mm/hmm: mirror hugetlbfs (snapshoting, faulting and DMA mapping)
[linux-block.git] / mm / hmm.c
CommitLineData
133ff0ea
JG
1/*
2 * Copyright 2013 Red Hat Inc.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
f813f219 14 * Authors: Jérôme Glisse <jglisse@redhat.com>
133ff0ea
JG
15 */
16/*
17 * Refer to include/linux/hmm.h for information about heterogeneous memory
18 * management or HMM for short.
19 */
20#include <linux/mm.h>
21#include <linux/hmm.h>
858b54da 22#include <linux/init.h>
da4c3c73
JG
23#include <linux/rmap.h>
24#include <linux/swap.h>
133ff0ea
JG
25#include <linux/slab.h>
26#include <linux/sched.h>
4ef589dc
JG
27#include <linux/mmzone.h>
28#include <linux/pagemap.h>
da4c3c73
JG
29#include <linux/swapops.h>
30#include <linux/hugetlb.h>
4ef589dc 31#include <linux/memremap.h>
7b2d55d2 32#include <linux/jump_label.h>
c0b12405 33#include <linux/mmu_notifier.h>
4ef589dc
JG
34#include <linux/memory_hotplug.h>
35
36#define PA_SECTION_SIZE (1UL << PA_SECTION_SHIFT)
133ff0ea 37
6b368cd4 38#if IS_ENABLED(CONFIG_HMM_MIRROR)
c0b12405
JG
39static const struct mmu_notifier_ops hmm_mmu_notifier_ops;
40
704f3f2c
JG
41static inline struct hmm *mm_get_hmm(struct mm_struct *mm)
42{
43 struct hmm *hmm = READ_ONCE(mm->hmm);
44
45 if (hmm && kref_get_unless_zero(&hmm->kref))
46 return hmm;
47
48 return NULL;
49}
50
51/**
52 * hmm_get_or_create - register HMM against an mm (HMM internal)
133ff0ea
JG
53 *
54 * @mm: mm struct to attach to
704f3f2c
JG
55 * Returns: returns an HMM object, either by referencing the existing
56 * (per-process) object, or by creating a new one.
133ff0ea 57 *
704f3f2c
JG
58 * This is not intended to be used directly by device drivers. If mm already
59 * has an HMM struct then it get a reference on it and returns it. Otherwise
60 * it allocates an HMM struct, initializes it, associate it with the mm and
61 * returns it.
133ff0ea 62 */
704f3f2c 63static struct hmm *hmm_get_or_create(struct mm_struct *mm)
133ff0ea 64{
704f3f2c 65 struct hmm *hmm = mm_get_hmm(mm);
c0b12405 66 bool cleanup = false;
133ff0ea 67
c0b12405
JG
68 if (hmm)
69 return hmm;
70
71 hmm = kmalloc(sizeof(*hmm), GFP_KERNEL);
72 if (!hmm)
73 return NULL;
a3e0d41c 74 init_waitqueue_head(&hmm->wq);
c0b12405
JG
75 INIT_LIST_HEAD(&hmm->mirrors);
76 init_rwsem(&hmm->mirrors_sem);
c0b12405 77 hmm->mmu_notifier.ops = NULL;
da4c3c73 78 INIT_LIST_HEAD(&hmm->ranges);
a3e0d41c 79 mutex_init(&hmm->lock);
704f3f2c 80 kref_init(&hmm->kref);
a3e0d41c
JG
81 hmm->notifiers = 0;
82 hmm->dead = false;
c0b12405
JG
83 hmm->mm = mm;
84
c0b12405
JG
85 spin_lock(&mm->page_table_lock);
86 if (!mm->hmm)
87 mm->hmm = hmm;
88 else
89 cleanup = true;
90 spin_unlock(&mm->page_table_lock);
91
86a2d598
RC
92 if (cleanup)
93 goto error;
94
95 /*
96 * We should only get here if hold the mmap_sem in write mode ie on
97 * registration of first mirror through hmm_mirror_register()
98 */
99 hmm->mmu_notifier.ops = &hmm_mmu_notifier_ops;
100 if (__mmu_notifier_register(&hmm->mmu_notifier, mm))
101 goto error_mm;
c0b12405 102
704f3f2c 103 return hmm;
86a2d598
RC
104
105error_mm:
106 spin_lock(&mm->page_table_lock);
107 if (mm->hmm == hmm)
108 mm->hmm = NULL;
109 spin_unlock(&mm->page_table_lock);
110error:
111 kfree(hmm);
112 return NULL;
133ff0ea
JG
113}
114
704f3f2c
JG
115static void hmm_free(struct kref *kref)
116{
117 struct hmm *hmm = container_of(kref, struct hmm, kref);
118 struct mm_struct *mm = hmm->mm;
119
120 mmu_notifier_unregister_no_release(&hmm->mmu_notifier, mm);
121
122 spin_lock(&mm->page_table_lock);
123 if (mm->hmm == hmm)
124 mm->hmm = NULL;
125 spin_unlock(&mm->page_table_lock);
126
127 kfree(hmm);
128}
129
130static inline void hmm_put(struct hmm *hmm)
131{
132 kref_put(&hmm->kref, hmm_free);
133}
134
133ff0ea
JG
135void hmm_mm_destroy(struct mm_struct *mm)
136{
704f3f2c
JG
137 struct hmm *hmm;
138
139 spin_lock(&mm->page_table_lock);
140 hmm = mm_get_hmm(mm);
141 mm->hmm = NULL;
142 if (hmm) {
143 hmm->mm = NULL;
a3e0d41c 144 hmm->dead = true;
704f3f2c
JG
145 spin_unlock(&mm->page_table_lock);
146 hmm_put(hmm);
147 return;
148 }
149
150 spin_unlock(&mm->page_table_lock);
133ff0ea 151}
c0b12405 152
a3e0d41c 153static void hmm_release(struct mmu_notifier *mn, struct mm_struct *mm)
c0b12405 154{
a3e0d41c 155 struct hmm *hmm = mm_get_hmm(mm);
c0b12405 156 struct hmm_mirror *mirror;
da4c3c73
JG
157 struct hmm_range *range;
158
a3e0d41c
JG
159 /* Report this HMM as dying. */
160 hmm->dead = true;
da4c3c73 161
a3e0d41c
JG
162 /* Wake-up everyone waiting on any range. */
163 mutex_lock(&hmm->lock);
164 list_for_each_entry(range, &hmm->ranges, list) {
da4c3c73 165 range->valid = false;
da4c3c73 166 }
a3e0d41c
JG
167 wake_up_all(&hmm->wq);
168 mutex_unlock(&hmm->lock);
e1401513
RC
169
170 down_write(&hmm->mirrors_sem);
171 mirror = list_first_entry_or_null(&hmm->mirrors, struct hmm_mirror,
172 list);
173 while (mirror) {
174 list_del_init(&mirror->list);
175 if (mirror->ops->release) {
176 /*
177 * Drop mirrors_sem so callback can wait on any pending
178 * work that might itself trigger mmu_notifier callback
179 * and thus would deadlock with us.
