mm: cleanups for printing phys_addr_t and dma_addr_t
[linux-2.6-block.git] / mm / gup.c
CommitLineData
4bbd4c77
KS
1#include <linux/kernel.h>
2#include <linux/errno.h>
3#include <linux/err.h>
4#include <linux/spinlock.h>
5
4bbd4c77 6#include <linux/mm.h>
3565fce3 7#include <linux/memremap.h>
4bbd4c77
KS
8#include <linux/pagemap.h>
9#include <linux/rmap.h>
10#include <linux/swap.h>
11#include <linux/swapops.h>
12
2667f50e
SC
13#include <linux/sched.h>
14#include <linux/rwsem.h>
f30c59e9 15#include <linux/hugetlb.h>
1027e443 16
33a709b2 17#include <asm/mmu_context.h>
2667f50e 18#include <asm/pgtable.h>
1027e443 19#include <asm/tlbflush.h>
2667f50e 20
4bbd4c77
KS
21#include "internal.h"
22
69e68b4f
KS
23static struct page *no_page_table(struct vm_area_struct *vma,
24 unsigned int flags)
4bbd4c77 25{
69e68b4f
KS
26 /*
27 * When core dumping an enormous anonymous area that nobody
28 * has touched so far, we don't want to allocate unnecessary pages or
29 * page tables. Return error instead of NULL to skip handle_mm_fault,
30 * then get_dump_page() will return NULL to leave a hole in the dump.
31 * But we can only make this optimization where a hole would surely
32 * be zero-filled if handle_mm_fault() actually did handle it.
33 */
34 if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
35 return ERR_PTR(-EFAULT);
36 return NULL;
37}
4bbd4c77 38
1027e443
KS
39static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
40 pte_t *pte, unsigned int flags)
41{
42 /* No page to get reference */
43 if (flags & FOLL_GET)
44 return -EFAULT;
45
46 if (flags & FOLL_TOUCH) {
47 pte_t entry = *pte;
48
49 if (flags & FOLL_WRITE)
50 entry = pte_mkdirty(entry);
51 entry = pte_mkyoung(entry);
52
53 if (!pte_same(*pte, entry)) {
54 set_pte_at(vma->vm_mm, address, pte, entry);
55 update_mmu_cache(vma, address, pte);
56 }
57 }
58
59 /* Proper page table entry exists, but no corresponding struct page */
60 return -EEXIST;
61}
62
19be0eaf
LT
63/*
64 * FOLL_FORCE can write to even unwritable pte's, but only
65 * after we've gone through a COW cycle and they are dirty.
66 */
67static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
68{
69 return pte_write(pte) ||
70 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
71}
72
69e68b4f
KS
73static struct page *follow_page_pte(struct vm_area_struct *vma,
74 unsigned long address, pmd_t *pmd, unsigned int flags)
75{
76 struct mm_struct *mm = vma->vm_mm;
3565fce3 77 struct dev_pagemap *pgmap = NULL;
69e68b4f
KS
78 struct page *page;
79 spinlock_t *ptl;
80 pte_t *ptep, pte;
4bbd4c77 81
69e68b4f 82retry:
4bbd4c77 83 if (unlikely(pmd_bad(*pmd)))
69e68b4f 84 return no_page_table(vma, flags);
4bbd4c77
KS
85
86 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
4bbd4c77
KS
87 pte = *ptep;
88 if (!pte_present(pte)) {
89 swp_entry_t entry;
90 /*
91 * KSM's break_ksm() relies upon recognizing a ksm page
92 * even while it is being migrated, so for that case we
93 * need migration_entry_wait().
94 */
95 if (likely(!(flags & FOLL_MIGRATION)))
96 goto no_page;
0661a336 97 if (pte_none(pte))
4bbd4c77
KS
98 goto no_page;
99 entry = pte_to_swp_entry(pte);
100 if (!is_migration_entry(entry))
101 goto no_page;
102 pte_unmap_unlock(ptep, ptl);
103 migration_entry_wait(mm, pmd, address);
69e68b4f 104 goto retry;
4bbd4c77 105 }
8a0516ed 106 if ((flags & FOLL_NUMA) && pte_protnone(pte))
4bbd4c77 107 goto no_page;
19be0eaf 108 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
69e68b4f
KS
109 pte_unmap_unlock(ptep, ptl);
110 return NULL;
111 }
4bbd4c77
KS
112
113 page = vm_normal_page(vma, address, pte);
3565fce3
DW
114 if (!page && pte_devmap(pte) && (flags & FOLL_GET)) {
115 /*
116 * Only return device mapping pages in the FOLL_GET case since
117 * they are only valid while holding the pgmap reference.
118 */
119 pgmap = get_dev_pagemap(pte_pfn(pte), NULL);
120 if (pgmap)
121 page = pte_page(pte);
122 else
123 goto no_page;
124 } else if (unlikely(!page)) {
1027e443
KS
125 if (flags & FOLL_DUMP) {
126 /* Avoid special (like zero) pages in core dumps */
127 page = ERR_PTR(-EFAULT);
128 goto out;
129 }
130
131 if (is_zero_pfn(pte_pfn(pte))) {
132 page = pte_page(pte);
133 } else {
134 int ret;
135
136 ret = follow_pfn_pte(vma, address, ptep, flags);
137 page = ERR_PTR(ret);
138 goto out;
139 }
4bbd4c77
KS
140 }
141
6742d293
KS
142 if (flags & FOLL_SPLIT && PageTransCompound(page)) {
143 int ret;
144 get_page(page);
145 pte_unmap_unlock(ptep, ptl);
146 lock_page(page);
147 ret = split_huge_page(page);
148 unlock_page(page);
149 put_page(page);
150 if (ret)
151 return ERR_PTR(ret);
152 goto retry;
153 }
154
3565fce3 155 if (flags & FOLL_GET) {
ddc58f27 156 get_page(page);
3565fce3
DW
157
158 /* drop the pgmap reference now that we hold the page */
159 if (pgmap) {
160 put_dev_pagemap(pgmap);
161 pgmap = NULL;
162 }
163 }
4bbd4c77
KS
164 if (flags & FOLL_TOUCH) {
165 if ((flags & FOLL_WRITE) &&
166 !pte_dirty(pte) && !PageDirty(page))
167 set_page_dirty(page);
168 /*
169 * pte_mkyoung() would be more correct here, but atomic care
170 * is needed to avoid losing the dirty bit: it is easier to use
171 * mark_page_accessed().
172 */
173 mark_page_accessed(page);
174 }
de60f5f1 175 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
176 /* Do not mlock pte-mapped THP */
177 if (PageTransCompound(page))
178 goto out;
179
4bbd4c77
KS
180 /*
181 * The preliminary mapping check is mainly to avoid the
182 * pointless overhead of lock_page on the ZERO_PAGE
183 * which might bounce very badly if there is contention.
184 *
185 * If the page is already locked, we don't need to
186 * handle it now - vmscan will handle it later if and
187 * when it attempts to reclaim the page.
