mm/hmm: remove pgmap checking for devmap pages
[linux-block.git] / mm / hmm.c
CommitLineData
c942fddf 1// SPDX-License-Identifier: GPL-2.0-or-later
133ff0ea
JG
2/*
3 * Copyright 2013 Red Hat Inc.
4 *
f813f219 5 * Authors: Jérôme Glisse <jglisse@redhat.com>
133ff0ea
JG
6 */
7/*
8 * Refer to include/linux/hmm.h for information about heterogeneous memory
9 * management or HMM for short.
10 */
a520110e 11#include <linux/pagewalk.h>
133ff0ea 12#include <linux/hmm.h>
858b54da 13#include <linux/init.h>
da4c3c73
JG
14#include <linux/rmap.h>
15#include <linux/swap.h>
133ff0ea
JG
16#include <linux/slab.h>
17#include <linux/sched.h>
4ef589dc
JG
18#include <linux/mmzone.h>
19#include <linux/pagemap.h>
da4c3c73
JG
20#include <linux/swapops.h>
21#include <linux/hugetlb.h>
4ef589dc 22#include <linux/memremap.h>
c8a53b2d 23#include <linux/sched/mm.h>
7b2d55d2 24#include <linux/jump_label.h>
55c0ece8 25#include <linux/dma-mapping.h>
c0b12405 26#include <linux/mmu_notifier.h>
4ef589dc
JG
27#include <linux/memory_hotplug.h>
28
74eee180
JG
29struct hmm_vma_walk {
30 struct hmm_range *range;
31 unsigned long last;
9a4903e4 32 unsigned int flags;
74eee180
JG
33};
34
d28c2c9a
RC
35static int hmm_pfns_fill(unsigned long addr, unsigned long end,
36 struct hmm_range *range, enum hmm_pfn_value_e value)
da4c3c73 37{
ff05c0c6 38 uint64_t *pfns = range->pfns;
da4c3c73
JG
39 unsigned long i;
40
41 i = (addr - range->start) >> PAGE_SHIFT;
42 for (; addr < end; addr += PAGE_SIZE, i++)
d28c2c9a 43 pfns[i] = range->values[value];
da4c3c73
JG
44
45 return 0;
46}
47
5504ed29 48/*
f8c888a3 49 * hmm_vma_fault() - fault in a range lacking valid pmd or pte(s)
d2e8d551 50 * @addr: range virtual start address (inclusive)
5504ed29 51 * @end: range virtual end address (exclusive)
2aee09d8
JG
52 * @fault: should we fault or not ?
53 * @write_fault: write fault ?
5504ed29 54 * @walk: mm_walk structure
f8c888a3 55 * Return: -EBUSY after page fault, or page fault error
5504ed29
JG
56 *
57 * This function will be called whenever pmd_none() or pte_none() returns true,
58 * or whenever there is no page directory covering the virtual address range.
