mm/gup: handle hugepd for follow_page()
[linux-2.6-block.git] / mm / gup.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
4bbd4c77
KS
2#include <linux/kernel.h>
3#include <linux/errno.h>
4#include <linux/err.h>
5#include <linux/spinlock.h>
6
4bbd4c77 7#include <linux/mm.h>
3565fce3 8#include <linux/memremap.h>
4bbd4c77
KS
9#include <linux/pagemap.h>
10#include <linux/rmap.h>
11#include <linux/swap.h>
12#include <linux/swapops.h>
1507f512 13#include <linux/secretmem.h>
4bbd4c77 14
174cd4b1 15#include <linux/sched/signal.h>
2667f50e 16#include <linux/rwsem.h>
f30c59e9 17#include <linux/hugetlb.h>
9a4e9f3b
AK
18#include <linux/migrate.h>
19#include <linux/mm_inline.h>
20#include <linux/sched/mm.h>
a6e79df9 21#include <linux/shmem_fs.h>
1027e443 22
33a709b2 23#include <asm/mmu_context.h>
1027e443 24#include <asm/tlbflush.h>
2667f50e 25
4bbd4c77
KS
26#include "internal.h"
27
df06b37f
KB
28struct follow_page_context {
29 struct dev_pagemap *pgmap;
30 unsigned int page_mask;
31};
32
b6a2619c
DH
33static inline void sanity_check_pinned_pages(struct page **pages,
34 unsigned long npages)
35{
36 if (!IS_ENABLED(CONFIG_DEBUG_VM))
37 return;
38
39 /*
40 * We only pin anonymous pages if they are exclusive. Once pinned, we
41 * can no longer turn them possibly shared and PageAnonExclusive() will
42 * stick around until the page is freed.
43 *
44 * We'd like to verify that our pinned anonymous pages are still mapped
45 * exclusively. The issue with anon THP is that we don't know how
46 * they are/were mapped when pinning them. However, for anon
47 * THP we can assume that either the given page (PTE-mapped THP) or
48 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
49 * neither is the case, there is certainly something wrong.
50 */
51 for (; npages; npages--, pages++) {
52 struct page *page = *pages;
53 struct folio *folio = page_folio(page);
54
c8070b78
DH
55 if (is_zero_page(page) ||
56 !folio_test_anon(folio))
b6a2619c
DH
57 continue;
58 if (!folio_test_large(folio) || folio_test_hugetlb(folio))
59 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
60 else
61 /* Either a PTE-mapped or a PMD-mapped THP. */
62 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
63 !PageAnonExclusive(page), page);
64 }
65}
66
cd1adf1b 67/*
ece1ed7b 68 * Return the folio with ref appropriately incremented,
cd1adf1b 69 * or NULL if that failed.
a707cdd5 70 */
ece1ed7b 71static inline struct folio *try_get_folio(struct page *page, int refs)
a707cdd5 72{
ece1ed7b 73 struct folio *folio;
a707cdd5 74
59409373 75retry:
ece1ed7b
MWO
76 folio = page_folio(page);
77 if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
a707cdd5 78 return NULL;
ece1ed7b 79 if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
a707cdd5 80 return NULL;
c24d3732
JH
81
82 /*
ece1ed7b
MWO
83 * At this point we have a stable reference to the folio; but it
84 * could be that between calling page_folio() and the refcount
85 * increment, the folio was split, in which case we'd end up
86 * holding a reference on a folio that has nothing to do with the page
c24d3732 87 * we were given anymore.
ece1ed7b
MWO
88 * So now that the folio is stable, recheck that the page still
89 * belongs to this folio.
c24d3732 90 */
ece1ed7b 91 if (unlikely(page_folio(page) != folio)) {
f4f451a1
MS
92 if (!put_devmap_managed_page_refs(&folio->page, refs))
93 folio_put_refs(folio, refs);
59409373 94 goto retry;
c24d3732
JH
95 }
96
ece1ed7b 97 return folio;
a707cdd5
JH
98}
99
3967db22 100/**
ece1ed7b 101 * try_grab_folio() - Attempt to get or pin a folio.
3967db22 102 * @page: pointer to page to be grabbed
ece1ed7b 103 * @refs: the value to (effectively) add to the folio's refcount
3967db22
JH
104 * @flags: gup flags: these are the FOLL_* flag values.
105 *
3faa52c0 106 * "grab" names in this file mean, "look at flags to decide whether to use
ece1ed7b 107 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
3faa52c0
JH
108 *
109 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
110 * same time. (That's true throughout the get_user_pages*() and
111 * pin_user_pages*() APIs.) Cases:
112 *
ece1ed7b 113 * FOLL_GET: folio's refcount will be incremented by @refs.
3967db22 114 *
ece1ed7b 115 * FOLL_PIN on large folios: folio's refcount will be incremented by
94688e8e 116 * @refs, and its pincount will be incremented by @refs.
3967db22 117 *
ece1ed7b 118 * FOLL_PIN on single-page folios: folio's refcount will be incremented by
5232c63f 119 * @refs * GUP_PIN_COUNTING_BIAS.
3faa52c0 120 *
ece1ed7b
MWO
121 * Return: The folio containing @page (with refcount appropriately
122 * incremented) for success, or NULL upon failure. If neither FOLL_GET
123 * nor FOLL_PIN was set, that's considered failure, and furthermore,
124 * a likely bug in the caller, so a warning is also emitted.
3faa52c0 125 */
ece1ed7b 126struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
3faa52c0 127{
503670ee
VMO
128 struct folio *folio;
129
130 if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0))
131 return NULL;
132
4003f107
LG
133 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
134 return NULL;
135
3faa52c0 136 if (flags & FOLL_GET)
ece1ed7b 137 return try_get_folio(page, refs);
ece1ed7b 138
503670ee 139 /* FOLL_PIN is set */
c8070b78 140
6e17c6de
LT
141 /*
142 * Don't take a pin on the zero page - it's not going anywhere
143 * and it is used in a *lot* of places.
144 */
145 if (is_zero_page(page))
146 return page_folio(page);
df3a0a21 147
6e17c6de 148 folio = try_get_folio(page, refs);
503670ee
VMO
149 if (!folio)
150 return NULL;
c24d3732 151
503670ee
VMO
152 /*
153 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
154 * right zone, so fail and let the caller fall back to the slow
155 * path.
156 */
157 if (unlikely((flags & FOLL_LONGTERM) &&
158 !folio_is_longterm_pinnable(folio))) {
159 if (!put_devmap_managed_page_refs(&folio->page, refs))
160 folio_put_refs(folio, refs);
161 return NULL;
3faa52c0 162 }
088b8aa5 163
503670ee
VMO
164 /*
165 * When pinning a large folio, use an exact count to track it.
166 *
167 * However, be sure to *also* increment the normal folio
168 * refcount field at least once, so that the folio really
169 * is pinned. That's why the refcount from the earlier
170 * try_get_folio() is left intact.
171 */
172 if (folio_test_large(folio))
173 atomic_add(refs, &folio->_pincount);
174 else
175 folio_ref_add(folio,
176 refs * (GUP_PIN_COUNTING_BIAS - 1));
177 /*
178 * Adjust the pincount before re-checking the PTE for changes.
179 * This is essentially a smp_mb() and is paired with a memory
e3b4b137 180 * barrier in folio_try_share_anon_rmap_*().
503670ee
VMO
181 */
182 smp_mb__after_atomic();
47e29d32 183
503670ee 184 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
3faa52c0 185
503670ee 186 return folio;
3faa52c0
JH
187}
188
d8ddc099 189static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
4509b42c
JG
190{
191 if (flags & FOLL_PIN) {
c8070b78
DH
192 if (is_zero_folio(folio))
193 return;
d8ddc099
MWO
194 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
195 if (folio_test_large(folio))
94688e8e 196 atomic_sub(refs, &folio->_pincount);
4509b42c
JG
197 else
198 refs *= GUP_PIN_COUNTING_BIAS;
199 }
200
f4f451a1
MS
201 if (!put_devmap_managed_page_refs(&folio->page, refs))
202 folio_put_refs(folio, refs);
4509b42c
JG
203}
204
3faa52c0
JH
205/**
206 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
5fec0719
MWO
207 * @page: pointer to page to be grabbed
208 * @flags: gup flags: these are the FOLL_* flag values.
3faa52c0
JH
209 *
210 * This might not do anything at all, depending on the flags argument.
211 *
212 * "grab" names in this file mean, "look at flags to decide whether to use
213 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
214 *
3faa52c0 215 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
ece1ed7b 216 * time. Cases: please see the try_grab_folio() documentation, with
3967db22 217 * "refs=1".
3faa52c0 218 *
0f089235
LG
219 * Return: 0 for success, or if no action was required (if neither FOLL_PIN
220 * nor FOLL_GET was set, nothing is done). A negative error code for failure:
221 *
222 * -ENOMEM FOLL_GET or FOLL_PIN was set, but the page could not
223 * be grabbed.
3faa52c0 224 */
0f089235 225int __must_check try_grab_page(struct page *page, unsigned int flags)
3faa52c0 226{
5fec0719
MWO
227 struct folio *folio = page_folio(page);
228
5fec0719 229 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
0f089235 230 return -ENOMEM;
3faa52c0 231
4003f107
LG
232 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
233 return -EREMOTEIO;
3faa52c0 234
c36c04c2 235 if (flags & FOLL_GET)
5fec0719 236 folio_ref_inc(folio);
c36c04c2 237 else if (flags & FOLL_PIN) {
c8070b78
DH
238 /*
239 * Don't take a pin on the zero page - it's not going anywhere
240 * and it is used in a *lot* of places.
241 */
242 if (is_zero_page(page))
243 return 0;
244
c36c04c2 245 /*
5fec0719 246 * Similar to try_grab_folio(): be sure to *also*
78d9d6ce
MWO
247 * increment the normal page refcount field at least once,
248 * so that the page really is pinned.
c36c04c2 249 */
5fec0719
MWO
250 if (folio_test_large(folio)) {
251 folio_ref_add(folio, 1);
94688e8e 252 atomic_add(1, &folio->_pincount);
8ea2979c 253 } else {
5fec0719 254 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
8ea2979c 255 }
c36c04c2 256
5fec0719 257 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
c36c04c2
JH
258 }
259
0f089235 260 return 0;
3faa52c0
JH
261}
262
3faa52c0
JH
263/**
264 * unpin_user_page() - release a dma-pinned page
265 * @page: pointer to page to be released
266 *
267 * Pages that were pinned via pin_user_pages*() must be released via either
268 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
269 * that such pages can be separately tracked and uniquely handled. In
270 * particular, interactions with RDMA and filesystems need special handling.
271 */
272void unpin_user_page(struct page *page)
273{
b6a2619c 274 sanity_check_pinned_pages(&page, 1);
d8ddc099 275 gup_put_folio(page_folio(page), 1, FOLL_PIN);
3faa52c0
JH
276}
277EXPORT_SYMBOL(unpin_user_page);
278
1101fb8f
DH
279/**
280 * folio_add_pin - Try to get an additional pin on a pinned folio
281 * @folio: The folio to be pinned
282 *
283 * Get an additional pin on a folio we already have a pin on. Makes no change
284 * if the folio is a zero_page.
285 */
286void folio_add_pin(struct folio *folio)
287{
288 if (is_zero_folio(folio))
289 return;
290
291 /*
292 * Similar to try_grab_folio(): be sure to *also* increment the normal
293 * page refcount field at least once, so that the page really is
294 * pinned.
295 */
296 if (folio_test_large(folio)) {
297 WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1);
298 folio_ref_inc(folio);
299 atomic_inc(&folio->_pincount);
300 } else {
301 WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS);
302 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
303 }
304}
305
659508f9 306static inline struct folio *gup_folio_range_next(struct page *start,
8f39f5fc 307 unsigned long npages, unsigned long i, unsigned int *ntails)
458a4f78 308{
659508f9
MWO
309 struct page *next = nth_page(start, i);
310 struct folio *folio = page_folio(next);
458a4f78
JM
311 unsigned int nr = 1;
312
659508f9 313 if (folio_test_large(folio))
4c654229 314 nr = min_t(unsigned int, npages - i,
659508f9 315 folio_nr_pages(folio) - folio_page_idx(folio, next));
458a4f78 316
458a4f78 317 *ntails = nr;
659508f9 318 return folio;
458a4f78
JM
319}
320
12521c76 321static inline struct folio *gup_folio_next(struct page **list,
28297dbc 322 unsigned long npages, unsigned long i, unsigned int *ntails)
8745d7f6 323{
12521c76 324 struct folio *folio = page_folio(list[i]);
8745d7f6
JM
325 unsigned int nr;
326
8745d7f6 327 for (nr = i + 1; nr < npages; nr++) {
12521c76 328 if (page_folio(list[nr]) != folio)
8745d7f6
JM
329 break;
330 }
331
8745d7f6 332 *ntails = nr - i;
12521c76 333 return folio;
8745d7f6
JM
334}
335
fc1d8e7c 336/**
f1f6a7dd 337 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
2d15eb31 338 * @pages: array of pages to be maybe marked dirty, and definitely released.
fc1d8e7c 339 * @npages: number of pages in the @pages array.
2d15eb31 340 * @make_dirty: whether to mark the pages dirty
fc1d8e7c
JH
341 *
342 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
343 * variants called on that page.
344 *
345 * For each page in the @pages array, make that page (or its head page, if a
2d15eb31 346 * compound page) dirty, if @make_dirty is true, and if the page was previously
f1f6a7dd
JH
347 * listed as clean. In any case, releases all pages using unpin_user_page(),
348 * possibly via unpin_user_pages(), for the non-dirty case.
fc1d8e7c 349 *
f1f6a7dd 350 * Please see the unpin_user_page() documentation for details.
fc1d8e7c 351 *
2d15eb31 352 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
353 * required, then the caller should a) verify that this is really correct,
354 * because _lock() is usually required, and b) hand code it:
f1f6a7dd 355 * set_page_dirty_lock(), unpin_user_page().
fc1d8e7c
JH
356 *
357 */
f1f6a7dd
JH
358void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
359 bool make_dirty)
fc1d8e7c 360{
12521c76
MWO
361 unsigned long i;
362 struct folio *folio;
363 unsigned int nr;
2d15eb31 364
365 if (!make_dirty) {
f1f6a7dd 366 unpin_user_pages(pages, npages);
2d15eb31 367 return;
368 }
369
b6a2619c 370 sanity_check_pinned_pages(pages, npages);
12521c76
MWO
371 for (i = 0; i < npages; i += nr) {
372 folio = gup_folio_next(pages, npages, i, &nr);
2d15eb31 373 /*
374 * Checking PageDirty at this point may race with
375 * clear_page_dirty_for_io(), but that's OK. Two key
376 * cases:
377 *
378 * 1) This code sees the page as already dirty, so it
379 * skips the call to set_page_dirty(). That could happen
380 * because clear_page_dirty_for_io() called
381 * page_mkclean(), followed by set_page_dirty().
382 * However, now the page is going to get written back,
383 * which meets the original intention of setting it
384 * dirty, so all is well: clear_page_dirty_for_io() goes
385 * on to call TestClearPageDirty(), and write the page
386 * back.
387 *
388 * 2) This code sees the page as clean, so it calls
389 * set_page_dirty(). The page stays dirty, despite being
390 * written back, so it gets written back again in the
391 * next writeback cycle. This is harmless.
392 */
12521c76
MWO
393 if (!folio_test_dirty(folio)) {
394 folio_lock(folio);
395 folio_mark_dirty(folio);
396 folio_unlock(folio);
397 }
398 gup_put_folio(folio, nr, FOLL_PIN);
2d15eb31 399 }
fc1d8e7c 400}
f1f6a7dd 401EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
fc1d8e7c 402
458a4f78
JM
403/**
404 * unpin_user_page_range_dirty_lock() - release and optionally dirty
405 * gup-pinned page range
406 *
407 * @page: the starting page of a range maybe marked dirty, and definitely released.
408 * @npages: number of consecutive pages to release.
409 * @make_dirty: whether to mark the pages dirty
410 *
411 * "gup-pinned page range" refers to a range of pages that has had one of the
412 * pin_user_pages() variants called on that page.
413 *
414 * For the page ranges defined by [page .. page+npages], make that range (or
415 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
416 * page range was previously listed as clean.
417 *
418 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
419 * required, then the caller should a) verify that this is really correct,
420 * because _lock() is usually required, and b) hand code it:
421 * set_page_dirty_lock(), unpin_user_page().
422 *
423 */
424void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
425 bool make_dirty)
426{
659508f9
MWO
427 unsigned long i;
428 struct folio *folio;
429 unsigned int nr;
430
431 for (i = 0; i < npages; i += nr) {
432 folio = gup_folio_range_next(page, npages, i, &nr);
433 if (make_dirty && !folio_test_dirty(folio)) {
434 folio_lock(folio);
435 folio_mark_dirty(folio);
436 folio_unlock(folio);
437 }
438 gup_put_folio(folio, nr, FOLL_PIN);
458a4f78
JM
439 }
440}
441EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
442
b6a2619c
DH
443static void unpin_user_pages_lockless(struct page **pages, unsigned long npages)
444{
445 unsigned long i;
446 struct folio *folio;
447 unsigned int nr;
448
449 /*
450 * Don't perform any sanity checks because we might have raced with
451 * fork() and some anonymous pages might now actually be shared --
452 * which is why we're unpinning after all.
453 */
454 for (i = 0; i < npages; i += nr) {
455 folio = gup_folio_next(pages, npages, i, &nr);
456 gup_put_folio(folio, nr, FOLL_PIN);
457 }
458}
459
fc1d8e7c 460/**
f1f6a7dd 461 * unpin_user_pages() - release an array of gup-pinned pages.
fc1d8e7c
JH
462 * @pages: array of pages to be marked dirty and released.
463 * @npages: number of pages in the @pages array.