180 */
181 up_write(&hmm->mirrors_sem);
182 mirror->ops->release(mirror);
183 down_write(&hmm->mirrors_sem);
184 }
185 mirror = list_first_entry_or_null(&hmm->mirrors,
186 struct hmm_mirror, list);
187 }
188 up_write(&hmm->mirrors_sem);
704f3f2c
JG
189
190 hmm_put(hmm);
e1401513
RC
191}
192
93065ac7 193static int hmm_invalidate_range_start(struct mmu_notifier *mn,
a3e0d41c 194 const struct mmu_notifier_range *nrange)
c0b12405 195{
a3e0d41c
JG
196 struct hmm *hmm = mm_get_hmm(nrange->mm);
197 struct hmm_mirror *mirror;
ec131b2d 198 struct hmm_update update;
a3e0d41c
JG
199 struct hmm_range *range;
200 int ret = 0;
c0b12405
JG
201
202 VM_BUG_ON(!hmm);
203
a3e0d41c
JG
204 update.start = nrange->start;
205 update.end = nrange->end;
ec131b2d 206 update.event = HMM_UPDATE_INVALIDATE;
a3e0d41c
JG
207 update.blockable = nrange->blockable;
208
209 if (nrange->blockable)
210 mutex_lock(&hmm->lock);
211 else if (!mutex_trylock(&hmm->lock)) {
212 ret = -EAGAIN;
213 goto out;
214 }
215 hmm->notifiers++;
216 list_for_each_entry(range, &hmm->ranges, list) {
217 if (update.end < range->start || update.start >= range->end)
218 continue;
219
220 range->valid = false;
221 }
222 mutex_unlock(&hmm->lock);
223
224 if (nrange->blockable)
225 down_read(&hmm->mirrors_sem);
226 else if (!down_read_trylock(&hmm->mirrors_sem)) {
227 ret = -EAGAIN;
228 goto out;
229 }
230 list_for_each_entry(mirror, &hmm->mirrors, list) {
231 int ret;
232
233 ret = mirror->ops->sync_cpu_device_pagetables(mirror, &update);
234 if (!update.blockable && ret == -EAGAIN) {
235 up_read(&hmm->mirrors_sem);
236 ret = -EAGAIN;
237 goto out;
238 }
239 }
240 up_read(&hmm->mirrors_sem);
241
242out:
704f3f2c
JG
243 hmm_put(hmm);
244 return ret;
c0b12405
JG
245}
246
247static void hmm_invalidate_range_end(struct mmu_notifier *mn,
a3e0d41c 248 const struct mmu_notifier_range *nrange)
c0b12405 249{
a3e0d41c 250 struct hmm *hmm = mm_get_hmm(nrange->mm);
c0b12405
JG
251
252 VM_BUG_ON(!hmm);
253
a3e0d41c
JG
254 mutex_lock(&hmm->lock);
255 hmm->notifiers--;
256 if (!hmm->notifiers) {
257 struct hmm_range *range;
258
259 list_for_each_entry(range, &hmm->ranges, list) {
260 if (range->valid)
261 continue;
262 range->valid = true;
263 }
264 wake_up_all(&hmm->wq);
265 }
266 mutex_unlock(&hmm->lock);
267
704f3f2c 268 hmm_put(hmm);
c0b12405
JG
269}
270
271static const struct mmu_notifier_ops hmm_mmu_notifier_ops = {
e1401513 272 .release = hmm_release,
c0b12405
JG
273 .invalidate_range_start = hmm_invalidate_range_start,
274 .invalidate_range_end = hmm_invalidate_range_end,
275};
276
277/*
278 * hmm_mirror_register() - register a mirror against an mm
279 *
280 * @mirror: new mirror struct to register
281 * @mm: mm to register against
282 *
283 * To start mirroring a process address space, the device driver must register
284 * an HMM mirror struct.
285 *
286 * THE mm->mmap_sem MUST BE HELD IN WRITE MODE !
287 */
288int hmm_mirror_register(struct hmm_mirror *mirror, struct mm_struct *mm)
289{
290 /* Sanity check */
291 if (!mm || !mirror || !mirror->ops)
292 return -EINVAL;
293
704f3f2c 294 mirror->hmm = hmm_get_or_create(mm);
c0b12405
JG
295 if (!mirror->hmm)
296 return -ENOMEM;
297
298 down_write(&mirror->hmm->mirrors_sem);
704f3f2c
JG
299 list_add(&mirror->list, &mirror->hmm->mirrors);
300 up_write(&mirror->hmm->mirrors_sem);
c0b12405
JG
301
302 return 0;
303}
304EXPORT_SYMBOL(hmm_mirror_register);
305
306/*
307 * hmm_mirror_unregister() - unregister a mirror
308 *
309 * @mirror: new mirror struct to register
310 *
311 * Stop mirroring a process address space, and cleanup.
312 */
313void hmm_mirror_unregister(struct hmm_mirror *mirror)
314{
704f3f2c 315 struct hmm *hmm = READ_ONCE(mirror->hmm);
c01cbba2 316
704f3f2c 317 if (hmm == NULL)
c01cbba2 318 return;
c0b12405
JG
319
320 down_write(&hmm->mirrors_sem);
e1401513 321 list_del_init(&mirror->list);
704f3f2c 322 /* To protect us against double unregister ... */
c01cbba2 323 mirror->hmm = NULL;
c0b12405 324 up_write(&hmm->mirrors_sem);
c01cbba2 325
704f3f2c 326 hmm_put(hmm);
c0b12405
JG
327}
328EXPORT_SYMBOL(hmm_mirror_unregister);
da4c3c73 329
74eee180
JG
330struct hmm_vma_walk {
331 struct hmm_range *range;
332 unsigned long last;
333 bool fault;
334 bool block;
74eee180
JG
335};
336
2aee09d8
JG
337static int hmm_vma_do_fault(struct mm_walk *walk, unsigned long addr,
338 bool write_fault, uint64_t *pfn)
74eee180
JG
339{
340 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_REMOTE;
341 struct hmm_vma_walk *hmm_vma_walk = walk->private;
f88a1e90 342 struct hmm_range *range = hmm_vma_walk->range;
74eee180 343 struct vm_area_struct *vma = walk->vma;
50a7ca3c 344 vm_fault_t ret;
74eee180
JG
345
346 flags |= hmm_vma_walk->block ? 0 : FAULT_FLAG_ALLOW_RETRY;
2aee09d8 347 flags |= write_fault ? FAULT_FLAG_WRITE : 0;
50a7ca3c
SJ
348 ret = handle_mm_fault(vma, addr, flags);
349 if (ret & VM_FAULT_RETRY)
73231612 350 return -EAGAIN;
50a7ca3c 351 if (ret & VM_FAULT_ERROR) {
f88a1e90 352 *pfn = range->values[HMM_PFN_ERROR];
74eee180
JG
353 return -EFAULT;
354 }
355
73231612 356 return -EBUSY;
74eee180
JG
357}
358
da4c3c73
JG
359static int hmm_pfns_bad(unsigned long addr,
360 unsigned long end,
361 struct mm_walk *walk)
362{
c719547f
JG
363 struct hmm_vma_walk *hmm_vma_walk = walk->private;
364 struct hmm_range *range = hmm_vma_walk->range;
ff05c0c6 365 uint64_t *pfns = range->pfns;
da4c3c73
JG
366 unsigned long i;
367
368 i = (addr - range->start) >> PAGE_SHIFT;
369 for (; addr < end; addr += PAGE_SIZE, i++)
f88a1e90 370 pfns[i] = range->values[HMM_PFN_ERROR];
da4c3c73
JG
371
372 return 0;
373}
374
5504ed29
JG
375/*
376 * hmm_vma_walk_hole() - handle a range lacking valid pmd or pte(s)
377 * @start: range virtual start address (inclusive)
378 * @end: range virtual end address (exclusive)
2aee09d8
JG
379 * @fault: should we fault or not ?
