get_user_pages_unlocked(): pass true to __get_user_pages_locked() notify_drop
[linux-block.git] / mm / gup.c
CommitLineData
4bbd4c77
KS
1#include <linux/kernel.h>
2#include <linux/errno.h>
3#include <linux/err.h>
4#include <linux/spinlock.h>
5
4bbd4c77 6#include <linux/mm.h>
3565fce3 7#include <linux/memremap.h>
4bbd4c77
KS
8#include <linux/pagemap.h>
9#include <linux/rmap.h>
10#include <linux/swap.h>
11#include <linux/swapops.h>
12
174cd4b1 13#include <linux/sched/signal.h>
2667f50e 14#include <linux/rwsem.h>
f30c59e9 15#include <linux/hugetlb.h>
1027e443 16
33a709b2 17#include <asm/mmu_context.h>
2667f50e 18#include <asm/pgtable.h>
1027e443 19#include <asm/tlbflush.h>
2667f50e 20
4bbd4c77
KS
21#include "internal.h"
22
69e68b4f
KS
23static struct page *no_page_table(struct vm_area_struct *vma,
24 unsigned int flags)
4bbd4c77 25{
69e68b4f
KS
26 /*
27 * When core dumping an enormous anonymous area that nobody
28 * has touched so far, we don't want to allocate unnecessary pages or
29 * page tables. Return error instead of NULL to skip handle_mm_fault,
30 * then get_dump_page() will return NULL to leave a hole in the dump.
31 * But we can only make this optimization where a hole would surely
32 * be zero-filled if handle_mm_fault() actually did handle it.
33 */
34 if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
35 return ERR_PTR(-EFAULT);
36 return NULL;
37}
4bbd4c77 38
1027e443
KS
39static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
40 pte_t *pte, unsigned int flags)
41{
42 /* No page to get reference */
43 if (flags & FOLL_GET)
44 return -EFAULT;
45
46 if (flags & FOLL_TOUCH) {
47 pte_t entry = *pte;
48
49 if (flags & FOLL_WRITE)
50 entry = pte_mkdirty(entry);
51 entry = pte_mkyoung(entry);
52
53 if (!pte_same(*pte, entry)) {
54 set_pte_at(vma->vm_mm, address, pte, entry);
55 update_mmu_cache(vma, address, pte);
56 }
57 }
58
59 /* Proper page table entry exists, but no corresponding struct page */
60 return -EEXIST;
61}
62
19be0eaf
LT
63/*
64 * FOLL_FORCE can write to even unwritable pte's, but only
65 * after we've gone through a COW cycle and they are dirty.
66 */
67static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
68{
69 return pte_write(pte) ||
70 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
71}
72
69e68b4f
KS
73static struct page *follow_page_pte(struct vm_area_struct *vma,
74 unsigned long address, pmd_t *pmd, unsigned int flags)
75{
76 struct mm_struct *mm = vma->vm_mm;
3565fce3 77 struct dev_pagemap *pgmap = NULL;
69e68b4f
KS
78 struct page *page;
79 spinlock_t *ptl;
80 pte_t *ptep, pte;
4bbd4c77 81
69e68b4f 82retry:
4bbd4c77 83 if (unlikely(pmd_bad(*pmd)))
69e68b4f 84 return no_page_table(vma, flags);
4bbd4c77
KS
85
86 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
4bbd4c77
KS
87 pte = *ptep;
88 if (!pte_present(pte)) {
89 swp_entry_t entry;
90 /*
91 * KSM's break_ksm() relies upon recognizing a ksm page
92 * even while it is being migrated, so for that case we
93 * need migration_entry_wait().
94 */
95 if (likely(!(flags & FOLL_MIGRATION)))
96 goto no_page;
0661a336 97 if (pte_none(pte))
4bbd4c77
KS
98 goto no_page;
99 entry = pte_to_swp_entry(pte);
100 if (!is_migration_entry(entry))
101 goto no_page;
102 pte_unmap_unlock(ptep, ptl);
103 migration_entry_wait(mm, pmd, address);
69e68b4f 104 goto retry;
4bbd4c77 105 }
8a0516ed 106 if ((flags & FOLL_NUMA) && pte_protnone(pte))
4bbd4c77 107 goto no_page;
19be0eaf 108 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
69e68b4f
KS
109 pte_unmap_unlock(ptep, ptl);
110 return NULL;
111 }
4bbd4c77
KS
112
113 page = vm_normal_page(vma, address, pte);
3565fce3
DW
114 if (!page && pte_devmap(pte) && (flags & FOLL_GET)) {
115 /*
116 * Only return device mapping pages in the FOLL_GET case since
117 * they are only valid while holding the pgmap reference.