464 *
f1f6a7dd 465 * For each page in the @pages array, release the page using unpin_user_page().
fc1d8e7c 466 *
f1f6a7dd 467 * Please see the unpin_user_page() documentation for details.
fc1d8e7c 468 */
f1f6a7dd 469void unpin_user_pages(struct page **pages, unsigned long npages)
fc1d8e7c 470{
12521c76
MWO
471 unsigned long i;
472 struct folio *folio;
473 unsigned int nr;
fc1d8e7c 474
146608bb
JH
475 /*
476 * If this WARN_ON() fires, then the system *might* be leaking pages (by
477 * leaving them pinned), but probably not. More likely, gup/pup returned
478 * a hard -ERRNO error to the caller, who erroneously passed it here.
479 */
480 if (WARN_ON(IS_ERR_VALUE(npages)))
481 return;
31b912de 482
b6a2619c 483 sanity_check_pinned_pages(pages, npages);
12521c76
MWO
484 for (i = 0; i < npages; i += nr) {
485 folio = gup_folio_next(pages, npages, i, &nr);
486 gup_put_folio(folio, nr, FOLL_PIN);
e7602748 487 }
fc1d8e7c 488}
f1f6a7dd 489EXPORT_SYMBOL(unpin_user_pages);
fc1d8e7c 490
a458b76a
AA
491/*
492 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
493 * lifecycle. Avoid setting the bit unless necessary, or it might cause write
494 * cache bouncing on large SMP machines for concurrent pinned gups.
495 */
496static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
497{
498 if (!test_bit(MMF_HAS_PINNED, mm_flags))
499 set_bit(MMF_HAS_PINNED, mm_flags);
500}
501
050a9adc 502#ifdef CONFIG_MMU
a12083d7
PX
503
504#if defined(CONFIG_ARCH_HAS_HUGEPD) || defined(CONFIG_HAVE_FAST_GUP)
505static int record_subpages(struct page *page, unsigned long sz,
506 unsigned long addr, unsigned long end,
507 struct page **pages)
508{
509 struct page *start_page;
510 int nr;
511
512 start_page = nth_page(page, (addr & (sz - 1)) >> PAGE_SHIFT);
513 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
514 pages[nr] = nth_page(start_page, nr);
515
516 return nr;
517}
518#endif /* CONFIG_ARCH_HAS_HUGEPD || CONFIG_HAVE_FAST_GUP */
519
520#ifdef CONFIG_ARCH_HAS_HUGEPD
521static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
522 unsigned long sz)
523{
524 unsigned long __boundary = (addr + sz) & ~(sz-1);
525 return (__boundary - 1 < end - 1) ? __boundary : end;
526}
527
528static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
529 unsigned long end, unsigned int flags,
530 struct page **pages, int *nr)
531{
532 unsigned long pte_end;
533 struct page *page;
534 struct folio *folio;
535 pte_t pte;
536 int refs;
537
538 pte_end = (addr + sz) & ~(sz-1);
539 if (pte_end < end)
540 end = pte_end;
541
542 pte = huge_ptep_get(ptep);
543
544 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
545 return 0;
546
547 /* hugepages are never "special" */
548 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
549
550 page = pte_page(pte);
551 refs = record_subpages(page, sz, addr, end, pages + *nr);
552
553 folio = try_grab_folio(page, refs, flags);
554 if (!folio)
555 return 0;
556
557 if (unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
558 gup_put_folio(folio, refs, flags);
559 return 0;
560 }
561
562 if (!pte_write(pte) && gup_must_unshare(NULL, flags, &folio->page)) {
563 gup_put_folio(folio, refs, flags);
564 return 0;
565 }
566
567 *nr += refs;
568 folio_set_referenced(folio);
569 return 1;
570}
571
572/*
573 * NOTE: currently GUP for a hugepd is only possible on hugetlbfs file
574 * systems on Power, which does not have issue with folio writeback against
575 * GUP updates. When hugepd will be extended to support non-hugetlbfs or
576 * even anonymous memory, we need to do extra check as what we do with most
577 * of the other folios. See writable_file_mapping_allowed() and
578 * gup_fast_folio_allowed() for more information.
579 */
580static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
581 unsigned int pdshift, unsigned long end, unsigned int flags,
582 struct page **pages, int *nr)
583{
584 pte_t *ptep;
585 unsigned long sz = 1UL << hugepd_shift(hugepd);
586 unsigned long next;
587
588 ptep = hugepte_offset(hugepd, addr, pdshift);
589 do {
590 next = hugepte_addr_end(addr, end, sz);
591 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
592 return 0;
593 } while (ptep++, addr = next, addr != end);
594
595 return 1;
596}
597
598static struct page *follow_hugepd(struct vm_area_struct *vma, hugepd_t hugepd,
599 unsigned long addr, unsigned int pdshift,
600 unsigned int flags,
601 struct follow_page_context *ctx)
602{
603 struct page *page;
604 struct hstate *h;
605 spinlock_t *ptl;
606 int nr = 0, ret;
607 pte_t *ptep;
608
609 /* Only hugetlb supports hugepd */
610 if (WARN_ON_ONCE(!is_vm_hugetlb_page(vma)))
611 return ERR_PTR(-EFAULT);
612
613 h = hstate_vma(vma);
614 ptep = hugepte_offset(hugepd, addr, pdshift);
615 ptl = huge_pte_lock(h, vma->vm_mm, ptep);
616 ret = gup_huge_pd(hugepd, addr, pdshift, addr + PAGE_SIZE,
617 flags, &page, &nr);
618 spin_unlock(ptl);
619
620 if (ret) {
621 WARN_ON_ONCE(nr != 1);
622 ctx->page_mask = (1U << huge_page_order(h)) - 1;
623 return page;
624 }
625
626 return NULL;
627}
628#else /* CONFIG_ARCH_HAS_HUGEPD */
629static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
630 unsigned int pdshift, unsigned long end, unsigned int flags,
631 struct page **pages, int *nr)
632{
633 return 0;
634}
635
636static struct page *follow_hugepd(struct vm_area_struct *vma, hugepd_t hugepd,
637 unsigned long addr, unsigned int pdshift,
638 unsigned int flags,
639 struct follow_page_context *ctx)
640{
641 return NULL;
642}
643#endif /* CONFIG_ARCH_HAS_HUGEPD */
644
645
69e68b4f 646static struct page *no_page_table(struct vm_area_struct *vma,
878b0c45 647 unsigned int flags, unsigned long address)
4bbd4c77 648{
878b0c45
PX
649 if (!(flags & FOLL_DUMP))
650 return NULL;
651
69e68b4f 652 /*
878b0c45 653 * When core dumping, we don't want to allocate unnecessary pages or
69e68b4f
KS
654 * page tables. Return error instead of NULL to skip handle_mm_fault,
655 * then get_dump_page() will return NULL to leave a hole in the dump.
656 * But we can only make this optimization where a hole would surely
657 * be zero-filled if handle_mm_fault() actually did handle it.
658 */
878b0c45
PX
659 if (is_vm_hugetlb_page(vma)) {
660 struct hstate *h = hstate_vma(vma);
661
662 if (!hugetlbfs_pagecache_present(h, vma, address))
663 return ERR_PTR(-EFAULT);
664 } else if ((vma_is_anonymous(vma) || !vma->vm_ops->fault)) {
69e68b4f 665 return ERR_PTR(-EFAULT);
878b0c45
PX
666 }
667
69e68b4f
KS
668 return NULL;
669}
4bbd4c77 670
1b167618
PX
671#ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES
672static struct page *follow_huge_pud(struct vm_area_struct *vma,
673 unsigned long addr, pud_t *pudp,
674 int flags, struct follow_page_context *ctx)
675{
676 struct mm_struct *mm = vma->vm_mm;
677 struct page *page;
678 pud_t pud = *pudp;
679 unsigned long pfn = pud_pfn(pud);
680 int ret;
681
682 assert_spin_locked(pud_lockptr(mm, pudp));
683
684 if ((flags & FOLL_WRITE) && !pud_write(pud))
685 return NULL;
686
687 if (!pud_present(pud))
688 return NULL;
689
690 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
691
692 if (IS_ENABLED(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) &&
693 pud_devmap(pud)) {
694 /*
695 * device mapped pages can only be returned if the caller
696 * will manage the page reference count.
697 *
698 * At least one of FOLL_GET | FOLL_PIN must be set, so
699 * assert that here:
700 */
701 if (!(flags & (FOLL_GET | FOLL_PIN)))
702 return ERR_PTR(-EEXIST);
703
704 if (flags & FOLL_TOUCH)
705 touch_pud(vma, addr, pudp, flags & FOLL_WRITE);
706
707 ctx->pgmap = get_dev_pagemap(pfn, ctx->pgmap);
708 if (!ctx->pgmap)
709 return ERR_PTR(-EFAULT);
710 }
711
712 page = pfn_to_page(pfn);
713
714 if (!pud_devmap(pud) && !pud_write(pud) &&
715 gup_must_unshare(vma, flags, page))
716 return ERR_PTR(-EMLINK);
717
718 ret = try_grab_page(page, flags);
719 if (ret)
720 page = ERR_PTR(ret);
721 else
722 ctx->page_mask = HPAGE_PUD_NR - 1;
723
724 return page;
725}
4418c522
PX
726
727/* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
728static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
729 struct vm_area_struct *vma,
730 unsigned int flags)
731{
732 /* If the pmd is writable, we can write to the page. */
733 if (pmd_write(pmd))
734 return true;
735
736 /* Maybe FOLL_FORCE is set to override it? */
737 if (!(flags & FOLL_FORCE))
738 return false;
739
740 /* But FOLL_FORCE has no effect on shared mappings */
741 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
742 return false;
743
744 /* ... or read-only private ones */
745 if (!(vma->vm_flags & VM_MAYWRITE))
746 return false;
747
748 /* ... or already writable ones that just need to take a write fault */
749 if (vma->vm_flags & VM_WRITE)
750 return false;
751
752 /*
753 * See can_change_pte_writable(): we broke COW and could map the page
754 * writable if we have an exclusive anonymous page ...
755 */
756 if (!page || !PageAnon(page) || !PageAnonExclusive(page))
757 return false;
758
759 /* ... and a write-fault isn't required for other reasons. */
760 if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
761 return false;
762 return !userfaultfd_huge_pmd_wp(vma, pmd);
763}
764
765static struct page *follow_huge_pmd(struct vm_area_struct *vma,
766 unsigned long addr, pmd_t *pmd,
767 unsigned int flags,
768 struct follow_page_context *ctx)
769{
770 struct mm_struct *mm = vma->vm_mm;
771 pmd_t pmdval = *pmd;
772 struct page *page;
773 int ret;
774
775 assert_spin_locked(pmd_lockptr(mm, pmd));
776
777 page = pmd_page(pmdval);
778 if ((flags & FOLL_WRITE) &&
779 !can_follow_write_pmd(pmdval, page, vma, flags))
780 return NULL;
781
782 /* Avoid dumping huge zero page */
783 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(pmdval))
784 return ERR_PTR(-EFAULT);
785
786 if (pmd_protnone(*pmd) && !gup_can_follow_protnone(vma, flags))
787 return NULL;
788
789 if (!pmd_write(pmdval) && gup_must_unshare(vma, flags, page))
790 return ERR_PTR(-EMLINK);
791
792 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
793 !PageAnonExclusive(page), page);
794
795 ret = try_grab_page(page, flags);
796 if (ret)
797 return ERR_PTR(ret);
798
799#ifdef CONFIG_TRANSPARENT_HUGEPAGE
800 if (pmd_trans_huge(pmdval) && (flags & FOLL_TOUCH))
801 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
802#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
803
804 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
805 ctx->page_mask = HPAGE_PMD_NR - 1;
806
807 return page;
808}
809
1b167618
PX
810#else /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */
811static struct page *follow_huge_pud(struct vm_area_struct *vma,
812 unsigned long addr, pud_t *pudp,
813 int flags, struct follow_page_context *ctx)
814{
815 return NULL;
816}
4418c522
PX
817
818static struct page *follow_huge_pmd(struct vm_area_struct *vma,
819 unsigned long addr, pmd_t *pmd,
820 unsigned int flags,
821 struct follow_page_context *ctx)
822{
823 return NULL;
824}
1b167618
PX
825#endif /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */
826
1027e443
KS
827static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
828 pte_t *pte, unsigned int flags)
829{
1027e443 830 if (flags & FOLL_TOUCH) {
c33c7948
RR
831 pte_t orig_entry = ptep_get(pte);
832 pte_t entry = orig_entry;
1027e443
KS
833
834 if (flags & FOLL_WRITE)
835 entry = pte_mkdirty(entry);
836 entry = pte_mkyoung(entry);
837
c33c7948 838 if (!pte_same(orig_entry, entry)) {
1027e443
KS
839 set_pte_at(vma->vm_mm, address, pte, entry);
840 update_mmu_cache(vma, address, pte);
841 }
842 }
843
844 /* Proper page table entry exists, but no corresponding struct page */
845 return -EEXIST;
846}
847
5535be30
DH
848/* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
849static inline bool can_follow_write_pte(pte_t pte, struct page *page,
850 struct vm_area_struct *vma,
851 unsigned int flags)
19be0eaf 852{
5535be30
DH
853 /* If the pte is writable, we can write to the page. */
854 if (pte_write(pte))
855 return true;
856
857 /* Maybe FOLL_FORCE is set to override it? */
858 if (!(flags & FOLL_FORCE))
859 return false;
860
861 /* But FOLL_FORCE has no effect on shared mappings */
862 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
863 return false;
864
865 /* ... or read-only private ones */
866 if (!(vma->vm_flags & VM_MAYWRITE))
867 return false;
868
869 /* ... or already writable ones that just need to take a write fault */
870 if (vma->vm_flags & VM_WRITE)
871 return false;
872
873 /*
874 * See can_change_pte_writable(): we broke COW and could map the page
875 * writable if we have an exclusive anonymous page ...
876 */
877 if (!page || !PageAnon(page) || !PageAnonExclusive(page))
878 return false;
879
880 /* ... and a write-fault isn't required for other reasons. */
881 if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte))
882 return false;
883 return !userfaultfd_pte_wp(vma, pte);
19be0eaf
LT
884}
885
69e68b4f 886static struct page *follow_page_pte(struct vm_area_struct *vma,
df06b37f
KB
887 unsigned long address, pmd_t *pmd, unsigned int flags,
888 struct dev_pagemap **pgmap)
69e68b4f
KS
889{
890 struct mm_struct *mm = vma->vm_mm;
891 struct page *page;
892 spinlock_t *ptl;
893 pte_t *ptep, pte;
f28d4363 894 int ret;
4bbd4c77 895
eddb1c22
JH
896 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
897 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
898 (FOLL_PIN | FOLL_GET)))
899 return ERR_PTR(-EINVAL);
4bbd4c77
KS
900
901 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
04dee9e8 902 if (!ptep)
878b0c45 903 return no_page_table(vma, flags, address);
c33c7948 904 pte = ptep_get(ptep);
f7355e99
DH
905 if (!pte_present(pte))
906 goto no_page;
d74943a2 907 if (pte_protnone(pte) && !gup_can_follow_protnone(vma, flags))
4bbd4c77 908 goto no_page;
4bbd4c77
KS
909
910 page = vm_normal_page(vma, address, pte);
5535be30
DH
911
912 /*
913 * We only care about anon pages in can_follow_write_pte() and don't
914 * have to worry about pte_devmap() because they are never anon.
915 */
916 if ((flags & FOLL_WRITE) &&
917 !can_follow_write_pte(pte, page, vma, flags)) {
918 page = NULL;
919 goto out;
920 }
921
3faa52c0 922 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
3565fce3 923 /*
3faa52c0
JH
924 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
925 * case since they are only valid while holding the pgmap
926 * reference.
3565fce3 927 */
df06b37f
KB
928 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
929 if (*pgmap)
3565fce3
DW
930 page = pte_page(pte);
931 else
932 goto no_page;
933 } else if (unlikely(!page)) {
1027e443
KS
934 if (flags & FOLL_DUMP) {
935 /* Avoid special (like zero) pages in core dumps */
936 page = ERR_PTR(-EFAULT);
937 goto out;
938 }
939
940 if (is_zero_pfn(pte_pfn(pte))) {
941 page = pte_page(pte);
942 } else {
1027e443
KS
943 ret = follow_pfn_pte(vma, address, ptep, flags);
944 page = ERR_PTR(ret);
945 goto out;
946 }
4bbd4c77
KS
947 }
948
84209e87 949 if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) {
a7f22660
DH
950 page = ERR_PTR(-EMLINK);
951 goto out;
952 }
b6a2619c
DH
953
954 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
955 !PageAnonExclusive(page), page);
956
3faa52c0 957 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
0f089235
LG
958 ret = try_grab_page(page, flags);
959 if (unlikely(ret)) {
960 page = ERR_PTR(ret);
3faa52c0 961 goto out;
8fde12ca 962 }
4003f107 963
f28d4363
CI
964 /*
965 * We need to make the page accessible if and only if we are going
966 * to access its content (the FOLL_PIN case). Please see
967 * Documentation/core-api/pin_user_pages.rst for details.
968 */
969 if (flags & FOLL_PIN) {
970 ret = arch_make_page_accessible(page);
971 if (ret) {
972 unpin_user_page(page);
973 page = ERR_PTR(ret);
974 goto out;
975 }
976 }
4bbd4c77
KS
977 if (flags & FOLL_TOUCH) {
978 if ((flags & FOLL_WRITE) &&
979 !pte_dirty(pte) && !PageDirty(page))
980 set_page_dirty(page);
981 /*
982 * pte_mkyoung() would be more correct here, but atomic care
983 * is needed to avoid losing the dirty bit: it is easier to use
984 * mark_page_accessed().