380 * @write_fault: write fault ?
5504ed29 381 * @walk: mm_walk structure
73231612 382 * Returns: 0 on success, -EBUSY after page fault, or page fault error
5504ed29
JG
383 *
384 * This function will be called whenever pmd_none() or pte_none() returns true,
385 * or whenever there is no page directory covering the virtual address range.
386 */
2aee09d8
JG
387static int hmm_vma_walk_hole_(unsigned long addr, unsigned long end,
388 bool fault, bool write_fault,
389 struct mm_walk *walk)
da4c3c73 390{
74eee180
JG
391 struct hmm_vma_walk *hmm_vma_walk = walk->private;
392 struct hmm_range *range = hmm_vma_walk->range;
ff05c0c6 393 uint64_t *pfns = range->pfns;
63d5066f 394 unsigned long i, page_size;
da4c3c73 395
74eee180 396 hmm_vma_walk->last = addr;
63d5066f
JG
397 page_size = hmm_range_page_size(range);
398 i = (addr - range->start) >> range->page_shift;
399
400 for (; addr < end; addr += page_size, i++) {
f88a1e90 401 pfns[i] = range->values[HMM_PFN_NONE];
2aee09d8 402 if (fault || write_fault) {
74eee180 403 int ret;
da4c3c73 404
2aee09d8
JG
405 ret = hmm_vma_do_fault(walk, addr, write_fault,
406 &pfns[i]);
73231612 407 if (ret != -EBUSY)
74eee180
JG
408 return ret;
409 }
410 }
411
73231612 412 return (fault || write_fault) ? -EBUSY : 0;
2aee09d8
JG
413}
414
415static inline void hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
416 uint64_t pfns, uint64_t cpu_flags,
417 bool *fault, bool *write_fault)
418{
f88a1e90
JG
419 struct hmm_range *range = hmm_vma_walk->range;
420
2aee09d8
JG
421 if (!hmm_vma_walk->fault)
422 return;
423
023a019a
JG
424 /*
425 * So we not only consider the individual per page request we also
426 * consider the default flags requested for the range. The API can
427 * be use in 2 fashions. The first one where the HMM user coalesce
428 * multiple page fault into one request and set flags per pfns for
429 * of those faults. The second one where the HMM user want to pre-
430 * fault a range with specific flags. For the latter one it is a
431 * waste to have the user pre-fill the pfn arrays with a default
432 * flags value.
433 */
434 pfns = (pfns & range->pfn_flags_mask) | range->default_flags;
435
2aee09d8 436 /* We aren't ask to do anything ... */
f88a1e90 437 if (!(pfns & range->flags[HMM_PFN_VALID]))
2aee09d8 438 return;
f88a1e90
JG
439 /* If this is device memory than only fault if explicitly requested */
440 if ((cpu_flags & range->flags[HMM_PFN_DEVICE_PRIVATE])) {
441 /* Do we fault on device memory ? */
442 if (pfns & range->flags[HMM_PFN_DEVICE_PRIVATE]) {
443 *write_fault = pfns & range->flags[HMM_PFN_WRITE];
444 *fault = true;
445 }
2aee09d8
JG
446 return;
447 }
f88a1e90
JG
448
449 /* If CPU page table is not valid then we need to fault */
450 *fault = !(cpu_flags & range->flags[HMM_PFN_VALID]);
451 /* Need to write fault ? */
452 if ((pfns & range->flags[HMM_PFN_WRITE]) &&
453 !(cpu_flags & range->flags[HMM_PFN_WRITE])) {
454 *write_fault = true;
2aee09d8
JG
455 *fault = true;
456 }
457}
458
459static void hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
460 const uint64_t *pfns, unsigned long npages,
461 uint64_t cpu_flags, bool *fault,
462 bool *write_fault)
463{
464 unsigned long i;
465
466 if (!hmm_vma_walk->fault) {
467 *fault = *write_fault = false;
468 return;
469 }
470
a3e0d41c 471 *fault = *write_fault = false;
2aee09d8
JG
472 for (i = 0; i < npages; ++i) {
473 hmm_pte_need_fault(hmm_vma_walk, pfns[i], cpu_flags,
474 fault, write_fault);
a3e0d41c 475 if ((*write_fault))
2aee09d8
JG
476 return;
477 }
478}
479
480static int hmm_vma_walk_hole(unsigned long addr, unsigned long end,
481 struct mm_walk *walk)
482{
483 struct hmm_vma_walk *hmm_vma_walk = walk->private;
484 struct hmm_range *range = hmm_vma_walk->range;
485 bool fault, write_fault;
486 unsigned long i, npages;
487 uint64_t *pfns;
488
489 i = (addr - range->start) >> PAGE_SHIFT;
490 npages = (end - addr) >> PAGE_SHIFT;
491 pfns = &range->pfns[i];
492 hmm_range_need_fault(hmm_vma_walk, pfns, npages,
493 0, &fault, &write_fault);
494 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
495}
496
f88a1e90 497static inline uint64_t pmd_to_hmm_pfn_flags(struct hmm_range *range, pmd_t pmd)
2aee09d8
JG
498{
499 if (pmd_protnone(pmd))
500 return 0;
f88a1e90
JG
501 return pmd_write(pmd) ? range->flags[HMM_PFN_VALID] |
502 range->flags[HMM_PFN_WRITE] :
503 range->flags[HMM_PFN_VALID];
da4c3c73
JG
504}
505
53f5c3f4
JG
506static int hmm_vma_handle_pmd(struct mm_walk *walk,
507 unsigned long addr,
508 unsigned long end,
509 uint64_t *pfns,
510 pmd_t pmd)
511{
512 struct hmm_vma_walk *hmm_vma_walk = walk->private;
f88a1e90 513 struct hmm_range *range = hmm_vma_walk->range;
2aee09d8 514 unsigned long pfn, npages, i;
2aee09d8 515 bool fault, write_fault;
f88a1e90 516 uint64_t cpu_flags;
53f5c3f4 517
2aee09d8 518 npages = (end - addr) >> PAGE_SHIFT;
f88a1e90 519 cpu_flags = pmd_to_hmm_pfn_flags(range, pmd);
2aee09d8
JG
520 hmm_range_need_fault(hmm_vma_walk, pfns, npages, cpu_flags,
521 &fault, &write_fault);
53f5c3f4 522
2aee09d8
JG
523 if (pmd_protnone(pmd) || fault || write_fault)
524 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
53f5c3f4
JG
525
526 pfn = pmd_pfn(pmd) + pte_index(addr);
53f5c3f4 527 for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++)
