pte),
330 hmm_vma_walk->pgmap);
dfdc2207
JG
331 if (unlikely(!hmm_vma_walk->pgmap)) {
332 pte_unmap(ptep);
992de9a8 333 return -EBUSY;
dfdc2207 334 }
40550627
JG
335 }
336
337 /*
338 * Since each architecture defines a struct page for the zero page, just
339 * fall through and treat it like a normal page.
340 */
341 if (pte_special(pte) && !is_zero_pfn(pte_pfn(pte))) {
342 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, 0, &fault,
343 &write_fault);
344 if (fault || write_fault) {
dfdc2207 345 pte_unmap(ptep);
ac541f25
RC
346 return -EFAULT;
347 }
40550627
JG
348 *pfn = range->values[HMM_PFN_SPECIAL];
349 return 0;
992de9a8
JG
350 }
351
391aab11 352 *pfn = hmm_device_entry_from_pfn(range, pte_pfn(pte)) | cpu_flags;
53f5c3f4
JG
353 return 0;
354
355fault:
992de9a8
JG
356 if (hmm_vma_walk->pgmap) {
357 put_dev_pagemap(hmm_vma_walk->pgmap);
358 hmm_vma_walk->pgmap = NULL;
359 }
53f5c3f4
JG
360 pte_unmap(ptep);
361 /* Fault any virtual address we were asked to fault */
f8c888a3 362 return hmm_vma_fault(addr, end, fault, write_fault, walk);
53f5c3f4
JG
363}
364
da4c3c73
JG
365static int hmm_vma_walk_pmd(pmd_t *pmdp,
366 unsigned long start,
367 unsigned long end,
368 struct mm_walk *walk)
369{
74eee180
JG
370 struct hmm_vma_walk *hmm_vma_walk = walk->private;
371 struct hmm_range *range = hmm_vma_walk->range;
2288a9a6
JG
372 uint64_t *pfns = &range->pfns[(start - range->start) >> PAGE_SHIFT];
373 unsigned long npages = (end - start) >> PAGE_SHIFT;
374 unsigned long addr = start;
375 bool fault, write_fault;
da4c3c73 376 pte_t *ptep;
d08faca0 377 pmd_t pmd;
da4c3c73 378
da4c3c73 379again:
d08faca0
JG
380 pmd = READ_ONCE(*pmdp);
381 if (pmd_none(pmd))
b7a16c7a 382 return hmm_vma_walk_hole(start, end, -1, walk);
da4c3c73 383
d08faca0 384 if (thp_migration_supported() && is_pmd_migration_entry(pmd)) {
d08faca0
JG
385 hmm_range_need_fault(hmm_vma_walk, pfns, npages,
386 0, &fault, &write_fault);
387 if (fault || write_fault) {
388 hmm_vma_walk->last = addr;
d2e8d551 389 pmd_migration_entry_wait(walk->mm, pmdp);
73231612 390 return -EBUSY;
d08faca0 391 }
7d082987 392 return hmm_pfns_fill(start, end, range, HMM_PFN_NONE);
2288a9a6
JG
393 }
394
395 if (!pmd_present(pmd)) {
396 hmm_range_need_fault(hmm_vma_walk, pfns, npages, 0, &fault,
397 &write_fault);
398 if (fault || write_fault)
399 return -EFAULT;
d28c2c9a 400 return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
2288a9a6 401 }
da4c3c73 402
d08faca0 403 if (pmd_devmap(pmd) || pmd_trans_huge(pmd)) {
da4c3c73 404 /*
d2e8d551 405 * No need to take pmd_lock here, even if some other thread
da4c3c73
JG
406 * is splitting the huge pmd we will get that event through
407 * mmu_notifier callback.
408 *
d2e8d551 409 * So just read pmd value and check again it's a transparent
da4c3c73
JG
410 * huge or device mapping one and compute corresponding pfn
411 * values.
412 */
413 pmd = pmd_read_atomic(pmdp);
414 barrier();
415 if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
416 goto again;
74eee180 417
2288a9a6 418 return hmm_vma_handle_pmd(walk, addr, end, pfns, pmd);
da4c3c73
JG
419 }
420
d08faca0 421 /*
d2e8d551 422 * We have handled all the valid cases above ie either none, migration,
d08faca0
JG
423 * huge or transparent huge. At this point either it is a valid pmd
424 * entry pointing to pte directory or it is a bad pmd that will not
425 * recover.
426 */
2288a9a6
JG
427 if (pmd_bad(pmd)) {
428 hmm_range_need_fault(hmm_vma_walk, pfns, npages, 0, &fault,
429 &write_fault);
430 if (fault || write_fault)
431 return -EFAULT;
d28c2c9a 432 return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
2288a9a6 433 }
da4c3c73
JG
434
435 ptep = pte_offset_map(pmdp, addr);
2288a9a6 436 for (; addr < end; addr += PAGE_SIZE, ptep++, pfns++) {
53f5c3f4 437 int r;
74eee180 438
2288a9a6 439 r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, pfns);
53f5c3f4 440 if (r) {
dfdc2207 441 /* hmm_vma_handle_pte() did pte_unmap() */
53f5c3f4
JG
442 hmm_vma_walk->last = addr;
443 return r;
74eee180 444 }
da4c3c73 445 }
992de9a8
JG
446 if (hmm_vma_walk->pgmap) {
447 /*
448 * We do put_dev_pagemap() here and not in hmm_vma_handle_pte()
449 * so that we can leverage get_dev_pagemap() optimization which
450 * will not re-take a reference on a pgmap if we already have
451 * one.
452 */
453 put_dev_pagemap(hmm_vma_walk->pgmap);
454 hmm_vma_walk->pgmap = NULL;
455 }
da4c3c73
JG
456 pte_unmap(ptep - 1);
457
53f5c3f4 458 hmm_vma_walk->last = addr;
da4c3c73
JG
459 return 0;
460}
461
f0b3c45c
CH
462#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && \
463 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
464static inline uint64_t pud_to_hmm_pfn_flags(struct hmm_range *range, pud_t pud)
465{
466 if (!pud_present(pud))
467 return 0;
468 return pud_write(pud) ? range->flags[HMM_PFN_VALID] |
469 range->flags[HMM_PFN_WRITE] :
470 range->flags[HMM_PFN_VALID];
471}
472
473static int hmm_vma_walk_pud(pud_t *pudp, unsigned long start, unsigned long end,
474 struct mm_walk *walk)
992de9a8
JG
475{
476 struct hmm_vma_walk *hmm_vma_walk = walk->private;
477 struct hmm_range *range = hmm_vma_walk->range;
3afc4236 478 unsigned long addr = start;
992de9a8 479 pud_t pud;
3afc4236
SP
480 int ret = 0;
481 spinlock_t *ptl = pud_trans_huge_lock(pudp, walk->vma);
482
483 if (!ptl)
484 return 0;
485
486 /* Normally we don't want to split the huge page */
487 walk->action = ACTION_CONTINUE;
992de9a8 488
992de9a8 489 pud = READ_ONCE(*pudp);
3afc4236 490 if (pud_none(pud)) {
05fc1df9
JG
491 spin_unlock(ptl);
492 return hmm_vma_walk_hole(start, end, -1, walk);
3afc4236 493 }
992de9a8
JG
494
495 if (pud_huge(pud) && pud_devmap(pud)) {
496 unsigned long i, npages, pfn;
497 uint64_t *pfns, cpu_flags;
498 bool fault, write_fault;
499
3afc4236 500 if (!pud_present(pud)) {
05fc1df9
JG
501 spin_unlock(ptl);
502 return hmm_vma_walk_hole(start, end, -1, walk);
3afc4236 503 }
992de9a8
JG
504
505 i = (addr - range->start) >> PAGE_SHIFT;
506 npages = (end - addr) >> PAGE_SHIFT;
507 pfns = &range->pfns[i];
508
509 cpu_flags = pud_to_hmm_pfn_flags(range, pud);
510 hmm_range_need_fault(hmm_vma_walk, pfns, npages,
511 cpu_flags, &fault, &write_fault);
3afc4236 512 if (fault || write_fault) {
05fc1df9 513 spin_unlock(ptl);
f8c888a3 514 return hmm_vma_fault(addr, end, fault, write_fault,
05fc1df9 515 walk);
3afc4236 516 }
992de9a8 517
992de9a8
JG
518 pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
519 for (i = 0; i < npages; ++i, ++pfn) {
520 hmm_vma_walk->pgmap = get_dev_pagemap(pfn,
521 hmm_vma_walk->pgmap);
3afc4236
SP
522 if (unlikely(!hmm_vma_walk->pgmap)) {
523 ret = -EBUSY;
524 goto out_unlock;
525 }
391aab11
JG
526 pfns[i] = hmm_device_entry_from_pfn(range, pfn) |
527 cpu_flags;
992de9a8
JG
528 }
529 if (hmm_vma_walk->pgmap) {
530 put_dev_pagemap(hmm_vma_walk->pgmap);
531 hmm_vma_walk->pgmap = NULL;
532 }
533 hmm_vma_walk->last = end;
3afc4236 534 goto out_unlock;
992de9a8
JG
535 }
536
3afc4236
SP
537 /* Ask for the PUD to be split */
538 walk->action = ACTION_SUBTREE;
992de9a8 539
3afc4236
SP
540out_unlock:
541 spin_unlock(ptl);
542 return ret;
992de9a8 543}
f0b3c45c
CH
544#else
545#define hmm_vma_walk_pud NULL
546#endif
992de9a8 547
251bbe59 548#ifdef CONFIG_HUGETLB_PAGE
63d5066f
JG
549static int hmm_vma_walk_hugetlb_entry(pte_t *pte, unsigned long hmask,
550 unsigned long start, unsigned long end,
551 struct mm_walk *walk)
552{
05c23af4 553 unsigned long addr = start, i, pfn;
63d5066f
JG
554 struct hmm_vma_walk *hmm_vma_walk = walk->private;
555 struct hmm_range *range = hmm_vma_walk->range;
556 struct vm_area_struct *vma = walk->vma;
63d5066f
JG
557 uint64_t orig_pfn, cpu_flags;
558 bool fault, write_fault;
559 spinlock_t *ptl;
560 pte_t entry;
63d5066f 561
d2e8d551 562 ptl = huge_pte_lock(hstate_vma(vma), walk->mm, pte);
63d5066f
JG
563 entry = huge_ptep_get(pte);
564
7f08263d 565 i = (start - range->start) >> PAGE_SHIFT;
63d5066f
JG
566 orig_pfn = range->pfns[i];
567 range->pfns[i] = range->values[HMM_PFN_NONE];
568 cpu_flags = pte_to_hmm_pfn_flags(range, entry);
569 fault = write_fault = false;
570 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
571 &fault, &write_fault);
572 if (fault || write_fault) {
45050692 573 spin_unlock(ptl);
f8c888a3 574 return hmm_vma_fault(addr, end, fault, write_fault, walk);
63d5066f
JG
575 }
576
05c23af4 577 pfn = pte_pfn(entry) + ((start & ~hmask) >> PAGE_SHIFT);
7f08263d 578 for (; addr < end; addr += PAGE_SIZE, i++, pfn++)
391aab11
JG
579 range->pfns[i] = hmm_device_entry_from_pfn(range, pfn) |
580 cpu_flags;
63d5066f 581 hmm_vma_walk->last = end;
63d5066f 582 spin_unlock(ptl);
45050692 583 return 0;
63d5066f 584}
251bbe59
CH
585#else
586#define hmm_vma_walk_hugetlb_entry NULL
587#endif /* CONFIG_HUGETLB_PAGE */
63d5066f 588
d28c2c9a
RC
589static int hmm_vma_walk_test(unsigned long start, unsigned long end,
590 struct mm_walk *walk)
33cd47dc 591{
d28c2c9a
RC
592 struct hmm_vma_walk *hmm_vma_walk = walk->private;
593 struct hmm_range *range = hmm_vma_walk->range;
594 struct vm_area_struct *vma = walk->vma;
595
596 /*
c2579c9c
JG
597 * Skip vma ranges that don't have struct page backing them or map I/O
598 * devices directly.
599 *
d28c2c9a 600 * If the vma does not allow read access, then assume that it does not
c2579c9c
JG
601 * allow write access either. HMM does not support architectures that
602 * allow write without read.
d28c2c9a 603 */
c2579c9c
JG
604 if ((vma->vm_flags & (VM_IO | VM_PFNMAP | VM_MIXEDMAP)) ||
605 !(vma->vm_flags & VM_READ)) {
d28c2c9a
RC
606 bool fault, write_fault;
607
608 /*
609 * Check to see if a fault is requested for any page in the
610 * range.
611 */
612 hmm_range_need_fault(hmm_vma_walk, range->pfns +
613 ((start - range->start) >> PAGE_SHIFT),
614 (end - start) >> PAGE_SHIFT,
615 0, &fault, &write_fault);
616 if (fault || write_fault)
617 return -EFAULT;
618
c2579c9c 619 hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
d28c2c9a
RC
620 hmm_vma_walk->last = end;
621
622 /* Skip this vma and continue processing the next vma. */
623 return 1;
624 }
625
626 return 0;
33cd47dc
JG
627}
628
7b86ac33
CH
629static const struct mm_walk_ops hmm_walk_ops = {
630 .pud_entry = hmm_vma_walk_pud,
631 .pmd_entry = hmm_vma_walk_pmd,
632 .pte_hole = hmm_vma_walk_hole,
633 .hugetlb_entry = hmm_vma_walk_hugetlb_entry,
d28c2c9a 634 .test_walk = hmm_vma_walk_test,
7b86ac33
CH
635};
636
9a4903e4
CH
637/**
638 * hmm_range_fault - try to fault some address in a virtual address range
639 * @range: range being faulted
640 * @flags: HMM_FAULT_* flags
641 *
642 * Return: the number of valid pages in range->pfns[] (from range start
643 * address), which may be zero. On error one of the following status codes
644 * can be returned:
73231612 645 *
9a4903e4
CH
646 * -EINVAL: Invalid arguments or mm or virtual address is in an invalid vma
647 * (e.g., device file vma).
648 * -ENOMEM: Out of memory.
649 * -EPERM: Invalid permission (e.g., asking for write and range is read
650 * only).
9a4903e4
CH
651 * -EBUSY: The range has been invalidated and the caller needs to wait for
652 * the invalidation to finish.
653 * -EFAULT: Invalid (i.e., either no valid vma or it is illegal to access
654 * that range) number of valid pages in range->pfns[] (from
655 * range start address).
74eee180
JG
656 *
657 * This is similar to a regular CPU page fault except that it will not trigger
73231612
JG
658 * any memory migration if the memory being faulted is not accessible by CPUs
659 * and caller does not ask for migration.
74eee180 660 *
ff05c0c6
JG
661 * On error, for one virtual address in the range, the function will mark the
662 * corresponding HMM pfn entry with an error flag.
74eee180 663 */
9a4903e4 664long hmm_range_fault(struct hmm_range *range, unsigned int flags)
74eee180 665{
d28c2c9a
RC
666 struct hmm_vma_walk hmm_vma_walk = {
667 .range = range,
668 .last = range->start,
669 .flags = flags,
670 };
a22dd506 671 struct mm_struct *mm = range->notifier->mm;
74eee180
JG
672 int ret;
673
04ec32fb 674 lockdep_assert_held(&mm->mmap_sem);
704f3f2c 675
a3e0d41c
JG
676 do {
677 /* If range is no longer valid force retry. */
a22dd506
JG
678 if (mmu_interval_check_retry(range->notifier,
679 range->notifier_seq))
2bcbeaef 680 return -EBUSY;
d28c2c9a
RC
681 ret = walk_page_range(mm, hmm_vma_walk.last, range->end,
682 &hmm_walk_ops, &hmm_vma_walk);
683 } while (ret == -EBUSY);
74eee180 684
d28c2c9a
RC
685 if (ret)
686 return ret;
73231612 687 return (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
74eee180 688}
73231612 689EXPORT_SYMBOL(hmm_range_fault);