985 */
986 mark_page_accessed(page);
987 }
1027e443 988out:
4bbd4c77 989 pte_unmap_unlock(ptep, ptl);
4bbd4c77 990 return page;
4bbd4c77
KS
991no_page:
992 pte_unmap_unlock(ptep, ptl);
993 if (!pte_none(pte))
69e68b4f 994 return NULL;
878b0c45 995 return no_page_table(vma, flags, address);
69e68b4f
KS
996}
997
080dbb61
AK
998static struct page *follow_pmd_mask(struct vm_area_struct *vma,
999 unsigned long address, pud_t *pudp,
df06b37f
KB
1000 unsigned int flags,
1001 struct follow_page_context *ctx)
69e68b4f 1002{
68827280 1003 pmd_t *pmd, pmdval;
69e68b4f
KS
1004 spinlock_t *ptl;
1005 struct page *page;
1006 struct mm_struct *mm = vma->vm_mm;
1007
080dbb61 1008 pmd = pmd_offset(pudp, address);
26e1a0c3 1009 pmdval = pmdp_get_lockless(pmd);
68827280 1010 if (pmd_none(pmdval))
878b0c45 1011 return no_page_table(vma, flags, address);
f7355e99 1012 if (!pmd_present(pmdval))
878b0c45 1013 return no_page_table(vma, flags, address);
a12083d7
PX
1014 if (unlikely(is_hugepd(__hugepd(pmd_val(pmdval)))))
1015 return follow_hugepd(vma, __hugepd(pmd_val(pmdval)),
1016 address, PMD_SHIFT, flags, ctx);
68827280 1017 if (pmd_devmap(pmdval)) {
3565fce3 1018 ptl = pmd_lock(mm, pmd);
df06b37f 1019 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
3565fce3
DW
1020 spin_unlock(ptl);
1021 if (page)
1022 return page;
878b0c45 1023 return no_page_table(vma, flags, address);
3565fce3 1024 }
4418c522 1025 if (likely(!pmd_leaf(pmdval)))
df06b37f 1026 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 1027
d74943a2 1028 if (pmd_protnone(pmdval) && !gup_can_follow_protnone(vma, flags))
878b0c45 1029 return no_page_table(vma, flags, address);
db08f203 1030
6742d293 1031 ptl = pmd_lock(mm, pmd);
4418c522
PX
1032 pmdval = *pmd;
1033 if (unlikely(!pmd_present(pmdval))) {
84c3fc4e 1034 spin_unlock(ptl);
878b0c45 1035 return no_page_table(vma, flags, address);
84c3fc4e 1036 }
4418c522 1037 if (unlikely(!pmd_leaf(pmdval))) {
6742d293 1038 spin_unlock(ptl);
df06b37f 1039 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 1040 }
4418c522 1041 if (pmd_trans_huge(pmdval) && (flags & FOLL_SPLIT_PMD)) {
2378118b
HD
1042 spin_unlock(ptl);
1043 split_huge_pmd(vma, pmd, address);
1044 /* If pmd was left empty, stuff a page table in there quickly */
1045 return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) :
df06b37f 1046 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
69e68b4f 1047 }
4418c522 1048 page = follow_huge_pmd(vma, address, pmd, flags, ctx);
6742d293 1049 spin_unlock(ptl);
6742d293 1050 return page;
4bbd4c77
KS
1051}
1052
080dbb61
AK
1053static struct page *follow_pud_mask(struct vm_area_struct *vma,
1054 unsigned long address, p4d_t *p4dp,
df06b37f
KB
1055 unsigned int flags,
1056 struct follow_page_context *ctx)
080dbb61 1057{
caf8cab7 1058 pud_t *pudp, pud;
080dbb61
AK
1059 spinlock_t *ptl;
1060 struct page *page;
1061 struct mm_struct *mm = vma->vm_mm;
1062
caf8cab7
PX
1063 pudp = pud_offset(p4dp, address);
1064 pud = READ_ONCE(*pudp);
1b167618 1065 if (!pud_present(pud))
878b0c45 1066 return no_page_table(vma, flags, address);
a12083d7
PX
1067 if (unlikely(is_hugepd(__hugepd(pud_val(pud)))))
1068 return follow_hugepd(vma, __hugepd(pud_val(pud)),
1069 address, PUD_SHIFT, flags, ctx);
1b167618 1070 if (pud_leaf(pud)) {
caf8cab7 1071 ptl = pud_lock(mm, pudp);
1b167618 1072 page = follow_huge_pud(vma, address, pudp, flags, ctx);
080dbb61
AK
1073 spin_unlock(ptl);
1074 if (page)
1075 return page;
878b0c45 1076 return no_page_table(vma, flags, address);
080dbb61 1077 }
caf8cab7 1078 if (unlikely(pud_bad(pud)))
878b0c45 1079 return no_page_table(vma, flags, address);
080dbb61 1080
caf8cab7 1081 return follow_pmd_mask(vma, address, pudp, flags, ctx);
080dbb61
AK
1082}
1083
080dbb61
AK
1084static struct page *follow_p4d_mask(struct vm_area_struct *vma,
1085 unsigned long address, pgd_t *pgdp,
df06b37f
KB
1086 unsigned int flags,
1087 struct follow_page_context *ctx)
080dbb61 1088{
e6fd5564 1089 p4d_t *p4dp, p4d;
080dbb61 1090
e6fd5564
PX
1091 p4dp = p4d_offset(pgdp, address);
1092 p4d = READ_ONCE(*p4dp);
1965e933 1093 BUILD_BUG_ON(p4d_leaf(p4d));
a12083d7
PX
1094
1095 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d)))))
1096 return follow_hugepd(vma, __hugepd(p4d_val(p4d)),
1097 address, P4D_SHIFT, flags, ctx);
1098
1099 if (!p4d_present(p4d) || p4d_bad(p4d))
878b0c45 1100 return no_page_table(vma, flags, address);
080dbb61 1101
e6fd5564 1102 return follow_pud_mask(vma, address, p4dp, flags, ctx);
080dbb61
AK
1103}
1104
1105/**
1106 * follow_page_mask - look up a page descriptor from a user-virtual address
1107 * @vma: vm_area_struct mapping @address
1108 * @address: virtual address to look up
1109 * @flags: flags modifying lookup behaviour
78179556
MR
1110 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
1111 * pointer to output page_mask
080dbb61
AK
1112 *
1113 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1114 *
78179556
MR
1115 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
1116 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
1117 *
a7f22660
DH
1118 * When getting an anonymous page and the caller has to trigger unsharing
1119 * of a shared anonymous page first, -EMLINK is returned. The caller should
1120 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
1121 * relevant with FOLL_PIN and !FOLL_WRITE.
1122 *
78179556
MR
1123 * On output, the @ctx->page_mask is set according to the size of the page.
1124 *
1125 * Return: the mapped (struct page *), %NULL if no mapping exists, or
080dbb61
AK
1126 * an error pointer if there is a mapping to something not represented
1127 * by a page descriptor (see also vm_normal_page()).
1128 */
a7030aea 1129static struct page *follow_page_mask(struct vm_area_struct *vma,
080dbb61 1130 unsigned long address, unsigned int flags,
df06b37f 1131 struct follow_page_context *ctx)
080dbb61
AK
1132{
1133 pgd_t *pgd;
080dbb61
AK
1134 struct mm_struct *mm = vma->vm_mm;
1135
df06b37f 1136 ctx->page_mask = 0;
080dbb61 1137
57a196a5
MK
1138 /*
1139 * Call hugetlb_follow_page_mask for hugetlb vmas as it will use
1140 * special hugetlb page table walking code. This eliminates the
1141 * need to check for hugetlb entries in the general walking code.
57a196a5 1142 */
dd767aaa 1143 if (is_vm_hugetlb_page(vma))
5502ea44
PX
1144 return hugetlb_follow_page_mask(vma, address, flags,
1145 &ctx->page_mask);
080dbb61
AK
1146
1147 pgd = pgd_offset(mm, address);
1148
a12083d7
PX
1149 if (unlikely(is_hugepd(__hugepd(pgd_val(*pgd)))))
1150 page = follow_hugepd(vma, __hugepd(pgd_val(*pgd)),
1151 address, PGDIR_SHIFT, flags, ctx);
1152 else if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1153 page = no_page_table(vma, flags, address);
1154 else
1155 page = follow_p4d_mask(vma, address, pgd, flags, ctx);
080dbb61 1156
a12083d7 1157 return page;
df06b37f
KB
1158}
1159
1160struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1161 unsigned int foll_flags)
1162{
1163 struct follow_page_context ctx = { NULL };
1164 struct page *page;
1165
1507f512
MR
1166 if (vma_is_secretmem(vma))
1167 return NULL;
1168
d64e2dbc 1169 if (WARN_ON_ONCE(foll_flags & FOLL_PIN))
8909691b
DH
1170 return NULL;
1171
d74943a2
DH
1172 /*
1173 * We never set FOLL_HONOR_NUMA_FAULT because callers don't expect
1174 * to fail on PROT_NONE-mapped pages.
1175 */
df06b37f
KB
1176 page = follow_page_mask(vma, address, foll_flags, &ctx);
1177 if (ctx.pgmap)
1178 put_dev_pagemap(ctx.pgmap);
1179 return page;
080dbb61
AK
1180}
1181
f2b495ca
KS
1182static int get_gate_page(struct mm_struct *mm, unsigned long address,
1183 unsigned int gup_flags, struct vm_area_struct **vma,
1184 struct page **page)
1185{
1186 pgd_t *pgd;
c2febafc 1187 p4d_t *p4d;
f2b495ca
KS
1188 pud_t *pud;
1189 pmd_t *pmd;
1190 pte_t *pte;
c33c7948 1191 pte_t entry;
f2b495ca
KS
1192 int ret = -EFAULT;
1193
1194 /* user gate pages are read-only */
1195 if (gup_flags & FOLL_WRITE)
1196 return -EFAULT;
1197 if (address > TASK_SIZE)
1198 pgd = pgd_offset_k(address);
1199 else
1200 pgd = pgd_offset_gate(mm, address);
b5d1c39f
AL
1201 if (pgd_none(*pgd))
1202 return -EFAULT;
c2febafc 1203 p4d = p4d_offset(pgd, address);
b5d1c39f
AL
1204 if (p4d_none(*p4d))
1205 return -EFAULT;
c2febafc 1206 pud = pud_offset(p4d, address);
b5d1c39f
AL
1207 if (pud_none(*pud))
1208 return -EFAULT;
f2b495ca 1209 pmd = pmd_offset(pud, address);
84c3fc4e 1210 if (!pmd_present(*pmd))
f2b495ca 1211 return -EFAULT;
f2b495ca 1212 pte = pte_offset_map(pmd, address);
04dee9e8
HD
1213 if (!pte)
1214 return -EFAULT;
c33c7948
RR
1215 entry = ptep_get(pte);
1216 if (pte_none(entry))
f2b495ca
KS
1217 goto unmap;
1218 *vma = get_gate_vma(mm);
1219 if (!page)
1220 goto out;
c33c7948 1221 *page = vm_normal_page(*vma, address, entry);
f2b495ca 1222 if (!*page) {
c33c7948 1223 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry)))
f2b495ca 1224 goto unmap;
c33c7948 1225 *page = pte_page(entry);
f2b495ca 1226 }
0f089235
LG
1227 ret = try_grab_page(*page, gup_flags);
1228 if (unlikely(ret))
8fde12ca 1229 goto unmap;
f2b495ca
KS
1230out:
1231 ret = 0;
1232unmap:
1233 pte_unmap(pte);
1234 return ret;
1235}
1236
9a95f3cf 1237/*
9a863a6a
JG
1238 * mmap_lock must be held on entry. If @flags has FOLL_UNLOCKABLE but not
1239 * FOLL_NOWAIT, the mmap_lock may be released. If it is, *@locked will be set
1240 * to 0 and -EBUSY returned.
9a95f3cf 1241 */
64019a2e 1242static int faultin_page(struct vm_area_struct *vma,
a7f22660
DH
1243 unsigned long address, unsigned int *flags, bool unshare,
1244 int *locked)
16744483 1245{
16744483 1246 unsigned int fault_flags = 0;
2b740303 1247 vm_fault_t ret;
16744483 1248
55b8fe70
AG
1249 if (*flags & FOLL_NOFAULT)
1250 return -EFAULT;
16744483
KS
1251 if (*flags & FOLL_WRITE)
1252 fault_flags |= FAULT_FLAG_WRITE;
1b2ee126
DH
1253 if (*flags & FOLL_REMOTE)
1254 fault_flags |= FAULT_FLAG_REMOTE;
f04740f5 1255 if (*flags & FOLL_UNLOCKABLE) {
71335f37 1256 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
93c5c61d
PX
1257 /*
1258 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set
1259 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE.
1260 * That's because some callers may not be prepared to
1261 * handle early exits caused by non-fatal signals.
1262 */
1263 if (*flags & FOLL_INTERRUPTIBLE)
1264 fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
1265 }
16744483
KS
1266 if (*flags & FOLL_NOWAIT)
1267 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
234b239b 1268 if (*flags & FOLL_TRIED) {
4426e945
PX
1269 /*
1270 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
1271 * can co-exist
1272 */
234b239b
ALC
1273 fault_flags |= FAULT_FLAG_TRIED;
1274 }
a7f22660
DH
1275 if (unshare) {
1276 fault_flags |= FAULT_FLAG_UNSHARE;
1277 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
1278 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
1279 }
16744483 1280
bce617ed 1281 ret = handle_mm_fault(vma, address, fault_flags, NULL);
d9272525
PX
1282
1283 if (ret & VM_FAULT_COMPLETED) {
1284 /*
1285 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
1286 * mmap lock in the page fault handler. Sanity check this.
1287 */
1288 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
9a863a6a
JG
1289 *locked = 0;
1290
d9272525
PX
1291 /*
1292 * We should do the same as VM_FAULT_RETRY, but let's not
1293 * return -EBUSY since that's not reflecting the reality of
1294 * what has happened - we've just fully completed a page
1295 * fault, with the mmap lock released. Use -EAGAIN to show
1296 * that we want to take the mmap lock _again_.
1297 */
1298 return -EAGAIN;
1299 }
1300
16744483 1301 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
1302 int err = vm_fault_to_errno(ret, *flags);
1303
1304 if (err)
1305 return err;
16744483
KS
1306 BUG();
1307 }
1308
16744483 1309 if (ret & VM_FAULT_RETRY) {
9a863a6a 1310 if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4f6da934 1311 *locked = 0;
16744483
KS
1312 return -EBUSY;
1313 }
1314
16744483
KS
1315 return 0;
1316}
1317
8ac26843
LS
1318/*
1319 * Writing to file-backed mappings which require folio dirty tracking using GUP
1320 * is a fundamentally broken operation, as kernel write access to GUP mappings
1321 * do not adhere to the semantics expected by a file system.
1322 *
1323 * Consider the following scenario:-
1324 *
1325 * 1. A folio is written to via GUP which write-faults the memory, notifying
1326 * the file system and dirtying the folio.
1327 * 2. Later, writeback is triggered, resulting in the folio being cleaned and
1328 * the PTE being marked read-only.
1329 * 3. The GUP caller writes to the folio, as it is mapped read/write via the
1330 * direct mapping.
1331 * 4. The GUP caller, now done with the page, unpins it and sets it dirty
1332 * (though it does not have to).
1333 *
1334 * This results in both data being written to a folio without writenotify, and
1335 * the folio being dirtied unexpectedly (if the caller decides to do so).
1336 */
1337static bool writable_file_mapping_allowed(struct vm_area_struct *vma,
1338 unsigned long gup_flags)
1339{
1340 /*
1341 * If we aren't pinning then no problematic write can occur. A long term
1342 * pin is the most egregious case so this is the case we disallow.
1343 */
1344 if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) !=
1345 (FOLL_PIN | FOLL_LONGTERM))
1346 return true;
1347
1348 /*
1349 * If the VMA does not require dirty tracking then no problematic write
1350 * can occur either.
1351 */
1352 return !vma_needs_dirty_tracking(vma);
1353}
1354
fa5bb209
KS
1355static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
1356{
1357 vm_flags_t vm_flags = vma->vm_flags;
1b2ee126
DH
1358 int write = (gup_flags & FOLL_WRITE);
1359 int foreign = (gup_flags & FOLL_REMOTE);
8ac26843 1360 bool vma_anon = vma_is_anonymous(vma);
fa5bb209
KS
1361
1362 if (vm_flags & (VM_IO | VM_PFNMAP))
1363 return -EFAULT;
1364
8ac26843 1365 if ((gup_flags & FOLL_ANON) && !vma_anon)
7f7ccc2c
WT
1366 return -EFAULT;
1367
52650c8b
JG
1368 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1369 return -EOPNOTSUPP;
1370
1507f512
MR
1371 if (vma_is_secretmem(vma))
1372 return -EFAULT;
1373
1b2ee126 1374 if (write) {
8ac26843
LS
1375 if (!vma_anon &&
1376 !writable_file_mapping_allowed(vma, gup_flags))
1377 return -EFAULT;
1378
6beb9958 1379 if (!(vm_flags & VM_WRITE) || (vm_flags & VM_SHADOW_STACK)) {
fa5bb209
KS
1380 if (!(gup_flags & FOLL_FORCE))
1381 return -EFAULT;
f347454d
DH
1382 /* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */
1383 if (is_vm_hugetlb_page(vma))
1384 return -EFAULT;
fa5bb209
KS
1385 /*
1386 * We used to let the write,force case do COW in a
1387 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1388 * set a breakpoint in a read-only mapping of an
1389 * executable, without corrupting the file (yet only
1390 * when that file had been opened for writing!).
1391 * Anon pages in shared mappings are surprising: now
1392 * just reject it.
1393 */
46435364 1394 if (!is_cow_mapping(vm_flags))
fa5bb209 1395 return -EFAULT;
fa5bb209
KS
1396 }
1397 } else if (!(vm_flags & VM_READ)) {
1398 if (!(gup_flags & FOLL_FORCE))
1399 return -EFAULT;
1400 /*
1401 * Is there actually any vma we can reach here which does not
1402 * have VM_MAYREAD set?