118 */
119 pgmap = get_dev_pagemap(pte_pfn(pte), NULL);
120 if (pgmap)
121 page = pte_page(pte);
122 else
123 goto no_page;
124 } else if (unlikely(!page)) {
1027e443
KS
125 if (flags & FOLL_DUMP) {
126 /* Avoid special (like zero) pages in core dumps */
127 page = ERR_PTR(-EFAULT);
128 goto out;
129 }
130
131 if (is_zero_pfn(pte_pfn(pte))) {
132 page = pte_page(pte);
133 } else {
134 int ret;
135
136 ret = follow_pfn_pte(vma, address, ptep, flags);
137 page = ERR_PTR(ret);
138 goto out;
139 }
4bbd4c77
KS
140 }
141
6742d293
KS
142 if (flags & FOLL_SPLIT && PageTransCompound(page)) {
143 int ret;
144 get_page(page);
145 pte_unmap_unlock(ptep, ptl);
146 lock_page(page);
147 ret = split_huge_page(page);
148 unlock_page(page);
149 put_page(page);
150 if (ret)
151 return ERR_PTR(ret);
152 goto retry;
153 }
154
3565fce3 155 if (flags & FOLL_GET) {
ddc58f27 156 get_page(page);
3565fce3
DW
157
158 /* drop the pgmap reference now that we hold the page */
159 if (pgmap) {
160 put_dev_pagemap(pgmap);
161 pgmap = NULL;
162 }
163 }
4bbd4c77
KS
164 if (flags & FOLL_TOUCH) {
165 if ((flags & FOLL_WRITE) &&
166 !pte_dirty(pte) && !PageDirty(page))
167 set_page_dirty(page);
168 /*
169 * pte_mkyoung() would be more correct here, but atomic care
170 * is needed to avoid losing the dirty bit: it is easier to use
171 * mark_page_accessed().
172 */
173 mark_page_accessed(page);
174 }
de60f5f1 175 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
176 /* Do not mlock pte-mapped THP */
177 if (PageTransCompound(page))
178 goto out;
179
4bbd4c77
KS
180 /*
181 * The preliminary mapping check is mainly to avoid the
182 * pointless overhead of lock_page on the ZERO_PAGE
183 * which might bounce very badly if there is contention.
184 *
185 * If the page is already locked, we don't need to
186 * handle it now - vmscan will handle it later if and
187 * when it attempts to reclaim the page.
188 */
189 if (page->mapping && trylock_page(page)) {
190 lru_add_drain(); /* push cached pages to LRU */
191 /*
192 * Because we lock page here, and migration is
193 * blocked by the pte's page reference, and we
194 * know the page is still mapped, we don't even
195 * need to check for file-cache page truncation.
196 */
197 mlock_vma_page(page);
198 unlock_page(page);
199 }
200 }
1027e443 201out:
4bbd4c77 202 pte_unmap_unlock(ptep, ptl);
4bbd4c77 203 return page;
4bbd4c77
KS
204no_page:
205 pte_unmap_unlock(ptep, ptl);
206 if (!pte_none(pte))
69e68b4f
KS
207 return NULL;
208 return no_page_table(vma, flags);
209}
210
080dbb61
AK
211static struct page *follow_pmd_mask(struct vm_area_struct *vma,
212 unsigned long address, pud_t *pudp,
213 unsigned int flags, unsigned int *page_mask)
69e68b4f 214{
69e68b4f
KS
215 pmd_t *pmd;
216 spinlock_t *ptl;
217 struct page *page;
218 struct mm_struct *mm = vma->vm_mm;
219
080dbb61 220 pmd = pmd_offset(pudp, address);
69e68b4f
KS
221 if (pmd_none(*pmd))
222 return no_page_table(vma, flags);
223 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
e66f17ff
NH
224 page = follow_huge_pmd(mm, address, pmd, flags);
225 if (page)
226 return page;
227 return no_page_table(vma, flags);
69e68b4f 228 }
4dc71451
AK
229 if (is_hugepd(__hugepd(pmd_val(*pmd)))) {
230 page = follow_huge_pd(vma, address,
231 __hugepd(pmd_val(*pmd)), flags,
232 PMD_SHIFT);
233 if (page)
234 return page;
235 return no_page_table(vma, flags);
236 }
84c3fc4e
ZY
237retry:
238 if (!pmd_present(*pmd)) {
239 if (likely(!(flags & FOLL_MIGRATION)))
240 return no_page_table(vma, flags);
241 VM_BUG_ON(thp_migration_supported() &&
242 !is_pmd_migration_entry(*pmd));
243 if (is_pmd_migration_entry(*pmd))
244 pmd_migration_entry_wait(mm, pmd);
245 goto retry;
246 }
3565fce3
DW
247 if (pmd_devmap(*pmd)) {
248 ptl = pmd_lock(mm, pmd);
249 page = follow_devmap_pmd(vma, address, pmd, flags);
250 spin_unlock(ptl);
251 if (page)
252 return page;
253 }
6742d293
KS
