mm: add pagemap.h to the fine documentation
[linux-2.6-block.git] / mm / gup.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
4bbd4c77
KS
2#include <linux/kernel.h>
3#include <linux/errno.h>
4#include <linux/err.h>
5#include <linux/spinlock.h>
6
4bbd4c77 7#include <linux/mm.h>
3565fce3 8#include <linux/memremap.h>
4bbd4c77
KS
9#include <linux/pagemap.h>
10#include <linux/rmap.h>
11#include <linux/swap.h>
12#include <linux/swapops.h>
13
174cd4b1 14#include <linux/sched/signal.h>
2667f50e 15#include <linux/rwsem.h>
f30c59e9 16#include <linux/hugetlb.h>
9a4e9f3b
AK
17#include <linux/migrate.h>
18#include <linux/mm_inline.h>
19#include <linux/sched/mm.h>
1027e443 20
33a709b2 21#include <asm/mmu_context.h>
2667f50e 22#include <asm/pgtable.h>
1027e443 23#include <asm/tlbflush.h>
2667f50e 24
4bbd4c77
KS
25#include "internal.h"
26
df06b37f
KB
27struct follow_page_context {
28 struct dev_pagemap *pgmap;
29 unsigned int page_mask;
30};
31
47e29d32
JH
32static void hpage_pincount_add(struct page *page, int refs)
33{
34 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
35 VM_BUG_ON_PAGE(page != compound_head(page), page);
36
37 atomic_add(refs, compound_pincount_ptr(page));
38}
39
40static void hpage_pincount_sub(struct page *page, int refs)
41{
42 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
43 VM_BUG_ON_PAGE(page != compound_head(page), page);
44
45 atomic_sub(refs, compound_pincount_ptr(page));
46}
47
a707cdd5
JH
48/*
49 * Return the compound head page with ref appropriately incremented,
50 * or NULL if that failed.
51 */
52static inline struct page *try_get_compound_head(struct page *page, int refs)
53{
54 struct page *head = compound_head(page);
55
56 if (WARN_ON_ONCE(page_ref_count(head) < 0))
57 return NULL;
58 if (unlikely(!page_cache_add_speculative(head, refs)))
59 return NULL;
60 return head;
61}
62
3faa52c0
JH
63/*
64 * try_grab_compound_head() - attempt to elevate a page's refcount, by a
65 * flags-dependent amount.
66 *
67 * "grab" names in this file mean, "look at flags to decide whether to use
68 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
69 *
70 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
71 * same time. (That's true throughout the get_user_pages*() and
72 * pin_user_pages*() APIs.) Cases:
73 *
74 * FOLL_GET: page's refcount will be incremented by 1.
75 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
76 *
77 * Return: head page (with refcount appropriately incremented) for success, or
78 * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
79 * considered failure, and furthermore, a likely bug in the caller, so a warning
80 * is also emitted.
81 */
82static __maybe_unused struct page *try_grab_compound_head(struct page *page,
83 int refs,
84 unsigned int flags)
85{
86 if (flags & FOLL_GET)
87 return try_get_compound_head(page, refs);
88 else if (flags & FOLL_PIN) {
1970dc6f
JH
89 int orig_refs = refs;
90
df3a0a21
PL
91 /*
92 * Can't do FOLL_LONGTERM + FOLL_PIN with CMA in the gup fast
93 * path, so fail and let the caller fall back to the slow path.
94 */
95 if (unlikely(flags & FOLL_LONGTERM) &&
96 is_migrate_cma_page(page))
97 return NULL;
98
47e29d32
JH
99 /*
100 * When pinning a compound page of order > 1 (which is what
101 * hpage_pincount_available() checks for), use an exact count to
102 * track it, via hpage_pincount_add/_sub().
103 *
104 * However, be sure to *also* increment the normal page refcount
105 * field at least once, so that the page really is pinned.
106 */
107 if (!hpage_pincount_available(page))
108 refs *= GUP_PIN_COUNTING_BIAS;
109
110 page = try_get_compound_head(page, refs);
111 if (!page)
112 return NULL;
113
114 if (hpage_pincount_available(page))
115 hpage_pincount_add(page, refs);
116
1970dc6f
JH
117 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED,
118 orig_refs);
119
47e29d32 120 return page;
3faa52c0
JH
121 }
122
123 WARN_ON_ONCE(1);
124 return NULL;
125}
126
127/**
128 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
129 *
130 * This might not do anything at all, depending on the flags argument.
131 *
132 * "grab" names in this file mean, "look at flags to decide whether to use
133 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
134 *
135 * @page: pointer to page to be grabbed
136 * @flags: gup flags: these are the FOLL_* flag values.
137 *
138 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
139 * time. Cases:
140 *
141 * FOLL_GET: page's refcount will be incremented by 1.
142 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
143 *
144 * Return: true for success, or if no action was required (if neither FOLL_PIN
145 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
146 * FOLL_PIN was set, but the page could not be grabbed.
147 */
148bool __must_check try_grab_page(struct page *page, unsigned int flags)
149{
150 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
151
152 if (flags & FOLL_GET)
153 return try_get_page(page);
154 else if (flags & FOLL_PIN) {
47e29d32
JH
155 int refs = 1;
156
3faa52c0
JH
157 page = compound_head(page);
158
159 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
160 return false;
161
47e29d32
JH
162 if (hpage_pincount_available(page))
163 hpage_pincount_add(page, 1);
164 else
165 refs = GUP_PIN_COUNTING_BIAS;
166
167 /*
168 * Similar to try_grab_compound_head(): even if using the
169 * hpage_pincount_add/_sub() routines, be sure to
170 * *also* increment the normal page refcount field at least
171 * once, so that the page really is pinned.
172 */
173 page_ref_add(page, refs);
1970dc6f
JH
174
175 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1);
3faa52c0
JH
176 }
177
178 return true;
179}
180
181#ifdef CONFIG_DEV_PAGEMAP_OPS
182static bool __unpin_devmap_managed_user_page(struct page *page)
183{
47e29d32 184 int count, refs = 1;
3faa52c0
JH
185
186 if (!page_is_devmap_managed(page))
187 return false;
188
47e29d32
JH
189 if (hpage_pincount_available(page))
190 hpage_pincount_sub(page, 1);
191 else
192 refs = GUP_PIN_COUNTING_BIAS;
193
194 count = page_ref_sub_return(page, refs);
3faa52c0 195
1970dc6f 196 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
3faa52c0
JH
197 /*
198 * devmap page refcounts are 1-based, rather than 0-based: if
199 * refcount is 1, then the page is free and the refcount is
200 * stable because nobody holds a reference on the page.
201 */
202 if (count == 1)
203 free_devmap_managed_page(page);
204 else if (!count)
205 __put_page(page);
206
207 return true;
208}
209#else
210static bool __unpin_devmap_managed_user_page(struct page *page)
211{
212 return false;
213}
214#endif /* CONFIG_DEV_PAGEMAP_OPS */
215
216/**
217 * unpin_user_page() - release a dma-pinned page
218 * @page: pointer to page to be released
219 *
220 * Pages that were pinned via pin_user_pages*() must be released via either
221 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
222 * that such pages can be separately tracked and uniquely handled. In
223 * particular, interactions with RDMA and filesystems need special handling.
224 */
225void unpin_user_page(struct page *page)
226{
47e29d32
JH
227 int refs = 1;
228
3faa52c0
JH
229 page = compound_head(page);
230
231 /*
232 * For devmap managed pages we need to catch refcount transition from
233 * GUP_PIN_COUNTING_BIAS to 1, when refcount reach one it means the
234 * page is free and we need to inform the device driver through
235 * callback. See include/linux/memremap.h and HMM for details.
236 */
237 if (__unpin_devmap_managed_user_page(page))
238 return;
239
47e29d32
JH
240 if (hpage_pincount_available(page))
241 hpage_pincount_sub(page, 1);
242 else
243 refs = GUP_PIN_COUNTING_BIAS;
244
245 if (page_ref_sub_and_test(page, refs))
3faa52c0 246 __put_page(page);
1970dc6f
JH
247
248 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
3faa52c0
JH
249}
250EXPORT_SYMBOL(unpin_user_page);
251
fc1d8e7c 252/**
f1f6a7dd 253 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
2d15eb31 254 * @pages: array of pages to be maybe marked dirty, and definitely released.
fc1d8e7c 255 * @npages: number of pages in the @pages array.
2d15eb31 256 * @make_dirty: whether to mark the pages dirty
fc1d8e7c
JH
257 *
258 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
259 * variants called on that page.
260 *
261 * For each page in the @pages array, make that page (or its head page, if a
2d15eb31 262 * compound page) dirty, if @make_dirty is true, and if the page was previously
f1f6a7dd
JH
263 * listed as clean. In any case, releases all pages using unpin_user_page(),
264 * possibly via unpin_user_pages(), for the non-dirty case.
fc1d8e7c 265 *
f1f6a7dd 266 * Please see the unpin_user_page() documentation for details.
fc1d8e7c 267 *
2d15eb31 268 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
269 * required, then the caller should a) verify that this is really correct,
270 * because _lock() is usually required, and b) hand code it:
f1f6a7dd 271 * set_page_dirty_lock(), unpin_user_page().
fc1d8e7c
JH
272 *
273 */
f1f6a7dd
JH
274void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
275 bool make_dirty)
fc1d8e7c 276{
2d15eb31 277 unsigned long index;
fc1d8e7c 278
2d15eb31 279 /*
280 * TODO: this can be optimized for huge pages: if a series of pages is
281 * physically contiguous and part of the same compound page, then a
282 * single operation to the head page should suffice.
283 */
284
285 if (!make_dirty) {
f1f6a7dd 286 unpin_user_pages(pages, npages);
2d15eb31 287 return;
288 }
289
290 for (index = 0; index < npages; index++) {
291 struct page *page = compound_head(pages[index]);
292 /*
293 * Checking PageDirty at this point may race with
294 * clear_page_dirty_for_io(), but that's OK. Two key
295 * cases:
296 *
297 * 1) This code sees the page as already dirty, so it
298 * skips the call to set_page_dirty(). That could happen
299 * because clear_page_dirty_for_io() called
300 * page_mkclean(), followed by set_page_dirty().
301 * However, now the page is going to get written back,
302 * which meets the original intention of setting it
303 * dirty, so all is well: clear_page_dirty_for_io() goes
304 * on to call TestClearPageDirty(), and write the page
305 * back.
306 *
307 * 2) This code sees the page as clean, so it calls
308 * set_page_dirty(). The page stays dirty, despite being
309 * written back, so it gets written back again in the
310 * next writeback cycle. This is harmless.
311 */
312 if (!PageDirty(page))
313 set_page_dirty_lock(page);
f1f6a7dd 314 unpin_user_page(page);
2d15eb31 315 }
fc1d8e7c 316}
f1f6a7dd 317EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
fc1d8e7c
JH
318
319/**
f1f6a7dd 320 * unpin_user_pages() - release an array of gup-pinned pages.
fc1d8e7c
JH
321 * @pages: array of pages to be marked dirty and released.
322 * @npages: number of pages in the @pages array.
323 *
f1f6a7dd 324 * For each page in the @pages array, release the page using unpin_user_page().
fc1d8e7c 325 *
f1f6a7dd 326 * Please see the unpin_user_page() documentation for details.
fc1d8e7c 327 */
f1f6a7dd 328void unpin_user_pages(struct page **pages, unsigned long npages)
fc1d8e7c
JH
329{
330 unsigned long index;
331
332 /*
333 * TODO: this can be optimized for huge pages: if a series of pages is
334 * physically contiguous and part of the same compound page, then a
335 * single operation to the head page should suffice.
336 */
337 for (index = 0; index < npages; index++)
f1f6a7dd 338 unpin_user_page(pages[index]);
fc1d8e7c 339}
f1f6a7dd 340EXPORT_SYMBOL(unpin_user_pages);
fc1d8e7c 341
050a9adc 342#ifdef CONFIG_MMU
69e68b4f
KS
343static struct page *no_page_table(struct vm_area_struct *vma,
344 unsigned int flags)
4bbd4c77 345{
69e68b4f
KS
346 /*
347 * When core dumping an enormous anonymous area that nobody
348 * has touched so far, we don't want to allocate unnecessary pages or
349 * page tables. Return error instead of NULL to skip handle_mm_fault,
350 * then get_dump_page() will return NULL to leave a hole in the dump.
351 * But we can only make this optimization where a hole would surely
352 * be zero-filled if handle_mm_fault() actually did handle it.
353 */
354 if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
355 return ERR_PTR(-EFAULT);
356 return NULL;
357}
4bbd4c77 358
1027e443
KS
359static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
360 pte_t *pte, unsigned int flags)
361{
362 /* No page to get reference */
363 if (flags & FOLL_GET)
364 return -EFAULT;
365
366 if (flags & FOLL_TOUCH) {
367 pte_t entry = *pte;
368
369 if (flags & FOLL_WRITE)
370 entry = pte_mkdirty(entry);
371 entry = pte_mkyoung(entry);
372
373 if (!pte_same(*pte, entry)) {
374 set_pte_at(vma->vm_mm, address, pte, entry);
375 update_mmu_cache(vma, address, pte);
376 }
377 }
378
379 /* Proper page table entry exists, but no corresponding struct page */
380 return -EEXIST;
381}
382
19be0eaf
LT
383/*
384 * FOLL_FORCE can write to even unwritable pte's, but only
385 * after we've gone through a COW cycle and they are dirty.
