mm/gup.c: remove some BUG_ONs from get_gate_page()
[linux-2.6-block.git] / mm / gup.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
4bbd4c77
KS
2#include <linux/kernel.h>
3#include <linux/errno.h>
4#include <linux/err.h>
5#include <linux/spinlock.h>
6
4bbd4c77 7#include <linux/mm.h>
3565fce3 8#include <linux/memremap.h>
4bbd4c77
KS
9#include <linux/pagemap.h>
10#include <linux/rmap.h>
11#include <linux/swap.h>
12#include <linux/swapops.h>
13
174cd4b1 14#include <linux/sched/signal.h>
2667f50e 15#include <linux/rwsem.h>
f30c59e9 16#include <linux/hugetlb.h>
9a4e9f3b
AK
17#include <linux/migrate.h>
18#include <linux/mm_inline.h>
19#include <linux/sched/mm.h>
1027e443 20
33a709b2 21#include <asm/mmu_context.h>
2667f50e 22#include <asm/pgtable.h>
1027e443 23#include <asm/tlbflush.h>
2667f50e 24
4bbd4c77
KS
25#include "internal.h"
26
df06b37f
KB
27struct follow_page_context {
28 struct dev_pagemap *pgmap;
29 unsigned int page_mask;
30};
31
fc1d8e7c
JH
32typedef int (*set_dirty_func_t)(struct page *page);
33
34static void __put_user_pages_dirty(struct page **pages,
35 unsigned long npages,
36 set_dirty_func_t sdf)
37{
38 unsigned long index;
39
40 for (index = 0; index < npages; index++) {
41 struct page *page = compound_head(pages[index]);
42
43 /*
44 * Checking PageDirty at this point may race with
45 * clear_page_dirty_for_io(), but that's OK. Two key cases:
46 *
47 * 1) This code sees the page as already dirty, so it skips
48 * the call to sdf(). That could happen because
49 * clear_page_dirty_for_io() called page_mkclean(),
50 * followed by set_page_dirty(). However, now the page is
51 * going to get written back, which meets the original
52 * intention of setting it dirty, so all is well:
53 * clear_page_dirty_for_io() goes on to call
54 * TestClearPageDirty(), and write the page back.
55 *
56 * 2) This code sees the page as clean, so it calls sdf().
57 * The page stays dirty, despite being written back, so it
58 * gets written back again in the next writeback cycle.
59 * This is harmless.
60 */
61 if (!PageDirty(page))
62 sdf(page);
63
64 put_user_page(page);
65 }
66}
67
68/**
69 * put_user_pages_dirty() - release and dirty an array of gup-pinned pages
70 * @pages: array of pages to be marked dirty and released.
71 * @npages: number of pages in the @pages array.
72 *
73 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
74 * variants called on that page.
75 *
76 * For each page in the @pages array, make that page (or its head page, if a
77 * compound page) dirty, if it was previously listed as clean. Then, release
78 * the page using put_user_page().
79 *
80 * Please see the put_user_page() documentation for details.
81 *
82 * set_page_dirty(), which does not lock the page, is used here.
83 * Therefore, it is the caller's responsibility to ensure that this is
84 * safe. If not, then put_user_pages_dirty_lock() should be called instead.
85 *
86 */
87void put_user_pages_dirty(struct page **pages, unsigned long npages)
88{
89 __put_user_pages_dirty(pages, npages, set_page_dirty);
90}
91EXPORT_SYMBOL(put_user_pages_dirty);
92
93/**
94 * put_user_pages_dirty_lock() - release and dirty an array of gup-pinned pages
95 * @pages: array of pages to be marked dirty and released.
96 * @npages: number of pages in the @pages array.
97 *
98 * For each page in the @pages array, make that page (or its head page, if a
99 * compound page) dirty, if it was previously listed as clean. Then, release
100 * the page using put_user_page().
101 *
102 * Please see the put_user_page() documentation for details.
103 *
104 * This is just like put_user_pages_dirty(), except that it invokes
105 * set_page_dirty_lock(), instead of set_page_dirty().
106 *
107 */
108void put_user_pages_dirty_lock(struct page **pages, unsigned long npages)
109{
110 __put_user_pages_dirty(pages, npages, set_page_dirty_lock);
111}
112EXPORT_SYMBOL(put_user_pages_dirty_lock);
113
114/**
115 * put_user_pages() - release an array of gup-pinned pages.
116 * @pages: array of pages to be marked dirty and released.
117 * @npages: number of pages in the @pages array.
118 *
119 * For each page in the @pages array, release the page using put_user_page().
120 *
121 * Please see the put_user_page() documentation for details.
122 */
123void put_user_pages(struct page **pages, unsigned long npages)
124{
125 unsigned long index;
126
127 /*
128 * TODO: this can be optimized for huge pages: if a series of pages is
129 * physically contiguous and part of the same compound page, then a
130 * single operation to the head page should suffice.
131 */
132 for (index = 0; index < npages; index++)
133 put_user_page(pages[index]);
134}
135EXPORT_SYMBOL(put_user_pages);
136
050a9adc 137#ifdef CONFIG_MMU
69e68b4f
KS
138static struct page *no_page_table(struct vm_area_struct *vma,
139 unsigned int flags)
4bbd4c77 140{
69e68b4f
KS
141 /*
142 * When core dumping an enormous anonymous area that nobody
143 * has touched so far, we don't want to allocate unnecessary pages or
144 * page tables. Return error instead of NULL to skip handle_mm_fault,
145 * then get_dump_page() will return NULL to leave a hole in the dump.
146 * But we can only make this optimization where a hole would surely
147 * be zero-filled if handle_mm_fault() actually did handle it.
148 */
149 if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
150 return ERR_PTR(-EFAULT);
151 return NULL;
152}
4bbd4c77 153
1027e443
KS
154static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
155 pte_t *pte, unsigned int flags)
156{
157 /* No page to get reference */
158 if (flags & FOLL_GET)
159 return -EFAULT;
160
161 if (flags & FOLL_TOUCH) {
162 pte_t entry = *pte;
163
164 if (flags & FOLL_WRITE)
165 entry = pte_mkdirty(entry);
166 entry = pte_mkyoung(entry);
167
168 if (!pte_same(*pte, entry)) {
169 set_pte_at(vma->vm_mm, address, pte, entry);
170 update_mmu_cache(vma, address, pte);
171 }
172 }
173
174 /* Proper page table entry exists, but no corresponding struct page */
175 return -EEXIST;
176}
177
19be0eaf
LT
178/*
179 * FOLL_FORCE can write to even unwritable pte's, but only
180 * after we've gone through a COW cycle and they are dirty.
181 */
182static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
183{
f6f37321 184 return pte_write(pte) ||
19be0eaf
LT
185 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
186}
187
69e68b4f 188static struct page *follow_page_pte(struct vm_area_struct *vma,
df06b37f
KB
189 unsigned long address, pmd_t *pmd, unsigned int flags,
190 struct dev_pagemap **pgmap)
69e68b4f
KS
191{
192 struct mm_struct *mm = vma->vm_mm;
193 struct page *page;
194 spinlock_t *ptl;
195 pte_t *ptep, pte;
4bbd4c77 196
69e68b4f 197retry:
4bbd4c77 198 if (unlikely(pmd_bad(*pmd)))
69e68b4f 199 return no_page_table(vma, flags);
4bbd4c77
KS
200
201 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
4bbd4c77
KS
202 pte = *ptep;
203 if (!pte_present(pte)) {
204 swp_entry_t entry;
205 /*
206 * KSM's break_ksm() relies upon recognizing a ksm page
207 * even while it is being migrated, so for that case we
208 * need migration_entry_wait().
209 */
210 if (likely(!(flags & FOLL_MIGRATION)))
211 goto no_page;
0661a336 212 if (pte_none(pte))
4bbd4c77
KS
213 goto no_page;
214 entry = pte_to_swp_entry(pte);
215 if (!is_migration_entry(entry))
216 goto no_page;
217 pte_unmap_unlock(ptep, ptl);
218 migration_entry_wait(mm, pmd, address);
69e68b4f 219 goto retry;
4bbd4c77 220 }
8a0516ed 221 if ((flags & FOLL_NUMA) && pte_protnone(pte))
4bbd4c77 222 goto no_page;
19be0eaf 223 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
69e68b4f
KS
224 pte_unmap_unlock(ptep, ptl);
225 return NULL;
226 }
4bbd4c77
KS
227
228 page = vm_normal_page(vma, address, pte);
3565fce3
DW
229 if (!page && pte_devmap(pte) && (flags & FOLL_GET)) {
230 /*
231 * Only return device mapping pages in the FOLL_GET case since
232 * they are only valid while holding the pgmap reference.
233 */
df06b37f
KB
234 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
235 if (*pgmap)
3565fce3
DW
236 page = pte_page(pte);
237 else
238 goto no_page;
239 } else if (unlikely(!page)) {
1027e443
KS
240 if (flags & FOLL_DUMP) {
241 /* Avoid special (like zero) pages in core dumps */
242 page = ERR_PTR(-EFAULT);
243 goto out;
244 }
245
246 if (is_zero_pfn(pte_pfn(pte))) {
247 page = pte_page(pte);
248 } else {
249 int ret;
250
251 ret = follow_pfn_pte(vma, address, ptep, flags);
252 page = ERR_PTR(ret);
253 goto out;
254 }
4bbd4c77
KS
255 }
256
6742d293
KS
257 if (flags & FOLL_SPLIT && PageTransCompound(page)) {
258 int ret;
259 get_page(page);
260 pte_unmap_unlock(ptep, ptl);
261 lock_page(page);
262 ret = split_huge_page(page);
263 unlock_page(page);
264 put_page(page);
265 if (ret)
266 return ERR_PTR(ret);
267 goto retry;
268 }
269
8fde12ca
LT
270 if (flags & FOLL_GET) {
271 if (unlikely(!try_get_page(page))) {
272 page = ERR_PTR(-ENOMEM);
273 goto out;
274 }
275 }
4bbd4c77
KS
276 if (flags & FOLL_TOUCH) {
277 if ((flags & FOLL_WRITE) &&
278 !pte_dirty(pte) && !PageDirty(page))
279 set_page_dirty(page);
280 /*
281 * pte_mkyoung() would be more correct here, but atomic care
282 * is needed to avoid losing the dirty bit: it is easier to use
283 * mark_page_accessed().
284 */
285 mark_page_accessed(page);
286 }
de60f5f1 287 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
288 /* Do not mlock pte-mapped THP */
289 if (PageTransCompound(page))
290 goto out;
291
4bbd4c77
KS
292 /*
293 * The preliminary mapping check is mainly to avoid the
294 * pointless overhead of lock_page on the ZERO_PAGE
295 * which might bounce very badly if there is contention.
296 *
297 * If the page is already locked, we don't need to
298 * handle it now - vmscan will handle it later if and
299 * when it attempts to reclaim the page.
300 */
301 if (page->mapping && trylock_page(page)) {
302 lru_add_drain(); /* push cached pages to LRU */
303 /*
304 * Because we lock page here, and migration is
305 * blocked by the pte's page reference, and we
306 * know the page is still mapped, we don't even
307 * need to check for file-cache page truncation.
