mm: convert put_devmap_managed_page_refs() to put_devmap_managed_folio_refs()
[linux-2.6-block.git] / mm / gup.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
4bbd4c77
KS
2#include <linux/kernel.h>
3#include <linux/errno.h>
4#include <linux/err.h>
5#include <linux/spinlock.h>
6
4bbd4c77 7#include <linux/mm.h>
3565fce3 8#include <linux/memremap.h>
4bbd4c77
KS
9#include <linux/pagemap.h>
10#include <linux/rmap.h>
11#include <linux/swap.h>
12#include <linux/swapops.h>
1507f512 13#include <linux/secretmem.h>
4bbd4c77 14
174cd4b1 15#include <linux/sched/signal.h>
2667f50e 16#include <linux/rwsem.h>
f30c59e9 17#include <linux/hugetlb.h>
9a4e9f3b
AK
18#include <linux/migrate.h>
19#include <linux/mm_inline.h>
20#include <linux/sched/mm.h>
a6e79df9 21#include <linux/shmem_fs.h>
1027e443 22
33a709b2 23#include <asm/mmu_context.h>
1027e443 24#include <asm/tlbflush.h>
2667f50e 25
4bbd4c77
KS
26#include "internal.h"
27
df06b37f
KB
28struct follow_page_context {
29 struct dev_pagemap *pgmap;
30 unsigned int page_mask;
31};
32
b6a2619c
DH
33static inline void sanity_check_pinned_pages(struct page **pages,
34 unsigned long npages)
35{
36 if (!IS_ENABLED(CONFIG_DEBUG_VM))
37 return;
38
39 /*
40 * We only pin anonymous pages if they are exclusive. Once pinned, we
41 * can no longer turn them possibly shared and PageAnonExclusive() will
42 * stick around until the page is freed.
43 *
44 * We'd like to verify that our pinned anonymous pages are still mapped
45 * exclusively. The issue with anon THP is that we don't know how
46 * they are/were mapped when pinning them. However, for anon
47 * THP we can assume that either the given page (PTE-mapped THP) or
48 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
49 * neither is the case, there is certainly something wrong.
50 */
51 for (; npages; npages--, pages++) {
52 struct page *page = *pages;
53 struct folio *folio = page_folio(page);
54
c8070b78
DH
55 if (is_zero_page(page) ||
56 !folio_test_anon(folio))
b6a2619c
DH
57 continue;
58 if (!folio_test_large(folio) || folio_test_hugetlb(folio))
59 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
60 else
61 /* Either a PTE-mapped or a PMD-mapped THP. */
62 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
63 !PageAnonExclusive(page), page);
64 }
65}
66
cd1adf1b 67/*
ece1ed7b 68 * Return the folio with ref appropriately incremented,
cd1adf1b 69 * or NULL if that failed.
a707cdd5 70 */
ece1ed7b 71static inline struct folio *try_get_folio(struct page *page, int refs)
a707cdd5 72{
ece1ed7b 73 struct folio *folio;
a707cdd5 74
59409373 75retry:
ece1ed7b
MWO
76 folio = page_folio(page);
77 if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
a707cdd5 78 return NULL;
ece1ed7b 79 if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
a707cdd5 80 return NULL;
c24d3732
JH
81
82 /*
ece1ed7b
MWO
83 * At this point we have a stable reference to the folio; but it
84 * could be that between calling page_folio() and the refcount
85 * increment, the folio was split, in which case we'd end up
86 * holding a reference on a folio that has nothing to do with the page
c24d3732 87 * we were given anymore.
ece1ed7b
MWO
88 * So now that the folio is stable, recheck that the page still
89 * belongs to this folio.
c24d3732 90 */
ece1ed7b 91 if (unlikely(page_folio(page) != folio)) {
53e45c4f 92 if (!put_devmap_managed_folio_refs(folio, refs))
f4f451a1 93 folio_put_refs(folio, refs);
59409373 94 goto retry;
c24d3732
JH
95 }
96
ece1ed7b 97 return folio;
a707cdd5
JH
98}
99
3967db22 100/**
ece1ed7b 101 * try_grab_folio() - Attempt to get or pin a folio.
3967db22 102 * @page: pointer to page to be grabbed
ece1ed7b 103 * @refs: the value to (effectively) add to the folio's refcount
3967db22
JH
104 * @flags: gup flags: these are the FOLL_* flag values.
105 *
3faa52c0 106 * "grab" names in this file mean, "look at flags to decide whether to use
ece1ed7b 107 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
3faa52c0
JH
108 *
109 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
110 * same time. (That's true throughout the get_user_pages*() and
111 * pin_user_pages*() APIs.) Cases:
112 *
ece1ed7b 113 * FOLL_GET: folio's refcount will be incremented by @refs.
3967db22 114 *
ece1ed7b 115 * FOLL_PIN on large folios: folio's refcount will be incremented by
94688e8e 116 * @refs, and its pincount will be incremented by @refs.
3967db22 117 *
ece1ed7b 118 * FOLL_PIN on single-page folios: folio's refcount will be incremented by
5232c63f 119 * @refs * GUP_PIN_COUNTING_BIAS.
3faa52c0 120 *
ece1ed7b
MWO
121 * Return: The folio containing @page (with refcount appropriately
122 * incremented) for success, or NULL upon failure. If neither FOLL_GET
123 * nor FOLL_PIN was set, that's considered failure, and furthermore,
124 * a likely bug in the caller, so a warning is also emitted.
3faa52c0 125 */
ece1ed7b 126struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
3faa52c0 127{
503670ee
VMO
128 struct folio *folio;
129
130 if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0))
131 return NULL;
132
4003f107
LG
133 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
134 return NULL;
135
3faa52c0 136 if (flags & FOLL_GET)
ece1ed7b 137 return try_get_folio(page, refs);
ece1ed7b 138
503670ee 139 /* FOLL_PIN is set */
c8070b78 140
6e17c6de
LT
141 /*
142 * Don't take a pin on the zero page - it's not going anywhere
143 * and it is used in a *lot* of places.
144 */
145 if (is_zero_page(page))
146 return page_folio(page);
df3a0a21 147
6e17c6de 148 folio = try_get_folio(page, refs);
503670ee
VMO
149 if (!folio)
150 return NULL;
c24d3732 151
503670ee
VMO
152 /*
153 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
154 * right zone, so fail and let the caller fall back to the slow
155 * path.
156 */
157 if (unlikely((flags & FOLL_LONGTERM) &&
158 !folio_is_longterm_pinnable(folio))) {
53e45c4f 159 if (!put_devmap_managed_folio_refs(folio, refs))
503670ee
VMO
160 folio_put_refs(folio, refs);
161 return NULL;
3faa52c0 162 }
088b8aa5 163
503670ee
VMO
164 /*
165 * When pinning a large folio, use an exact count to track it.
166 *
167 * However, be sure to *also* increment the normal folio
168 * refcount field at least once, so that the folio really
169 * is pinned. That's why the refcount from the earlier
170 * try_get_folio() is left intact.
171 */
172 if (folio_test_large(folio))
173 atomic_add(refs, &folio->_pincount);
174 else
175 folio_ref_add(folio,
176 refs * (GUP_PIN_COUNTING_BIAS - 1));
177 /*
178 * Adjust the pincount before re-checking the PTE for changes.
179 * This is essentially a smp_mb() and is paired with a memory
e3b4b137 180 * barrier in folio_try_share_anon_rmap_*().
503670ee
VMO
181 */
182 smp_mb__after_atomic();
47e29d32 183
503670ee 184 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
3faa52c0 185
503670ee 186 return folio;
3faa52c0
JH
187}
188
d8ddc099 189static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
4509b42c
JG
190{
191 if (flags & FOLL_PIN) {
c8070b78
DH
192 if (is_zero_folio(folio))
193 return;
d8ddc099
MWO
194 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
195 if (folio_test_large(folio))
94688e8e 196 atomic_sub(refs, &folio->_pincount);
4509b42c
JG
197 else
198 refs *= GUP_PIN_COUNTING_BIAS;
199 }
200
53e45c4f 201 if (!put_devmap_managed_folio_refs(folio, refs))
f4f451a1 202 folio_put_refs(folio, refs);
4509b42c
JG
203}
204
3faa52c0
JH
205/**
206 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
5fec0719
MWO
207 * @page: pointer to page to be grabbed
208 * @flags: gup flags: these are the FOLL_* flag values.
3faa52c0
JH
209 *
210 * This might not do anything at all, depending on the flags argument.
211 *
212 * "grab" names in this file mean, "look at flags to decide whether to use
213 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
214 *
3faa52c0 215 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
ece1ed7b 216 * time. Cases: please see the try_grab_folio() documentation, with
3967db22 217 * "refs=1".
3faa52c0 218 *
0f089235
LG
219 * Return: 0 for success, or if no action was required (if neither FOLL_PIN
220 * nor FOLL_GET was set, nothing is done). A negative error code for failure:
221 *
222 * -ENOMEM FOLL_GET or FOLL_PIN was set, but the page could not
223 * be grabbed.
3faa52c0 224 */
0f089235 225int __must_check try_grab_page(struct page *page, unsigned int flags)
3faa52c0 226{
5fec0719
MWO
227 struct folio *folio = page_folio(page);
228
5fec0719 229 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
0f089235 230 return -ENOMEM;
3faa52c0 231
4003f107
LG
232 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
233 return -EREMOTEIO;
3faa52c0 234
c36c04c2 235 if (flags & FOLL_GET)
5fec0719 236 folio_ref_inc(folio);
c36c04c2 237 else if (flags & FOLL_PIN) {
c8070b78
DH
238 /*
239 * Don't take a pin on the zero page - it's not going anywhere
240 * and it is used in a *lot* of places.
241 */
242 if (is_zero_page(page))
243 return 0;
244
c36c04c2 245 /*
5fec0719 246 * Similar to try_grab_folio(): be sure to *also*
78d9d6ce
MWO
247 * increment the normal page refcount field at least once,
248 * so that the page really is pinned.
c36c04c2 249 */
5fec0719
MWO
250 if (folio_test_large(folio)) {
251 folio_ref_add(folio, 1);
94688e8e 252 atomic_add(1, &folio->_pincount);
8ea2979c 253 } else {
5fec0719 254 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
8ea2979c 255 }
c36c04c2 256
5fec0719 257 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
c36c04c2
JH
258 }
259
0f089235 260 return 0;
3faa52c0
JH
261}
262
3faa52c0
JH
263/**
264 * unpin_user_page() - release a dma-pinned page
265 * @page: pointer to page to be released
266 *
267 * Pages that were pinned via pin_user_pages*() must be released via either
268 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
269 * that such pages can be separately tracked and uniquely handled. In
270 * particular, interactions with RDMA and filesystems need special handling.
271 */
272void unpin_user_page(struct page *page)
273{
b6a2619c 274 sanity_check_pinned_pages(&page, 1);
d8ddc099 275 gup_put_folio(page_folio(page), 1, FOLL_PIN);
3faa52c0
JH
276}
277EXPORT_SYMBOL(unpin_user_page);
278
1101fb8f
DH
279/**
280 * folio_add_pin - Try to get an additional pin on a pinned folio
281 * @folio: The folio to be pinned
282 *
283 * Get an additional pin on a folio we already have a pin on. Makes no change
284 * if the folio is a zero_page.
285 */
286void folio_add_pin(struct folio *folio)
287{
288 if (is_zero_folio(folio))
289 return;
290
291 /*
292 * Similar to try_grab_folio(): be sure to *also* increment the normal
293 * page refcount field at least once, so that the page really is
294 * pinned.
295 */
296 if (folio_test_large(folio)) {
297 WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1);
298 folio_ref_inc(folio);
299 atomic_inc(&folio->_pincount);
300 } else {
301 WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS);
302 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
303 }
304}
305
659508f9 306static inline struct folio *gup_folio_range_next(struct page *start,
8f39f5fc 307 unsigned long npages, unsigned long i, unsigned int *ntails)
458a4f78 308{
659508f9
MWO
309 struct page *next = nth_page(start, i);
310 struct folio *folio = page_folio(next);
458a4f78
JM
311 unsigned int nr = 1;
312
659508f9 313 if (folio_test_large(folio))
4c654229 314 nr = min_t(unsigned int, npages - i,
659508f9 315 folio_nr_pages(folio) - folio_page_idx(folio, next));
458a4f78 316
458a4f78 317 *ntails = nr;
659508f9 318 return folio;
458a4f78
JM
319}
320
12521c76 321static inline struct folio *gup_folio_next(struct page **list,
28297dbc 322 unsigned long npages, unsigned long i, unsigned int *ntails)
8745d7f6 323{
12521c76 324 struct folio *folio = page_folio(list[i]);
8745d7f6
JM
325 unsigned int nr;
326
8745d7f6 327 for (nr = i + 1; nr < npages; nr++) {
12521c76 328 if (page_folio(list[nr]) != folio)
8745d7f6
JM
329 break;
330 }
331
8745d7f6 332 *ntails = nr - i;
12521c76 333 return folio;
8745d7f6
JM
334}
335
fc1d8e7c 336/**
f1f6a7dd 337 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
2d15eb31 338 * @pages: array of pages to be maybe marked dirty, and definitely released.
fc1d8e7c 339 * @npages: number of pages in the @pages array.
2d15eb31 340 * @make_dirty: whether to mark the pages dirty
fc1d8e7c
JH
341 *
342 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
343 * variants called on that page.
344 *
345 * For each page in the @pages array, make that page (or its head page, if a
2d15eb31 346 * compound page) dirty, if @make_dirty is true, and if the page was previously
f1f6a7dd
JH
347 * listed as clean. In any case, releases all pages using unpin_user_page(),
348 * possibly via unpin_user_pages(), for the non-dirty case.
fc1d8e7c 349 *
f1f6a7dd 350 * Please see the unpin_user_page() documentation for details.
fc1d8e7c 351 *
2d15eb31 352 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
353 * required, then the caller should a) verify that this is really correct,
354 * because _lock() is usually required, and b) hand code it:
f1f6a7dd 355 * set_page_dirty_lock(), unpin_user_page().
fc1d8e7c
JH
356 *
357 */
f1f6a7dd
JH
358void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
359 bool make_dirty)
fc1d8e7c 360{
12521c76
MWO
361 unsigned long i;
362 struct folio *folio;
363 unsigned int nr;
2d15eb31 364
365 if (!make_dirty) {
f1f6a7dd 366 unpin_user_pages(pages, npages);
2d15eb31 367 return;
368 }
369
b6a2619c 370 sanity_check_pinned_pages(pages, npages);
12521c76
MWO
371 for (i = 0; i < npages; i += nr) {
372 folio = gup_folio_next(pages, npages, i, &nr);
2d15eb31 373 /*
374 * Checking PageDirty at this point may race with
375 * clear_page_dirty_for_io(), but that's OK. Two key
376 * cases:
377 *
378 * 1) This code sees the page as already dirty, so it
379 * skips the call to set_page_dirty(). That could happen
380 * because clear_page_dirty_for_io() called
381 * page_mkclean(), followed by set_page_dirty().
382 * However, now the page is going to get written back,
383 * which meets the original intention of setting it
384 * dirty, so all is well: clear_page_dirty_for_io() goes
385 * on to call TestClearPageDirty(), and write the page
386 * back.
387 *
388 * 2) This code sees the page as clean, so it calls
389 * set_page_dirty(). The page stays dirty, despite being
390 * written back, so it gets written back again in the
391 * next writeback cycle. This is harmless.
392 */
12521c76
MWO
393 if (!folio_test_dirty(folio)) {
394 folio_lock(folio);
395 folio_mark_dirty(folio);
396 folio_unlock(folio);
397 }
398 gup_put_folio(folio, nr, FOLL_PIN);
2d15eb31 399 }
fc1d8e7c 400}
f1f6a7dd 401EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
fc1d8e7c 402
458a4f78
JM
403/**
404 * unpin_user_page_range_dirty_lock() - release and optionally dirty
405 * gup-pinned page range
406 *
407 * @page: the starting page of a range maybe marked dirty, and definitely released.
408 * @npages: number of consecutive pages to release.
409 * @make_dirty: whether to mark the pages dirty
410 *
411 * "gup-pinned page range" refers to a range of pages that has had one of the
412 * pin_user_pages() variants called on that page.
413 *
414 * For the page ranges defined by [page .. page+npages], make that range (or
415 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
416 * page range was previously listed as clean.
417 *
418 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
419 * required, then the caller should a) verify that this is really correct,
420 * because _lock() is usually required, and b) hand code it:
421 * set_page_dirty_lock(), unpin_user_page().
422 *
423 */
424void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
425 bool make_dirty)
426{
659508f9
MWO
427 unsigned long i;
428 struct folio *folio;
429 unsigned int nr;
430
431 for (i = 0; i < npages; i += nr) {
432 folio = gup_folio_range_next(page, npages, i, &nr);
433 if (make_dirty && !folio_test_dirty(folio)) {
434 folio_lock(folio);
435 folio_mark_dirty(folio);
436 folio_unlock(folio);
437 }
438 gup_put_folio(folio, nr, FOLL_PIN);
458a4f78
JM
439 }
440}
441EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
442
23babe19 443static void gup_fast_unpin_user_pages(struct page **pages, unsigned long npages)
b6a2619c
DH
444{
445 unsigned long i;
446 struct folio *folio;
447 unsigned int nr;
448
449 /*
450 * Don't perform any sanity checks because we might have raced with
451 * fork() and some anonymous pages might now actually be shared --
452 * which is why we're unpinning after all.
453 */
454 for (i = 0; i < npages; i += nr) {
455 folio = gup_folio_next(pages, npages, i, &nr);
456 gup_put_folio(folio, nr, FOLL_PIN);
457 }
458}
459
fc1d8e7c 460/**
f1f6a7dd 461 * unpin_user_pages() - release an array of gup-pinned pages.
fc1d8e7c
JH
462 * @pages: array of pages to be marked dirty and released.
463 * @npages: number of pages in the @pages array.
464 *
f1f6a7dd 465 * For each page in the @pages array, release the page using unpin_user_page().
fc1d8e7c 466 *
f1f6a7dd 467 * Please see the unpin_user_page() documentation for details.
fc1d8e7c 468 */
f1f6a7dd 469void unpin_user_pages(struct page **pages, unsigned long npages)
fc1d8e7c 470{
12521c76
MWO
471 unsigned long i;
472 struct folio *folio;
473 unsigned int nr;
fc1d8e7c 474
146608bb
JH
475 /*
476 * If this WARN_ON() fires, then the system *might* be leaking pages (by
477 * leaving them pinned), but probably not. More likely, gup/pup returned
478 * a hard -ERRNO error to the caller, who erroneously passed it here.
479 */
480 if (WARN_ON(IS_ERR_VALUE(npages)))
481 return;
31b912de 482
b6a2619c 483 sanity_check_pinned_pages(pages, npages);
12521c76
MWO
484 for (i = 0; i < npages; i += nr) {
485 folio = gup_folio_next(pages, npages, i, &nr);
486 gup_put_folio(folio, nr, FOLL_PIN);
e7602748 487 }
fc1d8e7c 488}
f1f6a7dd 489EXPORT_SYMBOL(unpin_user_pages);
fc1d8e7c 490
a458b76a
AA
491/*
492 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
493 * lifecycle. Avoid setting the bit unless necessary, or it might cause write
494 * cache bouncing on large SMP machines for concurrent pinned gups.
495 */
496static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
497{
498 if (!test_bit(MMF_HAS_PINNED, mm_flags))
499 set_bit(MMF_HAS_PINNED, mm_flags);
500}
501
050a9adc 502#ifdef CONFIG_MMU
a12083d7 503
25176ad0 504#if defined(CONFIG_ARCH_HAS_HUGEPD) || defined(CONFIG_HAVE_GUP_FAST)
a12083d7
PX
505static int record_subpages(struct page *page, unsigned long sz,
506 unsigned long addr, unsigned long end,
507 struct page **pages)
508{
509 struct page *start_page;
510 int nr;
511
512 start_page = nth_page(page, (addr & (sz - 1)) >> PAGE_SHIFT);
513 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
514 pages[nr] = nth_page(start_page, nr);
515
516 return nr;
517}
25176ad0 518#endif /* CONFIG_ARCH_HAS_HUGEPD || CONFIG_HAVE_GUP_FAST */
a12083d7
PX
519
520#ifdef CONFIG_ARCH_HAS_HUGEPD
521static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
522 unsigned long sz)
523{
524 unsigned long __boundary = (addr + sz) & ~(sz-1);
525 return (__boundary - 1 < end - 1) ? __boundary : end;
526}
527
23babe19
DH
528static int gup_fast_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
529 unsigned long end, unsigned int flags, struct page **pages,
530 int *nr)
a12083d7
PX
531{
532 unsigned long pte_end;
533 struct page *page;
534 struct folio *folio;
535 pte_t pte;
536 int refs;
537
538 pte_end = (addr + sz) & ~(sz-1);
539 if (pte_end < end)
540 end = pte_end;
541
542 pte = huge_ptep_get(ptep);
543
544 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
545 return 0;
546
547 /* hugepages are never "special" */
548 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
549
550 page = pte_page(pte);
551 refs = record_subpages(page, sz, addr, end, pages + *nr);
552
553 folio = try_grab_folio(page, refs, flags);
554 if (!folio)
555 return 0;
556
557 if (unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
558 gup_put_folio(folio, refs, flags);
559 return 0;
560 }
561
562 if (!pte_write(pte) && gup_must_unshare(NULL, flags, &folio->page)) {
563 gup_put_folio(folio, refs, flags);
564 return 0;
565 }
566
567 *nr += refs;
568 folio_set_referenced(folio);
569 return 1;
570}
571
572/*
573 * NOTE: currently GUP for a hugepd is only possible on hugetlbfs file
574 * systems on Power, which does not have issue with folio writeback against
575 * GUP updates. When hugepd will be extended to support non-hugetlbfs or
576 * even anonymous memory, we need to do extra check as what we do with most
577 * of the other folios. See writable_file_mapping_allowed() and
578 * gup_fast_folio_allowed() for more information.
579 */
23babe19 580static int gup_fast_hugepd(hugepd_t hugepd, unsigned long addr,
a12083d7
PX
581 unsigned int pdshift, unsigned long end, unsigned int flags,
582 struct page **pages, int *nr)
583{
584 pte_t *ptep;
585 unsigned long sz = 1UL << hugepd_shift(hugepd);
586 unsigned long next;
587
588 ptep = hugepte_offset(hugepd, addr, pdshift);
589 do {
590 next = hugepte_addr_end(addr, end, sz);
23babe19 591 if (!gup_fast_hugepte(ptep, sz, addr, end, flags, pages, nr))
a12083d7
PX
592 return 0;
593 } while (ptep++, addr = next, addr != end);
594
595 return 1;
596}
597
598static struct page *follow_hugepd(struct vm_area_struct *vma, hugepd_t hugepd,
599 unsigned long addr, unsigned int pdshift,
600 unsigned int flags,
601 struct follow_page_context *ctx)
602{
603 struct page *page;
604 struct hstate *h;
605 spinlock_t *ptl;
606 int nr = 0, ret;
607 pte_t *ptep;
608
609 /* Only hugetlb supports hugepd */
610 if (WARN_ON_ONCE(!is_vm_hugetlb_page(vma)))
611 return ERR_PTR(-EFAULT);
612
613 h = hstate_vma(vma);
614 ptep = hugepte_offset(hugepd, addr, pdshift);
615 ptl = huge_pte_lock(h, vma->vm_mm, ptep);
23babe19
DH
616 ret = gup_fast_hugepd(hugepd, addr, pdshift, addr + PAGE_SIZE,
617 flags, &page, &nr);
a12083d7
PX
618 spin_unlock(ptl);
619
620 if (ret) {
621 WARN_ON_ONCE(nr != 1);
622 ctx->page_mask = (1U << huge_page_order(h)) - 1;
623 return page;
624 }
625
626 return NULL;
627}
628#else /* CONFIG_ARCH_HAS_HUGEPD */
23babe19 629static inline int gup_fast_hugepd(hugepd_t hugepd, unsigned long addr,
a12083d7
PX
630 unsigned int pdshift, unsigned long end, unsigned int flags,
631 struct page **pages, int *nr)
632{
633 return 0;
634}
635
636static struct page *follow_hugepd(struct vm_area_struct *vma, hugepd_t hugepd,
637 unsigned long addr, unsigned int pdshift,
638 unsigned int flags,
639 struct follow_page_context *ctx)
640{
641 return NULL;
642}
643#endif /* CONFIG_ARCH_HAS_HUGEPD */
644
645
69e68b4f 646static struct page *no_page_table(struct vm_area_struct *vma,
878b0c45 647 unsigned int flags, unsigned long address)
4bbd4c77 648{
878b0c45
PX
649 if (!(flags & FOLL_DUMP))
650 return NULL;
651
69e68b4f 652 /*
878b0c45 653 * When core dumping, we don't want to allocate unnecessary pages or
69e68b4f
KS
654 * page tables. Return error instead of NULL to skip handle_mm_fault,
655 * then get_dump_page() will return NULL to leave a hole in the dump.
656 * But we can only make this optimization where a hole would surely
657 * be zero-filled if handle_mm_fault() actually did handle it.
658 */
878b0c45
PX
659 if (is_vm_hugetlb_page(vma)) {
660 struct hstate *h = hstate_vma(vma);
661
662 if (!hugetlbfs_pagecache_present(h, vma, address))
663 return ERR_PTR(-EFAULT);
664 } else if ((vma_is_anonymous(vma) || !vma->vm_ops->fault)) {
69e68b4f 665 return ERR_PTR(-EFAULT);
878b0c45
PX
666 }
667
69e68b4f
KS
668 return NULL;
669}
4bbd4c77 670
1b167618
PX
671#ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES
672static struct page *follow_huge_pud(struct vm_area_struct *vma,
673 unsigned long addr, pud_t *pudp,
674 int flags, struct follow_page_context *ctx)
675{
676 struct mm_struct *mm = vma->vm_mm;
677 struct page *page;
678 pud_t pud = *pudp;
679 unsigned long pfn = pud_pfn(pud);
680 int ret;
681
682 assert_spin_locked(pud_lockptr(mm, pudp));
683
684 if ((flags & FOLL_WRITE) && !pud_write(pud))
685 return NULL;
686
687 if (!pud_present(pud))
688 return NULL;
689
690 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
691
692 if (IS_ENABLED(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) &&
693 pud_devmap(pud)) {
694 /*
695 * device mapped pages can only be returned if the caller
696 * will manage the page reference count.
697 *
698 * At least one of FOLL_GET | FOLL_PIN must be set, so
699 * assert that here:
700 */
701 if (!(flags & (FOLL_GET | FOLL_PIN)))
702 return ERR_PTR(-EEXIST);
703
704 if (flags & FOLL_TOUCH)
705 touch_pud(vma, addr, pudp, flags & FOLL_WRITE);
706
707 ctx->pgmap = get_dev_pagemap(pfn, ctx->pgmap);
708 if (!ctx->pgmap)
709 return ERR_PTR(-EFAULT);
710 }
711
712 page = pfn_to_page(pfn);
713
714 if (!pud_devmap(pud) && !pud_write(pud) &&
715 gup_must_unshare(vma, flags, page))
716 return ERR_PTR(-EMLINK);
717
718 ret = try_grab_page(page, flags);
719 if (ret)
720 page = ERR_PTR(ret);
721 else
722 ctx->page_mask = HPAGE_PUD_NR - 1;
723
724 return page;
725}
4418c522
PX
726
727/* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
728static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
729 struct vm_area_struct *vma,
730 unsigned int flags)
731{
732 /* If the pmd is writable, we can write to the page. */
733 if (pmd_write(pmd))
734 return true;
735
736 /* Maybe FOLL_FORCE is set to override it? */
737 if (!(flags & FOLL_FORCE))
738 return false;
739
740 /* But FOLL_FORCE has no effect on shared mappings */
741 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
742 return false;
743
744 /* ... or read-only private ones */
745 if (!(vma->vm_flags & VM_MAYWRITE))
746 return false;
747
748 /* ... or already writable ones that just need to take a write fault */
749 if (vma->vm_flags & VM_WRITE)
750 return false;
751
752 /*
753 * See can_change_pte_writable(): we broke COW and could map the page
754 * writable if we have an exclusive anonymous page ...
755 */
756 if (!page || !PageAnon(page) || !PageAnonExclusive(page))
757 return false;
758
759 /* ... and a write-fault isn't required for other reasons. */
760 if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
761 return false;
762 return !userfaultfd_huge_pmd_wp(vma, pmd);
763}
764
765static struct page *follow_huge_pmd(struct vm_area_struct *vma,
766 unsigned long addr, pmd_t *pmd,
767 unsigned int flags,
768 struct follow_page_context *ctx)
769{
770 struct mm_struct *mm = vma->vm_mm;
771 pmd_t pmdval = *pmd;
772 struct page *page;
773 int ret;
774
775 assert_spin_locked(pmd_lockptr(mm, pmd));
776
777 page = pmd_page(pmdval);
778 if ((flags & FOLL_WRITE) &&
779 !can_follow_write_pmd(pmdval, page, vma, flags))
780 return NULL;
781
782 /* Avoid dumping huge zero page */
783 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(pmdval))
784 return ERR_PTR(-EFAULT);
785
786 if (pmd_protnone(*pmd) && !gup_can_follow_protnone(vma, flags))
787 return NULL;
788
789 if (!pmd_write(pmdval) && gup_must_unshare(vma, flags, page))
790 return ERR_PTR(-EMLINK);
791
792 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
793 !PageAnonExclusive(page), page);
794
795 ret = try_grab_page(page, flags);
796 if (ret)
797 return ERR_PTR(ret);
798
799#ifdef CONFIG_TRANSPARENT_HUGEPAGE
800 if (pmd_trans_huge(pmdval) && (flags & FOLL_TOUCH))
801 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
802#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
803
804 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
805 ctx->page_mask = HPAGE_PMD_NR - 1;
806
807 return page;
808}
809
1b167618
PX
810#else /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */
811static struct page *follow_huge_pud(struct vm_area_struct *vma,
812 unsigned long addr, pud_t *pudp,
813 int flags, struct follow_page_context *ctx)
814{
815 return NULL;
816}
4418c522
PX
817
818static struct page *follow_huge_pmd(struct vm_area_struct *vma,
819 unsigned long addr, pmd_t *pmd,
820 unsigned int flags,
821 struct follow_page_context *ctx)
822{
823 return NULL;
824}
1b167618
PX
825#endif /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */
826
1027e443
KS
827static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
828 pte_t *pte, unsigned int flags)
829{
1027e443 830 if (flags & FOLL_TOUCH) {
c33c7948
RR
831 pte_t orig_entry = ptep_get(pte);
832 pte_t entry = orig_entry;
1027e443
KS
833
834 if (flags & FOLL_WRITE)
835 entry = pte_mkdirty(entry);
836 entry = pte_mkyoung(entry);
837
c33c7948 838 if (!pte_same(orig_entry, entry)) {
1027e443
KS
839 set_pte_at(vma->vm_mm, address, pte, entry);
840 update_mmu_cache(vma, address, pte);
841 }
842 }
843
844 /* Proper page table entry exists, but no corresponding struct page */
845 return -EEXIST;
846}
847
5535be30
DH
848/* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
849static inline bool can_follow_write_pte(pte_t pte, struct page *page,
850 struct vm_area_struct *vma,
851 unsigned int flags)
19be0eaf 852{
5535be30
DH
853 /* If the pte is writable, we can write to the page. */
854 if (pte_write(pte))
855 return true;
856
857 /* Maybe FOLL_FORCE is set to override it? */
858 if (!(flags & FOLL_FORCE))
859 return false;
860
861 /* But FOLL_FORCE has no effect on shared mappings */
862 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
863 return false;
864
865 /* ... or read-only private ones */
866 if (!(vma->vm_flags & VM_MAYWRITE))
867 return false;
868
869 /* ... or already writable ones that just need to take a write fault */
870 if (vma->vm_flags & VM_WRITE)
871 return false;
872
873 /*
874 * See can_change_pte_writable(): we broke COW and could map the page
875 * writable if we have an exclusive anonymous page ...
876 */
877 if (!page || !PageAnon(page) || !PageAnonExclusive(page))
878 return false;
879
880 /* ... and a write-fault isn't required for other reasons. */
881 if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte))
882 return false;
883 return !userfaultfd_pte_wp(vma, pte);
19be0eaf
LT
884}
885
69e68b4f 886static struct page *follow_page_pte(struct vm_area_struct *vma,
df06b37f
KB
887 unsigned long address, pmd_t *pmd, unsigned int flags,
888 struct dev_pagemap **pgmap)
69e68b4f
KS
889{
890 struct mm_struct *mm = vma->vm_mm;
891 struct page *page;
892 spinlock_t *ptl;
893 pte_t *ptep, pte;
f28d4363 894 int ret;
4bbd4c77 895
eddb1c22
JH
896 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
897 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
898 (FOLL_PIN | FOLL_GET)))
899 return ERR_PTR(-EINVAL);
4bbd4c77
KS
900
901 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
04dee9e8 902 if (!ptep)
878b0c45 903 return no_page_table(vma, flags, address);
c33c7948 904 pte = ptep_get(ptep);
f7355e99
DH
905 if (!pte_present(pte))
906 goto no_page;
d74943a2 907 if (pte_protnone(pte) && !gup_can_follow_protnone(vma, flags))
4bbd4c77 908 goto no_page;
4bbd4c77
KS
909
910 page = vm_normal_page(vma, address, pte);
5535be30
DH
911
912 /*
913 * We only care about anon pages in can_follow_write_pte() and don't
914 * have to worry about pte_devmap() because they are never anon.
915 */
916 if ((flags & FOLL_WRITE) &&
917 !can_follow_write_pte(pte, page, vma, flags)) {
918 page = NULL;
919 goto out;
920 }
921
3faa52c0 922 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
3565fce3 923 /*
3faa52c0
JH
924 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
925 * case since they are only valid while holding the pgmap
926 * reference.
3565fce3 927 */
df06b37f
KB
928 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
929 if (*pgmap)
3565fce3
DW
930 page = pte_page(pte);
931 else
932 goto no_page;
933 } else if (unlikely(!page)) {
1027e443
KS
934 if (flags & FOLL_DUMP) {
935 /* Avoid special (like zero) pages in core dumps */
936 page = ERR_PTR(-EFAULT);
937 goto out;
938 }
939
940 if (is_zero_pfn(pte_pfn(pte))) {
941 page = pte_page(pte);
942 } else {
1027e443
KS
943 ret = follow_pfn_pte(vma, address, ptep, flags);
944 page = ERR_PTR(ret);
945 goto out;
946 }
4bbd4c77
KS
947 }
948
84209e87 949 if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) {
a7f22660
DH
950 page = ERR_PTR(-EMLINK);
951 goto out;
952 }
b6a2619c
DH
953
954 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
955 !PageAnonExclusive(page), page);
956
3faa52c0 957 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
0f089235
LG
958 ret = try_grab_page(page, flags);
959 if (unlikely(ret)) {
960 page = ERR_PTR(ret);
3faa52c0 961 goto out;
8fde12ca 962 }
4003f107 963
f28d4363
CI
964 /*
965 * We need to make the page accessible if and only if we are going
966 * to access its content (the FOLL_PIN case). Please see
967 * Documentation/core-api/pin_user_pages.rst for details.
968 */
969 if (flags & FOLL_PIN) {
970 ret = arch_make_page_accessible(page);
971 if (ret) {
972 unpin_user_page(page);
973 page = ERR_PTR(ret);
974 goto out;
975 }
976 }
4bbd4c77
KS
977 if (flags & FOLL_TOUCH) {
978 if ((flags & FOLL_WRITE) &&
979 !pte_dirty(pte) && !PageDirty(page))
980 set_page_dirty(page);
981 /*
982 * pte_mkyoung() would be more correct here, but atomic care
983 * is needed to avoid losing the dirty bit: it is easier to use
984 * mark_page_accessed().
985 */
986 mark_page_accessed(page);
987 }
1027e443 988out:
4bbd4c77 989 pte_unmap_unlock(ptep, ptl);
4bbd4c77 990 return page;
4bbd4c77
KS
991no_page:
992 pte_unmap_unlock(ptep, ptl);
993 if (!pte_none(pte))
69e68b4f 994 return NULL;
878b0c45 995 return no_page_table(vma, flags, address);
69e68b4f
KS
996}
997
080dbb61
AK
998static struct page *follow_pmd_mask(struct vm_area_struct *vma,
999 unsigned long address, pud_t *pudp,
df06b37f
KB
1000 unsigned int flags,
1001 struct follow_page_context *ctx)
69e68b4f 1002{
68827280 1003 pmd_t *pmd, pmdval;
69e68b4f
KS
1004 spinlock_t *ptl;
1005 struct page *page;
1006 struct mm_struct *mm = vma->vm_mm;
1007
080dbb61 1008 pmd = pmd_offset(pudp, address);
26e1a0c3 1009 pmdval = pmdp_get_lockless(pmd);
68827280 1010 if (pmd_none(pmdval))
878b0c45 1011 return no_page_table(vma, flags, address);
f7355e99 1012 if (!pmd_present(pmdval))
878b0c45 1013 return no_page_table(vma, flags, address);
a12083d7
PX
1014 if (unlikely(is_hugepd(__hugepd(pmd_val(pmdval)))))
1015 return follow_hugepd(vma, __hugepd(pmd_val(pmdval)),
1016 address, PMD_SHIFT, flags, ctx);
68827280 1017 if (pmd_devmap(pmdval)) {
3565fce3 1018 ptl = pmd_lock(mm, pmd);
df06b37f 1019 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
3565fce3
DW
1020 spin_unlock(ptl);
1021 if (page)
1022 return page;
878b0c45 1023 return no_page_table(vma, flags, address);
3565fce3 1024 }
4418c522 1025 if (likely(!pmd_leaf(pmdval)))
df06b37f 1026 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 1027
d74943a2 1028 if (pmd_protnone(pmdval) && !gup_can_follow_protnone(vma, flags))
878b0c45 1029 return no_page_table(vma, flags, address);
db08f203 1030
6742d293 1031 ptl = pmd_lock(mm, pmd);
4418c522
PX
1032 pmdval = *pmd;
1033 if (unlikely(!pmd_present(pmdval))) {
84c3fc4e 1034 spin_unlock(ptl);
878b0c45 1035 return no_page_table(vma, flags, address);
84c3fc4e 1036 }
4418c522 1037 if (unlikely(!pmd_leaf(pmdval))) {
6742d293 1038 spin_unlock(ptl);
df06b37f 1039 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 1040 }
4418c522 1041 if (pmd_trans_huge(pmdval) && (flags & FOLL_SPLIT_PMD)) {
2378118b
HD
1042 spin_unlock(ptl);
1043 split_huge_pmd(vma, pmd, address);
1044 /* If pmd was left empty, stuff a page table in there quickly */
1045 return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) :
df06b37f 1046 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
69e68b4f 1047 }
4418c522 1048 page = follow_huge_pmd(vma, address, pmd, flags, ctx);
6742d293 1049 spin_unlock(ptl);
6742d293 1050 return page;
4bbd4c77
KS
1051}
1052
080dbb61
AK
1053static struct page *follow_pud_mask(struct vm_area_struct *vma,
1054 unsigned long address, p4d_t *p4dp,
df06b37f
KB
1055 unsigned int flags,
1056 struct follow_page_context *ctx)
080dbb61 1057{
caf8cab7 1058 pud_t *pudp, pud;
080dbb61
AK
1059 spinlock_t *ptl;
1060 struct page *page;
1061 struct mm_struct *mm = vma->vm_mm;
1062
caf8cab7
PX
1063 pudp = pud_offset(p4dp, address);
1064 pud = READ_ONCE(*pudp);
1b167618 1065 if (!pud_present(pud))
878b0c45 1066 return no_page_table(vma, flags, address);
a12083d7
PX
1067 if (unlikely(is_hugepd(__hugepd(pud_val(pud)))))
1068 return follow_hugepd(vma, __hugepd(pud_val(pud)),
1069 address, PUD_SHIFT, flags, ctx);
1b167618 1070 if (pud_leaf(pud)) {
caf8cab7 1071 ptl = pud_lock(mm, pudp);
1b167618 1072 page = follow_huge_pud(vma, address, pudp, flags, ctx);
080dbb61
AK
1073 spin_unlock(ptl);
1074 if (page)
1075 return page;
878b0c45 1076 return no_page_table(vma, flags, address);
080dbb61 1077 }
caf8cab7 1078 if (unlikely(pud_bad(pud)))
878b0c45 1079 return no_page_table(vma, flags, address);
080dbb61 1080
caf8cab7 1081 return follow_pmd_mask(vma, address, pudp, flags, ctx);
080dbb61
AK
1082}
1083
080dbb61
AK
1084static struct page *follow_p4d_mask(struct vm_area_struct *vma,
1085 unsigned long address, pgd_t *pgdp,
df06b37f
KB
1086 unsigned int flags,
1087 struct follow_page_context *ctx)
080dbb61 1088{
e6fd5564 1089 p4d_t *p4dp, p4d;
080dbb61 1090
e6fd5564
PX
1091 p4dp = p4d_offset(pgdp, address);
1092 p4d = READ_ONCE(*p4dp);
1965e933 1093 BUILD_BUG_ON(p4d_leaf(p4d));
a12083d7
PX
1094
1095 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d)))))
1096 return follow_hugepd(vma, __hugepd(p4d_val(p4d)),
1097 address, P4D_SHIFT, flags, ctx);
1098
1099 if (!p4d_present(p4d) || p4d_bad(p4d))
878b0c45 1100 return no_page_table(vma, flags, address);
080dbb61 1101
e6fd5564 1102 return follow_pud_mask(vma, address, p4dp, flags, ctx);
080dbb61
AK
1103}
1104
1105/**
1106 * follow_page_mask - look up a page descriptor from a user-virtual address
1107 * @vma: vm_area_struct mapping @address
1108 * @address: virtual address to look up
1109 * @flags: flags modifying lookup behaviour
78179556
MR
1110 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
1111 * pointer to output page_mask
080dbb61
AK
1112 *
1113 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1114 *
78179556
MR
1115 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
1116 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
1117 *
a7f22660
DH
1118 * When getting an anonymous page and the caller has to trigger unsharing
1119 * of a shared anonymous page first, -EMLINK is returned. The caller should
1120 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
1121 * relevant with FOLL_PIN and !FOLL_WRITE.
1122 *
78179556
MR
1123 * On output, the @ctx->page_mask is set according to the size of the page.
1124 *
1125 * Return: the mapped (struct page *), %NULL if no mapping exists, or
080dbb61
AK
1126 * an error pointer if there is a mapping to something not represented
1127 * by a page descriptor (see also vm_normal_page()).
1128 */
a7030aea 1129static struct page *follow_page_mask(struct vm_area_struct *vma,
080dbb61 1130 unsigned long address, unsigned int flags,
df06b37f 1131 struct follow_page_context *ctx)
080dbb61
AK
1132{
1133 pgd_t *pgd;
080dbb61 1134 struct mm_struct *mm = vma->vm_mm;
9cb28da5 1135 struct page *page;
080dbb61 1136
9cb28da5 1137 vma_pgtable_walk_begin(vma);
080dbb61 1138
9cb28da5 1139 ctx->page_mask = 0;
080dbb61
AK
1140 pgd = pgd_offset(mm, address);
1141
a12083d7
PX
1142 if (unlikely(is_hugepd(__hugepd(pgd_val(*pgd)))))
1143 page = follow_hugepd(vma, __hugepd(pgd_val(*pgd)),
1144 address, PGDIR_SHIFT, flags, ctx);
1145 else if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1146 page = no_page_table(vma, flags, address);
1147 else
1148 page = follow_p4d_mask(vma, address, pgd, flags, ctx);
080dbb61 1149
9cb28da5
PX
1150 vma_pgtable_walk_end(vma);
1151
a12083d7 1152 return page;
df06b37f
KB
1153}
1154
1155struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1156 unsigned int foll_flags)
1157{
1158 struct follow_page_context ctx = { NULL };
1159 struct page *page;
1160
1507f512
MR
1161 if (vma_is_secretmem(vma))
1162 return NULL;
1163
d64e2dbc 1164 if (WARN_ON_ONCE(foll_flags & FOLL_PIN))
8909691b
DH
1165 return NULL;
1166
d74943a2
DH
1167 /*
1168 * We never set FOLL_HONOR_NUMA_FAULT because callers don't expect
1169 * to fail on PROT_NONE-mapped pages.
1170 */
df06b37f
KB
1171 page = follow_page_mask(vma, address, foll_flags, &ctx);
1172 if (ctx.pgmap)
1173 put_dev_pagemap(ctx.pgmap);
1174 return page;
080dbb61
AK
1175}
1176
f2b495ca
KS
1177static int get_gate_page(struct mm_struct *mm, unsigned long address,
1178 unsigned int gup_flags, struct vm_area_struct **vma,
1179 struct page **page)
1180{
1181 pgd_t *pgd;
c2febafc 1182 p4d_t *p4d;
f2b495ca
KS
1183 pud_t *pud;
1184 pmd_t *pmd;
1185 pte_t *pte;
c33c7948 1186 pte_t entry;
f2b495ca
KS
1187 int ret = -EFAULT;
1188
1189 /* user gate pages are read-only */
1190 if (gup_flags & FOLL_WRITE)
1191 return -EFAULT;
1192 if (address > TASK_SIZE)
1193 pgd = pgd_offset_k(address);
1194 else
1195 pgd = pgd_offset_gate(mm, address);
b5d1c39f
AL
1196 if (pgd_none(*pgd))
1197 return -EFAULT;
c2febafc 1198 p4d = p4d_offset(pgd, address);
b5d1c39f
AL
1199 if (p4d_none(*p4d))
1200 return -EFAULT;
c2febafc 1201 pud = pud_offset(p4d, address);
b5d1c39f
AL
1202 if (pud_none(*pud))
1203 return -EFAULT;
f2b495ca 1204 pmd = pmd_offset(pud, address);
84c3fc4e 1205 if (!pmd_present(*pmd))
f2b495ca 1206 return -EFAULT;
f2b495ca 1207 pte = pte_offset_map(pmd, address);
04dee9e8
HD
1208 if (!pte)
1209 return -EFAULT;
c33c7948
RR
1210 entry = ptep_get(pte);
1211 if (pte_none(entry))
f2b495ca
KS
1212 goto unmap;
1213 *vma = get_gate_vma(mm);
1214 if (!page)
1215 goto out;
c33c7948 1216 *page = vm_normal_page(*vma, address, entry);
f2b495ca 1217 if (!*page) {
c33c7948 1218 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry)))
f2b495ca 1219 goto unmap;
c33c7948 1220 *page = pte_page(entry);
f2b495ca 1221 }
0f089235
LG
1222 ret = try_grab_page(*page, gup_flags);
1223 if (unlikely(ret))
8fde12ca 1224 goto unmap;
f2b495ca
KS
1225out:
1226 ret = 0;
1227unmap:
1228 pte_unmap(pte);
1229 return ret;
1230}
1231
9a95f3cf 1232/*
9a863a6a
JG
1233 * mmap_lock must be held on entry. If @flags has FOLL_UNLOCKABLE but not
1234 * FOLL_NOWAIT, the mmap_lock may be released. If it is, *@locked will be set
1235 * to 0 and -EBUSY returned.
9a95f3cf 1236 */
64019a2e 1237static int faultin_page(struct vm_area_struct *vma,
a7f22660
DH
1238 unsigned long address, unsigned int *flags, bool unshare,
1239 int *locked)
16744483 1240{
16744483 1241 unsigned int fault_flags = 0;
2b740303 1242 vm_fault_t ret;
16744483 1243
55b8fe70
AG
1244 if (*flags & FOLL_NOFAULT)
1245 return -EFAULT;
16744483
KS
1246 if (*flags & FOLL_WRITE)
1247 fault_flags |= FAULT_FLAG_WRITE;
1b2ee126
DH
1248 if (*flags & FOLL_REMOTE)
1249 fault_flags |= FAULT_FLAG_REMOTE;
f04740f5 1250 if (*flags & FOLL_UNLOCKABLE) {
71335f37 1251 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
93c5c61d
PX
1252 /*
1253 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set
1254 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE.
1255 * That's because some callers may not be prepared to
1256 * handle early exits caused by non-fatal signals.
1257 */
1258 if (*flags & FOLL_INTERRUPTIBLE)
1259 fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
1260 }
16744483
KS
1261 if (*flags & FOLL_NOWAIT)
1262 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
234b239b 1263 if (*flags & FOLL_TRIED) {
4426e945
PX
1264 /*
1265 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
1266 * can co-exist
1267 */
234b239b
ALC
1268 fault_flags |= FAULT_FLAG_TRIED;
1269 }
a7f22660
DH
1270 if (unshare) {
1271 fault_flags |= FAULT_FLAG_UNSHARE;
1272 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
1273 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
1274 }
16744483 1275
bce617ed 1276 ret = handle_mm_fault(vma, address, fault_flags, NULL);
d9272525
PX
1277
1278 if (ret & VM_FAULT_COMPLETED) {
1279 /*
1280 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
1281 * mmap lock in the page fault handler. Sanity check this.
1282 */
1283 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
9a863a6a
JG
1284 *locked = 0;
1285
d9272525
PX
1286 /*
1287 * We should do the same as VM_FAULT_RETRY, but let's not
1288 * return -EBUSY since that's not reflecting the reality of
1289 * what has happened - we've just fully completed a page
1290 * fault, with the mmap lock released. Use -EAGAIN to show
1291 * that we want to take the mmap lock _again_.
1292 */
1293 return -EAGAIN;
1294 }
1295
16744483 1296 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
1297 int err = vm_fault_to_errno(ret, *flags);
1298
1299 if (err)
1300 return err;
16744483
KS
1301 BUG();
1302 }
1303
16744483 1304 if (ret & VM_FAULT_RETRY) {
9a863a6a 1305 if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4f6da934 1306 *locked = 0;
16744483
KS
1307 return -EBUSY;
1308 }
1309
16744483
KS
1310 return 0;
1311}
1312
8ac26843
LS
1313/*
1314 * Writing to file-backed mappings which require folio dirty tracking using GUP
1315 * is a fundamentally broken operation, as kernel write access to GUP mappings
1316 * do not adhere to the semantics expected by a file system.
1317 *
1318 * Consider the following scenario:-
1319 *
1320 * 1. A folio is written to via GUP which write-faults the memory, notifying
1321 * the file system and dirtying the folio.
1322 * 2. Later, writeback is triggered, resulting in the folio being cleaned and
1323 * the PTE being marked read-only.
1324 * 3. The GUP caller writes to the folio, as it is mapped read/write via the
1325 * direct mapping.
1326 * 4. The GUP caller, now done with the page, unpins it and sets it dirty
1327 * (though it does not have to).
1328 *
1329 * This results in both data being written to a folio without writenotify, and
1330 * the folio being dirtied unexpectedly (if the caller decides to do so).
1331 */
1332static bool writable_file_mapping_allowed(struct vm_area_struct *vma,
1333 unsigned long gup_flags)
1334{
1335 /*
1336 * If we aren't pinning then no problematic write can occur. A long term
1337 * pin is the most egregious case so this is the case we disallow.
1338 */
1339 if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) !=
1340 (FOLL_PIN | FOLL_LONGTERM))
1341 return true;
1342
1343 /*
1344 * If the VMA does not require dirty tracking then no problematic write
1345 * can occur either.
1346 */
1347 return !vma_needs_dirty_tracking(vma);
1348}
1349
fa5bb209
KS
1350static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
1351{
1352 vm_flags_t vm_flags = vma->vm_flags;
1b2ee126
DH
1353 int write = (gup_flags & FOLL_WRITE);
1354 int foreign = (gup_flags & FOLL_REMOTE);
8ac26843 1355 bool vma_anon = vma_is_anonymous(vma);
fa5bb209
KS
1356
1357 if (vm_flags & (VM_IO | VM_PFNMAP))
1358 return -EFAULT;
1359
8ac26843 1360 if ((gup_flags & FOLL_ANON) && !vma_anon)
7f7ccc2c
WT
1361 return -EFAULT;
1362
52650c8b
JG
1363 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1364 return -EOPNOTSUPP;
1365
1507f512
MR
1366 if (vma_is_secretmem(vma))
1367 return -EFAULT;
1368
1b2ee126 1369 if (write) {
8ac26843
LS
1370 if (!vma_anon &&
1371 !writable_file_mapping_allowed(vma, gup_flags))
1372 return -EFAULT;
1373
6beb9958 1374 if (!(vm_flags & VM_WRITE) || (vm_flags & VM_SHADOW_STACK)) {
fa5bb209
KS
1375 if (!(gup_flags & FOLL_FORCE))
1376 return -EFAULT;
f347454d
DH
1377 /* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */
1378 if (is_vm_hugetlb_page(vma))
1379 return -EFAULT;
fa5bb209
KS
1380 /*
1381 * We used to let the write,force case do COW in a
1382 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1383 * set a breakpoint in a read-only mapping of an
1384 * executable, without corrupting the file (yet only
1385 * when that file had been opened for writing!).
1386 * Anon pages in shared mappings are surprising: now
1387 * just reject it.
1388 */
46435364 1389 if (!is_cow_mapping(vm_flags))
fa5bb209 1390 return -EFAULT;
fa5bb209
KS
1391 }
1392 } else if (!(vm_flags & VM_READ)) {
1393 if (!(gup_flags & FOLL_FORCE))
1394 return -EFAULT;
1395 /*
1396 * Is there actually any vma we can reach here which does not
1397 * have VM_MAYREAD set?
1398 */
1399 if (!(vm_flags & VM_MAYREAD))
1400 return -EFAULT;
1401 }
d61172b4
DH
1402 /*
1403 * gups are always data accesses, not instruction
1404 * fetches, so execute=false here
1405 */
1406 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2 1407 return -EFAULT;
fa5bb209
KS
1408 return 0;
1409}
1410
6cd06ab1
LT
1411/*
1412 * This is "vma_lookup()", but with a warning if we would have
1413 * historically expanded the stack in the GUP code.
1414 */
1415static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm,
1416 unsigned long addr)
1417{
1418#ifdef CONFIG_STACK_GROWSUP
1419 return vma_lookup(mm, addr);
1420#else
1421 static volatile unsigned long next_warn;
1422 struct vm_area_struct *vma;
1423 unsigned long now, next;
1424
1425 vma = find_vma(mm, addr);
1426 if (!vma || (addr >= vma->vm_start))
1427 return vma;
1428
1429 /* Only warn for half-way relevant accesses */
1430 if (!(vma->vm_flags & VM_GROWSDOWN))
1431 return NULL;
1432 if (vma->vm_start - addr > 65536)
1433 return NULL;
1434
1435 /* Let's not warn more than once an hour.. */
1436 now = jiffies; next = next_warn;
1437 if (next && time_before(now, next))
1438 return NULL;
1439 next_warn = now + 60*60*HZ;
1440
1441 /* Let people know things may have changed. */
1442 pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n",
1443 current->comm, task_pid_nr(current),
1444 vma->vm_start, vma->vm_end, addr);
1445 dump_stack();
1446 return NULL;
1447#endif
1448}
1449
4bbd4c77
KS
1450/**
1451 * __get_user_pages() - pin user pages in memory
4bbd4c77
KS
1452 * @mm: mm_struct of target mm
1453 * @start: starting user address
1454 * @nr_pages: number of pages from start to pin
1455 * @gup_flags: flags modifying pin behaviour
1456 * @pages: array that receives pointers to the pages pinned.
1457 * Should be at least nr_pages long. Or NULL, if caller
1458 * only intends to ensure the pages are faulted in.
c1e8d7c6 1459 * @locked: whether we're still with the mmap_lock held
4bbd4c77 1460 *
d2dfbe47
LX
1461 * Returns either number of pages pinned (which may be less than the
1462 * number requested), or an error. Details about the return value:
1463 *
1464 * -- If nr_pages is 0, returns 0.
1465 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1466 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1467 * pages pinned. Again, this may be less than nr_pages.
2d3a36a4 1468 * -- 0 return value is possible when the fault would need to be retried.
d2dfbe47
LX
1469 *
1470 * The caller is responsible for releasing returned @pages, via put_page().
1471 *
c1e8d7c6 1472 * Must be called with mmap_lock held. It may be released. See below.
4bbd4c77
KS
1473 *
1474 * __get_user_pages walks a process's page tables and takes a reference to
1475 * each struct page that each user address corresponds to at a given
1476 * instant. That is, it takes the page that would be accessed if a user
1477 * thread accesses the given user virtual address at that instant.
1478 *
1479 * This does not guarantee that the page exists in the user mappings when
1480 * __get_user_pages returns, and there may even be a completely different
1481 * page there in some cases (eg. if mmapped pagecache has been invalidated
c5acf1f6 1482 * and subsequently re-faulted). However it does guarantee that the page
4bbd4c77
KS
1483 * won't be freed completely. And mostly callers simply care that the page
1484 * contains data that was valid *at some point in time*. Typically, an IO
1485 * or similar operation cannot guarantee anything stronger anyway because
1486 * locks can't be held over the syscall boundary.
1487 *
1488 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1489 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1490 * appropriate) must be called after the page is finished with, and
1491 * before put_page is called.
1492 *
9a863a6a
JG
1493 * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may
1494 * be released. If this happens *@locked will be set to 0 on return.
9a95f3cf 1495 *
9a863a6a
JG
1496 * A caller using such a combination of @gup_flags must therefore hold the
1497 * mmap_lock for reading only, and recognize when it's been released. Otherwise,
1498 * it must be held for either reading or writing and will not be released.
4bbd4c77
KS
1499 *
1500 * In most cases, get_user_pages or get_user_pages_fast should be used
1501 * instead of __get_user_pages. __get_user_pages should be used only if
1502 * you need some special @gup_flags.
1503 */
64019a2e 1504static long __get_user_pages(struct mm_struct *mm,
4bbd4c77
KS
1505 unsigned long start, unsigned long nr_pages,
1506 unsigned int gup_flags, struct page **pages,
b2cac248 1507 int *locked)
4bbd4c77 1508{
df06b37f 1509 long ret = 0, i = 0;
fa5bb209 1510 struct vm_area_struct *vma = NULL;
df06b37f 1511 struct follow_page_context ctx = { NULL };
4bbd4c77
KS
1512
1513 if (!nr_pages)
1514 return 0;
1515
428e106a 1516 start = untagged_addr_remote(mm, start);
f9652594 1517
eddb1c22 1518 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
4bbd4c77 1519
4bbd4c77 1520 do {
fa5bb209
KS
1521 struct page *page;
1522 unsigned int foll_flags = gup_flags;
1523 unsigned int page_increm;
1524
1525 /* first iteration or cross vma bound */
1526 if (!vma || start >= vma->vm_end) {
631426ba
DH
1527 /*
1528 * MADV_POPULATE_(READ|WRITE) wants to handle VMA
1529 * lookups+error reporting differently.
1530 */
1531 if (gup_flags & FOLL_MADV_POPULATE) {
1532 vma = vma_lookup(mm, start);
1533 if (!vma) {
1534 ret = -ENOMEM;
1535 goto out;
1536 }
1537 if (check_vma_flags(vma, gup_flags)) {
1538 ret = -EINVAL;
1539 goto out;
1540 }
1541 goto retry;
1542 }
6cd06ab1 1543 vma = gup_vma_lookup(mm, start);
fa5bb209 1544 if (!vma && in_gate_area(mm, start)) {
fa5bb209
KS
1545 ret = get_gate_page(mm, start & PAGE_MASK,
1546 gup_flags, &vma,
ffe1e786 1547 pages ? &page : NULL);
fa5bb209 1548 if (ret)
08be37b7 1549 goto out;
df06b37f 1550 ctx.page_mask = 0;
fa5bb209
KS
1551 goto next_page;
1552 }
4bbd4c77 1553
52650c8b 1554 if (!vma) {
df06b37f
KB
1555 ret = -EFAULT;
1556 goto out;
1557 }
52650c8b
JG
1558 ret = check_vma_flags(vma, gup_flags);
1559 if (ret)
1560 goto out;
fa5bb209
KS
1561 }
1562retry:
1563 /*
1564 * If we have a pending SIGKILL, don't keep faulting pages and
1565 * potentially allocating memory.
1566 */
fa45f116 1567 if (fatal_signal_pending(current)) {
d180870d 1568 ret = -EINTR;
df06b37f
KB
1569 goto out;
1570 }
fa5bb209 1571 cond_resched();
df06b37f
KB
1572
1573 page = follow_page_mask(vma, start, foll_flags, &ctx);
a7f22660
DH
1574 if (!page || PTR_ERR(page) == -EMLINK) {
1575 ret = faultin_page(vma, start, &foll_flags,
1576 PTR_ERR(page) == -EMLINK, locked);
fa5bb209
KS
1577 switch (ret) {
1578 case 0:
1579 goto retry;
df06b37f 1580 case -EBUSY:
d9272525 1581 case -EAGAIN:
df06b37f 1582 ret = 0;
e4a9bc58 1583 fallthrough;
fa5bb209
KS
1584 case -EFAULT:
1585 case -ENOMEM:
1586 case -EHWPOISON:
df06b37f 1587 goto out;
4bbd4c77 1588 }
fa5bb209 1589 BUG();
1027e443
KS
1590 } else if (PTR_ERR(page) == -EEXIST) {
1591 /*
1592 * Proper page table entry exists, but no corresponding
65462462
JH
1593 * struct page. If the caller expects **pages to be
1594 * filled in, bail out now, because that can't be done
1595 * for this page.
1027e443 1596 */
65462462
JH
1597 if (pages) {
1598 ret = PTR_ERR(page);
1599 goto out;
1600 }
1027e443 1601 } else if (IS_ERR(page)) {
df06b37f
KB
1602 ret = PTR_ERR(page);
1603 goto out;
1027e443 1604 }
ffe1e786 1605next_page:
df06b37f 1606 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
fa5bb209
KS
1607 if (page_increm > nr_pages)
1608 page_increm = nr_pages;
57edfcfd
PX
1609
1610 if (pages) {
1611 struct page *subpage;
1612 unsigned int j;
1613
1614 /*
1615 * This must be a large folio (and doesn't need to
1616 * be the whole folio; it can be part of it), do
1617 * the refcount work for all the subpages too.
1618 *
1619 * NOTE: here the page may not be the head page
1620 * e.g. when start addr is not thp-size aligned.
1621 * try_grab_folio() should have taken care of tail
1622 * pages.
1623 */
1624 if (page_increm > 1) {
1625 struct folio *folio;
1626
1627 /*
1628 * Since we already hold refcount on the
1629 * large folio, this should never fail.
1630 */
1631 folio = try_grab_folio(page, page_increm - 1,
1632 foll_flags);
1633 if (WARN_ON_ONCE(!folio)) {
1634 /*
1635 * Release the 1st page ref if the
1636 * folio is problematic, fail hard.
1637 */
1638 gup_put_folio(page_folio(page), 1,
1639 foll_flags);
1640 ret = -EFAULT;
1641 goto out;
1642 }
1643 }
1644
1645 for (j = 0; j < page_increm; j++) {
1646 subpage = nth_page(page, j);
1647 pages[i + j] = subpage;
1648 flush_anon_page(vma, subpage, start + j * PAGE_SIZE);
1649 flush_dcache_page(subpage);
1650 }
1651 }
1652
fa5bb209
KS
1653 i += page_increm;
1654 start += page_increm * PAGE_SIZE;
1655 nr_pages -= page_increm;
4bbd4c77 1656 } while (nr_pages);
df06b37f
KB
1657out:
1658 if (ctx.pgmap)
1659 put_dev_pagemap(ctx.pgmap);
1660 return i ? i : ret;
4bbd4c77 1661}
4bbd4c77 1662
771ab430
TK
1663static bool vma_permits_fault(struct vm_area_struct *vma,
1664 unsigned int fault_flags)
d4925e00 1665{
1b2ee126
DH
1666 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1667 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
33a709b2 1668 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
d4925e00
DH
1669
1670 if (!(vm_flags & vma->vm_flags))
1671 return false;
1672
33a709b2
DH
1673 /*
1674 * The architecture might have a hardware protection
1b2ee126 1675 * mechanism other than read/write that can deny access.
d61172b4
DH
1676 *
1677 * gup always represents data access, not instruction
1678 * fetches, so execute=false here:
33a709b2 1679 */
d61172b4 1680 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2
DH
1681 return false;
1682
d4925e00
DH
1683 return true;
1684}
1685
adc8cb40 1686/**
4bbd4c77 1687 * fixup_user_fault() - manually resolve a user page fault
4bbd4c77
KS
1688 * @mm: mm_struct of target mm
1689 * @address: user address
1690 * @fault_flags:flags to pass down to handle_mm_fault()
c1e8d7c6 1691 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
548b6a1e
MC
1692 * does not allow retry. If NULL, the caller must guarantee
1693 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
4bbd4c77
KS
1694 *
1695 * This is meant to be called in the specific scenario where for locking reasons
1696 * we try to access user memory in atomic context (within a pagefault_disable()
1697 * section), this returns -EFAULT, and we want to resolve the user fault before
1698 * trying again.
1699 *
1700 * Typically this is meant to be used by the futex code.
1701 *
1702 * The main difference with get_user_pages() is that this function will
1703 * unconditionally call handle_mm_fault() which will in turn perform all the
1704 * necessary SW fixup of the dirty and young bits in the PTE, while
4a9e1cda 1705 * get_user_pages() only guarantees to update these in the struct page.
4bbd4c77
KS
1706 *
1707 * This is important for some architectures where those bits also gate the
1708 * access permission to the page because they are maintained in software. On
1709 * such architectures, gup() will not be enough to make a subsequent access
1710 * succeed.
1711 *
c1e8d7c6
ML
1712 * This function will not return with an unlocked mmap_lock. So it has not the
1713 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
4bbd4c77 1714 */
64019a2e 1715int fixup_user_fault(struct mm_struct *mm,
4a9e1cda
DD
1716 unsigned long address, unsigned int fault_flags,
1717 bool *unlocked)
4bbd4c77
KS
1718{
1719 struct vm_area_struct *vma;
8fed2f3c 1720 vm_fault_t ret;
4a9e1cda 1721
428e106a 1722 address = untagged_addr_remote(mm, address);
f9652594 1723
4a9e1cda 1724 if (unlocked)
71335f37 1725 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
4bbd4c77 1726
4a9e1cda 1727retry:
6cd06ab1 1728 vma = gup_vma_lookup(mm, address);
8d7071af 1729 if (!vma)
4bbd4c77
KS
1730 return -EFAULT;
1731
d4925e00 1732 if (!vma_permits_fault(vma, fault_flags))
4bbd4c77
KS
1733 return -EFAULT;
1734
475f4dfc
PX
1735 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1736 fatal_signal_pending(current))
1737 return -EINTR;
1738
bce617ed 1739 ret = handle_mm_fault(vma, address, fault_flags, NULL);
d9272525
PX
1740
1741 if (ret & VM_FAULT_COMPLETED) {
1742 /*
1743 * NOTE: it's a pity that we need to retake the lock here
1744 * to pair with the unlock() in the callers. Ideally we
1745 * could tell the callers so they do not need to unlock.
1746 */
1747 mmap_read_lock(mm);
1748 *unlocked = true;
1749 return 0;
1750 }
1751
4bbd4c77 1752 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
1753 int err = vm_fault_to_errno(ret, 0);
1754
1755 if (err)
1756 return err;
4bbd4c77
KS
1757 BUG();
1758 }
4a9e1cda
DD
1759
1760 if (ret & VM_FAULT_RETRY) {
d8ed45c5 1761 mmap_read_lock(mm);
475f4dfc
PX
1762 *unlocked = true;
1763 fault_flags |= FAULT_FLAG_TRIED;
1764 goto retry;
4a9e1cda
DD
1765 }
1766
4bbd4c77
KS
1767 return 0;
1768}
add6a0cd 1769EXPORT_SYMBOL_GPL(fixup_user_fault);
4bbd4c77 1770
93c5c61d
PX
1771/*
1772 * GUP always responds to fatal signals. When FOLL_INTERRUPTIBLE is
1773 * specified, it'll also respond to generic signals. The caller of GUP
1774 * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption.
1775 */
1776static bool gup_signal_pending(unsigned int flags)
1777{
1778 if (fatal_signal_pending(current))
1779 return true;
1780
1781 if (!(flags & FOLL_INTERRUPTIBLE))
1782 return false;
1783
1784 return signal_pending(current);
1785}
1786
2d3a36a4 1787/*
b2a72dff
JG
1788 * Locking: (*locked == 1) means that the mmap_lock has already been acquired by
1789 * the caller. This function may drop the mmap_lock. If it does so, then it will
1790 * set (*locked = 0).
1791 *
1792 * (*locked == 0) means that the caller expects this function to acquire and
1793 * drop the mmap_lock. Therefore, the value of *locked will still be zero when
1794 * the function returns, even though it may have changed temporarily during
1795 * function execution.
1796 *
1797 * Please note that this function, unlike __get_user_pages(), will not return 0
1798 * for nr_pages > 0, unless FOLL_NOWAIT is used.
2d3a36a4 1799 */
64019a2e 1800static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
f0818f47
AA
1801 unsigned long start,
1802 unsigned long nr_pages,
f0818f47 1803 struct page **pages,
e716712f 1804 int *locked,
0fd71a56 1805 unsigned int flags)
f0818f47 1806{
f0818f47 1807 long ret, pages_done;
b2a72dff 1808 bool must_unlock = false;
f0818f47 1809
9c4b2142
LS
1810 if (!nr_pages)
1811 return 0;
1812
b2a72dff
JG
1813 /*
1814 * The internal caller expects GUP to manage the lock internally and the
1815 * lock must be released when this returns.
1816 */
9a863a6a 1817 if (!*locked) {
b2a72dff
JG
1818 if (mmap_read_lock_killable(mm))
1819 return -EAGAIN;
1820 must_unlock = true;
1821 *locked = 1;
f0818f47 1822 }
961ba472
JG
1823 else
1824 mmap_assert_locked(mm);
f0818f47 1825
a458b76a
AA
1826 if (flags & FOLL_PIN)
1827 mm_set_has_pinned_flag(&mm->flags);
008cfe44 1828
eddb1c22
JH
1829 /*
1830 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1831 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1832 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1833 * for FOLL_GET, not for the newer FOLL_PIN.
1834 *
1835 * FOLL_PIN always expects pages to be non-null, but no need to assert
1836 * that here, as any failures will be obvious enough.
1837 */
1838 if (pages && !(flags & FOLL_PIN))
f0818f47 1839 flags |= FOLL_GET;
f0818f47
AA
1840
1841 pages_done = 0;
f0818f47 1842 for (;;) {
64019a2e 1843 ret = __get_user_pages(mm, start, nr_pages, flags, pages,
b2cac248 1844 locked);
f04740f5 1845 if (!(flags & FOLL_UNLOCKABLE)) {
f0818f47 1846 /* VM_FAULT_RETRY couldn't trigger, bypass */
f04740f5
JG
1847 pages_done = ret;
1848 break;
1849 }
f0818f47 1850
d9272525 1851 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
f0818f47
AA
1852 if (!*locked) {
1853 BUG_ON(ret < 0);
1854 BUG_ON(ret >= nr_pages);
1855 }
1856
f0818f47
AA
1857 if (ret > 0) {
1858 nr_pages -= ret;
1859 pages_done += ret;
1860 if (!nr_pages)
1861 break;
1862 }
1863 if (*locked) {
96312e61
AA
1864 /*
1865 * VM_FAULT_RETRY didn't trigger or it was a
1866 * FOLL_NOWAIT.
1867 */
f0818f47
AA
1868 if (!pages_done)
1869 pages_done = ret;
1870 break;
1871 }
df17277b
MR
1872 /*
1873 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1874 * For the prefault case (!pages) we only update counts.
1875 */
1876 if (likely(pages))
1877 pages += ret;
f0818f47 1878 start += ret << PAGE_SHIFT;
b2a72dff
JG
1879
1880 /* The lock was temporarily dropped, so we must unlock later */
1881 must_unlock = true;
f0818f47 1882
4426e945 1883retry:
f0818f47
AA
1884 /*
1885 * Repeat on the address that fired VM_FAULT_RETRY
4426e945
PX
1886 * with both FAULT_FLAG_ALLOW_RETRY and
1887 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
93c5c61d
PX
1888 * by fatal signals of even common signals, depending on
1889 * the caller's request. So we need to check it before we
4426e945 1890 * start trying again otherwise it can loop forever.
f0818f47 1891 */
93c5c61d 1892 if (gup_signal_pending(flags)) {
ae46d2aa
HD
1893 if (!pages_done)
1894 pages_done = -EINTR;
4426e945 1895 break;
ae46d2aa 1896 }
4426e945 1897
d8ed45c5 1898 ret = mmap_read_lock_killable(mm);
71335f37
PX
1899 if (ret) {
1900 BUG_ON(ret > 0);
1901 if (!pages_done)
1902 pages_done = ret;
1903 break;
1904 }
4426e945 1905
c7b6a566 1906 *locked = 1;
64019a2e 1907 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
b2cac248 1908 pages, locked);
4426e945
PX
1909 if (!*locked) {
1910 /* Continue to retry until we succeeded */
1911 BUG_ON(ret != 0);
1912 goto retry;
1913 }
f0818f47
AA
1914 if (ret != 1) {
1915 BUG_ON(ret > 1);
1916 if (!pages_done)
1917 pages_done = ret;
1918 break;
1919 }
1920 nr_pages--;
1921 pages_done++;
1922 if (!nr_pages)
1923 break;
df17277b
MR
1924 if (likely(pages))
1925 pages++;
f0818f47
AA
1926 start += PAGE_SIZE;
1927 }
b2a72dff 1928 if (must_unlock && *locked) {
f0818f47 1929 /*
b2a72dff
JG
1930 * We either temporarily dropped the lock, or the caller
1931 * requested that we both acquire and drop the lock. Either way,
1932 * we must now unlock, and notify the caller of that state.
f0818f47 1933 */
d8ed45c5 1934 mmap_read_unlock(mm);
f0818f47
AA
1935 *locked = 0;
1936 }
9c4b2142
LS
1937
1938 /*
1939 * Failing to pin anything implies something has gone wrong (except when
1940 * FOLL_NOWAIT is specified).
1941 */
1942 if (WARN_ON_ONCE(pages_done == 0 && !(flags & FOLL_NOWAIT)))
1943 return -EFAULT;
1944
f0818f47
AA
1945 return pages_done;
1946}
1947
d3649f68
CH
1948/**
1949 * populate_vma_page_range() - populate a range of pages in the vma.
1950 * @vma: target vma
1951 * @start: start address
1952 * @end: end address
c1e8d7c6 1953 * @locked: whether the mmap_lock is still held
d3649f68
CH
1954 *
1955 * This takes care of mlocking the pages too if VM_LOCKED is set.
1956 *
0a36f7f8
TY
1957 * Return either number of pages pinned in the vma, or a negative error
1958 * code on error.
d3649f68 1959 *
c1e8d7c6 1960 * vma->vm_mm->mmap_lock must be held.
d3649f68 1961 *
4f6da934 1962 * If @locked is NULL, it may be held for read or write and will
d3649f68
CH
1963 * be unperturbed.
1964 *
4f6da934
PX
1965 * If @locked is non-NULL, it must held for read only and may be
1966 * released. If it's released, *@locked will be set to 0.
d3649f68
CH
1967 */
1968long populate_vma_page_range(struct vm_area_struct *vma,
4f6da934 1969 unsigned long start, unsigned long end, int *locked)
d3649f68
CH
1970{
1971 struct mm_struct *mm = vma->vm_mm;
1972 unsigned long nr_pages = (end - start) / PAGE_SIZE;
9a863a6a 1973 int local_locked = 1;
d3649f68 1974 int gup_flags;
ece369c7 1975 long ret;
d3649f68 1976
be51eb18
ML
1977 VM_BUG_ON(!PAGE_ALIGNED(start));
1978 VM_BUG_ON(!PAGE_ALIGNED(end));
d3649f68
CH
1979 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1980 VM_BUG_ON_VMA(end > vma->vm_end, vma);
42fc5414 1981 mmap_assert_locked(mm);
d3649f68 1982
b67bf49c
HD
1983 /*
1984 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1985 * faultin_page() to break COW, so it has no work to do here.
1986 */
d3649f68 1987 if (vma->vm_flags & VM_LOCKONFAULT)
b67bf49c
HD
1988 return nr_pages;
1989
1096bc93
LT
1990 /* ... similarly, we've never faulted in PROT_NONE pages */
1991 if (!vma_is_accessible(vma))
1992 return -EFAULT;
1993
b67bf49c 1994 gup_flags = FOLL_TOUCH;
d3649f68
CH
1995 /*
1996 * We want to touch writable mappings with a write fault in order
1997 * to break COW, except for shared mappings because these don't COW
1998 * and we would not want to dirty them for nothing.
1096bc93
LT
1999 *
2000 * Otherwise, do a read fault, and use FOLL_FORCE in case it's not
2001 * readable (ie write-only or executable).
d3649f68
CH
2002 */
2003 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
2004 gup_flags |= FOLL_WRITE;
1096bc93 2005 else
d3649f68
CH
2006 gup_flags |= FOLL_FORCE;
2007
f04740f5
JG
2008 if (locked)
2009 gup_flags |= FOLL_UNLOCKABLE;
2010
d3649f68
CH
2011 /*
2012 * We made sure addr is within a VMA, so the following will
2013 * not result in a stack expansion that recurses back here.
2014 */
ece369c7 2015 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
b2cac248 2016 NULL, locked ? locked : &local_locked);
ece369c7
HD
2017 lru_add_drain();
2018 return ret;
d3649f68
CH
2019}
2020
4ca9b385 2021/*
631426ba
DH
2022 * faultin_page_range() - populate (prefault) page tables inside the
2023 * given range readable/writable
4ca9b385
DH
2024 *
2025 * This takes care of mlocking the pages, too, if VM_LOCKED is set.
2026 *
631426ba 2027 * @mm: the mm to populate page tables in
4ca9b385
DH
2028 * @start: start address
2029 * @end: end address
2030 * @write: whether to prefault readable or writable
2031 * @locked: whether the mmap_lock is still held
2032 *
631426ba
DH
2033 * Returns either number of processed pages in the MM, or a negative error
2034 * code on error (see __get_user_pages()). Note that this function reports
2035 * errors related to VMAs, such as incompatible mappings, as expected by
2036 * MADV_POPULATE_(READ|WRITE).
4ca9b385 2037 *
631426ba
DH
2038 * The range must be page-aligned.
2039 *
2040 * mm->mmap_lock must be held. If it's released, *@locked will be set to 0.
4ca9b385 2041 */
631426ba
DH
2042long faultin_page_range(struct mm_struct *mm, unsigned long start,
2043 unsigned long end, bool write, int *locked)
4ca9b385 2044{
4ca9b385
DH
2045 unsigned long nr_pages = (end - start) / PAGE_SIZE;
2046 int gup_flags;
ece369c7 2047 long ret;
4ca9b385
DH
2048
2049 VM_BUG_ON(!PAGE_ALIGNED(start));
2050 VM_BUG_ON(!PAGE_ALIGNED(end));
4ca9b385
DH
2051 mmap_assert_locked(mm);
2052
2053 /*
2054 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
2055 * the page dirty with FOLL_WRITE -- which doesn't make a
2056 * difference with !FOLL_FORCE, because the page is writable
2057 * in the page table.
2058 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
2059 * a poisoned page.
4ca9b385
DH
2060 * !FOLL_FORCE: Require proper access permissions.
2061 */
631426ba
DH
2062 gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE |
2063 FOLL_MADV_POPULATE;
4ca9b385
DH
2064 if (write)
2065 gup_flags |= FOLL_WRITE;
2066
631426ba
DH
2067 ret = __get_user_pages_locked(mm, start, nr_pages, NULL, locked,
2068 gup_flags);
ece369c7
HD
2069 lru_add_drain();
2070 return ret;
4ca9b385
DH
2071}
2072
d3649f68
CH
2073/*
2074 * __mm_populate - populate and/or mlock pages within a range of address space.
2075 *
2076 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
2077 * flags. VMAs must be already marked with the desired vm_flags, and
c1e8d7c6 2078 * mmap_lock must not be held.
d3649f68
CH
2079 */
2080int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
2081{
2082 struct mm_struct *mm = current->mm;
2083 unsigned long end, nstart, nend;
2084 struct vm_area_struct *vma = NULL;
2085 int locked = 0;
2086 long ret = 0;
2087
2088 end = start + len;
2089
2090 for (nstart = start; nstart < end; nstart = nend) {
2091 /*
2092 * We want to fault in pages for [nstart; end) address range.
2093 * Find first corresponding VMA.
2094 */
2095 if (!locked) {
2096 locked = 1;
d8ed45c5 2097 mmap_read_lock(mm);
c4d1a92d 2098 vma = find_vma_intersection(mm, nstart, end);
d3649f68 2099 } else if (nstart >= vma->vm_end)
c4d1a92d
LH
2100 vma = find_vma_intersection(mm, vma->vm_end, end);
2101
2102 if (!vma)
d3649f68
CH
2103 break;
2104 /*
2105 * Set [nstart; nend) to intersection of desired address
2106 * range with the first VMA. Also, skip undesirable VMA types.
2107 */
2108 nend = min(end, vma->vm_end);
2109 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
2110 continue;
2111 if (nstart < vma->vm_start)
2112 nstart = vma->vm_start;
2113 /*
2114 * Now fault in a range of pages. populate_vma_page_range()
2115 * double checks the vma flags, so that it won't mlock pages
2116 * if the vma was already munlocked.
2117 */
2118 ret = populate_vma_page_range(vma, nstart, nend, &locked);
2119 if (ret < 0) {
2120 if (ignore_errors) {
2121 ret = 0;
2122 continue; /* continue at next VMA */
2123 }
2124 break;
2125 }
2126 nend = nstart + ret * PAGE_SIZE;
2127 ret = 0;
2128 }
2129 if (locked)
d8ed45c5 2130 mmap_read_unlock(mm);
d3649f68
CH
2131 return ret; /* 0 or negative error code */
2132}
050a9adc 2133#else /* CONFIG_MMU */
64019a2e 2134static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
050a9adc 2135 unsigned long nr_pages, struct page **pages,
b2cac248 2136 int *locked, unsigned int foll_flags)
050a9adc
CH
2137{
2138 struct vm_area_struct *vma;
b2a72dff 2139 bool must_unlock = false;
050a9adc 2140 unsigned long vm_flags;
24dc20c7 2141 long i;
050a9adc 2142
b2a72dff
JG
2143 if (!nr_pages)
2144 return 0;
2145
2146 /*
2147 * The internal caller expects GUP to manage the lock internally and the
2148 * lock must be released when this returns.
2149 */
9a863a6a 2150 if (!*locked) {
b2a72dff
JG
2151 if (mmap_read_lock_killable(mm))
2152 return -EAGAIN;
2153 must_unlock = true;
2154 *locked = 1;
2155 }
2156
050a9adc
CH
2157 /* calculate required read or write permissions.
2158 * If FOLL_FORCE is set, we only require the "MAY" flags.
2159 */
2160 vm_flags = (foll_flags & FOLL_WRITE) ?
2161 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
2162 vm_flags &= (foll_flags & FOLL_FORCE) ?
2163 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
2164
2165 for (i = 0; i < nr_pages; i++) {
2166 vma = find_vma(mm, start);
2167 if (!vma)
b2a72dff 2168 break;
050a9adc
CH
2169
2170 /* protect what we can, including chardevs */
2171 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
2172 !(vm_flags & vma->vm_flags))
b2a72dff 2173 break;
050a9adc
CH
2174
2175 if (pages) {
396a400b 2176 pages[i] = virt_to_page((void *)start);
050a9adc
CH
2177 if (pages[i])
2178 get_page(pages[i]);
2179 }
b2cac248 2180
050a9adc
CH
2181 start = (start + PAGE_SIZE) & PAGE_MASK;
2182 }
2183
b2a72dff
JG
2184 if (must_unlock && *locked) {
2185 mmap_read_unlock(mm);
2186 *locked = 0;
2187 }
050a9adc 2188
050a9adc
CH
2189 return i ? : -EFAULT;
2190}
2191#endif /* !CONFIG_MMU */
d3649f68 2192
bb523b40
AG
2193/**
2194 * fault_in_writeable - fault in userspace address range for writing
2195 * @uaddr: start of address range
2196 * @size: size of address range
2197 *
2198 * Returns the number of bytes not faulted in (like copy_to_user() and
2199 * copy_from_user()).
2200 */
2201size_t fault_in_writeable(char __user *uaddr, size_t size)
2202{
2203 char __user *start = uaddr, *end;
2204
2205 if (unlikely(size == 0))
2206 return 0;
677b2a8c
CL
2207 if (!user_write_access_begin(uaddr, size))
2208 return size;
bb523b40 2209 if (!PAGE_ALIGNED(uaddr)) {
677b2a8c 2210 unsafe_put_user(0, uaddr, out);
bb523b40
AG
2211 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
2212 }
2213 end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
2214 if (unlikely(end < start))
2215 end = NULL;
2216 while (uaddr != end) {
677b2a8c 2217 unsafe_put_user(0, uaddr, out);
bb523b40
AG
2218 uaddr += PAGE_SIZE;
2219 }
2220
2221out:
677b2a8c 2222 user_write_access_end();
bb523b40
AG
2223 if (size > uaddr - start)
2224 return size - (uaddr - start);
2225 return 0;
2226}
2227EXPORT_SYMBOL(fault_in_writeable);
2228
da32b581
CM
2229/**
2230 * fault_in_subpage_writeable - fault in an address range for writing
2231 * @uaddr: start of address range
2232 * @size: size of address range
2233 *
2234 * Fault in a user address range for writing while checking for permissions at
2235 * sub-page granularity (e.g. arm64 MTE). This function should be used when
2236 * the caller cannot guarantee forward progress of a copy_to_user() loop.
2237 *
2238 * Returns the number of bytes not faulted in (like copy_to_user() and
2239 * copy_from_user()).
2240 */
2241size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
2242{
2243 size_t faulted_in;
2244
2245 /*
2246 * Attempt faulting in at page granularity first for page table
2247 * permission checking. The arch-specific probe_subpage_writeable()
2248 * functions may not check for this.
2249 */
2250 faulted_in = size - fault_in_writeable(uaddr, size);
2251 if (faulted_in)
2252 faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
2253
2254 return size - faulted_in;
2255}
2256EXPORT_SYMBOL(fault_in_subpage_writeable);
2257
cdd591fc
AG
2258/*
2259 * fault_in_safe_writeable - fault in an address range for writing
2260 * @uaddr: start of address range
2261 * @size: length of address range
2262 *
fe673d3f
LT
2263 * Faults in an address range for writing. This is primarily useful when we
2264 * already know that some or all of the pages in the address range aren't in
2265 * memory.
cdd591fc 2266 *
fe673d3f 2267 * Unlike fault_in_writeable(), this function is non-destructive.
cdd591fc
AG
2268 *
2269 * Note that we don't pin or otherwise hold the pages referenced that we fault
2270 * in. There's no guarantee that they'll stay in memory for any duration of
2271 * time.
2272 *
2273 * Returns the number of bytes not faulted in, like copy_to_user() and
2274 * copy_from_user().
2275 */
2276size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
2277{
fe673d3f 2278 unsigned long start = (unsigned long)uaddr, end;
cdd591fc 2279 struct mm_struct *mm = current->mm;
fe673d3f 2280 bool unlocked = false;
cdd591fc 2281
fe673d3f
LT
2282 if (unlikely(size == 0))
2283 return 0;
cdd591fc 2284 end = PAGE_ALIGN(start + size);
fe673d3f 2285 if (end < start)
cdd591fc 2286 end = 0;
cdd591fc 2287
fe673d3f
LT
2288 mmap_read_lock(mm);
2289 do {
2290 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
cdd591fc 2291 break;
fe673d3f
LT
2292 start = (start + PAGE_SIZE) & PAGE_MASK;
2293 } while (start != end);
2294 mmap_read_unlock(mm);
2295
2296 if (size > (unsigned long)uaddr - start)
2297 return size - ((unsigned long)uaddr - start);
2298 return 0;
cdd591fc
AG
2299}
2300EXPORT_SYMBOL(fault_in_safe_writeable);
2301
bb523b40
AG
2302/**
2303 * fault_in_readable - fault in userspace address range for reading
2304 * @uaddr: start of user address range
2305 * @size: size of user address range
2306 *
2307 * Returns the number of bytes not faulted in (like copy_to_user() and
2308 * copy_from_user()).
2309 */
2310size_t fault_in_readable(const char __user *uaddr, size_t size)
2311{
2312 const char __user *start = uaddr, *end;
2313 volatile char c;
2314
2315 if (unlikely(size == 0))
2316 return 0;
677b2a8c
CL
2317 if (!user_read_access_begin(uaddr, size))
2318 return size;
bb523b40 2319 if (!PAGE_ALIGNED(uaddr)) {
677b2a8c 2320 unsafe_get_user(c, uaddr, out);
bb523b40
AG
2321 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
2322 }
2323 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
2324 if (unlikely(end < start))
2325 end = NULL;
2326 while (uaddr != end) {
677b2a8c 2327 unsafe_get_user(c, uaddr, out);
bb523b40
AG
2328 uaddr += PAGE_SIZE;
2329 }
2330
2331out:
677b2a8c 2332 user_read_access_end();
bb523b40
AG
2333 (void)c;
2334 if (size > uaddr - start)
2335 return size - (uaddr - start);
2336 return 0;
2337}
2338EXPORT_SYMBOL(fault_in_readable);
2339
8f942eea
JH
2340/**
2341 * get_dump_page() - pin user page in memory while writing it to core dump
2342 * @addr: user address
2343 *
2344 * Returns struct page pointer of user page pinned for dump,
2345 * to be freed afterwards by put_page().
2346 *
2347 * Returns NULL on any kind of failure - a hole must then be inserted into
2348 * the corefile, to preserve alignment with its headers; and also returns
2349 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
f0953a1b 2350 * allowing a hole to be left in the corefile to save disk space.
8f942eea 2351 *
7f3bfab5 2352 * Called without mmap_lock (takes and releases the mmap_lock by itself).
8f942eea
JH
2353 */
2354#ifdef CONFIG_ELF_CORE
2355struct page *get_dump_page(unsigned long addr)
2356{
8f942eea 2357 struct page *page;
b2a72dff 2358 int locked = 0;
7f3bfab5 2359 int ret;
8f942eea 2360
b2cac248 2361 ret = __get_user_pages_locked(current->mm, addr, 1, &page, &locked,
7f3bfab5 2362 FOLL_FORCE | FOLL_DUMP | FOLL_GET);
7f3bfab5 2363 return (ret == 1) ? page : NULL;
8f942eea
JH
2364}
2365#endif /* CONFIG_ELF_CORE */
2366
d1e153fe 2367#ifdef CONFIG_MIGRATION
f68749ec 2368/*
67e139b0 2369 * Returns the number of collected pages. Return value is always >= 0.
f68749ec 2370 */
67e139b0
AP
2371static unsigned long collect_longterm_unpinnable_pages(
2372 struct list_head *movable_page_list,
2373 unsigned long nr_pages,
2374 struct page **pages)
9a4e9f3b 2375{
67e139b0 2376 unsigned long i, collected = 0;
1b7f7e58 2377 struct folio *prev_folio = NULL;
67e139b0 2378 bool drain_allow = true;
9a4e9f3b 2379
83c02c23 2380 for (i = 0; i < nr_pages; i++) {
1b7f7e58 2381 struct folio *folio = page_folio(pages[i]);
f9f38f78 2382
1b7f7e58 2383 if (folio == prev_folio)
83c02c23 2384 continue;
1b7f7e58 2385 prev_folio = folio;
f9f38f78 2386
67e139b0
AP
2387 if (folio_is_longterm_pinnable(folio))
2388 continue;
b05a79d4 2389
67e139b0 2390 collected++;
b05a79d4 2391
67e139b0 2392 if (folio_is_device_coherent(folio))
f9f38f78
CH
2393 continue;
2394
1b7f7e58 2395 if (folio_test_hugetlb(folio)) {
6aa3a920 2396 isolate_hugetlb(folio, movable_page_list);
f9f38f78
CH
2397 continue;
2398 }
9a4e9f3b 2399
1b7f7e58 2400 if (!folio_test_lru(folio) && drain_allow) {
f9f38f78
CH
2401 lru_add_drain_all();
2402 drain_allow = false;
2403 }
2404
be2d5756 2405 if (!folio_isolate_lru(folio))
f9f38f78 2406 continue;
67e139b0
AP
2407
2408 list_add_tail(&folio->lru, movable_page_list);
1b7f7e58
MWO
2409 node_stat_mod_folio(folio,
2410 NR_ISOLATED_ANON + folio_is_file_lru(folio),
2411 folio_nr_pages(folio));
9a4e9f3b
AK
2412 }
2413
67e139b0
AP
2414 return collected;
2415}
2416
2417/*
2418 * Unpins all pages and migrates device coherent pages and movable_page_list.
2419 * Returns -EAGAIN if all pages were successfully migrated or -errno for failure
2420 * (or partial success).
2421 */
2422static int migrate_longterm_unpinnable_pages(
2423 struct list_head *movable_page_list,
2424 unsigned long nr_pages,
2425 struct page **pages)
2426{
2427 int ret;
2428 unsigned long i;
6e7f34eb 2429
b05a79d4 2430 for (i = 0; i < nr_pages; i++) {
67e139b0
AP
2431 struct folio *folio = page_folio(pages[i]);
2432
2433 if (folio_is_device_coherent(folio)) {
2434 /*
2435 * Migration will fail if the page is pinned, so convert
2436 * the pin on the source page to a normal reference.
2437 */
2438 pages[i] = NULL;
2439 folio_get(folio);
2440 gup_put_folio(folio, 1, FOLL_PIN);
2441
2442 if (migrate_device_coherent_page(&folio->page)) {
2443 ret = -EBUSY;
2444 goto err;
2445 }
2446
b05a79d4 2447 continue;
67e139b0 2448 }
b05a79d4 2449
67e139b0
AP
2450 /*
2451 * We can't migrate pages with unexpected references, so drop
2452 * the reference obtained by __get_user_pages_locked().
2453 * Migrating pages have been added to movable_page_list after
2454 * calling folio_isolate_lru() which takes a reference so the
2455 * page won't be freed if it's migrating.
2456 */
f6d299ec 2457 unpin_user_page(pages[i]);
67e139b0 2458 pages[i] = NULL;
f68749ec 2459 }
f9f38f78 2460
67e139b0 2461 if (!list_empty(movable_page_list)) {
f9f38f78
CH
2462 struct migration_target_control mtc = {
2463 .nid = NUMA_NO_NODE,
2464 .gfp_mask = GFP_USER | __GFP_NOWARN,
e42dfe4e 2465 .reason = MR_LONGTERM_PIN,
f9f38f78
CH
2466 };
2467
67e139b0
AP
2468 if (migrate_pages(movable_page_list, alloc_migration_target,
2469 NULL, (unsigned long)&mtc, MIGRATE_SYNC,
2470 MR_LONGTERM_PIN, NULL)) {
f9f38f78 2471 ret = -ENOMEM;
67e139b0
AP
2472 goto err;
2473 }
9a4e9f3b
AK
2474 }
2475
67e139b0
AP
2476 putback_movable_pages(movable_page_list);
2477
2478 return -EAGAIN;
2479
2480err:
2481 for (i = 0; i < nr_pages; i++)
2482 if (pages[i])
2483 unpin_user_page(pages[i]);
2484 putback_movable_pages(movable_page_list);
24a95998 2485
67e139b0
AP
2486 return ret;
2487}
2488
2489/*
2490 * Check whether all pages are *allowed* to be pinned. Rather confusingly, all
2491 * pages in the range are required to be pinned via FOLL_PIN, before calling
2492 * this routine.
2493 *
2494 * If any pages in the range are not allowed to be pinned, then this routine
2495 * will migrate those pages away, unpin all the pages in the range and return
2496 * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then
2497 * call this routine again.
2498 *
2499 * If an error other than -EAGAIN occurs, this indicates a migration failure.
2500 * The caller should give up, and propagate the error back up the call stack.
2501 *
2502 * If everything is OK and all pages in the range are allowed to be pinned, then
2503 * this routine leaves all pages pinned and returns zero for success.
2504 */
2505static long check_and_migrate_movable_pages(unsigned long nr_pages,
2506 struct page **pages)
2507{
2508 unsigned long collected;
2509 LIST_HEAD(movable_page_list);
2510
2511 collected = collect_longterm_unpinnable_pages(&movable_page_list,
2512 nr_pages, pages);
2513 if (!collected)
2514 return 0;
2515
2516 return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages,
2517 pages);
9a4e9f3b
AK
2518}
2519#else
f68749ec 2520static long check_and_migrate_movable_pages(unsigned long nr_pages,
f6d299ec 2521 struct page **pages)
9a4e9f3b 2522{
24a95998 2523 return 0;
9a4e9f3b 2524}
d1e153fe 2525#endif /* CONFIG_MIGRATION */
9a4e9f3b 2526
2bb6d283 2527/*
932f4a63
IW
2528 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2529 * allows us to process the FOLL_LONGTERM flag.
2bb6d283 2530 */
64019a2e 2531static long __gup_longterm_locked(struct mm_struct *mm,
932f4a63
IW
2532 unsigned long start,
2533 unsigned long nr_pages,
2534 struct page **pages,
53b2d09b 2535 int *locked,
932f4a63 2536 unsigned int gup_flags)
2bb6d283 2537{
f68749ec 2538 unsigned int flags;
24a95998 2539 long rc, nr_pinned_pages;
2bb6d283 2540
f68749ec 2541 if (!(gup_flags & FOLL_LONGTERM))
b2cac248 2542 return __get_user_pages_locked(mm, start, nr_pages, pages,
53b2d09b 2543 locked, gup_flags);
67e139b0 2544
f68749ec
PT
2545 flags = memalloc_pin_save();
2546 do {
24a95998 2547 nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
b2cac248 2548 pages, locked,
24a95998
AP
2549 gup_flags);
2550 if (nr_pinned_pages <= 0) {
2551 rc = nr_pinned_pages;
f68749ec 2552 break;
24a95998 2553 }
d64e2dbc
JG
2554
2555 /* FOLL_LONGTERM implies FOLL_PIN */
f6d299ec 2556 rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
24a95998 2557 } while (rc == -EAGAIN);
f68749ec 2558 memalloc_pin_restore(flags);
24a95998 2559 return rc ? rc : nr_pinned_pages;
2bb6d283 2560}
932f4a63 2561
d64e2dbc
JG
2562/*
2563 * Check that the given flags are valid for the exported gup/pup interface, and
2564 * update them with the required flags that the caller must have set.
2565 */
b2cac248
LS
2566static bool is_valid_gup_args(struct page **pages, int *locked,
2567 unsigned int *gup_flags_p, unsigned int to_set)
447f3e45 2568{
d64e2dbc
JG
2569 unsigned int gup_flags = *gup_flags_p;
2570
447f3e45 2571 /*
d64e2dbc
JG
2572 * These flags not allowed to be specified externally to the gup
2573 * interfaces:
0f20bba1 2574 * - FOLL_TOUCH/FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only
d64e2dbc 2575 * - FOLL_REMOTE is internal only and used on follow_page()
f04740f5 2576 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL
447f3e45 2577 */
0f20bba1 2578 if (WARN_ON_ONCE(gup_flags & INTERNAL_GUP_FLAGS))
d64e2dbc
JG
2579 return false;
2580
2581 gup_flags |= to_set;
f04740f5
JG
2582 if (locked) {
2583 /* At the external interface locked must be set */
2584 if (WARN_ON_ONCE(*locked != 1))
2585 return false;
2586
2587 gup_flags |= FOLL_UNLOCKABLE;
2588 }
d64e2dbc
JG
2589
2590 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2591 if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) ==
2592 (FOLL_PIN | FOLL_GET)))
2593 return false;
2594
2595 /* LONGTERM can only be specified when pinning */
2596 if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM)))
2597 return false;
2598
2599 /* Pages input must be given if using GET/PIN */
2600 if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages))
447f3e45 2601 return false;
d64e2dbc 2602
d64e2dbc
JG
2603 /* We want to allow the pgmap to be hot-unplugged at all times */
2604 if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) &&
2605 (gup_flags & FOLL_PCI_P2PDMA)))
2606 return false;
2607
d64e2dbc 2608 *gup_flags_p = gup_flags;
447f3e45
BS
2609 return true;
2610}
2611
22bf29b6 2612#ifdef CONFIG_MMU
adc8cb40 2613/**
c4237f8b 2614 * get_user_pages_remote() - pin user pages in memory
c4237f8b
JH
2615 * @mm: mm_struct of target mm
2616 * @start: starting user address
2617 * @nr_pages: number of pages from start to pin
2618 * @gup_flags: flags modifying lookup behaviour
2619 * @pages: array that receives pointers to the pages pinned.
2620 * Should be at least nr_pages long. Or NULL, if caller
2621 * only intends to ensure the pages are faulted in.
c4237f8b
JH
2622 * @locked: pointer to lock flag indicating whether lock is held and
2623 * subsequently whether VM_FAULT_RETRY functionality can be
2624 * utilised. Lock must initially be held.
2625 *
2626 * Returns either number of pages pinned (which may be less than the
2627 * number requested), or an error. Details about the return value:
2628 *
2629 * -- If nr_pages is 0, returns 0.
2630 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2631 * -- If nr_pages is >0, and some pages were pinned, returns the number of
2632 * pages pinned. Again, this may be less than nr_pages.
2633 *
2634 * The caller is responsible for releasing returned @pages, via put_page().
2635 *
c1e8d7c6 2636 * Must be called with mmap_lock held for read or write.
c4237f8b 2637 *
adc8cb40
SJ
2638 * get_user_pages_remote walks a process's page tables and takes a reference
2639 * to each struct page that each user address corresponds to at a given
c4237f8b
JH
2640 * instant. That is, it takes the page that would be accessed if a user
2641 * thread accesses the given user virtual address at that instant.
2642 *
2643 * This does not guarantee that the page exists in the user mappings when
adc8cb40 2644 * get_user_pages_remote returns, and there may even be a completely different
c4237f8b 2645 * page there in some cases (eg. if mmapped pagecache has been invalidated
5da1a868 2646 * and subsequently re-faulted). However it does guarantee that the page
c4237f8b
JH
2647 * won't be freed completely. And mostly callers simply care that the page
2648 * contains data that was valid *at some point in time*. Typically, an IO
2649 * or similar operation cannot guarantee anything stronger anyway because
2650 * locks can't be held over the syscall boundary.
2651 *
2652 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2653 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2654 * be called after the page is finished with, and before put_page is called.
2655 *
adc8cb40
SJ
2656 * get_user_pages_remote is typically used for fewer-copy IO operations,
2657 * to get a handle on the memory by some means other than accesses
2658 * via the user virtual addresses. The pages may be submitted for
2659 * DMA to devices or accessed via their kernel linear mapping (via the
2660 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
c4237f8b
JH
2661 *
2662 * See also get_user_pages_fast, for performance critical applications.
2663 *
adc8cb40 2664 * get_user_pages_remote should be phased out in favor of
c4237f8b 2665 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
adc8cb40 2666 * should use get_user_pages_remote because it cannot pass
c4237f8b
JH
2667 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2668 */
64019a2e 2669long get_user_pages_remote(struct mm_struct *mm,
c4237f8b
JH
2670 unsigned long start, unsigned long nr_pages,
2671 unsigned int gup_flags, struct page **pages,
ca5e8632 2672 int *locked)
c4237f8b 2673{
9a863a6a
JG
2674 int local_locked = 1;
2675
b2cac248 2676 if (!is_valid_gup_args(pages, locked, &gup_flags,
d64e2dbc 2677 FOLL_TOUCH | FOLL_REMOTE))
eddb1c22
JH
2678 return -EINVAL;
2679
b2cac248 2680 return __get_user_pages_locked(mm, start, nr_pages, pages,
9a863a6a 2681 locked ? locked : &local_locked,
d64e2dbc 2682 gup_flags);
c4237f8b
JH
2683}
2684EXPORT_SYMBOL(get_user_pages_remote);
2685
eddb1c22 2686#else /* CONFIG_MMU */
64019a2e 2687long get_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
2688 unsigned long start, unsigned long nr_pages,
2689 unsigned int gup_flags, struct page **pages,
ca5e8632 2690 int *locked)
eddb1c22
JH
2691{
2692 return 0;
2693}
2694#endif /* !CONFIG_MMU */
2695
adc8cb40
SJ
2696/**
2697 * get_user_pages() - pin user pages in memory
2698 * @start: starting user address
2699 * @nr_pages: number of pages from start to pin
2700 * @gup_flags: flags modifying lookup behaviour
2701 * @pages: array that receives pointers to the pages pinned.
2702 * Should be at least nr_pages long. Or NULL, if caller
2703 * only intends to ensure the pages are faulted in.
adc8cb40 2704 *
64019a2e
PX
2705 * This is the same as get_user_pages_remote(), just with a less-flexible
2706 * calling convention where we assume that the mm being operated on belongs to
2707 * the current task, and doesn't allow passing of a locked parameter. We also
2708 * obviously don't pass FOLL_REMOTE in here.
932f4a63
IW
2709 */
2710long get_user_pages(unsigned long start, unsigned long nr_pages,
54d02069 2711 unsigned int gup_flags, struct page **pages)
932f4a63 2712{
9a863a6a
JG
2713 int locked = 1;
2714
b2cac248 2715 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH))
eddb1c22
JH
2716 return -EINVAL;
2717
afa3c33e 2718 return __get_user_pages_locked(current->mm, start, nr_pages, pages,
b2cac248 2719 &locked, gup_flags);
932f4a63
IW
2720}
2721EXPORT_SYMBOL(get_user_pages);
2bb6d283 2722
acc3c8d1 2723/*
d3649f68 2724 * get_user_pages_unlocked() is suitable to replace the form:
acc3c8d1 2725 *
3e4e28c5 2726 * mmap_read_lock(mm);
64019a2e 2727 * get_user_pages(mm, ..., pages, NULL);
3e4e28c5 2728 * mmap_read_unlock(mm);
d3649f68
CH
2729 *
2730 * with:
2731 *
64019a2e 2732 * get_user_pages_unlocked(mm, ..., pages);
d3649f68
CH
2733 *
2734 * It is functionally equivalent to get_user_pages_fast so
2735 * get_user_pages_fast should be used instead if specific gup_flags
2736 * (e.g. FOLL_FORCE) are not required.
acc3c8d1 2737 */
d3649f68
CH
2738long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2739 struct page **pages, unsigned int gup_flags)
acc3c8d1 2740{
b2a72dff 2741 int locked = 0;
acc3c8d1 2742
b2cac248 2743 if (!is_valid_gup_args(pages, NULL, &gup_flags,
f04740f5 2744 FOLL_TOUCH | FOLL_UNLOCKABLE))
d64e2dbc
JG
2745 return -EINVAL;
2746
afa3c33e 2747 return __get_user_pages_locked(current->mm, start, nr_pages, pages,
b2cac248 2748 &locked, gup_flags);
4bbd4c77 2749}
d3649f68 2750EXPORT_SYMBOL(get_user_pages_unlocked);
2667f50e
SC
2751
2752/*
23babe19 2753 * GUP-fast
2667f50e
SC
2754 *
2755 * get_user_pages_fast attempts to pin user pages by walking the page
2756 * tables directly and avoids taking locks. Thus the walker needs to be
2757 * protected from page table pages being freed from under it, and should
2758 * block any THP splits.
2759 *
2760 * One way to achieve this is to have the walker disable interrupts, and
2761 * rely on IPIs from the TLB flushing code blocking before the page table
2762 * pages are freed. This is unsuitable for architectures that do not need
2763 * to broadcast an IPI when invalidating TLBs.
2764 *
2765 * Another way to achieve this is to batch up page table containing pages
2766 * belonging to more than one mm_user, then rcu_sched a callback to free those
23babe19 2767 * pages. Disabling interrupts will allow the gup_fast() walker to both block
2667f50e
SC
2768 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2769 * (which is a relatively rare event). The code below adopts this strategy.
2770 *
2771 * Before activating this code, please be aware that the following assumptions
2772 * are currently made:
2773 *
ff2e6d72 2774 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
e585513b 2775 * free pages containing page tables or TLB flushing requires IPI broadcast.
2667f50e 2776 *
2667f50e
SC
2777 * *) ptes can be read atomically by the architecture.
2778 *
2779 * *) access_ok is sufficient to validate userspace address ranges.
2780 *
2781 * The last two assumptions can be relaxed by the addition of helper functions.
2782 *
2783 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2784 */
25176ad0 2785#ifdef CONFIG_HAVE_GUP_FAST
3faa52c0 2786
a6e79df9 2787/*
f002882c
DH
2788 * Used in the GUP-fast path to determine whether GUP is permitted to work on
2789 * a specific folio.
a6e79df9
LS
2790 *
2791 * This call assumes the caller has pinned the folio, that the lowest page table
2792 * level still points to this folio, and that interrupts have been disabled.
2793 *
f002882c
DH
2794 * GUP-fast must reject all secretmem folios.
2795 *
a6e79df9
LS
2796 * Writing to pinned file-backed dirty tracked folios is inherently problematic
2797 * (see comment describing the writable_file_mapping_allowed() function). We
2798 * therefore try to avoid the most egregious case of a long-term mapping doing
2799 * so.
2800 *
2801 * This function cannot be as thorough as that one as the VMA is not available
2802 * in the fast path, so instead we whitelist known good cases and if in doubt,
2803 * fall back to the slow path.
2804 */
f002882c 2805static bool gup_fast_folio_allowed(struct folio *folio, unsigned int flags)
a6e79df9 2806{
f002882c 2807 bool reject_file_backed = false;
a6e79df9 2808 struct address_space *mapping;
f002882c 2809 bool check_secretmem = false;
a6e79df9
LS
2810 unsigned long mapping_flags;
2811
2812 /*
2813 * If we aren't pinning then no problematic write can occur. A long term
2814 * pin is the most egregious case so this is the one we disallow.
2815 */
f002882c 2816 if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) ==
a6e79df9 2817 (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE))
f002882c
DH
2818 reject_file_backed = true;
2819
2820 /* We hold a folio reference, so we can safely access folio fields. */
a6e79df9 2821
f002882c
DH
2822 /* secretmem folios are always order-0 folios. */
2823 if (IS_ENABLED(CONFIG_SECRETMEM) && !folio_test_large(folio))
2824 check_secretmem = true;
2825
2826 if (!reject_file_backed && !check_secretmem)
2827 return true;
a6e79df9
LS
2828
2829 if (WARN_ON_ONCE(folio_test_slab(folio)))
2830 return false;
2831
f002882c 2832 /* hugetlb neither requires dirty-tracking nor can be secretmem. */
a6e79df9
LS
2833 if (folio_test_hugetlb(folio))
2834 return true;
2835
2836 /*
2837 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods
2838 * cannot proceed, which means no actions performed under RCU can
2839 * proceed either.
2840 *
2841 * inodes and thus their mappings are freed under RCU, which means the
2842 * mapping cannot be freed beneath us and thus we can safely dereference
2843 * it.
2844 */
2845 lockdep_assert_irqs_disabled();
2846
2847 /*
2848 * However, there may be operations which _alter_ the mapping, so ensure
2849 * we read it once and only once.
2850 */
2851 mapping = READ_ONCE(folio->mapping);
2852
2853 /*
2854 * The mapping may have been truncated, in any case we cannot determine
2855 * if this mapping is safe - fall back to slow path to determine how to
2856 * proceed.
2857 */
2858 if (!mapping)
2859 return false;
2860
2861 /* Anonymous folios pose no problem. */
2862 mapping_flags = (unsigned long)mapping & PAGE_MAPPING_FLAGS;
2863 if (mapping_flags)
2864 return mapping_flags & PAGE_MAPPING_ANON;
2865
2866 /*
2867 * At this point, we know the mapping is non-null and points to an
f002882c 2868 * address_space object.
a6e79df9 2869 */
f002882c
DH
2870 if (check_secretmem && secretmem_mapping(mapping))
2871 return false;
2872 /* The only remaining allowed file system is shmem. */
2873 return !reject_file_backed || shmem_mapping(mapping);
a6e79df9
LS
2874}
2875
23babe19
DH
2876static void __maybe_unused gup_fast_undo_dev_pagemap(int *nr, int nr_start,
2877 unsigned int flags, struct page **pages)
b59f65fa
KS
2878{
2879 while ((*nr) - nr_start) {
2880 struct page *page = pages[--(*nr)];
2881
2882 ClearPageReferenced(page);
3faa52c0
JH
2883 if (flags & FOLL_PIN)
2884 unpin_user_page(page);
2885 else
2886 put_page(page);
b59f65fa
KS
2887 }
2888}
2889
3010a5ea 2890#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
70cbc3cc 2891/*
23babe19 2892 * GUP-fast relies on pte change detection to avoid concurrent pgtable
70cbc3cc
YS
2893 * operations.
2894 *
23babe19 2895 * To pin the page, GUP-fast needs to do below in order:
70cbc3cc
YS
2896 * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2897 *
2898 * For the rest of pgtable operations where pgtable updates can be racy
23babe19 2899 * with GUP-fast, we need to do (1) clear pte, then (2) check whether page
70cbc3cc
YS
2900 * is pinned.
2901 *
2902 * Above will work for all pte-level operations, including THP split.
2903 *
23babe19 2904 * For THP collapse, it's a bit more complicated because GUP-fast may be
70cbc3cc
YS
2905 * walking a pgtable page that is being freed (pte is still valid but pmd
2906 * can be cleared already). To avoid race in such condition, we need to
2907 * also check pmd here to make sure pmd doesn't change (corresponds to
2908 * pmdp_collapse_flush() in the THP collapse code path).
2909 */
23babe19
DH
2910static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2911 unsigned long end, unsigned int flags, struct page **pages,
2912 int *nr)
2667f50e 2913{
b59f65fa
KS
2914 struct dev_pagemap *pgmap = NULL;
2915 int nr_start = *nr, ret = 0;
2667f50e 2916 pte_t *ptep, *ptem;
2667f50e
SC
2917
2918 ptem = ptep = pte_offset_map(&pmd, addr);
04dee9e8
HD
2919 if (!ptep)
2920 return 0;
2667f50e 2921 do {
2a4a06da 2922 pte_t pte = ptep_get_lockless(ptep);
b0496fe4
MWO
2923 struct page *page;
2924 struct folio *folio;
2667f50e 2925
d74943a2
DH
2926 /*
2927 * Always fallback to ordinary GUP on PROT_NONE-mapped pages:
2928 * pte_access_permitted() better should reject these pages
2929 * either way: otherwise, GUP-fast might succeed in
2930 * cases where ordinary GUP would fail due to VMA access
2931 * permissions.
2932 */
2933 if (pte_protnone(pte))
e7884f8e
KS
2934 goto pte_unmap;
2935
b798bec4 2936 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
e7884f8e
KS
2937 goto pte_unmap;
2938
b59f65fa 2939 if (pte_devmap(pte)) {
7af75561
IW
2940 if (unlikely(flags & FOLL_LONGTERM))
2941 goto pte_unmap;
2942
b59f65fa
KS
2943 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2944 if (unlikely(!pgmap)) {
23babe19 2945 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
b59f65fa
KS
2946 goto pte_unmap;
2947 }
2948 } else if (pte_special(pte))
2667f50e
SC
2949 goto pte_unmap;
2950
2951 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2952 page = pte_page(pte);
2953
b0496fe4
MWO
2954 folio = try_grab_folio(page, 1, flags);
2955 if (!folio)
2667f50e
SC
2956 goto pte_unmap;
2957
70cbc3cc 2958 if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
c33c7948 2959 unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
b0496fe4 2960 gup_put_folio(folio, 1, flags);
2667f50e
SC
2961 goto pte_unmap;
2962 }
2963
f002882c 2964 if (!gup_fast_folio_allowed(folio, flags)) {
b0496fe4 2965 gup_put_folio(folio, 1, flags);
2667f50e
SC
2966 goto pte_unmap;
2967 }
2968
84209e87 2969 if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) {
a7f22660
DH
2970 gup_put_folio(folio, 1, flags);
2971 goto pte_unmap;
2972 }
2973
f28d4363
CI
2974 /*
2975 * We need to make the page accessible if and only if we are
2976 * going to access its content (the FOLL_PIN case). Please
2977 * see Documentation/core-api/pin_user_pages.rst for
2978 * details.
2979 */
2980 if (flags & FOLL_PIN) {
2981 ret = arch_make_page_accessible(page);
2982 if (ret) {
b0496fe4 2983 gup_put_folio(folio, 1, flags);
f28d4363
CI
2984 goto pte_unmap;
2985 }
2986 }
b0496fe4 2987 folio_set_referenced(folio);
2667f50e
SC
2988 pages[*nr] = page;
2989 (*nr)++;
2667f50e
SC
2990 } while (ptep++, addr += PAGE_SIZE, addr != end);
2991
2992 ret = 1;
2993
2994pte_unmap:
832d7aa0
CH
2995 if (pgmap)
2996 put_dev_pagemap(pgmap);
2667f50e
SC
2997 pte_unmap(ptem);
2998 return ret;
2999}
3000#else
3001
3002/*
3003 * If we can't determine whether or not a pte is special, then fail immediately
3004 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
3005 * to be special.
3006 *
3007 * For a futex to be placed on a THP tail page, get_futex_key requires a
dadbb612 3008 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
23babe19 3009 * useful to have gup_fast_pmd_leaf even if we can't operate on ptes.
2667f50e 3010 */
23babe19
DH
3011static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
3012 unsigned long end, unsigned int flags, struct page **pages,
3013 int *nr)
2667f50e
SC
3014{
3015 return 0;
3016}
3010a5ea 3017#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2667f50e 3018
17596731 3019#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
23babe19
DH
3020static int gup_fast_devmap_leaf(unsigned long pfn, unsigned long addr,
3021 unsigned long end, unsigned int flags, struct page **pages, int *nr)
b59f65fa
KS
3022{
3023 int nr_start = *nr;
3024 struct dev_pagemap *pgmap = NULL;
3025
3026 do {
3027 struct page *page = pfn_to_page(pfn);
3028
3029 pgmap = get_dev_pagemap(pfn, pgmap);
3030 if (unlikely(!pgmap)) {
23babe19 3031 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
6401c4eb 3032 break;
b59f65fa 3033 }
4003f107
LG
3034
3035 if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) {
23babe19 3036 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
4003f107
LG
3037 break;
3038 }
3039
b59f65fa
KS
3040 SetPageReferenced(page);
3041 pages[*nr] = page;
0f089235 3042 if (unlikely(try_grab_page(page, flags))) {
23babe19 3043 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
6401c4eb 3044 break;
3faa52c0 3045 }
b59f65fa
KS
3046 (*nr)++;
3047 pfn++;
3048 } while (addr += PAGE_SIZE, addr != end);
832d7aa0 3049
6401c4eb 3050 put_dev_pagemap(pgmap);
20b7fee7 3051 return addr == end;
b59f65fa
KS
3052}
3053
23babe19
DH
3054static int gup_fast_devmap_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
3055 unsigned long end, unsigned int flags, struct page **pages,
3056 int *nr)
b59f65fa
KS
3057{
3058 unsigned long fault_pfn;
a9b6de77
DW
3059 int nr_start = *nr;
3060
3061 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
23babe19 3062 if (!gup_fast_devmap_leaf(fault_pfn, addr, end, flags, pages, nr))
a9b6de77 3063 return 0;
b59f65fa 3064
a9b6de77 3065 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
23babe19 3066 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
a9b6de77
DW
3067 return 0;
3068 }
3069 return 1;
b59f65fa
KS
3070}
3071
23babe19
DH
3072static int gup_fast_devmap_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr,
3073 unsigned long end, unsigned int flags, struct page **pages,
3074 int *nr)
b59f65fa
KS
3075{
3076 unsigned long fault_pfn;
a9b6de77
DW
3077 int nr_start = *nr;
3078
3079 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
23babe19 3080 if (!gup_fast_devmap_leaf(fault_pfn, addr, end, flags, pages, nr))
a9b6de77 3081 return 0;
b59f65fa 3082
a9b6de77 3083 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
23babe19 3084 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
a9b6de77
DW
3085 return 0;
3086 }
3087 return 1;
b59f65fa
KS
3088}
3089#else
23babe19
DH
3090static int gup_fast_devmap_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
3091 unsigned long end, unsigned int flags, struct page **pages,
3092 int *nr)
b59f65fa
KS
3093{
3094 BUILD_BUG();
3095 return 0;
3096}
3097
23babe19
DH
3098static int gup_fast_devmap_pud_leaf(pud_t pud, pud_t *pudp, unsigned long addr,
3099 unsigned long end, unsigned int flags, struct page **pages,
3100 int *nr)
b59f65fa
KS
3101{
3102 BUILD_BUG();
3103 return 0;
3104}
3105#endif
3106
23babe19
DH
3107static int gup_fast_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
3108 unsigned long end, unsigned int flags, struct page **pages,
3109 int *nr)
2667f50e 3110{
667ed1f7
MWO
3111 struct page *page;
3112 struct folio *folio;
2667f50e
SC
3113 int refs;
3114
b798bec4 3115 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
3116 return 0;
3117
7af75561
IW
3118 if (pmd_devmap(orig)) {
3119 if (unlikely(flags & FOLL_LONGTERM))
3120 return 0;
23babe19
DH
3121 return gup_fast_devmap_pmd_leaf(orig, pmdp, addr, end, flags,
3122 pages, nr);
7af75561 3123 }
b59f65fa 3124
f3c94c62
PX
3125 page = pmd_page(orig);
3126 refs = record_subpages(page, PMD_SIZE, addr, end, pages + *nr);
2667f50e 3127
667ed1f7
MWO
3128 folio = try_grab_folio(page, refs, flags);
3129 if (!folio)
2667f50e 3130 return 0;
2667f50e
SC
3131
3132 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
667ed1f7 3133 gup_put_folio(folio, refs, flags);
2667f50e
SC
3134 return 0;
3135 }
3136
f002882c 3137 if (!gup_fast_folio_allowed(folio, flags)) {
a6e79df9
LS
3138 gup_put_folio(folio, refs, flags);
3139 return 0;
3140 }
84209e87 3141 if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
a7f22660
DH
3142 gup_put_folio(folio, refs, flags);
3143 return 0;
3144 }
3145
a43e9820 3146 *nr += refs;
667ed1f7 3147 folio_set_referenced(folio);
2667f50e
SC
3148 return 1;
3149}
3150
23babe19
DH
3151static int gup_fast_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr,
3152 unsigned long end, unsigned int flags, struct page **pages,
3153 int *nr)
2667f50e 3154{
83afb52e
MWO
3155 struct page *page;
3156 struct folio *folio;
2667f50e
SC
3157 int refs;
3158
b798bec4 3159 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
3160 return 0;
3161
7af75561
IW
3162 if (pud_devmap(orig)) {
3163 if (unlikely(flags & FOLL_LONGTERM))
3164 return 0;
23babe19
DH
3165 return gup_fast_devmap_pud_leaf(orig, pudp, addr, end, flags,
3166 pages, nr);
7af75561 3167 }
b59f65fa 3168
f3c94c62
PX
3169 page = pud_page(orig);
3170 refs = record_subpages(page, PUD_SIZE, addr, end, pages + *nr);
2667f50e 3171
83afb52e
MWO
3172 folio = try_grab_folio(page, refs, flags);
3173 if (!folio)
2667f50e 3174 return 0;
2667f50e
SC
3175
3176 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
83afb52e 3177 gup_put_folio(folio, refs, flags);
2667f50e
SC
3178 return 0;
3179 }
3180
f002882c 3181 if (!gup_fast_folio_allowed(folio, flags)) {
a6e79df9
LS
3182 gup_put_folio(folio, refs, flags);
3183 return 0;
3184 }
3185
84209e87 3186 if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
a7f22660
DH
3187 gup_put_folio(folio, refs, flags);
3188 return 0;
3189 }
3190
a43e9820 3191 *nr += refs;
83afb52e 3192 folio_set_referenced(folio);
2667f50e
SC
3193 return 1;
3194}
3195
23babe19
DH
3196static int gup_fast_pgd_leaf(pgd_t orig, pgd_t *pgdp, unsigned long addr,
3197 unsigned long end, unsigned int flags, struct page **pages,
3198 int *nr)
f30c59e9
AK
3199{
3200 int refs;
2d7919a2
MWO
3201 struct page *page;
3202 struct folio *folio;
f30c59e9 3203
b798bec4 3204 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
f30c59e9
AK
3205 return 0;
3206
b59f65fa 3207 BUILD_BUG_ON(pgd_devmap(orig));
a43e9820 3208
f3c94c62
PX
3209 page = pgd_page(orig);
3210 refs = record_subpages(page, PGDIR_SIZE, addr, end, pages + *nr);
f30c59e9 3211
2d7919a2
MWO
3212 folio = try_grab_folio(page, refs, flags);
3213 if (!folio)
f30c59e9 3214 return 0;
f30c59e9
AK
3215
3216 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2d7919a2 3217 gup_put_folio(folio, refs, flags);
f30c59e9
AK
3218 return 0;
3219 }
3220
31115034
LS
3221 if (!pgd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
3222 gup_put_folio(folio, refs, flags);
3223 return 0;
3224 }
3225
f002882c 3226 if (!gup_fast_folio_allowed(folio, flags)) {
a6e79df9
LS
3227 gup_put_folio(folio, refs, flags);
3228 return 0;
3229 }
3230
a43e9820 3231 *nr += refs;
2d7919a2 3232 folio_set_referenced(folio);
f30c59e9
AK
3233 return 1;
3234}
3235
23babe19
DH
3236static int gup_fast_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr,
3237 unsigned long end, unsigned int flags, struct page **pages,
3238 int *nr)
2667f50e
SC
3239{
3240 unsigned long next;
3241 pmd_t *pmdp;
3242
d3f7b1bb 3243 pmdp = pmd_offset_lockless(pudp, pud, addr);
2667f50e 3244 do {
1180e732 3245 pmd_t pmd = pmdp_get_lockless(pmdp);
2667f50e
SC
3246
3247 next = pmd_addr_end(addr, end);
84c3fc4e 3248 if (!pmd_present(pmd))
2667f50e
SC
3249 return 0;
3250
7db86dc3 3251 if (unlikely(pmd_leaf(pmd))) {
23babe19 3252 /* See gup_fast_pte_range() */
d74943a2 3253 if (pmd_protnone(pmd))
2667f50e
SC
3254 return 0;
3255
23babe19 3256 if (!gup_fast_pmd_leaf(pmd, pmdp, addr, next, flags,
2667f50e
SC
3257 pages, nr))
3258 return 0;
3259
f30c59e9
AK
3260 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
3261 /*
3262 * architecture have different format for hugetlbfs
3263 * pmd format and THP pmd format
3264 */
23babe19
DH
3265 if (!gup_fast_hugepd(__hugepd(pmd_val(pmd)), addr,
3266 PMD_SHIFT, next, flags, pages, nr))
f30c59e9 3267 return 0;
23babe19
DH
3268 } else if (!gup_fast_pte_range(pmd, pmdp, addr, next, flags,
3269 pages, nr))
2923117b 3270 return 0;
2667f50e
SC
3271 } while (pmdp++, addr = next, addr != end);
3272
3273 return 1;
3274}
3275
23babe19
DH
3276static int gup_fast_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr,
3277 unsigned long end, unsigned int flags, struct page **pages,
3278 int *nr)
2667f50e
SC
3279{
3280 unsigned long next;
3281 pud_t *pudp;
3282
d3f7b1bb 3283 pudp = pud_offset_lockless(p4dp, p4d, addr);
2667f50e 3284 do {
e37c6982 3285 pud_t pud = READ_ONCE(*pudp);
2667f50e
SC
3286
3287 next = pud_addr_end(addr, end);
15494520 3288 if (unlikely(!pud_present(pud)))
2667f50e 3289 return 0;
7db86dc3 3290 if (unlikely(pud_leaf(pud))) {
23babe19
DH
3291 if (!gup_fast_pud_leaf(pud, pudp, addr, next, flags,
3292 pages, nr))
f30c59e9
AK
3293 return 0;
3294 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
23babe19
DH
3295 if (!gup_fast_hugepd(__hugepd(pud_val(pud)), addr,
3296 PUD_SHIFT, next, flags, pages, nr))
2667f50e 3297 return 0;
23babe19
DH
3298 } else if (!gup_fast_pmd_range(pudp, pud, addr, next, flags,
3299 pages, nr))
2667f50e
SC
3300 return 0;
3301 } while (pudp++, addr = next, addr != end);
3302
3303 return 1;
3304}
3305
23babe19
DH
3306static int gup_fast_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr,
3307 unsigned long end, unsigned int flags, struct page **pages,
3308 int *nr)
c2febafc
KS
3309{
3310 unsigned long next;
3311 p4d_t *p4dp;
3312
d3f7b1bb 3313 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
c2febafc
KS
3314 do {
3315 p4d_t p4d = READ_ONCE(*p4dp);
3316
3317 next = p4d_addr_end(addr, end);
089f9214 3318 if (!p4d_present(p4d))
c2febafc 3319 return 0;
1965e933 3320 BUILD_BUG_ON(p4d_leaf(p4d));
c2febafc 3321 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
23babe19
DH
3322 if (!gup_fast_hugepd(__hugepd(p4d_val(p4d)), addr,
3323 P4D_SHIFT, next, flags, pages, nr))
c2febafc 3324 return 0;
23babe19
DH
3325 } else if (!gup_fast_pud_range(p4dp, p4d, addr, next, flags,
3326 pages, nr))
c2febafc
KS
3327 return 0;
3328 } while (p4dp++, addr = next, addr != end);
3329
3330 return 1;
3331}
3332
23babe19 3333static void gup_fast_pgd_range(unsigned long addr, unsigned long end,
b798bec4 3334 unsigned int flags, struct page **pages, int *nr)
5b65c467
KS
3335{
3336 unsigned long next;
3337 pgd_t *pgdp;
3338
3339 pgdp = pgd_offset(current->mm, addr);
3340 do {
3341 pgd_t pgd = READ_ONCE(*pgdp);
3342
3343 next = pgd_addr_end(addr, end);
3344 if (pgd_none(pgd))
3345 return;
7db86dc3 3346 if (unlikely(pgd_leaf(pgd))) {
23babe19
DH
3347 if (!gup_fast_pgd_leaf(pgd, pgdp, addr, next, flags,
3348 pages, nr))
5b65c467
KS
3349 return;
3350 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
23babe19
DH
3351 if (!gup_fast_hugepd(__hugepd(pgd_val(pgd)), addr,
3352 PGDIR_SHIFT, next, flags, pages, nr))
5b65c467 3353 return;
23babe19
DH
3354 } else if (!gup_fast_p4d_range(pgdp, pgd, addr, next, flags,
3355 pages, nr))
5b65c467
KS
3356 return;
3357 } while (pgdp++, addr = next, addr != end);
3358}
050a9adc 3359#else
23babe19 3360static inline void gup_fast_pgd_range(unsigned long addr, unsigned long end,
050a9adc
CH
3361 unsigned int flags, struct page **pages, int *nr)
3362{
3363}
25176ad0 3364#endif /* CONFIG_HAVE_GUP_FAST */
5b65c467
KS
3365
3366#ifndef gup_fast_permitted
3367/*
dadbb612 3368 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
5b65c467
KS
3369 * we need to fall back to the slow version:
3370 */
26f4c328 3371static bool gup_fast_permitted(unsigned long start, unsigned long end)
5b65c467 3372{
26f4c328 3373 return true;
5b65c467
KS
3374}
3375#endif
3376
23babe19
DH
3377static unsigned long gup_fast(unsigned long start, unsigned long end,
3378 unsigned int gup_flags, struct page **pages)
c28b1fc7
JG
3379{
3380 unsigned long flags;
3381 int nr_pinned = 0;
57efa1fe 3382 unsigned seq;
c28b1fc7 3383
25176ad0 3384 if (!IS_ENABLED(CONFIG_HAVE_GUP_FAST) ||
c28b1fc7
JG
3385 !gup_fast_permitted(start, end))
3386 return 0;
3387
57efa1fe
JG
3388 if (gup_flags & FOLL_PIN) {
3389 seq = raw_read_seqcount(&current->mm->write_protect_seq);
3390 if (seq & 1)
3391 return 0;
3392 }
3393
c28b1fc7
JG
3394 /*
3395 * Disable interrupts. The nested form is used, in order to allow full,
3396 * general purpose use of this routine.
3397 *
3398 * With interrupts disabled, we block page table pages from being freed
3399 * from under us. See struct mmu_table_batch comments in
3400 * include/asm-generic/tlb.h for more details.
3401 *
3402 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
3403 * that come from THPs splitting.
3404 */
3405 local_irq_save(flags);
23babe19 3406 gup_fast_pgd_range(start, end, gup_flags, pages, &nr_pinned);
c28b1fc7 3407 local_irq_restore(flags);
57efa1fe
JG
3408
3409 /*
3410 * When pinning pages for DMA there could be a concurrent write protect
23babe19 3411 * from fork() via copy_page_range(), in this case always fail GUP-fast.
57efa1fe
JG
3412 */
3413 if (gup_flags & FOLL_PIN) {
3414 if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
23babe19 3415 gup_fast_unpin_user_pages(pages, nr_pinned);
57efa1fe 3416 return 0;
b6a2619c
DH
3417 } else {
3418 sanity_check_pinned_pages(pages, nr_pinned);
57efa1fe
JG
3419 }
3420 }
c28b1fc7
JG
3421 return nr_pinned;
3422}
3423
23babe19
DH
3424static int gup_fast_fallback(unsigned long start, unsigned long nr_pages,
3425 unsigned int gup_flags, struct page **pages)
2667f50e 3426{
c28b1fc7
JG
3427 unsigned long len, end;
3428 unsigned long nr_pinned;
b2a72dff 3429 int locked = 0;
c28b1fc7 3430 int ret;
2667f50e 3431
f4000fdf 3432 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
376a34ef 3433 FOLL_FORCE | FOLL_PIN | FOLL_GET |
4003f107 3434 FOLL_FAST_ONLY | FOLL_NOFAULT |
d74943a2 3435 FOLL_PCI_P2PDMA | FOLL_HONOR_NUMA_FAULT)))
817be129
CH
3436 return -EINVAL;
3437
a458b76a
AA
3438 if (gup_flags & FOLL_PIN)
3439 mm_set_has_pinned_flag(&current->mm->flags);
008cfe44 3440
f81cd178 3441 if (!(gup_flags & FOLL_FAST_ONLY))
da1c55f1 3442 might_lock_read(&current->mm->mmap_lock);
f81cd178 3443
f455c854 3444 start = untagged_addr(start) & PAGE_MASK;
c28b1fc7
JG
3445 len = nr_pages << PAGE_SHIFT;
3446 if (check_add_overflow(start, len, &end))
9883c7f8 3447 return -EOVERFLOW;
6014bc27
LT
3448 if (end > TASK_SIZE_MAX)
3449 return -EFAULT;
96d4f267 3450 if (unlikely(!access_ok((void __user *)start, len)))
c61611f7 3451 return -EFAULT;
73e10a61 3452
23babe19 3453 nr_pinned = gup_fast(start, end, gup_flags, pages);
c28b1fc7
JG
3454 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
3455 return nr_pinned;
2667f50e 3456
c28b1fc7
JG
3457 /* Slow path: try to get the remaining pages with get_user_pages */
3458 start += nr_pinned << PAGE_SHIFT;
3459 pages += nr_pinned;
b2a72dff 3460 ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned,
b2cac248 3461 pages, &locked,
f04740f5 3462 gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE);
c28b1fc7
JG
3463 if (ret < 0) {
3464 /*
3465 * The caller has to unpin the pages we already pinned so
3466 * returning -errno is not an option
3467 */
3468 if (nr_pinned)
3469 return nr_pinned;
3470 return ret;
2667f50e 3471 }
c28b1fc7 3472 return ret + nr_pinned;
2667f50e 3473}
c28b1fc7 3474
dadbb612
SJ
3475/**
3476 * get_user_pages_fast_only() - pin user pages in memory
3477 * @start: starting user address
3478 * @nr_pages: number of pages from start to pin
3479 * @gup_flags: flags modifying pin behaviour
3480 * @pages: array that receives pointers to the pages pinned.
3481 * Should be at least nr_pages long.
3482 *
9e1f0580
JH
3483 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3484 * the regular GUP.
9e1f0580
JH
3485 *
3486 * If the architecture does not support this function, simply return with no
3487 * pages pinned.
3488 *
3489 * Careful, careful! COW breaking can go either way, so a non-write
3490 * access can get ambiguous page results. If you call this function without
3491 * 'write' set, you'd better be sure that you're ok with that ambiguity.
3492 */
dadbb612
SJ
3493int get_user_pages_fast_only(unsigned long start, int nr_pages,
3494 unsigned int gup_flags, struct page **pages)
9e1f0580 3495{
9e1f0580
JH
3496 /*
3497 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3498 * because gup fast is always a "pin with a +1 page refcount" request.
376a34ef
JH
3499 *
3500 * FOLL_FAST_ONLY is required in order to match the API description of
3501 * this routine: no fall back to regular ("slow") GUP.
9e1f0580 3502 */
b2cac248 3503 if (!is_valid_gup_args(pages, NULL, &gup_flags,
d64e2dbc
JG
3504 FOLL_GET | FOLL_FAST_ONLY))
3505 return -EINVAL;
9e1f0580 3506
23babe19 3507 return gup_fast_fallback(start, nr_pages, gup_flags, pages);
9e1f0580 3508}
dadbb612 3509EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
9e1f0580 3510
eddb1c22
JH
3511/**
3512 * get_user_pages_fast() - pin user pages in memory
3faa52c0
JH
3513 * @start: starting user address
3514 * @nr_pages: number of pages from start to pin
3515 * @gup_flags: flags modifying pin behaviour
3516 * @pages: array that receives pointers to the pages pinned.
3517 * Should be at least nr_pages long.
eddb1c22 3518 *
c1e8d7c6 3519 * Attempt to pin user pages in memory without taking mm->mmap_lock.
eddb1c22
JH
3520 * If not successful, it will fall back to taking the lock and
3521 * calling get_user_pages().
3522 *
3523 * Returns number of pages pinned. This may be fewer than the number requested.
3524 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3525 * -errno.
3526 */
3527int get_user_pages_fast(unsigned long start, int nr_pages,
3528 unsigned int gup_flags, struct page **pages)
3529{
94202f12
JH
3530 /*
3531 * The caller may or may not have explicitly set FOLL_GET; either way is
3532 * OK. However, internally (within mm/gup.c), gup fast variants must set
3533 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3534 * request.
3535 */
b2cac248 3536 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET))
d64e2dbc 3537 return -EINVAL;
23babe19 3538 return gup_fast_fallback(start, nr_pages, gup_flags, pages);
eddb1c22 3539}
050a9adc 3540EXPORT_SYMBOL_GPL(get_user_pages_fast);
eddb1c22
JH
3541
3542/**
3543 * pin_user_pages_fast() - pin user pages in memory without taking locks
3544 *
3faa52c0
JH
3545 * @start: starting user address
3546 * @nr_pages: number of pages from start to pin
3547 * @gup_flags: flags modifying pin behaviour
3548 * @pages: array that receives pointers to the pages pinned.
3549 * Should be at least nr_pages long.
3550 *
3551 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3552 * get_user_pages_fast() for documentation on the function arguments, because
3553 * the arguments here are identical.
3554 *
3555 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 3556 * see Documentation/core-api/pin_user_pages.rst for further details.
c8070b78
DH
3557 *
3558 * Note that if a zero_page is amongst the returned pages, it will not have
3559 * pins in it and unpin_user_page() will not remove pins from it.
eddb1c22
JH
3560 */
3561int pin_user_pages_fast(unsigned long start, int nr_pages,
3562 unsigned int gup_flags, struct page **pages)
3563{
b2cac248 3564 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3faa52c0 3565 return -EINVAL;
23babe19 3566 return gup_fast_fallback(start, nr_pages, gup_flags, pages);
eddb1c22
JH
3567}
3568EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3569
3570/**
64019a2e 3571 * pin_user_pages_remote() - pin pages of a remote process
eddb1c22 3572 *
3faa52c0
JH
3573 * @mm: mm_struct of target mm
3574 * @start: starting user address
3575 * @nr_pages: number of pages from start to pin
3576 * @gup_flags: flags modifying lookup behaviour
3577 * @pages: array that receives pointers to the pages pinned.
0768c8de 3578 * Should be at least nr_pages long.
3faa52c0
JH
3579 * @locked: pointer to lock flag indicating whether lock is held and
3580 * subsequently whether VM_FAULT_RETRY functionality can be
3581 * utilised. Lock must initially be held.
3582 *
3583 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3584 * get_user_pages_remote() for documentation on the function arguments, because
3585 * the arguments here are identical.
3586 *
3587 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 3588 * see Documentation/core-api/pin_user_pages.rst for details.
c8070b78
DH
3589 *
3590 * Note that if a zero_page is amongst the returned pages, it will not have
3591 * pins in it and unpin_user_page*() will not remove pins from it.
eddb1c22 3592 */
64019a2e 3593long pin_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
3594 unsigned long start, unsigned long nr_pages,
3595 unsigned int gup_flags, struct page **pages,
0b295316 3596 int *locked)
eddb1c22 3597{
9a863a6a
JG
3598 int local_locked = 1;
3599
b2cac248 3600 if (!is_valid_gup_args(pages, locked, &gup_flags,
d64e2dbc
JG
3601 FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE))
3602 return 0;
b2cac248 3603 return __gup_longterm_locked(mm, start, nr_pages, pages,
9a863a6a 3604 locked ? locked : &local_locked,
d64e2dbc 3605 gup_flags);
eddb1c22
JH
3606}
3607EXPORT_SYMBOL(pin_user_pages_remote);
3608
3609/**
3610 * pin_user_pages() - pin user pages in memory for use by other devices
3611 *
3faa52c0
JH
3612 * @start: starting user address
3613 * @nr_pages: number of pages from start to pin
3614 * @gup_flags: flags modifying lookup behaviour
3615 * @pages: array that receives pointers to the pages pinned.
0768c8de 3616 * Should be at least nr_pages long.
3faa52c0
JH
3617 *
3618 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3619 * FOLL_PIN is set.
3620 *
3621 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 3622 * see Documentation/core-api/pin_user_pages.rst for details.
c8070b78
DH
3623 *
3624 * Note that if a zero_page is amongst the returned pages, it will not have
3625 * pins in it and unpin_user_page*() will not remove pins from it.
eddb1c22
JH
3626 */
3627long pin_user_pages(unsigned long start, unsigned long nr_pages,
4c630f30 3628 unsigned int gup_flags, struct page **pages)
eddb1c22 3629{
9a863a6a
JG
3630 int locked = 1;
3631
b2cac248 3632 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
d64e2dbc 3633 return 0;
64019a2e 3634 return __gup_longterm_locked(current->mm, start, nr_pages,
b2cac248 3635 pages, &locked, gup_flags);
eddb1c22
JH
3636}
3637EXPORT_SYMBOL(pin_user_pages);
91429023
JH
3638
3639/*
3640 * pin_user_pages_unlocked() is the FOLL_PIN variant of
3641 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3642 * FOLL_PIN and rejects FOLL_GET.
c8070b78
DH
3643 *
3644 * Note that if a zero_page is amongst the returned pages, it will not have
3645 * pins in it and unpin_user_page*() will not remove pins from it.
91429023
JH
3646 */
3647long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3648 struct page **pages, unsigned int gup_flags)
3649{
b2a72dff 3650 int locked = 0;
91429023 3651
b2cac248 3652 if (!is_valid_gup_args(pages, NULL, &gup_flags,
f04740f5 3653 FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE))
d64e2dbc 3654 return 0;
0768c8de 3655
b2cac248 3656 return __gup_longterm_locked(current->mm, start, nr_pages, pages,
b2a72dff 3657 &locked, gup_flags);
91429023
JH
3658}
3659EXPORT_SYMBOL(pin_user_pages_unlocked);