188 */
189 if (page->mapping && trylock_page(page)) {
190 lru_add_drain(); /* push cached pages to LRU */
191 /*
192 * Because we lock page here, and migration is
193 * blocked by the pte's page reference, and we
194 * know the page is still mapped, we don't even
195 * need to check for file-cache page truncation.
196 */
197 mlock_vma_page(page);
198 unlock_page(page);
199 }
200 }
1027e443 201out:
4bbd4c77 202 pte_unmap_unlock(ptep, ptl);
4bbd4c77 203 return page;
4bbd4c77
KS
204no_page:
205 pte_unmap_unlock(ptep, ptl);
206 if (!pte_none(pte))
69e68b4f
KS
207 return NULL;
208 return no_page_table(vma, flags);
209}
210
211/**
212 * follow_page_mask - look up a page descriptor from a user-virtual address
213 * @vma: vm_area_struct mapping @address
214 * @address: virtual address to look up
215 * @flags: flags modifying lookup behaviour
216 * @page_mask: on output, *page_mask is set according to the size of the page
217 *
218 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
219 *
220 * Returns the mapped (struct page *), %NULL if no mapping exists, or
221 * an error pointer if there is a mapping to something not represented
222 * by a page descriptor (see also vm_normal_page()).
223 */
224struct page *follow_page_mask(struct vm_area_struct *vma,
225 unsigned long address, unsigned int flags,
226 unsigned int *page_mask)
227{
228 pgd_t *pgd;
229 pud_t *pud;
230 pmd_t *pmd;
231 spinlock_t *ptl;
232 struct page *page;
233 struct mm_struct *mm = vma->vm_mm;
234
235 *page_mask = 0;
236
237 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
238 if (!IS_ERR(page)) {
239 BUG_ON(flags & FOLL_GET);
4bbd4c77 240 return page;
69e68b4f 241 }
4bbd4c77 242
69e68b4f
KS
243 pgd = pgd_offset(mm, address);
244 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
245 return no_page_table(vma, flags);
246
247 pud = pud_offset(pgd, address);
248 if (pud_none(*pud))
249 return no_page_table(vma, flags);
250 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
e66f17ff
NH
251 page = follow_huge_pud(mm, address, pud, flags);
252 if (page)
253 return page;
254 return no_page_table(vma, flags);
69e68b4f 255 }
a00cc7d9
MW
256 if (pud_devmap(*pud)) {
257 ptl = pud_lock(mm, pud);
258 page = follow_devmap_pud(vma, address, pud, flags);
259 spin_unlock(ptl);
260 if (page)
261 return page;
262 }
69e68b4f
KS
263 if (unlikely(pud_bad(*pud)))
264 return no_page_table(vma, flags);
265
266 pmd = pmd_offset(pud, address);
267 if (pmd_none(*pmd))
268 return no_page_table(vma, flags);
269 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
e66f17ff
NH
270 page = follow_huge_pmd(mm, address, pmd, flags);
271 if (page)
272 return page;
273 return no_page_table(vma, flags);
69e68b4f 274 }
8a0516ed 275 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
69e68b4f 276 return no_page_table(vma, flags);
3565fce3
DW
277 if (pmd_devmap(*pmd)) {
278 ptl = pmd_lock(mm, pmd);
279 page = follow_devmap_pmd(vma, address, pmd, flags);
280 spin_unlock(ptl);
281 if (page)
282 return page;
283 }
6742d293
KS
284 if (likely(!pmd_trans_huge(*pmd)))
285 return follow_page_pte(vma, address, pmd, flags);
286
287 ptl = pmd_lock(mm, pmd);
288 if (unlikely(!pmd_trans_huge(*pmd))) {
289 spin_unlock(ptl);
290 return follow_page_pte(vma, address, pmd, flags);
291 }
6742d293
KS
292 if (flags & FOLL_SPLIT) {
293 int ret;
294 page = pmd_page(*pmd);
295 if (is_huge_zero_page(page)) {
296 spin_unlock(ptl);
297 ret = 0;
78ddc534 298 split_huge_pmd(vma, pmd, address);
337d9abf
NH
299 if (pmd_trans_unstable(pmd))
300 ret = -EBUSY;
6742d293
KS
301 } else {
302 get_page(page);
69e68b4f 303 spin_unlock(ptl);
6742d293
KS
304 lock_page(page);
305 ret = split_huge_page(page);
306 unlock_page(page);
307 put_page(page);
baa355fd
KS
308 if (pmd_none(*pmd))
309 return no_page_table(vma, flags);
6742d293
KS
310 }
311
312 return ret ? ERR_PTR(ret) :
313 follow_page_pte(vma, address, pmd, flags);
69e68b4f 314 }
6742d293
KS
315
316 page = follow_trans_huge_pmd(vma, address, pmd, flags);
317 spin_unlock(ptl);
318 *page_mask = HPAGE_PMD_NR - 1;
319 return page;
4bbd4c77
KS
320}
321
f2b495ca
KS
322static int get_gate_page(struct mm_struct *mm, unsigned long address,
323 unsigned int gup_flags, struct vm_area_struct **vma,
324 struct page **page)
325{
326 pgd_t *pgd;
327 pud_t *pud;
328 pmd_t *pmd;
329 pte_t *pte;
330 int ret = -EFAULT;
331
332 /* user gate pages are read-only */
333 if (gup_flags & FOLL_WRITE)
334 return -EFAULT;
335 if (address > TASK_SIZE)
336 pgd = pgd_offset_k(address);
337 else
338 pgd = pgd_offset_gate(mm, address);
339 BUG_ON(pgd_none(*pgd));
340 pud = pud_offset(pgd, address);
341 BUG_ON(pud_none(*pud));
342 pmd = pmd_offset(pud, address);
343 if (pmd_none(*pmd))
344 return -EFAULT;
345 VM_BUG_ON(pmd_trans_huge(*pmd));
346 pte = pte_offset_map(pmd, address);
347 if (pte_none(*pte))
348 goto unmap;
349 *vma = get_gate_vma(mm);
350 if (!page)
351 goto out;
352 *page = vm_normal_page(*vma, address, *pte);
353 if (!*page) {
354 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
355 goto unmap;
356 *page = pte_page(*pte);
357 }
358 get_page(*page);
359out:
360 ret = 0;
361unmap:
362 pte_unmap(pte);
363 return ret;
364}
365
9a95f3cf
PC
366/*
367 * mmap_sem must be held on entry. If @nonblocking != NULL and
368 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
369 * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
370 */
16744483
KS
371static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
372 unsigned long address, unsigned int *flags, int *nonblocking)
373{
16744483
KS
374 unsigned int fault_flags = 0;
375 int ret;
376
de60f5f1
EM
377 /* mlock all present pages, but do not fault in new pages */
378 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
379 return -ENOENT;
84d33df2
KS
380 /* For mm_populate(), just skip the stack guard page. */
381 if ((*flags & FOLL_POPULATE) &&
16744483
KS
382 (stack_guard_page_start(vma, address) ||
383 stack_guard_page_end(vma, address + PAGE_SIZE)))
384 return -ENOENT;
385 if (*flags & FOLL_WRITE)
386 fault_flags |= FAULT_FLAG_WRITE;
1b2ee126
DH
387 if (*flags & FOLL_REMOTE)
388 fault_flags |= FAULT_FLAG_REMOTE;
16744483
KS
389 if (nonblocking)
390 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
391 if (*flags & FOLL_NOWAIT)
392 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
234b239b
ALC
393 if (*flags & FOLL_TRIED) {
394 VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
395 fault_flags |= FAULT_FLAG_TRIED;
396 }
16744483 397
dcddffd4 398 ret = handle_mm_fault(vma, address, fault_flags);
16744483
KS
399 if (ret & VM_FAULT_ERROR) {
400 if (ret & VM_FAULT_OOM)
401 return -ENOMEM;
402 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
403 return *flags & FOLL_HWPOISON ? -EHWPOISON : -EFAULT;
33692f27 404 if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
16744483
KS
405 return -EFAULT;
406 BUG();
407 }
408
409 if (tsk) {
410 if (ret & VM_FAULT_MAJOR)
411 tsk->maj_flt++;
412 else
413 tsk->min_flt++;
414 }
415
416 if (ret & VM_FAULT_RETRY) {
417 if (nonblocking)
418 *nonblocking = 0;
419 return -EBUSY;
420 }
421
422 /*
423 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
424 * necessary, even if maybe_mkwrite decided not to set pte_write. We
425 * can thus safely do subsequent page lookups as if they were reads.
426 * But only do so when looping for pte_write is futile: in some cases
427 * userspace may also be wanting to write to the gotten user page,
428 * which a read fault here might prevent (a readonly page might get
429 * reCOWed by userspace write).
430 */
431 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
19be0eaf 432 *flags |= FOLL_COW;
16744483
KS
433 return 0;
434}
435
fa5bb209
KS
436static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
437{
438 vm_flags_t vm_flags = vma->vm_flags;
1b2ee126
DH
439 int write = (gup_flags & FOLL_WRITE);
440 int foreign = (gup_flags & FOLL_REMOTE);
fa5bb209
KS
441
442 if (vm_flags & (VM_IO | VM_PFNMAP))
443 return -EFAULT;
444
1b2ee126 445 if (write) {
fa5bb209
KS
446 if (!(vm_flags & VM_WRITE)) {
447 if (!(gup_flags & FOLL_FORCE))
448 return -EFAULT;
449 /*
450 * We used to let the write,force case do COW in a
451 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
452 * set a breakpoint in a read-only mapping of an
453 * executable, without corrupting the file (yet only
454 * when that file had been opened for writing!).
455 * Anon pages in shared mappings are surprising: now
456 * just reject it.
457 */
46435364 458 if (!is_cow_mapping(vm_flags))
fa5bb209 459 return -EFAULT;
fa5bb209
KS
460 }
461 } else if (!(vm_flags & VM_READ)) {
462 if (!(gup_flags & FOLL_FORCE))
463 return -EFAULT;
464 /*
465 * Is there actually any vma we can reach here which does not
466 * have VM_MAYREAD set?
467 */
468 if (!(vm_flags & VM_MAYREAD))
469 return -EFAULT;
470 }
d61172b4
DH
471 /*
472 * gups are always data accesses, not instruction
473 * fetches, so execute=false here
474 */
475 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2 476 return -EFAULT;
fa5bb209
KS
477 return 0;
478}
479
4bbd4c77
KS
480/**
481 * __get_user_pages() - pin user pages in memory
482 * @tsk: task_struct of target task
483 * @mm: mm_struct of target mm
484 * @start: starting user address
485 * @nr_pages: number of pages from start to pin
486 * @gup_flags: flags modifying pin behaviour
487 * @pages: array that receives pointers to the pages pinned.
488 * Should be at least nr_pages long. Or NULL, if caller
489 * only intends to ensure the pages are faulted in.
490 * @vmas: array of pointers to vmas corresponding to each page.
491 * Or NULL if the caller does not require them.
492 * @nonblocking: whether waiting for disk IO or mmap_sem contention
493 *
494 * Returns number of pages pinned. This may be fewer than the number
495 * requested. If nr_pages is 0 or negative, returns 0. If no pages
496 * were pinned, returns -errno. Each page returned must be released
497 * with a put_page() call when it is finished with. vmas will only
498 * remain valid while mmap_sem is held.
499 *
9a95f3cf 500 * Must be called with mmap_sem held. It may be released. See below.
4bbd4c77
KS
501 *
502 * __get_user_pages walks a process's page tables and takes a reference to
503 * each struct page that each user address corresponds to at a given
504 * instant. That is, it takes the page that would be accessed if a user
505 * thread accesses the given user virtual address at that instant.
506 *
507 * This does not guarantee that the page exists in the user mappings when
508 * __get_user_pages returns, and there may even be a completely different
509 * page there in some cases (eg. if mmapped pagecache has been invalidated
510 * and subsequently re faulted). However it does guarantee that the page
511 * won't be freed completely. And mostly callers simply care that the page
512 * contains data that was valid *at some point in time*. Typically, an IO
513 * or similar operation cannot guarantee anything stronger anyway because
514 * locks can't be held over the syscall boundary.
515 *
516 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
517 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
518 * appropriate) must be called after the page is finished with, and
519 * before put_page is called.
520 *
521 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
522 * or mmap_sem contention, and if waiting is needed to pin all pages,
9a95f3cf
PC
523 * *@nonblocking will be set to 0. Further, if @gup_flags does not
524 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
525 * this case.
526 *
527 * A caller using such a combination of @nonblocking and @gup_flags
528 * must therefore hold the mmap_sem for reading only, and recognize
529 * when it's been released. Otherwise, it must be held for either
530 * reading or writing and will not be released.
4bbd4c77
KS
531 *
532 * In most cases, get_user_pages or get_user_pages_fast should be used
533 * instead of __get_user_pages. __get_user_pages should be used only if
534 * you need some special @gup_flags.
535 */
0d731759 536static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
4bbd4c77
KS
537 unsigned long start, unsigned long nr_pages,
538 unsigned int gup_flags, struct page **pages,
539 struct vm_area_struct **vmas, int *nonblocking)
540{
fa5bb209 541 long i = 0;
4bbd4c77 542 unsigned int page_mask;
fa5bb209 543 struct vm_area_struct *vma = NULL;
4bbd4c77
KS
544
545 if (!nr_pages)
546 return 0;
547
548 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
549
550 /*
551 * If FOLL_FORCE is set then do not force a full fault as the hinting
552 * fault information is unrelated to the reference behaviour of a task
553 * using the address space
554 */
555 if (!(gup_flags & FOLL_FORCE))
556 gup_flags |= FOLL_NUMA;
557
4bbd4c77 558 do {
fa5bb209
KS
559 struct page *page;
560 unsigned int foll_flags = gup_flags;
561 unsigned int page_increm;
562
563 /* first iteration or cross vma bound */
564 if (!vma || start >= vma->vm_end) {
565 vma = find_extend_vma(mm, start);
566 if (!vma && in_gate_area(mm, start)) {
567 int ret;
568 ret = get_gate_page(mm, start & PAGE_MASK,
569 gup_flags, &vma,
570 pages ? &pages[i] : NULL);
571 if (ret)
572 return i ? : ret;
573 page_mask = 0;
574 goto next_page;
575 }
4bbd4c77 576
fa5bb209
KS
577 if (!vma || check_vma_flags(vma, gup_flags))
578 return i ? : -EFAULT;
579 if (is_vm_hugetlb_page(vma)) {
580 i = follow_hugetlb_page(mm, vma, pages, vmas,
581 &start, &nr_pages, i,
87ffc118 582 gup_flags, nonblocking);
fa5bb209 583 continue;
4bbd4c77 584 }
fa5bb209
KS
585 }
586retry:
587 /*
588 * If we have a pending SIGKILL, don't keep faulting pages and
589 * potentially allocating memory.
590 */
591 if (unlikely(fatal_signal_pending(current)))
592 return i ? i : -ERESTARTSYS;
593 cond_resched();
594 page = follow_page_mask(vma, start, foll_flags, &page_mask);
595 if (!page) {
596 int ret;
597 ret = faultin_page(tsk, vma, start, &foll_flags,
598 nonblocking);
599 switch (ret) {
600 case 0:
601 goto retry;
602 case -EFAULT:
603 case -ENOMEM:
604 case -EHWPOISON:
605 return i ? i : ret;
606 case -EBUSY:
607 return i;
608 case -ENOENT:
609 goto next_page;
4bbd4c77 610 }
fa5bb209 611 BUG();
1027e443
KS
612 } else if (PTR_ERR(page) == -EEXIST) {
613 /*
614 * Proper page table entry exists, but no corresponding
615 * struct page.
616 */
617 goto next_page;
618 } else if (IS_ERR(page)) {
fa5bb209 619 return i ? i : PTR_ERR(page);
1027e443 620 }
fa5bb209
KS
621 if (pages) {
622 pages[i] = page;
623 flush_anon_page(vma, page, start);
624 flush_dcache_page(page);
625 page_mask = 0;
4bbd4c77 626 }
4bbd4c77 627next_page:
fa5bb209
KS
628 if (vmas) {
629 vmas[i] = vma;
630 page_mask = 0;
631 }
632 page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
633 if (page_increm > nr_pages)
634 page_increm = nr_pages;
635 i += page_increm;
636 start += page_increm * PAGE_SIZE;
637 nr_pages -= page_increm;
4bbd4c77
KS
638 } while (nr_pages);
639 return i;
4bbd4c77 640}
4bbd4c77 641
771ab430
TK
642static bool vma_permits_fault(struct vm_area_struct *vma,
643 unsigned int fault_flags)
d4925e00 644{
1b2ee126
DH
645 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
646 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
33a709b2 647 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
d4925e00
DH
648
649 if (!(vm_flags & vma->vm_flags))
650 return false;
651
33a709b2
DH
652 /*
653 * The architecture might have a hardware protection
1b2ee126 654 * mechanism other than read/write that can deny access.
d61172b4
DH
655 *
656 * gup always represents data access, not instruction
657 * fetches, so execute=false here:
33a709b2 658 */
d61172b4 659 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2
DH
660 return false;
661
d4925e00
DH
662 return true;
663}
664
4bbd4c77
KS
665/*
666 * fixup_user_fault() - manually resolve a user page fault
667 * @tsk: the task_struct to use for page fault accounting, or
668 * NULL if faults are not to be recorded.
669 * @mm: mm_struct of target mm
670 * @address: user address
671 * @fault_flags:flags to pass down to handle_mm_fault()
4a9e1cda
DD
672 * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller
673 * does not allow retry
4bbd4c77
KS
674 *
675 * This is meant to be called in the specific scenario where for locking reasons
676 * we try to access user memory in atomic context (within a pagefault_disable()
677 * section), this returns -EFAULT, and we want to resolve the user fault before
678 * trying again.
679 *
680 * Typically this is meant to be used by the futex code.
681 *
682 * The main difference with get_user_pages() is that this function will
683 * unconditionally call handle_mm_fault() which will in turn perform all the
684 * necessary SW fixup of the dirty and young bits in the PTE, while
4a9e1cda 685 * get_user_pages() only guarantees to update these in the struct page.
4bbd4c77
KS
686 *
687 * This is important for some architectures where those bits also gate the
688 * access permission to the page because they are maintained in software. On
689 * such architectures, gup() will not be enough to make a subsequent access
690 * succeed.
691 *
4a9e1cda
DD
692 * This function will not return with an unlocked mmap_sem. So it has not the
693 * same semantics wrt the @mm->mmap_sem as does filemap_fault().
4bbd4c77
KS
694 */
695int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
4a9e1cda
DD
696 unsigned long address, unsigned int fault_flags,
697 bool *unlocked)
4bbd4c77
KS
698{
699 struct vm_area_struct *vma;
4a9e1cda
DD
700 int ret, major = 0;
701
702 if (unlocked)
703 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4bbd4c77 704
4a9e1cda 705retry:
4bbd4c77
KS
706 vma = find_extend_vma(mm, address);
707 if (!vma || address < vma->vm_start)
708 return -EFAULT;
709
d4925e00 710 if (!vma_permits_fault(vma, fault_flags))
4bbd4c77
KS
711 return -EFAULT;
712
dcddffd4 713 ret = handle_mm_fault(vma, address, fault_flags);
4a9e1cda 714 major |= ret & VM_FAULT_MAJOR;
4bbd4c77
KS
715 if (ret & VM_FAULT_ERROR) {
716 if (ret & VM_FAULT_OOM)
717 return -ENOMEM;
718 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
719 return -EHWPOISON;
33692f27 720 if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
4bbd4c77
KS
721 return -EFAULT;
722 BUG();
723 }
4a9e1cda
DD
724
725 if (ret & VM_FAULT_RETRY) {
726 down_read(&mm->mmap_sem);
727 if (!(fault_flags & FAULT_FLAG_TRIED)) {
728 *unlocked = true;
729 fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
730 fault_flags |= FAULT_FLAG_TRIED;
731 goto retry;
732 }
733 }
734
4bbd4c77 735 if (tsk) {
4a9e1cda 736 if (major)
4bbd4c77
KS
737 tsk->maj_flt++;
738 else
739 tsk->min_flt++;
740 }
741 return 0;
742}
add6a0cd 743EXPORT_SYMBOL_GPL(fixup_user_fault);
4bbd4c77 744
f0818f47
AA
745static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
746 struct mm_struct *mm,
747 unsigned long start,
748 unsigned long nr_pages,
f0818f47
AA
749 struct page **pages,
750 struct vm_area_struct **vmas,
0fd71a56
AA
751 int *locked, bool notify_drop,
752 unsigned int flags)
f0818f47 753{
f0818f47
AA
754 long ret, pages_done;
755 bool lock_dropped;
756
757 if (locked) {
758 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
759 BUG_ON(vmas);
760 /* check caller initialized locked */
761 BUG_ON(*locked != 1);
762 }
763
764 if (pages)
765 flags |= FOLL_GET;
f0818f47
AA
766
767 pages_done = 0;
768 lock_dropped = false;
769 for (;;) {
770 ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
771 vmas, locked);
772 if (!locked)
773 /* VM_FAULT_RETRY couldn't trigger, bypass */
774 return ret;
775
776 /* VM_FAULT_RETRY cannot return errors */
777 if (!*locked) {
778 BUG_ON(ret < 0);
779 BUG_ON(ret >= nr_pages);
780 }
781
782 if (!pages)
783 /* If it's a prefault don't insist harder */
784 return ret;
785
786 if (ret > 0) {
787 nr_pages -= ret;
788 pages_done += ret;
789 if (!nr_pages)
790 break;
791 }
792 if (*locked) {
793 /* VM_FAULT_RETRY didn't trigger */
794 if (!pages_done)
795 pages_done = ret;
796 break;
797 }
798 /* VM_FAULT_RETRY triggered, so seek to the faulting offset */
799 pages += ret;
800 start += ret << PAGE_SHIFT;
801
802 /*
803 * Repeat on the address that fired VM_FAULT_RETRY
804 * without FAULT_FLAG_ALLOW_RETRY but with
805 * FAULT_FLAG_TRIED.
806 */
807 *locked = 1;
808 lock_dropped = true;
809 down_read(&mm->mmap_sem);
810 ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
811 pages, NULL, NULL);
812 if (ret != 1) {
813 BUG_ON(ret > 1);
814 if (!pages_done)
815 pages_done = ret;
816 break;
817 }
818 nr_pages--;
819 pages_done++;
820 if (!nr_pages)
821 break;
822 pages++;
823 start += PAGE_SIZE;
824 }
825 if (notify_drop && lock_dropped && *locked) {
826 /*
827 * We must let the caller know we temporarily dropped the lock
828 * and so the critical section protected by it was lost.
829 */
830 up_read(&mm->mmap_sem);
831 *locked = 0;
832 }
833 return pages_done;
834}
835
836/*
837 * We can leverage the VM_FAULT_RETRY functionality in the page fault
838 * paths better by using either get_user_pages_locked() or
839 * get_user_pages_unlocked().
840 *
841 * get_user_pages_locked() is suitable to replace the form:
842 *
843 * down_read(&mm->mmap_sem);
844 * do_something()
845 * get_user_pages(tsk, mm, ..., pages, NULL);
846 * up_read(&mm->mmap_sem);
847 *
848 * to:
849 *
850 * int locked = 1;
851 * down_read(&mm->mmap_sem);
852 * do_something()
853 * get_user_pages_locked(tsk, mm, ..., pages, &locked);
854 * if (locked)
855 * up_read(&mm->mmap_sem);
856 */
c12d2da5 857long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
3b913179 858 unsigned int gup_flags, struct page **pages,
f0818f47
AA
859 int *locked)
860{
cde70140 861 return __get_user_pages_locked(current, current->mm, start, nr_pages,
3b913179
LS
862 pages, NULL, locked, true,
863 gup_flags | FOLL_TOUCH);
f0818f47 864}
c12d2da5 865EXPORT_SYMBOL(get_user_pages_locked);
f0818f47 866
0fd71a56 867/*
80a79516
LS
868 * Same as get_user_pages_unlocked(...., FOLL_TOUCH) but it allows for
869 * tsk, mm to be specified.
0fd71a56
AA
870 *
871 * NOTE: here FOLL_TOUCH is not set implicitly and must be set by the
80a79516
LS
872 * caller if required (just like with __get_user_pages). "FOLL_GET"
873 * is set implicitly if "pages" is non-NULL.
0fd71a56 874 */
8b7457ef
LS
875static __always_inline long __get_user_pages_unlocked(struct task_struct *tsk,
876 struct mm_struct *mm, unsigned long start,
877 unsigned long nr_pages, struct page **pages,
878 unsigned int gup_flags)
0fd71a56
AA
879{
880 long ret;
881 int locked = 1;
859110d7 882
0fd71a56 883 down_read(&mm->mmap_sem);
859110d7
LS
884 ret = __get_user_pages_locked(tsk, mm, start, nr_pages, pages, NULL,
885 &locked, false, gup_flags);
0fd71a56
AA
886 if (locked)
887 up_read(&mm->mmap_sem);
888 return ret;
889}
0fd71a56 890
f0818f47
AA
891/*
892 * get_user_pages_unlocked() is suitable to replace the form:
893 *
894 * down_read(&mm->mmap_sem);
895 * get_user_pages(tsk, mm, ..., pages, NULL);
896 * up_read(&mm->mmap_sem);
897 *
898 * with:
899 *
900 * get_user_pages_unlocked(tsk, mm, ..., pages);
901 *
902 * It is functionally equivalent to get_user_pages_fast so
80a79516
LS
903 * get_user_pages_fast should be used instead if specific gup_flags
904 * (e.g. FOLL_FORCE) are not required.
f0818f47 905 */
c12d2da5 906long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 907 struct page **pages, unsigned int gup_flags)
f0818f47 908{
cde70140 909 return __get_user_pages_unlocked(current, current->mm, start, nr_pages,
c164154f 910 pages, gup_flags | FOLL_TOUCH);
f0818f47 911}
c12d2da5 912EXPORT_SYMBOL(get_user_pages_unlocked);
f0818f47 913
4bbd4c77 914/*
1e987790 915 * get_user_pages_remote() - pin user pages in memory
4bbd4c77
KS
916 * @tsk: the task_struct to use for page fault accounting, or
917 * NULL if faults are not to be recorded.
918 * @mm: mm_struct of target mm
919 * @start: starting user address
920 * @nr_pages: number of pages from start to pin
9beae1ea 921 * @gup_flags: flags modifying lookup behaviour
4bbd4c77
KS
922 * @pages: array that receives pointers to the pages pinned.
923 * Should be at least nr_pages long. Or NULL, if caller
924 * only intends to ensure the pages are faulted in.
925 * @vmas: array of pointers to vmas corresponding to each page.
926 * Or NULL if the caller does not require them.
5b56d49f
LS
927 * @locked: pointer to lock flag indicating whether lock is held and
928 * subsequently whether VM_FAULT_RETRY functionality can be
929 * utilised. Lock must initially be held.
4bbd4c77
KS
930 *
931 * Returns number of pages pinned. This may be fewer than the number
932 * requested. If nr_pages is 0 or negative, returns 0. If no pages
933 * were pinned, returns -errno. Each page returned must be released
934 * with a put_page() call when it is finished with. vmas will only
935 * remain valid while mmap_sem is held.
936 *
937 * Must be called with mmap_sem held for read or write.
938 *
939 * get_user_pages walks a process's page tables and takes a reference to
940 * each struct page that each user address corresponds to at a given
941 * instant. That is, it takes the page that would be accessed if a user
942 * thread accesses the given user virtual address at that instant.
943 *
944 * This does not guarantee that the page exists in the user mappings when
945 * get_user_pages returns, and there may even be a completely different
946 * page there in some cases (eg. if mmapped pagecache has been invalidated
947 * and subsequently re faulted). However it does guarantee that the page
948 * won't be freed completely. And mostly callers simply care that the page
949 * contains data that was valid *at some point in time*. Typically, an IO
950 * or similar operation cannot guarantee anything stronger anyway because
951 * locks can't be held over the syscall boundary.
952 *
9beae1ea
LS
953 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
954 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
955 * be called after the page is finished with, and before put_page is called.
4bbd4c77
KS
956 *
957 * get_user_pages is typically used for fewer-copy IO operations, to get a
958 * handle on the memory by some means other than accesses via the user virtual
959 * addresses. The pages may be submitted for DMA to devices or accessed via
960 * their kernel linear mapping (via the kmap APIs). Care should be taken to
961 * use the correct cache flushing APIs.
962 *
963 * See also get_user_pages_fast, for performance critical applications.
f0818f47
AA
964 *
965 * get_user_pages should be phased out in favor of
966 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
967 * should use get_user_pages because it cannot pass
968 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
4bbd4c77 969 */
1e987790
DH
970long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
971 unsigned long start, unsigned long nr_pages,
9beae1ea 972 unsigned int gup_flags, struct page **pages,
5b56d49f 973 struct vm_area_struct **vmas, int *locked)
4bbd4c77 974{
859110d7 975 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
5b56d49f 976 locked, true,
9beae1ea 977 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1e987790
DH
978}
979EXPORT_SYMBOL(get_user_pages_remote);
980
981/*
d4edcf0d
DH
982 * This is the same as get_user_pages_remote(), just with a
983 * less-flexible calling convention where we assume that the task
5b56d49f
LS
984 * and mm being operated on are the current task's and don't allow
985 * passing of a locked parameter. We also obviously don't pass
986 * FOLL_REMOTE in here.
1e987790 987 */
c12d2da5 988long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 989 unsigned int gup_flags, struct page **pages,
1e987790
DH
990 struct vm_area_struct **vmas)
991{
cde70140 992 return __get_user_pages_locked(current, current->mm, start, nr_pages,
768ae309
LS
993 pages, vmas, NULL, false,
994 gup_flags | FOLL_TOUCH);
4bbd4c77 995}
c12d2da5 996EXPORT_SYMBOL(get_user_pages);
4bbd4c77 997
acc3c8d1
KS
998/**
999 * populate_vma_page_range() - populate a range of pages in the vma.
1000 * @vma: target vma
1001 * @start: start address
1002 * @end: end address
1003 * @nonblocking:
1004 *
1005 * This takes care of mlocking the pages too if VM_LOCKED is set.
1006 *
1007 * return 0 on success, negative error code on error.
1008 *
1009 * vma->vm_mm->mmap_sem must be held.
1010 *
1011 * If @nonblocking is NULL, it may be held for read or write and will
1012 * be unperturbed.
1013 *
1014 * If @nonblocking is non-NULL, it must held for read only and may be
1015 * released. If it's released, *@nonblocking will be set to 0.
1016 */
1017long populate_vma_page_range(struct vm_area_struct *vma,
1018 unsigned long start, unsigned long end, int *nonblocking)
1019{
1020 struct mm_struct *mm = vma->vm_mm;
1021 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1022 int gup_flags;
1023
1024 VM_BUG_ON(start & ~PAGE_MASK);
1025 VM_BUG_ON(end & ~PAGE_MASK);
1026 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1027 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1028 VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
1029
de60f5f1
EM
1030 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1031 if (vma->vm_flags & VM_LOCKONFAULT)
1032 gup_flags &= ~FOLL_POPULATE;
acc3c8d1
KS
1033 /*
1034 * We want to touch writable mappings with a write fault in order
1035 * to break COW, except for shared mappings because these don't COW
1036 * and we would not want to dirty them for nothing.
1037 */
1038 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1039 gup_flags |= FOLL_WRITE;
1040
1041 /*
1042 * We want mlock to succeed for regions that have any permissions
1043 * other than PROT_NONE.
1044 */
1045 if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
1046 gup_flags |= FOLL_FORCE;
1047
1048 /*
1049 * We made sure addr is within a VMA, so the following will
1050 * not result in a stack expansion that recurses back here.
1051 */
1052 return __get_user_pages(current, mm, start, nr_pages, gup_flags,
1053 NULL, NULL, nonblocking);
1054}
1055
1056/*
1057 * __mm_populate - populate and/or mlock pages within a range of address space.
1058 *
1059 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1060 * flags. VMAs must be already marked with the desired vm_flags, and
1061 * mmap_sem must not be held.
1062 */
1063int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1064{
1065 struct mm_struct *mm = current->mm;
1066 unsigned long end, nstart, nend;
1067 struct vm_area_struct *vma = NULL;
1068 int locked = 0;
1069 long ret = 0;
1070
1071 VM_BUG_ON(start & ~PAGE_MASK);
1072 VM_BUG_ON(len != PAGE_ALIGN(len));
1073 end = start + len;
1074
1075 for (nstart = start; nstart < end; nstart = nend) {
1076 /*
1077 * We want to fault in pages for [nstart; end) address range.
1078 * Find first corresponding VMA.
1079 */
1080 if (!locked) {
1081 locked = 1;
1082 down_read(&mm->mmap_sem);
1083 vma = find_vma(mm, nstart);
1084 } else if (nstart >= vma->vm_end)
1085 vma = vma->vm_next;
1086 if (!vma || vma->vm_start >= end)
1087 break;
1088 /*
1089 * Set [nstart; nend) to intersection of desired address
1090 * range with the first VMA. Also, skip undesirable VMA types.
1091 */
1092 nend = min(end, vma->vm_end);
1093 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1094 continue;
1095 if (nstart < vma->vm_start)
1096 nstart = vma->vm_start;
1097 /*
1098 * Now fault in a range of pages. populate_vma_page_range()
1099 * double checks the vma flags, so that it won't mlock pages
1100 * if the vma was already munlocked.
1101 */
1102 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1103 if (ret < 0) {
1104 if (ignore_errors) {
1105 ret = 0;
1106 continue; /* continue at next VMA */
1107 }
1108 break;
1109 }
1110 nend = nstart + ret * PAGE_SIZE;
1111 ret = 0;
1112 }
1113 if (locked)
1114 up_read(&mm->mmap_sem);
1115 return ret; /* 0 or negative error code */
1116}
1117
4bbd4c77
KS
1118/**
1119 * get_dump_page() - pin user page in memory while writing it to core dump
1120 * @addr: user address
1121 *
1122 * Returns struct page pointer of user page pinned for dump,
ea1754a0 1123 * to be freed afterwards by put_page().
4bbd4c77
KS
1124 *
1125 * Returns NULL on any kind of failure - a hole must then be inserted into
1126 * the corefile, to preserve alignment with its headers; and also returns
1127 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1128 * allowing a hole to be left in the corefile to save diskspace.
1129 *
1130 * Called without mmap_sem, but after all other threads have been killed.
1131 */
1132#ifdef CONFIG_ELF_CORE
1133struct page *get_dump_page(unsigned long addr)
1134{
1135 struct vm_area_struct *vma;
1136 struct page *page;
1137
1138 if (__get_user_pages(current, current->mm, addr, 1,
1139 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1140 NULL) < 1)
1141 return NULL;
1142 flush_cache_page(vma, addr, page_to_pfn(page));
1143 return page;
1144}
1145#endif /* CONFIG_ELF_CORE */
2667f50e
SC
1146
1147/*
1148 * Generic RCU Fast GUP
1149 *
1150 * get_user_pages_fast attempts to pin user pages by walking the page
1151 * tables directly and avoids taking locks. Thus the walker needs to be
1152 * protected from page table pages being freed from under it, and should
1153 * block any THP splits.
1154 *
1155 * One way to achieve this is to have the walker disable interrupts, and
1156 * rely on IPIs from the TLB flushing code blocking before the page table
1157 * pages are freed. This is unsuitable for architectures that do not need
1158 * to broadcast an IPI when invalidating TLBs.
1159 *
1160 * Another way to achieve this is to batch up page table containing pages
1161 * belonging to more than one mm_user, then rcu_sched a callback to free those
1162 * pages. Disabling interrupts will allow the fast_gup walker to both block
1163 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1164 * (which is a relatively rare event). The code below adopts this strategy.
1165 *
1166 * Before activating this code, please be aware that the following assumptions
1167 * are currently made:
1168 *
1169 * *) HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table is used to free
1170 * pages containing page tables.
1171 *
2667f50e
SC
1172 * *) ptes can be read atomically by the architecture.
1173 *
1174 * *) access_ok is sufficient to validate userspace address ranges.
1175 *
1176 * The last two assumptions can be relaxed by the addition of helper functions.
1177 *
1178 * This code is based heavily on the PowerPC implementation by Nick Piggin.
1179 */
1180#ifdef CONFIG_HAVE_GENERIC_RCU_GUP
1181
1182#ifdef __HAVE_ARCH_PTE_SPECIAL
1183static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1184 int write, struct page **pages, int *nr)
1185{
1186 pte_t *ptep, *ptem;
1187 int ret = 0;
1188
1189 ptem = ptep = pte_offset_map(&pmd, addr);
1190 do {
1191 /*
1192 * In the line below we are assuming that the pte can be read
1193 * atomically. If this is not the case for your architecture,
1194 * please wrap this in a helper function!
1195 *
1196 * for an example see gup_get_pte in arch/x86/mm/gup.c
1197 */
9d8c47e4 1198 pte_t pte = READ_ONCE(*ptep);
7aef4172 1199 struct page *head, *page;
2667f50e
SC
1200
1201 /*
1202 * Similar to the PMD case below, NUMA hinting must take slow
8a0516ed 1203 * path using the pte_protnone check.
2667f50e
SC
1204 */
1205 if (!pte_present(pte) || pte_special(pte) ||
8a0516ed 1206 pte_protnone(pte) || (write && !pte_write(pte)))
2667f50e
SC
1207 goto pte_unmap;
1208
33a709b2
DH
1209 if (!arch_pte_access_permitted(pte, write))
1210 goto pte_unmap;
1211
2667f50e
SC
1212 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1213 page = pte_page(pte);
7aef4172 1214 head = compound_head(page);
2667f50e 1215
7aef4172 1216 if (!page_cache_get_speculative(head))
2667f50e
SC
1217 goto pte_unmap;
1218
1219 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
7aef4172 1220 put_page(head);
2667f50e
SC
1221 goto pte_unmap;
1222 }
1223
7aef4172 1224 VM_BUG_ON_PAGE(compound_head(page) != head, page);
2667f50e
SC
1225 pages[*nr] = page;
1226 (*nr)++;
1227
1228 } while (ptep++, addr += PAGE_SIZE, addr != end);
1229
1230 ret = 1;
1231
1232pte_unmap:
1233 pte_unmap(ptem);
1234 return ret;
1235}
1236#else
1237
1238/*
1239 * If we can't determine whether or not a pte is special, then fail immediately
1240 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1241 * to be special.
1242 *
1243 * For a futex to be placed on a THP tail page, get_futex_key requires a
1244 * __get_user_pages_fast implementation that can pin pages. Thus it's still
1245 * useful to have gup_huge_pmd even if we can't operate on ptes.
1246 */
1247static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1248 int write, struct page **pages, int *nr)
1249{
1250 return 0;
1251}
1252#endif /* __HAVE_ARCH_PTE_SPECIAL */
1253
1254static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1255 unsigned long end, int write, struct page **pages, int *nr)
1256{
ddc58f27 1257 struct page *head, *page;
2667f50e
SC
1258 int refs;
1259
1260 if (write && !pmd_write(orig))
1261 return 0;
1262
1263 refs = 0;
1264 head = pmd_page(orig);
1265 page = head + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2667f50e
SC
1266 do {
1267 VM_BUG_ON_PAGE(compound_head(page) != head, page);
1268 pages[*nr] = page;
1269 (*nr)++;
1270 page++;
1271 refs++;
1272 } while (addr += PAGE_SIZE, addr != end);
1273
1274 if (!page_cache_add_speculative(head, refs)) {
1275 *nr -= refs;
1276 return 0;
1277 }
1278
1279 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1280 *nr -= refs;
1281 while (refs--)
1282 put_page(head);
1283 return 0;
1284 }
1285
2667f50e
SC
1286 return 1;
1287}
1288
1289static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1290 unsigned long end, int write, struct page **pages, int *nr)
1291{
ddc58f27 1292 struct page *head, *page;
2667f50e
SC
1293 int refs;
1294
1295 if (write && !pud_write(orig))
1296 return 0;
1297
1298 refs = 0;
1299 head = pud_page(orig);
1300 page = head + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2667f50e
SC
1301 do {
1302 VM_BUG_ON_PAGE(compound_head(page) != head, page);
1303 pages[*nr] = page;
1304 (*nr)++;
1305 page++;
1306 refs++;
1307 } while (addr += PAGE_SIZE, addr != end);
1308
1309 if (!page_cache_add_speculative(head, refs)) {
1310 *nr -= refs;
1311 return 0;
1312 }
1313
1314 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1315 *nr -= refs;
1316 while (refs--)
1317 put_page(head);
1318 return 0;
1319 }
1320
2667f50e
SC
1321 return 1;
1322}
1323
f30c59e9
AK
1324static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
1325 unsigned long end, int write,
1326 struct page **pages, int *nr)
1327{
1328 int refs;
ddc58f27 1329 struct page *head, *page;
f30c59e9
AK
1330
1331 if (write && !pgd_write(orig))
1332 return 0;
1333
1334 refs = 0;
1335 head = pgd_page(orig);
1336 page = head + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
f30c59e9
AK
1337 do {
1338 VM_BUG_ON_PAGE(compound_head(page) != head, page);
1339 pages[*nr] = page;
1340 (*nr)++;
1341 page++;
1342 refs++;
1343 } while (addr += PAGE_SIZE, addr != end);
1344
1345 if (!page_cache_add_speculative(head, refs)) {
1346 *nr -= refs;
1347 return 0;
1348 }
1349
1350 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
1351 *nr -= refs;
1352 while (refs--)
1353 put_page(head);
1354 return 0;
1355 }
1356
f30c59e9
AK
1357 return 1;
1358}
1359
2667f50e
SC
1360static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
1361 int write, struct page **pages, int *nr)
1362{
1363 unsigned long next;
1364 pmd_t *pmdp;
1365
1366 pmdp = pmd_offset(&pud, addr);
1367 do {
38c5ce93 1368 pmd_t pmd = READ_ONCE(*pmdp);
2667f50e
SC
1369
1370 next = pmd_addr_end(addr, end);
4b471e88 1371 if (pmd_none(pmd))
2667f50e
SC
1372 return 0;
1373
1374 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd))) {
1375 /*
1376 * NUMA hinting faults need to be handled in the GUP
1377 * slowpath for accounting purposes and so that they
1378 * can be serialised against THP migration.
1379 */
8a0516ed 1380 if (pmd_protnone(pmd))
2667f50e
SC
1381 return 0;
1382
1383 if (!gup_huge_pmd(pmd, pmdp, addr, next, write,
1384 pages, nr))
1385 return 0;
1386
f30c59e9
AK
1387 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
1388 /*
1389 * architecture have different format for hugetlbfs
1390 * pmd format and THP pmd format
1391 */
1392 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
1393 PMD_SHIFT, next, write, pages, nr))
1394 return 0;
2667f50e
SC
1395 } else if (!gup_pte_range(pmd, addr, next, write, pages, nr))
1396 return 0;
1397 } while (pmdp++, addr = next, addr != end);
1398
1399 return 1;
1400}
1401
f30c59e9
AK
1402static int gup_pud_range(pgd_t pgd, unsigned long addr, unsigned long end,
1403 int write, struct page **pages, int *nr)
2667f50e
SC
1404{
1405 unsigned long next;
1406 pud_t *pudp;
1407
f30c59e9 1408 pudp = pud_offset(&pgd, addr);
2667f50e 1409 do {
e37c6982 1410 pud_t pud = READ_ONCE(*pudp);
2667f50e
SC
1411
1412 next = pud_addr_end(addr, end);
1413 if (pud_none(pud))
1414 return 0;
f30c59e9 1415 if (unlikely(pud_huge(pud))) {
2667f50e 1416 if (!gup_huge_pud(pud, pudp, addr, next, write,
f30c59e9
AK
1417 pages, nr))
1418 return 0;
1419 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
1420 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
1421 PUD_SHIFT, next, write, pages, nr))
2667f50e
SC
1422 return 0;
1423 } else if (!gup_pmd_range(pud, addr, next, write, pages, nr))
1424 return 0;
1425 } while (pudp++, addr = next, addr != end);
1426
1427 return 1;
1428}
1429
1430/*
1431 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
1432 * the regular GUP. It will only return non-negative values.
1433 */
1434int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1435 struct page **pages)
1436{
1437 struct mm_struct *mm = current->mm;
1438 unsigned long addr, len, end;
1439 unsigned long next, flags;
1440 pgd_t *pgdp;
1441 int nr = 0;
1442
1443 start &= PAGE_MASK;
1444 addr = start;
1445 len = (unsigned long) nr_pages << PAGE_SHIFT;
1446 end = start + len;
1447
1448 if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
1449 start, len)))
1450 return 0;
1451
1452 /*
1453 * Disable interrupts. We use the nested form as we can already have
1454 * interrupts disabled by get_futex_key.
1455 *
1456 * With interrupts disabled, we block page table pages from being
1457 * freed from under us. See mmu_gather_tlb in asm-generic/tlb.h
1458 * for more details.
1459 *
1460 * We do not adopt an rcu_read_lock(.) here as we also want to
1461 * block IPIs that come from THPs splitting.
1462 */
1463
1464 local_irq_save(flags);
1465 pgdp = pgd_offset(mm, addr);
1466 do {
9d8c47e4 1467 pgd_t pgd = READ_ONCE(*pgdp);
f30c59e9 1468
2667f50e 1469 next = pgd_addr_end(addr, end);
f30c59e9 1470 if (pgd_none(pgd))
2667f50e 1471 break;
f30c59e9
AK
1472 if (unlikely(pgd_huge(pgd))) {
1473 if (!gup_huge_pgd(pgd, pgdp, addr, next, write,
1474 pages, &nr))
1475 break;
1476 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
1477 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
1478 PGDIR_SHIFT, next, write, pages, &nr))
1479 break;
1480 } else if (!gup_pud_range(pgd, addr, next, write, pages, &nr))
2667f50e
SC
1481 break;
1482 } while (pgdp++, addr = next, addr != end);
1483 local_irq_restore(flags);
1484
1485 return nr;
1486}
1487
1488/**
1489 * get_user_pages_fast() - pin user pages in memory
1490 * @start: starting user address
1491 * @nr_pages: number of pages from start to pin
1492 * @write: whether pages will be written to
1493 * @pages: array that receives pointers to the pages pinned.
1494 * Should be at least nr_pages long.
1495 *
1496 * Attempt to pin user pages in memory without taking mm->mmap_sem.
1497 * If not successful, it will fall back to taking the lock and
1498 * calling get_user_pages().
1499 *
1500 * Returns number of pages pinned. This may be fewer than the number
1501 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1502 * were pinned, returns -errno.
1503 */
1504int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1505 struct page **pages)
1506{
2667f50e
SC
1507 int nr, ret;
1508
1509 start &= PAGE_MASK;
1510 nr = __get_user_pages_fast(start, nr_pages, write, pages);
1511 ret = nr;
1512
1513 if (nr < nr_pages) {
1514 /* Try to get the remaining pages with get_user_pages */
1515 start += nr << PAGE_SHIFT;
1516 pages += nr;
1517
c164154f
LS
1518 ret = get_user_pages_unlocked(start, nr_pages - nr, pages,
1519 write ? FOLL_WRITE : 0);
2667f50e
SC
1520
1521 /* Have to be a bit careful with return values */
1522 if (nr > 0) {
1523 if (ret < 0)
1524 ret = nr;
1525 else
1526 ret += nr;
1527 }
1528 }
1529
1530 return ret;
1531}
1532
1533#endif /* CONFIG_HAVE_GENERIC_RCU_GUP */