386 */
387static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
388{
f6f37321 389 return pte_write(pte) ||
19be0eaf
LT
390 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
391}
392
69e68b4f 393static struct page *follow_page_pte(struct vm_area_struct *vma,
df06b37f
KB
394 unsigned long address, pmd_t *pmd, unsigned int flags,
395 struct dev_pagemap **pgmap)
69e68b4f
KS
396{
397 struct mm_struct *mm = vma->vm_mm;
398 struct page *page;
399 spinlock_t *ptl;
400 pte_t *ptep, pte;
f28d4363 401 int ret;
4bbd4c77 402
eddb1c22
JH
403 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
404 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
405 (FOLL_PIN | FOLL_GET)))
406 return ERR_PTR(-EINVAL);
69e68b4f 407retry:
4bbd4c77 408 if (unlikely(pmd_bad(*pmd)))
69e68b4f 409 return no_page_table(vma, flags);
4bbd4c77
KS
410
411 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
4bbd4c77
KS
412 pte = *ptep;
413 if (!pte_present(pte)) {
414 swp_entry_t entry;
415 /*
416 * KSM's break_ksm() relies upon recognizing a ksm page
417 * even while it is being migrated, so for that case we
418 * need migration_entry_wait().
419 */
420 if (likely(!(flags & FOLL_MIGRATION)))
421 goto no_page;
0661a336 422 if (pte_none(pte))
4bbd4c77
KS
423 goto no_page;
424 entry = pte_to_swp_entry(pte);
425 if (!is_migration_entry(entry))
426 goto no_page;
427 pte_unmap_unlock(ptep, ptl);
428 migration_entry_wait(mm, pmd, address);
69e68b4f 429 goto retry;
4bbd4c77 430 }
8a0516ed 431 if ((flags & FOLL_NUMA) && pte_protnone(pte))
4bbd4c77 432 goto no_page;
19be0eaf 433 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
69e68b4f
KS
434 pte_unmap_unlock(ptep, ptl);
435 return NULL;
436 }
4bbd4c77
KS
437
438 page = vm_normal_page(vma, address, pte);
3faa52c0 439 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
3565fce3 440 /*
3faa52c0
JH
441 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
442 * case since they are only valid while holding the pgmap
443 * reference.
3565fce3 444 */
df06b37f
KB
445 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
446 if (*pgmap)
3565fce3
DW
447 page = pte_page(pte);
448 else
449 goto no_page;
450 } else if (unlikely(!page)) {
1027e443
KS
451 if (flags & FOLL_DUMP) {
452 /* Avoid special (like zero) pages in core dumps */
453 page = ERR_PTR(-EFAULT);
454 goto out;
455 }
456
457 if (is_zero_pfn(pte_pfn(pte))) {
458 page = pte_page(pte);
459 } else {
1027e443
KS
460 ret = follow_pfn_pte(vma, address, ptep, flags);
461 page = ERR_PTR(ret);
462 goto out;
463 }
4bbd4c77
KS
464 }
465
6742d293 466 if (flags & FOLL_SPLIT && PageTransCompound(page)) {
6742d293
KS
467 get_page(page);
468 pte_unmap_unlock(ptep, ptl);
469 lock_page(page);
470 ret = split_huge_page(page);
471 unlock_page(page);
472 put_page(page);
473 if (ret)
474 return ERR_PTR(ret);
475 goto retry;
476 }
477
3faa52c0
JH
478 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
479 if (unlikely(!try_grab_page(page, flags))) {
480 page = ERR_PTR(-ENOMEM);
481 goto out;
8fde12ca 482 }
f28d4363
CI
483 /*
484 * We need to make the page accessible if and only if we are going
485 * to access its content (the FOLL_PIN case). Please see
486 * Documentation/core-api/pin_user_pages.rst for details.
487 */
488 if (flags & FOLL_PIN) {
489 ret = arch_make_page_accessible(page);
490 if (ret) {
491 unpin_user_page(page);
492 page = ERR_PTR(ret);
493 goto out;
494 }
495 }
4bbd4c77
KS
496 if (flags & FOLL_TOUCH) {
497 if ((flags & FOLL_WRITE) &&
498 !pte_dirty(pte) && !PageDirty(page))
499 set_page_dirty(page);
500 /*
501 * pte_mkyoung() would be more correct here, but atomic care
502 * is needed to avoid losing the dirty bit: it is easier to use
503 * mark_page_accessed().
504 */
505 mark_page_accessed(page);
506 }
de60f5f1 507 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
508 /* Do not mlock pte-mapped THP */
509 if (PageTransCompound(page))
510 goto out;
511
4bbd4c77
KS
512 /*
513 * The preliminary mapping check is mainly to avoid the
514 * pointless overhead of lock_page on the ZERO_PAGE
515 * which might bounce very badly if there is contention.
516 *
517 * If the page is already locked, we don't need to
518 * handle it now - vmscan will handle it later if and
519 * when it attempts to reclaim the page.
520 */
521 if (page->mapping && trylock_page(page)) {
522 lru_add_drain(); /* push cached pages to LRU */
523 /*
524 * Because we lock page here, and migration is
525 * blocked by the pte's page reference, and we
526 * know the page is still mapped, we don't even
527 * need to check for file-cache page truncation.
528 */
529 mlock_vma_page(page);
530 unlock_page(page);
531 }
532 }
1027e443 533out:
4bbd4c77 534 pte_unmap_unlock(ptep, ptl);
4bbd4c77 535 return page;
4bbd4c77
KS
536no_page:
537 pte_unmap_unlock(ptep, ptl);
538 if (!pte_none(pte))
69e68b4f
KS
539 return NULL;
540 return no_page_table(vma, flags);
541}
542
080dbb61
AK
543static struct page *follow_pmd_mask(struct vm_area_struct *vma,
544 unsigned long address, pud_t *pudp,
df06b37f
KB
545 unsigned int flags,
546 struct follow_page_context *ctx)
69e68b4f 547{
68827280 548 pmd_t *pmd, pmdval;
69e68b4f
KS
549 spinlock_t *ptl;
550 struct page *page;
551 struct mm_struct *mm = vma->vm_mm;
552
080dbb61 553 pmd = pmd_offset(pudp, address);
68827280
HY
554 /*
555 * The READ_ONCE() will stabilize the pmdval in a register or
556 * on the stack so that it will stop changing under the code.
557 */
558 pmdval = READ_ONCE(*pmd);
559 if (pmd_none(pmdval))
69e68b4f 560 return no_page_table(vma, flags);
be9d3045 561 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
e66f17ff
NH
562 page = follow_huge_pmd(mm, address, pmd, flags);
563 if (page)
564 return page;
565 return no_page_table(vma, flags);
69e68b4f 566 }
68827280 567 if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
4dc71451 568 page = follow_huge_pd(vma, address,
68827280 569 __hugepd(pmd_val(pmdval)), flags,
4dc71451
AK
570 PMD_SHIFT);
571 if (page)
572 return page;
573 return no_page_table(vma, flags);
574 }
84c3fc4e 575retry:
68827280 576 if (!pmd_present(pmdval)) {
84c3fc4e
ZY
577 if (likely(!(flags & FOLL_MIGRATION)))
578 return no_page_table(vma, flags);
579 VM_BUG_ON(thp_migration_supported() &&
68827280
HY
580 !is_pmd_migration_entry(pmdval));
581 if (is_pmd_migration_entry(pmdval))
84c3fc4e 582 pmd_migration_entry_wait(mm, pmd);
68827280
HY
583 pmdval = READ_ONCE(*pmd);
584 /*
585 * MADV_DONTNEED may convert the pmd to null because
586 * mmap_sem is held in read mode
587 */
588 if (pmd_none(pmdval))
589 return no_page_table(vma, flags);
84c3fc4e
ZY
590 goto retry;
591 }
68827280 592 if (pmd_devmap(pmdval)) {
3565fce3 593 ptl = pmd_lock(mm, pmd);
df06b37f 594 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
3565fce3
DW
595 spin_unlock(ptl);
596 if (page)
597 return page;
598 }
68827280 599 if (likely(!pmd_trans_huge(pmdval)))
df06b37f 600 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 601
68827280 602 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
db08f203
AK
603 return no_page_table(vma, flags);
604
84c3fc4e 605retry_locked:
6742d293 606 ptl = pmd_lock(mm, pmd);
68827280
HY
607 if (unlikely(pmd_none(*pmd))) {
608 spin_unlock(ptl);
609 return no_page_table(vma, flags);
610 }
84c3fc4e
ZY
611 if (unlikely(!pmd_present(*pmd))) {
612 spin_unlock(ptl);
613 if (likely(!(flags & FOLL_MIGRATION)))
614 return no_page_table(vma, flags);
615 pmd_migration_entry_wait(mm, pmd);
616 goto retry_locked;
617 }
6742d293
KS
618 if (unlikely(!pmd_trans_huge(*pmd))) {
619 spin_unlock(ptl);
df06b37f 620 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 621 }
bfe7b00d 622 if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) {
6742d293
KS
623 int ret;
624 page = pmd_page(*pmd);
625 if (is_huge_zero_page(page)) {
626 spin_unlock(ptl);
627 ret = 0;
78ddc534 628 split_huge_pmd(vma, pmd, address);
337d9abf
NH
629 if (pmd_trans_unstable(pmd))
630 ret = -EBUSY;
bfe7b00d 631 } else if (flags & FOLL_SPLIT) {
8fde12ca
LT
632 if (unlikely(!try_get_page(page))) {
633 spin_unlock(ptl);
634 return ERR_PTR(-ENOMEM);
635 }
69e68b4f 636 spin_unlock(ptl);
6742d293
KS
637 lock_page(page);
638 ret = split_huge_page(page);
639 unlock_page(page);
640 put_page(page);
baa355fd
KS
641 if (pmd_none(*pmd))
642 return no_page_table(vma, flags);
bfe7b00d
SL
643 } else { /* flags & FOLL_SPLIT_PMD */
644 spin_unlock(ptl);
645 split_huge_pmd(vma, pmd, address);
646 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
6742d293
KS
647 }
648
649 return ret ? ERR_PTR(ret) :
df06b37f 650 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
69e68b4f 651 }
6742d293
KS
652 page = follow_trans_huge_pmd(vma, address, pmd, flags);
653 spin_unlock(ptl);
df06b37f 654 ctx->page_mask = HPAGE_PMD_NR - 1;
6742d293 655 return page;
4bbd4c77
KS
656}
657
080dbb61
AK
658static struct page *follow_pud_mask(struct vm_area_struct *vma,
659 unsigned long address, p4d_t *p4dp,
df06b37f
KB
660 unsigned int flags,
661 struct follow_page_context *ctx)
080dbb61
AK
662{
663 pud_t *pud;
664 spinlock_t *ptl;
665 struct page *page;
666 struct mm_struct *mm = vma->vm_mm;
667
668 pud = pud_offset(p4dp, address);
669 if (pud_none(*pud))
670 return no_page_table(vma, flags);
be9d3045 671 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
080dbb61
AK
672 page = follow_huge_pud(mm, address, pud, flags);
673 if (page)
674 return page;
675 return no_page_table(vma, flags);
676 }
4dc71451
AK
677 if (is_hugepd(__hugepd(pud_val(*pud)))) {
678 page = follow_huge_pd(vma, address,
679 __hugepd(pud_val(*pud)), flags,
680 PUD_SHIFT);
681 if (page)
682 return page;
683 return no_page_table(vma, flags);
684 }
080dbb61
AK
685 if (pud_devmap(*pud)) {
686 ptl = pud_lock(mm, pud);
df06b37f 687 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
080dbb61
AK
688 spin_unlock(ptl);
689 if (page)
690 return page;
691 }
692 if (unlikely(pud_bad(*pud)))
693 return no_page_table(vma, flags);
694
df06b37f 695 return follow_pmd_mask(vma, address, pud, flags, ctx);
080dbb61
AK
696}
697
080dbb61
AK
698static struct page *follow_p4d_mask(struct vm_area_struct *vma,
699 unsigned long address, pgd_t *pgdp,
df06b37f
KB
700 unsigned int flags,
701 struct follow_page_context *ctx)
080dbb61
AK
702{
703 p4d_t *p4d;
4dc71451 704 struct page *page;
080dbb61
AK
705
706 p4d = p4d_offset(pgdp, address);
707 if (p4d_none(*p4d))
708 return no_page_table(vma, flags);
709 BUILD_BUG_ON(p4d_huge(*p4d));
710 if (unlikely(p4d_bad(*p4d)))
711 return no_page_table(vma, flags);
712
4dc71451
AK
713 if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
714 page = follow_huge_pd(vma, address,
715 __hugepd(p4d_val(*p4d)), flags,
716 P4D_SHIFT);
717 if (page)
718 return page;
719 return no_page_table(vma, flags);
720 }
df06b37f 721 return follow_pud_mask(vma, address, p4d, flags, ctx);
080dbb61
AK
722}
723
724/**
725 * follow_page_mask - look up a page descriptor from a user-virtual address
726 * @vma: vm_area_struct mapping @address
727 * @address: virtual address to look up
728 * @flags: flags modifying lookup behaviour
78179556
MR
729 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
730 * pointer to output page_mask
080dbb61
AK
731 *
732 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
733 *
78179556
MR
734 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
735 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
736 *
737 * On output, the @ctx->page_mask is set according to the size of the page.