f88a1e90 528 pfns[i] = hmm_pfn_from_pfn(range, pfn) | cpu_flags;
53f5c3f4
JG
529 hmm_vma_walk->last = end;
530 return 0;
531}
532
f88a1e90 533static inline uint64_t pte_to_hmm_pfn_flags(struct hmm_range *range, pte_t pte)
2aee09d8
JG
534{
535 if (pte_none(pte) || !pte_present(pte))
536 return 0;
f88a1e90
JG
537 return pte_write(pte) ? range->flags[HMM_PFN_VALID] |
538 range->flags[HMM_PFN_WRITE] :
539 range->flags[HMM_PFN_VALID];
2aee09d8
JG
540}
541
53f5c3f4
JG
542static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
543 unsigned long end, pmd_t *pmdp, pte_t *ptep,
544 uint64_t *pfn)
545{
546 struct hmm_vma_walk *hmm_vma_walk = walk->private;
f88a1e90 547 struct hmm_range *range = hmm_vma_walk->range;
53f5c3f4 548 struct vm_area_struct *vma = walk->vma;
2aee09d8
JG
549 bool fault, write_fault;
550 uint64_t cpu_flags;
53f5c3f4 551 pte_t pte = *ptep;
f88a1e90 552 uint64_t orig_pfn = *pfn;
53f5c3f4 553
f88a1e90 554 *pfn = range->values[HMM_PFN_NONE];
73231612 555 fault = write_fault = false;
53f5c3f4
JG
556
557 if (pte_none(pte)) {
73231612
JG
558 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, 0,
559 &fault, &write_fault);
2aee09d8 560 if (fault || write_fault)
53f5c3f4
JG
561 goto fault;
562 return 0;
563 }
564
565 if (!pte_present(pte)) {
566 swp_entry_t entry = pte_to_swp_entry(pte);
567
568 if (!non_swap_entry(entry)) {
2aee09d8 569 if (fault || write_fault)
53f5c3f4
JG
570 goto fault;
571 return 0;
572 }
573
574 /*
575 * This is a special swap entry, ignore migration, use
576 * device and report anything else as error.
577 */
578 if (is_device_private_entry(entry)) {
f88a1e90
JG
579 cpu_flags = range->flags[HMM_PFN_VALID] |
580 range->flags[HMM_PFN_DEVICE_PRIVATE];
2aee09d8 581 cpu_flags |= is_write_device_private_entry(entry) ?
f88a1e90
JG
582 range->flags[HMM_PFN_WRITE] : 0;
583 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
584 &fault, &write_fault);
585 if (fault || write_fault)
586 goto fault;
587 *pfn = hmm_pfn_from_pfn(range, swp_offset(entry));
588 *pfn |= cpu_flags;
53f5c3f4
JG
589 return 0;
590 }
591
592 if (is_migration_entry(entry)) {
2aee09d8 593 if (fault || write_fault) {
53f5c3f4
JG
594 pte_unmap(ptep);
595 hmm_vma_walk->last = addr;
596 migration_entry_wait(vma->vm_mm,
2aee09d8 597 pmdp, addr);
73231612 598 return -EBUSY;
53f5c3f4
JG
599 }
600 return 0;
601 }
602
603 /* Report error for everything else */
f88a1e90 604 *pfn = range->values[HMM_PFN_ERROR];
53f5c3f4 605 return -EFAULT;
73231612
JG
606 } else {
607 cpu_flags = pte_to_hmm_pfn_flags(range, pte);
608 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
609 &fault, &write_fault);
53f5c3f4
JG
610 }
611
2aee09d8 612 if (fault || write_fault)
53f5c3f4
JG
613 goto fault;
614
f88a1e90 615 *pfn = hmm_pfn_from_pfn(range, pte_pfn(pte)) | cpu_flags;
53f5c3f4
JG
616 return 0;
617
618fault:
619 pte_unmap(ptep);
620 /* Fault any virtual address we were asked to fault */
2aee09d8 621 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
53f5c3f4
JG
622}
623
da4c3c73
JG
624static int hmm_vma_walk_pmd(pmd_t *pmdp,
625 unsigned long start,
626 unsigned long end,
627 struct mm_walk *walk)
628{
74eee180
JG
629 struct hmm_vma_walk *hmm_vma_walk = walk->private;
630 struct hmm_range *range = hmm_vma_walk->range;
d08faca0 631 struct vm_area_struct *vma = walk->vma;
ff05c0c6 632 uint64_t *pfns = range->pfns;
da4c3c73 633 unsigned long addr = start, i;
da4c3c73 634 pte_t *ptep;
d08faca0 635 pmd_t pmd;
da4c3c73 636
da4c3c73
JG
637
638again:
d08faca0
JG
639 pmd = READ_ONCE(*pmdp);
640 if (pmd_none(pmd))
da4c3c73
JG
641 return hmm_vma_walk_hole(start, end, walk);
642
d08faca0 643 if (pmd_huge(pmd) && (range->vma->vm_flags & VM_HUGETLB))
da4c3c73
JG
644 return hmm_pfns_bad(start, end, walk);
645
d08faca0
JG
646 if (thp_migration_supported() && is_pmd_migration_entry(pmd)) {
647 bool fault, write_fault;
648 unsigned long npages;
649 uint64_t *pfns;
650
651 i = (addr - range->start) >> PAGE_SHIFT;
652 npages = (end - addr) >> PAGE_SHIFT;
653 pfns = &range->pfns[i];
654
655 hmm_range_need_fault(hmm_vma_walk, pfns, npages,
656 0, &fault, &write_fault);
657 if (fault || write_fault) {
658 hmm_vma_walk->last = addr;
659 pmd_migration_entry_wait(vma->vm_mm, pmdp);
73231612 660 return -EBUSY;
d08faca0
JG
661 }
662 return 0;
663 } else if (!pmd_present(pmd))
664 return hmm_pfns_bad(start, end, walk);
da4c3c73 665
d08faca0 666 if (pmd_devmap(pmd) || pmd_trans_huge(pmd)) {
da4c3c73
JG
667 /*
668 * No need to take pmd_lock here, even if some other threads
669 * is splitting the huge pmd we will get that event through
670 * mmu_notifier callback.
671 *
672 * So just read pmd value and check again its a transparent
673 * huge or device mapping one and compute corresponding pfn
674 * values.
675 */
676 pmd = pmd_read_atomic(pmdp);
677 barrier();
678 if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
679 goto again;
74eee180 680
d08faca0 681 i = (addr - range->start) >> PAGE_SHIFT;
53f5c3f4 682 return hmm_vma_handle_pmd(walk, addr, end, &pfns[i], pmd);
da4c3c73
JG
683 }
684
d08faca0
JG
685 /*
686 * We have handled all the valid case above ie either none, migration,
687 * huge or transparent huge. At this point either it is a valid pmd
688 * entry pointing to pte directory or it is a bad pmd that will not
689 * recover.
