Merge tag 'for-linux-6.12-ofs1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / mm / gup.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
4bbd4c77
KS
2#include <linux/kernel.h>
3#include <linux/errno.h>
4#include <linux/err.h>
5#include <linux/spinlock.h>
6
4bbd4c77 7#include <linux/mm.h>
89c1905d 8#include <linux/memfd.h>
3565fce3 9#include <linux/memremap.h>
4bbd4c77
KS
10#include <linux/pagemap.h>
11#include <linux/rmap.h>
12#include <linux/swap.h>
13#include <linux/swapops.h>
1507f512 14#include <linux/secretmem.h>
4bbd4c77 15
174cd4b1 16#include <linux/sched/signal.h>
2667f50e 17#include <linux/rwsem.h>
f30c59e9 18#include <linux/hugetlb.h>
9a4e9f3b
AK
19#include <linux/migrate.h>
20#include <linux/mm_inline.h>
89c1905d 21#include <linux/pagevec.h>
9a4e9f3b 22#include <linux/sched/mm.h>
a6e79df9 23#include <linux/shmem_fs.h>
1027e443 24
33a709b2 25#include <asm/mmu_context.h>
1027e443 26#include <asm/tlbflush.h>
2667f50e 27
4bbd4c77
KS
28#include "internal.h"
29
df06b37f
KB
30struct follow_page_context {
31 struct dev_pagemap *pgmap;
32 unsigned int page_mask;
33};
34
b6a2619c
DH
35static inline void sanity_check_pinned_pages(struct page **pages,
36 unsigned long npages)
37{
38 if (!IS_ENABLED(CONFIG_DEBUG_VM))
39 return;
40
41 /*
42 * We only pin anonymous pages if they are exclusive. Once pinned, we
43 * can no longer turn them possibly shared and PageAnonExclusive() will
44 * stick around until the page is freed.
45 *
46 * We'd like to verify that our pinned anonymous pages are still mapped
47 * exclusively. The issue with anon THP is that we don't know how
48 * they are/were mapped when pinning them. However, for anon
49 * THP we can assume that either the given page (PTE-mapped THP) or
50 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
51 * neither is the case, there is certainly something wrong.
52 */
53 for (; npages; npages--, pages++) {
54 struct page *page = *pages;
55 struct folio *folio = page_folio(page);
56
c8070b78
DH
57 if (is_zero_page(page) ||
58 !folio_test_anon(folio))
b6a2619c
DH
59 continue;
60 if (!folio_test_large(folio) || folio_test_hugetlb(folio))
61 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
62 else
63 /* Either a PTE-mapped or a PMD-mapped THP. */
64 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
65 !PageAnonExclusive(page), page);
66 }
67}
68
cd1adf1b 69/*
ece1ed7b 70 * Return the folio with ref appropriately incremented,
cd1adf1b 71 * or NULL if that failed.
a707cdd5 72 */
ece1ed7b 73static inline struct folio *try_get_folio(struct page *page, int refs)
a707cdd5 74{
ece1ed7b 75 struct folio *folio;
a707cdd5 76
59409373 77retry:
ece1ed7b
MWO
78 folio = page_folio(page);
79 if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
a707cdd5 80 return NULL;
fa2690af 81 if (unlikely(!folio_ref_try_add(folio, refs)))
a707cdd5 82 return NULL;
c24d3732
JH
83
84 /*
ece1ed7b
MWO
85 * At this point we have a stable reference to the folio; but it
86 * could be that between calling page_folio() and the refcount
87 * increment, the folio was split, in which case we'd end up
88 * holding a reference on a folio that has nothing to do with the page
c24d3732 89 * we were given anymore.
ece1ed7b
MWO
90 * So now that the folio is stable, recheck that the page still
91 * belongs to this folio.
c24d3732 92 */
ece1ed7b 93 if (unlikely(page_folio(page) != folio)) {
53e45c4f 94 if (!put_devmap_managed_folio_refs(folio, refs))
f4f451a1 95 folio_put_refs(folio, refs);
59409373 96 goto retry;
c24d3732
JH
97 }
98
ece1ed7b 99 return folio;
a707cdd5
JH
100}
101
d8ddc099 102static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
4509b42c
JG
103{
104 if (flags & FOLL_PIN) {
c8070b78
DH
105 if (is_zero_folio(folio))
106 return;
d8ddc099
MWO
107 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
108 if (folio_test_large(folio))
94688e8e 109 atomic_sub(refs, &folio->_pincount);
4509b42c
JG
110 else
111 refs *= GUP_PIN_COUNTING_BIAS;
112 }
113
53e45c4f 114 if (!put_devmap_managed_folio_refs(folio, refs))
f4f451a1 115 folio_put_refs(folio, refs);
4509b42c
JG
116}
117
3faa52c0 118/**
f442fa61
YS
119 * try_grab_folio() - add a folio's refcount by a flag-dependent amount
120 * @folio: pointer to folio to be grabbed
121 * @refs: the value to (effectively) add to the folio's refcount
122 * @flags: gup flags: these are the FOLL_* flag values
3faa52c0
JH
123 *
124 * This might not do anything at all, depending on the flags argument.
125 *
126 * "grab" names in this file mean, "look at flags to decide whether to use
f442fa61 127 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
3faa52c0 128 *
3faa52c0 129 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
f442fa61 130 * time.
3faa52c0 131 *
0f089235
LG
132 * Return: 0 for success, or if no action was required (if neither FOLL_PIN
133 * nor FOLL_GET was set, nothing is done). A negative error code for failure:
134 *
f442fa61 135 * -ENOMEM FOLL_GET or FOLL_PIN was set, but the folio could not
0f089235 136 * be grabbed.
f442fa61
YS
137 *
138 * It is called when we have a stable reference for the folio, typically in
139 * GUP slow path.
3faa52c0 140 */
f442fa61
YS
141int __must_check try_grab_folio(struct folio *folio, int refs,
142 unsigned int flags)
3faa52c0 143{
5fec0719 144 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
0f089235 145 return -ENOMEM;
3faa52c0 146
f442fa61 147 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(&folio->page)))
4003f107 148 return -EREMOTEIO;
3faa52c0 149
c36c04c2 150 if (flags & FOLL_GET)
f442fa61 151 folio_ref_add(folio, refs);
c36c04c2 152 else if (flags & FOLL_PIN) {
c8070b78
DH
153 /*
154 * Don't take a pin on the zero page - it's not going anywhere
155 * and it is used in a *lot* of places.
156 */
f442fa61 157 if (is_zero_folio(folio))
c8070b78
DH
158 return 0;
159
c36c04c2 160 /*
f442fa61 161 * Increment the normal page refcount field at least once,
78d9d6ce 162 * so that the page really is pinned.
c36c04c2 163 */
5fec0719 164 if (folio_test_large(folio)) {
f442fa61
YS
165 folio_ref_add(folio, refs);
166 atomic_add(refs, &folio->_pincount);
8ea2979c 167 } else {
f442fa61 168 folio_ref_add(folio, refs * GUP_PIN_COUNTING_BIAS);
8ea2979c 169 }
c36c04c2 170
f442fa61 171 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
c36c04c2
JH
172 }
173
0f089235 174 return 0;
3faa52c0
JH
175}
176
3faa52c0
JH
177/**
178 * unpin_user_page() - release a dma-pinned page
179 * @page: pointer to page to be released
180 *
181 * Pages that were pinned via pin_user_pages*() must be released via either
182 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
183 * that such pages can be separately tracked and uniquely handled. In
184 * particular, interactions with RDMA and filesystems need special handling.
185 */
186void unpin_user_page(struct page *page)
187{
b6a2619c 188 sanity_check_pinned_pages(&page, 1);
d8ddc099 189 gup_put_folio(page_folio(page), 1, FOLL_PIN);
3faa52c0
JH
190}
191EXPORT_SYMBOL(unpin_user_page);
192
6cc04054
VK
193/**
194 * unpin_folio() - release a dma-pinned folio
195 * @folio: pointer to folio to be released
196 *
197 * Folios that were pinned via memfd_pin_folios() or other similar routines
198 * must be released either using unpin_folio() or unpin_folios().
199 */
200void unpin_folio(struct folio *folio)
201{
202 gup_put_folio(folio, 1, FOLL_PIN);
203}
204EXPORT_SYMBOL_GPL(unpin_folio);
205
1101fb8f
DH
206/**
207 * folio_add_pin - Try to get an additional pin on a pinned folio
208 * @folio: The folio to be pinned
209 *
210 * Get an additional pin on a folio we already have a pin on. Makes no change
211 * if the folio is a zero_page.
212 */
213void folio_add_pin(struct folio *folio)
214{
215 if (is_zero_folio(folio))
216 return;
217
218 /*
219 * Similar to try_grab_folio(): be sure to *also* increment the normal
220 * page refcount field at least once, so that the page really is
221 * pinned.
222 */
223 if (folio_test_large(folio)) {
224 WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1);
225 folio_ref_inc(folio);
226 atomic_inc(&folio->_pincount);
227 } else {
228 WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS);
229 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
230 }
231}
232
659508f9 233static inline struct folio *gup_folio_range_next(struct page *start,
8f39f5fc 234 unsigned long npages, unsigned long i, unsigned int *ntails)
458a4f78 235{
659508f9
MWO
236 struct page *next = nth_page(start, i);
237 struct folio *folio = page_folio(next);
458a4f78
JM
238 unsigned int nr = 1;
239
659508f9 240 if (folio_test_large(folio))
4c654229 241 nr = min_t(unsigned int, npages - i,
659508f9 242 folio_nr_pages(folio) - folio_page_idx(folio, next));
458a4f78 243
458a4f78 244 *ntails = nr;
659508f9 245 return folio;
458a4f78
JM
246}
247
12521c76 248static inline struct folio *gup_folio_next(struct page **list,
28297dbc 249 unsigned long npages, unsigned long i, unsigned int *ntails)
8745d7f6 250{
12521c76 251 struct folio *folio = page_folio(list[i]);
8745d7f6
JM
252 unsigned int nr;
253
8745d7f6 254 for (nr = i + 1; nr < npages; nr++) {
12521c76 255 if (page_folio(list[nr]) != folio)
8745d7f6
JM
256 break;
257 }
258
8745d7f6 259 *ntails = nr - i;
12521c76 260 return folio;
8745d7f6
JM
261}
262
fc1d8e7c 263/**
f1f6a7dd 264 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
2d15eb31 265 * @pages: array of pages to be maybe marked dirty, and definitely released.
fc1d8e7c 266 * @npages: number of pages in the @pages array.
2d15eb31 267 * @make_dirty: whether to mark the pages dirty
fc1d8e7c
JH
268 *
269 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
270 * variants called on that page.
271 *
272 * For each page in the @pages array, make that page (or its head page, if a
2d15eb31 273 * compound page) dirty, if @make_dirty is true, and if the page was previously
f1f6a7dd
JH
274 * listed as clean. In any case, releases all pages using unpin_user_page(),
275 * possibly via unpin_user_pages(), for the non-dirty case.
fc1d8e7c 276 *
f1f6a7dd 277 * Please see the unpin_user_page() documentation for details.
fc1d8e7c 278 *
2d15eb31 279 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
280 * required, then the caller should a) verify that this is really correct,
281 * because _lock() is usually required, and b) hand code it:
f1f6a7dd 282 * set_page_dirty_lock(), unpin_user_page().
fc1d8e7c
JH
283 *
284 */
f1f6a7dd
JH
285void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
286 bool make_dirty)
fc1d8e7c 287{
12521c76
MWO
288 unsigned long i;
289 struct folio *folio;
290 unsigned int nr;
2d15eb31 291
292 if (!make_dirty) {
f1f6a7dd 293 unpin_user_pages(pages, npages);
2d15eb31 294 return;
295 }
296
b6a2619c 297 sanity_check_pinned_pages(pages, npages);
12521c76
MWO
298 for (i = 0; i < npages; i += nr) {
299 folio = gup_folio_next(pages, npages, i, &nr);
2d15eb31 300 /*
301 * Checking PageDirty at this point may race with
302 * clear_page_dirty_for_io(), but that's OK. Two key
303 * cases:
304 *
305 * 1) This code sees the page as already dirty, so it
306 * skips the call to set_page_dirty(). That could happen
307 * because clear_page_dirty_for_io() called
a929e0d1 308 * folio_mkclean(), followed by set_page_dirty().
2d15eb31 309 * However, now the page is going to get written back,
310 * which meets the original intention of setting it
311 * dirty, so all is well: clear_page_dirty_for_io() goes
312 * on to call TestClearPageDirty(), and write the page
313 * back.
314 *
315 * 2) This code sees the page as clean, so it calls
316 * set_page_dirty(). The page stays dirty, despite being
317 * written back, so it gets written back again in the
318 * next writeback cycle. This is harmless.
319 */
12521c76
MWO
320 if (!folio_test_dirty(folio)) {
321 folio_lock(folio);
322 folio_mark_dirty(folio);
323 folio_unlock(folio);
324 }
325 gup_put_folio(folio, nr, FOLL_PIN);
2d15eb31 326 }
fc1d8e7c 327}
f1f6a7dd 328EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
fc1d8e7c 329
458a4f78
JM
330/**
331 * unpin_user_page_range_dirty_lock() - release and optionally dirty
332 * gup-pinned page range
333 *
334 * @page: the starting page of a range maybe marked dirty, and definitely released.
335 * @npages: number of consecutive pages to release.
336 * @make_dirty: whether to mark the pages dirty
337 *
338 * "gup-pinned page range" refers to a range of pages that has had one of the
339 * pin_user_pages() variants called on that page.
340 *
341 * For the page ranges defined by [page .. page+npages], make that range (or
342 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
343 * page range was previously listed as clean.
344 *
345 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
346 * required, then the caller should a) verify that this is really correct,
347 * because _lock() is usually required, and b) hand code it:
348 * set_page_dirty_lock(), unpin_user_page().
349 *
350 */
351void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
352 bool make_dirty)
353{
659508f9
MWO
354 unsigned long i;
355 struct folio *folio;
356 unsigned int nr;
357
358 for (i = 0; i < npages; i += nr) {
359 folio = gup_folio_range_next(page, npages, i, &nr);
360 if (make_dirty && !folio_test_dirty(folio)) {
361 folio_lock(folio);
362 folio_mark_dirty(folio);
363 folio_unlock(folio);
364 }
365 gup_put_folio(folio, nr, FOLL_PIN);
458a4f78
JM
366 }
367}
368EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
369
23babe19 370static void gup_fast_unpin_user_pages(struct page **pages, unsigned long npages)
b6a2619c
DH
371{
372 unsigned long i;
373 struct folio *folio;
374 unsigned int nr;
375
376 /*
377 * Don't perform any sanity checks because we might have raced with
378 * fork() and some anonymous pages might now actually be shared --
379 * which is why we're unpinning after all.
380 */
381 for (i = 0; i < npages; i += nr) {
382 folio = gup_folio_next(pages, npages, i, &nr);
383 gup_put_folio(folio, nr, FOLL_PIN);
384 }
385}
386
fc1d8e7c 387/**
f1f6a7dd 388 * unpin_user_pages() - release an array of gup-pinned pages.
fc1d8e7c
JH
389 * @pages: array of pages to be marked dirty and released.
390 * @npages: number of pages in the @pages array.
391 *
f1f6a7dd 392 * For each page in the @pages array, release the page using unpin_user_page().
fc1d8e7c 393 *
f1f6a7dd 394 * Please see the unpin_user_page() documentation for details.
fc1d8e7c 395 */
f1f6a7dd 396void unpin_user_pages(struct page **pages, unsigned long npages)
fc1d8e7c 397{
12521c76
MWO
398 unsigned long i;
399 struct folio *folio;
400 unsigned int nr;
fc1d8e7c 401
146608bb
JH
402 /*
403 * If this WARN_ON() fires, then the system *might* be leaking pages (by
404 * leaving them pinned), but probably not. More likely, gup/pup returned
405 * a hard -ERRNO error to the caller, who erroneously passed it here.
406 */
407 if (WARN_ON(IS_ERR_VALUE(npages)))
408 return;
31b912de 409
b6a2619c 410 sanity_check_pinned_pages(pages, npages);
12521c76
MWO
411 for (i = 0; i < npages; i += nr) {
412 folio = gup_folio_next(pages, npages, i, &nr);
413 gup_put_folio(folio, nr, FOLL_PIN);
e7602748 414 }
fc1d8e7c 415}
f1f6a7dd 416EXPORT_SYMBOL(unpin_user_pages);
fc1d8e7c 417
d3bfbfb1
KK
418/**
419 * unpin_user_folio() - release pages of a folio
420 * @folio: pointer to folio to be released
421 * @npages: number of pages of same folio
422 *
423 * Release npages of the folio
424 */
425void unpin_user_folio(struct folio *folio, unsigned long npages)
426{
427 gup_put_folio(folio, npages, FOLL_PIN);
428}
429EXPORT_SYMBOL(unpin_user_folio);
430
6cc04054
VK
431/**
432 * unpin_folios() - release an array of gup-pinned folios.
433 * @folios: array of folios to be marked dirty and released.
434 * @nfolios: number of folios in the @folios array.
435 *
436 * For each folio in the @folios array, release the folio using gup_put_folio.
437 *
438 * Please see the unpin_folio() documentation for details.
439 */
440void unpin_folios(struct folio **folios, unsigned long nfolios)
441{
442 unsigned long i = 0, j;
443
444 /*
445 * If this WARN_ON() fires, then the system *might* be leaking folios
446 * (by leaving them pinned), but probably not. More likely, gup/pup
447 * returned a hard -ERRNO error to the caller, who erroneously passed
448 * it here.
449 */
450 if (WARN_ON(IS_ERR_VALUE(nfolios)))
451 return;
452
453 while (i < nfolios) {
454 for (j = i + 1; j < nfolios; j++)
455 if (folios[i] != folios[j])
456 break;
457
458 if (folios[i])
459 gup_put_folio(folios[i], j - i, FOLL_PIN);
460 i = j;
461 }
462}
463EXPORT_SYMBOL_GPL(unpin_folios);
464
a458b76a
AA
465/*
466 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
467 * lifecycle. Avoid setting the bit unless necessary, or it might cause write
468 * cache bouncing on large SMP machines for concurrent pinned gups.