308 */
309 mlock_vma_page(page);
310 unlock_page(page);
311 }
312 }
1027e443 313out:
4bbd4c77 314 pte_unmap_unlock(ptep, ptl);
4bbd4c77 315 return page;
4bbd4c77
KS
316no_page:
317 pte_unmap_unlock(ptep, ptl);
318 if (!pte_none(pte))
69e68b4f
KS
319 return NULL;
320 return no_page_table(vma, flags);
321}
322
080dbb61
AK
323static struct page *follow_pmd_mask(struct vm_area_struct *vma,
324 unsigned long address, pud_t *pudp,
df06b37f
KB
325 unsigned int flags,
326 struct follow_page_context *ctx)
69e68b4f 327{
68827280 328 pmd_t *pmd, pmdval;
69e68b4f
KS
329 spinlock_t *ptl;
330 struct page *page;
331 struct mm_struct *mm = vma->vm_mm;
332
080dbb61 333 pmd = pmd_offset(pudp, address);
68827280
HY
334 /*
335 * The READ_ONCE() will stabilize the pmdval in a register or
336 * on the stack so that it will stop changing under the code.
337 */
338 pmdval = READ_ONCE(*pmd);
339 if (pmd_none(pmdval))
69e68b4f 340 return no_page_table(vma, flags);
68827280 341 if (pmd_huge(pmdval) && vma->vm_flags & VM_HUGETLB) {
e66f17ff
NH
342 page = follow_huge_pmd(mm, address, pmd, flags);
343 if (page)
344 return page;
345 return no_page_table(vma, flags);
69e68b4f 346 }
68827280 347 if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
4dc71451 348 page = follow_huge_pd(vma, address,
68827280 349 __hugepd(pmd_val(pmdval)), flags,
4dc71451
AK
350 PMD_SHIFT);
351 if (page)
352 return page;
353 return no_page_table(vma, flags);
354 }
84c3fc4e 355retry:
68827280 356 if (!pmd_present(pmdval)) {
84c3fc4e
ZY
357 if (likely(!(flags & FOLL_MIGRATION)))
358 return no_page_table(vma, flags);
359 VM_BUG_ON(thp_migration_supported() &&
68827280
HY
360 !is_pmd_migration_entry(pmdval));
361 if (is_pmd_migration_entry(pmdval))
84c3fc4e 362 pmd_migration_entry_wait(mm, pmd);
68827280
HY
363 pmdval = READ_ONCE(*pmd);
364 /*
365 * MADV_DONTNEED may convert the pmd to null because
366 * mmap_sem is held in read mode
367 */
368 if (pmd_none(pmdval))
369 return no_page_table(vma, flags);
84c3fc4e
ZY
370 goto retry;
371 }
68827280 372 if (pmd_devmap(pmdval)) {
3565fce3 373 ptl = pmd_lock(mm, pmd);
df06b37f 374 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
3565fce3
DW
375 spin_unlock(ptl);
376 if (page)
377 return page;
378 }
68827280 379 if (likely(!pmd_trans_huge(pmdval)))
df06b37f 380 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 381
68827280 382 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
db08f203
AK
383 return no_page_table(vma, flags);
384
84c3fc4e 385retry_locked:
6742d293 386 ptl = pmd_lock(mm, pmd);
68827280
HY
387 if (unlikely(pmd_none(*pmd))) {
388 spin_unlock(ptl);
389 return no_page_table(vma, flags);
390 }
84c3fc4e
ZY
391 if (unlikely(!pmd_present(*pmd))) {
392 spin_unlock(ptl);
393 if (likely(!(flags & FOLL_MIGRATION)))
394 return no_page_table(vma, flags);
395 pmd_migration_entry_wait(mm, pmd);
396 goto retry_locked;
397 }
6742d293
KS
398 if (unlikely(!pmd_trans_huge(*pmd))) {
399 spin_unlock(ptl);
df06b37f 400 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 401 }
6742d293
KS
402 if (flags & FOLL_SPLIT) {
403 int ret;
404 page = pmd_page(*pmd);
405 if (is_huge_zero_page(page)) {
406 spin_unlock(ptl);
407 ret = 0;
78ddc534 408 split_huge_pmd(vma, pmd, address);
337d9abf
NH
409 if (pmd_trans_unstable(pmd))
410 ret = -EBUSY;
6742d293 411 } else {
8fde12ca
LT
412 if (unlikely(!try_get_page(page))) {
413 spin_unlock(ptl);
414 return ERR_PTR(-ENOMEM);
415 }
69e68b4f 416 spin_unlock(ptl);
6742d293
KS
417 lock_page(page);
418 ret = split_huge_page(page);
419 unlock_page(page);
420 put_page(page);
baa355fd
KS
421 if (pmd_none(*pmd))
422 return no_page_table(vma, flags);
6742d293
KS
423 }
424
425 return ret ? ERR_PTR(ret) :
df06b37f 426 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
69e68b4f 427 }
6742d293
KS
428 page = follow_trans_huge_pmd(vma, address, pmd, flags);
429 spin_unlock(ptl);
df06b37f 430 ctx->page_mask = HPAGE_PMD_NR - 1;
6742d293 431 return page;
4bbd4c77
KS
432}
433
080dbb61
AK
434static struct page *follow_pud_mask(struct vm_area_struct *vma,
435 unsigned long address, p4d_t *p4dp,
df06b37f
KB
436 unsigned int flags,
437 struct follow_page_context *ctx)
080dbb61
AK
438{
439 pud_t *pud;
440 spinlock_t *ptl;
441 struct page *page;
442 struct mm_struct *mm = vma->vm_mm;
443
444 pud = pud_offset(p4dp, address);
445 if (pud_none(*pud))
446 return no_page_table(vma, flags);
447 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
448 page = follow_huge_pud(mm, address, pud, flags);
449 if (page)
450 return page;
451 return no_page_table(vma, flags);
452 }
4dc71451
AK
453 if (is_hugepd(__hugepd(pud_val(*pud)))) {
454 page = follow_huge_pd(vma, address,
455 __hugepd(pud_val(*pud)), flags,
456 PUD_SHIFT);
457 if (page)
458 return page;
459 return no_page_table(vma, flags);
460 }
080dbb61
AK
461 if (pud_devmap(*pud)) {
462 ptl = pud_lock(mm, pud);
df06b37f 463 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
080dbb61
AK
464 spin_unlock(ptl);
465 if (page)
466 return page;
467 }
468 if (unlikely(pud_bad(*pud)))
469 return no_page_table(vma, flags);
470
df06b37f 471 return follow_pmd_mask(vma, address, pud, flags, ctx);
080dbb61
AK
472}
473
080dbb61
AK
474static struct page *follow_p4d_mask(struct vm_area_struct *vma,
475 unsigned long address, pgd_t *pgdp,
df06b37f
KB
476 unsigned int flags,
477 struct follow_page_context *ctx)
080dbb61
AK
478{
479 p4d_t *p4d;
4dc71451 480 struct page *page;
080dbb61
AK
481
482 p4d = p4d_offset(pgdp, address);
483 if (p4d_none(*p4d))
484 return no_page_table(vma, flags);
485 BUILD_BUG_ON(p4d_huge(*p4d));
486 if (unlikely(p4d_bad(*p4d)))
487 return no_page_table(vma, flags);
488
4dc71451
AK
489 if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
490 page = follow_huge_pd(vma, address,
491 __hugepd(p4d_val(*p4d)), flags,
492 P4D_SHIFT);
493 if (page)
494 return page;
495 return no_page_table(vma, flags);
496 }
df06b37f 497 return follow_pud_mask(vma, address, p4d, flags, ctx);
080dbb61
AK
498}
499
500/**
501 * follow_page_mask - look up a page descriptor from a user-virtual address
502 * @vma: vm_area_struct mapping @address
503 * @address: virtual address to look up
504 * @flags: flags modifying lookup behaviour
78179556
MR
505 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
506 * pointer to output page_mask
080dbb61
AK
507 *
508 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
509 *
78179556
MR
510 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
511 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
512 *
513 * On output, the @ctx->page_mask is set according to the size of the page.
514 *
515 * Return: the mapped (struct page *), %NULL if no mapping exists, or
080dbb61
AK
516 * an error pointer if there is a mapping to something not represented
517 * by a page descriptor (see also vm_normal_page()).
518 */
a7030aea 519static struct page *follow_page_mask(struct vm_area_struct *vma,
080dbb61 520 unsigned long address, unsigned int flags,
df06b37f 521 struct follow_page_context *ctx)
080dbb61
AK
522{
523 pgd_t *pgd;
524 struct page *page;
525 struct mm_struct *mm = vma->vm_mm;
526
df06b37f 527 ctx->page_mask = 0;
080dbb61
AK
528
529 /* make this handle hugepd */
530 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
531 if (!IS_ERR(page)) {
532 BUG_ON(flags & FOLL_GET);
533 return page;
534 }
535
536 pgd = pgd_offset(mm, address);
537
538 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
539 return no_page_table(vma, flags);
540
faaa5b62
AK
541 if (pgd_huge(*pgd)) {
542 page = follow_huge_pgd(mm, address, pgd, flags);
543 if (page)
544 return page;
545 return no_page_table(vma, flags);
546 }
4dc71451
AK
547 if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
548 page = follow_huge_pd(vma, address,
549 __hugepd(pgd_val(*pgd)), flags,
550 PGDIR_SHIFT);
551 if (page)
552 return page;
553 return no_page_table(vma, flags);
554 }
faaa5b62 555
df06b37f
KB
556 return follow_p4d_mask(vma, address, pgd, flags, ctx);
557}
558
559struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
560 unsigned int foll_flags)
561{
562 struct follow_page_context ctx = { NULL };
563 struct page *page;
564
565 page = follow_page_mask(vma, address, foll_flags, &ctx);
566 if (ctx.pgmap)
567 put_dev_pagemap(ctx.pgmap);
568 return page;
080dbb61
AK
569}
570
f2b495ca
KS
571static int get_gate_page(struct mm_struct *mm, unsigned long address,
572 unsigned int gup_flags, struct vm_area_struct **vma,
573 struct page **page)
574{
575 pgd_t *pgd;
c2febafc 576 p4d_t *p4d;
f2b495ca
KS
577 pud_t *pud;
578 pmd_t *pmd;
579 pte_t *pte;
580 int ret = -EFAULT;
581
582 /* user gate pages are read-only */
583 if (gup_flags & FOLL_WRITE)
584 return -EFAULT;
585 if (address > TASK_SIZE)
586 pgd = pgd_offset_k(address);
587 else
588 pgd = pgd_offset_gate(mm, address);
b5d1c39f
AL
589 if (pgd_none(*pgd))
590 return -EFAULT;
c2febafc 591 p4d = p4d_offset(pgd, address);
b5d1c39f
AL
592 if (p4d_none(*p4d))
593 return -EFAULT;
c2febafc 594 pud = pud_offset(p4d, address);
b5d1c39f
AL
595 if (pud_none(*pud))
596 return -EFAULT;
f2b495ca 597 pmd = pmd_offset(pud, address);
84c3fc4e 598 if (!pmd_present(*pmd))
f2b495ca
KS
599 return -EFAULT;
600 VM_BUG_ON(pmd_trans_huge(*pmd));
601 pte = pte_offset_map(pmd, address);
602 if (pte_none(*pte))
603 goto unmap;
604 *vma = get_gate_vma(mm);
605 if (!page)
606 goto out;
607 *page = vm_normal_page(*vma, address, *pte);
608 if (!*page) {
609 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
610 goto unmap;
611 *page = pte_page(*pte);
df6ad698
JG
612
613 /*
614 * This should never happen (a device public page in the gate
615 * area).