254 if (likely(!pmd_trans_huge(*pmd)))
255 return follow_page_pte(vma, address, pmd, flags);
256
db08f203
AK
257 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
258 return no_page_table(vma, flags);
259
84c3fc4e 260retry_locked:
6742d293 261 ptl = pmd_lock(mm, pmd);
84c3fc4e
ZY
262 if (unlikely(!pmd_present(*pmd))) {
263 spin_unlock(ptl);
264 if (likely(!(flags & FOLL_MIGRATION)))
265 return no_page_table(vma, flags);
266 pmd_migration_entry_wait(mm, pmd);
267 goto retry_locked;
268 }
6742d293
KS
269 if (unlikely(!pmd_trans_huge(*pmd))) {
270 spin_unlock(ptl);
271 return follow_page_pte(vma, address, pmd, flags);
272 }
6742d293
KS
273 if (flags & FOLL_SPLIT) {
274 int ret;
275 page = pmd_page(*pmd);
276 if (is_huge_zero_page(page)) {
277 spin_unlock(ptl);
278 ret = 0;
78ddc534 279 split_huge_pmd(vma, pmd, address);
337d9abf
NH
280 if (pmd_trans_unstable(pmd))
281 ret = -EBUSY;
6742d293
KS
282 } else {
283 get_page(page);
69e68b4f 284 spin_unlock(ptl);
6742d293
KS
285 lock_page(page);
286 ret = split_huge_page(page);
287 unlock_page(page);
288 put_page(page);
baa355fd
KS
289 if (pmd_none(*pmd))
290 return no_page_table(vma, flags);
6742d293
KS
291 }
292
293 return ret ? ERR_PTR(ret) :
294 follow_page_pte(vma, address, pmd, flags);
69e68b4f 295 }
6742d293
KS
296 page = follow_trans_huge_pmd(vma, address, pmd, flags);
297 spin_unlock(ptl);
298 *page_mask = HPAGE_PMD_NR - 1;
299 return page;
4bbd4c77
KS
300}
301
080dbb61
AK
302
303static struct page *follow_pud_mask(struct vm_area_struct *vma,
304 unsigned long address, p4d_t *p4dp,
305 unsigned int flags, unsigned int *page_mask)
306{
307 pud_t *pud;
308 spinlock_t *ptl;
309 struct page *page;
310 struct mm_struct *mm = vma->vm_mm;
311
312 pud = pud_offset(p4dp, address);
313 if (pud_none(*pud))
314 return no_page_table(vma, flags);
315 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
316 page = follow_huge_pud(mm, address, pud, flags);
317 if (page)
318 return page;
319 return no_page_table(vma, flags);
320 }
4dc71451
AK
321 if (is_hugepd(__hugepd(pud_val(*pud)))) {
322 page = follow_huge_pd(vma, address,
323 __hugepd(pud_val(*pud)), flags,
324 PUD_SHIFT);
325 if (page)
326 return page;
327 return no_page_table(vma, flags);
328 }
080dbb61
AK
329 if (pud_devmap(*pud)) {
330 ptl = pud_lock(mm, pud);
331 page = follow_devmap_pud(vma, address, pud, flags);
332 spin_unlock(ptl);
333 if (page)
334 return page;
335 }
336 if (unlikely(pud_bad(*pud)))
337 return no_page_table(vma, flags);
338
339 return follow_pmd_mask(vma, address, pud, flags, page_mask);
340}
341
342
343static struct page *follow_p4d_mask(struct vm_area_struct *vma,
344 unsigned long address, pgd_t *pgdp,
345 unsigned int flags, unsigned int *page_mask)
346{
347 p4d_t *p4d;
4dc71451 348 struct page *page;
080dbb61
AK
349
350 p4d = p4d_offset(pgdp, address);
351 if (p4d_none(*p4d))
352 return no_page_table(vma, flags);
353 BUILD_BUG_ON(p4d_huge(*p4d));
354 if (unlikely(p4d_bad(*p4d)))
355 return no_page_table(vma, flags);
356
4dc71451
AK
357 if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
358 page = follow_huge_pd(vma, address,
359 __hugepd(p4d_val(*p4d)), flags,
360 P4D_SHIFT);
361 if (page)
362 return page;
363 return no_page_table(vma, flags);
364 }
080dbb61
AK
365 return follow_pud_mask(vma, address, p4d, flags, page_mask);
366}
367
368/**
369 * follow_page_mask - look up a page descriptor from a user-virtual address
370 * @vma: vm_area_struct mapping @address
371 * @address: virtual address to look up
372 * @flags: flags modifying lookup behaviour
373 * @page_mask: on output, *page_mask is set according to the size of the page
374 *
375 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
376 *
377 * Returns the mapped (struct page *), %NULL if no mapping exists, or
378 * an error pointer if there is a mapping to something not represented
379 * by a page descriptor (see also vm_normal_page()).