469 */
470static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
471{
472 if (!test_bit(MMF_HAS_PINNED, mm_flags))
473 set_bit(MMF_HAS_PINNED, mm_flags);
474}
475
050a9adc 476#ifdef CONFIG_MMU
a12083d7 477
8268614b 478#ifdef CONFIG_HAVE_GUP_FAST
a12083d7
PX
479static int record_subpages(struct page *page, unsigned long sz,
480 unsigned long addr, unsigned long end,
481 struct page **pages)
482{
483 struct page *start_page;
484 int nr;
485
486 start_page = nth_page(page, (addr & (sz - 1)) >> PAGE_SHIFT);
487 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
488 pages[nr] = nth_page(start_page, nr);
489
490 return nr;
491}
f442fa61
YS
492
493/**
494 * try_grab_folio_fast() - Attempt to get or pin a folio in fast path.
495 * @page: pointer to page to be grabbed
496 * @refs: the value to (effectively) add to the folio's refcount
497 * @flags: gup flags: these are the FOLL_* flag values.
498 *
499 * "grab" names in this file mean, "look at flags to decide whether to use
500 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
501 *
502 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
503 * same time. (That's true throughout the get_user_pages*() and
504 * pin_user_pages*() APIs.) Cases:
505 *
506 * FOLL_GET: folio's refcount will be incremented by @refs.
507 *
508 * FOLL_PIN on large folios: folio's refcount will be incremented by
509 * @refs, and its pincount will be incremented by @refs.
510 *
511 * FOLL_PIN on single-page folios: folio's refcount will be incremented by
512 * @refs * GUP_PIN_COUNTING_BIAS.
513 *
514 * Return: The folio containing @page (with refcount appropriately
515 * incremented) for success, or NULL upon failure. If neither FOLL_GET
516 * nor FOLL_PIN was set, that's considered failure, and furthermore,
517 * a likely bug in the caller, so a warning is also emitted.
518 *
519 * It uses add ref unless zero to elevate the folio refcount and must be called
520 * in fast path only.
521 */
522static struct folio *try_grab_folio_fast(struct page *page, int refs,
523 unsigned int flags)
524{
525 struct folio *folio;
526
527 /* Raise warn if it is not called in fast GUP */
528 VM_WARN_ON_ONCE(!irqs_disabled());
529
530 if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0))
531 return NULL;
532
533 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
534 return NULL;
535
536 if (flags & FOLL_GET)
537 return try_get_folio(page, refs);
538
539 /* FOLL_PIN is set */
540
541 /*
542 * Don't take a pin on the zero page - it's not going anywhere
543 * and it is used in a *lot* of places.
544 */
545 if (is_zero_page(page))
546 return page_folio(page);
547
548 folio = try_get_folio(page, refs);
549 if (!folio)
550 return NULL;
551
552 /*
553 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
554 * right zone, so fail and let the caller fall back to the slow
555 * path.
556 */
557 if (unlikely((flags & FOLL_LONGTERM) &&
558 !folio_is_longterm_pinnable(folio))) {
559 if (!put_devmap_managed_folio_refs(folio, refs))
560 folio_put_refs(folio, refs);
561 return NULL;
562 }
563
564 /*
565 * When pinning a large folio, use an exact count to track it.
566 *
567 * However, be sure to *also* increment the normal folio
568 * refcount field at least once, so that the folio really
569 * is pinned. That's why the refcount from the earlier
570 * try_get_folio() is left intact.
571 */
572 if (folio_test_large(folio))
573 atomic_add(refs, &folio->_pincount);
574 else
575 folio_ref_add(folio,
576 refs * (GUP_PIN_COUNTING_BIAS - 1));
577 /*
578 * Adjust the pincount before re-checking the PTE for changes.
579 * This is essentially a smp_mb() and is paired with a memory
580 * barrier in folio_try_share_anon_rmap_*().
581 */
582 smp_mb__after_atomic();
583
584 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
585
586 return folio;
587}
8268614b 588#endif /* CONFIG_HAVE_GUP_FAST */
a12083d7 589
69e68b4f 590static struct page *no_page_table(struct vm_area_struct *vma,
878b0c45 591 unsigned int flags, unsigned long address)
4bbd4c77 592{
878b0c45
PX
593 if (!(flags & FOLL_DUMP))
594 return NULL;
595
69e68b4f 596 /*
878b0c45 597 * When core dumping, we don't want to allocate unnecessary pages or
69e68b4f
KS
598 * page tables. Return error instead of NULL to skip handle_mm_fault,
599 * then get_dump_page() will return NULL to leave a hole in the dump.
600 * But we can only make this optimization where a hole would surely
601 * be zero-filled if handle_mm_fault() actually did handle it.
602 */
878b0c45
PX
603 if (is_vm_hugetlb_page(vma)) {
604 struct hstate *h = hstate_vma(vma);
605
606 if (!hugetlbfs_pagecache_present(h, vma, address))
607 return ERR_PTR(-EFAULT);
608 } else if ((vma_is_anonymous(vma) || !vma->vm_ops->fault)) {
69e68b4f 609 return ERR_PTR(-EFAULT);
878b0c45
PX
610 }
611
69e68b4f
KS
612 return NULL;
613}
4bbd4c77 614
1b167618
PX
615#ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES
616static struct page *follow_huge_pud(struct vm_area_struct *vma,
617 unsigned long addr, pud_t *pudp,
618 int flags, struct follow_page_context *ctx)
619{
620 struct mm_struct *mm = vma->vm_mm;
621 struct page *page;
622 pud_t pud = *pudp;
623 unsigned long pfn = pud_pfn(pud);
624 int ret;
625
626 assert_spin_locked(pud_lockptr(mm, pudp));
627
628 if ((flags & FOLL_WRITE) && !pud_write(pud))
629 return NULL;
630
631 if (!pud_present(pud))
632 return NULL;
633
634 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
635
636 if (IS_ENABLED(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) &&
637 pud_devmap(pud)) {
638 /*
639 * device mapped pages can only be returned if the caller
640 * will manage the page reference count.
641 *
642 * At least one of FOLL_GET | FOLL_PIN must be set, so
643 * assert that here:
644 */
645 if (!(flags & (FOLL_GET | FOLL_PIN)))
646 return ERR_PTR(-EEXIST);
647
648 if (flags & FOLL_TOUCH)
649 touch_pud(vma, addr, pudp, flags & FOLL_WRITE);
650
651 ctx->pgmap = get_dev_pagemap(pfn, ctx->pgmap);
652 if (!ctx->pgmap)
653 return ERR_PTR(-EFAULT);
654 }
655
656 page = pfn_to_page(pfn);
657
658 if (!pud_devmap(pud) && !pud_write(pud) &&
659 gup_must_unshare(vma, flags, page))
660 return ERR_PTR(-EMLINK);
661
f442fa61 662 ret = try_grab_folio(page_folio(page), 1, flags);
1b167618
PX
663 if (ret)
664 page = ERR_PTR(ret);
665 else
666 ctx->page_mask = HPAGE_PUD_NR - 1;
667
668 return page;
669}
4418c522
PX
670
671/* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
672static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
673 struct vm_area_struct *vma,
674 unsigned int flags)
675{
676 /* If the pmd is writable, we can write to the page. */
677 if (pmd_write(pmd))
678 return true;
679
680 /* Maybe FOLL_FORCE is set to override it? */
681 if (!(flags & FOLL_FORCE))
682 return false;
683
684 /* But FOLL_FORCE has no effect on shared mappings */
685 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
686 return false;
687
688 /* ... or read-only private ones */
689 if (!(vma->vm_flags & VM_MAYWRITE))
690 return false;
691
692 /* ... or already writable ones that just need to take a write fault */
693 if (vma->vm_flags & VM_WRITE)
694 return false;
695
696 /*
697 * See can_change_pte_writable(): we broke COW and could map the page
698 * writable if we have an exclusive anonymous page ...
699 */
700 if (!page || !PageAnon(page) || !PageAnonExclusive(page))
701 return false;
702
703 /* ... and a write-fault isn't required for other reasons. */
f38ee285 704 if (pmd_needs_soft_dirty_wp(vma, pmd))
4418c522
PX
705 return false;
706 return !userfaultfd_huge_pmd_wp(vma, pmd);
707}
708
709static struct page *follow_huge_pmd(struct vm_area_struct *vma,
710 unsigned long addr, pmd_t *pmd,
711 unsigned int flags,
712 struct follow_page_context *ctx)
713{
714 struct mm_struct *mm = vma->vm_mm;
715 pmd_t pmdval = *pmd;
716 struct page *page;
717 int ret;
718
719 assert_spin_locked(pmd_lockptr(mm, pmd));
720
721 page = pmd_page(pmdval);
722 if ((flags & FOLL_WRITE) &&
723 !can_follow_write_pmd(pmdval, page, vma, flags))
724 return NULL;
725
726 /* Avoid dumping huge zero page */
727 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(pmdval))
728 return ERR_PTR(-EFAULT);
729
730 if (pmd_protnone(*pmd) && !gup_can_follow_protnone(vma, flags))
731 return NULL;
732
733 if (!pmd_write(pmdval) && gup_must_unshare(vma, flags, page))
734 return ERR_PTR(-EMLINK);
735
736 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
737 !PageAnonExclusive(page), page);
738
f442fa61 739 ret = try_grab_folio(page_folio(page), 1, flags);
4418c522
PX
740 if (ret)
741 return ERR_PTR(ret);
742
743#ifdef CONFIG_TRANSPARENT_HUGEPAGE
744 if (pmd_trans_huge(pmdval) && (flags & FOLL_TOUCH))
745 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
746#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
747
748 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
749 ctx->page_mask = HPAGE_PMD_NR - 1;
750
751 return page;
752}
753
1b167618
PX
754#else /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */
755static struct page *follow_huge_pud(struct vm_area_struct *vma,
756 unsigned long addr, pud_t *pudp,
757 int flags, struct follow_page_context *ctx)
758{
759 return NULL;
760}
4418c522
PX
761
762static struct page *follow_huge_pmd(struct vm_area_struct *vma,
763 unsigned long addr, pmd_t *pmd,
764 unsigned int flags,
765 struct follow_page_context *ctx)
766{
767 return NULL;
768}
1b167618
PX
769#endif /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */
770
1027e443
KS
771static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
772 pte_t *pte, unsigned int flags)
773{
1027e443 774 if (flags & FOLL_TOUCH) {
c33c7948
RR
775 pte_t orig_entry = ptep_get(pte);
776 pte_t entry = orig_entry;
1027e443
KS
777
778 if (flags & FOLL_WRITE)
779 entry = pte_mkdirty(entry);
780 entry = pte_mkyoung(entry);
781
c33c7948 782 if (!pte_same(orig_entry, entry)) {
1027e443
KS
783 set_pte_at(vma->vm_mm, address, pte, entry);
784 update_mmu_cache(vma, address, pte);
785 }
786 }
787
788 /* Proper page table entry exists, but no corresponding struct page */
789 return -EEXIST;
790}
791
5535be30
DH
792/* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
793static inline bool can_follow_write_pte(pte_t pte, struct page *page,
794 struct vm_area_struct *vma,
795 unsigned int flags)
19be0eaf 796{
5535be30
DH
797 /* If the pte is writable, we can write to the page. */
798 if (pte_write(pte))
799 return true;
800
801 /* Maybe FOLL_FORCE is set to override it? */
802 if (!(flags & FOLL_FORCE))
803 return false;
804
805 /* But FOLL_FORCE has no effect on shared mappings */
806 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
807 return false;
808
809 /* ... or read-only private ones */
810 if (!(vma->vm_flags & VM_MAYWRITE))
811 return false;
812
813 /* ... or already writable ones that just need to take a write fault */
814 if (vma->vm_flags & VM_WRITE)
815 return false;
816
817 /*
818 * See can_change_pte_writable(): we broke COW and could map the page
819 * writable if we have an exclusive anonymous page ...
820 */
821 if (!page || !PageAnon(page) || !PageAnonExclusive(page))
822 return false;
823
824 /* ... and a write-fault isn't required for other reasons. */
f38ee285 825 if (pte_needs_soft_dirty_wp(vma, pte))
5535be30
DH
826 return false;
827 return !userfaultfd_pte_wp(vma, pte);
19be0eaf
LT
828}
829
69e68b4f 830static struct page *follow_page_pte(struct vm_area_struct *vma,
df06b37f
KB
831 unsigned long address, pmd_t *pmd, unsigned int flags,
832 struct dev_pagemap **pgmap)
69e68b4f
KS
833{
834 struct mm_struct *mm = vma->vm_mm;
835 struct page *page;
836 spinlock_t *ptl;
837 pte_t *ptep, pte;
f28d4363 838 int ret;
4bbd4c77 839
eddb1c22
JH
840 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
841 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
842 (FOLL_PIN | FOLL_GET)))
843 return ERR_PTR(-EINVAL);
4bbd4c77
KS
844
845 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
04dee9e8 846 if (!ptep)
878b0c45 847 return no_page_table(vma, flags, address);
c33c7948 848 pte = ptep_get(ptep);
f7355e99
DH
849 if (!pte_present(pte))
850 goto no_page;
d74943a2 851 if (pte_protnone(pte) && !gup_can_follow_protnone(vma, flags))
4bbd4c77 852 goto no_page;
4bbd4c77
KS
853
854 page = vm_normal_page(vma, address, pte);
5535be30
DH
855
856 /*
857 * We only care about anon pages in can_follow_write_pte() and don't
858 * have to worry about pte_devmap() because they are never anon.
859 */
860 if ((flags & FOLL_WRITE) &&
861 !can_follow_write_pte(pte, page, vma, flags)) {
862 page = NULL;
863 goto out;
864 }
865
3faa52c0 866 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
3565fce3 867 /*
3faa52c0
JH
868 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
869 * case since they are only valid while holding the pgmap
870 * reference.
3565fce3 871 */
df06b37f
KB
872 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
873 if (*pgmap)
3565fce3
DW
874 page = pte_page(pte);
875 else
876 goto no_page;
877 } else if (unlikely(!page)) {
1027e443
KS
878 if (flags & FOLL_DUMP) {
879 /* Avoid special (like zero) pages in core dumps */
880 page = ERR_PTR(-EFAULT);
881 goto out;
882 }
883
884 if (is_zero_pfn(pte_pfn(pte))) {
885 page = pte_page(pte);
886 } else {
1027e443
KS
887 ret = follow_pfn_pte(vma, address, ptep, flags);
888 page = ERR_PTR(ret);
889 goto out;
890 }
4bbd4c77
KS
891 }
892
84209e87 893 if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) {
a7f22660
DH
894 page = ERR_PTR(-EMLINK);
895 goto out;
896 }
b6a2619c
DH
897
898 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
899 !PageAnonExclusive(page), page);
900
f442fa61
YS
901 /* try_grab_folio() does nothing unless FOLL_GET or FOLL_PIN is set. */
902 ret = try_grab_folio(page_folio(page), 1, flags);
0f089235
LG
903 if (unlikely(ret)) {
904 page = ERR_PTR(ret);
3faa52c0 905 goto out;
8fde12ca 906 }
4003f107 907
f28d4363
CI
908 /*
909 * We need to make the page accessible if and only if we are going
910 * to access its content (the FOLL_PIN case). Please see
911 * Documentation/core-api/pin_user_pages.rst for details.
912 */
913 if (flags & FOLL_PIN) {
914 ret = arch_make_page_accessible(page);
915 if (ret) {
916 unpin_user_page(page);
917 page = ERR_PTR(ret);
918 goto out;
919 }
920 }
4bbd4c77
KS
921 if (flags & FOLL_TOUCH) {
922 if ((flags & FOLL_WRITE) &&
923 !pte_dirty(pte) && !PageDirty(page))
924 set_page_dirty(page);
925 /*
926 * pte_mkyoung() would be more correct here, but atomic care
927 * is needed to avoid losing the dirty bit: it is easier to use
928 * mark_page_accessed().
929 */
930 mark_page_accessed(page);
931 }
1027e443 932out:
4bbd4c77 933 pte_unmap_unlock(ptep, ptl);
4bbd4c77 934 return page;
4bbd4c77
KS
935no_page:
936 pte_unmap_unlock(ptep, ptl);
937 if (!pte_none(pte))
69e68b4f 938 return NULL;
878b0c45 939 return no_page_table(vma, flags, address);
69e68b4f
KS
940}
941
080dbb61
AK
942static struct page *follow_pmd_mask(struct vm_area_struct *vma,
943 unsigned long address, pud_t *pudp,
df06b37f
KB
944 unsigned int flags,
945 struct follow_page_context *ctx)
69e68b4f 946{
68827280 947 pmd_t *pmd, pmdval;
69e68b4f
KS
948 spinlock_t *ptl;
949 struct page *page;
950 struct mm_struct *mm = vma->vm_mm;
951
080dbb61 952 pmd = pmd_offset(pudp, address);
26e1a0c3 953 pmdval = pmdp_get_lockless(pmd);
68827280 954 if (pmd_none(pmdval))
878b0c45 955 return no_page_table(vma, flags, address);
f7355e99 956 if (!pmd_present(pmdval))
878b0c45 957 return no_page_table(vma, flags, address);
68827280 958 if (pmd_devmap(pmdval)) {
3565fce3 959 ptl = pmd_lock(mm, pmd);
df06b37f 960 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
3565fce3
DW
961 spin_unlock(ptl);
962 if (page)
963 return page;
878b0c45 964 return no_page_table(vma, flags, address);
3565fce3 965 }
4418c522 966 if (likely(!pmd_leaf(pmdval)))
df06b37f 967 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 968
d74943a2 969 if (pmd_protnone(pmdval) && !gup_can_follow_protnone(vma, flags))
878b0c45 970 return no_page_table(vma, flags, address);
db08f203 971
6742d293 972 ptl = pmd_lock(mm, pmd);
4418c522
PX
973 pmdval = *pmd;
974 if (unlikely(!pmd_present(pmdval))) {
84c3fc4e 975 spin_unlock(ptl);
878b0c45 976 return no_page_table(vma, flags, address);
84c3fc4e 977 }
4418c522 978 if (unlikely(!pmd_leaf(pmdval))) {
6742d293 979 spin_unlock(ptl);
df06b37f 980 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 981 }
4418c522 982 if (pmd_trans_huge(pmdval) && (flags & FOLL_SPLIT_PMD)) {
2378118b
HD
983 spin_unlock(ptl);
984 split_huge_pmd(vma, pmd, address);
985 /* If pmd was left empty, stuff a page table in there quickly */
986 return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) :
df06b37f 987 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
69e68b4f 988 }
4418c522 989 page = follow_huge_pmd(vma, address, pmd, flags, ctx);
6742d293 990 spin_unlock(ptl);
6742d293 991 return page;
4bbd4c77
KS
992}
993
080dbb61
AK
994static struct page *follow_pud_mask(struct vm_area_struct *vma,
995 unsigned long address, p4d_t *p4dp,
df06b37f
KB
996 unsigned int flags,
997 struct follow_page_context *ctx)
080dbb61 998{
caf8cab7 999 pud_t *pudp, pud;
080dbb61
AK
1000 spinlock_t *ptl;
1001 struct page *page;
1002 struct mm_struct *mm = vma->vm_mm;
1003
caf8cab7
PX
1004 pudp = pud_offset(p4dp, address);
1005 pud = READ_ONCE(*pudp);
1b167618 1006 if (!pud_present(pud))
878b0c45 1007 return no_page_table(vma, flags, address);
1b167618 1008 if (pud_leaf(pud)) {
caf8cab7 1009 ptl = pud_lock(mm, pudp);
1b167618 1010 page = follow_huge_pud(vma, address, pudp, flags, ctx);
080dbb61
AK
1011 spin_unlock(ptl);
1012 if (page)
1013 return page;
878b0c45 1014 return no_page_table(vma, flags, address);
080dbb61 1015 }
caf8cab7 1016 if (unlikely(pud_bad(pud)))
878b0c45 1017 return no_page_table(vma, flags, address);
080dbb61 1018
caf8cab7 1019 return follow_pmd_mask(vma, address, pudp, flags, ctx);
080dbb61
AK
1020}
1021
080dbb61
AK
1022static struct page *follow_p4d_mask(struct vm_area_struct *vma,
1023 unsigned long address, pgd_t *pgdp,
df06b37f
KB
1024 unsigned int flags,
1025 struct follow_page_context *ctx)
080dbb61 1026{
e6fd5564 1027 p4d_t *p4dp, p4d;
080dbb61 1028
e6fd5564
PX
1029 p4dp = p4d_offset(pgdp, address);
1030 p4d = READ_ONCE(*p4dp);
1965e933 1031 BUILD_BUG_ON(p4d_leaf(p4d));
a12083d7 1032
a12083d7 1033 if (!p4d_present(p4d) || p4d_bad(p4d))
878b0c45 1034 return no_page_table(vma, flags, address);
080dbb61 1035
e6fd5564 1036 return follow_pud_mask(vma, address, p4dp, flags, ctx);
080dbb61
AK
1037}
1038
1039/**
1040 * follow_page_mask - look up a page descriptor from a user-virtual address
1041 * @vma: vm_area_struct mapping @address
1042 * @address: virtual address to look up
1043 * @flags: flags modifying lookup behaviour
78179556
MR
1044 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
1045 * pointer to output page_mask
080dbb61
AK
1046 *
1047 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1048 *
78179556
MR
1049 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
1050 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
1051 *
a7f22660
DH
1052 * When getting an anonymous page and the caller has to trigger unsharing
1053 * of a shared anonymous page first, -EMLINK is returned. The caller should
1054 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
1055 * relevant with FOLL_PIN and !FOLL_WRITE.