738 *
739 * Return: the mapped (struct page *), %NULL if no mapping exists, or
080dbb61
AK
740 * an error pointer if there is a mapping to something not represented
741 * by a page descriptor (see also vm_normal_page()).
742 */
a7030aea 743static struct page *follow_page_mask(struct vm_area_struct *vma,
080dbb61 744 unsigned long address, unsigned int flags,
df06b37f 745 struct follow_page_context *ctx)
080dbb61
AK
746{
747 pgd_t *pgd;
748 struct page *page;
749 struct mm_struct *mm = vma->vm_mm;
750
df06b37f 751 ctx->page_mask = 0;
080dbb61
AK
752
753 /* make this handle hugepd */
754 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
755 if (!IS_ERR(page)) {
3faa52c0 756 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
080dbb61
AK
757 return page;
758 }
759
760 pgd = pgd_offset(mm, address);
761
762 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
763 return no_page_table(vma, flags);
764
faaa5b62
AK
765 if (pgd_huge(*pgd)) {
766 page = follow_huge_pgd(mm, address, pgd, flags);
767 if (page)
768 return page;
769 return no_page_table(vma, flags);
770 }
4dc71451
AK
771 if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
772 page = follow_huge_pd(vma, address,
773 __hugepd(pgd_val(*pgd)), flags,
774 PGDIR_SHIFT);
775 if (page)
776 return page;
777 return no_page_table(vma, flags);
778 }
faaa5b62 779
df06b37f
KB
780 return follow_p4d_mask(vma, address, pgd, flags, ctx);
781}
782
783struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
784 unsigned int foll_flags)
785{
786 struct follow_page_context ctx = { NULL };
787 struct page *page;
788
789 page = follow_page_mask(vma, address, foll_flags, &ctx);
790 if (ctx.pgmap)
791 put_dev_pagemap(ctx.pgmap);
792 return page;
080dbb61
AK
793}
794
f2b495ca
KS
795static int get_gate_page(struct mm_struct *mm, unsigned long address,
796 unsigned int gup_flags, struct vm_area_struct **vma,
797 struct page **page)
798{
799 pgd_t *pgd;
c2febafc 800 p4d_t *p4d;
f2b495ca
KS
801 pud_t *pud;
802 pmd_t *pmd;
803 pte_t *pte;
804 int ret = -EFAULT;
805
806 /* user gate pages are read-only */
807 if (gup_flags & FOLL_WRITE)
808 return -EFAULT;
809 if (address > TASK_SIZE)
810 pgd = pgd_offset_k(address);
811 else
812 pgd = pgd_offset_gate(mm, address);
b5d1c39f
AL
813 if (pgd_none(*pgd))
814 return -EFAULT;
c2febafc 815 p4d = p4d_offset(pgd, address);
b5d1c39f
AL
816 if (p4d_none(*p4d))
817 return -EFAULT;
c2febafc 818 pud = pud_offset(p4d, address);
b5d1c39f
AL
819 if (pud_none(*pud))
820 return -EFAULT;
f2b495ca 821 pmd = pmd_offset(pud, address);
84c3fc4e 822 if (!pmd_present(*pmd))
f2b495ca
KS
823 return -EFAULT;
824 VM_BUG_ON(pmd_trans_huge(*pmd));
825 pte = pte_offset_map(pmd, address);
826 if (pte_none(*pte))
827 goto unmap;
828 *vma = get_gate_vma(mm);
829 if (!page)
830 goto out;
831 *page = vm_normal_page(*vma, address, *pte);
832 if (!*page) {
833 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
834 goto unmap;
835 *page = pte_page(*pte);
836 }
8fde12ca
LT
837 if (unlikely(!try_get_page(*page))) {
838 ret = -ENOMEM;
839 goto unmap;
840 }
f2b495ca
KS
841out:
842 ret = 0;
843unmap:
844 pte_unmap(pte);
845 return ret;
846}
847
9a95f3cf
PC
848/*
849 * mmap_sem must be held on entry. If @nonblocking != NULL and
850 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
851 * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
852 */
16744483
KS
853static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
854 unsigned long address, unsigned int *flags, int *nonblocking)
855{
16744483 856 unsigned int fault_flags = 0;
2b740303 857 vm_fault_t ret;
16744483 858
de60f5f1
EM
859 /* mlock all present pages, but do not fault in new pages */
860 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
861 return -ENOENT;
16744483
KS
862 if (*flags & FOLL_WRITE)
863 fault_flags |= FAULT_FLAG_WRITE;
1b2ee126
DH
864 if (*flags & FOLL_REMOTE)
865 fault_flags |= FAULT_FLAG_REMOTE;
16744483
KS
866 if (nonblocking)
867 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
868 if (*flags & FOLL_NOWAIT)
869 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
234b239b
ALC
870 if (*flags & FOLL_TRIED) {
871 VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
872 fault_flags |= FAULT_FLAG_TRIED;
873 }
16744483 874
dcddffd4 875 ret = handle_mm_fault(vma, address, fault_flags);
16744483 876 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
877 int err = vm_fault_to_errno(ret, *flags);
878
879 if (err)
880 return err;
16744483
KS
881 BUG();
882 }
883
884 if (tsk) {
885 if (ret & VM_FAULT_MAJOR)
886 tsk->maj_flt++;
887 else
888 tsk->min_flt++;
889 }
890
891 if (ret & VM_FAULT_RETRY) {
96312e61 892 if (nonblocking && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
16744483
KS
893 *nonblocking = 0;
894 return -EBUSY;
895 }
896
897 /*
898 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
899 * necessary, even if maybe_mkwrite decided not to set pte_write. We
900 * can thus safely do subsequent page lookups as if they were reads.
901 * But only do so when looping for pte_write is futile: in some cases
902 * userspace may also be wanting to write to the gotten user page,
903 * which a read fault here might prevent (a readonly page might get
904 * reCOWed by userspace write).
905 */
906 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
2923117b 907 *flags |= FOLL_COW;
16744483
KS
908 return 0;
909}
910
fa5bb209
KS
911static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
912{
913 vm_flags_t vm_flags = vma->vm_flags;
1b2ee126
DH
914 int write = (gup_flags & FOLL_WRITE);
915 int foreign = (gup_flags & FOLL_REMOTE);
fa5bb209
KS
916
917 if (vm_flags & (VM_IO | VM_PFNMAP))
918 return -EFAULT;
919
7f7ccc2c
WT
920 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
921 return -EFAULT;
922
1b2ee126 923 if (write) {
fa5bb209
KS
924 if (!(vm_flags & VM_WRITE)) {
925 if (!(gup_flags & FOLL_FORCE))
926 return -EFAULT;
927 /*
928 * We used to let the write,force case do COW in a
929 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
930 * set a breakpoint in a read-only mapping of an
931 * executable, without corrupting the file (yet only
932 * when that file had been opened for writing!).
933 * Anon pages in shared mappings are surprising: now
934 * just reject it.
935 */
46435364 936 if (!is_cow_mapping(vm_flags))
fa5bb209 937 return -EFAULT;
fa5bb209
KS
938 }
939 } else if (!(vm_flags & VM_READ)) {
940 if (!(gup_flags & FOLL_FORCE))
941 return -EFAULT;
942 /*
943 * Is there actually any vma we can reach here which does not
944 * have VM_MAYREAD set?
945 */
946 if (!(vm_flags & VM_MAYREAD))
947 return -EFAULT;
948 }
d61172b4
DH
949 /*
950 * gups are always data accesses, not instruction
951 * fetches, so execute=false here
952 */
953 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2 954 return -EFAULT;
fa5bb209
KS
955 return 0;
956}
957
4bbd4c77
KS
958/**
959 * __get_user_pages() - pin user pages in memory
960 * @tsk: task_struct of target task
961 * @mm: mm_struct of target mm
962 * @start: starting user address
963 * @nr_pages: number of pages from start to pin
964 * @gup_flags: flags modifying pin behaviour
965 * @pages: array that receives pointers to the pages pinned.
966 * Should be at least nr_pages long. Or NULL, if caller
967 * only intends to ensure the pages are faulted in.
968 * @vmas: array of pointers to vmas corresponding to each page.
969 * Or NULL if the caller does not require them.
970 * @nonblocking: whether waiting for disk IO or mmap_sem contention
971 *
d2dfbe47
LX
972 * Returns either number of pages pinned (which may be less than the
973 * number requested), or an error. Details about the return value:
974 *
975 * -- If nr_pages is 0, returns 0.
976 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
977 * -- If nr_pages is >0, and some pages were pinned, returns the number of
978 * pages pinned. Again, this may be less than nr_pages.
979 *
980 * The caller is responsible for releasing returned @pages, via put_page().
981 *
982 * @vmas are valid only as long as mmap_sem is held.
4bbd4c77 983 *
9a95f3cf 984 * Must be called with mmap_sem held. It may be released. See below.
4bbd4c77
KS
985 *
986 * __get_user_pages walks a process's page tables and takes a reference to
987 * each struct page that each user address corresponds to at a given
988 * instant. That is, it takes the page that would be accessed if a user
989 * thread accesses the given user virtual address at that instant.
990 *
991 * This does not guarantee that the page exists in the user mappings when
992 * __get_user_pages returns, and there may even be a completely different
993 * page there in some cases (eg. if mmapped pagecache has been invalidated
994 * and subsequently re faulted). However it does guarantee that the page
995 * won't be freed completely. And mostly callers simply care that the page
996 * contains data that was valid *at some point in time*. Typically, an IO
997 * or similar operation cannot guarantee anything stronger anyway because
998 * locks can't be held over the syscall boundary.
999 *
1000 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1001 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1002 * appropriate) must be called after the page is finished with, and
1003 * before put_page is called.
1004 *
1005 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1006 * or mmap_sem contention, and if waiting is needed to pin all pages,
9a95f3cf
PC
1007 * *@nonblocking will be set to 0. Further, if @gup_flags does not
1008 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
1009 * this case.
1010 *
1011 * A caller using such a combination of @nonblocking and @gup_flags
1012 * must therefore hold the mmap_sem for reading only, and recognize
1013 * when it's been released. Otherwise, it must be held for either
1014 * reading or writing and will not be released.
4bbd4c77
KS
1015 *
1016 * In most cases, get_user_pages or get_user_pages_fast should be used
1017 * instead of __get_user_pages. __get_user_pages should be used only if
1018 * you need some special @gup_flags.
1019 */
0d731759 1020static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
4bbd4c77
KS
1021 unsigned long start, unsigned long nr_pages,
1022 unsigned int gup_flags, struct page **pages,
1023 struct vm_area_struct **vmas, int *nonblocking)
1024{
df06b37f 1025 long ret = 0, i = 0;
fa5bb209 1026 struct vm_area_struct *vma = NULL;
df06b37f 1027 struct follow_page_context ctx = { NULL };
4bbd4c77
KS
1028
1029 if (!nr_pages)
1030 return 0;
1031
f9652594
AK
1032 start = untagged_addr(start);
1033
eddb1c22 1034 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
4bbd4c77
KS
1035
1036 /*
1037 * If FOLL_FORCE is set then do not force a full fault as the hinting
1038 * fault information is unrelated to the reference behaviour of a task
1039 * using the address space
1040 */
1041 if (!(gup_flags & FOLL_FORCE))
1042 gup_flags |= FOLL_NUMA;
1043
4bbd4c77 1044 do {
fa5bb209
KS
1045 struct page *page;
1046 unsigned int foll_flags = gup_flags;
1047 unsigned int page_increm;
1048
1049 /* first iteration or cross vma bound */
1050 if (!vma || start >= vma->vm_end) {
1051 vma = find_extend_vma(mm, start);
1052 if (!vma && in_gate_area(mm, start)) {
fa5bb209
KS
1053 ret = get_gate_page(mm, start & PAGE_MASK,
1054 gup_flags, &vma,
1055 pages ? &pages[i] : NULL);
1056 if (ret)
08be37b7 1057 goto out;
df06b37f 1058 ctx.page_mask = 0;
fa5bb209
KS
1059 goto next_page;
1060 }
4bbd4c77 1061
df06b37f
KB
1062 if (!vma || check_vma_flags(vma, gup_flags)) {
1063 ret = -EFAULT;
1064 goto out;
1065 }
fa5bb209
KS
1066 if (is_vm_hugetlb_page(vma)) {
1067 i = follow_hugetlb_page(mm, vma, pages, vmas,
1068 &start, &nr_pages, i,
87ffc118 1069 gup_flags, nonblocking);
fa5bb209 1070 continue;
4bbd4c77 1071 }
fa5bb209
KS
1072 }
1073retry:
1074 /*
1075 * If we have a pending SIGKILL, don't keep faulting pages and
1076 * potentially allocating memory.