690 */
691 if (pmd_bad(pmd))
da4c3c73
JG
692 return hmm_pfns_bad(start, end, walk);
693
694 ptep = pte_offset_map(pmdp, addr);
d08faca0 695 i = (addr - range->start) >> PAGE_SHIFT;
da4c3c73 696 for (; addr < end; addr += PAGE_SIZE, ptep++, i++) {
53f5c3f4 697 int r;
74eee180 698
53f5c3f4
JG
699 r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, &pfns[i]);
700 if (r) {
701 /* hmm_vma_handle_pte() did unmap pte directory */
702 hmm_vma_walk->last = addr;
703 return r;
74eee180 704 }
da4c3c73
JG
705 }
706 pte_unmap(ptep - 1);
707
53f5c3f4 708 hmm_vma_walk->last = addr;
da4c3c73
JG
709 return 0;
710}
711
63d5066f
JG
712static int hmm_vma_walk_hugetlb_entry(pte_t *pte, unsigned long hmask,
713 unsigned long start, unsigned long end,
714 struct mm_walk *walk)
715{
716#ifdef CONFIG_HUGETLB_PAGE
717 unsigned long addr = start, i, pfn, mask, size, pfn_inc;
718 struct hmm_vma_walk *hmm_vma_walk = walk->private;
719 struct hmm_range *range = hmm_vma_walk->range;
720 struct vm_area_struct *vma = walk->vma;
721 struct hstate *h = hstate_vma(vma);
722 uint64_t orig_pfn, cpu_flags;
723 bool fault, write_fault;
724 spinlock_t *ptl;
725 pte_t entry;
726 int ret = 0;
727
728 size = 1UL << huge_page_shift(h);
729 mask = size - 1;
730 if (range->page_shift != PAGE_SHIFT) {
731 /* Make sure we are looking at full page. */
732 if (start & mask)
733 return -EINVAL;
734 if (end < (start + size))
735 return -EINVAL;
736 pfn_inc = size >> PAGE_SHIFT;
737 } else {
738 pfn_inc = 1;
739 size = PAGE_SIZE;
740 }
741
742
743 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
744 entry = huge_ptep_get(pte);
745
746 i = (start - range->start) >> range->page_shift;
747 orig_pfn = range->pfns[i];
748 range->pfns[i] = range->values[HMM_PFN_NONE];
749 cpu_flags = pte_to_hmm_pfn_flags(range, entry);
750 fault = write_fault = false;
751 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
752 &fault, &write_fault);
753 if (fault || write_fault) {
754 ret = -ENOENT;
755 goto unlock;
756 }
757
758 pfn = pte_pfn(entry) + ((start & mask) >> range->page_shift);
759 for (; addr < end; addr += size, i++, pfn += pfn_inc)
760 range->pfns[i] = hmm_pfn_from_pfn(range, pfn) | cpu_flags;
761 hmm_vma_walk->last = end;
762
763unlock:
764 spin_unlock(ptl);
765
766 if (ret == -ENOENT)
767 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
768
769 return ret;
770#else /* CONFIG_HUGETLB_PAGE */
771 return -EINVAL;
772#endif
773}
774
f88a1e90
JG
775static void hmm_pfns_clear(struct hmm_range *range,
776 uint64_t *pfns,
33cd47dc
JG
777 unsigned long addr,
778 unsigned long end)
779{
780 for (; addr < end; addr += PAGE_SIZE, pfns++)
f88a1e90 781 *pfns = range->values[HMM_PFN_NONE];
33cd47dc
JG
782}
783
855ce7d2
JG
784static void hmm_pfns_special(struct hmm_range *range)
785{
786 unsigned long addr = range->start, i = 0;
787
788 for (; addr < range->end; addr += PAGE_SIZE, i++)
f88a1e90 789 range->pfns[i] = range->values[HMM_PFN_SPECIAL];
855ce7d2
JG
790}
791
da4c3c73 792/*
a3e0d41c 793 * hmm_range_register() - start tracking change to CPU page table over a range
25f23a0c 794 * @range: range
a3e0d41c
JG
795 * @mm: the mm struct for the range of virtual address
796 * @start: start virtual address (inclusive)
797 * @end: end virtual address (exclusive)
63d5066f 798 * @page_shift: expect page shift for the range
a3e0d41c 799 * Returns 0 on success, -EFAULT if the address space is no longer valid
25f23a0c 800 *
a3e0d41c 801 * Track updates to the CPU page table see include/linux/hmm.h
da4c3c73 802 */
a3e0d41c
JG
803int hmm_range_register(struct hmm_range *range,
804 struct mm_struct *mm,
805 unsigned long start,
63d5066f
JG
806 unsigned long end,
807 unsigned page_shift)
da4c3c73 808{
63d5066f
JG
809 unsigned long mask = ((1UL << page_shift) - 1UL);
810
a3e0d41c 811 range->valid = false;
704f3f2c
JG
812 range->hmm = NULL;
813
63d5066f
JG
814 if ((start & mask) || (end & mask))
815 return -EINVAL;
816 if (start >= end)
da4c3c73
JG
817 return -EINVAL;
818
63d5066f 819 range->page_shift = page_shift;
a3e0d41c
JG
820 range->start = start;
821 range->end = end;
822
823 range->hmm = hmm_get_or_create(mm);
824 if (!range->hmm)
825 return -EFAULT;
704f3f2c
JG
826
827 /* Check if hmm_mm_destroy() was call. */
a3e0d41c
JG
828 if (range->hmm->mm == NULL || range->hmm->dead) {
829 hmm_put(range->hmm);
830 return -EFAULT;
704f3f2c 831 }
da4c3c73 832
a3e0d41c
JG
833 /* Initialize range to track CPU page table update */
834 mutex_lock(&range->hmm->lock);
855ce7d2 835
a3e0d41c 836 list_add_rcu(&range->list, &range->hmm->ranges);
86586a41 837
704f3f2c 838 /*
a3e0d41c
JG
839 * If there are any concurrent notifiers we have to wait for them for
840 * the range to be valid (see hmm_range_wait_until_valid()).
704f3f2c 841 */
a3e0d41c
JG
842 if (!range->hmm->notifiers)
843 range->valid = true;
844 mutex_unlock(&range->hmm->lock);
845
846 return 0;
da4c3c73 847}
a3e0d41c 848EXPORT_SYMBOL(hmm_range_register);
da4c3c73
JG
849
850/*
a3e0d41c
JG
851 * hmm_range_unregister() - stop tracking change to CPU page table over a range
852 * @range: range
da4c3c73
JG
853 *
854 * Range struct is used to track updates to the CPU page table after a call to
a3e0d41c 855 * hmm_range_register(). See include/linux/hmm.h for how to use it.
da4c3c73 856 */
a3e0d41c 857void hmm_range_unregister(struct hmm_range *range)
da4c3c73 858{
704f3f2c 859 /* Sanity check this really should not happen. */
a3e0d41c
JG
860 if (range->hmm == NULL || range->end <= range->start)
861 return;
da4c3c73 862
a3e0d41c 863 mutex_lock(&range->hmm->lock);
da4c3c73 864 list_del_rcu(&range->list);
a3e0d41c 865 mutex_unlock(&range->hmm->lock);
da4c3c73 866
a3e0d41c
JG
867 /* Drop reference taken by hmm_range_register() */
868 range->valid = false;
704f3f2c
JG
869 hmm_put(range->hmm);
870 range->hmm = NULL;
da4c3c73 871}
a3e0d41c
JG
872EXPORT_SYMBOL(hmm_range_unregister);
873
874/*
875 * hmm_range_snapshot() - snapshot CPU page table for a range
876 * @range: range
877 * Returns: -EINVAL if invalid argument, -ENOMEM out of memory, -EPERM invalid
878 * permission (for instance asking for write and range is read only),
879 * -EAGAIN if you need to retry, -EFAULT invalid (ie either no valid
880 * vma or it is illegal to access that range), number of valid pages
881 * in range->pfns[] (from range start address).