59 */
f8c888a3 60static int hmm_vma_fault(unsigned long addr, unsigned long end,
2aee09d8
JG
61 bool fault, bool write_fault,
62 struct mm_walk *walk)
da4c3c73 63{
74eee180
JG
64 struct hmm_vma_walk *hmm_vma_walk = walk->private;
65 struct hmm_range *range = hmm_vma_walk->range;
5a0c38d3 66 struct vm_area_struct *vma = walk->vma;
ff05c0c6 67 uint64_t *pfns = range->pfns;
f8c888a3 68 unsigned long i = (addr - range->start) >> PAGE_SHIFT;
5a0c38d3 69 unsigned int fault_flags = FAULT_FLAG_REMOTE;
da4c3c73 70
f8c888a3 71 WARN_ON_ONCE(!fault && !write_fault);
74eee180 72 hmm_vma_walk->last = addr;
63d5066f 73
5a0c38d3
CH
74 if (!vma)
75 goto out_error;
da4c3c73 76
5a0c38d3
CH
77 if (write_fault) {
78 if (!(vma->vm_flags & VM_WRITE))
79 return -EPERM;
80 fault_flags |= FAULT_FLAG_WRITE;
74eee180
JG
81 }
82
5a0c38d3
CH
83 for (; addr < end; addr += PAGE_SIZE, i++)
84 if (handle_mm_fault(vma, addr, fault_flags) & VM_FAULT_ERROR)
85 goto out_error;
86
f8c888a3 87 return -EBUSY;
5a0c38d3
CH
88
89out_error:
90 pfns[i] = range->values[HMM_PFN_ERROR];
91 return -EFAULT;
2aee09d8
JG
92}
93
94static inline void hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
95 uint64_t pfns, uint64_t cpu_flags,
96 bool *fault, bool *write_fault)
97{
f88a1e90
JG
98 struct hmm_range *range = hmm_vma_walk->range;
99
d45d464b 100 if (hmm_vma_walk->flags & HMM_FAULT_SNAPSHOT)
2aee09d8
JG
101 return;
102
023a019a
JG
103 /*
104 * So we not only consider the individual per page request we also
105 * consider the default flags requested for the range. The API can
d2e8d551
RC
106 * be used 2 ways. The first one where the HMM user coalesces
107 * multiple page faults into one request and sets flags per pfn for
108 * those faults. The second one where the HMM user wants to pre-
023a019a
JG
109 * fault a range with specific flags. For the latter one it is a
110 * waste to have the user pre-fill the pfn arrays with a default
111 * flags value.
112 */
113 pfns = (pfns & range->pfn_flags_mask) | range->default_flags;
114
2aee09d8 115 /* We aren't ask to do anything ... */
f88a1e90 116 if (!(pfns & range->flags[HMM_PFN_VALID]))
2aee09d8 117 return;
f88a1e90
JG
118
119 /* If CPU page table is not valid then we need to fault */
120 *fault = !(cpu_flags & range->flags[HMM_PFN_VALID]);
121 /* Need to write fault ? */
122 if ((pfns & range->flags[HMM_PFN_WRITE]) &&
123 !(cpu_flags & range->flags[HMM_PFN_WRITE])) {
124 *write_fault = true;
2aee09d8
JG
125 *fault = true;
126 }
127}
128
129static void hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
130 const uint64_t *pfns, unsigned long npages,
131 uint64_t cpu_flags, bool *fault,
132 bool *write_fault)
133{
134 unsigned long i;
135
d45d464b 136 if (hmm_vma_walk->flags & HMM_FAULT_SNAPSHOT) {
2aee09d8
JG
137 *fault = *write_fault = false;
138 return;
139 }
140
a3e0d41c 141 *fault = *write_fault = false;
2aee09d8
JG
142 for (i = 0; i < npages; ++i) {
143 hmm_pte_need_fault(hmm_vma_walk, pfns[i], cpu_flags,
144 fault, write_fault);
a3e0d41c 145 if ((*write_fault))
2aee09d8
JG
146 return;
147 }
148}
149
150static int hmm_vma_walk_hole(unsigned long addr, unsigned long end,
b7a16c7a 151 __always_unused int depth, struct mm_walk *walk)
2aee09d8
JG
152{
153 struct hmm_vma_walk *hmm_vma_walk = walk->private;
154 struct hmm_range *range = hmm_vma_walk->range;
155 bool fault, write_fault;
156 unsigned long i, npages;
157 uint64_t *pfns;
158
159 i = (addr - range->start) >> PAGE_SHIFT;
160 npages = (end - addr) >> PAGE_SHIFT;
161 pfns = &range->pfns[i];