380 */
381struct page *follow_page_mask(struct vm_area_struct *vma,
382 unsigned long address, unsigned int flags,
383 unsigned int *page_mask)
384{
385 pgd_t *pgd;
386 struct page *page;
387 struct mm_struct *mm = vma->vm_mm;
388
389 *page_mask = 0;
390
391 /* make this handle hugepd */
392 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
393 if (!IS_ERR(page)) {
394 BUG_ON(flags & FOLL_GET);
395 return page;
396 }
397
398 pgd = pgd_offset(mm, address);
399
400 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
401 return no_page_table(vma, flags);
402
faaa5b62
AK
403 if (pgd_huge(*pgd)) {
404 page = follow_huge_pgd(mm, address, pgd, flags);
405 if (page)
406 return page;
407 return no_page_table(vma, flags);
408 }
4dc71451
AK
409 if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
410 page = follow_huge_pd(vma, address,
411 __hugepd(pgd_val(*pgd)), flags,
412 PGDIR_SHIFT);
413 if (page)
414 return page;
415 return no_page_table(vma, flags);
416 }
faaa5b62 417
080dbb61
AK
418 return follow_p4d_mask(vma, address, pgd, flags, page_mask);
419}
420
f2b495ca
KS
421static int get_gate_page(struct mm_struct *mm, unsigned long address,
422 unsigned int gup_flags, struct vm_area_struct **vma,
423 struct page **page)
424{
425 pgd_t *pgd;
c2febafc 426 p4d_t *p4d;
f2b495ca
KS
427 pud_t *pud;
428 pmd_t *pmd;
429 pte_t *pte;
430 int ret = -EFAULT;
431
432 /* user gate pages are read-only */
433 if (gup_flags & FOLL_WRITE)
434 return -EFAULT;
435 if (address > TASK_SIZE)
436 pgd = pgd_offset_k(address);
437 else
438 pgd = pgd_offset_gate(mm, address);
439 BUG_ON(pgd_none(*pgd));
c2febafc
KS
440 p4d = p4d_offset(pgd, address);
441 BUG_ON(p4d_none(*p4d));
442 pud = pud_offset(p4d, address);
f2b495ca
KS
443 BUG_ON(pud_none(*pud));
444 pmd = pmd_offset(pud, address);
84c3fc4e 445 if (!pmd_present(*pmd))
f2b495ca
KS
446 return -EFAULT;
447 VM_BUG_ON(pmd_trans_huge(*pmd));
448 pte = pte_offset_map(pmd, address);
449 if (pte_none(*pte))
450 goto unmap;
451 *vma = get_gate_vma(mm);
452 if (!page)
453 goto out;
454 *page = vm_normal_page(*vma, address, *pte);
455 if (!*page) {
456 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
457 goto unmap;
458 *page = pte_page(*pte);
df6ad698
JG
459
460 /*
461 * This should never happen (a device public page in the gate
462 * area).