1403 */
1404 if (!(vm_flags & VM_MAYREAD))
1405 return -EFAULT;
1406 }
d61172b4
DH
1407 /*
1408 * gups are always data accesses, not instruction
1409 * fetches, so execute=false here
1410 */
1411 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2 1412 return -EFAULT;
fa5bb209
KS
1413 return 0;
1414}
1415
6cd06ab1
LT
1416/*
1417 * This is "vma_lookup()", but with a warning if we would have
1418 * historically expanded the stack in the GUP code.
1419 */
1420static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm,
1421 unsigned long addr)
1422{
1423#ifdef CONFIG_STACK_GROWSUP
1424 return vma_lookup(mm, addr);
1425#else
1426 static volatile unsigned long next_warn;
1427 struct vm_area_struct *vma;
1428 unsigned long now, next;
1429
1430 vma = find_vma(mm, addr);
1431 if (!vma || (addr >= vma->vm_start))
1432 return vma;
1433
1434 /* Only warn for half-way relevant accesses */
1435 if (!(vma->vm_flags & VM_GROWSDOWN))
1436 return NULL;
1437 if (vma->vm_start - addr > 65536)
1438 return NULL;
1439
1440 /* Let's not warn more than once an hour.. */
1441 now = jiffies; next = next_warn;
1442 if (next && time_before(now, next))
1443 return NULL;
1444 next_warn = now + 60*60*HZ;
1445
1446 /* Let people know things may have changed. */
1447 pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n",
1448 current->comm, task_pid_nr(current),
1449 vma->vm_start, vma->vm_end, addr);
1450 dump_stack();
1451 return NULL;
1452#endif
1453}
1454
4bbd4c77
KS
1455/**
1456 * __get_user_pages() - pin user pages in memory
4bbd4c77
KS
1457 * @mm: mm_struct of target mm
1458 * @start: starting user address
1459 * @nr_pages: number of pages from start to pin
1460 * @gup_flags: flags modifying pin behaviour
1461 * @pages: array that receives pointers to the pages pinned.
1462 * Should be at least nr_pages long. Or NULL, if caller
1463 * only intends to ensure the pages are faulted in.
c1e8d7c6 1464 * @locked: whether we're still with the mmap_lock held
4bbd4c77 1465 *
d2dfbe47
LX
1466 * Returns either number of pages pinned (which may be less than the
1467 * number requested), or an error. Details about the return value:
1468 *
1469 * -- If nr_pages is 0, returns 0.
1470 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1471 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1472 * pages pinned. Again, this may be less than nr_pages.
2d3a36a4 1473 * -- 0 return value is possible when the fault would need to be retried.
d2dfbe47
LX
1474 *
1475 * The caller is responsible for releasing returned @pages, via put_page().
1476 *
c1e8d7c6 1477 * Must be called with mmap_lock held. It may be released. See below.
4bbd4c77
KS
1478 *
1479 * __get_user_pages walks a process's page tables and takes a reference to
1480 * each struct page that each user address corresponds to at a given
1481 * instant. That is, it takes the page that would be accessed if a user
1482 * thread accesses the given user virtual address at that instant.
1483 *
1484 * This does not guarantee that the page exists in the user mappings when
1485 * __get_user_pages returns, and there may even be a completely different
1486 * page there in some cases (eg. if mmapped pagecache has been invalidated
c5acf1f6 1487 * and subsequently re-faulted). However it does guarantee that the page
4bbd4c77
KS
1488 * won't be freed completely. And mostly callers simply care that the page
1489 * contains data that was valid *at some point in time*. Typically, an IO
1490 * or similar operation cannot guarantee anything stronger anyway because
1491 * locks can't be held over the syscall boundary.
1492 *
1493 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1494 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1495 * appropriate) must be called after the page is finished with, and
1496 * before put_page is called.
1497 *
9a863a6a
JG
1498 * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may
1499 * be released. If this happens *@locked will be set to 0 on return.
9a95f3cf 1500 *
9a863a6a
JG
1501 * A caller using such a combination of @gup_flags must therefore hold the
1502 * mmap_lock for reading only, and recognize when it's been released. Otherwise,
1503 * it must be held for either reading or writing and will not be released.
4bbd4c77
KS
1504 *
1505 * In most cases, get_user_pages or get_user_pages_fast should be used
1506 * instead of __get_user_pages. __get_user_pages should be used only if
1507 * you need some special @gup_flags.
1508 */
64019a2e 1509static long __get_user_pages(struct mm_struct *mm,
4bbd4c77
KS
1510 unsigned long start, unsigned long nr_pages,
1511 unsigned int gup_flags, struct page **pages,
b2cac248 1512 int *locked)
4bbd4c77 1513{
df06b37f 1514 long ret = 0, i = 0;
fa5bb209 1515 struct vm_area_struct *vma = NULL;
df06b37f 1516 struct follow_page_context ctx = { NULL };
4bbd4c77
KS
1517
1518 if (!nr_pages)
1519 return 0;
1520
428e106a 1521 start = untagged_addr_remote(mm, start);
f9652594 1522
eddb1c22 1523 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
4bbd4c77 1524
4bbd4c77 1525 do {
fa5bb209
KS
1526 struct page *page;
1527 unsigned int foll_flags = gup_flags;
1528 unsigned int page_increm;
1529
1530 /* first iteration or cross vma bound */
1531 if (!vma || start >= vma->vm_end) {
631426ba
DH
1532 /*
1533 * MADV_POPULATE_(READ|WRITE) wants to handle VMA
1534 * lookups+error reporting differently.
1535 */
1536 if (gup_flags & FOLL_MADV_POPULATE) {
1537 vma = vma_lookup(mm, start);
1538 if (!vma) {
1539 ret = -ENOMEM;
1540 goto out;
1541 }
1542 if (check_vma_flags(vma, gup_flags)) {
1543 ret = -EINVAL;
1544 goto out;
1545 }
1546 goto retry;
1547 }
6cd06ab1 1548 vma = gup_vma_lookup(mm, start);
fa5bb209 1549 if (!vma && in_gate_area(mm, start)) {
fa5bb209
KS
1550 ret = get_gate_page(mm, start & PAGE_MASK,
1551 gup_flags, &vma,
ffe1e786 1552 pages ? &page : NULL);
fa5bb209 1553 if (ret)
08be37b7 1554 goto out;
df06b37f 1555 ctx.page_mask = 0;
fa5bb209
KS
1556 goto next_page;
1557 }
4bbd4c77 1558
52650c8b 1559 if (!vma) {
df06b37f
KB
1560 ret = -EFAULT;
1561 goto out;
1562 }
52650c8b
JG
1563 ret = check_vma_flags(vma, gup_flags);
1564 if (ret)
1565 goto out;
fa5bb209
KS
1566 }
1567retry:
1568 /*
1569 * If we have a pending SIGKILL, don't keep faulting pages and
1570 * potentially allocating memory.
1571 */
fa45f116 1572 if (fatal_signal_pending(current)) {
d180870d 1573 ret = -EINTR;
df06b37f
KB
1574 goto out;
1575 }
fa5bb209 1576 cond_resched();
df06b37f
KB
1577
1578 page = follow_page_mask(vma, start, foll_flags, &ctx);
a7f22660
DH
1579 if (!page || PTR_ERR(page) == -EMLINK) {
1580 ret = faultin_page(vma, start, &foll_flags,
1581 PTR_ERR(page) == -EMLINK, locked);
fa5bb209
KS
1582 switch (ret) {
1583 case 0:
1584 goto retry;
df06b37f 1585 case -EBUSY:
d9272525 1586 case -EAGAIN:
df06b37f 1587 ret = 0;
e4a9bc58 1588 fallthrough;
fa5bb209
KS
1589 case -EFAULT:
1590 case -ENOMEM:
1591 case -EHWPOISON:
df06b37f 1592 goto out;
4bbd4c77 1593 }
fa5bb209 1594 BUG();
1027e443
KS
1595 } else if (PTR_ERR(page) == -EEXIST) {
1596 /*
1597 * Proper page table entry exists, but no corresponding
65462462
JH
1598 * struct page. If the caller expects **pages to be
1599 * filled in, bail out now, because that can't be done
1600 * for this page.
1027e443 1601 */
65462462
JH
1602 if (pages) {
1603 ret = PTR_ERR(page);
1604 goto out;
1605 }
1027e443 1606 } else if (IS_ERR(page)) {
df06b37f
KB
1607 ret = PTR_ERR(page);
1608 goto out;
1027e443 1609 }
ffe1e786 1610next_page:
df06b37f 1611 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
fa5bb209
KS
1612 if (page_increm > nr_pages)
1613 page_increm = nr_pages;
57edfcfd
PX
1614
1615 if (pages) {
1616 struct page *subpage;
1617 unsigned int j;
1618
1619 /*
1620 * This must be a large folio (and doesn't need to
1621 * be the whole folio; it can be part of it), do
1622 * the refcount work for all the subpages too.
1623 *
1624 * NOTE: here the page may not be the head page
1625 * e.g. when start addr is not thp-size aligned.
1626 * try_grab_folio() should have taken care of tail
1627 * pages.
1628 */
1629 if (page_increm > 1) {
1630 struct folio *folio;
1631
1632 /*
1633 * Since we already hold refcount on the
1634 * large folio, this should never fail.
1635 */
1636 folio = try_grab_folio(page, page_increm - 1,
1637 foll_flags);
1638 if (WARN_ON_ONCE(!folio)) {
1639 /*
1640 * Release the 1st page ref if the
1641 * folio is problematic, fail hard.
1642 */
1643 gup_put_folio(page_folio(page), 1,
1644 foll_flags);
1645 ret = -EFAULT;
1646 goto out;
1647 }
1648 }
1649
1650 for (j = 0; j < page_increm; j++) {
1651 subpage = nth_page(page, j);
1652 pages[i + j] = subpage;
1653 flush_anon_page(vma, subpage, start + j * PAGE_SIZE);
1654 flush_dcache_page(subpage);
1655 }
1656 }
1657
fa5bb209
KS
1658 i += page_increm;
1659 start += page_increm * PAGE_SIZE;
1660 nr_pages -= page_increm;
4bbd4c77 1661 } while (nr_pages);
df06b37f
KB
1662out:
1663 if (ctx.pgmap)
1664 put_dev_pagemap(ctx.pgmap);
1665 return i ? i : ret;
4bbd4c77 1666}
4bbd4c77 1667
771ab430
TK
1668static bool vma_permits_fault(struct vm_area_struct *vma,
1669 unsigned int fault_flags)
d4925e00 1670{
1b2ee126
DH
1671 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1672 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
33a709b2 1673 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
d4925e00
DH
1674
1675 if (!(vm_flags & vma->vm_flags))
1676 return false;
1677
33a709b2
DH
1678 /*
1679 * The architecture might have a hardware protection
1b2ee126 1680 * mechanism other than read/write that can deny access.
d61172b4
DH
1681 *
1682 * gup always represents data access, not instruction
1683 * fetches, so execute=false here:
33a709b2 1684 */
d61172b4 1685 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2
DH
1686 return false;
1687
d4925e00
DH
1688 return true;
1689}
1690
adc8cb40 1691/**
4bbd4c77 1692 * fixup_user_fault() - manually resolve a user page fault
4bbd4c77
KS
1693 * @mm: mm_struct of target mm
1694 * @address: user address
1695 * @fault_flags:flags to pass down to handle_mm_fault()
c1e8d7c6 1696 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
548b6a1e
MC
1697 * does not allow retry. If NULL, the caller must guarantee
1698 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
4bbd4c77
KS
1699 *
1700 * This is meant to be called in the specific scenario where for locking reasons
1701 * we try to access user memory in atomic context (within a pagefault_disable()
1702 * section), this returns -EFAULT, and we want to resolve the user fault before
1703 * trying again.
1704 *
1705 * Typically this is meant to be used by the futex code.
1706 *
1707 * The main difference with get_user_pages() is that this function will
1708 * unconditionally call handle_mm_fault() which will in turn perform all the
1709 * necessary SW fixup of the dirty and young bits in the PTE, while
4a9e1cda 1710 * get_user_pages() only guarantees to update these in the struct page.
4bbd4c77
KS
1711 *
1712 * This is important for some architectures where those bits also gate the
1713 * access permission to the page because they are maintained in software. On
1714 * such architectures, gup() will not be enough to make a subsequent access
1715 * succeed.
1716 *
c1e8d7c6
ML
1717 * This function will not return with an unlocked mmap_lock. So it has not the
1718 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
4bbd4c77 1719 */
64019a2e 1720int fixup_user_fault(struct mm_struct *mm,
4a9e1cda
DD
1721 unsigned long address, unsigned int fault_flags,
1722 bool *unlocked)
4bbd4c77
KS
1723{
1724 struct vm_area_struct *vma;
8fed2f3c 1725 vm_fault_t ret;
4a9e1cda 1726
428e106a 1727 address = untagged_addr_remote(mm, address);
f9652594 1728
4a9e1cda 1729 if (unlocked)
71335f37 1730 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
4bbd4c77 1731
4a9e1cda 1732retry:
6cd06ab1 1733 vma = gup_vma_lookup(mm, address);
8d7071af 1734 if (!vma)
4bbd4c77
KS
1735 return -EFAULT;
1736
d4925e00 1737 if (!vma_permits_fault(vma, fault_flags))
4bbd4c77
KS
1738 return -EFAULT;
1739
475f4dfc
PX
1740 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1741 fatal_signal_pending(current))
1742 return -EINTR;
1743
bce617ed 1744 ret = handle_mm_fault(vma, address, fault_flags, NULL);
d9272525
PX
1745
1746 if (ret & VM_FAULT_COMPLETED) {
1747 /*
1748 * NOTE: it's a pity that we need to retake the lock here
1749 * to pair with the unlock() in the callers. Ideally we
1750 * could tell the callers so they do not need to unlock.
1751 */
1752 mmap_read_lock(mm);
1753 *unlocked = true;
1754 return 0;
1755 }
1756
4bbd4c77 1757 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
1758 int err = vm_fault_to_errno(ret, 0);
1759
1760 if (err)
1761 return err;
4bbd4c77
KS
1762 BUG();
1763 }
4a9e1cda
DD
1764
1765 if (ret & VM_FAULT_RETRY) {
d8ed45c5 1766 mmap_read_lock(mm);
475f4dfc
PX
1767 *unlocked = true;
1768 fault_flags |= FAULT_FLAG_TRIED;
1769 goto retry;
4a9e1cda
DD
1770 }
1771
4bbd4c77
KS
1772 return 0;
1773}
add6a0cd 1774EXPORT_SYMBOL_GPL(fixup_user_fault);
4bbd4c77 1775
93c5c61d
PX
1776/*
1777 * GUP always responds to fatal signals. When FOLL_INTERRUPTIBLE is
1778 * specified, it'll also respond to generic signals. The caller of GUP
1779 * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption.
1780 */
1781static bool gup_signal_pending(unsigned int flags)
1782{
1783 if (fatal_signal_pending(current))
1784 return true;
1785
1786 if (!(flags & FOLL_INTERRUPTIBLE))
1787 return false;
1788
1789 return signal_pending(current);
1790}
1791
2d3a36a4 1792/*
b2a72dff
JG
1793 * Locking: (*locked == 1) means that the mmap_lock has already been acquired by
1794 * the caller. This function may drop the mmap_lock. If it does so, then it will
1795 * set (*locked = 0).
1796 *
1797 * (*locked == 0) means that the caller expects this function to acquire and
1798 * drop the mmap_lock. Therefore, the value of *locked will still be zero when
1799 * the function returns, even though it may have changed temporarily during
1800 * function execution.
1801 *
1802 * Please note that this function, unlike __get_user_pages(), will not return 0
1803 * for nr_pages > 0, unless FOLL_NOWAIT is used.
2d3a36a4 1804 */
64019a2e 1805static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
f0818f47
AA
1806 unsigned long start,
1807 unsigned long nr_pages,
f0818f47 1808 struct page **pages,
e716712f 1809 int *locked,
0fd71a56 1810 unsigned int flags)
f0818f47 1811{
f0818f47 1812 long ret, pages_done;
b2a72dff 1813 bool must_unlock = false;
f0818f47 1814
9c4b2142
LS
1815 if (!nr_pages)
1816 return 0;
1817
b2a72dff
JG
1818 /*
1819 * The internal caller expects GUP to manage the lock internally and the
1820 * lock must be released when this returns.
1821 */
9a863a6a 1822 if (!*locked) {
b2a72dff
JG
1823 if (mmap_read_lock_killable(mm))
1824 return -EAGAIN;
1825 must_unlock = true;
1826 *locked = 1;
f0818f47 1827 }
961ba472
JG
1828 else
1829 mmap_assert_locked(mm);
f0818f47 1830
a458b76a
AA
1831 if (flags & FOLL_PIN)
1832 mm_set_has_pinned_flag(&mm->flags);
008cfe44 1833
eddb1c22
JH
1834 /*
1835 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1836 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1837 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1838 * for FOLL_GET, not for the newer FOLL_PIN.
1839 *
1840 * FOLL_PIN always expects pages to be non-null, but no need to assert
1841 * that here, as any failures will be obvious enough.
1842 */
1843 if (pages && !(flags & FOLL_PIN))
f0818f47 1844 flags |= FOLL_GET;
f0818f47
AA
1845
1846 pages_done = 0;
f0818f47 1847 for (;;) {
64019a2e 1848 ret = __get_user_pages(mm, start, nr_pages, flags, pages,
b2cac248 1849 locked);
f04740f5 1850 if (!(flags & FOLL_UNLOCKABLE)) {
f0818f47 1851 /* VM_FAULT_RETRY couldn't trigger, bypass */
f04740f5
JG
1852 pages_done = ret;
1853 break;
1854 }
f0818f47 1855
d9272525 1856 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
f0818f47
AA
1857 if (!*locked) {
1858 BUG_ON(ret < 0);
1859 BUG_ON(ret >= nr_pages);
1860 }
1861
f0818f47
AA
1862 if (ret > 0) {
1863 nr_pages -= ret;
1864 pages_done += ret;
1865 if (!nr_pages)
1866 break;
1867 }
1868 if (*locked) {
96312e61
AA
1869 /*
1870 * VM_FAULT_RETRY didn't trigger or it was a
1871 * FOLL_NOWAIT.
1872 */
f0818f47
AA
1873 if (!pages_done)
1874 pages_done = ret;
1875 break;
1876 }
df17277b
MR
1877 /*
1878 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1879 * For the prefault case (!pages) we only update counts.
1880 */
1881 if (likely(pages))
1882 pages += ret;
f0818f47 1883 start += ret << PAGE_SHIFT;
b2a72dff
JG
1884
1885 /* The lock was temporarily dropped, so we must unlock later */
1886 must_unlock = true;
f0818f47 1887
4426e945 1888retry:
f0818f47
AA
1889 /*
1890 * Repeat on the address that fired VM_FAULT_RETRY
4426e945
PX
1891 * with both FAULT_FLAG_ALLOW_RETRY and
1892 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
93c5c61d
PX
1893 * by fatal signals of even common signals, depending on
1894 * the caller's request. So we need to check it before we
4426e945 1895 * start trying again otherwise it can loop forever.
f0818f47 1896 */
93c5c61d 1897 if (gup_signal_pending(flags)) {
ae46d2aa
HD
1898 if (!pages_done)
1899 pages_done = -EINTR;
4426e945 1900 break;
ae46d2aa 1901 }
4426e945 1902
d8ed45c5 1903 ret = mmap_read_lock_killable(mm);
71335f37
PX
1904 if (ret) {
1905 BUG_ON(ret > 0);
1906 if (!pages_done)
1907 pages_done = ret;
1908 break;
1909 }
4426e945 1910
c7b6a566 1911 *locked = 1;
64019a2e 1912 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
b2cac248 1913 pages, locked);
4426e945
PX
1914 if (!*locked) {
1915 /* Continue to retry until we succeeded */
1916 BUG_ON(ret != 0);
1917 goto retry;
1918 }
f0818f47
AA
1919 if (ret != 1) {
1920 BUG_ON(ret > 1);
1921 if (!pages_done)
1922 pages_done = ret;
1923 break;
1924 }
1925 nr_pages--;
1926 pages_done++;
1927 if (!nr_pages)
1928 break;
df17277b
MR
1929 if (likely(pages))
1930 pages++;
f0818f47
AA
1931 start += PAGE_SIZE;
1932 }
b2a72dff 1933 if (must_unlock && *locked) {
f0818f47 1934 /*
b2a72dff
JG
1935 * We either temporarily dropped the lock, or the caller
1936 * requested that we both acquire and drop the lock. Either way,
1937 * we must now unlock, and notify the caller of that state.
f0818f47 1938 */
d8ed45c5 1939 mmap_read_unlock(mm);
f0818f47
AA
1940 *locked = 0;
1941 }
9c4b2142
LS
1942
1943 /*
1944 * Failing to pin anything implies something has gone wrong (except when
1945 * FOLL_NOWAIT is specified).
1946 */
1947 if (WARN_ON_ONCE(pages_done == 0 && !(flags & FOLL_NOWAIT)))
1948 return -EFAULT;
1949
f0818f47
AA
1950 return pages_done;
1951}
1952
d3649f68
CH
1953/**
1954 * populate_vma_page_range() - populate a range of pages in the vma.
1955 * @vma: target vma
1956 * @start: start address
1957 * @end: end address
c1e8d7c6 1958 * @locked: whether the mmap_lock is still held
d3649f68
CH
1959 *
1960 * This takes care of mlocking the pages too if VM_LOCKED is set.
1961 *
0a36f7f8
TY
1962 * Return either number of pages pinned in the vma, or a negative error
1963 * code on error.
d3649f68 1964 *
c1e8d7c6 1965 * vma->vm_mm->mmap_lock must be held.
d3649f68 1966 *
4f6da934 1967 * If @locked is NULL, it may be held for read or write and will
d3649f68
CH
1968 * be unperturbed.
1969 *
4f6da934
PX
1970 * If @locked is non-NULL, it must held for read only and may be
1971 * released. If it's released, *@locked will be set to 0.
d3649f68
CH
1972 */
1973long populate_vma_page_range(struct vm_area_struct *vma,
4f6da934 1974 unsigned long start, unsigned long end, int *locked)
d3649f68
CH
1975{
1976 struct mm_struct *mm = vma->vm_mm;
1977 unsigned long nr_pages = (end - start) / PAGE_SIZE;
9a863a6a 1978 int local_locked = 1;
d3649f68 1979 int gup_flags;
ece369c7 1980 long ret;
d3649f68 1981
be51eb18
ML
1982 VM_BUG_ON(!PAGE_ALIGNED(start));
1983 VM_BUG_ON(!PAGE_ALIGNED(end));
d3649f68
CH
1984 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1985 VM_BUG_ON_VMA(end > vma->vm_end, vma);
42fc5414 1986 mmap_assert_locked(mm);
d3649f68 1987
b67bf49c
HD
1988 /*
1989 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1990 * faultin_page() to break COW, so it has no work to do here.
1991 */
d3649f68 1992 if (vma->vm_flags & VM_LOCKONFAULT)
b67bf49c
HD
1993 return nr_pages;
1994
1096bc93
LT
1995 /* ... similarly, we've never faulted in PROT_NONE pages */
1996 if (!vma_is_accessible(vma))
1997 return -EFAULT;
1998
b67bf49c 1999 gup_flags = FOLL_TOUCH;
d3649f68
CH
2000 /*
2001 * We want to touch writable mappings with a write fault in order
2002 * to break COW, except for shared mappings because these don't COW
2003 * and we would not want to dirty them for nothing.
1096bc93
LT
2004 *
2005 * Otherwise, do a read fault, and use FOLL_FORCE in case it's not
2006 * readable (ie write-only or executable).
d3649f68
CH
2007 */
2008 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
2009 gup_flags |= FOLL_WRITE;
1096bc93 2010 else
d3649f68
CH
2011 gup_flags |= FOLL_FORCE;
2012
f04740f5
JG
2013 if (locked)
2014 gup_flags |= FOLL_UNLOCKABLE;
2015
d3649f68
CH
2016 /*
2017 * We made sure addr is within a VMA, so the following will
2018 * not result in a stack expansion that recurses back here.
2019 */
ece369c7 2020 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
b2cac248 2021 NULL, locked ? locked : &local_locked);
ece369c7
HD
2022 lru_add_drain();
2023 return ret;
d3649f68
CH
2024}
2025
4ca9b385 2026/*
631426ba
DH
2027 * faultin_page_range() - populate (prefault) page tables inside the
2028 * given range readable/writable
4ca9b385
DH
2029 *
2030 * This takes care of mlocking the pages, too, if VM_LOCKED is set.
2031 *
631426ba 2032 * @mm: the mm to populate page tables in
4ca9b385
DH
2033 * @start: start address
2034 * @end: end address
2035 * @write: whether to prefault readable or writable
2036 * @locked: whether the mmap_lock is still held
2037 *
631426ba
DH
2038 * Returns either number of processed pages in the MM, or a negative error
2039 * code on error (see __get_user_pages()). Note that this function reports
2040 * errors related to VMAs, such as incompatible mappings, as expected by
2041 * MADV_POPULATE_(READ|WRITE).
4ca9b385 2042 *
631426ba
DH
2043 * The range must be page-aligned.
2044 *
2045 * mm->mmap_lock must be held. If it's released, *@locked will be set to 0.
4ca9b385 2046 */
631426ba
DH
2047long faultin_page_range(struct mm_struct *mm, unsigned long start,
2048 unsigned long end, bool write, int *locked)
4ca9b385 2049{
4ca9b385
DH
2050 unsigned long nr_pages = (end - start) / PAGE_SIZE;
2051 int gup_flags;
ece369c7 2052 long ret;
4ca9b385
DH
2053
2054 VM_BUG_ON(!PAGE_ALIGNED(start));
2055 VM_BUG_ON(!PAGE_ALIGNED(end));
4ca9b385
DH
2056 mmap_assert_locked(mm);
2057
2058 /*
2059 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
2060 * the page dirty with FOLL_WRITE -- which doesn't make a
2061 * difference with !FOLL_FORCE, because the page is writable
2062 * in the page table.
2063 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
2064 * a poisoned page.
4ca9b385
DH
2065 * !FOLL_FORCE: Require proper access permissions.
2066 */
631426ba
DH
2067 gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE |
2068 FOLL_MADV_POPULATE;
4ca9b385
DH
2069 if (write)
2070 gup_flags |= FOLL_WRITE;
2071
631426ba
DH
2072 ret = __get_user_pages_locked(mm, start, nr_pages, NULL, locked,
2073 gup_flags);
ece369c7
HD
2074 lru_add_drain();
2075 return ret;
4ca9b385
DH
2076}
2077
d3649f68
CH
2078/*
2079 * __mm_populate - populate and/or mlock pages within a range of address space.
2080 *
2081 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
2082 * flags. VMAs must be already marked with the desired vm_flags, and
c1e8d7c6 2083 * mmap_lock must not be held.
d3649f68
CH
2084 */
2085int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
2086{
2087 struct mm_struct *mm = current->mm;
2088 unsigned long end, nstart, nend;
2089 struct vm_area_struct *vma = NULL;
2090 int locked = 0;
2091 long ret = 0;
2092
2093 end = start + len;
2094
2095 for (nstart = start; nstart < end; nstart = nend) {
2096 /*
2097 * We want to fault in pages for [nstart; end) address range.
2098 * Find first corresponding VMA.
2099 */
2100 if (!locked) {
2101 locked = 1;
d8ed45c5 2102 mmap_read_lock(mm);
c4d1a92d 2103 vma = find_vma_intersection(mm, nstart, end);
d3649f68 2104 } else if (nstart >= vma->vm_end)
c4d1a92d
LH
2105 vma = find_vma_intersection(mm, vma->vm_end, end);
2106
2107 if (!vma)
d3649f68
CH
2108 break;
2109 /*
2110 * Set [nstart; nend) to intersection of desired address
2111 * range with the first VMA. Also, skip undesirable VMA types.
2112 */
2113 nend = min(end, vma->vm_end);
2114 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
2115 continue;
2116 if (nstart < vma->vm_start)
2117 nstart = vma->vm_start;
2118 /*
2119 * Now fault in a range of pages. populate_vma_page_range()
2120 * double checks the vma flags, so that it won't mlock pages
2121 * if the vma was already munlocked.
2122 */
2123 ret = populate_vma_page_range(vma, nstart, nend, &locked);
2124 if (ret < 0) {
2125 if (ignore_errors) {
2126 ret = 0;
2127 continue; /* continue at next VMA */
2128 }
2129 break;
2130 }
2131 nend = nstart + ret * PAGE_SIZE;
2132 ret = 0;
2133 }
2134 if (locked)
d8ed45c5 2135 mmap_read_unlock(mm);
d3649f68
CH
2136 return ret; /* 0 or negative error code */
2137}
050a9adc 2138#else /* CONFIG_MMU */
64019a2e 2139static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
050a9adc 2140 unsigned long nr_pages, struct page **pages,
b2cac248 2141 int *locked, unsigned int foll_flags)
050a9adc
CH
2142{
2143 struct vm_area_struct *vma;
b2a72dff 2144 bool must_unlock = false;
050a9adc 2145 unsigned long vm_flags;
24dc20c7 2146 long i;
050a9adc 2147
b2a72dff
JG
2148 if (!nr_pages)
2149 return 0;
2150
2151 /*
2152 * The internal caller expects GUP to manage the lock internally and the
2153 * lock must be released when this returns.
2154 */
9a863a6a 2155 if (!*locked) {
b2a72dff
JG
2156 if (mmap_read_lock_killable(mm))
2157 return -EAGAIN;
2158 must_unlock = true;
2159 *locked = 1;
2160 }
2161
050a9adc
CH
2162 /* calculate required read or write permissions.
2163 * If FOLL_FORCE is set, we only require the "MAY" flags.
2164 */
2165 vm_flags = (foll_flags & FOLL_WRITE) ?
2166 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
2167 vm_flags &= (foll_flags & FOLL_FORCE) ?
2168 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
2169
2170 for (i = 0; i < nr_pages; i++) {
2171 vma = find_vma(mm, start);
2172 if (!vma)
b2a72dff 2173 break;
050a9adc
CH
2174
2175 /* protect what we can, including chardevs */
2176 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
2177 !(vm_flags & vma->vm_flags))
b2a72dff 2178 break;
050a9adc
CH
2179
2180 if (pages) {
396a400b 2181 pages[i] = virt_to_page((void *)start);
050a9adc
CH
2182 if (pages[i])
2183 get_page(pages[i]);
2184 }
b2cac248 2185
050a9adc
CH
2186 start = (start + PAGE_SIZE) & PAGE_MASK;
2187 }
2188
b2a72dff
JG
2189 if (must_unlock && *locked) {
2190 mmap_read_unlock(mm);
2191 *locked = 0;
2192 }
050a9adc 2193
050a9adc
CH
2194 return i ? : -EFAULT;
2195}
2196#endif /* !CONFIG_MMU */
d3649f68 2197
bb523b40
AG
2198/**
2199 * fault_in_writeable - fault in userspace address range for writing
2200 * @uaddr: start of address range
2201 * @size: size of address range
2202 *
2203 * Returns the number of bytes not faulted in (like copy_to_user() and
2204 * copy_from_user()).
2205 */
2206size_t fault_in_writeable(char __user *uaddr, size_t size)
2207{
2208 char __user *start = uaddr, *end;
2209
2210 if (unlikely(size == 0))
2211 return 0;
677b2a8c
CL
2212 if (!user_write_access_begin(uaddr, size))
2213 return size;
bb523b40 2214 if (!PAGE_ALIGNED(uaddr)) {
677b2a8c 2215 unsafe_put_user(0, uaddr, out);
bb523b40
AG
2216 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
2217 }
2218 end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
2219 if (unlikely(end < start))
2220 end = NULL;
2221 while (uaddr != end) {
677b2a8c 2222 unsafe_put_user(0, uaddr, out);
bb523b40
AG
2223 uaddr += PAGE_SIZE;
2224 }
2225
2226out:
677b2a8c 2227 user_write_access_end();
bb523b40
AG
2228 if (size > uaddr - start)
2229 return size - (uaddr - start);
2230 return 0;
2231}
2232EXPORT_SYMBOL(fault_in_writeable);
2233
da32b581
CM
2234/**
2235 * fault_in_subpage_writeable - fault in an address range for writing
2236 * @uaddr: start of address range
2237 * @size: size of address range
2238 *
2239 * Fault in a user address range for writing while checking for permissions at
2240 * sub-page granularity (e.g. arm64 MTE). This function should be used when
2241 * the caller cannot guarantee forward progress of a copy_to_user() loop.
2242 *
2243 * Returns the number of bytes not faulted in (like copy_to_user() and
2244 * copy_from_user()).
2245 */
2246size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
2247{
2248 size_t faulted_in;
2249
2250 /*
2251 * Attempt faulting in at page granularity first for page table
2252 * permission checking. The arch-specific probe_subpage_writeable()
2253 * functions may not check for this.
2254 */
2255 faulted_in = size - fault_in_writeable(uaddr, size);
2256 if (faulted_in)
2257 faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
2258
2259 return size - faulted_in;
2260}
2261EXPORT_SYMBOL(fault_in_subpage_writeable);
2262
cdd591fc
AG
2263/*
2264 * fault_in_safe_writeable - fault in an address range for writing
2265 * @uaddr: start of address range
2266 * @size: length of address range
2267 *
fe673d3f
LT
2268 * Faults in an address range for writing. This is primarily useful when we
2269 * already know that some or all of the pages in the address range aren't in
2270 * memory.
cdd591fc 2271 *
fe673d3f 2272 * Unlike fault_in_writeable(), this function is non-destructive.
cdd591fc
AG
2273 *
2274 * Note that we don't pin or otherwise hold the pages referenced that we fault
2275 * in. There's no guarantee that they'll stay in memory for any duration of
2276 * time.
2277 *
2278 * Returns the number of bytes not faulted in, like copy_to_user() and
2279 * copy_from_user().
2280 */
2281size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
2282{
fe673d3f 2283 unsigned long start = (unsigned long)uaddr, end;
cdd591fc 2284 struct mm_struct *mm = current->mm;
fe673d3f 2285 bool unlocked = false;
cdd591fc 2286
fe673d3f
LT
2287 if (unlikely(size == 0))
2288 return 0;
cdd591fc 2289 end = PAGE_ALIGN(start + size);
fe673d3f 2290 if (end < start)
cdd591fc 2291 end = 0;
cdd591fc 2292
fe673d3f
LT
2293 mmap_read_lock(mm);
2294 do {
2295 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
cdd591fc 2296 break;
fe673d3f
LT
2297 start = (start + PAGE_SIZE) & PAGE_MASK;
2298 } while (start != end);
2299 mmap_read_unlock(mm);
2300
2301 if (size > (unsigned long)uaddr - start)
2302 return size - ((unsigned long)uaddr - start);
2303 return 0;
cdd591fc
AG
2304}
2305EXPORT_SYMBOL(fault_in_safe_writeable);
2306
bb523b40
AG
2307/**
2308 * fault_in_readable - fault in userspace address range for reading
2309 * @uaddr: start of user address range
2310 * @size: size of user address range
2311 *
2312 * Returns the number of bytes not faulted in (like copy_to_user() and
2313 * copy_from_user()).
2314 */
2315size_t fault_in_readable(const char __user *uaddr, size_t size)
2316{
2317 const char __user *start = uaddr, *end;
2318 volatile char c;
2319
2320 if (unlikely(size == 0))
2321 return 0;
677b2a8c
CL
2322 if (!user_read_access_begin(uaddr, size))
2323 return size;
bb523b40 2324 if (!PAGE_ALIGNED(uaddr)) {
677b2a8c 2325 unsafe_get_user(c, uaddr, out);
bb523b40
AG
2326 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
2327 }
2328 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
2329 if (unlikely(end < start))
2330 end = NULL;
2331 while (uaddr != end) {
677b2a8c 2332 unsafe_get_user(c, uaddr, out);
bb523b40
AG
2333 uaddr += PAGE_SIZE;
2334 }
2335
2336out:
677b2a8c 2337 user_read_access_end();
bb523b40
AG
2338 (void)c;
2339 if (size > uaddr - start)
2340 return size - (uaddr - start);
2341 return 0;
2342}
2343EXPORT_SYMBOL(fault_in_readable);
2344
8f942eea
JH
2345/**
2346 * get_dump_page() - pin user page in memory while writing it to core dump
2347 * @addr: user address
2348 *
2349 * Returns struct page pointer of user page pinned for dump,
2350 * to be freed afterwards by put_page().
2351 *
2352 * Returns NULL on any kind of failure - a hole must then be inserted into
2353 * the corefile, to preserve alignment with its headers; and also returns
2354 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
f0953a1b 2355 * allowing a hole to be left in the corefile to save disk space.
8f942eea 2356 *
7f3bfab5 2357 * Called without mmap_lock (takes and releases the mmap_lock by itself).
8f942eea
JH
2358 */
2359#ifdef CONFIG_ELF_CORE
2360struct page *get_dump_page(unsigned long addr)
2361{
8f942eea 2362 struct page *page;
b2a72dff 2363 int locked = 0;
7f3bfab5 2364 int ret;
8f942eea 2365
b2cac248 2366 ret = __get_user_pages_locked(current->mm, addr, 1, &page, &locked,
7f3bfab5 2367 FOLL_FORCE | FOLL_DUMP | FOLL_GET);
7f3bfab5 2368 return (ret == 1) ? page : NULL;
8f942eea
JH
2369}
2370#endif /* CONFIG_ELF_CORE */
2371
d1e153fe 2372#ifdef CONFIG_MIGRATION
f68749ec 2373/*
67e139b0 2374 * Returns the number of collected pages. Return value is always >= 0.
f68749ec 2375 */
67e139b0
AP
2376static unsigned long collect_longterm_unpinnable_pages(
2377 struct list_head *movable_page_list,
2378 unsigned long nr_pages,
2379 struct page **pages)
9a4e9f3b 2380{
67e139b0 2381 unsigned long i, collected = 0;
1b7f7e58 2382 struct folio *prev_folio = NULL;
67e139b0 2383 bool drain_allow = true;
9a4e9f3b 2384
83c02c23 2385 for (i = 0; i < nr_pages; i++) {
1b7f7e58 2386 struct folio *folio = page_folio(pages[i]);
f9f38f78 2387
1b7f7e58 2388 if (folio == prev_folio)
83c02c23 2389 continue;
1b7f7e58 2390 prev_folio = folio;
f9f38f78 2391
67e139b0
AP
2392 if (folio_is_longterm_pinnable(folio))
2393 continue;
b05a79d4 2394
67e139b0 2395 collected++;
b05a79d4 2396
67e139b0 2397 if (folio_is_device_coherent(folio))
f9f38f78
CH
2398 continue;
2399
1b7f7e58 2400 if (folio_test_hugetlb(folio)) {
6aa3a920 2401 isolate_hugetlb(folio, movable_page_list);
f9f38f78
CH
2402 continue;
2403 }
9a4e9f3b 2404
1b7f7e58 2405 if (!folio_test_lru(folio) && drain_allow) {
f9f38f78
CH
2406 lru_add_drain_all();
2407 drain_allow = false;
2408 }
2409
be2d5756 2410 if (!folio_isolate_lru(folio))
f9f38f78 2411 continue;
67e139b0
AP
2412
2413 list_add_tail(&folio->lru, movable_page_list);
1b7f7e58
MWO
2414 node_stat_mod_folio(folio,
2415 NR_ISOLATED_ANON + folio_is_file_lru(folio),
2416 folio_nr_pages(folio));
9a4e9f3b
AK
2417 }
2418
67e139b0
AP
2419 return collected;
2420}
2421
2422/*
2423 * Unpins all pages and migrates device coherent pages and movable_page_list.
2424 * Returns -EAGAIN if all pages were successfully migrated or -errno for failure
2425 * (or partial success).
2426 */
2427static int migrate_longterm_unpinnable_pages(
2428 struct list_head *movable_page_list,
2429 unsigned long nr_pages,
2430 struct page **pages)
2431{
2432 int ret;
2433 unsigned long i;
6e7f34eb 2434
b05a79d4 2435 for (i = 0; i < nr_pages; i++) {
67e139b0
AP
2436 struct folio *folio = page_folio(pages[i]);
2437
2438 if (folio_is_device_coherent(folio)) {
2439 /*
2440 * Migration will fail if the page is pinned, so convert
2441 * the pin on the source page to a normal reference.
2442 */
2443 pages[i] = NULL;
2444 folio_get(folio);
2445 gup_put_folio(folio, 1, FOLL_PIN);
2446
2447 if (migrate_device_coherent_page(&folio->page)) {
2448 ret = -EBUSY;
2449 goto err;
2450 }
2451
b05a79d4 2452 continue;
67e139b0 2453 }
b05a79d4 2454
67e139b0
AP
2455 /*
2456 * We can't migrate pages with unexpected references, so drop
2457 * the reference obtained by __get_user_pages_locked().
2458 * Migrating pages have been added to movable_page_list after
2459 * calling folio_isolate_lru() which takes a reference so the
2460 * page won't be freed if it's migrating.
2461 */
f6d299ec 2462 unpin_user_page(pages[i]);
67e139b0 2463 pages[i] = NULL;
f68749ec 2464 }
f9f38f78 2465
67e139b0 2466 if (!list_empty(movable_page_list)) {
f9f38f78
CH
2467 struct migration_target_control mtc = {
2468 .nid = NUMA_NO_NODE,
2469 .gfp_mask = GFP_USER | __GFP_NOWARN,
e42dfe4e 2470 .reason = MR_LONGTERM_PIN,
f9f38f78
CH
2471 };
2472
67e139b0
AP
2473 if (migrate_pages(movable_page_list, alloc_migration_target,
2474 NULL, (unsigned long)&mtc, MIGRATE_SYNC,
2475 MR_LONGTERM_PIN, NULL)) {
f9f38f78 2476 ret = -ENOMEM;
67e139b0
AP
2477 goto err;
2478 }
9a4e9f3b
AK
2479 }
2480
67e139b0
AP
2481 putback_movable_pages(movable_page_list);
2482
2483 return -EAGAIN;
2484
2485err:
2486 for (i = 0; i < nr_pages; i++)
2487 if (pages[i])
2488 unpin_user_page(pages[i]);
2489 putback_movable_pages(movable_page_list);
24a95998 2490
67e139b0
AP
2491 return ret;
2492}
2493
2494/*
2495 * Check whether all pages are *allowed* to be pinned. Rather confusingly, all
2496 * pages in the range are required to be pinned via FOLL_PIN, before calling
2497 * this routine.
2498 *
2499 * If any pages in the range are not allowed to be pinned, then this routine
2500 * will migrate those pages away, unpin all the pages in the range and return
2501 * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then
2502 * call this routine again.
2503 *
2504 * If an error other than -EAGAIN occurs, this indicates a migration failure.
2505 * The caller should give up, and propagate the error back up the call stack.
2506 *
2507 * If everything is OK and all pages in the range are allowed to be pinned, then
2508 * this routine leaves all pages pinned and returns zero for success.
2509 */
2510static long check_and_migrate_movable_pages(unsigned long nr_pages,
2511 struct page **pages)
2512{
2513 unsigned long collected;
2514 LIST_HEAD(movable_page_list);
2515
2516 collected = collect_longterm_unpinnable_pages(&movable_page_list,
2517 nr_pages, pages);
2518 if (!collected)
2519 return 0;
2520
2521 return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages,
2522 pages);
9a4e9f3b
AK
2523}
2524#else
f68749ec 2525static long check_and_migrate_movable_pages(unsigned long nr_pages,
f6d299ec 2526 struct page **pages)
9a4e9f3b 2527{
24a95998 2528 return 0;
9a4e9f3b 2529}
d1e153fe 2530#endif /* CONFIG_MIGRATION */
9a4e9f3b 2531
2bb6d283 2532/*
932f4a63
IW
2533 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2534 * allows us to process the FOLL_LONGTERM flag.
2bb6d283 2535 */
64019a2e 2536static long __gup_longterm_locked(struct mm_struct *mm,
932f4a63
IW
2537 unsigned long start,
2538 unsigned long nr_pages,
2539 struct page **pages,
53b2d09b 2540 int *locked,
932f4a63 2541 unsigned int gup_flags)
2bb6d283 2542{
f68749ec 2543 unsigned int flags;
24a95998 2544 long rc, nr_pinned_pages;
2bb6d283 2545
f68749ec 2546 if (!(gup_flags & FOLL_LONGTERM))
b2cac248 2547 return __get_user_pages_locked(mm, start, nr_pages, pages,
53b2d09b 2548 locked, gup_flags);
67e139b0 2549
f68749ec
PT
2550 flags = memalloc_pin_save();
2551 do {
24a95998 2552 nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
b2cac248 2553 pages, locked,
24a95998
AP
2554 gup_flags);
2555 if (nr_pinned_pages <= 0) {
2556 rc = nr_pinned_pages;
f68749ec 2557 break;
24a95998 2558 }
d64e2dbc
JG
2559
2560 /* FOLL_LONGTERM implies FOLL_PIN */
f6d299ec 2561 rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
24a95998 2562 } while (rc == -EAGAIN);
f68749ec 2563 memalloc_pin_restore(flags);
24a95998 2564 return rc ? rc : nr_pinned_pages;
2bb6d283 2565}
932f4a63 2566
d64e2dbc
JG
2567/*
2568 * Check that the given flags are valid for the exported gup/pup interface, and
2569 * update them with the required flags that the caller must have set.
2570 */
b2cac248
LS
2571static bool is_valid_gup_args(struct page **pages, int *locked,
2572 unsigned int *gup_flags_p, unsigned int to_set)
447f3e45 2573{
d64e2dbc
JG
2574 unsigned int gup_flags = *gup_flags_p;
2575
447f3e45 2576 /*
d64e2dbc
JG
2577 * These flags not allowed to be specified externally to the gup
2578 * interfaces:
0f20bba1 2579 * - FOLL_TOUCH/FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only
d64e2dbc 2580 * - FOLL_REMOTE is internal only and used on follow_page()
f04740f5 2581 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL
447f3e45 2582 */
0f20bba1 2583 if (WARN_ON_ONCE(gup_flags & INTERNAL_GUP_FLAGS))
d64e2dbc
JG
2584 return false;
2585
2586 gup_flags |= to_set;
f04740f5
JG
2587 if (locked) {
2588 /* At the external interface locked must be set */
2589 if (WARN_ON_ONCE(*locked != 1))
2590 return false;
2591
2592 gup_flags |= FOLL_UNLOCKABLE;
2593 }
d64e2dbc
JG
2594
2595 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2596 if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) ==
2597 (FOLL_PIN | FOLL_GET)))
2598 return false;
2599
2600 /* LONGTERM can only be specified when pinning */
2601 if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM)))
2602 return false;
2603
2604 /* Pages input must be given if using GET/PIN */
2605 if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages))
447f3e45 2606 return false;
d64e2dbc 2607
d64e2dbc
JG
2608 /* We want to allow the pgmap to be hot-unplugged at all times */
2609 if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) &&
2610 (gup_flags & FOLL_PCI_P2PDMA)))
2611 return false;
2612
d64e2dbc 2613 *gup_flags_p = gup_flags;
447f3e45
BS
2614 return true;
2615}
2616
22bf29b6 2617#ifdef CONFIG_MMU
adc8cb40 2618/**
c4237f8b 2619 * get_user_pages_remote() - pin user pages in memory
c4237f8b
JH
2620 * @mm: mm_struct of target mm
2621 * @start: starting user address
2622 * @nr_pages: number of pages from start to pin
2623 * @gup_flags: flags modifying lookup behaviour
2624 * @pages: array that receives pointers to the pages pinned.
2625 * Should be at least nr_pages long. Or NULL, if caller
2626 * only intends to ensure the pages are faulted in.
c4237f8b
JH
2627 * @locked: pointer to lock flag indicating whether lock is held and
2628 * subsequently whether VM_FAULT_RETRY functionality can be
2629 * utilised. Lock must initially be held.
2630 *
2631 * Returns either number of pages pinned (which may be less than the
2632 * number requested), or an error. Details about the return value:
2633 *
2634 * -- If nr_pages is 0, returns 0.
2635 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2636 * -- If nr_pages is >0, and some pages were pinned, returns the number of
2637 * pages pinned. Again, this may be less than nr_pages.
2638 *
2639 * The caller is responsible for releasing returned @pages, via put_page().
2640 *
c1e8d7c6 2641 * Must be called with mmap_lock held for read or write.
c4237f8b 2642 *
adc8cb40
SJ
2643 * get_user_pages_remote walks a process's page tables and takes a reference
2644 * to each struct page that each user address corresponds to at a given
c4237f8b
JH
2645 * instant. That is, it takes the page that would be accessed if a user
2646 * thread accesses the given user virtual address at that instant.
2647 *
2648 * This does not guarantee that the page exists in the user mappings when
adc8cb40 2649 * get_user_pages_remote returns, and there may even be a completely different
c4237f8b 2650 * page there in some cases (eg. if mmapped pagecache has been invalidated
5da1a868 2651 * and subsequently re-faulted). However it does guarantee that the page
c4237f8b
JH
2652 * won't be freed completely. And mostly callers simply care that the page
2653 * contains data that was valid *at some point in time*. Typically, an IO
2654 * or similar operation cannot guarantee anything stronger anyway because
2655 * locks can't be held over the syscall boundary.
2656 *
2657 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2658 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2659 * be called after the page is finished with, and before put_page is called.
2660 *
adc8cb40
SJ
2661 * get_user_pages_remote is typically used for fewer-copy IO operations,
2662 * to get a handle on the memory by some means other than accesses
2663 * via the user virtual addresses. The pages may be submitted for
2664 * DMA to devices or accessed via their kernel linear mapping (via the
2665 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
c4237f8b
JH
2666 *
2667 * See also get_user_pages_fast, for performance critical applications.
2668 *
adc8cb40 2669 * get_user_pages_remote should be phased out in favor of
c4237f8b 2670 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
adc8cb40 2671 * should use get_user_pages_remote because it cannot pass
c4237f8b
JH
2672 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2673 */
64019a2e 2674long get_user_pages_remote(struct mm_struct *mm,
c4237f8b
JH
2675 unsigned long start, unsigned long nr_pages,
2676 unsigned int gup_flags, struct page **pages,
ca5e8632 2677 int *locked)
c4237f8b 2678{
9a863a6a
JG
2679 int local_locked = 1;
2680
b2cac248 2681 if (!is_valid_gup_args(pages, locked, &gup_flags,
d64e2dbc 2682 FOLL_TOUCH | FOLL_REMOTE))
eddb1c22
JH
2683 return -EINVAL;
2684
b2cac248 2685 return __get_user_pages_locked(mm, start, nr_pages, pages,
9a863a6a 2686 locked ? locked : &local_locked,
d64e2dbc 2687 gup_flags);
c4237f8b
JH
2688}
2689EXPORT_SYMBOL(get_user_pages_remote);
2690
eddb1c22 2691#else /* CONFIG_MMU */
64019a2e 2692long get_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
2693 unsigned long start, unsigned long nr_pages,
2694 unsigned int gup_flags, struct page **pages,
ca5e8632 2695 int *locked)
eddb1c22
JH
2696{
2697 return 0;
2698}
2699#endif /* !CONFIG_MMU */
2700
adc8cb40
SJ
2701/**
2702 * get_user_pages() - pin user pages in memory
2703 * @start: starting user address
2704 * @nr_pages: number of pages from start to pin
2705 * @gup_flags: flags modifying lookup behaviour
2706 * @pages: array that receives pointers to the pages pinned.
2707 * Should be at least nr_pages long. Or NULL, if caller
2708 * only intends to ensure the pages are faulted in.
adc8cb40 2709 *
64019a2e
PX
2710 * This is the same as get_user_pages_remote(), just with a less-flexible
2711 * calling convention where we assume that the mm being operated on belongs to
2712 * the current task, and doesn't allow passing of a locked parameter. We also
2713 * obviously don't pass FOLL_REMOTE in here.
932f4a63
IW
2714 */
2715long get_user_pages(unsigned long start, unsigned long nr_pages,
54d02069 2716 unsigned int gup_flags, struct page **pages)
932f4a63 2717{
9a863a6a
JG
2718 int locked = 1;
2719
b2cac248 2720 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH))
eddb1c22
JH
2721 return -EINVAL;
2722
afa3c33e 2723 return __get_user_pages_locked(current->mm, start, nr_pages, pages,
b2cac248 2724 &locked, gup_flags);
932f4a63
IW
2725}
2726EXPORT_SYMBOL(get_user_pages);
2bb6d283 2727
acc3c8d1 2728/*
d3649f68 2729 * get_user_pages_unlocked() is suitable to replace the form:
acc3c8d1 2730 *
3e4e28c5 2731 * mmap_read_lock(mm);
64019a2e 2732 * get_user_pages(mm, ..., pages, NULL);
3e4e28c5 2733 * mmap_read_unlock(mm);
d3649f68
CH
2734 *
2735 * with:
2736 *
64019a2e 2737 * get_user_pages_unlocked(mm, ..., pages);
d3649f68
CH
2738 *
2739 * It is functionally equivalent to get_user_pages_fast so
2740 * get_user_pages_fast should be used instead if specific gup_flags
2741 * (e.g. FOLL_FORCE) are not required.
acc3c8d1 2742 */
d3649f68
CH
2743long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2744 struct page **pages, unsigned int gup_flags)
acc3c8d1 2745{
b2a72dff 2746 int locked = 0;
acc3c8d1 2747
b2cac248 2748 if (!is_valid_gup_args(pages, NULL, &gup_flags,
f04740f5 2749 FOLL_TOUCH | FOLL_UNLOCKABLE))
d64e2dbc
JG
2750 return -EINVAL;
2751
afa3c33e 2752 return __get_user_pages_locked(current->mm, start, nr_pages, pages,
b2cac248 2753 &locked, gup_flags);
4bbd4c77 2754}
d3649f68 2755EXPORT_SYMBOL(get_user_pages_unlocked);
2667f50e
SC
2756
2757/*
67a929e0 2758 * Fast GUP
2667f50e
SC
2759 *
2760 * get_user_pages_fast attempts to pin user pages by walking the page
2761 * tables directly and avoids taking locks. Thus the walker needs to be
2762 * protected from page table pages being freed from under it, and should
2763 * block any THP splits.
2764 *
2765 * One way to achieve this is to have the walker disable interrupts, and
2766 * rely on IPIs from the TLB flushing code blocking before the page table
2767 * pages are freed. This is unsuitable for architectures that do not need
2768 * to broadcast an IPI when invalidating TLBs.
2769 *
2770 * Another way to achieve this is to batch up page table containing pages
2771 * belonging to more than one mm_user, then rcu_sched a callback to free those
2772 * pages. Disabling interrupts will allow the fast_gup walker to both block
2773 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2774 * (which is a relatively rare event). The code below adopts this strategy.
2775 *
2776 * Before activating this code, please be aware that the following assumptions
2777 * are currently made:
2778 *
ff2e6d72 2779 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
e585513b 2780 * free pages containing page tables or TLB flushing requires IPI broadcast.
2667f50e 2781 *
2667f50e
SC
2782 * *) ptes can be read atomically by the architecture.
2783 *
2784 * *) access_ok is sufficient to validate userspace address ranges.
2785 *
2786 * The last two assumptions can be relaxed by the addition of helper functions.
2787 *
2788 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2789 */
67a929e0 2790#ifdef CONFIG_HAVE_FAST_GUP
3faa52c0 2791
a6e79df9 2792/*
f002882c
DH
2793 * Used in the GUP-fast path to determine whether GUP is permitted to work on
2794 * a specific folio.
a6e79df9
LS
2795 *
2796 * This call assumes the caller has pinned the folio, that the lowest page table
2797 * level still points to this folio, and that interrupts have been disabled.
2798 *
f002882c
DH
2799 * GUP-fast must reject all secretmem folios.
2800 *
a6e79df9
LS
2801 * Writing to pinned file-backed dirty tracked folios is inherently problematic
2802 * (see comment describing the writable_file_mapping_allowed() function). We
2803 * therefore try to avoid the most egregious case of a long-term mapping doing
2804 * so.
2805 *
2806 * This function cannot be as thorough as that one as the VMA is not available
2807 * in the fast path, so instead we whitelist known good cases and if in doubt,
2808 * fall back to the slow path.
2809 */
f002882c 2810static bool gup_fast_folio_allowed(struct folio *folio, unsigned int flags)
a6e79df9 2811{
f002882c 2812 bool reject_file_backed = false;
a6e79df9 2813 struct address_space *mapping;
f002882c 2814 bool check_secretmem = false;
a6e79df9
LS
2815 unsigned long mapping_flags;
2816
2817 /*
2818 * If we aren't pinning then no problematic write can occur. A long term
2819 * pin is the most egregious case so this is the one we disallow.
2820 */
f002882c 2821 if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) ==
a6e79df9 2822 (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE))
f002882c
DH
2823 reject_file_backed = true;
2824
2825 /* We hold a folio reference, so we can safely access folio fields. */
a6e79df9 2826
f002882c
DH
2827 /* secretmem folios are always order-0 folios. */
2828 if (IS_ENABLED(CONFIG_SECRETMEM) && !folio_test_large(folio))
2829 check_secretmem = true;
2830
2831 if (!reject_file_backed && !check_secretmem)
2832 return true;
a6e79df9
LS
2833
2834 if (WARN_ON_ONCE(folio_test_slab(folio)))
2835 return false;
2836
f002882c 2837 /* hugetlb neither requires dirty-tracking nor can be secretmem. */
a6e79df9
LS
2838 if (folio_test_hugetlb(folio))
2839 return true;
2840
2841 /*
2842 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods
2843 * cannot proceed, which means no actions performed under RCU can
2844 * proceed either.
2845 *
2846 * inodes and thus their mappings are freed under RCU, which means the
2847 * mapping cannot be freed beneath us and thus we can safely dereference
2848 * it.
2849 */
2850 lockdep_assert_irqs_disabled();
2851
2852 /*
2853 * However, there may be operations which _alter_ the mapping, so ensure
2854 * we read it once and only once.
2855 */
2856 mapping = READ_ONCE(folio->mapping);
2857
2858 /*
2859 * The mapping may have been truncated, in any case we cannot determine
2860 * if this mapping is safe - fall back to slow path to determine how to
2861 * proceed.
2862 */
2863 if (!mapping)
2864 return false;
2865
2866 /* Anonymous folios pose no problem. */
2867 mapping_flags = (unsigned long)mapping & PAGE_MAPPING_FLAGS;
2868 if (mapping_flags)
2869 return mapping_flags & PAGE_MAPPING_ANON;
2870
2871 /*
2872 * At this point, we know the mapping is non-null and points to an
f002882c 2873 * address_space object.
a6e79df9 2874 */
f002882c
DH
2875 if (check_secretmem && secretmem_mapping(mapping))
2876 return false;
2877 /* The only remaining allowed file system is shmem. */
2878 return !reject_file_backed || shmem_mapping(mapping);
a6e79df9
LS
2879}
2880
790c7369 2881static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
3b78d834 2882 unsigned int flags,
790c7369 2883 struct page **pages)
b59f65fa
KS
2884{
2885 while ((*nr) - nr_start) {
2886 struct page *page = pages[--(*nr)];
2887
2888 ClearPageReferenced(page);
3faa52c0
JH
2889 if (flags & FOLL_PIN)
2890 unpin_user_page(page);
2891 else
2892 put_page(page);
b59f65fa
KS
2893 }
2894}
2895
3010a5ea 2896#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
70cbc3cc
YS
2897/*
2898 * Fast-gup relies on pte change detection to avoid concurrent pgtable
2899 * operations.
2900 *
2901 * To pin the page, fast-gup needs to do below in order:
2902 * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2903 *
2904 * For the rest of pgtable operations where pgtable updates can be racy
2905 * with fast-gup, we need to do (1) clear pte, then (2) check whether page
2906 * is pinned.
2907 *
2908 * Above will work for all pte-level operations, including THP split.
2909 *
2910 * For THP collapse, it's a bit more complicated because fast-gup may be
2911 * walking a pgtable page that is being freed (pte is still valid but pmd
2912 * can be cleared already). To avoid race in such condition, we need to
2913 * also check pmd here to make sure pmd doesn't change (corresponds to
2914 * pmdp_collapse_flush() in the THP collapse code path).
2915 */
2916static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2917 unsigned long end, unsigned int flags,
2918 struct page **pages, int *nr)
2667f50e 2919{
b59f65fa
KS
2920 struct dev_pagemap *pgmap = NULL;
2921 int nr_start = *nr, ret = 0;
2667f50e 2922 pte_t *ptep, *ptem;
2667f50e
SC
2923
2924 ptem = ptep = pte_offset_map(&pmd, addr);
04dee9e8
HD
2925 if (!ptep)
2926 return 0;
2667f50e 2927 do {
2a4a06da 2928 pte_t pte = ptep_get_lockless(ptep);
b0496fe4
MWO
2929 struct page *page;
2930 struct folio *folio;
2667f50e 2931
d74943a2
DH
2932 /*
2933 * Always fallback to ordinary GUP on PROT_NONE-mapped pages:
2934 * pte_access_permitted() better should reject these pages
2935 * either way: otherwise, GUP-fast might succeed in
2936 * cases where ordinary GUP would fail due to VMA access
2937 * permissions.
2938 */
2939 if (pte_protnone(pte))
e7884f8e
KS
2940 goto pte_unmap;
2941
b798bec4 2942 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
e7884f8e
KS
2943 goto pte_unmap;
2944
b59f65fa 2945 if (pte_devmap(pte)) {
7af75561
IW
2946 if (unlikely(flags & FOLL_LONGTERM))
2947 goto pte_unmap;
2948
b59f65fa
KS
2949 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2950 if (unlikely(!pgmap)) {
3b78d834 2951 undo_dev_pagemap(nr, nr_start, flags, pages);
b59f65fa
KS
2952 goto pte_unmap;
2953 }
2954 } else if (pte_special(pte))
2667f50e
SC
2955 goto pte_unmap;
2956
2957 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2958 page = pte_page(pte);
2959
b0496fe4
MWO
2960 folio = try_grab_folio(page, 1, flags);
2961 if (!folio)
2667f50e
SC
2962 goto pte_unmap;
2963
70cbc3cc 2964 if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
c33c7948 2965 unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
b0496fe4 2966 gup_put_folio(folio, 1, flags);
2667f50e
SC
2967 goto pte_unmap;
2968 }
2969
f002882c 2970 if (!gup_fast_folio_allowed(folio, flags)) {
b0496fe4 2971 gup_put_folio(folio, 1, flags);
2667f50e
SC
2972 goto pte_unmap;
2973 }
2974
84209e87 2975 if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) {
a7f22660
DH
2976 gup_put_folio(folio, 1, flags);
2977 goto pte_unmap;
2978 }
2979
f28d4363
CI
2980 /*
2981 * We need to make the page accessible if and only if we are
2982 * going to access its content (the FOLL_PIN case). Please
2983 * see Documentation/core-api/pin_user_pages.rst for
2984 * details.
2985 */
2986 if (flags & FOLL_PIN) {
2987 ret = arch_make_page_accessible(page);
2988 if (ret) {
b0496fe4 2989 gup_put_folio(folio, 1, flags);
f28d4363
CI
2990 goto pte_unmap;
2991 }
2992 }
b0496fe4 2993 folio_set_referenced(folio);
2667f50e
SC
2994 pages[*nr] = page;
2995 (*nr)++;
2667f50e
SC
2996 } while (ptep++, addr += PAGE_SIZE, addr != end);
2997
2998 ret = 1;
2999
3000pte_unmap:
832d7aa0
CH
3001 if (pgmap)
3002 put_dev_pagemap(pgmap);
2667f50e
SC
3003 pte_unmap(ptem);
3004 return ret;
3005}
3006#else
3007
3008/*
3009 * If we can't determine whether or not a pte is special, then fail immediately
3010 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
3011 * to be special.
3012 *
3013 * For a futex to be placed on a THP tail page, get_futex_key requires a
dadbb612 3014 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2667f50e
SC
3015 * useful to have gup_huge_pmd even if we can't operate on ptes.
3016 */
70cbc3cc
YS
3017static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
3018 unsigned long end, unsigned int flags,
3019 struct page **pages, int *nr)
2667f50e
SC
3020{
3021 return 0;
3022}
3010a5ea 3023#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2667f50e 3024
17596731 3025#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
b59f65fa 3026static int __gup_device_huge(unsigned long pfn, unsigned long addr,
86dfbed4
JH
3027 unsigned long end, unsigned int flags,
3028 struct page **pages, int *nr)
b59f65fa
KS
3029{
3030 int nr_start = *nr;
3031 struct dev_pagemap *pgmap = NULL;
3032
3033 do {
3034 struct page *page = pfn_to_page(pfn);
3035
3036 pgmap = get_dev_pagemap(pfn, pgmap);
3037 if (unlikely(!pgmap)) {
3b78d834 3038 undo_dev_pagemap(nr, nr_start, flags, pages);
6401c4eb 3039 break;
b59f65fa 3040 }
4003f107
LG
3041
3042 if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) {
3043 undo_dev_pagemap(nr, nr_start, flags, pages);
3044 break;
3045 }
3046
b59f65fa
KS
3047 SetPageReferenced(page);
3048 pages[*nr] = page;
0f089235 3049 if (unlikely(try_grab_page(page, flags))) {
3faa52c0 3050 undo_dev_pagemap(nr, nr_start, flags, pages);
6401c4eb 3051 break;
3faa52c0 3052 }
b59f65fa
KS
3053 (*nr)++;
3054 pfn++;
3055 } while (addr += PAGE_SIZE, addr != end);
832d7aa0 3056
6401c4eb 3057 put_dev_pagemap(pgmap);
20b7fee7 3058 return addr == end;
b59f65fa
KS
3059}
3060
a9b6de77 3061static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
86dfbed4
JH
3062 unsigned long end, unsigned int flags,
3063 struct page **pages, int *nr)
b59f65fa
KS
3064{
3065 unsigned long fault_pfn;
a9b6de77
DW
3066 int nr_start = *nr;
3067
3068 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
86dfbed4 3069 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
a9b6de77 3070 return 0;
b59f65fa 3071
a9b6de77 3072 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3b78d834 3073 undo_dev_pagemap(nr, nr_start, flags, pages);
a9b6de77
DW
3074 return 0;
3075 }
3076 return 1;
b59f65fa
KS
3077}
3078
a9b6de77 3079static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
86dfbed4
JH
3080 unsigned long end, unsigned int flags,
3081 struct page **pages, int *nr)
b59f65fa
KS
3082{
3083 unsigned long fault_pfn;
a9b6de77
DW
3084 int nr_start = *nr;
3085
3086 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
86dfbed4 3087 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
a9b6de77 3088 return 0;
b59f65fa 3089
a9b6de77 3090 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3b78d834 3091 undo_dev_pagemap(nr, nr_start, flags, pages);
a9b6de77
DW
3092 return 0;
3093 }
3094 return 1;
b59f65fa
KS
3095}
3096#else
a9b6de77 3097static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
86dfbed4
JH
3098 unsigned long end, unsigned int flags,
3099 struct page **pages, int *nr)
b59f65fa
KS
3100{
3101 BUILD_BUG();
3102 return 0;
3103}
3104
a9b6de77 3105static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
86dfbed4
JH
3106 unsigned long end, unsigned int flags,
3107 struct page **pages, int *nr)
b59f65fa
KS
3108{
3109 BUILD_BUG();
3110 return 0;
3111}
3112#endif
3113
2667f50e 3114static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
0cd22afd
JH
3115 unsigned long end, unsigned int flags,
3116 struct page **pages, int *nr)
2667f50e 3117{
667ed1f7
MWO
3118 struct page *page;
3119 struct folio *folio;
2667f50e
SC
3120 int refs;
3121
b798bec4 3122 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
3123 return 0;
3124
7af75561
IW
3125 if (pmd_devmap(orig)) {
3126 if (unlikely(flags & FOLL_LONGTERM))
3127 return 0;
86dfbed4
JH
3128 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
3129 pages, nr);
7af75561 3130 }
b59f65fa 3131
f3c94c62
PX
3132 page = pmd_page(orig);
3133 refs = record_subpages(page, PMD_SIZE, addr, end, pages + *nr);
2667f50e 3134
667ed1f7
MWO
3135 folio = try_grab_folio(page, refs, flags);
3136 if (!folio)
2667f50e 3137 return 0;
2667f50e
SC
3138
3139 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
667ed1f7 3140 gup_put_folio(folio, refs, flags);
2667f50e
SC
3141 return 0;
3142 }
3143
f002882c 3144 if (!gup_fast_folio_allowed(folio, flags)) {
a6e79df9
LS
3145 gup_put_folio(folio, refs, flags);
3146 return 0;
3147 }
84209e87 3148 if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
a7f22660
DH
3149 gup_put_folio(folio, refs, flags);
3150 return 0;
3151 }
3152
a43e9820 3153 *nr += refs;
667ed1f7 3154 folio_set_referenced(folio);
2667f50e
SC
3155 return 1;
3156}
3157
3158static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
86dfbed4
JH
3159 unsigned long end, unsigned int flags,
3160 struct page **pages, int *nr)
2667f50e 3161{
83afb52e
MWO
3162 struct page *page;
3163 struct folio *folio;
2667f50e
SC
3164 int refs;
3165
b798bec4 3166 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
3167 return 0;
3168
7af75561
IW
3169 if (pud_devmap(orig)) {
3170 if (unlikely(flags & FOLL_LONGTERM))
3171 return 0;
86dfbed4
JH
3172 return __gup_device_huge_pud(orig, pudp, addr, end, flags,
3173 pages, nr);
7af75561 3174 }
b59f65fa 3175
f3c94c62
PX
3176 page = pud_page(orig);
3177 refs = record_subpages(page, PUD_SIZE, addr, end, pages + *nr);
2667f50e 3178
83afb52e
MWO
3179 folio = try_grab_folio(page, refs, flags);
3180 if (!folio)
2667f50e 3181 return 0;
2667f50e
SC
3182
3183 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
83afb52e 3184 gup_put_folio(folio, refs, flags);
2667f50e
SC
3185 return 0;
3186 }
3187
f002882c 3188 if (!gup_fast_folio_allowed(folio, flags)) {
a6e79df9
LS
3189 gup_put_folio(folio, refs, flags);
3190 return 0;
3191 }
3192
84209e87 3193 if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
a7f22660
DH
3194 gup_put_folio(folio, refs, flags);
3195 return 0;
3196 }
3197
a43e9820 3198 *nr += refs;
83afb52e 3199 folio_set_referenced(folio);
2667f50e
SC
3200 return 1;
3201}
3202
f30c59e9 3203static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
b798bec4 3204 unsigned long end, unsigned int flags,
f30c59e9
AK
3205 struct page **pages, int *nr)
3206{
3207 int refs;
2d7919a2
MWO
3208 struct page *page;
3209 struct folio *folio;
f30c59e9 3210
b798bec4 3211 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
f30c59e9
AK
3212 return 0;
3213
b59f65fa 3214 BUILD_BUG_ON(pgd_devmap(orig));
a43e9820 3215
f3c94c62
PX
3216 page = pgd_page(orig);
3217 refs = record_subpages(page, PGDIR_SIZE, addr, end, pages + *nr);
f30c59e9 3218
2d7919a2
MWO
3219 folio = try_grab_folio(page, refs, flags);
3220 if (!folio)
f30c59e9 3221 return 0;
f30c59e9
AK
3222
3223 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2d7919a2 3224 gup_put_folio(folio, refs, flags);
f30c59e9
AK
3225 return 0;
3226 }
3227
31115034
LS
3228 if (!pgd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
3229 gup_put_folio(folio, refs, flags);
3230 return 0;
3231 }
3232
f002882c 3233 if (!gup_fast_folio_allowed(folio, flags)) {
a6e79df9
LS
3234 gup_put_folio(folio, refs, flags);
3235 return 0;
3236 }
3237
a43e9820 3238 *nr += refs;
2d7919a2 3239 folio_set_referenced(folio);
f30c59e9
AK
3240 return 1;
3241}
3242
d3f7b1bb 3243static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
b798bec4 3244 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
3245{
3246 unsigned long next;
3247 pmd_t *pmdp;
3248
d3f7b1bb 3249 pmdp = pmd_offset_lockless(pudp, pud, addr);
2667f50e 3250 do {
1180e732 3251 pmd_t pmd = pmdp_get_lockless(pmdp);
2667f50e
SC
3252
3253 next = pmd_addr_end(addr, end);
84c3fc4e 3254 if (!pmd_present(pmd))
2667f50e
SC
3255 return 0;
3256
7db86dc3 3257 if (unlikely(pmd_leaf(pmd))) {
d74943a2
DH
3258 /* See gup_pte_range() */
3259 if (pmd_protnone(pmd))
2667f50e
SC
3260 return 0;
3261
b798bec4 3262 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2667f50e
SC
3263 pages, nr))
3264 return 0;
3265
f30c59e9
AK
3266 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
3267 /*
3268 * architecture have different format for hugetlbfs
3269 * pmd format and THP pmd format
3270 */
3271 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
b798bec4 3272 PMD_SHIFT, next, flags, pages, nr))
f30c59e9 3273 return 0;
70cbc3cc 3274 } else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr))
2923117b 3275 return 0;
2667f50e
SC
3276 } while (pmdp++, addr = next, addr != end);
3277
3278 return 1;
3279}
3280
d3f7b1bb 3281static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
b798bec4 3282 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
3283{
3284 unsigned long next;
3285 pud_t *pudp;
3286
d3f7b1bb 3287 pudp = pud_offset_lockless(p4dp, p4d, addr);
2667f50e 3288 do {
e37c6982 3289 pud_t pud = READ_ONCE(*pudp);
2667f50e
SC
3290
3291 next = pud_addr_end(addr, end);
15494520 3292 if (unlikely(!pud_present(pud)))
2667f50e 3293 return 0;
7db86dc3 3294 if (unlikely(pud_leaf(pud))) {
b798bec4 3295 if (!gup_huge_pud(pud, pudp, addr, next, flags,
f30c59e9
AK
3296 pages, nr))
3297 return 0;
3298 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
3299 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
b798bec4 3300 PUD_SHIFT, next, flags, pages, nr))
2667f50e 3301 return 0;
d3f7b1bb 3302 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2667f50e
SC
3303 return 0;
3304 } while (pudp++, addr = next, addr != end);
3305
3306 return 1;
3307}
3308
d3f7b1bb 3309static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
b798bec4 3310 unsigned int flags, struct page **pages, int *nr)
c2febafc
KS
3311{
3312 unsigned long next;
3313 p4d_t *p4dp;
3314
d3f7b1bb 3315 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
c2febafc
KS
3316 do {
3317 p4d_t p4d = READ_ONCE(*p4dp);
3318
3319 next = p4d_addr_end(addr, end);
089f9214 3320 if (!p4d_present(p4d))
c2febafc 3321 return 0;
1965e933 3322 BUILD_BUG_ON(p4d_leaf(p4d));
c2febafc
KS
3323 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
3324 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
b798bec4 3325 P4D_SHIFT, next, flags, pages, nr))
c2febafc 3326 return 0;
d3f7b1bb 3327 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
c2febafc
KS
3328 return 0;
3329 } while (p4dp++, addr = next, addr != end);
3330
3331 return 1;
3332}
3333
5b65c467 3334static void gup_pgd_range(unsigned long addr, unsigned long end,
b798bec4 3335 unsigned int flags, struct page **pages, int *nr)
5b65c467
KS
3336{
3337 unsigned long next;
3338 pgd_t *pgdp;
3339
3340 pgdp = pgd_offset(current->mm, addr);
3341 do {
3342 pgd_t pgd = READ_ONCE(*pgdp);
3343
3344 next = pgd_addr_end(addr, end);
3345 if (pgd_none(pgd))
3346 return;
7db86dc3 3347 if (unlikely(pgd_leaf(pgd))) {
b798bec4 3348 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
5b65c467
KS
3349 pages, nr))
3350 return;
3351 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
3352 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
b798bec4 3353 PGDIR_SHIFT, next, flags, pages, nr))
5b65c467 3354 return;
d3f7b1bb 3355 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
5b65c467
KS
3356 return;
3357 } while (pgdp++, addr = next, addr != end);
3358}
050a9adc
CH
3359#else
3360static inline void gup_pgd_range(unsigned long addr, unsigned long end,
3361 unsigned int flags, struct page **pages, int *nr)
3362{
3363}
3364#endif /* CONFIG_HAVE_FAST_GUP */
5b65c467
KS
3365
3366#ifndef gup_fast_permitted
3367/*
dadbb612 3368 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
5b65c467
KS
3369 * we need to fall back to the slow version:
3370 */
26f4c328 3371static bool gup_fast_permitted(unsigned long start, unsigned long end)
5b65c467 3372{
26f4c328 3373 return true;
5b65c467
KS
3374}
3375#endif
3376
c28b1fc7
JG
3377static unsigned long lockless_pages_from_mm(unsigned long start,
3378 unsigned long end,
3379 unsigned int gup_flags,
3380 struct page **pages)
3381{
3382 unsigned long flags;
3383 int nr_pinned = 0;
57efa1fe 3384 unsigned seq;
c28b1fc7
JG
3385
3386 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
3387 !gup_fast_permitted(start, end))
3388 return 0;
3389
57efa1fe
JG
3390 if (gup_flags & FOLL_PIN) {
3391 seq = raw_read_seqcount(&current->mm->write_protect_seq);
3392 if (seq & 1)
3393 return 0;
3394 }
3395
c28b1fc7
JG
3396 /*
3397 * Disable interrupts. The nested form is used, in order to allow full,
3398 * general purpose use of this routine.
3399 *
3400 * With interrupts disabled, we block page table pages from being freed
3401 * from under us. See struct mmu_table_batch comments in
3402 * include/asm-generic/tlb.h for more details.
3403 *
3404 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
3405 * that come from THPs splitting.
3406 */
3407 local_irq_save(flags);
3408 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
3409 local_irq_restore(flags);
57efa1fe
JG
3410
3411 /*
3412 * When pinning pages for DMA there could be a concurrent write protect
3413 * from fork() via copy_page_range(), in this case always fail fast GUP.
3414 */
3415 if (gup_flags & FOLL_PIN) {
3416 if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
b6a2619c 3417 unpin_user_pages_lockless(pages, nr_pinned);
57efa1fe 3418 return 0;
b6a2619c
DH
3419 } else {
3420 sanity_check_pinned_pages(pages, nr_pinned);
57efa1fe
JG
3421 }
3422 }
c28b1fc7
JG
3423 return nr_pinned;
3424}
3425
3426static int internal_get_user_pages_fast(unsigned long start,
3427 unsigned long nr_pages,
eddb1c22
JH
3428 unsigned int gup_flags,
3429 struct page **pages)
2667f50e 3430{
c28b1fc7
JG
3431 unsigned long len, end;
3432 unsigned long nr_pinned;
b2a72dff 3433 int locked = 0;
c28b1fc7 3434 int ret;
2667f50e 3435
f4000fdf 3436 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
376a34ef 3437 FOLL_FORCE | FOLL_PIN | FOLL_GET |
4003f107 3438 FOLL_FAST_ONLY | FOLL_NOFAULT |
d74943a2 3439 FOLL_PCI_P2PDMA | FOLL_HONOR_NUMA_FAULT)))
817be129
CH
3440 return -EINVAL;
3441
a458b76a
AA
3442 if (gup_flags & FOLL_PIN)
3443 mm_set_has_pinned_flag(&current->mm->flags);
008cfe44 3444
f81cd178 3445 if (!(gup_flags & FOLL_FAST_ONLY))
da1c55f1 3446 might_lock_read(&current->mm->mmap_lock);
f81cd178 3447
f455c854 3448 start = untagged_addr(start) & PAGE_MASK;
c28b1fc7
JG
3449 len = nr_pages << PAGE_SHIFT;
3450 if (check_add_overflow(start, len, &end))
9883c7f8 3451 return -EOVERFLOW;
6014bc27
LT
3452 if (end > TASK_SIZE_MAX)
3453 return -EFAULT;
96d4f267 3454 if (unlikely(!access_ok((void __user *)start, len)))
c61611f7 3455 return -EFAULT;
73e10a61 3456
c28b1fc7
JG
3457 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
3458 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
3459 return nr_pinned;
2667f50e 3460
c28b1fc7
JG
3461 /* Slow path: try to get the remaining pages with get_user_pages */
3462 start += nr_pinned << PAGE_SHIFT;
3463 pages += nr_pinned;
b2a72dff 3464 ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned,
b2cac248 3465 pages, &locked,
f04740f5 3466 gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE);
c28b1fc7
JG
3467 if (ret < 0) {
3468 /*
3469 * The caller has to unpin the pages we already pinned so
3470 * returning -errno is not an option
3471 */
3472 if (nr_pinned)
3473 return nr_pinned;
3474 return ret;
2667f50e 3475 }
c28b1fc7 3476 return ret + nr_pinned;
2667f50e 3477}
c28b1fc7 3478
dadbb612
SJ
3479/**
3480 * get_user_pages_fast_only() - pin user pages in memory
3481 * @start: starting user address
3482 * @nr_pages: number of pages from start to pin
3483 * @gup_flags: flags modifying pin behaviour
3484 * @pages: array that receives pointers to the pages pinned.
3485 * Should be at least nr_pages long.
3486 *
9e1f0580
JH
3487 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3488 * the regular GUP.
9e1f0580
JH
3489 *
3490 * If the architecture does not support this function, simply return with no
3491 * pages pinned.
3492 *
3493 * Careful, careful! COW breaking can go either way, so a non-write
3494 * access can get ambiguous page results. If you call this function without
3495 * 'write' set, you'd better be sure that you're ok with that ambiguity.
3496 */
dadbb612
SJ
3497int get_user_pages_fast_only(unsigned long start, int nr_pages,
3498 unsigned int gup_flags, struct page **pages)
9e1f0580 3499{
9e1f0580
JH
3500 /*
3501 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3502 * because gup fast is always a "pin with a +1 page refcount" request.
376a34ef
JH
3503 *
3504 * FOLL_FAST_ONLY is required in order to match the API description of
3505 * this routine: no fall back to regular ("slow") GUP.
9e1f0580 3506 */
b2cac248 3507 if (!is_valid_gup_args(pages, NULL, &gup_flags,
d64e2dbc
JG
3508 FOLL_GET | FOLL_FAST_ONLY))
3509 return -EINVAL;
9e1f0580 3510
9198a919 3511 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
9e1f0580 3512}
dadbb612 3513EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
9e1f0580 3514
eddb1c22
JH
3515/**
3516 * get_user_pages_fast() - pin user pages in memory
3faa52c0
JH
3517 * @start: starting user address
3518 * @nr_pages: number of pages from start to pin
3519 * @gup_flags: flags modifying pin behaviour
3520 * @pages: array that receives pointers to the pages pinned.
3521 * Should be at least nr_pages long.
eddb1c22 3522 *
c1e8d7c6 3523 * Attempt to pin user pages in memory without taking mm->mmap_lock.
eddb1c22
JH
3524 * If not successful, it will fall back to taking the lock and
3525 * calling get_user_pages().
3526 *
3527 * Returns number of pages pinned. This may be fewer than the number requested.
3528 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3529 * -errno.
3530 */
3531int get_user_pages_fast(unsigned long start, int nr_pages,
3532 unsigned int gup_flags, struct page **pages)
3533{
94202f12
JH
3534 /*
3535 * The caller may or may not have explicitly set FOLL_GET; either way is
3536 * OK. However, internally (within mm/gup.c), gup fast variants must set
3537 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3538 * request.
3539 */
b2cac248 3540 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET))
d64e2dbc 3541 return -EINVAL;
eddb1c22
JH
3542 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3543}
050a9adc 3544EXPORT_SYMBOL_GPL(get_user_pages_fast);
eddb1c22
JH
3545
3546/**
3547 * pin_user_pages_fast() - pin user pages in memory without taking locks
3548 *
3faa52c0
JH
3549 * @start: starting user address
3550 * @nr_pages: number of pages from start to pin
3551 * @gup_flags: flags modifying pin behaviour
3552 * @pages: array that receives pointers to the pages pinned.
3553 * Should be at least nr_pages long.
3554 *
3555 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3556 * get_user_pages_fast() for documentation on the function arguments, because
3557 * the arguments here are identical.
3558 *
3559 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 3560 * see Documentation/core-api/pin_user_pages.rst for further details.
c8070b78
DH
3561 *
3562 * Note that if a zero_page is amongst the returned pages, it will not have
3563 * pins in it and unpin_user_page() will not remove pins from it.
eddb1c22
JH
3564 */
3565int pin_user_pages_fast(unsigned long start, int nr_pages,
3566 unsigned int gup_flags, struct page **pages)
3567{
b2cac248 3568 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3faa52c0 3569 return -EINVAL;
3faa52c0 3570 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
eddb1c22
JH
3571}
3572EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3573
3574/**
64019a2e 3575 * pin_user_pages_remote() - pin pages of a remote process
eddb1c22 3576 *
3faa52c0
JH
3577 * @mm: mm_struct of target mm
3578 * @start: starting user address
3579 * @nr_pages: number of pages from start to pin
3580 * @gup_flags: flags modifying lookup behaviour
3581 * @pages: array that receives pointers to the pages pinned.
0768c8de 3582 * Should be at least nr_pages long.
3faa52c0
JH
3583 * @locked: pointer to lock flag indicating whether lock is held and
3584 * subsequently whether VM_FAULT_RETRY functionality can be
3585 * utilised. Lock must initially be held.
3586 *
3587 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3588 * get_user_pages_remote() for documentation on the function arguments, because
3589 * the arguments here are identical.
3590 *
3591 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 3592 * see Documentation/core-api/pin_user_pages.rst for details.
c8070b78
DH
3593 *
3594 * Note that if a zero_page is amongst the returned pages, it will not have
3595 * pins in it and unpin_user_page*() will not remove pins from it.
eddb1c22 3596 */
64019a2e 3597long pin_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
3598 unsigned long start, unsigned long nr_pages,
3599 unsigned int gup_flags, struct page **pages,
0b295316 3600 int *locked)
eddb1c22 3601{
9a863a6a
JG
3602 int local_locked = 1;
3603
b2cac248 3604 if (!is_valid_gup_args(pages, locked, &gup_flags,
d64e2dbc
JG
3605 FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE))
3606 return 0;
b2cac248 3607 return __gup_longterm_locked(mm, start, nr_pages, pages,
9a863a6a 3608 locked ? locked : &local_locked,
d64e2dbc 3609 gup_flags);
eddb1c22
JH
3610}
3611EXPORT_SYMBOL(pin_user_pages_remote);
3612
3613/**
3614 * pin_user_pages() - pin user pages in memory for use by other devices
3615 *
3faa52c0
JH
3616 * @start: starting user address
3617 * @nr_pages: number of pages from start to pin
3618 * @gup_flags: flags modifying lookup behaviour
3619 * @pages: array that receives pointers to the pages pinned.
0768c8de 3620 * Should be at least nr_pages long.
3faa52c0
JH
3621 *
3622 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3623 * FOLL_PIN is set.
3624 *
3625 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 3626 * see Documentation/core-api/pin_user_pages.rst for details.
c8070b78
DH
3627 *
3628 * Note that if a zero_page is amongst the returned pages, it will not have
3629 * pins in it and unpin_user_page*() will not remove pins from it.
eddb1c22
JH
3630 */
3631long pin_user_pages(unsigned long start, unsigned long nr_pages,
4c630f30 3632 unsigned int gup_flags, struct page **pages)
eddb1c22 3633{
9a863a6a
JG
3634 int locked = 1;
3635
b2cac248 3636 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
d64e2dbc 3637 return 0;
64019a2e 3638 return __gup_longterm_locked(current->mm, start, nr_pages,
b2cac248 3639 pages, &locked, gup_flags);
eddb1c22
JH
3640}
3641EXPORT_SYMBOL(pin_user_pages);
91429023
JH
3642
3643/*
3644 * pin_user_pages_unlocked() is the FOLL_PIN variant of
3645 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3646 * FOLL_PIN and rejects FOLL_GET.
c8070b78
DH
3647 *
3648 * Note that if a zero_page is amongst the returned pages, it will not have
3649 * pins in it and unpin_user_page*() will not remove pins from it.
91429023
JH
3650 */
3651long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3652 struct page **pages, unsigned int gup_flags)
3653{
b2a72dff 3654 int locked = 0;
91429023 3655
b2cac248 3656 if (!is_valid_gup_args(pages, NULL, &gup_flags,
f04740f5 3657 FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE))
d64e2dbc 3658 return 0;
0768c8de 3659
b2cac248 3660 return __gup_longterm_locked(current->mm, start, nr_pages, pages,
b2a72dff 3661 &locked, gup_flags);
91429023
JH
3662}
3663EXPORT_SYMBOL(pin_user_pages_unlocked);