882 *
883 * This snapshots the CPU page table for a range of virtual addresses. Snapshot
884 * validity is tracked by range struct. See in include/linux/hmm.h for example
885 * on how to use.
886 */
887long hmm_range_snapshot(struct hmm_range *range)
888{
63d5066f 889 const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP;
a3e0d41c
JG
890 unsigned long start = range->start, end;
891 struct hmm_vma_walk hmm_vma_walk;
892 struct hmm *hmm = range->hmm;
893 struct vm_area_struct *vma;
894 struct mm_walk mm_walk;
895
896 /* Check if hmm_mm_destroy() was call. */
897 if (hmm->mm == NULL || hmm->dead)
898 return -EFAULT;
899
900 do {
901 /* If range is no longer valid force retry. */
902 if (!range->valid)
903 return -EAGAIN;
904
905 vma = find_vma(hmm->mm, start);
63d5066f 906 if (vma == NULL || (vma->vm_flags & device_vma))
a3e0d41c
JG
907 return -EFAULT;
908
63d5066f
JG
909 /* FIXME support dax */
910 if (vma_is_dax(vma)) {
a3e0d41c
JG
911 hmm_pfns_special(range);
912 return -EINVAL;
913 }
914
63d5066f
JG
915 if (is_vm_hugetlb_page(vma)) {
916 struct hstate *h = hstate_vma(vma);
917
918 if (huge_page_shift(h) != range->page_shift &&
919 range->page_shift != PAGE_SHIFT)
920 return -EINVAL;
921 } else {
922 if (range->page_shift != PAGE_SHIFT)
923 return -EINVAL;
924 }
925
a3e0d41c
JG
926 if (!(vma->vm_flags & VM_READ)) {
927 /*
928 * If vma do not allow read access, then assume that it
929 * does not allow write access, either. HMM does not
930 * support architecture that allow write without read.
931 */
932 hmm_pfns_clear(range, range->pfns,
933 range->start, range->end);
934 return -EPERM;
935 }
936
937 range->vma = vma;
938 hmm_vma_walk.last = start;
939 hmm_vma_walk.fault = false;
940 hmm_vma_walk.range = range;
941 mm_walk.private = &hmm_vma_walk;
942 end = min(range->end, vma->vm_end);
943
944 mm_walk.vma = vma;
945 mm_walk.mm = vma->vm_mm;
946 mm_walk.pte_entry = NULL;
947 mm_walk.test_walk = NULL;
948 mm_walk.hugetlb_entry = NULL;
949 mm_walk.pmd_entry = hmm_vma_walk_pmd;
950 mm_walk.pte_hole = hmm_vma_walk_hole;
63d5066f 951 mm_walk.hugetlb_entry = hmm_vma_walk_hugetlb_entry;
a3e0d41c
JG
952
953 walk_page_range(start, end, &mm_walk);
954 start = end;
955 } while (start < range->end);
956
957 return (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
958}
959EXPORT_SYMBOL(hmm_range_snapshot);
74eee180
JG
960
961/*
73231612 962 * hmm_range_fault() - try to fault some address in a virtual address range
08232a45 963 * @range: range being faulted
74eee180 964 * @block: allow blocking on fault (if true it sleeps and do not drop mmap_sem)
73231612
JG
965 * Returns: number of valid pages in range->pfns[] (from range start
966 * address). This may be zero. If the return value is negative,
967 * then one of the following values may be returned:
968 *
969 * -EINVAL invalid arguments or mm or virtual address are in an
63d5066f 970 * invalid vma (for instance device file vma).
73231612
JG
971 * -ENOMEM: Out of memory.
972 * -EPERM: Invalid permission (for instance asking for write and
973 * range is read only).
974 * -EAGAIN: If you need to retry and mmap_sem was drop. This can only
975 * happens if block argument is false.
976 * -EBUSY: If the the range is being invalidated and you should wait
977 * for invalidation to finish.
978 * -EFAULT: Invalid (ie either no valid vma or it is illegal to access
979 * that range), number of valid pages in range->pfns[] (from
980 * range start address).
74eee180
JG
981 *
982 * This is similar to a regular CPU page fault except that it will not trigger
73231612
JG
983 * any memory migration if the memory being faulted is not accessible by CPUs
984 * and caller does not ask for migration.
74eee180 985 *
ff05c0c6
JG
986 * On error, for one virtual address in the range, the function will mark the
987 * corresponding HMM pfn entry with an error flag.
74eee180 988 */
73231612 989long hmm_range_fault(struct hmm_range *range, bool block)
74eee180 990{
63d5066f 991 const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP;
a3e0d41c 992 unsigned long start = range->start, end;
74eee180 993 struct hmm_vma_walk hmm_vma_walk;
a3e0d41c
JG
994 struct hmm *hmm = range->hmm;
995 struct vm_area_struct *vma;
74eee180 996 struct mm_walk mm_walk;
74eee180
JG
997 int ret;
998
a3e0d41c
JG
999 /* Check if hmm_mm_destroy() was call. */
1000 if (hmm->mm == NULL || hmm->dead)
1001 return -EFAULT;
704f3f2c 1002
a3e0d41c
JG
1003 do {
1004 /* If range is no longer valid force retry. */
1005 if (!range->valid) {
1006 up_read(&hmm->mm->mmap_sem);
1007 return -EAGAIN;
1008 }
74eee180 1009
a3e0d41c 1010 vma = find_vma(hmm->mm, start);
63d5066f 1011 if (vma == NULL || (vma->vm_flags & device_vma))
a3e0d41c 1012 return -EFAULT;
704f3f2c 1013
63d5066f
JG
1014 /* FIXME support dax */
1015 if (vma_is_dax(vma)) {
a3e0d41c
JG
1016 hmm_pfns_special(range);
1017 return -EINVAL;
1018 }
855ce7d2 1019
63d5066f
JG
1020 if (is_vm_hugetlb_page(vma)) {
1021 if (huge_page_shift(hstate_vma(vma)) !=
1022 range->page_shift &&
1023 range->page_shift != PAGE_SHIFT)
1024 return -EINVAL;
1025 } else {
1026 if (range->page_shift != PAGE_SHIFT)
1027 return -EINVAL;
1028 }
1029
a3e0d41c
JG
1030 if (!(vma->vm_flags & VM_READ)) {
1031 /*
1032 * If vma do not allow read access, then assume that it
1033 * does not allow write access, either. HMM does not
1034 * support architecture that allow write without read.