616 */
617 if (is_device_public_page(*page))
618 goto unmap;
f2b495ca 619 }
8fde12ca
LT
620 if (unlikely(!try_get_page(*page))) {
621 ret = -ENOMEM;
622 goto unmap;
623 }
f2b495ca
KS
624out:
625 ret = 0;
626unmap:
627 pte_unmap(pte);
628 return ret;
629}
630
9a95f3cf
PC
631/*
632 * mmap_sem must be held on entry. If @nonblocking != NULL and
633 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
634 * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
635 */
16744483
KS
636static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
637 unsigned long address, unsigned int *flags, int *nonblocking)
638{
16744483 639 unsigned int fault_flags = 0;
2b740303 640 vm_fault_t ret;
16744483 641
de60f5f1
EM
642 /* mlock all present pages, but do not fault in new pages */
643 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
644 return -ENOENT;
16744483
KS
645 if (*flags & FOLL_WRITE)
646 fault_flags |= FAULT_FLAG_WRITE;
1b2ee126
DH
647 if (*flags & FOLL_REMOTE)
648 fault_flags |= FAULT_FLAG_REMOTE;
16744483
KS
649 if (nonblocking)
650 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
651 if (*flags & FOLL_NOWAIT)
652 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
234b239b
ALC
653 if (*flags & FOLL_TRIED) {
654 VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
655 fault_flags |= FAULT_FLAG_TRIED;
656 }
16744483 657
dcddffd4 658 ret = handle_mm_fault(vma, address, fault_flags);
16744483 659 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
660 int err = vm_fault_to_errno(ret, *flags);
661
662 if (err)
663 return err;
16744483
KS
664 BUG();
665 }
666
667 if (tsk) {
668 if (ret & VM_FAULT_MAJOR)
669 tsk->maj_flt++;
670 else
671 tsk->min_flt++;
672 }
673
674 if (ret & VM_FAULT_RETRY) {
96312e61 675 if (nonblocking && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
16744483
KS
676 *nonblocking = 0;
677 return -EBUSY;
678 }
679
680 /*
681 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
682 * necessary, even if maybe_mkwrite decided not to set pte_write. We
683 * can thus safely do subsequent page lookups as if they were reads.
684 * But only do so when looping for pte_write is futile: in some cases
685 * userspace may also be wanting to write to the gotten user page,
686 * which a read fault here might prevent (a readonly page might get
687 * reCOWed by userspace write).
688 */
689 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
2923117b 690 *flags |= FOLL_COW;
16744483
KS
691 return 0;
692}
693
fa5bb209
KS
694static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
695{
696 vm_flags_t vm_flags = vma->vm_flags;
1b2ee126
DH
697 int write = (gup_flags & FOLL_WRITE);
698 int foreign = (gup_flags & FOLL_REMOTE);
fa5bb209
KS
699
700 if (vm_flags & (VM_IO | VM_PFNMAP))
701 return -EFAULT;
702
7f7ccc2c
WT
703 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
704 return -EFAULT;
705
1b2ee126 706 if (write) {
fa5bb209
KS
707 if (!(vm_flags & VM_WRITE)) {
708 if (!(gup_flags & FOLL_FORCE))
709 return -EFAULT;
710 /*
711 * We used to let the write,force case do COW in a
712 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
713 * set a breakpoint in a read-only mapping of an
714 * executable, without corrupting the file (yet only
715 * when that file had been opened for writing!).
716 * Anon pages in shared mappings are surprising: now
717 * just reject it.
718 */
46435364 719 if (!is_cow_mapping(vm_flags))
fa5bb209 720 return -EFAULT;
fa5bb209
KS
721 }
722 } else if (!(vm_flags & VM_READ)) {
723 if (!(gup_flags & FOLL_FORCE))
724 return -EFAULT;
725 /*
726 * Is there actually any vma we can reach here which does not
727 * have VM_MAYREAD set?
728 */
729 if (!(vm_flags & VM_MAYREAD))
730 return -EFAULT;
731 }
d61172b4
DH
732 /*
733 * gups are always data accesses, not instruction
734 * fetches, so execute=false here
735 */
736 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2 737 return -EFAULT;
fa5bb209
KS
738 return 0;
739}
740
4bbd4c77
KS
741/**
742 * __get_user_pages() - pin user pages in memory
743 * @tsk: task_struct of target task
744 * @mm: mm_struct of target mm
745 * @start: starting user address
746 * @nr_pages: number of pages from start to pin
747 * @gup_flags: flags modifying pin behaviour
748 * @pages: array that receives pointers to the pages pinned.
749 * Should be at least nr_pages long. Or NULL, if caller
750 * only intends to ensure the pages are faulted in.
751 * @vmas: array of pointers to vmas corresponding to each page.
752 * Or NULL if the caller does not require them.
753 * @nonblocking: whether waiting for disk IO or mmap_sem contention
754 *
755 * Returns number of pages pinned. This may be fewer than the number
756 * requested. If nr_pages is 0 or negative, returns 0. If no pages
757 * were pinned, returns -errno. Each page returned must be released
758 * with a put_page() call when it is finished with. vmas will only
759 * remain valid while mmap_sem is held.
760 *
9a95f3cf 761 * Must be called with mmap_sem held. It may be released. See below.
4bbd4c77
KS
762 *
763 * __get_user_pages walks a process's page tables and takes a reference to
764 * each struct page that each user address corresponds to at a given
765 * instant. That is, it takes the page that would be accessed if a user
766 * thread accesses the given user virtual address at that instant.
767 *
768 * This does not guarantee that the page exists in the user mappings when
769 * __get_user_pages returns, and there may even be a completely different
770 * page there in some cases (eg. if mmapped pagecache has been invalidated
771 * and subsequently re faulted). However it does guarantee that the page
772 * won't be freed completely. And mostly callers simply care that the page
773 * contains data that was valid *at some point in time*. Typically, an IO
774 * or similar operation cannot guarantee anything stronger anyway because
775 * locks can't be held over the syscall boundary.
776 *
777 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
778 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
779 * appropriate) must be called after the page is finished with, and
780 * before put_page is called.
781 *
782 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
783 * or mmap_sem contention, and if waiting is needed to pin all pages,
9a95f3cf
PC
784 * *@nonblocking will be set to 0. Further, if @gup_flags does not
785 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
786 * this case.
787 *
788 * A caller using such a combination of @nonblocking and @gup_flags
789 * must therefore hold the mmap_sem for reading only, and recognize
790 * when it's been released. Otherwise, it must be held for either
791 * reading or writing and will not be released.
4bbd4c77
KS
792 *
793 * In most cases, get_user_pages or get_user_pages_fast should be used
794 * instead of __get_user_pages. __get_user_pages should be used only if
795 * you need some special @gup_flags.
796 */
0d731759 797static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
4bbd4c77
KS
798 unsigned long start, unsigned long nr_pages,
799 unsigned int gup_flags, struct page **pages,
800 struct vm_area_struct **vmas, int *nonblocking)
801{
df06b37f 802 long ret = 0, i = 0;
fa5bb209 803 struct vm_area_struct *vma = NULL;
df06b37f 804 struct follow_page_context ctx = { NULL };
4bbd4c77
KS
805
806 if (!nr_pages)
807 return 0;
808
809 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
810
811 /*
812 * If FOLL_FORCE is set then do not force a full fault as the hinting
813 * fault information is unrelated to the reference behaviour of a task
814 * using the address space
815 */
816 if (!(gup_flags & FOLL_FORCE))
817 gup_flags |= FOLL_NUMA;
818
4bbd4c77 819 do {
fa5bb209
KS
820 struct page *page;
821 unsigned int foll_flags = gup_flags;
822 unsigned int page_increm;
823
824 /* first iteration or cross vma bound */
825 if (!vma || start >= vma->vm_end) {
826 vma = find_extend_vma(mm, start);
827 if (!vma && in_gate_area(mm, start)) {
fa5bb209
KS
828 ret = get_gate_page(mm, start & PAGE_MASK,
829 gup_flags, &vma,
830 pages ? &pages[i] : NULL);
831 if (ret)
08be37b7 832 goto out;
df06b37f 833 ctx.page_mask = 0;
fa5bb209
KS
834 goto next_page;
835 }
4bbd4c77 836
df06b37f
KB
837 if (!vma || check_vma_flags(vma, gup_flags)) {
838 ret = -EFAULT;
839 goto out;
840 }
fa5bb209
KS
841 if (is_vm_hugetlb_page(vma)) {
842 i = follow_hugetlb_page(mm, vma, pages, vmas,
843 &start, &nr_pages, i,
87ffc118 844 gup_flags, nonblocking);
fa5bb209 845 continue;
4bbd4c77 846 }
fa5bb209
KS
847 }
848retry:
849 /*
850 * If we have a pending SIGKILL, don't keep faulting pages and
851 * potentially allocating memory.
852 */
fa45f116 853 if (fatal_signal_pending(current)) {
df06b37f
KB
854 ret = -ERESTARTSYS;
855 goto out;
856 }
fa5bb209 857 cond_resched();
df06b37f
KB
858
859 page = follow_page_mask(vma, start, foll_flags, &ctx);
fa5bb209 860 if (!page) {
fa5bb209
KS
861 ret = faultin_page(tsk, vma, start, &foll_flags,
862 nonblocking);
863 switch (ret) {
864 case 0:
865 goto retry;
df06b37f
KB
866 case -EBUSY:
867 ret = 0;
868 /* FALLTHRU */
fa5bb209
KS
869 case -EFAULT:
870 case -ENOMEM:
871 case -EHWPOISON:
df06b37f 872 goto out;
fa5bb209
KS
873 case -ENOENT:
874 goto next_page;
4bbd4c77 875 }
fa5bb209 876 BUG();
1027e443
KS
877 } else if (PTR_ERR(page) == -EEXIST) {
878 /*
879 * Proper page table entry exists, but no corresponding
880 * struct page.
881 */
882 goto next_page;
883 } else if (IS_ERR(page)) {
df06b37f
KB
884 ret = PTR_ERR(page);
885 goto out;
1027e443 886 }
fa5bb209
KS
887 if (pages) {
888 pages[i] = page;
889 flush_anon_page(vma, page, start);
890 flush_dcache_page(page);
df06b37f 891 ctx.page_mask = 0;
4bbd4c77 892 }
4bbd4c77 893next_page:
fa5bb209
KS
894 if (vmas) {
895 vmas[i] = vma;
df06b37f 896 ctx.page_mask = 0;
fa5bb209 897 }
df06b37f 898 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
fa5bb209
KS
899 if (page_increm > nr_pages)
900 page_increm = nr_pages;
901 i += page_increm;
902 start += page_increm * PAGE_SIZE;
903 nr_pages -= page_increm;
4bbd4c77 904 } while (nr_pages);
df06b37f
KB
905out:
906 if (ctx.pgmap)
907 put_dev_pagemap(ctx.pgmap);
908 return i ? i : ret;
4bbd4c77 909}
4bbd4c77 910
771ab430
TK
911static bool vma_permits_fault(struct vm_area_struct *vma,
912 unsigned int fault_flags)
d4925e00 913{
1b2ee126
DH
914 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
915 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
33a709b2 916 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
d4925e00
DH
917
918 if (!(vm_flags & vma->vm_flags))
919 return false;
920
33a709b2
DH
921 /*
922 * The architecture might have a hardware protection
1b2ee126 923 * mechanism other than read/write that can deny access.
d61172b4
DH
924 *
925 * gup always represents data access, not instruction
926 * fetches, so execute=false here:
33a709b2 927 */
d61172b4 928 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2
DH
929 return false;
930
d4925e00
DH
931 return true;
932}
933
4bbd4c77
KS
934/*
935 * fixup_user_fault() - manually resolve a user page fault
936 * @tsk: the task_struct to use for page fault accounting, or
937 * NULL if faults are not to be recorded.
938 * @mm: mm_struct of target mm
939 * @address: user address
940 * @fault_flags:flags to pass down to handle_mm_fault()
4a9e1cda
DD
941 * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller
942 * does not allow retry
4bbd4c77
KS
943 *
944 * This is meant to be called in the specific scenario where for locking reasons
945 * we try to access user memory in atomic context (within a pagefault_disable()
946 * section), this returns -EFAULT, and we want to resolve the user fault before
947 * trying again.
948 *
949 * Typically this is meant to be used by the futex code.
950 *
951 * The main difference with get_user_pages() is that this function will
952 * unconditionally call handle_mm_fault() which will in turn perform all the
953 * necessary SW fixup of the dirty and young bits in the PTE, while
4a9e1cda 954 * get_user_pages() only guarantees to update these in the struct page.
4bbd4c77
KS
955 *
956 * This is important for some architectures where those bits also gate the
957 * access permission to the page because they are maintained in software. On
958 * such architectures, gup() will not be enough to make a subsequent access
959 * succeed.
960 *
4a9e1cda
DD
961 * This function will not return with an unlocked mmap_sem. So it has not the
962 * same semantics wrt the @mm->mmap_sem as does filemap_fault().
4bbd4c77
KS
963 */
964int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
4a9e1cda
DD
965 unsigned long address, unsigned int fault_flags,
966 bool *unlocked)
4bbd4c77
KS
967{
968 struct vm_area_struct *vma;
2b740303 969 vm_fault_t ret, major = 0;
4a9e1cda
DD
970
971 if (unlocked)
972 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4bbd4c77 973
4a9e1cda 974retry:
4bbd4c77
KS
975 vma = find_extend_vma(mm, address);
976 if (!vma || address < vma->vm_start)
977 return -EFAULT;
978
d4925e00 979 if (!vma_permits_fault(vma, fault_flags))
4bbd4c77
KS
980 return -EFAULT;
981
dcddffd4 982 ret = handle_mm_fault(vma, address, fault_flags);
4a9e1cda 983 major |= ret & VM_FAULT_MAJOR;
4bbd4c77 984 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
985 int err = vm_fault_to_errno(ret, 0);
986
987 if (err)
988 return err;
4bbd4c77
KS
989 BUG();
990 }
4a9e1cda
DD
991
992 if (ret & VM_FAULT_RETRY) {
993 down_read(&mm->mmap_sem);
994 if (!(fault_flags & FAULT_FLAG_TRIED)) {
995 *unlocked = true;
996 fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
997 fault_flags |= FAULT_FLAG_TRIED;
998 goto retry;
999 }
1000 }
1001
4bbd4c77 1002 if (tsk) {
4a9e1cda 1003 if (major)
4bbd4c77
KS
1004 tsk->maj_flt++;
1005 else
1006 tsk->min_flt++;
1007 }
1008 return 0;
1009}
add6a0cd 1010EXPORT_SYMBOL_GPL(fixup_user_fault);
4bbd4c77 1011
f0818f47
AA
1012static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
1013 struct mm_struct *mm,
1014 unsigned long start,
1015 unsigned long nr_pages,
f0818f47
AA
1016 struct page **pages,
1017 struct vm_area_struct **vmas,
e716712f 1018 int *locked,
0fd71a56 1019 unsigned int flags)
f0818f47 1020{
f0818f47
AA
1021 long ret, pages_done;
1022 bool lock_dropped;
1023
1024 if (locked) {
1025 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
1026 BUG_ON(vmas);
1027 /* check caller initialized locked */
1028 BUG_ON(*locked != 1);
1029 }
1030
1031 if (pages)
1032 flags |= FOLL_GET;
f0818f47
AA
1033
1034 pages_done = 0;
1035 lock_dropped = false;
1036 for (;;) {
1037 ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
1038 vmas, locked);
1039 if (!locked)
1040 /* VM_FAULT_RETRY couldn't trigger, bypass */
1041 return ret;
1042
1043 /* VM_FAULT_RETRY cannot return errors */
1044 if (!*locked) {
1045 BUG_ON(ret < 0);
1046 BUG_ON(ret >= nr_pages);
1047 }
1048
f0818f47
AA
1049 if (ret > 0) {
1050 nr_pages -= ret;
1051 pages_done += ret;
1052 if (!nr_pages)
1053 break;
1054 }
1055 if (*locked) {
96312e61
AA
1056 /*
1057 * VM_FAULT_RETRY didn't trigger or it was a
1058 * FOLL_NOWAIT.
1059 */
f0818f47
AA
1060 if (!pages_done)
1061 pages_done = ret;
1062 break;
1063 }
df17277b
MR
1064 /*
1065 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1066 * For the prefault case (!pages) we only update counts.
1067 */
1068 if (likely(pages))
1069 pages += ret;
f0818f47
AA
1070 start += ret << PAGE_SHIFT;
1071
1072 /*
1073 * Repeat on the address that fired VM_FAULT_RETRY
1074 * without FAULT_FLAG_ALLOW_RETRY but with
1075 * FAULT_FLAG_TRIED.
1076 */
1077 *locked = 1;
1078 lock_dropped = true;
1079 down_read(&mm->mmap_sem);
1080 ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
1081 pages, NULL, NULL);
1082 if (ret != 1) {
1083 BUG_ON(ret > 1);
1084 if (!pages_done)
1085 pages_done = ret;
1086 break;
1087 }
1088 nr_pages--;
1089 pages_done++;
1090 if (!nr_pages)
1091 break;
df17277b
MR
1092 if (likely(pages))
1093 pages++;
f0818f47
AA
1094 start += PAGE_SIZE;
1095 }
e716712f 1096 if (lock_dropped && *locked) {
f0818f47
AA
1097 /*
1098 * We must let the caller know we temporarily dropped the lock
1099 * and so the critical section protected by it was lost.
1100 */
1101 up_read(&mm->mmap_sem);
1102 *locked = 0;
1103 }
1104 return pages_done;
1105}
1106
4bbd4c77 1107/*
1e987790 1108 * get_user_pages_remote() - pin user pages in memory
4bbd4c77
KS
1109 * @tsk: the task_struct to use for page fault accounting, or
1110 * NULL if faults are not to be recorded.
1111 * @mm: mm_struct of target mm
1112 * @start: starting user address
1113 * @nr_pages: number of pages from start to pin
9beae1ea 1114 * @gup_flags: flags modifying lookup behaviour
4bbd4c77
KS
1115 * @pages: array that receives pointers to the pages pinned.
1116 * Should be at least nr_pages long. Or NULL, if caller
1117 * only intends to ensure the pages are faulted in.
1118 * @vmas: array of pointers to vmas corresponding to each page.
1119 * Or NULL if the caller does not require them.
5b56d49f
LS
1120 * @locked: pointer to lock flag indicating whether lock is held and
1121 * subsequently whether VM_FAULT_RETRY functionality can be
1122 * utilised. Lock must initially be held.
4bbd4c77
KS
1123 *
1124 * Returns number of pages pinned. This may be fewer than the number
1125 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1126 * were pinned, returns -errno. Each page returned must be released
1127 * with a put_page() call when it is finished with. vmas will only
1128 * remain valid while mmap_sem is held.
1129 *
1130 * Must be called with mmap_sem held for read or write.
1131 *
1132 * get_user_pages walks a process's page tables and takes a reference to
1133 * each struct page that each user address corresponds to at a given
1134 * instant. That is, it takes the page that would be accessed if a user
1135 * thread accesses the given user virtual address at that instant.
1136 *
1137 * This does not guarantee that the page exists in the user mappings when
1138 * get_user_pages returns, and there may even be a completely different
1139 * page there in some cases (eg. if mmapped pagecache has been invalidated
1140 * and subsequently re faulted). However it does guarantee that the page
1141 * won't be freed completely. And mostly callers simply care that the page
1142 * contains data that was valid *at some point in time*. Typically, an IO
1143 * or similar operation cannot guarantee anything stronger anyway because
1144 * locks can't be held over the syscall boundary.
1145 *
9beae1ea
LS
1146 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1147 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1148 * be called after the page is finished with, and before put_page is called.
4bbd4c77
KS
1149 *
1150 * get_user_pages is typically used for fewer-copy IO operations, to get a
1151 * handle on the memory by some means other than accesses via the user virtual
1152 * addresses. The pages may be submitted for DMA to devices or accessed via
1153 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1154 * use the correct cache flushing APIs.
1155 *
1156 * See also get_user_pages_fast, for performance critical applications.
f0818f47
AA
1157 *
1158 * get_user_pages should be phased out in favor of
1159 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1160 * should use get_user_pages because it cannot pass
1161 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
4bbd4c77 1162 */
1e987790
DH
1163long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1164 unsigned long start, unsigned long nr_pages,
9beae1ea 1165 unsigned int gup_flags, struct page **pages,
5b56d49f 1166 struct vm_area_struct **vmas, int *locked)
4bbd4c77 1167{
932f4a63
IW
1168 /*
1169 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1170 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1171 * vmas. As there are no users of this flag in this call we simply
1172 * disallow this option for now.
1173 */
1174 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1175 return -EINVAL;
1176
859110d7 1177 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
e716712f 1178 locked,
9beae1ea 1179 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1e987790
DH
1180}
1181EXPORT_SYMBOL(get_user_pages_remote);
1182
d3649f68
CH
1183/**
1184 * populate_vma_page_range() - populate a range of pages in the vma.
1185 * @vma: target vma
1186 * @start: start address
1187 * @end: end address
1188 * @nonblocking:
1189 *
1190 * This takes care of mlocking the pages too if VM_LOCKED is set.
1191 *
1192 * return 0 on success, negative error code on error.
1193 *
1194 * vma->vm_mm->mmap_sem must be held.
1195 *
1196 * If @nonblocking is NULL, it may be held for read or write and will
1197 * be unperturbed.
1198 *
1199 * If @nonblocking is non-NULL, it must held for read only and may be
1200 * released. If it's released, *@nonblocking will be set to 0.
1201 */
1202long populate_vma_page_range(struct vm_area_struct *vma,
1203 unsigned long start, unsigned long end, int *nonblocking)
1204{
1205 struct mm_struct *mm = vma->vm_mm;
1206 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1207 int gup_flags;
1208
1209 VM_BUG_ON(start & ~PAGE_MASK);
1210 VM_BUG_ON(end & ~PAGE_MASK);
1211 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1212 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1213 VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
1214
1215 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1216 if (vma->vm_flags & VM_LOCKONFAULT)
1217 gup_flags &= ~FOLL_POPULATE;
1218 /*
1219 * We want to touch writable mappings with a write fault in order
1220 * to break COW, except for shared mappings because these don't COW
1221 * and we would not want to dirty them for nothing.
1222 */
1223 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1224 gup_flags |= FOLL_WRITE;
1225
1226 /*
1227 * We want mlock to succeed for regions that have any permissions
1228 * other than PROT_NONE.
1229 */
1230 if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
1231 gup_flags |= FOLL_FORCE;
1232
1233 /*
1234 * We made sure addr is within a VMA, so the following will
1235 * not result in a stack expansion that recurses back here.
1236 */
1237 return __get_user_pages(current, mm, start, nr_pages, gup_flags,
1238 NULL, NULL, nonblocking);
1239}
1240
1241/*
1242 * __mm_populate - populate and/or mlock pages within a range of address space.
1243 *
1244 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1245 * flags. VMAs must be already marked with the desired vm_flags, and
1246 * mmap_sem must not be held.
1247 */
1248int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1249{
1250 struct mm_struct *mm = current->mm;
1251 unsigned long end, nstart, nend;
1252 struct vm_area_struct *vma = NULL;
1253 int locked = 0;
1254 long ret = 0;
1255
1256 end = start + len;
1257
1258 for (nstart = start; nstart < end; nstart = nend) {
1259 /*
1260 * We want to fault in pages for [nstart; end) address range.
1261 * Find first corresponding VMA.
1262 */
1263 if (!locked) {
1264 locked = 1;
1265 down_read(&mm->mmap_sem);
1266 vma = find_vma(mm, nstart);
1267 } else if (nstart >= vma->vm_end)
1268 vma = vma->vm_next;
1269 if (!vma || vma->vm_start >= end)
1270 break;
1271 /*
1272 * Set [nstart; nend) to intersection of desired address
1273 * range with the first VMA. Also, skip undesirable VMA types.
1274 */
1275 nend = min(end, vma->vm_end);
1276 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1277 continue;
1278 if (nstart < vma->vm_start)
1279 nstart = vma->vm_start;
1280 /*
1281 * Now fault in a range of pages. populate_vma_page_range()
1282 * double checks the vma flags, so that it won't mlock pages
1283 * if the vma was already munlocked.
1284 */
1285 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1286 if (ret < 0) {
1287 if (ignore_errors) {
1288 ret = 0;
1289 continue; /* continue at next VMA */
1290 }
1291 break;
1292 }
1293 nend = nstart + ret * PAGE_SIZE;
1294 ret = 0;
1295 }
1296 if (locked)
1297 up_read(&mm->mmap_sem);
1298 return ret; /* 0 or negative error code */
1299}
1300
1301/**
1302 * get_dump_page() - pin user page in memory while writing it to core dump
1303 * @addr: user address
1304 *
1305 * Returns struct page pointer of user page pinned for dump,
1306 * to be freed afterwards by put_page().
1307 *
1308 * Returns NULL on any kind of failure - a hole must then be inserted into
1309 * the corefile, to preserve alignment with its headers; and also returns
1310 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1311 * allowing a hole to be left in the corefile to save diskspace.
1312 *
1313 * Called without mmap_sem, but after all other threads have been killed.
1314 */
1315#ifdef CONFIG_ELF_CORE
1316struct page *get_dump_page(unsigned long addr)
1317{
1318 struct vm_area_struct *vma;
1319 struct page *page;
1320
1321 if (__get_user_pages(current, current->mm, addr, 1,
1322 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1323 NULL) < 1)
1324 return NULL;
1325 flush_cache_page(vma, addr, page_to_pfn(page));
1326 return page;
1327}
1328#endif /* CONFIG_ELF_CORE */
050a9adc
CH
1329#else /* CONFIG_MMU */
1330static long __get_user_pages_locked(struct task_struct *tsk,
1331 struct mm_struct *mm, unsigned long start,
1332 unsigned long nr_pages, struct page **pages,
1333 struct vm_area_struct **vmas, int *locked,
1334 unsigned int foll_flags)
1335{
1336 struct vm_area_struct *vma;
1337 unsigned long vm_flags;
1338 int i;
1339
1340 /* calculate required read or write permissions.
1341 * If FOLL_FORCE is set, we only require the "MAY" flags.
1342 */
1343 vm_flags = (foll_flags & FOLL_WRITE) ?
1344 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1345 vm_flags &= (foll_flags & FOLL_FORCE) ?
1346 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1347
1348 for (i = 0; i < nr_pages; i++) {
1349 vma = find_vma(mm, start);
1350 if (!vma)
1351 goto finish_or_fault;
1352
1353 /* protect what we can, including chardevs */
1354 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1355 !(vm_flags & vma->vm_flags))
1356 goto finish_or_fault;
1357
1358 if (pages) {
1359 pages[i] = virt_to_page(start);
1360 if (pages[i])
1361 get_page(pages[i]);
1362 }
1363 if (vmas)
1364 vmas[i] = vma;
1365 start = (start + PAGE_SIZE) & PAGE_MASK;
1366 }
1367
1368 return i;
1369
1370finish_or_fault:
1371 return i ? : -EFAULT;
1372}
1373#endif /* !CONFIG_MMU */
d3649f68 1374
9a4e9f3b 1375#if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA)
9a4e9f3b
AK
1376static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages)
1377{
1378 long i;
1379 struct vm_area_struct *vma_prev = NULL;
1380
1381 for (i = 0; i < nr_pages; i++) {
1382 struct vm_area_struct *vma = vmas[i];
1383
1384 if (vma == vma_prev)
1385 continue;
1386
1387 vma_prev = vma;
1388
1389 if (vma_is_fsdax(vma))
1390 return true;
1391 }
1392 return false;
1393}
9a4e9f3b
AK
1394
1395#ifdef CONFIG_CMA
1396static struct page *new_non_cma_page(struct page *page, unsigned long private)
1397{
1398 /*
1399 * We want to make sure we allocate the new page from the same node
1400 * as the source page.
1401 */
1402 int nid = page_to_nid(page);
1403 /*
1404 * Trying to allocate a page for migration. Ignore allocation
1405 * failure warnings. We don't force __GFP_THISNODE here because
1406 * this node here is the node where we have CMA reservation and
1407 * in some case these nodes will have really less non movable
1408 * allocation memory.
1409 */
1410 gfp_t gfp_mask = GFP_USER | __GFP_NOWARN;
1411
1412 if (PageHighMem(page))
1413 gfp_mask |= __GFP_HIGHMEM;
1414
1415#ifdef CONFIG_HUGETLB_PAGE
1416 if (PageHuge(page)) {
1417 struct hstate *h = page_hstate(page);
1418 /*
1419 * We don't want to dequeue from the pool because pool pages will
1420 * mostly be from the CMA region.
1421 */
1422 return alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1423 }
1424#endif
1425 if (PageTransHuge(page)) {
1426 struct page *thp;
1427 /*
1428 * ignore allocation failure warnings
1429 */
1430 gfp_t thp_gfpmask = GFP_TRANSHUGE | __GFP_NOWARN;
1431
1432 /*
1433 * Remove the movable mask so that we don't allocate from
1434 * CMA area again.
1435 */
1436 thp_gfpmask &= ~__GFP_MOVABLE;
1437 thp = __alloc_pages_node(nid, thp_gfpmask, HPAGE_PMD_ORDER);
1438 if (!thp)
1439 return NULL;
1440 prep_transhuge_page(thp);
1441 return thp;
1442 }
1443
1444 return __alloc_pages_node(nid, gfp_mask, 0);
1445}
1446
932f4a63
IW
1447static long check_and_migrate_cma_pages(struct task_struct *tsk,
1448 struct mm_struct *mm,
1449 unsigned long start,
1450 unsigned long nr_pages,
9a4e9f3b 1451 struct page **pages,
932f4a63
IW
1452 struct vm_area_struct **vmas,
1453 unsigned int gup_flags)
9a4e9f3b 1454{
aa712399
PL
1455 unsigned long i;
1456 unsigned long step;
9a4e9f3b
AK
1457 bool drain_allow = true;
1458 bool migrate_allow = true;
1459 LIST_HEAD(cma_page_list);
1460
1461check_again:
aa712399
PL
1462 for (i = 0; i < nr_pages;) {
1463
1464 struct page *head = compound_head(pages[i]);
1465
1466 /*
1467 * gup may start from a tail page. Advance step by the left
1468 * part.
1469 */
1470 step = (1 << compound_order(head)) - (pages[i] - head);
9a4e9f3b
AK
1471 /*
1472 * If we get a page from the CMA zone, since we are going to
1473 * be pinning these entries, we might as well move them out
1474 * of the CMA zone if possible.
1475 */
aa712399
PL
1476 if (is_migrate_cma_page(head)) {
1477 if (PageHuge(head))
9a4e9f3b 1478 isolate_huge_page(head, &cma_page_list);
aa712399 1479 else {
9a4e9f3b
AK
1480 if (!PageLRU(head) && drain_allow) {
1481 lru_add_drain_all();
1482 drain_allow = false;
1483 }
1484
1485 if (!isolate_lru_page(head)) {
1486 list_add_tail(&head->lru, &cma_page_list);
1487 mod_node_page_state(page_pgdat(head),
1488 NR_ISOLATED_ANON +
1489 page_is_file_cache(head),
1490 hpage_nr_pages(head));
1491 }
1492 }
1493 }
aa712399
PL
1494
1495 i += step;
9a4e9f3b
AK
1496 }
1497
1498 if (!list_empty(&cma_page_list)) {
1499 /*
1500 * drop the above get_user_pages reference.
1501 */
1502 for (i = 0; i < nr_pages; i++)
1503 put_page(pages[i]);
1504
1505 if (migrate_pages(&cma_page_list, new_non_cma_page,
1506 NULL, 0, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
1507 /*
1508 * some of the pages failed migration. Do get_user_pages
1509 * without migration.
1510 */
1511 migrate_allow = false;
1512
1513 if (!list_empty(&cma_page_list))
1514 putback_movable_pages(&cma_page_list);
1515 }
1516 /*
932f4a63
IW
1517 * We did migrate all the pages, Try to get the page references
1518 * again migrating any new CMA pages which we failed to isolate
1519 * earlier.
9a4e9f3b 1520 */
932f4a63
IW
1521 nr_pages = __get_user_pages_locked(tsk, mm, start, nr_pages,
1522 pages, vmas, NULL,
1523 gup_flags);
1524
9a4e9f3b
AK
1525 if ((nr_pages > 0) && migrate_allow) {
1526 drain_allow = true;
1527 goto check_again;
1528 }
1529 }
1530
1531 return nr_pages;
1532}
1533#else
932f4a63
IW
1534static long check_and_migrate_cma_pages(struct task_struct *tsk,
1535 struct mm_struct *mm,
1536 unsigned long start,
1537 unsigned long nr_pages,
1538 struct page **pages,
1539 struct vm_area_struct **vmas,
1540 unsigned int gup_flags)
9a4e9f3b
AK
1541{
1542 return nr_pages;
1543}
050a9adc 1544#endif /* CONFIG_CMA */
9a4e9f3b 1545
2bb6d283 1546/*
932f4a63
IW
1547 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1548 * allows us to process the FOLL_LONGTERM flag.
2bb6d283 1549 */
932f4a63
IW
1550static long __gup_longterm_locked(struct task_struct *tsk,
1551 struct mm_struct *mm,
1552 unsigned long start,
1553 unsigned long nr_pages,
1554 struct page **pages,
1555 struct vm_area_struct **vmas,
1556 unsigned int gup_flags)
2bb6d283 1557{
932f4a63
IW
1558 struct vm_area_struct **vmas_tmp = vmas;
1559 unsigned long flags = 0;
2bb6d283
DW
1560 long rc, i;
1561
932f4a63
IW
1562 if (gup_flags & FOLL_LONGTERM) {
1563 if (!pages)
1564 return -EINVAL;
1565
1566 if (!vmas_tmp) {
1567 vmas_tmp = kcalloc(nr_pages,
1568 sizeof(struct vm_area_struct *),
1569 GFP_KERNEL);
1570 if (!vmas_tmp)
1571 return -ENOMEM;
1572 }
1573 flags = memalloc_nocma_save();
2bb6d283
DW
1574 }
1575
932f4a63
IW
1576 rc = __get_user_pages_locked(tsk, mm, start, nr_pages, pages,
1577 vmas_tmp, NULL, gup_flags);
2bb6d283 1578
932f4a63
IW
1579 if (gup_flags & FOLL_LONGTERM) {
1580 memalloc_nocma_restore(flags);
1581 if (rc < 0)
1582 goto out;
1583
1584 if (check_dax_vmas(vmas_tmp, rc)) {
1585 for (i = 0; i < rc; i++)
1586 put_page(pages[i]);
1587 rc = -EOPNOTSUPP;
1588 goto out;
1589 }
1590
1591 rc = check_and_migrate_cma_pages(tsk, mm, start, rc, pages,
1592 vmas_tmp, gup_flags);
9a4e9f3b 1593 }
2bb6d283 1594
2bb6d283 1595out:
932f4a63
IW
1596 if (vmas_tmp != vmas)
1597 kfree(vmas_tmp);
2bb6d283
DW
1598 return rc;
1599}
932f4a63
IW
1600#else /* !CONFIG_FS_DAX && !CONFIG_CMA */
1601static __always_inline long __gup_longterm_locked(struct task_struct *tsk,
1602 struct mm_struct *mm,
1603 unsigned long start,
1604 unsigned long nr_pages,
1605 struct page **pages,
1606 struct vm_area_struct **vmas,
1607 unsigned int flags)
1608{
1609 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1610 NULL, flags);
1611}
1612#endif /* CONFIG_FS_DAX || CONFIG_CMA */
1613
1614/*
1615 * This is the same as get_user_pages_remote(), just with a
1616 * less-flexible calling convention where we assume that the task
1617 * and mm being operated on are the current task's and don't allow
1618 * passing of a locked parameter. We also obviously don't pass
1619 * FOLL_REMOTE in here.
1620 */
1621long get_user_pages(unsigned long start, unsigned long nr_pages,
1622 unsigned int gup_flags, struct page **pages,
1623 struct vm_area_struct **vmas)
1624{
1625 return __gup_longterm_locked(current, current->mm, start, nr_pages,
1626 pages, vmas, gup_flags | FOLL_TOUCH);
1627}
1628EXPORT_SYMBOL(get_user_pages);
2bb6d283 1629
d3649f68
CH
1630/*
1631 * We can leverage the VM_FAULT_RETRY functionality in the page fault
1632 * paths better by using either get_user_pages_locked() or
1633 * get_user_pages_unlocked().
acc3c8d1 1634 *
d3649f68 1635 * get_user_pages_locked() is suitable to replace the form:
acc3c8d1 1636 *
d3649f68
CH
1637 * down_read(&mm->mmap_sem);
1638 * do_something()
1639 * get_user_pages(tsk, mm, ..., pages, NULL);
1640 * up_read(&mm->mmap_sem);
acc3c8d1 1641 *
d3649f68 1642 * to:
acc3c8d1 1643 *
d3649f68
CH
1644 * int locked = 1;
1645 * down_read(&mm->mmap_sem);
1646 * do_something()
1647 * get_user_pages_locked(tsk, mm, ..., pages, &locked);
1648 * if (locked)
1649 * up_read(&mm->mmap_sem);
acc3c8d1 1650 */
d3649f68
CH
1651long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1652 unsigned int gup_flags, struct page **pages,
1653 int *locked)
acc3c8d1 1654{
acc3c8d1 1655 /*
d3649f68
CH
1656 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1657 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1658 * vmas. As there are no users of this flag in this call we simply
1659 * disallow this option for now.
acc3c8d1 1660 */
d3649f68
CH
1661 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1662 return -EINVAL;
acc3c8d1 1663
d3649f68
CH
1664 return __get_user_pages_locked(current, current->mm, start, nr_pages,
1665 pages, NULL, locked,
1666 gup_flags | FOLL_TOUCH);
acc3c8d1 1667}
d3649f68 1668EXPORT_SYMBOL(get_user_pages_locked);
acc3c8d1
KS
1669
1670/*
d3649f68 1671 * get_user_pages_unlocked() is suitable to replace the form:
acc3c8d1 1672 *
d3649f68
CH
1673 * down_read(&mm->mmap_sem);
1674 * get_user_pages(tsk, mm, ..., pages, NULL);
1675 * up_read(&mm->mmap_sem);
1676 *
1677 * with:
1678 *
1679 * get_user_pages_unlocked(tsk, mm, ..., pages);
1680 *
1681 * It is functionally equivalent to get_user_pages_fast so
1682 * get_user_pages_fast should be used instead if specific gup_flags
1683 * (e.g. FOLL_FORCE) are not required.
acc3c8d1 1684 */
d3649f68
CH
1685long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1686 struct page **pages, unsigned int gup_flags)
acc3c8d1
KS
1687{
1688 struct mm_struct *mm = current->mm;
d3649f68
CH
1689 int locked = 1;
1690 long ret;
acc3c8d1 1691
d3649f68
CH
1692 /*
1693 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1694 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1695 * vmas. As there are no users of this flag in this call we simply
1696 * disallow this option for now.
1697 */
1698 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1699 return -EINVAL;
acc3c8d1 1700
d3649f68
CH
1701 down_read(&mm->mmap_sem);
1702 ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL,
1703 &locked, gup_flags | FOLL_TOUCH);
acc3c8d1
KS
1704 if (locked)
1705 up_read(&mm->mmap_sem);
d3649f68 1706 return ret;
4bbd4c77 1707}
d3649f68 1708EXPORT_SYMBOL(get_user_pages_unlocked);
2667f50e
SC
1709
1710/*
67a929e0 1711 * Fast GUP
2667f50e
SC
1712 *
1713 * get_user_pages_fast attempts to pin user pages by walking the page
1714 * tables directly and avoids taking locks. Thus the walker needs to be
1715 * protected from page table pages being freed from under it, and should
1716 * block any THP splits.
1717 *
1718 * One way to achieve this is to have the walker disable interrupts, and
1719 * rely on IPIs from the TLB flushing code blocking before the page table
1720 * pages are freed. This is unsuitable for architectures that do not need
1721 * to broadcast an IPI when invalidating TLBs.
1722 *
1723 * Another way to achieve this is to batch up page table containing pages
1724 * belonging to more than one mm_user, then rcu_sched a callback to free those
1725 * pages. Disabling interrupts will allow the fast_gup walker to both block
1726 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1727 * (which is a relatively rare event). The code below adopts this strategy.
1728 *
1729 * Before activating this code, please be aware that the following assumptions
1730 * are currently made:
1731 *
e585513b
KS
1732 * *) Either HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
1733 * free pages containing page tables or TLB flushing requires IPI broadcast.
2667f50e 1734 *
2667f50e
SC
1735 * *) ptes can be read atomically by the architecture.
1736 *
1737 * *) access_ok is sufficient to validate userspace address ranges.
1738 *
1739 * The last two assumptions can be relaxed by the addition of helper functions.
1740 *
1741 * This code is based heavily on the PowerPC implementation by Nick Piggin.
1742 */
67a929e0 1743#ifdef CONFIG_HAVE_FAST_GUP
39656e83
CH
1744#ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
1745/*
1746 * WARNING: only to be used in the get_user_pages_fast() implementation.
1747 *
1748 * With get_user_pages_fast(), we walk down the pagetables without taking any
1749 * locks. For this we would like to load the pointers atomically, but sometimes
1750 * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE). What
1751 * we do have is the guarantee that a PTE will only either go from not present
1752 * to present, or present to not present or both -- it will not switch to a
1753 * completely different present page without a TLB flush in between; something
1754 * that we are blocking by holding interrupts off.
1755 *
1756 * Setting ptes from not present to present goes:
1757 *
1758 * ptep->pte_high = h;
1759 * smp_wmb();
1760 * ptep->pte_low = l;
1761 *
1762 * And present to not present goes:
1763 *
1764 * ptep->pte_low = 0;
1765 * smp_wmb();
1766 * ptep->pte_high = 0;
1767 *
1768 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
1769 * We load pte_high *after* loading pte_low, which ensures we don't see an older
1770 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't
1771 * picked up a changed pte high. We might have gotten rubbish values from
1772 * pte_low and pte_high, but we are guaranteed that pte_low will not have the
1773 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
1774 * operates on present ptes we're safe.
1775 */
1776static inline pte_t gup_get_pte(pte_t *ptep)
1777{
1778 pte_t pte;
2667f50e 1779
39656e83
CH
1780 do {
1781 pte.pte_low = ptep->pte_low;
1782 smp_rmb();
1783 pte.pte_high = ptep->pte_high;
1784 smp_rmb();
1785 } while (unlikely(pte.pte_low != ptep->pte_low));
1786
1787 return pte;
1788}
1789#else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
0005d20b 1790/*
39656e83 1791 * We require that the PTE can be read atomically.
0005d20b
KS
1792 */
1793static inline pte_t gup_get_pte(pte_t *ptep)
1794{
1795 return READ_ONCE(*ptep);
1796}
39656e83 1797#endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
0005d20b 1798
b59f65fa
KS
1799static void undo_dev_pagemap(int *nr, int nr_start, struct page **pages)
1800{
1801 while ((*nr) - nr_start) {
1802 struct page *page = pages[--(*nr)];
1803
1804 ClearPageReferenced(page);
1805 put_page(page);
1806 }
1807}
1808
8fde12ca
LT
1809/*
1810 * Return the compund head page with ref appropriately incremented,
1811 * or NULL if that failed.
1812 */
1813static inline struct page *try_get_compound_head(struct page *page, int refs)
1814{
1815 struct page *head = compound_head(page);
1816 if (WARN_ON_ONCE(page_ref_count(head) < 0))
1817 return NULL;
1818 if (unlikely(!page_cache_add_speculative(head, refs)))
1819 return NULL;
1820 return head;
1821}
1822
3010a5ea 1823#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2667f50e 1824static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
b798bec4 1825 unsigned int flags, struct page **pages, int *nr)
2667f50e 1826{
b59f65fa
KS
1827 struct dev_pagemap *pgmap = NULL;
1828 int nr_start = *nr, ret = 0;
2667f50e 1829 pte_t *ptep, *ptem;
2667f50e
SC
1830
1831 ptem = ptep = pte_offset_map(&pmd, addr);
1832 do {
0005d20b 1833 pte_t pte = gup_get_pte(ptep);
7aef4172 1834 struct page *head, *page;
2667f50e
SC
1835
1836 /*
1837 * Similar to the PMD case below, NUMA hinting must take slow
8a0516ed 1838 * path using the pte_protnone check.
2667f50e 1839 */
e7884f8e
KS
1840 if (pte_protnone(pte))
1841 goto pte_unmap;
1842
b798bec4 1843 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
e7884f8e
KS
1844 goto pte_unmap;
1845
b59f65fa 1846 if (pte_devmap(pte)) {
7af75561
IW
1847 if (unlikely(flags & FOLL_LONGTERM))
1848 goto pte_unmap;
1849
b59f65fa
KS
1850 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
1851 if (unlikely(!pgmap)) {
1852 undo_dev_pagemap(nr, nr_start, pages);
1853 goto pte_unmap;
1854 }
1855 } else if (pte_special(pte))
2667f50e
SC
1856 goto pte_unmap;
1857
1858 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1859 page = pte_page(pte);
1860
8fde12ca
LT
1861 head = try_get_compound_head(page, 1);
1862 if (!head)
2667f50e
SC
1863 goto pte_unmap;
1864
1865 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
7aef4172 1866 put_page(head);
2667f50e
SC
1867 goto pte_unmap;
1868 }
1869
7aef4172 1870 VM_BUG_ON_PAGE(compound_head(page) != head, page);
e9348053
KS
1871
1872 SetPageReferenced(page);
2667f50e
SC
1873 pages[*nr] = page;
1874 (*nr)++;
1875
1876 } while (ptep++, addr += PAGE_SIZE, addr != end);
1877
1878 ret = 1;
1879
1880pte_unmap:
832d7aa0
CH
1881 if (pgmap)
1882 put_dev_pagemap(pgmap);
2667f50e
SC
1883 pte_unmap(ptem);
1884 return ret;
1885}
1886#else
1887
1888/*
1889 * If we can't determine whether or not a pte is special, then fail immediately
1890 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1891 * to be special.
1892 *
1893 * For a futex to be placed on a THP tail page, get_futex_key requires a
1894 * __get_user_pages_fast implementation that can pin pages. Thus it's still
1895 * useful to have gup_huge_pmd even if we can't operate on ptes.
1896 */
1897static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
b798bec4 1898 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
1899{
1900 return 0;
1901}
3010a5ea 1902#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2667f50e 1903
09180ca4 1904#if defined(__HAVE_ARCH_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
b59f65fa
KS
1905static int __gup_device_huge(unsigned long pfn, unsigned long addr,
1906 unsigned long end, struct page **pages, int *nr)
1907{
1908 int nr_start = *nr;
1909 struct dev_pagemap *pgmap = NULL;
1910
1911 do {
1912 struct page *page = pfn_to_page(pfn);
1913
1914 pgmap = get_dev_pagemap(pfn, pgmap);
1915 if (unlikely(!pgmap)) {
1916 undo_dev_pagemap(nr, nr_start, pages);
1917 return 0;
1918 }
1919 SetPageReferenced(page);
1920 pages[*nr] = page;
1921 get_page(page);
b59f65fa
KS
1922 (*nr)++;
1923 pfn++;
1924 } while (addr += PAGE_SIZE, addr != end);
832d7aa0
CH
1925
1926 if (pgmap)
1927 put_dev_pagemap(pgmap);
b59f65fa
KS
1928 return 1;
1929}
1930
a9b6de77 1931static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
b59f65fa
KS
1932 unsigned long end, struct page **pages, int *nr)
1933{
1934 unsigned long fault_pfn;
a9b6de77
DW
1935 int nr_start = *nr;
1936
1937 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1938 if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
1939 return 0;
b59f65fa 1940
a9b6de77
DW
1941 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1942 undo_dev_pagemap(nr, nr_start, pages);
1943 return 0;
1944 }
1945 return 1;
b59f65fa
KS
1946}
1947
a9b6de77 1948static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
b59f65fa
KS
1949 unsigned long end, struct page **pages, int *nr)
1950{
1951 unsigned long fault_pfn;
a9b6de77
DW
1952 int nr_start = *nr;
1953
1954 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1955 if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
1956 return 0;
b59f65fa 1957
a9b6de77
DW
1958 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1959 undo_dev_pagemap(nr, nr_start, pages);
1960 return 0;
1961 }
1962 return 1;
b59f65fa
KS
1963}
1964#else
a9b6de77 1965static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
b59f65fa
KS
1966 unsigned long end, struct page **pages, int *nr)
1967{
1968 BUILD_BUG();
1969 return 0;
1970}
1971
a9b6de77 1972static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
b59f65fa
KS
1973 unsigned long end, struct page **pages, int *nr)
1974{
1975 BUILD_BUG();
1976 return 0;
1977}
1978#endif
1979
cbd34da7
CH
1980#ifdef CONFIG_ARCH_HAS_HUGEPD
1981static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
1982 unsigned long sz)
1983{
1984 unsigned long __boundary = (addr + sz) & ~(sz-1);
1985 return (__boundary - 1 < end - 1) ? __boundary : end;
1986}
1987
1988static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
1989 unsigned long end, int write, struct page **pages, int *nr)
1990{
1991 unsigned long pte_end;
1992 struct page *head, *page;
1993 pte_t pte;
1994 int refs;
1995
1996 pte_end = (addr + sz) & ~(sz-1);
1997 if (pte_end < end)
1998 end = pte_end;
1999
2000 pte = READ_ONCE(*ptep);
2001
2002 if (!pte_access_permitted(pte, write))
2003 return 0;
2004
2005 /* hugepages are never "special" */
2006 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2007
2008 refs = 0;
2009 head = pte_page(pte);
2010
2011 page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
2012 do {
2013 VM_BUG_ON(compound_head(page) != head);
2014 pages[*nr] = page;
2015 (*nr)++;
2016 page++;
2017 refs++;
2018 } while (addr += PAGE_SIZE, addr != end);
2019
01a36916
CH
2020 head = try_get_compound_head(head, refs);
2021 if (!head) {
cbd34da7
CH
2022 *nr -= refs;
2023 return 0;
2024 }
2025
2026 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2027 /* Could be optimized better */
2028 *nr -= refs;
2029 while (refs--)
2030 put_page(head);
2031 return 0;
2032 }
2033
520b4a44 2034 SetPageReferenced(head);
cbd34da7
CH
2035 return 1;
2036}
2037
2038static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2039 unsigned int pdshift, unsigned long end, int write,
2040 struct page **pages, int *nr)
2041{
2042 pte_t *ptep;
2043 unsigned long sz = 1UL << hugepd_shift(hugepd);
2044 unsigned long next;
2045
2046 ptep = hugepte_offset(hugepd, addr, pdshift);
2047 do {
2048 next = hugepte_addr_end(addr, end, sz);
2049 if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
2050 return 0;
2051 } while (ptep++, addr = next, addr != end);
2052
2053 return 1;
2054}
2055#else
2056static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2057 unsigned pdshift, unsigned long end, int write,
2058 struct page **pages, int *nr)
2059{
2060 return 0;
2061}
2062#endif /* CONFIG_ARCH_HAS_HUGEPD */
2063
2667f50e 2064static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
b798bec4 2065 unsigned long end, unsigned int flags, struct page **pages, int *nr)
2667f50e 2066{
ddc58f27 2067 struct page *head, *page;
2667f50e
SC
2068 int refs;
2069
b798bec4 2070 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
2071 return 0;
2072
7af75561
IW
2073 if (pmd_devmap(orig)) {
2074 if (unlikely(flags & FOLL_LONGTERM))
2075 return 0;
a9b6de77 2076 return __gup_device_huge_pmd(orig, pmdp, addr, end, pages, nr);
7af75561 2077 }
b59f65fa 2078
2667f50e 2079 refs = 0;
d63206ee 2080 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2667f50e 2081 do {
2667f50e
SC
2082 pages[*nr] = page;
2083 (*nr)++;
2084 page++;
2085 refs++;
2086 } while (addr += PAGE_SIZE, addr != end);
2087
8fde12ca
LT
2088 head = try_get_compound_head(pmd_page(orig), refs);
2089 if (!head) {
2667f50e
SC
2090 *nr -= refs;
2091 return 0;
2092 }
2093
2094 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2095 *nr -= refs;
2096 while (refs--)
2097 put_page(head);
2098 return 0;
2099 }
2100
e9348053 2101 SetPageReferenced(head);
2667f50e
SC
2102 return 1;
2103}
2104
2105static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
b798bec4 2106 unsigned long end, unsigned int flags, struct page **pages, int *nr)
2667f50e 2107{
ddc58f27 2108 struct page *head, *page;
2667f50e
SC
2109 int refs;
2110
b798bec4 2111 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
2112 return 0;
2113
7af75561
IW
2114 if (pud_devmap(orig)) {
2115 if (unlikely(flags & FOLL_LONGTERM))
2116 return 0;
a9b6de77 2117 return __gup_device_huge_pud(orig, pudp, addr, end, pages, nr);
7af75561 2118 }
b59f65fa 2119
2667f50e 2120 refs = 0;
d63206ee 2121 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2667f50e 2122 do {
2667f50e
SC
2123 pages[*nr] = page;
2124 (*nr)++;
2125 page++;
2126 refs++;
2127 } while (addr += PAGE_SIZE, addr != end);
2128
8fde12ca
LT
2129 head = try_get_compound_head(pud_page(orig), refs);
2130 if (!head) {
2667f50e
SC
2131 *nr -= refs;
2132 return 0;
2133 }
2134
2135 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2136 *nr -= refs;
2137 while (refs--)
2138 put_page(head);
2139 return 0;
2140 }
2141
e9348053 2142 SetPageReferenced(head);
2667f50e
SC
2143 return 1;
2144}
2145
f30c59e9 2146static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
b798bec4 2147 unsigned long end, unsigned int flags,
f30c59e9
AK
2148 struct page **pages, int *nr)
2149{
2150 int refs;
ddc58f27 2151 struct page *head, *page;
f30c59e9 2152
b798bec4 2153 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
f30c59e9
AK
2154 return 0;
2155
b59f65fa 2156 BUILD_BUG_ON(pgd_devmap(orig));
f30c59e9 2157 refs = 0;
d63206ee 2158 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
f30c59e9 2159 do {
f30c59e9
AK
2160 pages[*nr] = page;
2161 (*nr)++;
2162 page++;
2163 refs++;
2164 } while (addr += PAGE_SIZE, addr != end);
2165
8fde12ca
LT
2166 head = try_get_compound_head(pgd_page(orig), refs);
2167 if (!head) {
f30c59e9
AK
2168 *nr -= refs;
2169 return 0;
2170 }
2171
2172 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2173 *nr -= refs;
2174 while (refs--)
2175 put_page(head);
2176 return 0;
2177 }
2178
e9348053 2179 SetPageReferenced(head);
f30c59e9
AK
2180 return 1;
2181}
2182
2667f50e 2183static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
b798bec4 2184 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2185{
2186 unsigned long next;
2187 pmd_t *pmdp;
2188
2189 pmdp = pmd_offset(&pud, addr);
2190 do {
38c5ce93 2191 pmd_t pmd = READ_ONCE(*pmdp);
2667f50e
SC
2192
2193 next = pmd_addr_end(addr, end);
84c3fc4e 2194 if (!pmd_present(pmd))
2667f50e
SC
2195 return 0;
2196
414fd080
YZ
2197 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2198 pmd_devmap(pmd))) {
2667f50e
SC
2199 /*
2200 * NUMA hinting faults need to be handled in the GUP
2201 * slowpath for accounting purposes and so that they
2202 * can be serialised against THP migration.
2203 */
8a0516ed 2204 if (pmd_protnone(pmd))
2667f50e
SC
2205 return 0;
2206
b798bec4 2207 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2667f50e
SC
2208 pages, nr))
2209 return 0;
2210
f30c59e9
AK
2211 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2212 /*
2213 * architecture have different format for hugetlbfs
2214 * pmd format and THP pmd format
2215 */
2216 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
b798bec4 2217 PMD_SHIFT, next, flags, pages, nr))
f30c59e9 2218 return 0;
b798bec4 2219 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2923117b 2220 return 0;
2667f50e
SC
2221 } while (pmdp++, addr = next, addr != end);
2222
2223 return 1;
2224}
2225
c2febafc 2226static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
b798bec4 2227 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2228{
2229 unsigned long next;
2230 pud_t *pudp;
2231
c2febafc 2232 pudp = pud_offset(&p4d, addr);
2667f50e 2233 do {
e37c6982 2234 pud_t pud = READ_ONCE(*pudp);
2667f50e
SC
2235
2236 next = pud_addr_end(addr, end);
2237 if (pud_none(pud))
2238 return 0;
f30c59e9 2239 if (unlikely(pud_huge(pud))) {
b798bec4 2240 if (!gup_huge_pud(pud, pudp, addr, next, flags,
f30c59e9
AK
2241 pages, nr))
2242 return 0;
2243 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2244 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
b798bec4 2245 PUD_SHIFT, next, flags, pages, nr))
2667f50e 2246 return 0;
b798bec4 2247 } else if (!gup_pmd_range(pud, addr, next, flags, pages, nr))
2667f50e
SC
2248 return 0;
2249 } while (pudp++, addr = next, addr != end);
2250
2251 return 1;
2252}
2253
c2febafc 2254static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
b798bec4 2255 unsigned int flags, struct page **pages, int *nr)
c2febafc
KS
2256{
2257 unsigned long next;
2258 p4d_t *p4dp;
2259
2260 p4dp = p4d_offset(&pgd, addr);
2261 do {
2262 p4d_t p4d = READ_ONCE(*p4dp);
2263
2264 next = p4d_addr_end(addr, end);
2265 if (p4d_none(p4d))
2266 return 0;
2267 BUILD_BUG_ON(p4d_huge(p4d));
2268 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2269 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
b798bec4 2270 P4D_SHIFT, next, flags, pages, nr))
c2febafc 2271 return 0;
b798bec4 2272 } else if (!gup_pud_range(p4d, addr, next, flags, pages, nr))
c2febafc
KS
2273 return 0;
2274 } while (p4dp++, addr = next, addr != end);
2275
2276 return 1;
2277}
2278
5b65c467 2279static void gup_pgd_range(unsigned long addr, unsigned long end,
b798bec4 2280 unsigned int flags, struct page **pages, int *nr)
5b65c467
KS
2281{
2282 unsigned long next;
2283 pgd_t *pgdp;
2284
2285 pgdp = pgd_offset(current->mm, addr);
2286 do {
2287 pgd_t pgd = READ_ONCE(*pgdp);
2288
2289 next = pgd_addr_end(addr, end);
2290 if (pgd_none(pgd))
2291 return;
2292 if (unlikely(pgd_huge(pgd))) {
b798bec4 2293 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
5b65c467
KS
2294 pages, nr))
2295 return;
2296 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2297 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
b798bec4 2298 PGDIR_SHIFT, next, flags, pages, nr))
5b65c467 2299 return;
b798bec4 2300 } else if (!gup_p4d_range(pgd, addr, next, flags, pages, nr))
5b65c467
KS
2301 return;
2302 } while (pgdp++, addr = next, addr != end);
2303}
050a9adc
CH
2304#else
2305static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2306 unsigned int flags, struct page **pages, int *nr)
2307{
2308}
2309#endif /* CONFIG_HAVE_FAST_GUP */
5b65c467
KS
2310
2311#ifndef gup_fast_permitted
2312/*
2313 * Check if it's allowed to use __get_user_pages_fast() for the range, or
2314 * we need to fall back to the slow version:
2315 */
26f4c328 2316static bool gup_fast_permitted(unsigned long start, unsigned long end)
5b65c467 2317{
26f4c328 2318 return true;
5b65c467
KS
2319}
2320#endif
2321
2667f50e
SC
2322/*
2323 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
d0811078
MT
2324 * the regular GUP.
2325 * Note a difference with get_user_pages_fast: this always returns the
2326 * number of pages pinned, 0 if no pages were pinned.
050a9adc
CH
2327 *
2328 * If the architecture does not support this function, simply return with no
2329 * pages pinned.
2667f50e
SC
2330 */
2331int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
2332 struct page **pages)
2333{
d4faa402 2334 unsigned long len, end;
5b65c467 2335 unsigned long flags;
2667f50e
SC
2336 int nr = 0;
2337
f455c854 2338 start = untagged_addr(start) & PAGE_MASK;
2667f50e
SC
2339 len = (unsigned long) nr_pages << PAGE_SHIFT;
2340 end = start + len;
2341
26f4c328
CH
2342 if (end <= start)
2343 return 0;
96d4f267 2344 if (unlikely(!access_ok((void __user *)start, len)))
2667f50e
SC
2345 return 0;
2346
2347 /*
2348 * Disable interrupts. We use the nested form as we can already have
2349 * interrupts disabled by get_futex_key.
2350 *
2351 * With interrupts disabled, we block page table pages from being
2ebe8228
FW
2352 * freed from under us. See struct mmu_table_batch comments in
2353 * include/asm-generic/tlb.h for more details.
2667f50e
SC
2354 *
2355 * We do not adopt an rcu_read_lock(.) here as we also want to
2356 * block IPIs that come from THPs splitting.
2357 */
2358
050a9adc
CH
2359 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) &&
2360 gup_fast_permitted(start, end)) {
5b65c467 2361 local_irq_save(flags);
b798bec4 2362 gup_pgd_range(start, end, write ? FOLL_WRITE : 0, pages, &nr);
5b65c467
KS
2363 local_irq_restore(flags);
2364 }
2667f50e
SC
2365
2366 return nr;
2367}
050a9adc 2368EXPORT_SYMBOL_GPL(__get_user_pages_fast);
2667f50e 2369
7af75561
IW
2370static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2371 unsigned int gup_flags, struct page **pages)
2372{
2373 int ret;
2374
2375 /*
2376 * FIXME: FOLL_LONGTERM does not work with
2377 * get_user_pages_unlocked() (see comments in that function)
2378 */
2379 if (gup_flags & FOLL_LONGTERM) {
2380 down_read(&current->mm->mmap_sem);
2381 ret = __gup_longterm_locked(current, current->mm,
2382 start, nr_pages,
2383 pages, NULL, gup_flags);
2384 up_read(&current->mm->mmap_sem);
2385 } else {
2386 ret = get_user_pages_unlocked(start, nr_pages,
2387 pages, gup_flags);
2388 }
2389
2390 return ret;
2391}
2392
2667f50e
SC
2393/**
2394 * get_user_pages_fast() - pin user pages in memory
2395 * @start: starting user address
2396 * @nr_pages: number of pages from start to pin
73b0140b 2397 * @gup_flags: flags modifying pin behaviour
2667f50e
SC
2398 * @pages: array that receives pointers to the pages pinned.
2399 * Should be at least nr_pages long.
2400 *
2401 * Attempt to pin user pages in memory without taking mm->mmap_sem.
2402 * If not successful, it will fall back to taking the lock and
2403 * calling get_user_pages().
2404 *
2405 * Returns number of pages pinned. This may be fewer than the number
2406 * requested. If nr_pages is 0 or negative, returns 0. If no pages
2407 * were pinned, returns -errno.
2408 */
73b0140b
IW
2409int get_user_pages_fast(unsigned long start, int nr_pages,
2410 unsigned int gup_flags, struct page **pages)
2667f50e 2411{
5b65c467 2412 unsigned long addr, len, end;
73e10a61 2413 int nr = 0, ret = 0;
2667f50e 2414
817be129
CH
2415 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM)))
2416 return -EINVAL;
2417
f455c854 2418 start = untagged_addr(start) & PAGE_MASK;
5b65c467
KS
2419 addr = start;
2420 len = (unsigned long) nr_pages << PAGE_SHIFT;
2421 end = start + len;
2422
26f4c328 2423 if (end <= start)
c61611f7 2424 return 0;
96d4f267 2425 if (unlikely(!access_ok((void __user *)start, len)))
c61611f7 2426 return -EFAULT;
73e10a61 2427
050a9adc
CH
2428 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) &&
2429 gup_fast_permitted(start, end)) {
5b65c467 2430 local_irq_disable();
73b0140b 2431 gup_pgd_range(addr, end, gup_flags, pages, &nr);
5b65c467 2432 local_irq_enable();
73e10a61
KS
2433 ret = nr;
2434 }
2667f50e
SC
2435
2436 if (nr < nr_pages) {
2437 /* Try to get the remaining pages with get_user_pages */
2438 start += nr << PAGE_SHIFT;
2439 pages += nr;
2440
7af75561
IW
2441 ret = __gup_longterm_unlocked(start, nr_pages - nr,
2442 gup_flags, pages);
2667f50e
SC
2443
2444 /* Have to be a bit careful with return values */
2445 if (nr > 0) {
2446 if (ret < 0)
2447 ret = nr;
2448 else
2449 ret += nr;
2450 }
2451 }
2452
2453 return ret;
2454}
050a9adc 2455EXPORT_SYMBOL_GPL(get_user_pages_fast);