1077 */
fa45f116 1078 if (fatal_signal_pending(current)) {
df06b37f
KB
1079 ret = -ERESTARTSYS;
1080 goto out;
1081 }
fa5bb209 1082 cond_resched();
df06b37f
KB
1083
1084 page = follow_page_mask(vma, start, foll_flags, &ctx);
fa5bb209 1085 if (!page) {
fa5bb209
KS
1086 ret = faultin_page(tsk, vma, start, &foll_flags,
1087 nonblocking);
1088 switch (ret) {
1089 case 0:
1090 goto retry;
df06b37f
KB
1091 case -EBUSY:
1092 ret = 0;
1093 /* FALLTHRU */
fa5bb209
KS
1094 case -EFAULT:
1095 case -ENOMEM:
1096 case -EHWPOISON:
df06b37f 1097 goto out;
fa5bb209
KS
1098 case -ENOENT:
1099 goto next_page;
4bbd4c77 1100 }
fa5bb209 1101 BUG();
1027e443
KS
1102 } else if (PTR_ERR(page) == -EEXIST) {
1103 /*
1104 * Proper page table entry exists, but no corresponding
1105 * struct page.
1106 */
1107 goto next_page;
1108 } else if (IS_ERR(page)) {
df06b37f
KB
1109 ret = PTR_ERR(page);
1110 goto out;
1027e443 1111 }
fa5bb209
KS
1112 if (pages) {
1113 pages[i] = page;
1114 flush_anon_page(vma, page, start);
1115 flush_dcache_page(page);
df06b37f 1116 ctx.page_mask = 0;
4bbd4c77 1117 }
4bbd4c77 1118next_page:
fa5bb209
KS
1119 if (vmas) {
1120 vmas[i] = vma;
df06b37f 1121 ctx.page_mask = 0;
fa5bb209 1122 }
df06b37f 1123 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
fa5bb209
KS
1124 if (page_increm > nr_pages)
1125 page_increm = nr_pages;
1126 i += page_increm;
1127 start += page_increm * PAGE_SIZE;
1128 nr_pages -= page_increm;
4bbd4c77 1129 } while (nr_pages);
df06b37f
KB
1130out:
1131 if (ctx.pgmap)
1132 put_dev_pagemap(ctx.pgmap);
1133 return i ? i : ret;
4bbd4c77 1134}
4bbd4c77 1135
771ab430
TK
1136static bool vma_permits_fault(struct vm_area_struct *vma,
1137 unsigned int fault_flags)
d4925e00 1138{
1b2ee126
DH
1139 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1140 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
33a709b2 1141 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
d4925e00
DH
1142
1143 if (!(vm_flags & vma->vm_flags))
1144 return false;
1145
33a709b2
DH
1146 /*
1147 * The architecture might have a hardware protection
1b2ee126 1148 * mechanism other than read/write that can deny access.
d61172b4
DH
1149 *
1150 * gup always represents data access, not instruction
1151 * fetches, so execute=false here:
33a709b2 1152 */
d61172b4 1153 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2
DH
1154 return false;
1155
d4925e00
DH
1156 return true;
1157}
1158
4bbd4c77
KS
1159/*
1160 * fixup_user_fault() - manually resolve a user page fault
1161 * @tsk: the task_struct to use for page fault accounting, or
1162 * NULL if faults are not to be recorded.
1163 * @mm: mm_struct of target mm
1164 * @address: user address
1165 * @fault_flags:flags to pass down to handle_mm_fault()
4a9e1cda
DD
1166 * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller
1167 * does not allow retry
4bbd4c77
KS
1168 *
1169 * This is meant to be called in the specific scenario where for locking reasons
1170 * we try to access user memory in atomic context (within a pagefault_disable()
1171 * section), this returns -EFAULT, and we want to resolve the user fault before
1172 * trying again.
1173 *
1174 * Typically this is meant to be used by the futex code.
1175 *
1176 * The main difference with get_user_pages() is that this function will
1177 * unconditionally call handle_mm_fault() which will in turn perform all the
1178 * necessary SW fixup of the dirty and young bits in the PTE, while
4a9e1cda 1179 * get_user_pages() only guarantees to update these in the struct page.
4bbd4c77
KS
1180 *
1181 * This is important for some architectures where those bits also gate the
1182 * access permission to the page because they are maintained in software. On
1183 * such architectures, gup() will not be enough to make a subsequent access
1184 * succeed.
1185 *
4a9e1cda
DD
1186 * This function will not return with an unlocked mmap_sem. So it has not the
1187 * same semantics wrt the @mm->mmap_sem as does filemap_fault().
4bbd4c77
KS
1188 */
1189int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
4a9e1cda
DD
1190 unsigned long address, unsigned int fault_flags,
1191 bool *unlocked)
4bbd4c77
KS
1192{
1193 struct vm_area_struct *vma;
2b740303 1194 vm_fault_t ret, major = 0;
4a9e1cda 1195
f9652594
AK
1196 address = untagged_addr(address);
1197
4a9e1cda
DD
1198 if (unlocked)
1199 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4bbd4c77 1200
4a9e1cda 1201retry:
4bbd4c77
KS
1202 vma = find_extend_vma(mm, address);
1203 if (!vma || address < vma->vm_start)
1204 return -EFAULT;
1205
d4925e00 1206 if (!vma_permits_fault(vma, fault_flags))
4bbd4c77
KS
1207 return -EFAULT;
1208
dcddffd4 1209 ret = handle_mm_fault(vma, address, fault_flags);
4a9e1cda 1210 major |= ret & VM_FAULT_MAJOR;
4bbd4c77 1211 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
1212 int err = vm_fault_to_errno(ret, 0);
1213
1214 if (err)
1215 return err;
4bbd4c77
KS
1216 BUG();
1217 }
4a9e1cda
DD
1218
1219 if (ret & VM_FAULT_RETRY) {
1220 down_read(&mm->mmap_sem);
1221 if (!(fault_flags & FAULT_FLAG_TRIED)) {
1222 *unlocked = true;
1223 fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
1224 fault_flags |= FAULT_FLAG_TRIED;
1225 goto retry;
1226 }
1227 }
1228
4bbd4c77 1229 if (tsk) {
4a9e1cda 1230 if (major)
4bbd4c77
KS
1231 tsk->maj_flt++;
1232 else
1233 tsk->min_flt++;
1234 }
1235 return 0;
1236}
add6a0cd 1237EXPORT_SYMBOL_GPL(fixup_user_fault);
4bbd4c77 1238
f0818f47
AA
1239static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
1240 struct mm_struct *mm,
1241 unsigned long start,
1242 unsigned long nr_pages,
f0818f47
AA
1243 struct page **pages,
1244 struct vm_area_struct **vmas,
e716712f 1245 int *locked,
0fd71a56 1246 unsigned int flags)
f0818f47 1247{
f0818f47
AA
1248 long ret, pages_done;
1249 bool lock_dropped;
1250
1251 if (locked) {
1252 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
1253 BUG_ON(vmas);
1254 /* check caller initialized locked */
1255 BUG_ON(*locked != 1);
1256 }
1257
eddb1c22
JH
1258 /*
1259 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1260 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1261 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1262 * for FOLL_GET, not for the newer FOLL_PIN.
1263 *
1264 * FOLL_PIN always expects pages to be non-null, but no need to assert
1265 * that here, as any failures will be obvious enough.
1266 */
1267 if (pages && !(flags & FOLL_PIN))
f0818f47 1268 flags |= FOLL_GET;
f0818f47
AA
1269
1270 pages_done = 0;
1271 lock_dropped = false;
1272 for (;;) {
1273 ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
1274 vmas, locked);
1275 if (!locked)
1276 /* VM_FAULT_RETRY couldn't trigger, bypass */
1277 return ret;
1278
1279 /* VM_FAULT_RETRY cannot return errors */
1280 if (!*locked) {
1281 BUG_ON(ret < 0);
1282 BUG_ON(ret >= nr_pages);
1283 }
1284
f0818f47
AA
1285 if (ret > 0) {
1286 nr_pages -= ret;
1287 pages_done += ret;
1288 if (!nr_pages)
1289 break;
1290 }
1291 if (*locked) {
96312e61
AA
1292 /*
1293 * VM_FAULT_RETRY didn't trigger or it was a
1294 * FOLL_NOWAIT.
1295 */
f0818f47
AA
1296 if (!pages_done)
1297 pages_done = ret;
1298 break;
1299 }
df17277b
MR
1300 /*
1301 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1302 * For the prefault case (!pages) we only update counts.
1303 */
1304 if (likely(pages))
1305 pages += ret;
f0818f47
AA
1306 start += ret << PAGE_SHIFT;
1307
1308 /*
1309 * Repeat on the address that fired VM_FAULT_RETRY
1310 * without FAULT_FLAG_ALLOW_RETRY but with
1311 * FAULT_FLAG_TRIED.
1312 */
1313 *locked = 1;
1314 lock_dropped = true;
1315 down_read(&mm->mmap_sem);
1316 ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
1317 pages, NULL, NULL);
1318 if (ret != 1) {
1319 BUG_ON(ret > 1);
1320 if (!pages_done)
1321 pages_done = ret;
1322 break;
1323 }
1324 nr_pages--;
1325 pages_done++;
1326 if (!nr_pages)
1327 break;
df17277b
MR
1328 if (likely(pages))
1329 pages++;
f0818f47
AA
1330 start += PAGE_SIZE;
1331 }
e716712f 1332 if (lock_dropped && *locked) {
f0818f47
AA
1333 /*
1334 * We must let the caller know we temporarily dropped the lock
1335 * and so the critical section protected by it was lost.
1336 */
1337 up_read(&mm->mmap_sem);
1338 *locked = 0;
1339 }
1340 return pages_done;
1341}
1342
d3649f68
CH
1343/**
1344 * populate_vma_page_range() - populate a range of pages in the vma.
1345 * @vma: target vma
1346 * @start: start address
1347 * @end: end address
1348 * @nonblocking:
1349 *
1350 * This takes care of mlocking the pages too if VM_LOCKED is set.
1351 *
1352 * return 0 on success, negative error code on error.
1353 *
1354 * vma->vm_mm->mmap_sem must be held.
1355 *
1356 * If @nonblocking is NULL, it may be held for read or write and will
1357 * be unperturbed.
1358 *
1359 * If @nonblocking is non-NULL, it must held for read only and may be
1360 * released. If it's released, *@nonblocking will be set to 0.
1361 */
1362long populate_vma_page_range(struct vm_area_struct *vma,
1363 unsigned long start, unsigned long end, int *nonblocking)
1364{
1365 struct mm_struct *mm = vma->vm_mm;
1366 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1367 int gup_flags;
1368
1369 VM_BUG_ON(start & ~PAGE_MASK);
1370 VM_BUG_ON(end & ~PAGE_MASK);
1371 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1372 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1373 VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
1374
1375 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1376 if (vma->vm_flags & VM_LOCKONFAULT)
1377 gup_flags &= ~FOLL_POPULATE;
1378 /*
1379 * We want to touch writable mappings with a write fault in order
1380 * to break COW, except for shared mappings because these don't COW
1381 * and we would not want to dirty them for nothing.
1382 */
1383 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1384 gup_flags |= FOLL_WRITE;
1385
1386 /*
1387 * We want mlock to succeed for regions that have any permissions
1388 * other than PROT_NONE.
1389 */
1390 if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
1391 gup_flags |= FOLL_FORCE;
1392
1393 /*
1394 * We made sure addr is within a VMA, so the following will
1395 * not result in a stack expansion that recurses back here.
1396 */
1397 return __get_user_pages(current, mm, start, nr_pages, gup_flags,
1398 NULL, NULL, nonblocking);
1399}
1400
1401/*
1402 * __mm_populate - populate and/or mlock pages within a range of address space.
1403 *
1404 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1405 * flags. VMAs must be already marked with the desired vm_flags, and
1406 * mmap_sem must not be held.
1407 */
1408int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1409{
1410 struct mm_struct *mm = current->mm;
1411 unsigned long end, nstart, nend;
1412 struct vm_area_struct *vma = NULL;
1413 int locked = 0;
1414 long ret = 0;
1415
1416 end = start + len;
1417
1418 for (nstart = start; nstart < end; nstart = nend) {
1419 /*
1420 * We want to fault in pages for [nstart; end) address range.
1421 * Find first corresponding VMA.
1422 */
1423 if (!locked) {
1424 locked = 1;
1425 down_read(&mm->mmap_sem);
1426 vma = find_vma(mm, nstart);
1427 } else if (nstart >= vma->vm_end)
1428 vma = vma->vm_next;
1429 if (!vma || vma->vm_start >= end)
1430 break;
1431 /*
1432 * Set [nstart; nend) to intersection of desired address
1433 * range with the first VMA. Also, skip undesirable VMA types.
1434 */
1435 nend = min(end, vma->vm_end);
1436 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1437 continue;
1438 if (nstart < vma->vm_start)
1439 nstart = vma->vm_start;
1440 /*
1441 * Now fault in a range of pages. populate_vma_page_range()
1442 * double checks the vma flags, so that it won't mlock pages
1443 * if the vma was already munlocked.
1444 */
1445 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1446 if (ret < 0) {
1447 if (ignore_errors) {
1448 ret = 0;
1449 continue; /* continue at next VMA */
1450 }
1451 break;
1452 }
1453 nend = nstart + ret * PAGE_SIZE;
1454 ret = 0;
1455 }
1456 if (locked)
1457 up_read(&mm->mmap_sem);
1458 return ret; /* 0 or negative error code */
1459}
1460
1461/**
1462 * get_dump_page() - pin user page in memory while writing it to core dump
1463 * @addr: user address
1464 *
1465 * Returns struct page pointer of user page pinned for dump,
1466 * to be freed afterwards by put_page().
1467 *
1468 * Returns NULL on any kind of failure - a hole must then be inserted into
1469 * the corefile, to preserve alignment with its headers; and also returns
1470 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1471 * allowing a hole to be left in the corefile to save diskspace.