1035 */
1036 hmm_pfns_clear(range, range->pfns,
1037 range->start, range->end);
1038 return -EPERM;
1039 }
74eee180 1040
a3e0d41c
JG
1041 range->vma = vma;
1042 hmm_vma_walk.last = start;
1043 hmm_vma_walk.fault = true;
1044 hmm_vma_walk.block = block;
1045 hmm_vma_walk.range = range;
1046 mm_walk.private = &hmm_vma_walk;
1047 end = min(range->end, vma->vm_end);
1048
1049 mm_walk.vma = vma;
1050 mm_walk.mm = vma->vm_mm;
1051 mm_walk.pte_entry = NULL;
1052 mm_walk.test_walk = NULL;
1053 mm_walk.hugetlb_entry = NULL;
1054 mm_walk.pmd_entry = hmm_vma_walk_pmd;
1055 mm_walk.pte_hole = hmm_vma_walk_hole;
63d5066f 1056 mm_walk.hugetlb_entry = hmm_vma_walk_hugetlb_entry;
a3e0d41c
JG
1057
1058 do {
1059 ret = walk_page_range(start, end, &mm_walk);
1060 start = hmm_vma_walk.last;
1061
1062 /* Keep trying while the range is valid. */
1063 } while (ret == -EBUSY && range->valid);
1064
1065 if (ret) {
1066 unsigned long i;
1067
1068 i = (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
1069 hmm_pfns_clear(range, &range->pfns[i],
1070 hmm_vma_walk.last, range->end);
1071 return ret;
1072 }
1073 start = end;
74eee180 1074
a3e0d41c 1075 } while (start < range->end);
704f3f2c 1076
73231612 1077 return (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
74eee180 1078}
73231612 1079EXPORT_SYMBOL(hmm_range_fault);
c0b12405 1080#endif /* IS_ENABLED(CONFIG_HMM_MIRROR) */
4ef589dc
JG
1081
1082
df6ad698 1083#if IS_ENABLED(CONFIG_DEVICE_PRIVATE) || IS_ENABLED(CONFIG_DEVICE_PUBLIC)
4ef589dc
JG
1084struct page *hmm_vma_alloc_locked_page(struct vm_area_struct *vma,
1085 unsigned long addr)
1086{
1087 struct page *page;
1088
1089 page = alloc_page_vma(GFP_HIGHUSER, vma, addr);
1090 if (!page)
1091 return NULL;
1092 lock_page(page);
1093 return page;
1094}
1095EXPORT_SYMBOL(hmm_vma_alloc_locked_page);
1096
1097
1098static void hmm_devmem_ref_release(struct percpu_ref *ref)
1099{
1100 struct hmm_devmem *devmem;
1101
1102 devmem = container_of(ref, struct hmm_devmem, ref);
1103 complete(&devmem->completion);
1104}
1105
1106static void hmm_devmem_ref_exit(void *data)
1107{
1108 struct percpu_ref *ref = data;
1109 struct hmm_devmem *devmem;
1110
1111 devmem = container_of(ref, struct hmm_devmem, ref);
bbecd94e 1112 wait_for_completion(&devmem->completion);
4ef589dc 1113 percpu_ref_exit(ref);
4ef589dc
JG
1114}
1115
bbecd94e 1116static void hmm_devmem_ref_kill(struct percpu_ref *ref)
4ef589dc 1117{
4ef589dc 1118 percpu_ref_kill(ref);
4ef589dc
JG
1119}
1120
b57e622e 1121static vm_fault_t hmm_devmem_fault(struct vm_area_struct *vma,
4ef589dc
JG
1122 unsigned long addr,
1123 const struct page *page,
1124 unsigned int flags,
1125 pmd_t *pmdp)
1126{
1127 struct hmm_devmem *devmem = page->pgmap->data;
1128
1129 return devmem->ops->fault(devmem, vma, addr, page, flags, pmdp);
1130}
1131
1132static void hmm_devmem_free(struct page *page, void *data)
1133{
1134 struct hmm_devmem *devmem = data;
1135
2fa147bd
DW
1136 page->mapping = NULL;
1137
4ef589dc
JG
1138 devmem->ops->free(devmem, page);
1139}
1140
4ef589dc
JG
1141/*
1142 * hmm_devmem_add() - hotplug ZONE_DEVICE memory for device memory
1143 *
1144 * @ops: memory event device driver callback (see struct hmm_devmem_ops)
1145 * @device: device struct to bind the resource too
1146 * @size: size in bytes of the device memory to add
1147 * Returns: pointer to new hmm_devmem struct ERR_PTR otherwise
1148 *
1149 * This function first finds an empty range of physical address big enough to
1150 * contain the new resource, and then hotplugs it as ZONE_DEVICE memory, which
1151 * in turn allocates struct pages. It does not do anything beyond that; all
1152 * events affecting the memory will go through the various callbacks provided
1153 * by hmm_devmem_ops struct.
1154 *
1155 * Device driver should call this function during device initialization and
1156 * is then responsible of memory management. HMM only provides helpers.
1157 */
1158struct hmm_devmem *hmm_devmem_add(const struct hmm_devmem_ops *ops,
1159 struct device *device,
1160 unsigned long size)
1161{
1162 struct hmm_devmem *devmem;
1163 resource_size_t addr;
bbecd94e 1164 void *result;
4ef589dc
JG
1165 int ret;
1166
e7638488 1167 dev_pagemap_get_ops();
4ef589dc 1168
58ef15b7 1169 devmem = devm_kzalloc(device, sizeof(*devmem), GFP_KERNEL);
4ef589dc
JG
1170 if (!devmem)
1171 return ERR_PTR(-ENOMEM);
1172
1173 init_completion(&devmem->completion);
1174 devmem->pfn_first = -1UL;
1175 devmem->pfn_last = -1UL;
1176 devmem->resource = NULL;
1177 devmem->device = device;
1178 devmem->ops = ops;
1179
1180 ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1181 0, GFP_KERNEL);
1182 if (ret)
58ef15b7 1183 return ERR_PTR(ret);
4ef589dc 1184
58ef15b7 1185 ret = devm_add_action_or_reset(device, hmm_devmem_ref_exit, &devmem->ref);
4ef589dc 1186 if (ret)
58ef15b7 1187 return ERR_PTR(ret);
4ef589dc
JG
1188
1189 size = ALIGN(size, PA_SECTION_SIZE);
1190 addr = min((unsigned long)iomem_resource.end,
1191 (1UL << MAX_PHYSMEM_BITS) - 1);
1192 addr = addr - size + 1UL;
1193
1194 /*
1195 * FIXME add a new helper to quickly walk resource tree and find free
1196 * range
1197 *
1198 * FIXME what about ioport_resource resource ?