1056 *
78179556
MR
1057 * On output, the @ctx->page_mask is set according to the size of the page.
1058 *
1059 * Return: the mapped (struct page *), %NULL if no mapping exists, or
080dbb61
AK
1060 * an error pointer if there is a mapping to something not represented
1061 * by a page descriptor (see also vm_normal_page()).
1062 */
a7030aea 1063static struct page *follow_page_mask(struct vm_area_struct *vma,
080dbb61 1064 unsigned long address, unsigned int flags,
df06b37f 1065 struct follow_page_context *ctx)
080dbb61
AK
1066{
1067 pgd_t *pgd;
080dbb61 1068 struct mm_struct *mm = vma->vm_mm;
9cb28da5 1069 struct page *page;
080dbb61 1070
9cb28da5 1071 vma_pgtable_walk_begin(vma);
080dbb61 1072
9cb28da5 1073 ctx->page_mask = 0;
080dbb61
AK
1074 pgd = pgd_offset(mm, address);
1075
8268614b 1076 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
a12083d7
PX
1077 page = no_page_table(vma, flags, address);
1078 else
1079 page = follow_p4d_mask(vma, address, pgd, flags, ctx);
080dbb61 1080
9cb28da5
PX
1081 vma_pgtable_walk_end(vma);
1082
a12083d7 1083 return page;
df06b37f
KB
1084}
1085
1086struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1087 unsigned int foll_flags)
1088{
1089 struct follow_page_context ctx = { NULL };
1090 struct page *page;
1091
1507f512
MR
1092 if (vma_is_secretmem(vma))
1093 return NULL;
1094
d64e2dbc 1095 if (WARN_ON_ONCE(foll_flags & FOLL_PIN))
8909691b
DH
1096 return NULL;
1097
d74943a2
DH
1098 /*
1099 * We never set FOLL_HONOR_NUMA_FAULT because callers don't expect
1100 * to fail on PROT_NONE-mapped pages.
1101 */
df06b37f
KB
1102 page = follow_page_mask(vma, address, foll_flags, &ctx);
1103 if (ctx.pgmap)
1104 put_dev_pagemap(ctx.pgmap);
1105 return page;
080dbb61
AK
1106}
1107
f2b495ca
KS
1108static int get_gate_page(struct mm_struct *mm, unsigned long address,
1109 unsigned int gup_flags, struct vm_area_struct **vma,
1110 struct page **page)
1111{
1112 pgd_t *pgd;
c2febafc 1113 p4d_t *p4d;
f2b495ca
KS
1114 pud_t *pud;
1115 pmd_t *pmd;
1116 pte_t *pte;
c33c7948 1117 pte_t entry;
f2b495ca
KS
1118 int ret = -EFAULT;
1119
1120 /* user gate pages are read-only */
1121 if (gup_flags & FOLL_WRITE)
1122 return -EFAULT;
1123 if (address > TASK_SIZE)
1124 pgd = pgd_offset_k(address);
1125 else
1126 pgd = pgd_offset_gate(mm, address);
b5d1c39f
AL
1127 if (pgd_none(*pgd))
1128 return -EFAULT;
c2febafc 1129 p4d = p4d_offset(pgd, address);
b5d1c39f
AL
1130 if (p4d_none(*p4d))
1131 return -EFAULT;
c2febafc 1132 pud = pud_offset(p4d, address);
b5d1c39f
AL
1133 if (pud_none(*pud))
1134 return -EFAULT;
f2b495ca 1135 pmd = pmd_offset(pud, address);
84c3fc4e 1136 if (!pmd_present(*pmd))
f2b495ca 1137 return -EFAULT;
f2b495ca 1138 pte = pte_offset_map(pmd, address);
04dee9e8
HD
1139 if (!pte)
1140 return -EFAULT;
c33c7948
RR
1141 entry = ptep_get(pte);
1142 if (pte_none(entry))
f2b495ca
KS
1143 goto unmap;
1144 *vma = get_gate_vma(mm);
1145 if (!page)
1146 goto out;
c33c7948 1147 *page = vm_normal_page(*vma, address, entry);
f2b495ca 1148 if (!*page) {
c33c7948 1149 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry)))
f2b495ca 1150 goto unmap;
c33c7948 1151 *page = pte_page(entry);
f2b495ca 1152 }
f442fa61 1153 ret = try_grab_folio(page_folio(*page), 1, gup_flags);
0f089235 1154 if (unlikely(ret))
8fde12ca 1155 goto unmap;
f2b495ca
KS
1156out:
1157 ret = 0;
1158unmap:
1159 pte_unmap(pte);
1160 return ret;
1161}
1162
9a95f3cf 1163/*
9a863a6a
JG
1164 * mmap_lock must be held on entry. If @flags has FOLL_UNLOCKABLE but not
1165 * FOLL_NOWAIT, the mmap_lock may be released. If it is, *@locked will be set
1166 * to 0 and -EBUSY returned.
9a95f3cf 1167 */
64019a2e 1168static int faultin_page(struct vm_area_struct *vma,
a7f22660
DH
1169 unsigned long address, unsigned int *flags, bool unshare,
1170 int *locked)
16744483 1171{
16744483 1172 unsigned int fault_flags = 0;
2b740303 1173 vm_fault_t ret;
16744483 1174
55b8fe70
AG
1175 if (*flags & FOLL_NOFAULT)
1176 return -EFAULT;
16744483
KS
1177 if (*flags & FOLL_WRITE)
1178 fault_flags |= FAULT_FLAG_WRITE;
1b2ee126
DH
1179 if (*flags & FOLL_REMOTE)
1180 fault_flags |= FAULT_FLAG_REMOTE;
f04740f5 1181 if (*flags & FOLL_UNLOCKABLE) {
71335f37 1182 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
93c5c61d
PX
1183 /*
1184 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set
1185 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE.
1186 * That's because some callers may not be prepared to
1187 * handle early exits caused by non-fatal signals.
1188 */
1189 if (*flags & FOLL_INTERRUPTIBLE)
1190 fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
1191 }
16744483
KS
1192 if (*flags & FOLL_NOWAIT)
1193 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
234b239b 1194 if (*flags & FOLL_TRIED) {
4426e945
PX
1195 /*
1196 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
1197 * can co-exist
1198 */
234b239b
ALC
1199 fault_flags |= FAULT_FLAG_TRIED;
1200 }
a7f22660
DH
1201 if (unshare) {
1202 fault_flags |= FAULT_FLAG_UNSHARE;
1203 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
1204 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
1205 }
16744483 1206
bce617ed 1207 ret = handle_mm_fault(vma, address, fault_flags, NULL);
d9272525
PX
1208
1209 if (ret & VM_FAULT_COMPLETED) {
1210 /*
1211 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
1212 * mmap lock in the page fault handler. Sanity check this.
1213 */
1214 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
9a863a6a
JG
1215 *locked = 0;
1216
d9272525
PX
1217 /*
1218 * We should do the same as VM_FAULT_RETRY, but let's not
1219 * return -EBUSY since that's not reflecting the reality of
1220 * what has happened - we've just fully completed a page
1221 * fault, with the mmap lock released. Use -EAGAIN to show
1222 * that we want to take the mmap lock _again_.
1223 */
1224 return -EAGAIN;
1225 }
1226
16744483 1227 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
1228 int err = vm_fault_to_errno(ret, *flags);
1229
1230 if (err)
1231 return err;
16744483
KS
1232 BUG();
1233 }
1234
16744483 1235 if (ret & VM_FAULT_RETRY) {
9a863a6a 1236 if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4f6da934 1237 *locked = 0;
16744483
KS
1238 return -EBUSY;
1239 }
1240
16744483
KS
1241 return 0;
1242}
1243
8ac26843
LS
1244/*
1245 * Writing to file-backed mappings which require folio dirty tracking using GUP
1246 * is a fundamentally broken operation, as kernel write access to GUP mappings
1247 * do not adhere to the semantics expected by a file system.
1248 *
1249 * Consider the following scenario:-
1250 *
1251 * 1. A folio is written to via GUP which write-faults the memory, notifying
1252 * the file system and dirtying the folio.
1253 * 2. Later, writeback is triggered, resulting in the folio being cleaned and
1254 * the PTE being marked read-only.
1255 * 3. The GUP caller writes to the folio, as it is mapped read/write via the
1256 * direct mapping.
1257 * 4. The GUP caller, now done with the page, unpins it and sets it dirty
1258 * (though it does not have to).
1259 *
1260 * This results in both data being written to a folio without writenotify, and
1261 * the folio being dirtied unexpectedly (if the caller decides to do so).
1262 */
1263static bool writable_file_mapping_allowed(struct vm_area_struct *vma,
1264 unsigned long gup_flags)
1265{
1266 /*
1267 * If we aren't pinning then no problematic write can occur. A long term
1268 * pin is the most egregious case so this is the case we disallow.
1269 */
1270 if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) !=
1271 (FOLL_PIN | FOLL_LONGTERM))
1272 return true;
1273
1274 /*
1275 * If the VMA does not require dirty tracking then no problematic write
1276 * can occur either.
1277 */
1278 return !vma_needs_dirty_tracking(vma);
1279}
1280
fa5bb209
KS
1281static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
1282{
1283 vm_flags_t vm_flags = vma->vm_flags;
1b2ee126
DH
1284 int write = (gup_flags & FOLL_WRITE);
1285 int foreign = (gup_flags & FOLL_REMOTE);
8ac26843 1286 bool vma_anon = vma_is_anonymous(vma);
fa5bb209
KS
1287
1288 if (vm_flags & (VM_IO | VM_PFNMAP))
1289 return -EFAULT;
1290
8ac26843 1291 if ((gup_flags & FOLL_ANON) && !vma_anon)
7f7ccc2c
WT
1292 return -EFAULT;
1293
52650c8b
JG
1294 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1295 return -EOPNOTSUPP;
1296
1507f512
MR
1297 if (vma_is_secretmem(vma))
1298 return -EFAULT;
1299
1b2ee126 1300 if (write) {
8ac26843
LS
1301 if (!vma_anon &&
1302 !writable_file_mapping_allowed(vma, gup_flags))
1303 return -EFAULT;
1304
6beb9958 1305 if (!(vm_flags & VM_WRITE) || (vm_flags & VM_SHADOW_STACK)) {
fa5bb209
KS
1306 if (!(gup_flags & FOLL_FORCE))
1307 return -EFAULT;
f347454d
DH
1308 /* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */
1309 if (is_vm_hugetlb_page(vma))
1310 return -EFAULT;
fa5bb209
KS
1311 /*
1312 * We used to let the write,force case do COW in a
1313 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1314 * set a breakpoint in a read-only mapping of an
1315 * executable, without corrupting the file (yet only
1316 * when that file had been opened for writing!).
1317 * Anon pages in shared mappings are surprising: now
1318 * just reject it.
1319 */
46435364 1320 if (!is_cow_mapping(vm_flags))
fa5bb209 1321 return -EFAULT;
fa5bb209
KS
1322 }
1323 } else if (!(vm_flags & VM_READ)) {
1324 if (!(gup_flags & FOLL_FORCE))
1325 return -EFAULT;
1326 /*
1327 * Is there actually any vma we can reach here which does not
1328 * have VM_MAYREAD set?
1329 */
1330 if (!(vm_flags & VM_MAYREAD))
1331 return -EFAULT;
1332 }
d61172b4
DH
1333 /*
1334 * gups are always data accesses, not instruction
1335 * fetches, so execute=false here
1336 */
1337 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2 1338 return -EFAULT;
fa5bb209
KS
1339 return 0;
1340}
1341
6cd06ab1
LT
1342/*
1343 * This is "vma_lookup()", but with a warning if we would have
1344 * historically expanded the stack in the GUP code.
1345 */
1346static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm,
1347 unsigned long addr)
1348{
1349#ifdef CONFIG_STACK_GROWSUP
1350 return vma_lookup(mm, addr);
1351#else
1352 static volatile unsigned long next_warn;
1353 struct vm_area_struct *vma;
1354 unsigned long now, next;
1355
1356 vma = find_vma(mm, addr);
1357 if (!vma || (addr >= vma->vm_start))
1358 return vma;
1359
1360 /* Only warn for half-way relevant accesses */
1361 if (!(vma->vm_flags & VM_GROWSDOWN))
1362 return NULL;
1363 if (vma->vm_start - addr > 65536)
1364 return NULL;
1365
1366 /* Let's not warn more than once an hour.. */
1367 now = jiffies; next = next_warn;
1368 if (next && time_before(now, next))
1369 return NULL;
1370 next_warn = now + 60*60*HZ;
1371
1372 /* Let people know things may have changed. */
1373 pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n",
1374 current->comm, task_pid_nr(current),
1375 vma->vm_start, vma->vm_end, addr);
1376 dump_stack();
1377 return NULL;
1378#endif
1379}
1380
4bbd4c77
KS
1381/**
1382 * __get_user_pages() - pin user pages in memory
4bbd4c77
KS
1383 * @mm: mm_struct of target mm
1384 * @start: starting user address
1385 * @nr_pages: number of pages from start to pin
1386 * @gup_flags: flags modifying pin behaviour
1387 * @pages: array that receives pointers to the pages pinned.
1388 * Should be at least nr_pages long. Or NULL, if caller
1389 * only intends to ensure the pages are faulted in.
c1e8d7c6 1390 * @locked: whether we're still with the mmap_lock held
4bbd4c77 1391 *
d2dfbe47
LX
1392 * Returns either number of pages pinned (which may be less than the
1393 * number requested), or an error. Details about the return value:
1394 *
1395 * -- If nr_pages is 0, returns 0.
1396 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1397 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1398 * pages pinned. Again, this may be less than nr_pages.
2d3a36a4 1399 * -- 0 return value is possible when the fault would need to be retried.
d2dfbe47
LX
1400 *
1401 * The caller is responsible for releasing returned @pages, via put_page().
1402 *
c1e8d7c6 1403 * Must be called with mmap_lock held. It may be released. See below.
4bbd4c77
KS
1404 *
1405 * __get_user_pages walks a process's page tables and takes a reference to
1406 * each struct page that each user address corresponds to at a given
1407 * instant. That is, it takes the page that would be accessed if a user
1408 * thread accesses the given user virtual address at that instant.
1409 *
1410 * This does not guarantee that the page exists in the user mappings when
1411 * __get_user_pages returns, and there may even be a completely different
1412 * page there in some cases (eg. if mmapped pagecache has been invalidated
c5acf1f6 1413 * and subsequently re-faulted). However it does guarantee that the page
4bbd4c77
KS
1414 * won't be freed completely. And mostly callers simply care that the page
1415 * contains data that was valid *at some point in time*. Typically, an IO
1416 * or similar operation cannot guarantee anything stronger anyway because
1417 * locks can't be held over the syscall boundary.
1418 *
1419 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1420 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1421 * appropriate) must be called after the page is finished with, and
1422 * before put_page is called.
1423 *
9a863a6a
JG
1424 * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may
1425 * be released. If this happens *@locked will be set to 0 on return.
9a95f3cf 1426 *
9a863a6a
JG
1427 * A caller using such a combination of @gup_flags must therefore hold the
1428 * mmap_lock for reading only, and recognize when it's been released. Otherwise,
1429 * it must be held for either reading or writing and will not be released.
4bbd4c77
KS
1430 *
1431 * In most cases, get_user_pages or get_user_pages_fast should be used
1432 * instead of __get_user_pages. __get_user_pages should be used only if
1433 * you need some special @gup_flags.
1434 */
64019a2e 1435static long __get_user_pages(struct mm_struct *mm,
4bbd4c77
KS
1436 unsigned long start, unsigned long nr_pages,
1437 unsigned int gup_flags, struct page **pages,
b2cac248 1438 int *locked)
4bbd4c77 1439{
df06b37f 1440 long ret = 0, i = 0;
fa5bb209 1441 struct vm_area_struct *vma = NULL;
df06b37f 1442 struct follow_page_context ctx = { NULL };
4bbd4c77
KS
1443
1444 if (!nr_pages)
1445 return 0;
1446
428e106a 1447 start = untagged_addr_remote(mm, start);
f9652594 1448
eddb1c22 1449 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
4bbd4c77 1450
4bbd4c77 1451 do {
fa5bb209
KS
1452 struct page *page;
1453 unsigned int foll_flags = gup_flags;
1454 unsigned int page_increm;
1455
1456 /* first iteration or cross vma bound */
1457 if (!vma || start >= vma->vm_end) {
631426ba
DH
1458 /*
1459 * MADV_POPULATE_(READ|WRITE) wants to handle VMA
1460 * lookups+error reporting differently.
1461 */
1462 if (gup_flags & FOLL_MADV_POPULATE) {
1463 vma = vma_lookup(mm, start);
1464 if (!vma) {
1465 ret = -ENOMEM;
1466 goto out;
1467 }
1468 if (check_vma_flags(vma, gup_flags)) {
1469 ret = -EINVAL;
1470 goto out;
1471 }
1472 goto retry;
1473 }
6cd06ab1 1474 vma = gup_vma_lookup(mm, start);
fa5bb209 1475 if (!vma && in_gate_area(mm, start)) {
fa5bb209
KS
1476 ret = get_gate_page(mm, start & PAGE_MASK,
1477 gup_flags, &vma,
ffe1e786 1478 pages ? &page : NULL);
fa5bb209 1479 if (ret)
08be37b7 1480 goto out;
df06b37f 1481 ctx.page_mask = 0;
fa5bb209
KS
1482 goto next_page;
1483 }
4bbd4c77 1484
52650c8b 1485 if (!vma) {
df06b37f
KB
1486 ret = -EFAULT;
1487 goto out;
1488 }
52650c8b
JG
1489 ret = check_vma_flags(vma, gup_flags);
1490 if (ret)
1491 goto out;
fa5bb209
KS
1492 }
1493retry:
1494 /*
1495 * If we have a pending SIGKILL, don't keep faulting pages and
1496 * potentially allocating memory.
1497 */
fa45f116 1498 if (fatal_signal_pending(current)) {
d180870d 1499 ret = -EINTR;
df06b37f
KB
1500 goto out;
1501 }
fa5bb209 1502 cond_resched();
df06b37f
KB
1503
1504 page = follow_page_mask(vma, start, foll_flags, &ctx);
a7f22660
DH
1505 if (!page || PTR_ERR(page) == -EMLINK) {
1506 ret = faultin_page(vma, start, &foll_flags,
1507 PTR_ERR(page) == -EMLINK, locked);
fa5bb209
KS
1508 switch (ret) {
1509 case 0:
1510 goto retry;
df06b37f 1511 case -EBUSY:
d9272525 1512 case -EAGAIN:
df06b37f 1513 ret = 0;
e4a9bc58 1514 fallthrough;
fa5bb209
KS
1515 case -EFAULT:
1516 case -ENOMEM:
1517 case -EHWPOISON:
df06b37f 1518 goto out;
4bbd4c77 1519 }
fa5bb209 1520 BUG();
1027e443
KS
1521 } else if (PTR_ERR(page) == -EEXIST) {
1522 /*
1523 * Proper page table entry exists, but no corresponding
65462462
JH
1524 * struct page. If the caller expects **pages to be
1525 * filled in, bail out now, because that can't be done
1526 * for this page.
1027e443 1527 */
65462462
JH
1528 if (pages) {
1529 ret = PTR_ERR(page);
1530 goto out;
1531 }
1027e443 1532 } else if (IS_ERR(page)) {
df06b37f
KB
1533 ret = PTR_ERR(page);
1534 goto out;
1027e443 1535 }
ffe1e786 1536next_page:
df06b37f 1537 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
fa5bb209
KS
1538 if (page_increm > nr_pages)
1539 page_increm = nr_pages;
57edfcfd
PX
1540
1541 if (pages) {
1542 struct page *subpage;
1543 unsigned int j;
1544
1545 /*
1546 * This must be a large folio (and doesn't need to
1547 * be the whole folio; it can be part of it), do
1548 * the refcount work for all the subpages too.
1549 *
1550 * NOTE: here the page may not be the head page
1551 * e.g. when start addr is not thp-size aligned.
1552 * try_grab_folio() should have taken care of tail
1553 * pages.
1554 */
1555 if (page_increm > 1) {
f442fa61 1556 struct folio *folio = page_folio(page);
57edfcfd
PX
1557
1558 /*
1559 * Since we already hold refcount on the
1560 * large folio, this should never fail.
1561 */
f442fa61
YS
1562 if (try_grab_folio(folio, page_increm - 1,
1563 foll_flags)) {
57edfcfd
PX
1564 /*
1565 * Release the 1st page ref if the
1566 * folio is problematic, fail hard.
1567 */
f442fa61 1568 gup_put_folio(folio, 1,
57edfcfd
PX
1569 foll_flags);
1570 ret = -EFAULT;
1571 goto out;
1572 }
1573 }
1574
1575 for (j = 0; j < page_increm; j++) {
1576 subpage = nth_page(page, j);
1577 pages[i + j] = subpage;
1578 flush_anon_page(vma, subpage, start + j * PAGE_SIZE);
1579 flush_dcache_page(subpage);
1580 }
1581 }
1582
fa5bb209
KS
1583 i += page_increm;
1584 start += page_increm * PAGE_SIZE;
1585 nr_pages -= page_increm;
4bbd4c77 1586 } while (nr_pages);
df06b37f
KB
1587out:
1588 if (ctx.pgmap)
1589 put_dev_pagemap(ctx.pgmap);
1590 return i ? i : ret;
4bbd4c77 1591}
4bbd4c77 1592
771ab430
TK
1593static bool vma_permits_fault(struct vm_area_struct *vma,
1594 unsigned int fault_flags)
d4925e00 1595{
1b2ee126
DH
1596 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1597 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
33a709b2 1598 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
d4925e00
DH
1599
1600 if (!(vm_flags & vma->vm_flags))
1601 return false;
1602
33a709b2
DH
1603 /*
1604 * The architecture might have a hardware protection
1b2ee126 1605 * mechanism other than read/write that can deny access.
d61172b4
DH
1606 *
1607 * gup always represents data access, not instruction
1608 * fetches, so execute=false here:
33a709b2 1609 */
d61172b4 1610 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2
DH
1611 return false;
1612
d4925e00
DH
1613 return true;
1614}
1615
adc8cb40 1616/**
4bbd4c77 1617 * fixup_user_fault() - manually resolve a user page fault
4bbd4c77
KS
1618 * @mm: mm_struct of target mm
1619 * @address: user address
1620 * @fault_flags:flags to pass down to handle_mm_fault()
c1e8d7c6 1621 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
548b6a1e
MC
1622 * does not allow retry. If NULL, the caller must guarantee
1623 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
4bbd4c77
KS
1624 *
1625 * This is meant to be called in the specific scenario where for locking reasons
1626 * we try to access user memory in atomic context (within a pagefault_disable()
1627 * section), this returns -EFAULT, and we want to resolve the user fault before
1628 * trying again.
1629 *
1630 * Typically this is meant to be used by the futex code.
1631 *
1632 * The main difference with get_user_pages() is that this function will
1633 * unconditionally call handle_mm_fault() which will in turn perform all the
1634 * necessary SW fixup of the dirty and young bits in the PTE, while
4a9e1cda 1635 * get_user_pages() only guarantees to update these in the struct page.
4bbd4c77
KS
1636 *
1637 * This is important for some architectures where those bits also gate the
1638 * access permission to the page because they are maintained in software. On
1639 * such architectures, gup() will not be enough to make a subsequent access
1640 * succeed.
1641 *
c1e8d7c6
ML
1642 * This function will not return with an unlocked mmap_lock. So it has not the
1643 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
4bbd4c77 1644 */
64019a2e 1645int fixup_user_fault(struct mm_struct *mm,
4a9e1cda
DD
1646 unsigned long address, unsigned int fault_flags,
1647 bool *unlocked)
4bbd4c77
KS
1648{
1649 struct vm_area_struct *vma;
8fed2f3c 1650 vm_fault_t ret;
4a9e1cda 1651
428e106a 1652 address = untagged_addr_remote(mm, address);
f9652594 1653
4a9e1cda 1654 if (unlocked)
71335f37 1655 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
4bbd4c77 1656
4a9e1cda 1657retry:
6cd06ab1 1658 vma = gup_vma_lookup(mm, address);
8d7071af 1659 if (!vma)
4bbd4c77
KS
1660 return -EFAULT;
1661
d4925e00 1662 if (!vma_permits_fault(vma, fault_flags))
4bbd4c77
KS
1663 return -EFAULT;
1664
475f4dfc
PX
1665 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1666 fatal_signal_pending(current))
1667 return -EINTR;
1668
bce617ed 1669 ret = handle_mm_fault(vma, address, fault_flags, NULL);
d9272525
PX
1670
1671 if (ret & VM_FAULT_COMPLETED) {
1672 /*
1673 * NOTE: it's a pity that we need to retake the lock here
1674 * to pair with the unlock() in the callers. Ideally we
1675 * could tell the callers so they do not need to unlock.
1676 */
1677 mmap_read_lock(mm);
1678 *unlocked = true;
1679 return 0;
1680 }
1681
4bbd4c77 1682 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
1683 int err = vm_fault_to_errno(ret, 0);
1684
1685 if (err)
1686 return err;
4bbd4c77
KS
1687 BUG();
1688 }
4a9e1cda
DD
1689
1690 if (ret & VM_FAULT_RETRY) {
d8ed45c5 1691 mmap_read_lock(mm);
475f4dfc
PX
1692 *unlocked = true;
1693 fault_flags |= FAULT_FLAG_TRIED;
1694 goto retry;
4a9e1cda
DD
1695 }
1696
4bbd4c77
KS
1697 return 0;
1698}
add6a0cd 1699EXPORT_SYMBOL_GPL(fixup_user_fault);
4bbd4c77 1700
93c5c61d
PX
1701/*
1702 * GUP always responds to fatal signals. When FOLL_INTERRUPTIBLE is
1703 * specified, it'll also respond to generic signals. The caller of GUP
1704 * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption.
1705 */
1706static bool gup_signal_pending(unsigned int flags)
1707{
1708 if (fatal_signal_pending(current))
1709 return true;
1710
1711 if (!(flags & FOLL_INTERRUPTIBLE))
1712 return false;
1713
1714 return signal_pending(current);
1715}
1716
2d3a36a4 1717/*
b2a72dff
JG
1718 * Locking: (*locked == 1) means that the mmap_lock has already been acquired by
1719 * the caller. This function may drop the mmap_lock. If it does so, then it will
1720 * set (*locked = 0).
1721 *
1722 * (*locked == 0) means that the caller expects this function to acquire and
1723 * drop the mmap_lock. Therefore, the value of *locked will still be zero when
1724 * the function returns, even though it may have changed temporarily during
1725 * function execution.
1726 *
1727 * Please note that this function, unlike __get_user_pages(), will not return 0
1728 * for nr_pages > 0, unless FOLL_NOWAIT is used.
2d3a36a4 1729 */
64019a2e 1730static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
f0818f47
AA
1731 unsigned long start,
1732 unsigned long nr_pages,
f0818f47 1733 struct page **pages,
e716712f 1734 int *locked,
0fd71a56 1735 unsigned int flags)
f0818f47 1736{
f0818f47 1737 long ret, pages_done;
b2a72dff 1738 bool must_unlock = false;
f0818f47 1739
9c4b2142
LS
1740 if (!nr_pages)
1741 return 0;
1742
b2a72dff
JG
1743 /*
1744 * The internal caller expects GUP to manage the lock internally and the
1745 * lock must be released when this returns.
1746 */
9a863a6a 1747 if (!*locked) {
b2a72dff
JG
1748 if (mmap_read_lock_killable(mm))
1749 return -EAGAIN;
1750 must_unlock = true;
1751 *locked = 1;
f0818f47 1752 }
961ba472
JG
1753 else
1754 mmap_assert_locked(mm);
f0818f47 1755
a458b76a
AA
1756 if (flags & FOLL_PIN)
1757 mm_set_has_pinned_flag(&mm->flags);
008cfe44 1758
eddb1c22
JH
1759 /*
1760 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1761 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1762 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1763 * for FOLL_GET, not for the newer FOLL_PIN.
1764 *
1765 * FOLL_PIN always expects pages to be non-null, but no need to assert
1766 * that here, as any failures will be obvious enough.
1767 */
1768 if (pages && !(flags & FOLL_PIN))
f0818f47 1769 flags |= FOLL_GET;
f0818f47
AA
1770
1771 pages_done = 0;
f0818f47 1772 for (;;) {
64019a2e 1773 ret = __get_user_pages(mm, start, nr_pages, flags, pages,
b2cac248 1774 locked);
f04740f5 1775 if (!(flags & FOLL_UNLOCKABLE)) {
f0818f47 1776 /* VM_FAULT_RETRY couldn't trigger, bypass */
f04740f5
JG
1777 pages_done = ret;
1778 break;
1779 }
f0818f47 1780
d9272525 1781 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
f0818f47
AA
1782 if (!*locked) {
1783 BUG_ON(ret < 0);
1784 BUG_ON(ret >= nr_pages);
1785 }
1786
f0818f47
AA
1787 if (ret > 0) {
1788 nr_pages -= ret;
1789 pages_done += ret;
1790 if (!nr_pages)
1791 break;
1792 }
1793 if (*locked) {
96312e61
AA
1794 /*
1795 * VM_FAULT_RETRY didn't trigger or it was a
1796 * FOLL_NOWAIT.
1797 */
f0818f47
AA
1798 if (!pages_done)
1799 pages_done = ret;
1800 break;
1801 }
df17277b
MR
1802 /*
1803 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1804 * For the prefault case (!pages) we only update counts.
1805 */
1806 if (likely(pages))
1807 pages += ret;
f0818f47 1808 start += ret << PAGE_SHIFT;
b2a72dff
JG
1809
1810 /* The lock was temporarily dropped, so we must unlock later */
1811 must_unlock = true;
f0818f47 1812
4426e945 1813retry:
f0818f47
AA
1814 /*
1815 * Repeat on the address that fired VM_FAULT_RETRY
4426e945
PX
1816 * with both FAULT_FLAG_ALLOW_RETRY and
1817 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
93c5c61d
PX
1818 * by fatal signals of even common signals, depending on
1819 * the caller's request. So we need to check it before we
4426e945 1820 * start trying again otherwise it can loop forever.
f0818f47 1821 */
93c5c61d 1822 if (gup_signal_pending(flags)) {
ae46d2aa
HD
1823 if (!pages_done)
1824 pages_done = -EINTR;
4426e945 1825 break;
ae46d2aa 1826 }
4426e945 1827
d8ed45c5 1828 ret = mmap_read_lock_killable(mm);
71335f37
PX
1829 if (ret) {
1830 BUG_ON(ret > 0);
1831 if (!pages_done)
1832 pages_done = ret;
1833 break;
1834 }
4426e945 1835
c7b6a566 1836 *locked = 1;
64019a2e 1837 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
b2cac248 1838 pages, locked);
4426e945
PX
1839 if (!*locked) {
1840 /* Continue to retry until we succeeded */
1841 BUG_ON(ret != 0);
1842 goto retry;
1843 }
f0818f47
AA
1844 if (ret != 1) {
1845 BUG_ON(ret > 1);
1846 if (!pages_done)
1847 pages_done = ret;
1848 break;
1849 }
1850 nr_pages--;
1851 pages_done++;
1852 if (!nr_pages)
1853 break;
df17277b
MR
1854 if (likely(pages))
1855 pages++;
f0818f47
AA
1856 start += PAGE_SIZE;
1857 }
b2a72dff 1858 if (must_unlock && *locked) {
f0818f47 1859 /*
b2a72dff
JG
1860 * We either temporarily dropped the lock, or the caller
1861 * requested that we both acquire and drop the lock. Either way,
1862 * we must now unlock, and notify the caller of that state.
f0818f47 1863 */
d8ed45c5 1864 mmap_read_unlock(mm);
f0818f47
AA
1865 *locked = 0;
1866 }
9c4b2142
LS
1867
1868 /*
1869 * Failing to pin anything implies something has gone wrong (except when
1870 * FOLL_NOWAIT is specified).
1871 */
1872 if (WARN_ON_ONCE(pages_done == 0 && !(flags & FOLL_NOWAIT)))
1873 return -EFAULT;
1874
f0818f47
AA
1875 return pages_done;
1876}
1877
d3649f68
CH
1878/**
1879 * populate_vma_page_range() - populate a range of pages in the vma.
1880 * @vma: target vma
1881 * @start: start address
1882 * @end: end address
c1e8d7c6 1883 * @locked: whether the mmap_lock is still held
d3649f68
CH
1884 *
1885 * This takes care of mlocking the pages too if VM_LOCKED is set.
1886 *
0a36f7f8
TY
1887 * Return either number of pages pinned in the vma, or a negative error
1888 * code on error.
d3649f68 1889 *
c1e8d7c6 1890 * vma->vm_mm->mmap_lock must be held.
d3649f68 1891 *
4f6da934 1892 * If @locked is NULL, it may be held for read or write and will
d3649f68
CH
1893 * be unperturbed.
1894 *
4f6da934
PX
1895 * If @locked is non-NULL, it must held for read only and may be
1896 * released. If it's released, *@locked will be set to 0.
d3649f68
CH
1897 */
1898long populate_vma_page_range(struct vm_area_struct *vma,
4f6da934 1899 unsigned long start, unsigned long end, int *locked)
d3649f68
CH
1900{
1901 struct mm_struct *mm = vma->vm_mm;
1902 unsigned long nr_pages = (end - start) / PAGE_SIZE;
9a863a6a 1903 int local_locked = 1;
d3649f68 1904 int gup_flags;
ece369c7 1905 long ret;
d3649f68 1906
be51eb18
ML
1907 VM_BUG_ON(!PAGE_ALIGNED(start));
1908 VM_BUG_ON(!PAGE_ALIGNED(end));
d3649f68
CH
1909 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1910 VM_BUG_ON_VMA(end > vma->vm_end, vma);
42fc5414 1911 mmap_assert_locked(mm);
d3649f68 1912
b67bf49c
HD
1913 /*
1914 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1915 * faultin_page() to break COW, so it has no work to do here.
1916 */
d3649f68 1917 if (vma->vm_flags & VM_LOCKONFAULT)
b67bf49c
HD
1918 return nr_pages;
1919
1096bc93
LT
1920 /* ... similarly, we've never faulted in PROT_NONE pages */
1921 if (!vma_is_accessible(vma))
1922 return -EFAULT;
1923
b67bf49c 1924 gup_flags = FOLL_TOUCH;
d3649f68
CH
1925 /*
1926 * We want to touch writable mappings with a write fault in order
1927 * to break COW, except for shared mappings because these don't COW
1928 * and we would not want to dirty them for nothing.
1096bc93
LT
1929 *
1930 * Otherwise, do a read fault, and use FOLL_FORCE in case it's not
1931 * readable (ie write-only or executable).
d3649f68
CH
1932 */
1933 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1934 gup_flags |= FOLL_WRITE;
1096bc93 1935 else
d3649f68
CH
1936 gup_flags |= FOLL_FORCE;
1937
f04740f5
JG
1938 if (locked)
1939 gup_flags |= FOLL_UNLOCKABLE;
1940
d3649f68
CH
1941 /*
1942 * We made sure addr is within a VMA, so the following will
1943 * not result in a stack expansion that recurses back here.
1944 */
ece369c7 1945 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
b2cac248 1946 NULL, locked ? locked : &local_locked);
ece369c7
HD
1947 lru_add_drain();
1948 return ret;
d3649f68
CH
1949}
1950
4ca9b385 1951/*
631426ba
DH
1952 * faultin_page_range() - populate (prefault) page tables inside the
1953 * given range readable/writable
4ca9b385
DH
1954 *
1955 * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1956 *
631426ba 1957 * @mm: the mm to populate page tables in
4ca9b385
DH
1958 * @start: start address
1959 * @end: end address
1960 * @write: whether to prefault readable or writable
1961 * @locked: whether the mmap_lock is still held
1962 *
631426ba
DH
1963 * Returns either number of processed pages in the MM, or a negative error
1964 * code on error (see __get_user_pages()). Note that this function reports
1965 * errors related to VMAs, such as incompatible mappings, as expected by
1966 * MADV_POPULATE_(READ|WRITE).
4ca9b385 1967 *
631426ba
DH
1968 * The range must be page-aligned.
1969 *
1970 * mm->mmap_lock must be held. If it's released, *@locked will be set to 0.
4ca9b385 1971 */
631426ba
DH
1972long faultin_page_range(struct mm_struct *mm, unsigned long start,
1973 unsigned long end, bool write, int *locked)
4ca9b385 1974{
4ca9b385
DH
1975 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1976 int gup_flags;
ece369c7 1977 long ret;
4ca9b385
DH
1978
1979 VM_BUG_ON(!PAGE_ALIGNED(start));
1980 VM_BUG_ON(!PAGE_ALIGNED(end));
4ca9b385
DH
1981 mmap_assert_locked(mm);
1982
1983 /*
1984 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1985 * the page dirty with FOLL_WRITE -- which doesn't make a
1986 * difference with !FOLL_FORCE, because the page is writable
1987 * in the page table.
1988 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1989 * a poisoned page.
4ca9b385
DH
1990 * !FOLL_FORCE: Require proper access permissions.
1991 */
631426ba
DH
1992 gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE |
1993 FOLL_MADV_POPULATE;
4ca9b385
DH
1994 if (write)
1995 gup_flags |= FOLL_WRITE;
1996
631426ba
DH
1997 ret = __get_user_pages_locked(mm, start, nr_pages, NULL, locked,
1998 gup_flags);
ece369c7
HD
1999 lru_add_drain();
2000 return ret;
4ca9b385
DH
2001}
2002
d3649f68
CH
2003/*
2004 * __mm_populate - populate and/or mlock pages within a range of address space.
2005 *
2006 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
2007 * flags. VMAs must be already marked with the desired vm_flags, and
c1e8d7c6 2008 * mmap_lock must not be held.
d3649f68
CH
2009 */
2010int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
2011{
2012 struct mm_struct *mm = current->mm;
2013 unsigned long end, nstart, nend;
2014 struct vm_area_struct *vma = NULL;
2015 int locked = 0;
2016 long ret = 0;
2017
2018 end = start + len;
2019
2020 for (nstart = start; nstart < end; nstart = nend) {
2021 /*
2022 * We want to fault in pages for [nstart; end) address range.
2023 * Find first corresponding VMA.
2024 */
2025 if (!locked) {
2026 locked = 1;
d8ed45c5 2027 mmap_read_lock(mm);
c4d1a92d 2028 vma = find_vma_intersection(mm, nstart, end);
d3649f68 2029 } else if (nstart >= vma->vm_end)
c4d1a92d
LH
2030 vma = find_vma_intersection(mm, vma->vm_end, end);
2031
2032 if (!vma)
d3649f68
CH
2033 break;
2034 /*
2035 * Set [nstart; nend) to intersection of desired address
2036 * range with the first VMA. Also, skip undesirable VMA types.
2037 */
2038 nend = min(end, vma->vm_end);
2039 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
2040 continue;
2041 if (nstart < vma->vm_start)
2042 nstart = vma->vm_start;
2043 /*
2044 * Now fault in a range of pages. populate_vma_page_range()
2045 * double checks the vma flags, so that it won't mlock pages
2046 * if the vma was already munlocked.
2047 */
2048 ret = populate_vma_page_range(vma, nstart, nend, &locked);
2049 if (ret < 0) {
2050 if (ignore_errors) {
2051 ret = 0;
2052 continue; /* continue at next VMA */
2053 }
2054 break;
2055 }
2056 nend = nstart + ret * PAGE_SIZE;
2057 ret = 0;
2058 }
2059 if (locked)
d8ed45c5 2060 mmap_read_unlock(mm);
d3649f68
CH
2061 return ret; /* 0 or negative error code */
2062}
050a9adc 2063#else /* CONFIG_MMU */
64019a2e 2064static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
050a9adc 2065 unsigned long nr_pages, struct page **pages,
b2cac248 2066 int *locked, unsigned int foll_flags)
050a9adc
CH
2067{
2068 struct vm_area_struct *vma;
b2a72dff 2069 bool must_unlock = false;
050a9adc 2070 unsigned long vm_flags;
24dc20c7 2071 long i;
050a9adc 2072
b2a72dff
JG
2073 if (!nr_pages)
2074 return 0;
2075
2076 /*
2077 * The internal caller expects GUP to manage the lock internally and the
2078 * lock must be released when this returns.
2079 */
9a863a6a 2080 if (!*locked) {
b2a72dff
JG
2081 if (mmap_read_lock_killable(mm))
2082 return -EAGAIN;
2083 must_unlock = true;
2084 *locked = 1;
2085 }
2086
050a9adc
CH
2087 /* calculate required read or write permissions.
2088 * If FOLL_FORCE is set, we only require the "MAY" flags.
2089 */
2090 vm_flags = (foll_flags & FOLL_WRITE) ?
2091 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
2092 vm_flags &= (foll_flags & FOLL_FORCE) ?
2093 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
2094
2095 for (i = 0; i < nr_pages; i++) {
2096 vma = find_vma(mm, start);
2097 if (!vma)
b2a72dff 2098 break;
050a9adc
CH
2099
2100 /* protect what we can, including chardevs */
2101 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
2102 !(vm_flags & vma->vm_flags))
b2a72dff 2103 break;
050a9adc
CH
2104
2105 if (pages) {
396a400b 2106 pages[i] = virt_to_page((void *)start);
050a9adc
CH
2107 if (pages[i])
2108 get_page(pages[i]);
2109 }
b2cac248 2110
050a9adc
CH
2111 start = (start + PAGE_SIZE) & PAGE_MASK;
2112 }
2113
b2a72dff
JG
2114 if (must_unlock && *locked) {
2115 mmap_read_unlock(mm);
2116 *locked = 0;
2117 }
050a9adc 2118
050a9adc
CH
2119 return i ? : -EFAULT;
2120}
2121#endif /* !CONFIG_MMU */
d3649f68 2122
bb523b40
AG
2123/**
2124 * fault_in_writeable - fault in userspace address range for writing
2125 * @uaddr: start of address range
2126 * @size: size of address range
2127 *
2128 * Returns the number of bytes not faulted in (like copy_to_user() and
2129 * copy_from_user()).
2130 */
2131size_t fault_in_writeable(char __user *uaddr, size_t size)
2132{
2133 char __user *start = uaddr, *end;
2134
2135 if (unlikely(size == 0))
2136 return 0;
677b2a8c
CL
2137 if (!user_write_access_begin(uaddr, size))
2138 return size;
bb523b40 2139 if (!PAGE_ALIGNED(uaddr)) {
677b2a8c 2140 unsafe_put_user(0, uaddr, out);
bb523b40
AG
2141 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
2142 }
2143 end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
2144 if (unlikely(end < start))
2145 end = NULL;
2146 while (uaddr != end) {
677b2a8c 2147 unsafe_put_user(0, uaddr, out);
bb523b40
AG
2148 uaddr += PAGE_SIZE;
2149 }
2150
2151out:
677b2a8c 2152 user_write_access_end();
bb523b40
AG
2153 if (size > uaddr - start)
2154 return size - (uaddr - start);
2155 return 0;
2156}
2157EXPORT_SYMBOL(fault_in_writeable);
2158
da32b581
CM
2159/**
2160 * fault_in_subpage_writeable - fault in an address range for writing
2161 * @uaddr: start of address range
2162 * @size: size of address range
2163 *
2164 * Fault in a user address range for writing while checking for permissions at
2165 * sub-page granularity (e.g. arm64 MTE). This function should be used when
2166 * the caller cannot guarantee forward progress of a copy_to_user() loop.
2167 *
2168 * Returns the number of bytes not faulted in (like copy_to_user() and
2169 * copy_from_user()).
2170 */
2171size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
2172{
2173 size_t faulted_in;
2174
2175 /*
2176 * Attempt faulting in at page granularity first for page table
2177 * permission checking. The arch-specific probe_subpage_writeable()
2178 * functions may not check for this.
2179 */
2180 faulted_in = size - fault_in_writeable(uaddr, size);
2181 if (faulted_in)
2182 faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
2183
2184 return size - faulted_in;
2185}
2186EXPORT_SYMBOL(fault_in_subpage_writeable);
2187
cdd591fc
AG
2188/*
2189 * fault_in_safe_writeable - fault in an address range for writing
2190 * @uaddr: start of address range
2191 * @size: length of address range
2192 *
fe673d3f
LT
2193 * Faults in an address range for writing. This is primarily useful when we
2194 * already know that some or all of the pages in the address range aren't in
2195 * memory.
cdd591fc 2196 *
fe673d3f 2197 * Unlike fault_in_writeable(), this function is non-destructive.
cdd591fc
AG
2198 *
2199 * Note that we don't pin or otherwise hold the pages referenced that we fault
2200 * in. There's no guarantee that they'll stay in memory for any duration of
2201 * time.
2202 *
2203 * Returns the number of bytes not faulted in, like copy_to_user() and
2204 * copy_from_user().
2205 */
2206size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
2207{
fe673d3f 2208 unsigned long start = (unsigned long)uaddr, end;
cdd591fc 2209 struct mm_struct *mm = current->mm;
fe673d3f 2210 bool unlocked = false;
cdd591fc 2211
fe673d3f
LT
2212 if (unlikely(size == 0))
2213 return 0;
cdd591fc 2214 end = PAGE_ALIGN(start + size);
fe673d3f 2215 if (end < start)
cdd591fc 2216 end = 0;
cdd591fc 2217
fe673d3f
LT
2218 mmap_read_lock(mm);
2219 do {
2220 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
cdd591fc 2221 break;
fe673d3f
LT
2222 start = (start + PAGE_SIZE) & PAGE_MASK;
2223 } while (start != end);
2224 mmap_read_unlock(mm);
2225
2226 if (size > (unsigned long)uaddr - start)
2227 return size - ((unsigned long)uaddr - start);
2228 return 0;
cdd591fc
AG
2229}
2230EXPORT_SYMBOL(fault_in_safe_writeable);
2231
bb523b40
AG
2232/**
2233 * fault_in_readable - fault in userspace address range for reading
2234 * @uaddr: start of user address range
2235 * @size: size of user address range
2236 *
2237 * Returns the number of bytes not faulted in (like copy_to_user() and
2238 * copy_from_user()).
2239 */
2240size_t fault_in_readable(const char __user *uaddr, size_t size)
2241{
2242 const char __user *start = uaddr, *end;
2243 volatile char c;
2244
2245 if (unlikely(size == 0))
2246 return 0;
677b2a8c
CL
2247 if (!user_read_access_begin(uaddr, size))
2248 return size;
bb523b40 2249 if (!PAGE_ALIGNED(uaddr)) {
677b2a8c 2250 unsafe_get_user(c, uaddr, out);
bb523b40
AG
2251 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
2252 }
2253 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
2254 if (unlikely(end < start))
2255 end = NULL;
2256 while (uaddr != end) {
677b2a8c 2257 unsafe_get_user(c, uaddr, out);
bb523b40
AG
2258 uaddr += PAGE_SIZE;
2259 }
2260
2261out:
677b2a8c 2262 user_read_access_end();
bb523b40
AG
2263 (void)c;
2264 if (size > uaddr - start)
2265 return size - (uaddr - start);
2266 return 0;
2267}
2268EXPORT_SYMBOL(fault_in_readable);
2269
8f942eea
JH
2270/**
2271 * get_dump_page() - pin user page in memory while writing it to core dump
2272 * @addr: user address
2273 *
2274 * Returns struct page pointer of user page pinned for dump,
2275 * to be freed afterwards by put_page().
2276 *
2277 * Returns NULL on any kind of failure - a hole must then be inserted into
2278 * the corefile, to preserve alignment with its headers; and also returns
2279 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
f0953a1b 2280 * allowing a hole to be left in the corefile to save disk space.
8f942eea 2281 *
7f3bfab5 2282 * Called without mmap_lock (takes and releases the mmap_lock by itself).
8f942eea
JH
2283 */
2284#ifdef CONFIG_ELF_CORE
2285struct page *get_dump_page(unsigned long addr)
2286{
8f942eea 2287 struct page *page;
b2a72dff 2288 int locked = 0;
7f3bfab5 2289 int ret;
8f942eea 2290
b2cac248 2291 ret = __get_user_pages_locked(current->mm, addr, 1, &page, &locked,
7f3bfab5 2292 FOLL_FORCE | FOLL_DUMP | FOLL_GET);
7f3bfab5 2293 return (ret == 1) ? page : NULL;
8f942eea
JH
2294}
2295#endif /* CONFIG_ELF_CORE */
2296
d1e153fe 2297#ifdef CONFIG_MIGRATION
f68749ec 2298/*
53ba78de 2299 * Returns the number of collected folios. Return value is always >= 0.
f68749ec 2300 */
53ba78de
VK
2301static unsigned long collect_longterm_unpinnable_folios(
2302 struct list_head *movable_folio_list,
2303 unsigned long nr_folios,
2304 struct folio **folios)
9a4e9f3b 2305{
67e139b0 2306 unsigned long i, collected = 0;
1b7f7e58 2307 struct folio *prev_folio = NULL;
67e139b0 2308 bool drain_allow = true;
9a4e9f3b 2309
53ba78de
VK
2310 for (i = 0; i < nr_folios; i++) {
2311 struct folio *folio = folios[i];
f9f38f78 2312
1b7f7e58 2313 if (folio == prev_folio)
83c02c23 2314 continue;
1b7f7e58 2315 prev_folio = folio;
f9f38f78 2316
67e139b0
AP
2317 if (folio_is_longterm_pinnable(folio))
2318 continue;
b05a79d4 2319
67e139b0 2320 collected++;
b05a79d4 2321
67e139b0 2322 if (folio_is_device_coherent(folio))
f9f38f78
CH
2323 continue;
2324
1b7f7e58 2325 if (folio_test_hugetlb(folio)) {
53ba78de 2326 isolate_hugetlb(folio, movable_folio_list);
f9f38f78
CH
2327 continue;
2328 }
9a4e9f3b 2329
1b7f7e58 2330 if (!folio_test_lru(folio) && drain_allow) {
f9f38f78
CH
2331 lru_add_drain_all();
2332 drain_allow = false;
2333 }
2334
be2d5756 2335 if (!folio_isolate_lru(folio))
f9f38f78 2336 continue;
67e139b0 2337
53ba78de 2338 list_add_tail(&folio->lru, movable_folio_list);
1b7f7e58
MWO
2339 node_stat_mod_folio(folio,
2340 NR_ISOLATED_ANON + folio_is_file_lru(folio),
2341 folio_nr_pages(folio));
9a4e9f3b
AK
2342 }
2343
67e139b0
AP
2344 return collected;
2345}
2346
2347/*
53ba78de
VK
2348 * Unpins all folios and migrates device coherent folios and movable_folio_list.
2349 * Returns -EAGAIN if all folios were successfully migrated or -errno for
2350 * failure (or partial success).
67e139b0 2351 */
53ba78de
VK
2352static int migrate_longterm_unpinnable_folios(
2353 struct list_head *movable_folio_list,
2354 unsigned long nr_folios,
2355 struct folio **folios)
67e139b0
AP
2356{
2357 int ret;
2358 unsigned long i;
6e7f34eb 2359
53ba78de
VK
2360 for (i = 0; i < nr_folios; i++) {
2361 struct folio *folio = folios[i];
67e139b0
AP
2362
2363 if (folio_is_device_coherent(folio)) {
2364 /*
53ba78de
VK
2365 * Migration will fail if the folio is pinned, so
2366 * convert the pin on the source folio to a normal
2367 * reference.
67e139b0 2368 */
53ba78de 2369 folios[i] = NULL;
67e139b0
AP
2370 folio_get(folio);
2371 gup_put_folio(folio, 1, FOLL_PIN);
2372
2373 if (migrate_device_coherent_page(&folio->page)) {
2374 ret = -EBUSY;
2375 goto err;
2376 }
2377
b05a79d4 2378 continue;
67e139b0 2379 }
b05a79d4 2380
67e139b0 2381 /*
53ba78de 2382 * We can't migrate folios with unexpected references, so drop
67e139b0 2383 * the reference obtained by __get_user_pages_locked().
53ba78de 2384 * Migrating folios have been added to movable_folio_list after
67e139b0 2385 * calling folio_isolate_lru() which takes a reference so the
53ba78de 2386 * folio won't be freed if it's migrating.
67e139b0 2387 */
53ba78de
VK
2388 unpin_folio(folios[i]);
2389 folios[i] = NULL;
f68749ec 2390 }
f9f38f78 2391
53ba78de 2392 if (!list_empty(movable_folio_list)) {
f9f38f78
CH
2393 struct migration_target_control mtc = {
2394 .nid = NUMA_NO_NODE,
2395 .gfp_mask = GFP_USER | __GFP_NOWARN,
e42dfe4e 2396 .reason = MR_LONGTERM_PIN,
f9f38f78
CH
2397 };
2398
53ba78de 2399 if (migrate_pages(movable_folio_list, alloc_migration_target,
67e139b0
AP
2400 NULL, (unsigned long)&mtc, MIGRATE_SYNC,
2401 MR_LONGTERM_PIN, NULL)) {
f9f38f78 2402 ret = -ENOMEM;
67e139b0
AP
2403 goto err;
2404 }
9a4e9f3b
AK
2405 }
2406
53ba78de 2407 putback_movable_pages(movable_folio_list);
67e139b0
AP
2408
2409 return -EAGAIN;
2410
2411err:
53ba78de
VK
2412 unpin_folios(folios, nr_folios);
2413 putback_movable_pages(movable_folio_list);
24a95998 2414
67e139b0
AP
2415 return ret;
2416}
2417
2418/*
53ba78de
VK
2419 * Check whether all folios are *allowed* to be pinned indefinitely (longterm).
2420 * Rather confusingly, all folios in the range are required to be pinned via
2421 * FOLL_PIN, before calling this routine.
67e139b0 2422 *
53ba78de
VK
2423 * If any folios in the range are not allowed to be pinned, then this routine
2424 * will migrate those folios away, unpin all the folios in the range and return
67e139b0
AP
2425 * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then
2426 * call this routine again.
2427 *
2428 * If an error other than -EAGAIN occurs, this indicates a migration failure.
2429 * The caller should give up, and propagate the error back up the call stack.
2430 *
53ba78de
VK
2431 * If everything is OK and all folios in the range are allowed to be pinned,
2432 * then this routine leaves all folios pinned and returns zero for success.
67e139b0 2433 */
53ba78de
VK
2434static long check_and_migrate_movable_folios(unsigned long nr_folios,
2435 struct folio **folios)
67e139b0
AP
2436{
2437 unsigned long collected;
53ba78de 2438 LIST_HEAD(movable_folio_list);
67e139b0 2439
53ba78de
VK
2440 collected = collect_longterm_unpinnable_folios(&movable_folio_list,
2441 nr_folios, folios);
67e139b0
AP
2442 if (!collected)
2443 return 0;
2444
53ba78de
VK
2445 return migrate_longterm_unpinnable_folios(&movable_folio_list,
2446 nr_folios, folios);
2447}
2448
2449/*
2450 * This routine just converts all the pages in the @pages array to folios and
2451 * calls check_and_migrate_movable_folios() to do the heavy lifting.
2452 *
2453 * Please see the check_and_migrate_movable_folios() documentation for details.
2454 */
2455static long check_and_migrate_movable_pages(unsigned long nr_pages,
2456 struct page **pages)
2457{
2458 struct folio **folios;
2459 long i, ret;
2460
2461 folios = kmalloc_array(nr_pages, sizeof(*folios), GFP_KERNEL);
2462 if (!folios)
2463 return -ENOMEM;
2464
2465 for (i = 0; i < nr_pages; i++)
2466 folios[i] = page_folio(pages[i]);
2467
2468 ret = check_and_migrate_movable_folios(nr_pages, folios);
2469
2470 kfree(folios);
2471 return ret;
9a4e9f3b
AK
2472}
2473#else
f68749ec 2474static long check_and_migrate_movable_pages(unsigned long nr_pages,
f6d299ec 2475 struct page **pages)
9a4e9f3b 2476{
24a95998 2477 return 0;
9a4e9f3b 2478}
53ba78de
VK
2479
2480static long check_and_migrate_movable_folios(unsigned long nr_folios,
2481 struct folio **folios)
2482{
2483 return 0;
2484}
d1e153fe 2485#endif /* CONFIG_MIGRATION */
9a4e9f3b 2486
2bb6d283 2487/*
932f4a63
IW
2488 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2489 * allows us to process the FOLL_LONGTERM flag.
2bb6d283 2490 */
64019a2e 2491static long __gup_longterm_locked(struct mm_struct *mm,
932f4a63
IW
2492 unsigned long start,
2493 unsigned long nr_pages,
2494 struct page **pages,
53b2d09b 2495 int *locked,
932f4a63 2496 unsigned int gup_flags)
2bb6d283 2497{
f68749ec 2498 unsigned int flags;
24a95998 2499 long rc, nr_pinned_pages;
2bb6d283 2500
f68749ec 2501 if (!(gup_flags & FOLL_LONGTERM))
b2cac248 2502 return __get_user_pages_locked(mm, start, nr_pages, pages,
53b2d09b 2503 locked, gup_flags);
67e139b0 2504
f68749ec
PT
2505 flags = memalloc_pin_save();
2506 do {
24a95998 2507 nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
b2cac248 2508 pages, locked,
24a95998
AP
2509 gup_flags);
2510 if (nr_pinned_pages <= 0) {
2511 rc = nr_pinned_pages;
f68749ec 2512 break;
24a95998 2513 }
d64e2dbc
JG
2514
2515 /* FOLL_LONGTERM implies FOLL_PIN */
f6d299ec 2516 rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
24a95998 2517 } while (rc == -EAGAIN);
f68749ec 2518 memalloc_pin_restore(flags);
24a95998 2519 return rc ? rc : nr_pinned_pages;
2bb6d283 2520}
932f4a63 2521
d64e2dbc
JG
2522/*
2523 * Check that the given flags are valid for the exported gup/pup interface, and
2524 * update them with the required flags that the caller must have set.
2525 */
b2cac248
LS
2526static bool is_valid_gup_args(struct page **pages, int *locked,
2527 unsigned int *gup_flags_p, unsigned int to_set)
447f3e45 2528{
d64e2dbc
JG
2529 unsigned int gup_flags = *gup_flags_p;
2530
447f3e45 2531 /*
d64e2dbc
JG
2532 * These flags not allowed to be specified externally to the gup
2533 * interfaces:
0f20bba1 2534 * - FOLL_TOUCH/FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only
d64e2dbc 2535 * - FOLL_REMOTE is internal only and used on follow_page()
f04740f5 2536 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL
447f3e45 2537 */
0f20bba1 2538 if (WARN_ON_ONCE(gup_flags & INTERNAL_GUP_FLAGS))
d64e2dbc
JG
2539 return false;
2540
2541 gup_flags |= to_set;
f04740f5
JG
2542 if (locked) {
2543 /* At the external interface locked must be set */
2544 if (WARN_ON_ONCE(*locked != 1))
2545 return false;
2546
2547 gup_flags |= FOLL_UNLOCKABLE;
2548 }
d64e2dbc
JG
2549
2550 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2551 if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) ==
2552 (FOLL_PIN | FOLL_GET)))
2553 return false;
2554
2555 /* LONGTERM can only be specified when pinning */
2556 if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM)))
2557 return false;
2558
2559 /* Pages input must be given if using GET/PIN */
2560 if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages))
447f3e45 2561 return false;
d64e2dbc 2562
d64e2dbc
JG
2563 /* We want to allow the pgmap to be hot-unplugged at all times */
2564 if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) &&
2565 (gup_flags & FOLL_PCI_P2PDMA)))
2566 return false;
2567
d64e2dbc 2568 *gup_flags_p = gup_flags;
447f3e45
BS
2569 return true;
2570}
2571
22bf29b6 2572#ifdef CONFIG_MMU
adc8cb40 2573/**
c4237f8b 2574 * get_user_pages_remote() - pin user pages in memory
c4237f8b
JH
2575 * @mm: mm_struct of target mm
2576 * @start: starting user address
2577 * @nr_pages: number of pages from start to pin
2578 * @gup_flags: flags modifying lookup behaviour
2579 * @pages: array that receives pointers to the pages pinned.
2580 * Should be at least nr_pages long. Or NULL, if caller
2581 * only intends to ensure the pages are faulted in.
c4237f8b
JH
2582 * @locked: pointer to lock flag indicating whether lock is held and
2583 * subsequently whether VM_FAULT_RETRY functionality can be
2584 * utilised. Lock must initially be held.
2585 *
2586 * Returns either number of pages pinned (which may be less than the
2587 * number requested), or an error. Details about the return value:
2588 *
2589 * -- If nr_pages is 0, returns 0.
2590 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2591 * -- If nr_pages is >0, and some pages were pinned, returns the number of
2592 * pages pinned. Again, this may be less than nr_pages.
2593 *
2594 * The caller is responsible for releasing returned @pages, via put_page().
2595 *
c1e8d7c6 2596 * Must be called with mmap_lock held for read or write.
c4237f8b 2597 *
adc8cb40
SJ
2598 * get_user_pages_remote walks a process's page tables and takes a reference
2599 * to each struct page that each user address corresponds to at a given
c4237f8b
JH
2600 * instant. That is, it takes the page that would be accessed if a user
2601 * thread accesses the given user virtual address at that instant.
2602 *
2603 * This does not guarantee that the page exists in the user mappings when
adc8cb40 2604 * get_user_pages_remote returns, and there may even be a completely different
c4237f8b 2605 * page there in some cases (eg. if mmapped pagecache has been invalidated
5da1a868 2606 * and subsequently re-faulted). However it does guarantee that the page
c4237f8b
JH
2607 * won't be freed completely. And mostly callers simply care that the page
2608 * contains data that was valid *at some point in time*. Typically, an IO
2609 * or similar operation cannot guarantee anything stronger anyway because
2610 * locks can't be held over the syscall boundary.
2611 *
2612 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2613 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2614 * be called after the page is finished with, and before put_page is called.
2615 *
adc8cb40
SJ
2616 * get_user_pages_remote is typically used for fewer-copy IO operations,
2617 * to get a handle on the memory by some means other than accesses
2618 * via the user virtual addresses. The pages may be submitted for
2619 * DMA to devices or accessed via their kernel linear mapping (via the
2620 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
c4237f8b
JH
2621 *
2622 * See also get_user_pages_fast, for performance critical applications.
2623 *
adc8cb40 2624 * get_user_pages_remote should be phased out in favor of
c4237f8b 2625 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
adc8cb40 2626 * should use get_user_pages_remote because it cannot pass
c4237f8b
JH
2627 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2628 */
64019a2e 2629long get_user_pages_remote(struct mm_struct *mm,
c4237f8b
JH
2630 unsigned long start, unsigned long nr_pages,
2631 unsigned int gup_flags, struct page **pages,
ca5e8632 2632 int *locked)
c4237f8b 2633{
9a863a6a
JG
2634 int local_locked = 1;
2635
b2cac248 2636 if (!is_valid_gup_args(pages, locked, &gup_flags,
d64e2dbc 2637 FOLL_TOUCH | FOLL_REMOTE))
eddb1c22
JH
2638 return -EINVAL;
2639
b2cac248 2640 return __get_user_pages_locked(mm, start, nr_pages, pages,
9a863a6a 2641 locked ? locked : &local_locked,
d64e2dbc 2642 gup_flags);
c4237f8b
JH
2643}
2644EXPORT_SYMBOL(get_user_pages_remote);
2645
eddb1c22 2646#else /* CONFIG_MMU */
64019a2e 2647long get_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
2648 unsigned long start, unsigned long nr_pages,
2649 unsigned int gup_flags, struct page **pages,
ca5e8632 2650 int *locked)
eddb1c22
JH
2651{
2652 return 0;
2653}
2654#endif /* !CONFIG_MMU */
2655
adc8cb40
SJ
2656/**
2657 * get_user_pages() - pin user pages in memory
2658 * @start: starting user address
2659 * @nr_pages: number of pages from start to pin
2660 * @gup_flags: flags modifying lookup behaviour
2661 * @pages: array that receives pointers to the pages pinned.
2662 * Should be at least nr_pages long. Or NULL, if caller
2663 * only intends to ensure the pages are faulted in.
adc8cb40 2664 *
64019a2e
PX
2665 * This is the same as get_user_pages_remote(), just with a less-flexible
2666 * calling convention where we assume that the mm being operated on belongs to
2667 * the current task, and doesn't allow passing of a locked parameter. We also
2668 * obviously don't pass FOLL_REMOTE in here.
932f4a63
IW
2669 */
2670long get_user_pages(unsigned long start, unsigned long nr_pages,
54d02069 2671 unsigned int gup_flags, struct page **pages)
932f4a63 2672{
9a863a6a
JG
2673 int locked = 1;
2674
b2cac248 2675 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH))
eddb1c22
JH
2676 return -EINVAL;
2677
afa3c33e 2678 return __get_user_pages_locked(current->mm, start, nr_pages, pages,
b2cac248 2679 &locked, gup_flags);
932f4a63
IW
2680}
2681EXPORT_SYMBOL(get_user_pages);
2bb6d283 2682
acc3c8d1 2683/*
d3649f68 2684 * get_user_pages_unlocked() is suitable to replace the form:
acc3c8d1 2685 *
3e4e28c5 2686 * mmap_read_lock(mm);
64019a2e 2687 * get_user_pages(mm, ..., pages, NULL);
3e4e28c5 2688 * mmap_read_unlock(mm);
d3649f68
CH
2689 *
2690 * with:
2691 *
64019a2e 2692 * get_user_pages_unlocked(mm, ..., pages);
d3649f68
CH
2693 *
2694 * It is functionally equivalent to get_user_pages_fast so
2695 * get_user_pages_fast should be used instead if specific gup_flags
2696 * (e.g. FOLL_FORCE) are not required.
acc3c8d1 2697 */
d3649f68
CH
2698long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2699 struct page **pages, unsigned int gup_flags)
acc3c8d1 2700{
b2a72dff 2701 int locked = 0;
acc3c8d1 2702
b2cac248 2703 if (!is_valid_gup_args(pages, NULL, &gup_flags,
f04740f5 2704 FOLL_TOUCH | FOLL_UNLOCKABLE))
d64e2dbc
JG
2705 return -EINVAL;
2706
afa3c33e 2707 return __get_user_pages_locked(current->mm, start, nr_pages, pages,
b2cac248 2708 &locked, gup_flags);
4bbd4c77 2709}
d3649f68 2710EXPORT_SYMBOL(get_user_pages_unlocked);
2667f50e
SC
2711
2712/*
23babe19 2713 * GUP-fast
2667f50e
SC
2714 *
2715 * get_user_pages_fast attempts to pin user pages by walking the page
2716 * tables directly and avoids taking locks. Thus the walker needs to be
2717 * protected from page table pages being freed from under it, and should
2718 * block any THP splits.
2719 *
2720 * One way to achieve this is to have the walker disable interrupts, and
2721 * rely on IPIs from the TLB flushing code blocking before the page table
2722 * pages are freed. This is unsuitable for architectures that do not need
2723 * to broadcast an IPI when invalidating TLBs.
2724 *
2725 * Another way to achieve this is to batch up page table containing pages
2726 * belonging to more than one mm_user, then rcu_sched a callback to free those
23babe19 2727 * pages. Disabling interrupts will allow the gup_fast() walker to both block
2667f50e
SC
2728 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2729 * (which is a relatively rare event). The code below adopts this strategy.
2730 *
2731 * Before activating this code, please be aware that the following assumptions
2732 * are currently made:
2733 *
ff2e6d72 2734 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
e585513b 2735 * free pages containing page tables or TLB flushing requires IPI broadcast.
2667f50e 2736 *
2667f50e
SC
2737 * *) ptes can be read atomically by the architecture.
2738 *
2739 * *) access_ok is sufficient to validate userspace address ranges.
2740 *
2741 * The last two assumptions can be relaxed by the addition of helper functions.
2742 *
2743 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2744 */
25176ad0 2745#ifdef CONFIG_HAVE_GUP_FAST
a6e79df9 2746/*
f002882c
DH
2747 * Used in the GUP-fast path to determine whether GUP is permitted to work on
2748 * a specific folio.
a6e79df9
LS
2749 *
2750 * This call assumes the caller has pinned the folio, that the lowest page table
2751 * level still points to this folio, and that interrupts have been disabled.
2752 *
f002882c
DH
2753 * GUP-fast must reject all secretmem folios.
2754 *
a6e79df9
LS
2755 * Writing to pinned file-backed dirty tracked folios is inherently problematic
2756 * (see comment describing the writable_file_mapping_allowed() function). We
2757 * therefore try to avoid the most egregious case of a long-term mapping doing
2758 * so.
2759 *
2760 * This function cannot be as thorough as that one as the VMA is not available
2761 * in the fast path, so instead we whitelist known good cases and if in doubt,
2762 * fall back to the slow path.
2763 */
f002882c 2764static bool gup_fast_folio_allowed(struct folio *folio, unsigned int flags)
a6e79df9 2765{
f002882c 2766 bool reject_file_backed = false;
a6e79df9 2767 struct address_space *mapping;
f002882c 2768 bool check_secretmem = false;
a6e79df9
LS
2769 unsigned long mapping_flags;
2770
2771 /*
2772 * If we aren't pinning then no problematic write can occur. A long term
2773 * pin is the most egregious case so this is the one we disallow.
2774 */
f002882c 2775 if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) ==
a6e79df9 2776 (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE))
f002882c
DH
2777 reject_file_backed = true;
2778
2779 /* We hold a folio reference, so we can safely access folio fields. */
a6e79df9 2780
f002882c
DH
2781 /* secretmem folios are always order-0 folios. */
2782 if (IS_ENABLED(CONFIG_SECRETMEM) && !folio_test_large(folio))
2783 check_secretmem = true;
2784
2785 if (!reject_file_backed && !check_secretmem)
2786 return true;
a6e79df9
LS
2787
2788 if (WARN_ON_ONCE(folio_test_slab(folio)))
2789 return false;
2790
f002882c 2791 /* hugetlb neither requires dirty-tracking nor can be secretmem. */
a6e79df9
LS
2792 if (folio_test_hugetlb(folio))
2793 return true;
2794
2795 /*
2796 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods
2797 * cannot proceed, which means no actions performed under RCU can
2798 * proceed either.
2799 *
2800 * inodes and thus their mappings are freed under RCU, which means the
2801 * mapping cannot be freed beneath us and thus we can safely dereference
2802 * it.
2803 */
2804 lockdep_assert_irqs_disabled();
2805
2806 /*
2807 * However, there may be operations which _alter_ the mapping, so ensure
2808 * we read it once and only once.
2809 */
2810 mapping = READ_ONCE(folio->mapping);
2811
2812 /*
2813 * The mapping may have been truncated, in any case we cannot determine
2814 * if this mapping is safe - fall back to slow path to determine how to
2815 * proceed.
2816 */
2817 if (!mapping)
2818 return false;
2819
2820 /* Anonymous folios pose no problem. */
2821 mapping_flags = (unsigned long)mapping & PAGE_MAPPING_FLAGS;
2822 if (mapping_flags)
2823 return mapping_flags & PAGE_MAPPING_ANON;
2824
2825 /*
2826 * At this point, we know the mapping is non-null and points to an
f002882c 2827 * address_space object.
a6e79df9 2828 */
f002882c
DH
2829 if (check_secretmem && secretmem_mapping(mapping))
2830 return false;
2831 /* The only remaining allowed file system is shmem. */
2832 return !reject_file_backed || shmem_mapping(mapping);
a6e79df9
LS
2833}
2834
23babe19
DH
2835static void __maybe_unused gup_fast_undo_dev_pagemap(int *nr, int nr_start,
2836 unsigned int flags, struct page **pages)
b59f65fa
KS
2837{
2838 while ((*nr) - nr_start) {
9cbe4954 2839 struct folio *folio = page_folio(pages[--(*nr)]);
b59f65fa 2840
9cbe4954
MWO
2841 folio_clear_referenced(folio);
2842 gup_put_folio(folio, 1, flags);
b59f65fa
KS
2843 }
2844}
2845
3010a5ea 2846#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
70cbc3cc 2847/*
23babe19 2848 * GUP-fast relies on pte change detection to avoid concurrent pgtable
70cbc3cc
YS
2849 * operations.
2850 *
23babe19 2851 * To pin the page, GUP-fast needs to do below in order:
70cbc3cc
YS
2852 * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2853 *
2854 * For the rest of pgtable operations where pgtable updates can be racy
23babe19 2855 * with GUP-fast, we need to do (1) clear pte, then (2) check whether page
70cbc3cc
YS
2856 * is pinned.
2857 *
2858 * Above will work for all pte-level operations, including THP split.
2859 *
23babe19 2860 * For THP collapse, it's a bit more complicated because GUP-fast may be
70cbc3cc
YS
2861 * walking a pgtable page that is being freed (pte is still valid but pmd
2862 * can be cleared already). To avoid race in such condition, we need to
2863 * also check pmd here to make sure pmd doesn't change (corresponds to
2864 * pmdp_collapse_flush() in the THP collapse code path).
2865 */
23babe19
DH
2866static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2867 unsigned long end, unsigned int flags, struct page **pages,
2868 int *nr)
2667f50e 2869{
b59f65fa
KS
2870 struct dev_pagemap *pgmap = NULL;
2871 int nr_start = *nr, ret = 0;
2667f50e 2872 pte_t *ptep, *ptem;
2667f50e
SC
2873
2874 ptem = ptep = pte_offset_map(&pmd, addr);
04dee9e8
HD
2875 if (!ptep)
2876 return 0;
2667f50e 2877 do {
2a4a06da 2878 pte_t pte = ptep_get_lockless(ptep);
b0496fe4
MWO
2879 struct page *page;
2880 struct folio *folio;
2667f50e 2881
d74943a2
DH
2882 /*
2883 * Always fallback to ordinary GUP on PROT_NONE-mapped pages:
2884 * pte_access_permitted() better should reject these pages
2885 * either way: otherwise, GUP-fast might succeed in
2886 * cases where ordinary GUP would fail due to VMA access
2887 * permissions.
2888 */
2889 if (pte_protnone(pte))
e7884f8e
KS
2890 goto pte_unmap;
2891
b798bec4 2892 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
e7884f8e
KS
2893 goto pte_unmap;
2894
b59f65fa 2895 if (pte_devmap(pte)) {
7af75561
IW
2896 if (unlikely(flags & FOLL_LONGTERM))
2897 goto pte_unmap;
2898
b59f65fa
KS
2899 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2900 if (unlikely(!pgmap)) {
23babe19 2901 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
b59f65fa
KS
2902 goto pte_unmap;
2903 }
2904 } else if (pte_special(pte))
2667f50e
SC
2905 goto pte_unmap;
2906
2907 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2908 page = pte_page(pte);
2909
f442fa61 2910 folio = try_grab_folio_fast(page, 1, flags);
b0496fe4 2911 if (!folio)
2667f50e
SC
2912 goto pte_unmap;
2913
70cbc3cc 2914 if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
c33c7948 2915 unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
b0496fe4 2916 gup_put_folio(folio, 1, flags);
2667f50e
SC
2917 goto pte_unmap;
2918 }
2919
f002882c 2920 if (!gup_fast_folio_allowed(folio, flags)) {
b0496fe4 2921 gup_put_folio(folio, 1, flags);
2667f50e
SC
2922 goto pte_unmap;
2923 }
2924
84209e87 2925 if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) {
a7f22660
DH
2926 gup_put_folio(folio, 1, flags);
2927 goto pte_unmap;
2928 }
2929
f28d4363
CI
2930 /*
2931 * We need to make the page accessible if and only if we are
2932 * going to access its content (the FOLL_PIN case). Please
2933 * see Documentation/core-api/pin_user_pages.rst for
2934 * details.
2935 */
2936 if (flags & FOLL_PIN) {
2937 ret = arch_make_page_accessible(page);
2938 if (ret) {
b0496fe4 2939 gup_put_folio(folio, 1, flags);
f28d4363
CI
2940 goto pte_unmap;
2941 }
2942 }
b0496fe4 2943 folio_set_referenced(folio);
2667f50e
SC
2944 pages[*nr] = page;
2945 (*nr)++;
2667f50e
SC
2946 } while (ptep++, addr += PAGE_SIZE, addr != end);
2947
2948 ret = 1;
2949
2950pte_unmap:
832d7aa0
CH
2951 if (pgmap)
2952 put_dev_pagemap(pgmap);
2667f50e
SC
2953 pte_unmap(ptem);
2954 return ret;
2955}
2956#else
2957
2958/*
2959 * If we can't determine whether or not a pte is special, then fail immediately
2960 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2961 * to be special.
2962 *
2963 * For a futex to be placed on a THP tail page, get_futex_key requires a
dadbb612 2964 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
23babe19 2965 * useful to have gup_fast_pmd_leaf even if we can't operate on ptes.
2667f50e 2966 */
23babe19
DH
2967static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2968 unsigned long end, unsigned int flags, struct page **pages,
2969 int *nr)
2667f50e
SC
2970{
2971 return 0;
2972}
3010a5ea 2973#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2667f50e 2974
17596731 2975#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
23babe19
DH
2976static int gup_fast_devmap_leaf(unsigned long pfn, unsigned long addr,
2977 unsigned long end, unsigned int flags, struct page **pages, int *nr)
b59f65fa
KS
2978{
2979 int nr_start = *nr;
2980 struct dev_pagemap *pgmap = NULL;
2981
2982 do {
9cbe4954 2983 struct folio *folio;
b59f65fa
KS
2984 struct page *page = pfn_to_page(pfn);
2985
2986 pgmap = get_dev_pagemap(pfn, pgmap);
2987 if (unlikely(!pgmap)) {
23babe19 2988 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
6401c4eb 2989 break;
b59f65fa 2990 }
4003f107
LG
2991
2992 if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) {
23babe19 2993 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
4003f107
LG
2994 break;
2995 }
2996
f442fa61 2997 folio = try_grab_folio_fast(page, 1, flags);
9cbe4954 2998 if (!folio) {
23babe19 2999 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
6401c4eb 3000 break;
3faa52c0 3001 }
9cbe4954
MWO
3002 folio_set_referenced(folio);
3003 pages[*nr] = page;
b59f65fa
KS
3004 (*nr)++;
3005 pfn++;
3006 } while (addr += PAGE_SIZE, addr != end);
832d7aa0 3007
6401c4eb 3008 put_dev_pagemap(pgmap);
20b7fee7 3009 return addr == end;
b59f65fa
KS
3010}
3011
23babe19
DH
3012static int gup_fast_devmap_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
3013 unsigned long end, unsigned int flags, struct page **pages,
3014 int *nr)
b59f65fa
KS
3015{
3016 unsigned long fault_pfn;
a9b6de77
DW
3017 int nr_start = *nr;
3018
3019 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
23babe19 3020 if (!gup_fast_devmap_leaf(fault_pfn, addr, end, flags, pages, nr))
a9b6de77 3021 return 0;
b59f65fa 3022
a9b6de77 3023 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
23babe19 3024 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
a9b6de77
DW
3025 return 0;
3026 }
3027 return 1;
b59f65fa
KS
3028}
3029
23babe19
DH
3030static int gup_fast_devmap_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr,
3031 unsigned long end, unsigned int flags, struct page **pages,
3032 int *nr)
b59f65fa
KS
3033{
3034 unsigned long fault_pfn;
a9b6de77
DW
3035 int nr_start = *nr;
3036
3037 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
23babe19 3038 if (!gup_fast_devmap_leaf(fault_pfn, addr, end, flags, pages, nr))
a9b6de77 3039 return 0;
b59f65fa 3040
a9b6de77 3041 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
23babe19 3042 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
a9b6de77
DW
3043 return 0;
3044 }
3045 return 1;
b59f65fa
KS
3046}
3047#else
23babe19
DH
3048static int gup_fast_devmap_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
3049 unsigned long end, unsigned int flags, struct page **pages,
3050 int *nr)
b59f65fa
KS
3051{
3052 BUILD_BUG();
3053 return 0;
3054}
3055
23babe19
DH
3056static int gup_fast_devmap_pud_leaf(pud_t pud, pud_t *pudp, unsigned long addr,
3057 unsigned long end, unsigned int flags, struct page **pages,
3058 int *nr)
b59f65fa
KS
3059{
3060 BUILD_BUG();
3061 return 0;
3062}
3063#endif
3064
23babe19
DH
3065static int gup_fast_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
3066 unsigned long end, unsigned int flags, struct page **pages,
3067 int *nr)
2667f50e 3068{
667ed1f7
MWO
3069 struct page *page;
3070 struct folio *folio;
2667f50e
SC
3071 int refs;
3072
b798bec4 3073 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
3074 return 0;
3075
7af75561
IW
3076 if (pmd_devmap(orig)) {
3077 if (unlikely(flags & FOLL_LONGTERM))
3078 return 0;
23babe19
DH
3079 return gup_fast_devmap_pmd_leaf(orig, pmdp, addr, end, flags,
3080 pages, nr);
7af75561 3081 }
b59f65fa 3082
f3c94c62
PX
3083 page = pmd_page(orig);
3084 refs = record_subpages(page, PMD_SIZE, addr, end, pages + *nr);
2667f50e 3085
f442fa61 3086 folio = try_grab_folio_fast(page, refs, flags);
667ed1f7 3087 if (!folio)
2667f50e 3088 return 0;
2667f50e
SC
3089
3090 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
667ed1f7 3091 gup_put_folio(folio, refs, flags);
2667f50e
SC
3092 return 0;
3093 }
3094
f002882c 3095 if (!gup_fast_folio_allowed(folio, flags)) {
a6e79df9
LS
3096 gup_put_folio(folio, refs, flags);
3097 return 0;
3098 }
84209e87 3099 if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
a7f22660
DH
3100 gup_put_folio(folio, refs, flags);
3101 return 0;
3102 }
3103
a43e9820 3104 *nr += refs;
667ed1f7 3105 folio_set_referenced(folio);
2667f50e
SC
3106 return 1;
3107}
3108
23babe19
DH
3109static int gup_fast_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr,
3110 unsigned long end, unsigned int flags, struct page **pages,
3111 int *nr)
2667f50e 3112{
83afb52e
MWO
3113 struct page *page;
3114 struct folio *folio;
2667f50e
SC
3115 int refs;
3116
b798bec4 3117 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
3118 return 0;
3119
7af75561
IW
3120 if (pud_devmap(orig)) {
3121 if (unlikely(flags & FOLL_LONGTERM))
3122 return 0;
23babe19
DH
3123 return gup_fast_devmap_pud_leaf(orig, pudp, addr, end, flags,
3124 pages, nr);
7af75561 3125 }
b59f65fa 3126
f3c94c62
PX
3127 page = pud_page(orig);
3128 refs = record_subpages(page, PUD_SIZE, addr, end, pages + *nr);
2667f50e 3129
f442fa61 3130 folio = try_grab_folio_fast(page, refs, flags);
83afb52e 3131 if (!folio)
2667f50e 3132 return 0;
2667f50e
SC
3133
3134 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
83afb52e 3135 gup_put_folio(folio, refs, flags);
2667f50e
SC
3136 return 0;
3137 }
3138
f002882c 3139 if (!gup_fast_folio_allowed(folio, flags)) {
a6e79df9
LS
3140 gup_put_folio(folio, refs, flags);
3141 return 0;
3142 }
3143
84209e87 3144 if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
a7f22660
DH
3145 gup_put_folio(folio, refs, flags);
3146 return 0;
3147 }
3148
a43e9820 3149 *nr += refs;
83afb52e 3150 folio_set_referenced(folio);
2667f50e
SC
3151 return 1;
3152}
3153
23babe19
DH
3154static int gup_fast_pgd_leaf(pgd_t orig, pgd_t *pgdp, unsigned long addr,
3155 unsigned long end, unsigned int flags, struct page **pages,
3156 int *nr)
f30c59e9
AK
3157{
3158 int refs;
2d7919a2
MWO
3159 struct page *page;
3160 struct folio *folio;
f30c59e9 3161
b798bec4 3162 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
f30c59e9
AK
3163 return 0;
3164
b59f65fa 3165 BUILD_BUG_ON(pgd_devmap(orig));
a43e9820 3166
f3c94c62
PX
3167 page = pgd_page(orig);
3168 refs = record_subpages(page, PGDIR_SIZE, addr, end, pages + *nr);
f30c59e9 3169
f442fa61 3170 folio = try_grab_folio_fast(page, refs, flags);
2d7919a2 3171 if (!folio)
f30c59e9 3172 return 0;
f30c59e9
AK
3173
3174 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2d7919a2 3175 gup_put_folio(folio, refs, flags);
f30c59e9
AK
3176 return 0;
3177 }
3178
31115034
LS
3179 if (!pgd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
3180 gup_put_folio(folio, refs, flags);
3181 return 0;
3182 }
3183
f002882c 3184 if (!gup_fast_folio_allowed(folio, flags)) {
a6e79df9
LS
3185 gup_put_folio(folio, refs, flags);
3186 return 0;
3187 }
3188
a43e9820 3189 *nr += refs;
2d7919a2 3190 folio_set_referenced(folio);
f30c59e9
AK
3191 return 1;
3192}
3193
23babe19
DH
3194static int gup_fast_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr,
3195 unsigned long end, unsigned int flags, struct page **pages,
3196 int *nr)
2667f50e
SC
3197{
3198 unsigned long next;
3199 pmd_t *pmdp;
3200
d3f7b1bb 3201 pmdp = pmd_offset_lockless(pudp, pud, addr);
2667f50e 3202 do {
1180e732 3203 pmd_t pmd = pmdp_get_lockless(pmdp);
2667f50e
SC
3204
3205 next = pmd_addr_end(addr, end);
84c3fc4e 3206 if (!pmd_present(pmd))
2667f50e
SC
3207 return 0;
3208
7db86dc3 3209 if (unlikely(pmd_leaf(pmd))) {
23babe19 3210 /* See gup_fast_pte_range() */
d74943a2 3211 if (pmd_protnone(pmd))
2667f50e
SC
3212 return 0;
3213
23babe19 3214 if (!gup_fast_pmd_leaf(pmd, pmdp, addr, next, flags,
2667f50e
SC
3215 pages, nr))
3216 return 0;
3217
23babe19
DH
3218 } else if (!gup_fast_pte_range(pmd, pmdp, addr, next, flags,
3219 pages, nr))
2923117b 3220 return 0;
2667f50e
SC
3221 } while (pmdp++, addr = next, addr != end);
3222
3223 return 1;
3224}
3225
23babe19
DH
3226static int gup_fast_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr,
3227 unsigned long end, unsigned int flags, struct page **pages,
3228 int *nr)
2667f50e
SC
3229{
3230 unsigned long next;
3231 pud_t *pudp;
3232
d3f7b1bb 3233 pudp = pud_offset_lockless(p4dp, p4d, addr);
2667f50e 3234 do {
e37c6982 3235 pud_t pud = READ_ONCE(*pudp);
2667f50e
SC
3236
3237 next = pud_addr_end(addr, end);
15494520 3238 if (unlikely(!pud_present(pud)))
2667f50e 3239 return 0;
7db86dc3 3240 if (unlikely(pud_leaf(pud))) {
23babe19
DH
3241 if (!gup_fast_pud_leaf(pud, pudp, addr, next, flags,
3242 pages, nr))
f30c59e9 3243 return 0;
23babe19
DH
3244 } else if (!gup_fast_pmd_range(pudp, pud, addr, next, flags,
3245 pages, nr))
2667f50e
SC
3246 return 0;
3247 } while (pudp++, addr = next, addr != end);
3248
3249 return 1;
3250}
3251
23babe19
DH
3252static int gup_fast_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr,
3253 unsigned long end, unsigned int flags, struct page **pages,
3254 int *nr)
c2febafc
KS
3255{
3256 unsigned long next;
3257 p4d_t *p4dp;
3258
d3f7b1bb 3259 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
c2febafc
KS
3260 do {
3261 p4d_t p4d = READ_ONCE(*p4dp);
3262
3263 next = p4d_addr_end(addr, end);
089f9214 3264 if (!p4d_present(p4d))
c2febafc 3265 return 0;
1965e933 3266 BUILD_BUG_ON(p4d_leaf(p4d));
8268614b
CL
3267 if (!gup_fast_pud_range(p4dp, p4d, addr, next, flags,
3268 pages, nr))
c2febafc
KS
3269 return 0;
3270 } while (p4dp++, addr = next, addr != end);
3271
3272 return 1;
3273}
3274
23babe19 3275static void gup_fast_pgd_range(unsigned long addr, unsigned long end,
b798bec4 3276 unsigned int flags, struct page **pages, int *nr)
5b65c467
KS
3277{
3278 unsigned long next;
3279 pgd_t *pgdp;
3280
3281 pgdp = pgd_offset(current->mm, addr);
3282 do {
3283 pgd_t pgd = READ_ONCE(*pgdp);
3284
3285 next = pgd_addr_end(addr, end);
3286 if (pgd_none(pgd))
3287 return;
7db86dc3 3288 if (unlikely(pgd_leaf(pgd))) {
23babe19
DH
3289 if (!gup_fast_pgd_leaf(pgd, pgdp, addr, next, flags,
3290 pages, nr))
5b65c467 3291 return;
23babe19
DH
3292 } else if (!gup_fast_p4d_range(pgdp, pgd, addr, next, flags,
3293 pages, nr))
5b65c467
KS
3294 return;
3295 } while (pgdp++, addr = next, addr != end);
3296}
050a9adc 3297#else
23babe19 3298static inline void gup_fast_pgd_range(unsigned long addr, unsigned long end,
050a9adc
CH
3299 unsigned int flags, struct page **pages, int *nr)
3300{
3301}
25176ad0 3302#endif /* CONFIG_HAVE_GUP_FAST */
5b65c467
KS
3303
3304#ifndef gup_fast_permitted
3305/*
dadbb612 3306 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
5b65c467
KS
3307 * we need to fall back to the slow version:
3308 */
26f4c328 3309static bool gup_fast_permitted(unsigned long start, unsigned long end)
5b65c467 3310{
26f4c328 3311 return true;
5b65c467
KS
3312}
3313#endif
3314
23babe19
DH
3315static unsigned long gup_fast(unsigned long start, unsigned long end,
3316 unsigned int gup_flags, struct page **pages)
c28b1fc7
JG
3317{
3318 unsigned long flags;
3319 int nr_pinned = 0;
57efa1fe 3320 unsigned seq;
c28b1fc7 3321
25176ad0 3322 if (!IS_ENABLED(CONFIG_HAVE_GUP_FAST) ||
c28b1fc7
JG
3323 !gup_fast_permitted(start, end))
3324 return 0;
3325
57efa1fe
JG
3326 if (gup_flags & FOLL_PIN) {
3327 seq = raw_read_seqcount(&current->mm->write_protect_seq);
3328 if (seq & 1)
3329 return 0;
3330 }
3331
c28b1fc7
JG
3332 /*
3333 * Disable interrupts. The nested form is used, in order to allow full,
3334 * general purpose use of this routine.
3335 *
3336 * With interrupts disabled, we block page table pages from being freed
3337 * from under us. See struct mmu_table_batch comments in
3338 * include/asm-generic/tlb.h for more details.
3339 *
3340 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
3341 * that come from THPs splitting.
3342 */
3343 local_irq_save(flags);
23babe19 3344 gup_fast_pgd_range(start, end, gup_flags, pages, &nr_pinned);
c28b1fc7 3345 local_irq_restore(flags);
57efa1fe
JG
3346
3347 /*
3348 * When pinning pages for DMA there could be a concurrent write protect
23babe19 3349 * from fork() via copy_page_range(), in this case always fail GUP-fast.
57efa1fe
JG
3350 */
3351 if (gup_flags & FOLL_PIN) {
3352 if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
23babe19 3353 gup_fast_unpin_user_pages(pages, nr_pinned);
57efa1fe 3354 return 0;
b6a2619c
DH
3355 } else {
3356 sanity_check_pinned_pages(pages, nr_pinned);
57efa1fe
JG
3357 }
3358 }
c28b1fc7
JG
3359 return nr_pinned;
3360}
3361
23babe19
DH
3362static int gup_fast_fallback(unsigned long start, unsigned long nr_pages,
3363 unsigned int gup_flags, struct page **pages)
2667f50e 3364{
c28b1fc7
JG
3365 unsigned long len, end;
3366 unsigned long nr_pinned;
b2a72dff 3367 int locked = 0;
c28b1fc7 3368 int ret;
2667f50e 3369
f4000fdf 3370 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
376a34ef 3371 FOLL_FORCE | FOLL_PIN | FOLL_GET |
4003f107 3372 FOLL_FAST_ONLY | FOLL_NOFAULT |
d74943a2 3373 FOLL_PCI_P2PDMA | FOLL_HONOR_NUMA_FAULT)))
817be129
CH
3374 return -EINVAL;
3375
a458b76a
AA
3376 if (gup_flags & FOLL_PIN)
3377 mm_set_has_pinned_flag(&current->mm->flags);
008cfe44 3378
f81cd178 3379 if (!(gup_flags & FOLL_FAST_ONLY))
da1c55f1 3380 might_lock_read(&current->mm->mmap_lock);
f81cd178 3381
f455c854 3382 start = untagged_addr(start) & PAGE_MASK;
c28b1fc7
JG
3383 len = nr_pages << PAGE_SHIFT;
3384 if (check_add_overflow(start, len, &end))
9883c7f8 3385 return -EOVERFLOW;
6014bc27
LT
3386 if (end > TASK_SIZE_MAX)
3387 return -EFAULT;
96d4f267 3388 if (unlikely(!access_ok((void __user *)start, len)))
c61611f7 3389 return -EFAULT;
73e10a61 3390
23babe19 3391 nr_pinned = gup_fast(start, end, gup_flags, pages);
c28b1fc7
JG
3392 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
3393 return nr_pinned;
2667f50e 3394
c28b1fc7
JG
3395 /* Slow path: try to get the remaining pages with get_user_pages */
3396 start += nr_pinned << PAGE_SHIFT;
3397 pages += nr_pinned;
b2a72dff 3398 ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned,
b2cac248 3399 pages, &locked,
f04740f5 3400 gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE);
c28b1fc7
JG
3401 if (ret < 0) {
3402 /*
3403 * The caller has to unpin the pages we already pinned so
3404 * returning -errno is not an option
3405 */
3406 if (nr_pinned)
3407 return nr_pinned;
3408 return ret;
2667f50e 3409 }
c28b1fc7 3410 return ret + nr_pinned;
2667f50e 3411}
c28b1fc7 3412
dadbb612
SJ
3413/**
3414 * get_user_pages_fast_only() - pin user pages in memory
3415 * @start: starting user address
3416 * @nr_pages: number of pages from start to pin
3417 * @gup_flags: flags modifying pin behaviour
3418 * @pages: array that receives pointers to the pages pinned.
3419 * Should be at least nr_pages long.
3420 *
9e1f0580
JH
3421 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3422 * the regular GUP.
9e1f0580
JH
3423 *
3424 * If the architecture does not support this function, simply return with no
3425 * pages pinned.
3426 *
3427 * Careful, careful! COW breaking can go either way, so a non-write
3428 * access can get ambiguous page results. If you call this function without
3429 * 'write' set, you'd better be sure that you're ok with that ambiguity.
3430 */
dadbb612
SJ
3431int get_user_pages_fast_only(unsigned long start, int nr_pages,
3432 unsigned int gup_flags, struct page **pages)
9e1f0580 3433{
9e1f0580
JH
3434 /*
3435 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3436 * because gup fast is always a "pin with a +1 page refcount" request.
376a34ef
JH
3437 *
3438 * FOLL_FAST_ONLY is required in order to match the API description of
3439 * this routine: no fall back to regular ("slow") GUP.
9e1f0580 3440 */
b2cac248 3441 if (!is_valid_gup_args(pages, NULL, &gup_flags,
d64e2dbc
JG
3442 FOLL_GET | FOLL_FAST_ONLY))
3443 return -EINVAL;
9e1f0580 3444
23babe19 3445 return gup_fast_fallback(start, nr_pages, gup_flags, pages);
9e1f0580 3446}
dadbb612 3447EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
9e1f0580 3448
eddb1c22
JH
3449/**
3450 * get_user_pages_fast() - pin user pages in memory
3faa52c0
JH
3451 * @start: starting user address
3452 * @nr_pages: number of pages from start to pin
3453 * @gup_flags: flags modifying pin behaviour
3454 * @pages: array that receives pointers to the pages pinned.
3455 * Should be at least nr_pages long.
eddb1c22 3456 *
c1e8d7c6 3457 * Attempt to pin user pages in memory without taking mm->mmap_lock.
eddb1c22
JH
3458 * If not successful, it will fall back to taking the lock and
3459 * calling get_user_pages().
3460 *
3461 * Returns number of pages pinned. This may be fewer than the number requested.
3462 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3463 * -errno.
3464 */
3465int get_user_pages_fast(unsigned long start, int nr_pages,
3466 unsigned int gup_flags, struct page **pages)
3467{
94202f12
JH
3468 /*
3469 * The caller may or may not have explicitly set FOLL_GET; either way is
3470 * OK. However, internally (within mm/gup.c), gup fast variants must set
3471 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3472 * request.
3473 */
b2cac248 3474 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET))
d64e2dbc 3475 return -EINVAL;
23babe19 3476 return gup_fast_fallback(start, nr_pages, gup_flags, pages);
eddb1c22 3477}
050a9adc 3478EXPORT_SYMBOL_GPL(get_user_pages_fast);
eddb1c22
JH
3479
3480/**
3481 * pin_user_pages_fast() - pin user pages in memory without taking locks
3482 *
3faa52c0
JH
3483 * @start: starting user address
3484 * @nr_pages: number of pages from start to pin
3485 * @gup_flags: flags modifying pin behaviour
3486 * @pages: array that receives pointers to the pages pinned.
3487 * Should be at least nr_pages long.
3488 *
3489 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3490 * get_user_pages_fast() for documentation on the function arguments, because
3491 * the arguments here are identical.
3492 *
3493 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 3494 * see Documentation/core-api/pin_user_pages.rst for further details.
c8070b78
DH
3495 *
3496 * Note that if a zero_page is amongst the returned pages, it will not have
3497 * pins in it and unpin_user_page() will not remove pins from it.
eddb1c22
JH
3498 */
3499int pin_user_pages_fast(unsigned long start, int nr_pages,
3500 unsigned int gup_flags, struct page **pages)
3501{
b2cac248 3502 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3faa52c0 3503 return -EINVAL;
23babe19 3504 return gup_fast_fallback(start, nr_pages, gup_flags, pages);
eddb1c22
JH
3505}
3506EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3507
3508/**
64019a2e 3509 * pin_user_pages_remote() - pin pages of a remote process
eddb1c22 3510 *
3faa52c0
JH
3511 * @mm: mm_struct of target mm
3512 * @start: starting user address
3513 * @nr_pages: number of pages from start to pin
3514 * @gup_flags: flags modifying lookup behaviour
3515 * @pages: array that receives pointers to the pages pinned.
0768c8de 3516 * Should be at least nr_pages long.
3faa52c0
JH
3517 * @locked: pointer to lock flag indicating whether lock is held and
3518 * subsequently whether VM_FAULT_RETRY functionality can be
3519 * utilised. Lock must initially be held.
3520 *
3521 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3522 * get_user_pages_remote() for documentation on the function arguments, because
3523 * the arguments here are identical.
3524 *
3525 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 3526 * see Documentation/core-api/pin_user_pages.rst for details.
c8070b78
DH
3527 *
3528 * Note that if a zero_page is amongst the returned pages, it will not have
3529 * pins in it and unpin_user_page*() will not remove pins from it.
eddb1c22 3530 */
64019a2e 3531long pin_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
3532 unsigned long start, unsigned long nr_pages,
3533 unsigned int gup_flags, struct page **pages,
0b295316 3534 int *locked)
eddb1c22 3535{
9a863a6a
JG
3536 int local_locked = 1;
3537
b2cac248 3538 if (!is_valid_gup_args(pages, locked, &gup_flags,
d64e2dbc
JG
3539 FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE))
3540 return 0;
b2cac248 3541 return __gup_longterm_locked(mm, start, nr_pages, pages,
9a863a6a 3542 locked ? locked : &local_locked,
d64e2dbc 3543 gup_flags);
eddb1c22
JH
3544}
3545EXPORT_SYMBOL(pin_user_pages_remote);
3546
3547/**
3548 * pin_user_pages() - pin user pages in memory for use by other devices
3549 *
3faa52c0
JH
3550 * @start: starting user address
3551 * @nr_pages: number of pages from start to pin
3552 * @gup_flags: flags modifying lookup behaviour
3553 * @pages: array that receives pointers to the pages pinned.
0768c8de 3554 * Should be at least nr_pages long.
3faa52c0
JH
3555 *
3556 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3557 * FOLL_PIN is set.
3558 *
3559 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 3560 * see Documentation/core-api/pin_user_pages.rst for details.
c8070b78
DH
3561 *
3562 * Note that if a zero_page is amongst the returned pages, it will not have
3563 * pins in it and unpin_user_page*() will not remove pins from it.
eddb1c22
JH
3564 */
3565long pin_user_pages(unsigned long start, unsigned long nr_pages,
4c630f30 3566 unsigned int gup_flags, struct page **pages)
eddb1c22 3567{
9a863a6a
JG
3568 int locked = 1;
3569
b2cac248 3570 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
d64e2dbc 3571 return 0;
64019a2e 3572 return __gup_longterm_locked(current->mm, start, nr_pages,
b2cac248 3573 pages, &locked, gup_flags);
eddb1c22
JH
3574}
3575EXPORT_SYMBOL(pin_user_pages);
91429023
JH
3576
3577/*
3578 * pin_user_pages_unlocked() is the FOLL_PIN variant of
3579 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3580 * FOLL_PIN and rejects FOLL_GET.
c8070b78
DH
3581 *
3582 * Note that if a zero_page is amongst the returned pages, it will not have
3583 * pins in it and unpin_user_page*() will not remove pins from it.
91429023
JH
3584 */
3585long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3586 struct page **pages, unsigned int gup_flags)
3587{
b2a72dff 3588 int locked = 0;
91429023 3589
b2cac248 3590 if (!is_valid_gup_args(pages, NULL, &gup_flags,
f04740f5 3591 FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE))
d64e2dbc 3592 return 0;
0768c8de 3593
b2cac248 3594 return __gup_longterm_locked(current->mm, start, nr_pages, pages,
b2a72dff 3595 &locked, gup_flags);
91429023
JH
3596}
3597EXPORT_SYMBOL(pin_user_pages_unlocked);
89c1905d
VK
3598
3599/**
3600 * memfd_pin_folios() - pin folios associated with a memfd
3601 * @memfd: the memfd whose folios are to be pinned
3602 * @start: the first memfd offset
3603 * @end: the last memfd offset (inclusive)
3604 * @folios: array that receives pointers to the folios pinned
3605 * @max_folios: maximum number of entries in @folios
3606 * @offset: the offset into the first folio
3607 *
3608 * Attempt to pin folios associated with a memfd in the contiguous range
3609 * [start, end]. Given that a memfd is either backed by shmem or hugetlb,
3610 * the folios can either be found in the page cache or need to be allocated
3611 * if necessary. Once the folios are located, they are all pinned via
3612 * FOLL_PIN and @offset is populatedwith the offset into the first folio.
3613 * And, eventually, these pinned folios must be released either using
3614 * unpin_folios() or unpin_folio().
3615 *
3616 * It must be noted that the folios may be pinned for an indefinite amount
3617 * of time. And, in most cases, the duration of time they may stay pinned
3618 * would be controlled by the userspace. This behavior is effectively the
3619 * same as using FOLL_LONGTERM with other GUP APIs.
3620 *
3621 * Returns number of folios pinned, which could be less than @max_folios
3622 * as it depends on the folio sizes that cover the range [start, end].
3623 * If no folios were pinned, it returns -errno.
3624 */
3625long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end,
3626 struct folio **folios, unsigned int max_folios,
3627 pgoff_t *offset)
3628{
3629 unsigned int flags, nr_folios, nr_found;
3630 unsigned int i, pgshift = PAGE_SHIFT;
3631 pgoff_t start_idx, end_idx, next_idx;
3632 struct folio *folio = NULL;
3633 struct folio_batch fbatch;
3634 struct hstate *h;
3635 long ret = -EINVAL;
3636
3637 if (start < 0 || start > end || !max_folios)
3638 return -EINVAL;
3639
3640 if (!memfd)
3641 return -EINVAL;
3642
3643 if (!shmem_file(memfd) && !is_file_hugepages(memfd))
3644 return -EINVAL;
3645
3646 if (end >= i_size_read(file_inode(memfd)))
3647 return -EINVAL;
3648
3649 if (is_file_hugepages(memfd)) {
3650 h = hstate_file(memfd);
3651 pgshift = huge_page_shift(h);
3652 }
3653
3654 flags = memalloc_pin_save();
3655 do {
3656 nr_folios = 0;
3657 start_idx = start >> pgshift;
3658 end_idx = end >> pgshift;
3659 if (is_file_hugepages(memfd)) {
3660 start_idx <<= huge_page_order(h);
3661 end_idx <<= huge_page_order(h);
3662 }
3663
3664 folio_batch_init(&fbatch);
3665 while (start_idx <= end_idx && nr_folios < max_folios) {
3666 /*
3667 * In most cases, we should be able to find the folios
3668 * in the page cache. If we cannot find them for some
3669 * reason, we try to allocate them and add them to the
3670 * page cache.
3671 */
3672 nr_found = filemap_get_folios_contig(memfd->f_mapping,
3673 &start_idx,
3674 end_idx,
3675 &fbatch);
3676 if (folio) {
3677 folio_put(folio);
3678 folio = NULL;
3679 }
3680
3681 next_idx = 0;
3682 for (i = 0; i < nr_found; i++) {
3683 /*
3684 * As there can be multiple entries for a
3685 * given folio in the batch returned by
3686 * filemap_get_folios_contig(), the below
3687 * check is to ensure that we pin and return a
3688 * unique set of folios between start and end.
3689 */
3690 if (next_idx &&
3691 next_idx != folio_index(fbatch.folios[i]))
3692 continue;
3693
3694 folio = page_folio(&fbatch.folios[i]->page);
3695
3696 if (try_grab_folio(folio, 1, FOLL_PIN)) {
3697 folio_batch_release(&fbatch);
3698 ret = -EINVAL;
3699 goto err;
3700 }
3701
3702 if (nr_folios == 0)
3703 *offset = offset_in_folio(folio, start);
3704
3705 folios[nr_folios] = folio;
3706 next_idx = folio_next_index(folio);
3707 if (++nr_folios == max_folios)
3708 break;
3709 }
3710
3711 folio = NULL;
3712 folio_batch_release(&fbatch);
3713 if (!nr_found) {
3714 folio = memfd_alloc_folio(memfd, start_idx);
3715 if (IS_ERR(folio)) {
3716 ret = PTR_ERR(folio);
3717 if (ret != -EEXIST)
3718 goto err;
3719 }
3720 }
3721 }
3722
3723 ret = check_and_migrate_movable_folios(nr_folios, folios);
3724 } while (ret == -EAGAIN);
3725
3726 memalloc_pin_restore(flags);
3727 return ret ? ret : nr_folios;
3728err:
3729 memalloc_pin_restore(flags);
3730 unpin_folios(folios, nr_folios);
3731
3732 return ret;
3733}
3734EXPORT_SYMBOL_GPL(memfd_pin_folios);