162 hmm_range_need_fault(hmm_vma_walk, pfns, npages,
163 0, &fault, &write_fault);
f8c888a3
CH
164 if (fault || write_fault)
165 return hmm_vma_fault(addr, end, fault, write_fault, walk);
166 hmm_vma_walk->last = addr;
167 return hmm_pfns_fill(addr, end, range, HMM_PFN_NONE);
2aee09d8
JG
168}
169
f88a1e90 170static inline uint64_t pmd_to_hmm_pfn_flags(struct hmm_range *range, pmd_t pmd)
2aee09d8
JG
171{
172 if (pmd_protnone(pmd))
173 return 0;
f88a1e90
JG
174 return pmd_write(pmd) ? range->flags[HMM_PFN_VALID] |
175 range->flags[HMM_PFN_WRITE] :
176 range->flags[HMM_PFN_VALID];
da4c3c73
JG
177}
178
992de9a8 179#ifdef CONFIG_TRANSPARENT_HUGEPAGE
9d3973d6
CH
180static int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr,
181 unsigned long end, uint64_t *pfns, pmd_t pmd)
182{
53f5c3f4 183 struct hmm_vma_walk *hmm_vma_walk = walk->private;
f88a1e90 184 struct hmm_range *range = hmm_vma_walk->range;
2aee09d8 185 unsigned long pfn, npages, i;
2aee09d8 186 bool fault, write_fault;
f88a1e90 187 uint64_t cpu_flags;
53f5c3f4 188
2aee09d8 189 npages = (end - addr) >> PAGE_SHIFT;
f88a1e90 190 cpu_flags = pmd_to_hmm_pfn_flags(range, pmd);
2aee09d8
JG
191 hmm_range_need_fault(hmm_vma_walk, pfns, npages, cpu_flags,
192 &fault, &write_fault);
53f5c3f4 193
24cee8ab 194 if (fault || write_fault)
f8c888a3 195 return hmm_vma_fault(addr, end, fault, write_fault, walk);
53f5c3f4 196
309f9a4f 197 pfn = pmd_pfn(pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
068354ad 198 for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++)
391aab11 199 pfns[i] = hmm_device_entry_from_pfn(range, pfn) | cpu_flags;
53f5c3f4
JG
200 hmm_vma_walk->last = end;
201 return 0;
202}
9d3973d6
CH
203#else /* CONFIG_TRANSPARENT_HUGEPAGE */
204/* stub to allow the code below to compile */
205int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr,
206 unsigned long end, uint64_t *pfns, pmd_t pmd);
207#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
53f5c3f4 208
08ddddda
CH
209static inline bool hmm_is_device_private_entry(struct hmm_range *range,
210 swp_entry_t entry)
211{
212 return is_device_private_entry(entry) &&
213 device_private_entry_to_page(entry)->pgmap->owner ==
214 range->dev_private_owner;
215}
216
f88a1e90 217static inline uint64_t pte_to_hmm_pfn_flags(struct hmm_range *range, pte_t pte)
2aee09d8 218{
789c2af8 219 if (pte_none(pte) || !pte_present(pte) || pte_protnone(pte))
2aee09d8 220 return 0;
f88a1e90
JG
221 return pte_write(pte) ? range->flags[HMM_PFN_VALID] |
222 range->flags[HMM_PFN_WRITE] :
223 range->flags[HMM_PFN_VALID];
2aee09d8
JG
224}
225
53f5c3f4
JG
226static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
227 unsigned long end, pmd_t *pmdp, pte_t *ptep,
228 uint64_t *pfn)
229{
230 struct hmm_vma_walk *hmm_vma_walk = walk->private;
f88a1e90 231 struct hmm_range *range = hmm_vma_walk->range;
2aee09d8
JG
232 bool fault, write_fault;
233 uint64_t cpu_flags;
53f5c3f4 234 pte_t pte = *ptep;
f88a1e90 235 uint64_t orig_pfn = *pfn;
53f5c3f4 236
f88a1e90 237 *pfn = range->values[HMM_PFN_NONE];
73231612 238 fault = write_fault = false;
53f5c3f4
JG
239
240 if (pte_none(pte)) {
73231612
JG
241 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, 0,
242 &fault, &write_fault);
2aee09d8 243 if (fault || write_fault)
53f5c3f4
JG
244 goto fault;
245 return 0;
246 }
247
248 if (!pte_present(pte)) {
249 swp_entry_t entry = pte_to_swp_entry(pte);
250
53f5c3f4 251 /*
17ffdc48
CH
252 * Never fault in device private pages pages, but just report
253 * the PFN even if not present.
53f5c3f4 254 */
08ddddda 255 if (hmm_is_device_private_entry(range, entry)) {
391aab11
JG
256 *pfn = hmm_device_entry_from_pfn(range,
257 swp_offset(entry));
17ffdc48
CH
258 *pfn |= range->flags[HMM_PFN_VALID];
259 if (is_write_device_private_entry(entry))
260 *pfn |= range->flags[HMM_PFN_WRITE];
53f5c3f4
JG
261 return 0;
262 }
263
76612d6c
JG
264 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, 0, &fault,
265 &write_fault);
266 if (!fault && !write_fault)
53f5c3f4 267 return 0;
76612d6c
JG
268
269 if (!non_swap_entry(entry))
270 goto fault;
271
272 if (is_migration_entry(entry)) {
273 pte_unmap(ptep);
274 hmm_vma_walk->last = addr;
275 migration_entry_wait(walk->mm, pmdp, addr);
276 return -EBUSY;
53f5c3f4
JG
277 }
278
279 /* Report error for everything else */
dfdc2207 280 pte_unmap(ptep);
f88a1e90 281 *pfn = range->values[HMM_PFN_ERROR];
53f5c3f4
JG
282 return -EFAULT;
283 }
284
76612d6c
JG
285 cpu_flags = pte_to_hmm_pfn_flags(range, pte);
286 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags, &fault,
287 &write_fault);
2aee09d8 288 if (fault || write_fault)
53f5c3f4
JG
289 goto fault;
290
40550627
JG
291 /*
292 * Since each architecture defines a struct page for the zero page, just
293 * fall through and treat it like a normal page.
294 */
295 if (pte_special(pte) && !is_zero_pfn(pte_pfn(pte))) {
296 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, 0, &fault,
297 &write_fault);
298 if (fault || write_fault) {
dfdc2207 299 pte_unmap(ptep);
ac541f25
RC
300 return -EFAULT;
301 }
40550627
JG
302 *pfn = range->values[HMM_PFN_SPECIAL];
303 return 0;
992de9a8
JG
304 }
305
391aab11 306 *pfn = hmm_device_entry_from_pfn(range, pte_pfn(pte)) | cpu_flags;
53f5c3f4
JG
307 return 0;
308
309fault:
310 pte_unmap(ptep);
311 /* Fault any virtual address we were asked to fault */
f8c888a3 312 return hmm_vma_fault(addr, end, fault, write_fault, walk);
53f5c3f4
JG
313}
314
da4c3c73
JG
315static int hmm_vma_walk_pmd(pmd_t *pmdp,
316 unsigned long start,
317 unsigned long end,
318 struct mm_walk *walk)
319{
74eee180
JG
320 struct hmm_vma_walk *hmm_vma_walk = walk->private;
321 struct hmm_range *range = hmm_vma_walk->range;
2288a9a6
JG
322 uint64_t *pfns = &range->pfns[(start - range->start) >> PAGE_SHIFT];
323 unsigned long npages = (end - start) >> PAGE_SHIFT;
324 unsigned long addr = start;
325 bool fault, write_fault;
da4c3c73 326 pte_t *ptep;
d08faca0 327 pmd_t pmd;
da4c3c73 328
da4c3c73 329again:
d08faca0
JG
330 pmd = READ_ONCE(*pmdp);
331 if (pmd_none(pmd))
b7a16c7a 332 return hmm_vma_walk_hole(start, end, -1, walk);
da4c3c73 333
d08faca0 334 if (thp_migration_supported() && is_pmd_migration_entry(pmd)) {
d08faca0
JG
335 hmm_range_need_fault(hmm_vma_walk, pfns, npages,
336 0, &fault, &write_fault);
337 if (fault || write_fault) {
338 hmm_vma_walk->last = addr;
d2e8d551 339 pmd_migration_entry_wait(walk->mm, pmdp);
73231612 340 return -EBUSY;
d08faca0 341 }
7d082987 342 return hmm_pfns_fill(start, end, range, HMM_PFN_NONE);
2288a9a6
JG
343 }
344
345 if (!pmd_present(pmd)) {
346 hmm_range_need_fault(hmm_vma_walk, pfns, npages, 0, &fault,
347 &write_fault);
348 if (fault || write_fault)
349 return -EFAULT;
d28c2c9a 350 return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
2288a9a6 351 }
da4c3c73 352
d08faca0 353 if (pmd_devmap(pmd) || pmd_trans_huge(pmd)) {
da4c3c73 354 /*
d2e8d551 355 * No need to take pmd_lock here, even if some other thread
da4c3c73
JG
356 * is splitting the huge pmd we will get that event through
357 * mmu_notifier callback.