1199 */
1200 for (; addr > size && addr >= iomem_resource.start; addr -= size) {
1201 ret = region_intersects(addr, size, 0, IORES_DESC_NONE);
1202 if (ret != REGION_DISJOINT)
1203 continue;
1204
1205 devmem->resource = devm_request_mem_region(device, addr, size,
1206 dev_name(device));
58ef15b7
DW
1207 if (!devmem->resource)
1208 return ERR_PTR(-ENOMEM);
4ef589dc
JG
1209 break;
1210 }
58ef15b7
DW
1211 if (!devmem->resource)
1212 return ERR_PTR(-ERANGE);
4ef589dc
JG
1213
1214 devmem->resource->desc = IORES_DESC_DEVICE_PRIVATE_MEMORY;
1215 devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1216 devmem->pfn_last = devmem->pfn_first +
1217 (resource_size(devmem->resource) >> PAGE_SHIFT);
063a7d1d 1218 devmem->page_fault = hmm_devmem_fault;
4ef589dc 1219
bbecd94e
DW
1220 devmem->pagemap.type = MEMORY_DEVICE_PRIVATE;
1221 devmem->pagemap.res = *devmem->resource;
bbecd94e
DW
1222 devmem->pagemap.page_free = hmm_devmem_free;
1223 devmem->pagemap.altmap_valid = false;
1224 devmem->pagemap.ref = &devmem->ref;
1225 devmem->pagemap.data = devmem;
1226 devmem->pagemap.kill = hmm_devmem_ref_kill;
4ef589dc 1227
bbecd94e
DW
1228 result = devm_memremap_pages(devmem->device, &devmem->pagemap);
1229 if (IS_ERR(result))
1230 return result;
4ef589dc 1231 return devmem;
4ef589dc 1232}
02917e9f 1233EXPORT_SYMBOL_GPL(hmm_devmem_add);
4ef589dc 1234
d3df0a42
JG
1235struct hmm_devmem *hmm_devmem_add_resource(const struct hmm_devmem_ops *ops,
1236 struct device *device,
1237 struct resource *res)
1238{
1239 struct hmm_devmem *devmem;
bbecd94e 1240 void *result;
d3df0a42
JG
1241 int ret;
1242
1243 if (res->desc != IORES_DESC_DEVICE_PUBLIC_MEMORY)
1244 return ERR_PTR(-EINVAL);
1245
e7638488 1246 dev_pagemap_get_ops();
d3df0a42 1247
58ef15b7 1248 devmem = devm_kzalloc(device, sizeof(*devmem), GFP_KERNEL);
d3df0a42
JG
1249 if (!devmem)
1250 return ERR_PTR(-ENOMEM);
1251
1252 init_completion(&devmem->completion);
1253 devmem->pfn_first = -1UL;
1254 devmem->pfn_last = -1UL;
1255 devmem->resource = res;
1256 devmem->device = device;
1257 devmem->ops = ops;
1258
1259 ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1260 0, GFP_KERNEL);
1261 if (ret)
58ef15b7 1262 return ERR_PTR(ret);
d3df0a42 1263
58ef15b7
DW
1264 ret = devm_add_action_or_reset(device, hmm_devmem_ref_exit,
1265 &devmem->ref);
d3df0a42 1266 if (ret)
58ef15b7 1267 return ERR_PTR(ret);
d3df0a42
JG
1268
1269 devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1270 devmem->pfn_last = devmem->pfn_first +
1271 (resource_size(devmem->resource) >> PAGE_SHIFT);
063a7d1d 1272 devmem->page_fault = hmm_devmem_fault;
d3df0a42 1273
bbecd94e
DW
1274 devmem->pagemap.type = MEMORY_DEVICE_PUBLIC;
1275 devmem->pagemap.res = *devmem->resource;
bbecd94e
DW
1276 devmem->pagemap.page_free = hmm_devmem_free;
1277 devmem->pagemap.altmap_valid = false;
1278 devmem->pagemap.ref = &devmem->ref;
1279 devmem->pagemap.data = devmem;
1280 devmem->pagemap.kill = hmm_devmem_ref_kill;
d3df0a42 1281
bbecd94e
DW
1282 result = devm_memremap_pages(devmem->device, &devmem->pagemap);
1283 if (IS_ERR(result))
1284 return result;
d3df0a42 1285 return devmem;
d3df0a42 1286}
02917e9f 1287EXPORT_SYMBOL_GPL(hmm_devmem_add_resource);
d3df0a42 1288
858b54da
JG
1289/*
1290 * A device driver that wants to handle multiple devices memory through a
1291 * single fake device can use hmm_device to do so. This is purely a helper
1292 * and it is not needed to make use of any HMM functionality.
1293 */
1294#define HMM_DEVICE_MAX 256
1295
1296static DECLARE_BITMAP(hmm_device_mask, HMM_DEVICE_MAX);
1297static DEFINE_SPINLOCK(hmm_device_lock);
1298static struct class *hmm_device_class;
1299static dev_t hmm_device_devt;
1300
1301static void hmm_device_release(struct device *device)
1302{
1303 struct hmm_device *hmm_device;
1304
1305 hmm_device = container_of(device, struct hmm_device, device);
1306 spin_lock(&hmm_device_lock);
1307 clear_bit(hmm_device->minor, hmm_device_mask);
1308 spin_unlock(&hmm_device_lock);
1309
1310 kfree(hmm_device);
1311}
1312
1313struct hmm_device *hmm_device_new(void *drvdata)
1314{
1315 struct hmm_device *hmm_device;
1316
1317 hmm_device = kzalloc(sizeof(*hmm_device), GFP_KERNEL);
1318 if (!hmm_device)
1319 return ERR_PTR(-ENOMEM);
1320
1321 spin_lock(&hmm_device_lock);
1322 hmm_device->minor = find_first_zero_bit(hmm_device_mask, HMM_DEVICE_MAX);
1323 if (hmm_device->minor >= HMM_DEVICE_MAX) {
1324 spin_unlock(&hmm_device_lock);
1325 kfree(hmm_device);
1326 return ERR_PTR(-EBUSY);
1327 }
1328 set_bit(hmm_device->minor, hmm_device_mask);
1329 spin_unlock(&hmm_device_lock);
1330
1331 dev_set_name(&hmm_device->device, "hmm_device%d", hmm_device->minor);
1332 hmm_device->device.devt = MKDEV(MAJOR(hmm_device_devt),
1333 hmm_device->minor);
1334 hmm_device->device.release = hmm_device_release;
1335 dev_set_drvdata(&hmm_device->device, drvdata);
1336 hmm_device->device.class = hmm_device_class;
1337 device_initialize(&hmm_device->device);
1338
1339 return hmm_device;
1340}
1341EXPORT_SYMBOL(hmm_device_new);
1342
1343void hmm_device_put(struct hmm_device *hmm_device)
1344{
1345 put_device(&hmm_device->device);
1346}
1347EXPORT_SYMBOL(hmm_device_put);
1348
1349static int __init hmm_init(void)
1350{
1351 int ret;
1352
1353 ret = alloc_chrdev_region(&hmm_device_devt, 0,
1354 HMM_DEVICE_MAX,
1355 "hmm_device");
1356 if (ret)
1357 return ret;
1358
1359 hmm_device_class = class_create(THIS_MODULE, "hmm_device");
1360 if (IS_ERR(hmm_device_class)) {
1361 unregister_chrdev_region(hmm_device_devt, HMM_DEVICE_MAX);
1362 return PTR_ERR(hmm_device_class);
1363 }
1364 return 0;
1365}
1366
1367device_initcall(hmm_init);
df6ad698 1368#endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */