mm/hmm: use device_private_entry_to_pfn()
[linux-block.git] / mm / hmm.c
CommitLineData
c942fddf 1// SPDX-License-Identifier: GPL-2.0-or-later
133ff0ea
JG
2/*
3 * Copyright 2013 Red Hat Inc.
4 *
f813f219 5 * Authors: Jérôme Glisse <jglisse@redhat.com>
133ff0ea
JG
6 */
7/*
8 * Refer to include/linux/hmm.h for information about heterogeneous memory
9 * management or HMM for short.
10 */
a520110e 11#include <linux/pagewalk.h>
133ff0ea 12#include <linux/hmm.h>
858b54da 13#include <linux/init.h>
da4c3c73
JG
14#include <linux/rmap.h>
15#include <linux/swap.h>
133ff0ea
JG
16#include <linux/slab.h>
17#include <linux/sched.h>
4ef589dc
JG
18#include <linux/mmzone.h>
19#include <linux/pagemap.h>
da4c3c73
JG
20#include <linux/swapops.h>
21#include <linux/hugetlb.h>
4ef589dc 22#include <linux/memremap.h>
c8a53b2d 23#include <linux/sched/mm.h>
7b2d55d2 24#include <linux/jump_label.h>
55c0ece8 25#include <linux/dma-mapping.h>
c0b12405 26#include <linux/mmu_notifier.h>
4ef589dc
JG
27#include <linux/memory_hotplug.h>
28
74eee180
JG
29struct hmm_vma_walk {
30 struct hmm_range *range;
31 unsigned long last;
74eee180
JG
32};
33
a3eb13c1
JG
34enum {
35 HMM_NEED_FAULT = 1 << 0,
36 HMM_NEED_WRITE_FAULT = 1 << 1,
37 HMM_NEED_ALL_BITS = HMM_NEED_FAULT | HMM_NEED_WRITE_FAULT,
38};
39
f970b977
JG
40/*
41 * hmm_device_entry_from_pfn() - create a valid device entry value from pfn
42 * @range: range use to encode HMM pfn value
43 * @pfn: pfn value for which to create the device entry
44 * Return: valid device entry for the pfn
45 */
46static uint64_t hmm_device_entry_from_pfn(const struct hmm_range *range,
47 unsigned long pfn)
48{
49 return (pfn << range->pfn_shift) | range->flags[HMM_PFN_VALID];
50}
51
d28c2c9a
RC
52static int hmm_pfns_fill(unsigned long addr, unsigned long end,
53 struct hmm_range *range, enum hmm_pfn_value_e value)
da4c3c73 54{
ff05c0c6 55 uint64_t *pfns = range->pfns;
da4c3c73
JG
56 unsigned long i;
57
58 i = (addr - range->start) >> PAGE_SHIFT;
59 for (; addr < end; addr += PAGE_SIZE, i++)
d28c2c9a 60 pfns[i] = range->values[value];
da4c3c73
JG
61
62 return 0;
63}
64
5504ed29 65/*
f8c888a3 66 * hmm_vma_fault() - fault in a range lacking valid pmd or pte(s)
d2e8d551 67 * @addr: range virtual start address (inclusive)
5504ed29 68 * @end: range virtual end address (exclusive)
a3eb13c1 69 * @required_fault: HMM_NEED_* flags
5504ed29 70 * @walk: mm_walk structure
f8c888a3 71 * Return: -EBUSY after page fault, or page fault error
5504ed29
JG
72 *
73 * This function will be called whenever pmd_none() or pte_none() returns true,
74 * or whenever there is no page directory covering the virtual address range.
75 */
f8c888a3 76static int hmm_vma_fault(unsigned long addr, unsigned long end,
a3eb13c1 77 unsigned int required_fault, struct mm_walk *walk)
da4c3c73 78{
74eee180
JG
79 struct hmm_vma_walk *hmm_vma_walk = walk->private;
80 struct hmm_range *range = hmm_vma_walk->range;
5a0c38d3 81 struct vm_area_struct *vma = walk->vma;
ff05c0c6 82 uint64_t *pfns = range->pfns;
f8c888a3 83 unsigned long i = (addr - range->start) >> PAGE_SHIFT;
5a0c38d3 84 unsigned int fault_flags = FAULT_FLAG_REMOTE;
da4c3c73 85
a3eb13c1 86 WARN_ON_ONCE(!required_fault);
74eee180 87 hmm_vma_walk->last = addr;
63d5066f 88
5a0c38d3
CH
89 if (!vma)
90 goto out_error;
da4c3c73 91
a3eb13c1 92 if (required_fault & HMM_NEED_WRITE_FAULT) {
5a0c38d3
CH
93 if (!(vma->vm_flags & VM_WRITE))
94 return -EPERM;
95 fault_flags |= FAULT_FLAG_WRITE;
74eee180
JG
96 }
97
5a0c38d3
CH
98 for (; addr < end; addr += PAGE_SIZE, i++)
99 if (handle_mm_fault(vma, addr, fault_flags) & VM_FAULT_ERROR)
100 goto out_error;
101
f8c888a3 102 return -EBUSY;
5a0c38d3
CH
103
104out_error:
105 pfns[i] = range->values[HMM_PFN_ERROR];
106 return -EFAULT;
2aee09d8
JG
107}
108
a3eb13c1
JG
109static unsigned int hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
110 uint64_t pfns, uint64_t cpu_flags)
2aee09d8 111{
f88a1e90
JG
112 struct hmm_range *range = hmm_vma_walk->range;
113
023a019a
JG
114 /*
115 * So we not only consider the individual per page request we also
116 * consider the default flags requested for the range. The API can
d2e8d551
RC
117 * be used 2 ways. The first one where the HMM user coalesces
118 * multiple page faults into one request and sets flags per pfn for
119 * those faults. The second one where the HMM user wants to pre-
023a019a
JG
120 * fault a range with specific flags. For the latter one it is a
121 * waste to have the user pre-fill the pfn arrays with a default
122 * flags value.
123 */
124 pfns = (pfns & range->pfn_flags_mask) | range->default_flags;
125
2aee09d8 126 /* We aren't ask to do anything ... */
f88a1e90 127 if (!(pfns & range->flags[HMM_PFN_VALID]))
a3eb13c1 128 return 0;
f88a1e90 129
f88a1e90
JG
130 /* Need to write fault ? */
131 if ((pfns & range->flags[HMM_PFN_WRITE]) &&
a3eb13c1
JG
132 !(cpu_flags & range->flags[HMM_PFN_WRITE]))
133 return HMM_NEED_FAULT | HMM_NEED_WRITE_FAULT;
134
135 /* If CPU page table is not valid then we need to fault */
136 if (!(cpu_flags & range->flags[HMM_PFN_VALID]))
137 return HMM_NEED_FAULT;
138 return 0;
2aee09d8
JG
139}
140
a3eb13c1
JG
141static unsigned int
142hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
143 const uint64_t *pfns, unsigned long npages,
144 uint64_t cpu_flags)
2aee09d8 145{
6bfef2f9 146 struct hmm_range *range = hmm_vma_walk->range;
a3eb13c1 147 unsigned int required_fault = 0;
2aee09d8
JG
148 unsigned long i;
149
6bfef2f9
JG
150 /*
151 * If the default flags do not request to fault pages, and the mask does
152 * not allow for individual pages to be faulted, then
153 * hmm_pte_need_fault() will always return 0.
154 */
155 if (!((range->default_flags | range->pfn_flags_mask) &
156 range->flags[HMM_PFN_VALID]))
a3eb13c1 157 return 0;
2aee09d8
JG
158
159 for (i = 0; i < npages; ++i) {
a3eb13c1
JG
160 required_fault |=
161 hmm_pte_need_fault(hmm_vma_walk, pfns[i], cpu_flags);
162 if (required_fault == HMM_NEED_ALL_BITS)
163 return required_fault;
2aee09d8 164 }
a3eb13c1 165 return required_fault;
2aee09d8
JG
166}
167
168static int hmm_vma_walk_hole(unsigned long addr, unsigned long end,
b7a16c7a 169 __always_unused int depth, struct mm_walk *walk)
2aee09d8
JG
170{
171 struct hmm_vma_walk *hmm_vma_walk = walk->private;
172 struct hmm_range *range = hmm_vma_walk->range;
a3eb13c1 173 unsigned int required_fault;
2aee09d8
JG
174 unsigned long i, npages;
175 uint64_t *pfns;
176
177 i = (addr - range->start) >> PAGE_SHIFT;
178 npages = (end - addr) >> PAGE_SHIFT;
179 pfns = &range->pfns[i];
a3eb13c1
JG
180 required_fault = hmm_range_need_fault(hmm_vma_walk, pfns, npages, 0);
181 if (required_fault)
182 return hmm_vma_fault(addr, end, required_fault, walk);
f8c888a3
CH
183 hmm_vma_walk->last = addr;
184 return hmm_pfns_fill(addr, end, range, HMM_PFN_NONE);
2aee09d8
JG
185}
186
f88a1e90 187static inline uint64_t pmd_to_hmm_pfn_flags(struct hmm_range *range, pmd_t pmd)
2aee09d8
JG
188{
189 if (pmd_protnone(pmd))
190 return 0;
f88a1e90
JG
191 return pmd_write(pmd) ? range->flags[HMM_PFN_VALID] |
192 range->flags[HMM_PFN_WRITE] :
193 range->flags[HMM_PFN_VALID];
da4c3c73
JG
194}
195
992de9a8 196#ifdef CONFIG_TRANSPARENT_HUGEPAGE
9d3973d6
CH
197static int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr,
198 unsigned long end, uint64_t *pfns, pmd_t pmd)
199{
53f5c3f4 200 struct hmm_vma_walk *hmm_vma_walk = walk->private;
f88a1e90 201 struct hmm_range *range = hmm_vma_walk->range;
2aee09d8 202 unsigned long pfn, npages, i;
a3eb13c1 203 unsigned int required_fault;
f88a1e90 204 uint64_t cpu_flags;
53f5c3f4 205
2aee09d8 206 npages = (end - addr) >> PAGE_SHIFT;
f88a1e90 207 cpu_flags = pmd_to_hmm_pfn_flags(range, pmd);
a3eb13c1
JG
208 required_fault =
209 hmm_range_need_fault(hmm_vma_walk, pfns, npages, cpu_flags);
210 if (required_fault)
211 return hmm_vma_fault(addr, end, required_fault, walk);
53f5c3f4 212
309f9a4f 213 pfn = pmd_pfn(pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
068354ad 214 for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++)
391aab11 215 pfns[i] = hmm_device_entry_from_pfn(range, pfn) | cpu_flags;
53f5c3f4
JG
216 hmm_vma_walk->last = end;
217 return 0;
218}
9d3973d6
CH
219#else /* CONFIG_TRANSPARENT_HUGEPAGE */
220/* stub to allow the code below to compile */
221int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr,
222 unsigned long end, uint64_t *pfns, pmd_t pmd);
223#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
53f5c3f4 224
08ddddda
CH
225static inline bool hmm_is_device_private_entry(struct hmm_range *range,
226 swp_entry_t entry)
227{
228 return is_device_private_entry(entry) &&
229 device_private_entry_to_page(entry)->pgmap->owner ==
230 range->dev_private_owner;
231}
232
f88a1e90 233static inline uint64_t pte_to_hmm_pfn_flags(struct hmm_range *range, pte_t pte)
2aee09d8 234{
789c2af8 235 if (pte_none(pte) || !pte_present(pte) || pte_protnone(pte))
2aee09d8 236 return 0;
f88a1e90
JG
237 return pte_write(pte) ? range->flags[HMM_PFN_VALID] |
238 range->flags[HMM_PFN_WRITE] :
239 range->flags[HMM_PFN_VALID];
2aee09d8
JG
240}
241
53f5c3f4
JG
242static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
243 unsigned long end, pmd_t *pmdp, pte_t *ptep,
244 uint64_t *pfn)
245{
246 struct hmm_vma_walk *hmm_vma_walk = walk->private;
f88a1e90 247 struct hmm_range *range = hmm_vma_walk->range;
a3eb13c1 248 unsigned int required_fault;
2aee09d8 249 uint64_t cpu_flags;
53f5c3f4 250 pte_t pte = *ptep;
f88a1e90 251 uint64_t orig_pfn = *pfn;
53f5c3f4 252
f88a1e90 253 *pfn = range->values[HMM_PFN_NONE];
53f5c3f4 254 if (pte_none(pte)) {
a3eb13c1
JG
255 required_fault = hmm_pte_need_fault(hmm_vma_walk, orig_pfn, 0);
256 if (required_fault)
53f5c3f4
JG
257 goto fault;
258 return 0;
259 }
260
261 if (!pte_present(pte)) {
262 swp_entry_t entry = pte_to_swp_entry(pte);
263
53f5c3f4 264 /*
17ffdc48
CH
265 * Never fault in device private pages pages, but just report
266 * the PFN even if not present.
53f5c3f4 267 */
08ddddda 268 if (hmm_is_device_private_entry(range, entry)) {
391aab11 269 *pfn = hmm_device_entry_from_pfn(range,
f66c9a33 270 device_private_entry_to_pfn(entry));
17ffdc48
CH
271 *pfn |= range->flags[HMM_PFN_VALID];
272 if (is_write_device_private_entry(entry))
273 *pfn |= range->flags[HMM_PFN_WRITE];
53f5c3f4
JG
274 return 0;
275 }
276
a3eb13c1
JG
277 required_fault = hmm_pte_need_fault(hmm_vma_walk, orig_pfn, 0);
278 if (!required_fault)
53f5c3f4 279 return 0;
76612d6c
JG
280
281 if (!non_swap_entry(entry))
282 goto fault;
283
284 if (is_migration_entry(entry)) {
285 pte_unmap(ptep);
286 hmm_vma_walk->last = addr;
287 migration_entry_wait(walk->mm, pmdp, addr);
288 return -EBUSY;
53f5c3f4
JG
289 }
290
291 /* Report error for everything else */
dfdc2207 292 pte_unmap(ptep);
f88a1e90 293 *pfn = range->values[HMM_PFN_ERROR];
53f5c3f4
JG
294 return -EFAULT;
295 }
296
76612d6c 297 cpu_flags = pte_to_hmm_pfn_flags(range, pte);
a3eb13c1
JG
298 required_fault = hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags);
299 if (required_fault)
53f5c3f4
JG
300 goto fault;
301
40550627
JG
302 /*
303 * Since each architecture defines a struct page for the zero page, just
304 * fall through and treat it like a normal page.
305 */
306 if (pte_special(pte) && !is_zero_pfn(pte_pfn(pte))) {
a3eb13c1 307 if (hmm_pte_need_fault(hmm_vma_walk, orig_pfn, 0)) {
dfdc2207 308 pte_unmap(ptep);
ac541f25
RC
309 return -EFAULT;
310 }
40550627
JG
311 *pfn = range->values[HMM_PFN_SPECIAL];
312 return 0;
992de9a8
JG
313 }
314
391aab11 315 *pfn = hmm_device_entry_from_pfn(range, pte_pfn(pte)) | cpu_flags;
53f5c3f4
JG
316 return 0;
317
318fault:
319 pte_unmap(ptep);
320 /* Fault any virtual address we were asked to fault */
a3eb13c1 321 return hmm_vma_fault(addr, end, required_fault, walk);
53f5c3f4
JG
322}
323
da4c3c73
JG
324static int hmm_vma_walk_pmd(pmd_t *pmdp,
325 unsigned long start,
326 unsigned long end,
327 struct mm_walk *walk)
328{
74eee180
JG
329 struct hmm_vma_walk *hmm_vma_walk = walk->private;
330 struct hmm_range *range = hmm_vma_walk->range;
2288a9a6
JG
331 uint64_t *pfns = &range->pfns[(start - range->start) >> PAGE_SHIFT];
332 unsigned long npages = (end - start) >> PAGE_SHIFT;
333 unsigned long addr = start;
da4c3c73 334 pte_t *ptep;
d08faca0 335 pmd_t pmd;
da4c3c73 336
da4c3c73 337again:
d08faca0
JG
338 pmd = READ_ONCE(*pmdp);
339 if (pmd_none(pmd))
b7a16c7a 340 return hmm_vma_walk_hole(start, end, -1, walk);
da4c3c73 341
d08faca0 342 if (thp_migration_supported() && is_pmd_migration_entry(pmd)) {
a3eb13c1 343 if (hmm_range_need_fault(hmm_vma_walk, pfns, npages, 0)) {
d08faca0 344 hmm_vma_walk->last = addr;
d2e8d551 345 pmd_migration_entry_wait(walk->mm, pmdp);
73231612 346 return -EBUSY;
d08faca0 347 }
7d082987 348 return hmm_pfns_fill(start, end, range, HMM_PFN_NONE);
2288a9a6
JG
349 }
350
351 if (!pmd_present(pmd)) {
a3eb13c1 352 if (hmm_range_need_fault(hmm_vma_walk, pfns, npages, 0))
2288a9a6 353 return -EFAULT;
d28c2c9a 354 return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
2288a9a6 355 }
da4c3c73 356
d08faca0 357 if (pmd_devmap(pmd) || pmd_trans_huge(pmd)) {
da4c3c73 358 /*
d2e8d551 359 * No need to take pmd_lock here, even if some other thread
da4c3c73
JG
360 * is splitting the huge pmd we will get that event through
361 * mmu_notifier callback.
362 *
d2e8d551 363 * So just read pmd value and check again it's a transparent
da4c3c73
JG
364 * huge or device mapping one and compute corresponding pfn
365 * values.
366 */
367 pmd = pmd_read_atomic(pmdp);
368 barrier();
369 if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
370 goto again;
74eee180 371
2288a9a6 372 return hmm_vma_handle_pmd(walk, addr, end, pfns, pmd);
da4c3c73
JG
373 }
374
d08faca0 375 /*
d2e8d551 376 * We have handled all the valid cases above ie either none, migration,
d08faca0
JG
377 * huge or transparent huge. At this point either it is a valid pmd
378 * entry pointing to pte directory or it is a bad pmd that will not
379 * recover.
380 */
2288a9a6 381 if (pmd_bad(pmd)) {
a3eb13c1 382 if (hmm_range_need_fault(hmm_vma_walk, pfns, npages, 0))
2288a9a6 383 return -EFAULT;
d28c2c9a 384 return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
2288a9a6 385 }
da4c3c73
JG
386
387 ptep = pte_offset_map(pmdp, addr);
2288a9a6 388 for (; addr < end; addr += PAGE_SIZE, ptep++, pfns++) {
53f5c3f4 389 int r;
74eee180 390
2288a9a6 391 r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, pfns);
53f5c3f4 392 if (r) {
dfdc2207 393 /* hmm_vma_handle_pte() did pte_unmap() */
53f5c3f4
JG
394 hmm_vma_walk->last = addr;
395 return r;
74eee180 396 }
da4c3c73
JG
397 }
398 pte_unmap(ptep - 1);
399
53f5c3f4 400 hmm_vma_walk->last = addr;
da4c3c73
JG
401 return 0;
402}
403
f0b3c45c
CH
404#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && \
405 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
406static inline uint64_t pud_to_hmm_pfn_flags(struct hmm_range *range, pud_t pud)
407{
408 if (!pud_present(pud))
409 return 0;
410 return pud_write(pud) ? range->flags[HMM_PFN_VALID] |
411 range->flags[HMM_PFN_WRITE] :
412 range->flags[HMM_PFN_VALID];
413}
414
415static int hmm_vma_walk_pud(pud_t *pudp, unsigned long start, unsigned long end,
416 struct mm_walk *walk)
992de9a8
JG
417{
418 struct hmm_vma_walk *hmm_vma_walk = walk->private;
419 struct hmm_range *range = hmm_vma_walk->range;
3afc4236 420 unsigned long addr = start;
992de9a8 421 pud_t pud;
3afc4236
SP
422 int ret = 0;
423 spinlock_t *ptl = pud_trans_huge_lock(pudp, walk->vma);
424
425 if (!ptl)
426 return 0;
427
428 /* Normally we don't want to split the huge page */
429 walk->action = ACTION_CONTINUE;
992de9a8 430
992de9a8 431 pud = READ_ONCE(*pudp);
3afc4236 432 if (pud_none(pud)) {
05fc1df9
JG
433 spin_unlock(ptl);
434 return hmm_vma_walk_hole(start, end, -1, walk);
3afc4236 435 }
992de9a8
JG
436
437 if (pud_huge(pud) && pud_devmap(pud)) {
438 unsigned long i, npages, pfn;
a3eb13c1 439 unsigned int required_fault;
992de9a8 440 uint64_t *pfns, cpu_flags;
992de9a8 441
3afc4236 442 if (!pud_present(pud)) {
05fc1df9
JG
443 spin_unlock(ptl);
444 return hmm_vma_walk_hole(start, end, -1, walk);
3afc4236 445 }
992de9a8
JG
446
447 i = (addr - range->start) >> PAGE_SHIFT;
448 npages = (end - addr) >> PAGE_SHIFT;
449 pfns = &range->pfns[i];
450
451 cpu_flags = pud_to_hmm_pfn_flags(range, pud);
a3eb13c1
JG
452 required_fault = hmm_range_need_fault(hmm_vma_walk, pfns,
453 npages, cpu_flags);
454 if (required_fault) {
05fc1df9 455 spin_unlock(ptl);
a3eb13c1 456 return hmm_vma_fault(addr, end, required_fault, walk);
3afc4236 457 }
992de9a8 458
992de9a8 459 pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
068354ad 460 for (i = 0; i < npages; ++i, ++pfn)
391aab11
JG
461 pfns[i] = hmm_device_entry_from_pfn(range, pfn) |
462 cpu_flags;
992de9a8 463 hmm_vma_walk->last = end;
3afc4236 464 goto out_unlock;
992de9a8
JG
465 }
466
3afc4236
SP
467 /* Ask for the PUD to be split */
468 walk->action = ACTION_SUBTREE;
992de9a8 469
3afc4236
SP
470out_unlock:
471 spin_unlock(ptl);
472 return ret;
992de9a8 473}
f0b3c45c
CH
474#else
475#define hmm_vma_walk_pud NULL
476#endif
992de9a8 477
251bbe59 478#ifdef CONFIG_HUGETLB_PAGE
63d5066f
JG
479static int hmm_vma_walk_hugetlb_entry(pte_t *pte, unsigned long hmask,
480 unsigned long start, unsigned long end,
481 struct mm_walk *walk)
482{
05c23af4 483 unsigned long addr = start, i, pfn;
63d5066f
JG
484 struct hmm_vma_walk *hmm_vma_walk = walk->private;
485 struct hmm_range *range = hmm_vma_walk->range;
486 struct vm_area_struct *vma = walk->vma;
63d5066f 487 uint64_t orig_pfn, cpu_flags;
a3eb13c1 488 unsigned int required_fault;
63d5066f
JG
489 spinlock_t *ptl;
490 pte_t entry;
63d5066f 491
d2e8d551 492 ptl = huge_pte_lock(hstate_vma(vma), walk->mm, pte);
63d5066f
JG
493 entry = huge_ptep_get(pte);
494
7f08263d 495 i = (start - range->start) >> PAGE_SHIFT;
63d5066f
JG
496 orig_pfn = range->pfns[i];
497 range->pfns[i] = range->values[HMM_PFN_NONE];
498 cpu_flags = pte_to_hmm_pfn_flags(range, entry);
a3eb13c1
JG
499 required_fault = hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags);
500 if (required_fault) {
45050692 501 spin_unlock(ptl);
a3eb13c1 502 return hmm_vma_fault(addr, end, required_fault, walk);
63d5066f
JG
503 }
504
05c23af4 505 pfn = pte_pfn(entry) + ((start & ~hmask) >> PAGE_SHIFT);
7f08263d 506 for (; addr < end; addr += PAGE_SIZE, i++, pfn++)
391aab11
JG
507 range->pfns[i] = hmm_device_entry_from_pfn(range, pfn) |
508 cpu_flags;
63d5066f 509 hmm_vma_walk->last = end;
63d5066f 510 spin_unlock(ptl);
45050692 511 return 0;
63d5066f 512}
251bbe59
CH
513#else
514#define hmm_vma_walk_hugetlb_entry NULL
515#endif /* CONFIG_HUGETLB_PAGE */
63d5066f 516
d28c2c9a
RC
517static int hmm_vma_walk_test(unsigned long start, unsigned long end,
518 struct mm_walk *walk)
33cd47dc 519{
d28c2c9a
RC
520 struct hmm_vma_walk *hmm_vma_walk = walk->private;
521 struct hmm_range *range = hmm_vma_walk->range;
522 struct vm_area_struct *vma = walk->vma;
523
a3eb13c1
JG
524 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP | VM_MIXEDMAP)) &&
525 vma->vm_flags & VM_READ)
526 return 0;
527
d28c2c9a 528 /*
a3eb13c1
JG
529 * vma ranges that don't have struct page backing them or map I/O
530 * devices directly cannot be handled by hmm_range_fault().
c2579c9c 531 *
d28c2c9a 532 * If the vma does not allow read access, then assume that it does not
c2579c9c
JG
533 * allow write access either. HMM does not support architectures that
534 * allow write without read.
a3eb13c1
JG
535 *
536 * If a fault is requested for an unsupported range then it is a hard
537 * failure.
d28c2c9a 538 */
a3eb13c1
JG
539 if (hmm_range_need_fault(hmm_vma_walk,
540 range->pfns +
541 ((start - range->start) >> PAGE_SHIFT),
542 (end - start) >> PAGE_SHIFT, 0))
543 return -EFAULT;
d28c2c9a 544
a3eb13c1
JG
545 hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
546 hmm_vma_walk->last = end;
d28c2c9a 547
a3eb13c1
JG
548 /* Skip this vma and continue processing the next vma. */
549 return 1;
33cd47dc
JG
550}
551
7b86ac33
CH
552static const struct mm_walk_ops hmm_walk_ops = {
553 .pud_entry = hmm_vma_walk_pud,
554 .pmd_entry = hmm_vma_walk_pmd,
555 .pte_hole = hmm_vma_walk_hole,
556 .hugetlb_entry = hmm_vma_walk_hugetlb_entry,
d28c2c9a 557 .test_walk = hmm_vma_walk_test,
7b86ac33
CH
558};
559
9a4903e4
CH
560/**
561 * hmm_range_fault - try to fault some address in a virtual address range
f970b977 562 * @range: argument structure
9a4903e4
CH
563 *
564 * Return: the number of valid pages in range->pfns[] (from range start
565 * address), which may be zero. On error one of the following status codes
566 * can be returned:
73231612 567 *
9a4903e4
CH
568 * -EINVAL: Invalid arguments or mm or virtual address is in an invalid vma
569 * (e.g., device file vma).
570 * -ENOMEM: Out of memory.
571 * -EPERM: Invalid permission (e.g., asking for write and range is read
572 * only).
9a4903e4
CH
573 * -EBUSY: The range has been invalidated and the caller needs to wait for
574 * the invalidation to finish.
f970b977
JG
575 * -EFAULT: A page was requested to be valid and could not be made valid
576 * ie it has no backing VMA or it is illegal to access
74eee180 577 *
f970b977
JG
578 * This is similar to get_user_pages(), except that it can read the page tables
579 * without mutating them (ie causing faults).
74eee180 580 *
ff05c0c6
JG
581 * On error, for one virtual address in the range, the function will mark the
582 * corresponding HMM pfn entry with an error flag.
74eee180 583 */
6bfef2f9 584long hmm_range_fault(struct hmm_range *range)
74eee180 585{
d28c2c9a
RC
586 struct hmm_vma_walk hmm_vma_walk = {
587 .range = range,
588 .last = range->start,
d28c2c9a 589 };
a22dd506 590 struct mm_struct *mm = range->notifier->mm;
74eee180
JG
591 int ret;
592
04ec32fb 593 lockdep_assert_held(&mm->mmap_sem);
704f3f2c 594
a3e0d41c
JG
595 do {
596 /* If range is no longer valid force retry. */
a22dd506
JG
597 if (mmu_interval_check_retry(range->notifier,
598 range->notifier_seq))
2bcbeaef 599 return -EBUSY;
d28c2c9a
RC
600 ret = walk_page_range(mm, hmm_vma_walk.last, range->end,
601 &hmm_walk_ops, &hmm_vma_walk);
602 } while (ret == -EBUSY);
74eee180 603
d28c2c9a
RC
604 if (ret)
605 return ret;
73231612 606 return (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
74eee180 607}
73231612 608EXPORT_SYMBOL(hmm_range_fault);