358 *
d2e8d551 359 * So just read pmd value and check again it's a transparent
da4c3c73
JG
360 * huge or device mapping one and compute corresponding pfn
361 * values.
362 */
363 pmd = pmd_read_atomic(pmdp);
364 barrier();
365 if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
366 goto again;
74eee180 367
2288a9a6 368 return hmm_vma_handle_pmd(walk, addr, end, pfns, pmd);
da4c3c73
JG
369 }
370
d08faca0 371 /*
d2e8d551 372 * We have handled all the valid cases above ie either none, migration,
d08faca0
JG
373 * huge or transparent huge. At this point either it is a valid pmd
374 * entry pointing to pte directory or it is a bad pmd that will not
375 * recover.
376 */
2288a9a6
JG
377 if (pmd_bad(pmd)) {
378 hmm_range_need_fault(hmm_vma_walk, pfns, npages, 0, &fault,
379 &write_fault);
380 if (fault || write_fault)
381 return -EFAULT;
d28c2c9a 382 return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
2288a9a6 383 }
da4c3c73
JG
384
385 ptep = pte_offset_map(pmdp, addr);
2288a9a6 386 for (; addr < end; addr += PAGE_SIZE, ptep++, pfns++) {
53f5c3f4 387 int r;
74eee180 388
2288a9a6 389 r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, pfns);
53f5c3f4 390 if (r) {
dfdc2207 391 /* hmm_vma_handle_pte() did pte_unmap() */
53f5c3f4
JG
392 hmm_vma_walk->last = addr;
393 return r;
74eee180 394 }
da4c3c73
JG
395 }
396 pte_unmap(ptep - 1);
397
53f5c3f4 398 hmm_vma_walk->last = addr;
da4c3c73
JG
399 return 0;
400}
401
f0b3c45c
CH
402#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && \
403 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
404static inline uint64_t pud_to_hmm_pfn_flags(struct hmm_range *range, pud_t pud)
405{
406 if (!pud_present(pud))
407 return 0;
408 return pud_write(pud) ? range->flags[HMM_PFN_VALID] |
409 range->flags[HMM_PFN_WRITE] :
410 range->flags[HMM_PFN_VALID];
411}
412
413static int hmm_vma_walk_pud(pud_t *pudp, unsigned long start, unsigned long end,
414 struct mm_walk *walk)
992de9a8
JG
415{
416 struct hmm_vma_walk *hmm_vma_walk = walk->private;
417 struct hmm_range *range = hmm_vma_walk->range;
3afc4236 418 unsigned long addr = start;
992de9a8 419 pud_t pud;
3afc4236
SP
420 int ret = 0;
421 spinlock_t *ptl = pud_trans_huge_lock(pudp, walk->vma);
422
423 if (!ptl)
424 return 0;
425
426 /* Normally we don't want to split the huge page */
427 walk->action = ACTION_CONTINUE;
992de9a8 428
992de9a8 429 pud = READ_ONCE(*pudp);
3afc4236 430 if (pud_none(pud)) {
05fc1df9
JG
431 spin_unlock(ptl);
432 return hmm_vma_walk_hole(start, end, -1, walk);
3afc4236 433 }
992de9a8
JG
434
435 if (pud_huge(pud) && pud_devmap(pud)) {
436 unsigned long i, npages, pfn;
437 uint64_t *pfns, cpu_flags;
438 bool fault, write_fault;
439
3afc4236 440 if (!pud_present(pud)) {
05fc1df9
JG
441 spin_unlock(ptl);
442 return hmm_vma_walk_hole(start, end, -1, walk);
3afc4236 443 }
992de9a8
JG
444
445 i = (addr - range->start) >> PAGE_SHIFT;
446 npages = (end - addr) >> PAGE_SHIFT;
447 pfns = &range->pfns[i];
448
449 cpu_flags = pud_to_hmm_pfn_flags(range, pud);
450 hmm_range_need_fault(hmm_vma_walk, pfns, npages,
451 cpu_flags, &fault, &write_fault);
3afc4236 452 if (fault || write_fault) {
05fc1df9 453 spin_unlock(ptl);
f8c888a3 454 return hmm_vma_fault(addr, end, fault, write_fault,
05fc1df9 455 walk);
3afc4236 456 }
992de9a8 457
992de9a8 458 pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
068354ad 459 for (i = 0; i < npages; ++i, ++pfn)
391aab11
JG
460 pfns[i] = hmm_device_entry_from_pfn(range, pfn) |
461 cpu_flags;
992de9a8 462 hmm_vma_walk->last = end;
3afc4236 463 goto out_unlock;
992de9a8
JG
464 }
465
3afc4236
SP
466 /* Ask for the PUD to be split */
467 walk->action = ACTION_SUBTREE;
992de9a8 468
3afc4236
SP
469out_unlock:
470 spin_unlock(ptl);
471 return ret;
992de9a8 472}
f0b3c45c
CH
473#else
474#define hmm_vma_walk_pud NULL
475#endif
992de9a8 476
251bbe59 477#ifdef CONFIG_HUGETLB_PAGE
63d5066f
JG
478static int hmm_vma_walk_hugetlb_entry(pte_t *pte, unsigned long hmask,
479 unsigned long start, unsigned long end,
480 struct mm_walk *walk)
481{
05c23af4 482 unsigned long addr = start, i, pfn;
63d5066f
JG
483 struct hmm_vma_walk *hmm_vma_walk = walk->private;
484 struct hmm_range *range = hmm_vma_walk->range;
485 struct vm_area_struct *vma = walk->vma;
63d5066f
JG
486 uint64_t orig_pfn, cpu_flags;
487 bool fault, write_fault;
488 spinlock_t *ptl;
489 pte_t entry;
63d5066f 490
d2e8d551 491 ptl = huge_pte_lock(hstate_vma(vma), walk->mm, pte);
63d5066f
JG
492 entry = huge_ptep_get(pte);
493
7f08263d 494 i = (start - range->start) >> PAGE_SHIFT;
63d5066f
JG
495 orig_pfn = range->pfns[i];
496 range->pfns[i] = range->values[HMM_PFN_NONE];
497 cpu_flags = pte_to_hmm_pfn_flags(range, entry);
498 fault = write_fault = false;
499 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
500 &fault, &write_fault);
501 if (fault || write_fault) {
45050692 502 spin_unlock(ptl);
f8c888a3 503 return hmm_vma_fault(addr, end, fault, write_fault, walk);
63d5066f
JG
504 }
505
05c23af4 506 pfn = pte_pfn(entry) + ((start & ~hmask) >> PAGE_SHIFT);
7f08263d 507 for (; addr < end; addr += PAGE_SIZE, i++, pfn++)
391aab11
JG
508 range->pfns[i] = hmm_device_entry_from_pfn(range, pfn) |
509 cpu_flags;
63d5066f 510 hmm_vma_walk->last = end;
63d5066f 511 spin_unlock(ptl);
45050692 512 return 0;
63d5066f 513}
251bbe59
CH
514#else
515#define hmm_vma_walk_hugetlb_entry NULL
516#endif /* CONFIG_HUGETLB_PAGE */
63d5066f 517
d28c2c9a
RC
518static int hmm_vma_walk_test(unsigned long start, unsigned long end,
519 struct mm_walk *walk)
33cd47dc 520{
d28c2c9a
RC
521 struct hmm_vma_walk *hmm_vma_walk = walk->private;
522 struct hmm_range *range = hmm_vma_walk->range;
523 struct vm_area_struct *vma = walk->vma;
524
525 /*
c2579c9c
JG
526 * Skip vma ranges that don't have struct page backing them or map I/O
527 * devices directly.
528 *
d28c2c9a 529 * If the vma does not allow read access, then assume that it does not
c2579c9c
JG
530 * allow write access either. HMM does not support architectures that
531 * allow write without read.
d28c2c9a 532 */
c2579c9c
JG
533 if ((vma->vm_flags & (VM_IO | VM_PFNMAP | VM_MIXEDMAP)) ||
534 !(vma->vm_flags & VM_READ)) {
d28c2c9a
RC
535 bool fault, write_fault;
536
537 /*
538 * Check to see if a fault is requested for any page in the
539 * range.
540 */
541 hmm_range_need_fault(hmm_vma_walk, range->pfns +
542 ((start - range->start) >> PAGE_SHIFT),
543 (end - start) >> PAGE_SHIFT,
544 0, &fault, &write_fault);
545 if (fault || write_fault)
546 return -EFAULT;
547
c2579c9c 548 hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
d28c2c9a
RC
549 hmm_vma_walk->last = end;
550
551 /* Skip this vma and continue processing the next vma. */
552 return 1;
553 }
554
555 return 0;
33cd47dc
JG
556}
557
7b86ac33
CH
558static const struct mm_walk_ops hmm_walk_ops = {
559 .pud_entry = hmm_vma_walk_pud,
560 .pmd_entry = hmm_vma_walk_pmd,
561 .pte_hole = hmm_vma_walk_hole,
562 .hugetlb_entry = hmm_vma_walk_hugetlb_entry,
d28c2c9a 563 .test_walk = hmm_vma_walk_test,
7b86ac33
CH
564};
565
9a4903e4
CH
566/**
567 * hmm_range_fault - try to fault some address in a virtual address range
568 * @range: range being faulted
569 * @flags: HMM_FAULT_* flags
570 *
571 * Return: the number of valid pages in range->pfns[] (from range start
572 * address), which may be zero. On error one of the following status codes
573 * can be returned:
73231612 574 *
9a4903e4
CH
575 * -EINVAL: Invalid arguments or mm or virtual address is in an invalid vma
576 * (e.g., device file vma).
577 * -ENOMEM: Out of memory.
578 * -EPERM: Invalid permission (e.g., asking for write and range is read
579 * only).
9a4903e4
CH
580 * -EBUSY: The range has been invalidated and the caller needs to wait for
581 * the invalidation to finish.
582 * -EFAULT: Invalid (i.e., either no valid vma or it is illegal to access
583 * that range) number of valid pages in range->pfns[] (from
584 * range start address).
74eee180
JG
585 *
586 * This is similar to a regular CPU page fault except that it will not trigger
73231612
JG
587 * any memory migration if the memory being faulted is not accessible by CPUs
588 * and caller does not ask for migration.
74eee180 589 *
ff05c0c6
JG
590 * On error, for one virtual address in the range, the function will mark the
591 * corresponding HMM pfn entry with an error flag.
74eee180 592 */
9a4903e4 593long hmm_range_fault(struct hmm_range *range, unsigned int flags)
74eee180 594{
d28c2c9a
RC
595 struct hmm_vma_walk hmm_vma_walk = {
596 .range = range,
597 .last = range->start,
598 .flags = flags,
599 };
a22dd506 600 struct mm_struct *mm = range->notifier->mm;
74eee180
JG
601 int ret;
602
04ec32fb 603 lockdep_assert_held(&mm->mmap_sem);
704f3f2c 604
a3e0d41c
JG
605 do {
606 /* If range is no longer valid force retry. */
a22dd506
JG
607 if (mmu_interval_check_retry(range->notifier,
608 range->notifier_seq))
2bcbeaef 609 return -EBUSY;
d28c2c9a
RC
610 ret = walk_page_range(mm, hmm_vma_walk.last, range->end,
611 &hmm_walk_ops, &hmm_vma_walk);
612 } while (ret == -EBUSY);
74eee180 613
d28c2c9a
RC
614 if (ret)
615 return ret;
73231612 616 return (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
74eee180 617}
73231612 618EXPORT_SYMBOL(hmm_range_fault);