1472 *
1473 * Called without mmap_sem, but after all other threads have been killed.
1474 */
1475#ifdef CONFIG_ELF_CORE
1476struct page *get_dump_page(unsigned long addr)
1477{
1478 struct vm_area_struct *vma;
1479 struct page *page;
1480
1481 if (__get_user_pages(current, current->mm, addr, 1,
1482 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1483 NULL) < 1)
1484 return NULL;
1485 flush_cache_page(vma, addr, page_to_pfn(page));
1486 return page;
1487}
1488#endif /* CONFIG_ELF_CORE */
050a9adc
CH
1489#else /* CONFIG_MMU */
1490static long __get_user_pages_locked(struct task_struct *tsk,
1491 struct mm_struct *mm, unsigned long start,
1492 unsigned long nr_pages, struct page **pages,
1493 struct vm_area_struct **vmas, int *locked,
1494 unsigned int foll_flags)
1495{
1496 struct vm_area_struct *vma;
1497 unsigned long vm_flags;
1498 int i;
1499
1500 /* calculate required read or write permissions.
1501 * If FOLL_FORCE is set, we only require the "MAY" flags.
1502 */
1503 vm_flags = (foll_flags & FOLL_WRITE) ?
1504 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1505 vm_flags &= (foll_flags & FOLL_FORCE) ?
1506 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1507
1508 for (i = 0; i < nr_pages; i++) {
1509 vma = find_vma(mm, start);
1510 if (!vma)
1511 goto finish_or_fault;
1512
1513 /* protect what we can, including chardevs */
1514 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1515 !(vm_flags & vma->vm_flags))
1516 goto finish_or_fault;
1517
1518 if (pages) {
1519 pages[i] = virt_to_page(start);
1520 if (pages[i])
1521 get_page(pages[i]);
1522 }
1523 if (vmas)
1524 vmas[i] = vma;
1525 start = (start + PAGE_SIZE) & PAGE_MASK;
1526 }
1527
1528 return i;
1529
1530finish_or_fault:
1531 return i ? : -EFAULT;
1532}
1533#endif /* !CONFIG_MMU */
d3649f68 1534
9a4e9f3b 1535#if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA)
9a4e9f3b
AK
1536static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages)
1537{
1538 long i;
1539 struct vm_area_struct *vma_prev = NULL;
1540
1541 for (i = 0; i < nr_pages; i++) {
1542 struct vm_area_struct *vma = vmas[i];
1543
1544 if (vma == vma_prev)
1545 continue;
1546
1547 vma_prev = vma;
1548
1549 if (vma_is_fsdax(vma))
1550 return true;
1551 }
1552 return false;
1553}
9a4e9f3b
AK
1554
1555#ifdef CONFIG_CMA
1556static struct page *new_non_cma_page(struct page *page, unsigned long private)
1557{
1558 /*
1559 * We want to make sure we allocate the new page from the same node
1560 * as the source page.
1561 */
1562 int nid = page_to_nid(page);
1563 /*
1564 * Trying to allocate a page for migration. Ignore allocation
1565 * failure warnings. We don't force __GFP_THISNODE here because
1566 * this node here is the node where we have CMA reservation and
1567 * in some case these nodes will have really less non movable
1568 * allocation memory.
1569 */
1570 gfp_t gfp_mask = GFP_USER | __GFP_NOWARN;
1571
1572 if (PageHighMem(page))
1573 gfp_mask |= __GFP_HIGHMEM;
1574
1575#ifdef CONFIG_HUGETLB_PAGE
1576 if (PageHuge(page)) {
1577 struct hstate *h = page_hstate(page);
1578 /*
1579 * We don't want to dequeue from the pool because pool pages will
1580 * mostly be from the CMA region.
1581 */
1582 return alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1583 }
1584#endif
1585 if (PageTransHuge(page)) {
1586 struct page *thp;
1587 /*
1588 * ignore allocation failure warnings
1589 */
1590 gfp_t thp_gfpmask = GFP_TRANSHUGE | __GFP_NOWARN;
1591
1592 /*
1593 * Remove the movable mask so that we don't allocate from
1594 * CMA area again.
1595 */
1596 thp_gfpmask &= ~__GFP_MOVABLE;
1597 thp = __alloc_pages_node(nid, thp_gfpmask, HPAGE_PMD_ORDER);
1598 if (!thp)
1599 return NULL;
1600 prep_transhuge_page(thp);
1601 return thp;
1602 }
1603
1604 return __alloc_pages_node(nid, gfp_mask, 0);
1605}
1606
932f4a63
IW
1607static long check_and_migrate_cma_pages(struct task_struct *tsk,
1608 struct mm_struct *mm,
1609 unsigned long start,
1610 unsigned long nr_pages,
9a4e9f3b 1611 struct page **pages,
932f4a63
IW
1612 struct vm_area_struct **vmas,
1613 unsigned int gup_flags)
9a4e9f3b 1614{
aa712399
PL
1615 unsigned long i;
1616 unsigned long step;
9a4e9f3b
AK
1617 bool drain_allow = true;
1618 bool migrate_allow = true;
1619 LIST_HEAD(cma_page_list);
b96cc655 1620 long ret = nr_pages;
9a4e9f3b
AK
1621
1622check_again:
aa712399
PL
1623 for (i = 0; i < nr_pages;) {
1624
1625 struct page *head = compound_head(pages[i]);
1626
1627 /*
1628 * gup may start from a tail page. Advance step by the left
1629 * part.
1630 */
d8c6546b 1631 step = compound_nr(head) - (pages[i] - head);
9a4e9f3b
AK
1632 /*
1633 * If we get a page from the CMA zone, since we are going to
1634 * be pinning these entries, we might as well move them out
1635 * of the CMA zone if possible.
1636 */
aa712399
PL
1637 if (is_migrate_cma_page(head)) {
1638 if (PageHuge(head))
9a4e9f3b 1639 isolate_huge_page(head, &cma_page_list);
aa712399 1640 else {
9a4e9f3b
AK
1641 if (!PageLRU(head) && drain_allow) {
1642 lru_add_drain_all();
1643 drain_allow = false;
1644 }
1645
1646 if (!isolate_lru_page(head)) {
1647 list_add_tail(&head->lru, &cma_page_list);
1648 mod_node_page_state(page_pgdat(head),
1649 NR_ISOLATED_ANON +
1650 page_is_file_cache(head),
1651 hpage_nr_pages(head));
1652 }
1653 }
1654 }
aa712399
PL
1655
1656 i += step;
9a4e9f3b
AK
1657 }
1658
1659 if (!list_empty(&cma_page_list)) {
1660 /*
1661 * drop the above get_user_pages reference.
1662 */
1663 for (i = 0; i < nr_pages; i++)
1664 put_page(pages[i]);
1665
1666 if (migrate_pages(&cma_page_list, new_non_cma_page,
1667 NULL, 0, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
1668 /*
1669 * some of the pages failed migration. Do get_user_pages
1670 * without migration.
1671 */
1672 migrate_allow = false;
1673
1674 if (!list_empty(&cma_page_list))
1675 putback_movable_pages(&cma_page_list);
1676 }
1677 /*
932f4a63
IW
1678 * We did migrate all the pages, Try to get the page references
1679 * again migrating any new CMA pages which we failed to isolate
1680 * earlier.
9a4e9f3b 1681 */
b96cc655 1682 ret = __get_user_pages_locked(tsk, mm, start, nr_pages,
932f4a63
IW
1683 pages, vmas, NULL,
1684 gup_flags);
1685
b96cc655 1686 if ((ret > 0) && migrate_allow) {
1687 nr_pages = ret;
9a4e9f3b
AK
1688 drain_allow = true;
1689 goto check_again;
1690 }
1691 }
1692
b96cc655 1693 return ret;
9a4e9f3b
AK
1694}
1695#else
932f4a63
IW
1696static long check_and_migrate_cma_pages(struct task_struct *tsk,
1697 struct mm_struct *mm,
1698 unsigned long start,
1699 unsigned long nr_pages,
1700 struct page **pages,
1701 struct vm_area_struct **vmas,
1702 unsigned int gup_flags)
9a4e9f3b
AK
1703{
1704 return nr_pages;
1705}
050a9adc 1706#endif /* CONFIG_CMA */
9a4e9f3b 1707
2bb6d283 1708/*
932f4a63
IW
1709 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1710 * allows us to process the FOLL_LONGTERM flag.
2bb6d283 1711 */
932f4a63
IW
1712static long __gup_longterm_locked(struct task_struct *tsk,
1713 struct mm_struct *mm,
1714 unsigned long start,
1715 unsigned long nr_pages,
1716 struct page **pages,
1717 struct vm_area_struct **vmas,
1718 unsigned int gup_flags)
2bb6d283 1719{
932f4a63
IW
1720 struct vm_area_struct **vmas_tmp = vmas;
1721 unsigned long flags = 0;
2bb6d283
DW
1722 long rc, i;
1723
932f4a63
IW
1724 if (gup_flags & FOLL_LONGTERM) {
1725 if (!pages)
1726 return -EINVAL;
1727
1728 if (!vmas_tmp) {
1729 vmas_tmp = kcalloc(nr_pages,
1730 sizeof(struct vm_area_struct *),
1731 GFP_KERNEL);
1732 if (!vmas_tmp)
1733 return -ENOMEM;
1734 }
1735 flags = memalloc_nocma_save();
2bb6d283
DW
1736 }
1737
932f4a63
IW
1738 rc = __get_user_pages_locked(tsk, mm, start, nr_pages, pages,
1739 vmas_tmp, NULL, gup_flags);
2bb6d283 1740
932f4a63
IW
1741 if (gup_flags & FOLL_LONGTERM) {
1742 memalloc_nocma_restore(flags);
1743 if (rc < 0)
1744 goto out;
1745
1746 if (check_dax_vmas(vmas_tmp, rc)) {
1747 for (i = 0; i < rc; i++)
1748 put_page(pages[i]);
1749 rc = -EOPNOTSUPP;
1750 goto out;
1751 }
1752
1753 rc = check_and_migrate_cma_pages(tsk, mm, start, rc, pages,
1754 vmas_tmp, gup_flags);
9a4e9f3b 1755 }
2bb6d283 1756
2bb6d283 1757out:
932f4a63
IW
1758 if (vmas_tmp != vmas)
1759 kfree(vmas_tmp);
2bb6d283
DW
1760 return rc;
1761}
932f4a63
IW
1762#else /* !CONFIG_FS_DAX && !CONFIG_CMA */
1763static __always_inline long __gup_longterm_locked(struct task_struct *tsk,
1764 struct mm_struct *mm,
1765 unsigned long start,
1766 unsigned long nr_pages,
1767 struct page **pages,
1768 struct vm_area_struct **vmas,
1769 unsigned int flags)
1770{
1771 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1772 NULL, flags);
1773}
1774#endif /* CONFIG_FS_DAX || CONFIG_CMA */
1775
22bf29b6
JH
1776#ifdef CONFIG_MMU
1777static long __get_user_pages_remote(struct task_struct *tsk,
1778 struct mm_struct *mm,
1779 unsigned long start, unsigned long nr_pages,
1780 unsigned int gup_flags, struct page **pages,
1781 struct vm_area_struct **vmas, int *locked)
1782{
1783 /*
1784 * Parts of FOLL_LONGTERM behavior are incompatible with
1785 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1786 * vmas. However, this only comes up if locked is set, and there are
1787 * callers that do request FOLL_LONGTERM, but do not set locked. So,
1788 * allow what we can.
1789 */
1790 if (gup_flags & FOLL_LONGTERM) {
1791 if (WARN_ON_ONCE(locked))
1792 return -EINVAL;
1793 /*
1794 * This will check the vmas (even if our vmas arg is NULL)
1795 * and return -ENOTSUPP if DAX isn't allowed in this case:
1796 */
1797 return __gup_longterm_locked(tsk, mm, start, nr_pages, pages,
1798 vmas, gup_flags | FOLL_TOUCH |
1799 FOLL_REMOTE);
1800 }
1801
1802 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1803 locked,
1804 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1805}
1806
c4237f8b
JH
1807/*
1808 * get_user_pages_remote() - pin user pages in memory
1809 * @tsk: the task_struct to use for page fault accounting, or
1810 * NULL if faults are not to be recorded.
1811 * @mm: mm_struct of target mm
1812 * @start: starting user address
1813 * @nr_pages: number of pages from start to pin
1814 * @gup_flags: flags modifying lookup behaviour
1815 * @pages: array that receives pointers to the pages pinned.
1816 * Should be at least nr_pages long. Or NULL, if caller
1817 * only intends to ensure the pages are faulted in.
1818 * @vmas: array of pointers to vmas corresponding to each page.
1819 * Or NULL if the caller does not require them.
1820 * @locked: pointer to lock flag indicating whether lock is held and
1821 * subsequently whether VM_FAULT_RETRY functionality can be
1822 * utilised. Lock must initially be held.
1823 *
1824 * Returns either number of pages pinned (which may be less than the
1825 * number requested), or an error. Details about the return value:
1826 *
1827 * -- If nr_pages is 0, returns 0.
1828 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1829 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1830 * pages pinned. Again, this may be less than nr_pages.
1831 *
1832 * The caller is responsible for releasing returned @pages, via put_page().
1833 *
1834 * @vmas are valid only as long as mmap_sem is held.
1835 *
1836 * Must be called with mmap_sem held for read or write.
1837 *
1838 * get_user_pages walks a process's page tables and takes a reference to
1839 * each struct page that each user address corresponds to at a given
1840 * instant. That is, it takes the page that would be accessed if a user
1841 * thread accesses the given user virtual address at that instant.
1842 *
1843 * This does not guarantee that the page exists in the user mappings when
1844 * get_user_pages returns, and there may even be a completely different
1845 * page there in some cases (eg. if mmapped pagecache has been invalidated
1846 * and subsequently re faulted). However it does guarantee that the page
1847 * won't be freed completely. And mostly callers simply care that the page
1848 * contains data that was valid *at some point in time*. Typically, an IO
1849 * or similar operation cannot guarantee anything stronger anyway because
1850 * locks can't be held over the syscall boundary.
1851 *
1852 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1853 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1854 * be called after the page is finished with, and before put_page is called.
1855 *
1856 * get_user_pages is typically used for fewer-copy IO operations, to get a
1857 * handle on the memory by some means other than accesses via the user virtual
1858 * addresses. The pages may be submitted for DMA to devices or accessed via
1859 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1860 * use the correct cache flushing APIs.
1861 *
1862 * See also get_user_pages_fast, for performance critical applications.
1863 *
1864 * get_user_pages should be phased out in favor of
1865 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1866 * should use get_user_pages because it cannot pass
1867 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1868 */
1869long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1870 unsigned long start, unsigned long nr_pages,
1871 unsigned int gup_flags, struct page **pages,
1872 struct vm_area_struct **vmas, int *locked)
1873{
eddb1c22
JH
1874 /*
1875 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1876 * never directly by the caller, so enforce that with an assertion:
1877 */
1878 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1879 return -EINVAL;
1880
22bf29b6
JH
1881 return __get_user_pages_remote(tsk, mm, start, nr_pages, gup_flags,
1882 pages, vmas, locked);
c4237f8b
JH
1883}
1884EXPORT_SYMBOL(get_user_pages_remote);
1885
eddb1c22
JH
1886#else /* CONFIG_MMU */
1887long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1888 unsigned long start, unsigned long nr_pages,
1889 unsigned int gup_flags, struct page **pages,
1890 struct vm_area_struct **vmas, int *locked)
1891{
1892 return 0;
1893}
3faa52c0
JH
1894
1895static long __get_user_pages_remote(struct task_struct *tsk,
1896 struct mm_struct *mm,
1897 unsigned long start, unsigned long nr_pages,
1898 unsigned int gup_flags, struct page **pages,
1899 struct vm_area_struct **vmas, int *locked)
1900{
1901 return 0;
1902}
eddb1c22
JH
1903#endif /* !CONFIG_MMU */
1904
932f4a63
IW
1905/*
1906 * This is the same as get_user_pages_remote(), just with a
1907 * less-flexible calling convention where we assume that the task
1908 * and mm being operated on are the current task's and don't allow
1909 * passing of a locked parameter. We also obviously don't pass
1910 * FOLL_REMOTE in here.
1911 */
1912long get_user_pages(unsigned long start, unsigned long nr_pages,
1913 unsigned int gup_flags, struct page **pages,
1914 struct vm_area_struct **vmas)
1915{
eddb1c22
JH
1916 /*
1917 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1918 * never directly by the caller, so enforce that with an assertion:
1919 */
1920 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1921 return -EINVAL;
1922
932f4a63
IW
1923 return __gup_longterm_locked(current, current->mm, start, nr_pages,
1924 pages, vmas, gup_flags | FOLL_TOUCH);
1925}
1926EXPORT_SYMBOL(get_user_pages);
2bb6d283 1927
d3649f68
CH
1928/*
1929 * We can leverage the VM_FAULT_RETRY functionality in the page fault
1930 * paths better by using either get_user_pages_locked() or
1931 * get_user_pages_unlocked().
acc3c8d1 1932 *
d3649f68 1933 * get_user_pages_locked() is suitable to replace the form:
acc3c8d1 1934 *
d3649f68
CH
1935 * down_read(&mm->mmap_sem);
1936 * do_something()
1937 * get_user_pages(tsk, mm, ..., pages, NULL);
1938 * up_read(&mm->mmap_sem);
acc3c8d1 1939 *
d3649f68 1940 * to:
acc3c8d1 1941 *
d3649f68
CH
1942 * int locked = 1;
1943 * down_read(&mm->mmap_sem);
1944 * do_something()
1945 * get_user_pages_locked(tsk, mm, ..., pages, &locked);
1946 * if (locked)
1947 * up_read(&mm->mmap_sem);
acc3c8d1 1948 */
d3649f68
CH
1949long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1950 unsigned int gup_flags, struct page **pages,
1951 int *locked)
acc3c8d1 1952{
acc3c8d1 1953 /*
d3649f68
CH
1954 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1955 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1956 * vmas. As there are no users of this flag in this call we simply
1957 * disallow this option for now.
acc3c8d1 1958 */
d3649f68
CH
1959 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1960 return -EINVAL;
acc3c8d1 1961
d3649f68
CH
1962 return __get_user_pages_locked(current, current->mm, start, nr_pages,
1963 pages, NULL, locked,
1964 gup_flags | FOLL_TOUCH);
acc3c8d1 1965}
d3649f68 1966EXPORT_SYMBOL(get_user_pages_locked);
acc3c8d1
KS
1967
1968/*
d3649f68 1969 * get_user_pages_unlocked() is suitable to replace the form:
acc3c8d1 1970 *
d3649f68
CH
1971 * down_read(&mm->mmap_sem);
1972 * get_user_pages(tsk, mm, ..., pages, NULL);
1973 * up_read(&mm->mmap_sem);
1974 *
1975 * with:
1976 *
1977 * get_user_pages_unlocked(tsk, mm, ..., pages);
1978 *
1979 * It is functionally equivalent to get_user_pages_fast so
1980 * get_user_pages_fast should be used instead if specific gup_flags
1981 * (e.g. FOLL_FORCE) are not required.
acc3c8d1 1982 */
d3649f68
CH
1983long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1984 struct page **pages, unsigned int gup_flags)
acc3c8d1
KS
1985{
1986 struct mm_struct *mm = current->mm;
d3649f68
CH
1987 int locked = 1;
1988 long ret;
acc3c8d1 1989
d3649f68
CH
1990 /*
1991 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1992 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1993 * vmas. As there are no users of this flag in this call we simply
1994 * disallow this option for now.
1995 */
1996 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1997 return -EINVAL;
acc3c8d1 1998
d3649f68
CH
1999 down_read(&mm->mmap_sem);
2000 ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL,
2001 &locked, gup_flags | FOLL_TOUCH);
acc3c8d1
KS
2002 if (locked)
2003 up_read(&mm->mmap_sem);
d3649f68 2004 return ret;
4bbd4c77 2005}
d3649f68 2006EXPORT_SYMBOL(get_user_pages_unlocked);
2667f50e
SC
2007
2008/*
67a929e0 2009 * Fast GUP
2667f50e
SC
2010 *
2011 * get_user_pages_fast attempts to pin user pages by walking the page
2012 * tables directly and avoids taking locks. Thus the walker needs to be
2013 * protected from page table pages being freed from under it, and should
2014 * block any THP splits.
2015 *
2016 * One way to achieve this is to have the walker disable interrupts, and
2017 * rely on IPIs from the TLB flushing code blocking before the page table
2018 * pages are freed. This is unsuitable for architectures that do not need
2019 * to broadcast an IPI when invalidating TLBs.
2020 *
2021 * Another way to achieve this is to batch up page table containing pages
2022 * belonging to more than one mm_user, then rcu_sched a callback to free those
2023 * pages. Disabling interrupts will allow the fast_gup walker to both block
2024 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2025 * (which is a relatively rare event). The code below adopts this strategy.
2026 *
2027 * Before activating this code, please be aware that the following assumptions
2028 * are currently made:
2029 *
ff2e6d72 2030 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
e585513b 2031 * free pages containing page tables or TLB flushing requires IPI broadcast.
2667f50e 2032 *
2667f50e
SC
2033 * *) ptes can be read atomically by the architecture.
2034 *
2035 * *) access_ok is sufficient to validate userspace address ranges.
2036 *
2037 * The last two assumptions can be relaxed by the addition of helper functions.
2038 *
2039 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2040 */
67a929e0 2041#ifdef CONFIG_HAVE_FAST_GUP
3faa52c0
JH
2042
2043static void put_compound_head(struct page *page, int refs, unsigned int flags)
2044{
47e29d32 2045 if (flags & FOLL_PIN) {
1970dc6f
JH
2046 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED,
2047 refs);
2048
47e29d32
JH
2049 if (hpage_pincount_available(page))
2050 hpage_pincount_sub(page, refs);
2051 else
2052 refs *= GUP_PIN_COUNTING_BIAS;
2053 }
3faa52c0
JH
2054
2055 VM_BUG_ON_PAGE(page_ref_count(page) < refs, page);
2056 /*
2057 * Calling put_page() for each ref is unnecessarily slow. Only the last
2058 * ref needs a put_page().
2059 */
2060 if (refs > 1)
2061 page_ref_sub(page, refs - 1);
2062 put_page(page);
2063}
2064
39656e83 2065#ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
3faa52c0 2066
39656e83
CH
2067/*
2068 * WARNING: only to be used in the get_user_pages_fast() implementation.
2069 *
2070 * With get_user_pages_fast(), we walk down the pagetables without taking any
2071 * locks. For this we would like to load the pointers atomically, but sometimes
2072 * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE). What
2073 * we do have is the guarantee that a PTE will only either go from not present
2074 * to present, or present to not present or both -- it will not switch to a
2075 * completely different present page without a TLB flush in between; something
2076 * that we are blocking by holding interrupts off.
2077 *
2078 * Setting ptes from not present to present goes:
2079 *
2080 * ptep->pte_high = h;
2081 * smp_wmb();
2082 * ptep->pte_low = l;
2083 *
2084 * And present to not present goes:
2085 *
2086 * ptep->pte_low = 0;
2087 * smp_wmb();
2088 * ptep->pte_high = 0;
2089 *
2090 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
2091 * We load pte_high *after* loading pte_low, which ensures we don't see an older
2092 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't
2093 * picked up a changed pte high. We might have gotten rubbish values from
2094 * pte_low and pte_high, but we are guaranteed that pte_low will not have the
2095 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
2096 * operates on present ptes we're safe.
2097 */
2098static inline pte_t gup_get_pte(pte_t *ptep)
2099{
2100 pte_t pte;
2667f50e 2101
39656e83
CH
2102 do {
2103 pte.pte_low = ptep->pte_low;
2104 smp_rmb();
2105 pte.pte_high = ptep->pte_high;
2106 smp_rmb();
2107 } while (unlikely(pte.pte_low != ptep->pte_low));
2108
2109 return pte;
2110}
2111#else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
0005d20b 2112/*
39656e83 2113 * We require that the PTE can be read atomically.
0005d20b
KS
2114 */
2115static inline pte_t gup_get_pte(pte_t *ptep)
2116{
2117 return READ_ONCE(*ptep);
2118}
39656e83 2119#endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
0005d20b 2120
790c7369 2121static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
3b78d834 2122 unsigned int flags,
790c7369 2123 struct page **pages)
b59f65fa
KS
2124{
2125 while ((*nr) - nr_start) {
2126 struct page *page = pages[--(*nr)];
2127
2128 ClearPageReferenced(page);
3faa52c0
JH
2129 if (flags & FOLL_PIN)
2130 unpin_user_page(page);
2131 else
2132 put_page(page);
b59f65fa
KS
2133 }
2134}
2135
3010a5ea 2136#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2667f50e 2137static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
b798bec4 2138 unsigned int flags, struct page **pages, int *nr)
2667f50e 2139{
b59f65fa
KS
2140 struct dev_pagemap *pgmap = NULL;
2141 int nr_start = *nr, ret = 0;
2667f50e 2142 pte_t *ptep, *ptem;
2667f50e
SC
2143
2144 ptem = ptep = pte_offset_map(&pmd, addr);
2145 do {
0005d20b 2146 pte_t pte = gup_get_pte(ptep);
7aef4172 2147 struct page *head, *page;
2667f50e
SC
2148
2149 /*
2150 * Similar to the PMD case below, NUMA hinting must take slow
8a0516ed 2151 * path using the pte_protnone check.
2667f50e 2152 */
e7884f8e
KS
2153 if (pte_protnone(pte))
2154 goto pte_unmap;
2155
b798bec4 2156 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
e7884f8e
KS
2157 goto pte_unmap;
2158
b59f65fa 2159 if (pte_devmap(pte)) {
7af75561
IW
2160 if (unlikely(flags & FOLL_LONGTERM))
2161 goto pte_unmap;
2162
b59f65fa
KS
2163 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2164 if (unlikely(!pgmap)) {
3b78d834 2165 undo_dev_pagemap(nr, nr_start, flags, pages);
b59f65fa
KS
2166 goto pte_unmap;
2167 }
2168 } else if (pte_special(pte))
2667f50e
SC
2169 goto pte_unmap;
2170
2171 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2172 page = pte_page(pte);
2173
3faa52c0 2174 head = try_grab_compound_head(page, 1, flags);
8fde12ca 2175 if (!head)
2667f50e
SC
2176 goto pte_unmap;
2177
2178 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
3faa52c0 2179 put_compound_head(head, 1, flags);
2667f50e
SC
2180 goto pte_unmap;
2181 }
2182
7aef4172 2183 VM_BUG_ON_PAGE(compound_head(page) != head, page);
e9348053 2184
f28d4363
CI
2185 /*
2186 * We need to make the page accessible if and only if we are
2187 * going to access its content (the FOLL_PIN case). Please
2188 * see Documentation/core-api/pin_user_pages.rst for
2189 * details.
2190 */
2191 if (flags & FOLL_PIN) {
2192 ret = arch_make_page_accessible(page);
2193 if (ret) {
2194 unpin_user_page(page);
2195 goto pte_unmap;
2196 }
2197 }
e9348053 2198 SetPageReferenced(page);
2667f50e
SC
2199 pages[*nr] = page;
2200 (*nr)++;
2201
2202 } while (ptep++, addr += PAGE_SIZE, addr != end);
2203
2204 ret = 1;
2205
2206pte_unmap:
832d7aa0
CH
2207 if (pgmap)
2208 put_dev_pagemap(pgmap);
2667f50e
SC
2209 pte_unmap(ptem);
2210 return ret;
2211}
2212#else
2213
2214/*
2215 * If we can't determine whether or not a pte is special, then fail immediately
2216 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2217 * to be special.
2218 *
2219 * For a futex to be placed on a THP tail page, get_futex_key requires a
2220 * __get_user_pages_fast implementation that can pin pages. Thus it's still
2221 * useful to have gup_huge_pmd even if we can't operate on ptes.
2222 */
2223static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
b798bec4 2224 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2225{
2226 return 0;
2227}
3010a5ea 2228#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2667f50e 2229
17596731 2230#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
b59f65fa 2231static int __gup_device_huge(unsigned long pfn, unsigned long addr,
86dfbed4
JH
2232 unsigned long end, unsigned int flags,
2233 struct page **pages, int *nr)
b59f65fa
KS
2234{
2235 int nr_start = *nr;
2236 struct dev_pagemap *pgmap = NULL;
2237
2238 do {
2239 struct page *page = pfn_to_page(pfn);
2240
2241 pgmap = get_dev_pagemap(pfn, pgmap);
2242 if (unlikely(!pgmap)) {
3b78d834 2243 undo_dev_pagemap(nr, nr_start, flags, pages);
b59f65fa
KS
2244 return 0;
2245 }
2246 SetPageReferenced(page);
2247 pages[*nr] = page;
3faa52c0
JH
2248 if (unlikely(!try_grab_page(page, flags))) {
2249 undo_dev_pagemap(nr, nr_start, flags, pages);
2250 return 0;
2251 }
b59f65fa
KS
2252 (*nr)++;
2253 pfn++;
2254 } while (addr += PAGE_SIZE, addr != end);
832d7aa0
CH
2255
2256 if (pgmap)
2257 put_dev_pagemap(pgmap);
b59f65fa
KS
2258 return 1;
2259}
2260
a9b6de77 2261static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
86dfbed4
JH
2262 unsigned long end, unsigned int flags,
2263 struct page **pages, int *nr)
b59f65fa
KS
2264{
2265 unsigned long fault_pfn;
a9b6de77
DW
2266 int nr_start = *nr;
2267
2268 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
86dfbed4 2269 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
a9b6de77 2270 return 0;
b59f65fa 2271
a9b6de77 2272 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3b78d834 2273 undo_dev_pagemap(nr, nr_start, flags, pages);
a9b6de77
DW
2274 return 0;
2275 }
2276 return 1;
b59f65fa
KS
2277}
2278
a9b6de77 2279static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2280 unsigned long end, unsigned int flags,
2281 struct page **pages, int *nr)
b59f65fa
KS
2282{
2283 unsigned long fault_pfn;
a9b6de77
DW
2284 int nr_start = *nr;
2285
2286 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
86dfbed4 2287 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
a9b6de77 2288 return 0;
b59f65fa 2289
a9b6de77 2290 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3b78d834 2291 undo_dev_pagemap(nr, nr_start, flags, pages);
a9b6de77
DW
2292 return 0;
2293 }
2294 return 1;
b59f65fa
KS
2295}
2296#else
a9b6de77 2297static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
86dfbed4
JH
2298 unsigned long end, unsigned int flags,
2299 struct page **pages, int *nr)
b59f65fa
KS
2300{
2301 BUILD_BUG();
2302 return 0;
2303}
2304
a9b6de77 2305static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2306 unsigned long end, unsigned int flags,
2307 struct page **pages, int *nr)
b59f65fa
KS
2308{
2309 BUILD_BUG();
2310 return 0;
2311}
2312#endif
2313
a43e9820
JH
2314static int record_subpages(struct page *page, unsigned long addr,
2315 unsigned long end, struct page **pages)
2316{
2317 int nr;
2318
2319 for (nr = 0; addr != end; addr += PAGE_SIZE)
2320 pages[nr++] = page++;
2321
2322 return nr;
2323}
2324
cbd34da7
CH
2325#ifdef CONFIG_ARCH_HAS_HUGEPD
2326static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2327 unsigned long sz)
2328{
2329 unsigned long __boundary = (addr + sz) & ~(sz-1);
2330 return (__boundary - 1 < end - 1) ? __boundary : end;
2331}
2332
2333static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
0cd22afd
JH
2334 unsigned long end, unsigned int flags,
2335 struct page **pages, int *nr)
cbd34da7
CH
2336{
2337 unsigned long pte_end;
2338 struct page *head, *page;
2339 pte_t pte;
2340 int refs;
2341
2342 pte_end = (addr + sz) & ~(sz-1);
2343 if (pte_end < end)
2344 end = pte_end;
2345
2346 pte = READ_ONCE(*ptep);
2347
0cd22afd 2348 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
cbd34da7
CH
2349 return 0;
2350
2351 /* hugepages are never "special" */
2352 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2353
cbd34da7 2354 head = pte_page(pte);
cbd34da7 2355 page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
a43e9820 2356 refs = record_subpages(page, addr, end, pages + *nr);
cbd34da7 2357
3faa52c0 2358 head = try_grab_compound_head(head, refs, flags);
a43e9820 2359 if (!head)
cbd34da7 2360 return 0;
cbd34da7
CH
2361
2362 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
3b78d834 2363 put_compound_head(head, refs, flags);
cbd34da7
CH
2364 return 0;
2365 }
2366
a43e9820 2367 *nr += refs;
520b4a44 2368 SetPageReferenced(head);
cbd34da7
CH
2369 return 1;
2370}
2371
2372static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
0cd22afd 2373 unsigned int pdshift, unsigned long end, unsigned int flags,
cbd34da7
CH
2374 struct page **pages, int *nr)
2375{
2376 pte_t *ptep;
2377 unsigned long sz = 1UL << hugepd_shift(hugepd);
2378 unsigned long next;
2379
2380 ptep = hugepte_offset(hugepd, addr, pdshift);
2381 do {
2382 next = hugepte_addr_end(addr, end, sz);
0cd22afd 2383 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
cbd34da7
CH
2384 return 0;
2385 } while (ptep++, addr = next, addr != end);
2386
2387 return 1;
2388}
2389#else
2390static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
0cd22afd 2391 unsigned int pdshift, unsigned long end, unsigned int flags,
cbd34da7
CH
2392 struct page **pages, int *nr)
2393{
2394 return 0;
2395}
2396#endif /* CONFIG_ARCH_HAS_HUGEPD */
2397
2667f50e 2398static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
0cd22afd
JH
2399 unsigned long end, unsigned int flags,
2400 struct page **pages, int *nr)
2667f50e 2401{
ddc58f27 2402 struct page *head, *page;
2667f50e
SC
2403 int refs;
2404
b798bec4 2405 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
2406 return 0;
2407
7af75561
IW
2408 if (pmd_devmap(orig)) {
2409 if (unlikely(flags & FOLL_LONGTERM))
2410 return 0;
86dfbed4
JH
2411 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2412 pages, nr);
7af75561 2413 }
b59f65fa 2414
d63206ee 2415 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
a43e9820 2416 refs = record_subpages(page, addr, end, pages + *nr);
2667f50e 2417
3faa52c0 2418 head = try_grab_compound_head(pmd_page(orig), refs, flags);
a43e9820 2419 if (!head)
2667f50e 2420 return 0;
2667f50e
SC
2421
2422 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3b78d834 2423 put_compound_head(head, refs, flags);
2667f50e
SC
2424 return 0;
2425 }
2426
a43e9820 2427 *nr += refs;
e9348053 2428 SetPageReferenced(head);
2667f50e
SC
2429 return 1;
2430}
2431
2432static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2433 unsigned long end, unsigned int flags,
2434 struct page **pages, int *nr)
2667f50e 2435{
ddc58f27 2436 struct page *head, *page;
2667f50e
SC
2437 int refs;
2438
b798bec4 2439 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
2440 return 0;
2441
7af75561
IW
2442 if (pud_devmap(orig)) {
2443 if (unlikely(flags & FOLL_LONGTERM))
2444 return 0;
86dfbed4
JH
2445 return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2446 pages, nr);
7af75561 2447 }
b59f65fa 2448
d63206ee 2449 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
a43e9820 2450 refs = record_subpages(page, addr, end, pages + *nr);
2667f50e 2451
3faa52c0 2452 head = try_grab_compound_head(pud_page(orig), refs, flags);
a43e9820 2453 if (!head)
2667f50e 2454 return 0;
2667f50e
SC
2455
2456 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3b78d834 2457 put_compound_head(head, refs, flags);
2667f50e
SC
2458 return 0;
2459 }
2460
a43e9820 2461 *nr += refs;
e9348053 2462 SetPageReferenced(head);
2667f50e
SC
2463 return 1;
2464}
2465
f30c59e9 2466static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
b798bec4 2467 unsigned long end, unsigned int flags,
f30c59e9
AK
2468 struct page **pages, int *nr)
2469{
2470 int refs;
ddc58f27 2471 struct page *head, *page;
f30c59e9 2472
b798bec4 2473 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
f30c59e9
AK
2474 return 0;
2475
b59f65fa 2476 BUILD_BUG_ON(pgd_devmap(orig));
a43e9820 2477
d63206ee 2478 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
a43e9820 2479 refs = record_subpages(page, addr, end, pages + *nr);
f30c59e9 2480
3faa52c0 2481 head = try_grab_compound_head(pgd_page(orig), refs, flags);
a43e9820 2482 if (!head)
f30c59e9 2483 return 0;
f30c59e9
AK
2484
2485 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
3b78d834 2486 put_compound_head(head, refs, flags);
f30c59e9
AK
2487 return 0;
2488 }
2489
a43e9820 2490 *nr += refs;
e9348053 2491 SetPageReferenced(head);
f30c59e9
AK
2492 return 1;
2493}
2494
2667f50e 2495static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
b798bec4 2496 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2497{
2498 unsigned long next;
2499 pmd_t *pmdp;
2500
2501 pmdp = pmd_offset(&pud, addr);
2502 do {
38c5ce93 2503 pmd_t pmd = READ_ONCE(*pmdp);
2667f50e
SC
2504
2505 next = pmd_addr_end(addr, end);
84c3fc4e 2506 if (!pmd_present(pmd))
2667f50e
SC
2507 return 0;
2508
414fd080
YZ
2509 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2510 pmd_devmap(pmd))) {
2667f50e
SC
2511 /*
2512 * NUMA hinting faults need to be handled in the GUP
2513 * slowpath for accounting purposes and so that they
2514 * can be serialised against THP migration.
2515 */
8a0516ed 2516 if (pmd_protnone(pmd))
2667f50e
SC
2517 return 0;
2518
b798bec4 2519 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2667f50e
SC
2520 pages, nr))
2521 return 0;
2522
f30c59e9
AK
2523 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2524 /*
2525 * architecture have different format for hugetlbfs
2526 * pmd format and THP pmd format
2527 */
2528 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
b798bec4 2529 PMD_SHIFT, next, flags, pages, nr))
f30c59e9 2530 return 0;
b798bec4 2531 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2923117b 2532 return 0;
2667f50e
SC
2533 } while (pmdp++, addr = next, addr != end);
2534
2535 return 1;
2536}
2537
c2febafc 2538static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
b798bec4 2539 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2540{
2541 unsigned long next;
2542 pud_t *pudp;
2543
c2febafc 2544 pudp = pud_offset(&p4d, addr);
2667f50e 2545 do {
e37c6982 2546 pud_t pud = READ_ONCE(*pudp);
2667f50e
SC
2547
2548 next = pud_addr_end(addr, end);
15494520 2549 if (unlikely(!pud_present(pud)))
2667f50e 2550 return 0;
f30c59e9 2551 if (unlikely(pud_huge(pud))) {
b798bec4 2552 if (!gup_huge_pud(pud, pudp, addr, next, flags,
f30c59e9
AK
2553 pages, nr))
2554 return 0;
2555 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2556 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
b798bec4 2557 PUD_SHIFT, next, flags, pages, nr))
2667f50e 2558 return 0;
b798bec4 2559 } else if (!gup_pmd_range(pud, addr, next, flags, pages, nr))
2667f50e
SC
2560 return 0;
2561 } while (pudp++, addr = next, addr != end);
2562
2563 return 1;
2564}
2565
c2febafc 2566static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
b798bec4 2567 unsigned int flags, struct page **pages, int *nr)
c2febafc
KS
2568{
2569 unsigned long next;
2570 p4d_t *p4dp;
2571
2572 p4dp = p4d_offset(&pgd, addr);
2573 do {
2574 p4d_t p4d = READ_ONCE(*p4dp);
2575
2576 next = p4d_addr_end(addr, end);
2577 if (p4d_none(p4d))
2578 return 0;
2579 BUILD_BUG_ON(p4d_huge(p4d));
2580 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2581 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
b798bec4 2582 P4D_SHIFT, next, flags, pages, nr))
c2febafc 2583 return 0;
b798bec4 2584 } else if (!gup_pud_range(p4d, addr, next, flags, pages, nr))
c2febafc
KS
2585 return 0;
2586 } while (p4dp++, addr = next, addr != end);
2587
2588 return 1;
2589}
2590
5b65c467 2591static void gup_pgd_range(unsigned long addr, unsigned long end,
b798bec4 2592 unsigned int flags, struct page **pages, int *nr)
5b65c467
KS
2593{
2594 unsigned long next;
2595 pgd_t *pgdp;
2596
2597 pgdp = pgd_offset(current->mm, addr);
2598 do {
2599 pgd_t pgd = READ_ONCE(*pgdp);
2600
2601 next = pgd_addr_end(addr, end);
2602 if (pgd_none(pgd))
2603 return;
2604 if (unlikely(pgd_huge(pgd))) {
b798bec4 2605 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
5b65c467
KS
2606 pages, nr))
2607 return;
2608 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2609 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
b798bec4 2610 PGDIR_SHIFT, next, flags, pages, nr))
5b65c467 2611 return;
b798bec4 2612 } else if (!gup_p4d_range(pgd, addr, next, flags, pages, nr))
5b65c467
KS
2613 return;
2614 } while (pgdp++, addr = next, addr != end);
2615}
050a9adc
CH
2616#else
2617static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2618 unsigned int flags, struct page **pages, int *nr)
2619{
2620}
2621#endif /* CONFIG_HAVE_FAST_GUP */
5b65c467
KS
2622
2623#ifndef gup_fast_permitted
2624/*
2625 * Check if it's allowed to use __get_user_pages_fast() for the range, or
2626 * we need to fall back to the slow version:
2627 */
26f4c328 2628static bool gup_fast_permitted(unsigned long start, unsigned long end)
5b65c467 2629{
26f4c328 2630 return true;
5b65c467
KS
2631}
2632#endif
2633
2667f50e
SC
2634/*
2635 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
d0811078
MT
2636 * the regular GUP.
2637 * Note a difference with get_user_pages_fast: this always returns the
2638 * number of pages pinned, 0 if no pages were pinned.
050a9adc
CH
2639 *
2640 * If the architecture does not support this function, simply return with no
2641 * pages pinned.
2667f50e
SC
2642 */
2643int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
2644 struct page **pages)
2645{
d4faa402 2646 unsigned long len, end;
5b65c467 2647 unsigned long flags;
4628b063 2648 int nr_pinned = 0;
94202f12
JH
2649 /*
2650 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2651 * because gup fast is always a "pin with a +1 page refcount" request.
2652 */
2653 unsigned int gup_flags = FOLL_GET;
2654
2655 if (write)
2656 gup_flags |= FOLL_WRITE;
2667f50e 2657
f455c854 2658 start = untagged_addr(start) & PAGE_MASK;
2667f50e
SC
2659 len = (unsigned long) nr_pages << PAGE_SHIFT;
2660 end = start + len;
2661
26f4c328
CH
2662 if (end <= start)
2663 return 0;
96d4f267 2664 if (unlikely(!access_ok((void __user *)start, len)))
2667f50e
SC
2665 return 0;
2666
2667 /*
2668 * Disable interrupts. We use the nested form as we can already have
2669 * interrupts disabled by get_futex_key.
2670 *
2671 * With interrupts disabled, we block page table pages from being
2ebe8228
FW
2672 * freed from under us. See struct mmu_table_batch comments in
2673 * include/asm-generic/tlb.h for more details.
2667f50e
SC
2674 *
2675 * We do not adopt an rcu_read_lock(.) here as we also want to
2676 * block IPIs that come from THPs splitting.
2677 */
2678
050a9adc
CH
2679 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) &&
2680 gup_fast_permitted(start, end)) {
5b65c467 2681 local_irq_save(flags);
4628b063 2682 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
5b65c467
KS
2683 local_irq_restore(flags);
2684 }
2667f50e 2685
4628b063 2686 return nr_pinned;
2667f50e 2687}
050a9adc 2688EXPORT_SYMBOL_GPL(__get_user_pages_fast);
2667f50e 2689
7af75561
IW
2690static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2691 unsigned int gup_flags, struct page **pages)
2692{
2693 int ret;
2694
2695 /*
2696 * FIXME: FOLL_LONGTERM does not work with
2697 * get_user_pages_unlocked() (see comments in that function)
2698 */
2699 if (gup_flags & FOLL_LONGTERM) {
2700 down_read(&current->mm->mmap_sem);
2701 ret = __gup_longterm_locked(current, current->mm,
2702 start, nr_pages,
2703 pages, NULL, gup_flags);
2704 up_read(&current->mm->mmap_sem);
2705 } else {
2706 ret = get_user_pages_unlocked(start, nr_pages,
2707 pages, gup_flags);
2708 }
2709
2710 return ret;
2711}
2712
eddb1c22
JH
2713static int internal_get_user_pages_fast(unsigned long start, int nr_pages,
2714 unsigned int gup_flags,
2715 struct page **pages)
2667f50e 2716{
5b65c467 2717 unsigned long addr, len, end;
4628b063 2718 int nr_pinned = 0, ret = 0;
2667f50e 2719
f4000fdf 2720 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
94202f12 2721 FOLL_FORCE | FOLL_PIN | FOLL_GET)))
817be129
CH
2722 return -EINVAL;
2723
f455c854 2724 start = untagged_addr(start) & PAGE_MASK;
5b65c467
KS
2725 addr = start;
2726 len = (unsigned long) nr_pages << PAGE_SHIFT;
2727 end = start + len;
2728
26f4c328 2729 if (end <= start)
c61611f7 2730 return 0;
96d4f267 2731 if (unlikely(!access_ok((void __user *)start, len)))
c61611f7 2732 return -EFAULT;
73e10a61 2733
050a9adc
CH
2734 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) &&
2735 gup_fast_permitted(start, end)) {
5b65c467 2736 local_irq_disable();
4628b063 2737 gup_pgd_range(addr, end, gup_flags, pages, &nr_pinned);
5b65c467 2738 local_irq_enable();
4628b063 2739 ret = nr_pinned;
73e10a61 2740 }
2667f50e 2741
4628b063 2742 if (nr_pinned < nr_pages) {
2667f50e 2743 /* Try to get the remaining pages with get_user_pages */
4628b063
PL
2744 start += nr_pinned << PAGE_SHIFT;
2745 pages += nr_pinned;
2667f50e 2746
4628b063 2747 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned,
7af75561 2748 gup_flags, pages);
2667f50e
SC
2749
2750 /* Have to be a bit careful with return values */
4628b063 2751 if (nr_pinned > 0) {
2667f50e 2752 if (ret < 0)
4628b063 2753 ret = nr_pinned;
2667f50e 2754 else
4628b063 2755 ret += nr_pinned;
2667f50e
SC
2756 }
2757 }
2758
2759 return ret;
2760}
eddb1c22
JH
2761
2762/**
2763 * get_user_pages_fast() - pin user pages in memory
3faa52c0
JH
2764 * @start: starting user address
2765 * @nr_pages: number of pages from start to pin
2766 * @gup_flags: flags modifying pin behaviour
2767 * @pages: array that receives pointers to the pages pinned.
2768 * Should be at least nr_pages long.
eddb1c22
JH
2769 *
2770 * Attempt to pin user pages in memory without taking mm->mmap_sem.
2771 * If not successful, it will fall back to taking the lock and
2772 * calling get_user_pages().
2773 *
2774 * Returns number of pages pinned. This may be fewer than the number requested.
2775 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2776 * -errno.
2777 */
2778int get_user_pages_fast(unsigned long start, int nr_pages,
2779 unsigned int gup_flags, struct page **pages)
2780{
2781 /*
2782 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2783 * never directly by the caller, so enforce that:
2784 */
2785 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2786 return -EINVAL;
2787
94202f12
JH
2788 /*
2789 * The caller may or may not have explicitly set FOLL_GET; either way is
2790 * OK. However, internally (within mm/gup.c), gup fast variants must set
2791 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2792 * request.
2793 */
2794 gup_flags |= FOLL_GET;
eddb1c22
JH
2795 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2796}
050a9adc 2797EXPORT_SYMBOL_GPL(get_user_pages_fast);
eddb1c22
JH
2798
2799/**
2800 * pin_user_pages_fast() - pin user pages in memory without taking locks
2801 *
3faa52c0
JH
2802 * @start: starting user address
2803 * @nr_pages: number of pages from start to pin
2804 * @gup_flags: flags modifying pin behaviour
2805 * @pages: array that receives pointers to the pages pinned.
2806 * Should be at least nr_pages long.
2807 *
2808 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
2809 * get_user_pages_fast() for documentation on the function arguments, because
2810 * the arguments here are identical.
2811 *
2812 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2813 * see Documentation/vm/pin_user_pages.rst for further details.
eddb1c22
JH
2814 *
2815 * This is intended for Case 1 (DIO) in Documentation/vm/pin_user_pages.rst. It
2816 * is NOT intended for Case 2 (RDMA: long-term pins).
2817 */
2818int pin_user_pages_fast(unsigned long start, int nr_pages,
2819 unsigned int gup_flags, struct page **pages)
2820{
3faa52c0
JH
2821 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2822 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2823 return -EINVAL;
2824
2825 gup_flags |= FOLL_PIN;
2826 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
eddb1c22
JH
2827}
2828EXPORT_SYMBOL_GPL(pin_user_pages_fast);
2829
2830/**
2831 * pin_user_pages_remote() - pin pages of a remote process (task != current)
2832 *
3faa52c0
JH
2833 * @tsk: the task_struct to use for page fault accounting, or
2834 * NULL if faults are not to be recorded.
2835 * @mm: mm_struct of target mm
2836 * @start: starting user address
2837 * @nr_pages: number of pages from start to pin
2838 * @gup_flags: flags modifying lookup behaviour
2839 * @pages: array that receives pointers to the pages pinned.
2840 * Should be at least nr_pages long. Or NULL, if caller
2841 * only intends to ensure the pages are faulted in.
2842 * @vmas: array of pointers to vmas corresponding to each page.
2843 * Or NULL if the caller does not require them.
2844 * @locked: pointer to lock flag indicating whether lock is held and
2845 * subsequently whether VM_FAULT_RETRY functionality can be
2846 * utilised. Lock must initially be held.
2847 *
2848 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
2849 * get_user_pages_remote() for documentation on the function arguments, because
2850 * the arguments here are identical.
2851 *
2852 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2853 * see Documentation/vm/pin_user_pages.rst for details.
eddb1c22
JH
2854 *
2855 * This is intended for Case 1 (DIO) in Documentation/vm/pin_user_pages.rst. It
2856 * is NOT intended for Case 2 (RDMA: long-term pins).
2857 */
2858long pin_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
2859 unsigned long start, unsigned long nr_pages,
2860 unsigned int gup_flags, struct page **pages,
2861 struct vm_area_struct **vmas, int *locked)
2862{
3faa52c0
JH
2863 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2864 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2865 return -EINVAL;
2866
2867 gup_flags |= FOLL_PIN;
2868 return __get_user_pages_remote(tsk, mm, start, nr_pages, gup_flags,
2869 pages, vmas, locked);
eddb1c22
JH
2870}
2871EXPORT_SYMBOL(pin_user_pages_remote);
2872
2873/**
2874 * pin_user_pages() - pin user pages in memory for use by other devices
2875 *
3faa52c0
JH
2876 * @start: starting user address
2877 * @nr_pages: number of pages from start to pin
2878 * @gup_flags: flags modifying lookup behaviour
2879 * @pages: array that receives pointers to the pages pinned.
2880 * Should be at least nr_pages long. Or NULL, if caller
2881 * only intends to ensure the pages are faulted in.
2882 * @vmas: array of pointers to vmas corresponding to each page.
2883 * Or NULL if the caller does not require them.
2884 *
2885 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
2886 * FOLL_PIN is set.
2887 *
2888 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2889 * see Documentation/vm/pin_user_pages.rst for details.
eddb1c22
JH
2890 *
2891 * This is intended for Case 1 (DIO) in Documentation/vm/pin_user_pages.rst. It
2892 * is NOT intended for Case 2 (RDMA: long-term pins).
2893 */
2894long pin_user_pages(unsigned long start, unsigned long nr_pages,
2895 unsigned int gup_flags, struct page **pages,
2896 struct vm_area_struct **vmas)
2897{
3faa52c0
JH
2898 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2899 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2900 return -EINVAL;
2901
2902 gup_flags |= FOLL_PIN;
2903 return __gup_longterm_locked(current, current->mm, start, nr_pages,
2904 pages, vmas, gup_flags);
eddb1c22
JH
2905}
2906EXPORT_SYMBOL(pin_user_pages);