463 */
464 if (is_device_public_page(*page))
465 goto unmap;
f2b495ca
KS
466 }
467 get_page(*page);
468out:
469 ret = 0;
470unmap:
471 pte_unmap(pte);
472 return ret;
473}
474
9a95f3cf
PC
475/*
476 * mmap_sem must be held on entry. If @nonblocking != NULL and
477 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
478 * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
479 */
16744483
KS
480static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
481 unsigned long address, unsigned int *flags, int *nonblocking)
482{
16744483
KS
483 unsigned int fault_flags = 0;
484 int ret;
485
de60f5f1
EM
486 /* mlock all present pages, but do not fault in new pages */
487 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
488 return -ENOENT;
16744483
KS
489 if (*flags & FOLL_WRITE)
490 fault_flags |= FAULT_FLAG_WRITE;
1b2ee126
DH
491 if (*flags & FOLL_REMOTE)
492 fault_flags |= FAULT_FLAG_REMOTE;
16744483
KS
493 if (nonblocking)
494 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
495 if (*flags & FOLL_NOWAIT)
496 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
234b239b
ALC
497 if (*flags & FOLL_TRIED) {
498 VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
499 fault_flags |= FAULT_FLAG_TRIED;
500 }
16744483 501
dcddffd4 502 ret = handle_mm_fault(vma, address, fault_flags);
16744483 503 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
504 int err = vm_fault_to_errno(ret, *flags);
505
506 if (err)
507 return err;
16744483
KS
508 BUG();
509 }
510
511 if (tsk) {
512 if (ret & VM_FAULT_MAJOR)
513 tsk->maj_flt++;
514 else
515 tsk->min_flt++;
516 }
517
518 if (ret & VM_FAULT_RETRY) {
519 if (nonblocking)
520 *nonblocking = 0;
521 return -EBUSY;
522 }
523
524 /*
525 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
526 * necessary, even if maybe_mkwrite decided not to set pte_write. We
527 * can thus safely do subsequent page lookups as if they were reads.
528 * But only do so when looping for pte_write is futile: in some cases
529 * userspace may also be wanting to write to the gotten user page,
530 * which a read fault here might prevent (a readonly page might get
531 * reCOWed by userspace write).
532 */
533 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
19be0eaf 534 *flags |= FOLL_COW;
16744483
KS
535 return 0;
536}
537
fa5bb209
KS
538static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
539{
540 vm_flags_t vm_flags = vma->vm_flags;
1b2ee126
DH
541 int write = (gup_flags & FOLL_WRITE);
542 int foreign = (gup_flags & FOLL_REMOTE);
fa5bb209
KS
543
544 if (vm_flags & (VM_IO | VM_PFNMAP))
545 return -EFAULT;
546
1b2ee126 547 if (write) {
fa5bb209
KS
548 if (!(vm_flags & VM_WRITE)) {
549 if (!(gup_flags & FOLL_FORCE))
550 return -EFAULT;
551 /*
552 * We used to let the write,force case do COW in a
553 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
554 * set a breakpoint in a read-only mapping of an
555 * executable, without corrupting the file (yet only
556 * when that file had been opened for writing!).
557 * Anon pages in shared mappings are surprising: now
558 * just reject it.
559 */
46435364 560 if (!is_cow_mapping(vm_flags))
fa5bb209 561 return -EFAULT;
fa5bb209
KS
562 }
563 } else if (!(vm_flags & VM_READ)) {
564 if (!(gup_flags & FOLL_FORCE))
565 return -EFAULT;
566 /*
567 * Is there actually any vma we can reach here which does not
568 * have VM_MAYREAD set?
569 */
570 if (!(vm_flags & VM_MAYREAD))
571 return -EFAULT;
572 }
d61172b4
DH
573 /*
574 * gups are always data accesses, not instruction
575 * fetches, so execute=false here
576 */
577 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2 578 return -EFAULT;
fa5bb209
KS
579 return 0;
580}
581
4bbd4c77
KS
582/**
583 * __get_user_pages() - pin user pages in memory
584 * @tsk: task_struct of target task
585 * @mm: mm_struct of target mm
586 * @start: starting user address
587 * @nr_pages: number of pages from start to pin
588 * @gup_flags: flags modifying pin behaviour
589 * @pages: array that receives pointers to the pages pinned.
590 * Should be at least nr_pages long. Or NULL, if caller
591 * only intends to ensure the pages are faulted in.
592 * @vmas: array of pointers to vmas corresponding to each page.
593 * Or NULL if the caller does not require them.
594 * @nonblocking: whether waiting for disk IO or mmap_sem contention
595 *
596 * Returns number of pages pinned. This may be fewer than the number
597 * requested. If nr_pages is 0 or negative, returns 0. If no pages
598 * were pinned, returns -errno. Each page returned must be released
599 * with a put_page() call when it is finished with. vmas will only
600 * remain valid while mmap_sem is held.
601 *
9a95f3cf 602 * Must be called with mmap_sem held. It may be released. See below.
4bbd4c77
KS
603 *
604 * __get_user_pages walks a process's page tables and takes a reference to
605 * each struct page that each user address corresponds to at a given
606 * instant. That is, it takes the page that would be accessed if a user
607 * thread accesses the given user virtual address at that instant.
608 *
609 * This does not guarantee that the page exists in the user mappings when
610 * __get_user_pages returns, and there may even be a completely different
611 * page there in some cases (eg. if mmapped pagecache has been invalidated
612 * and subsequently re faulted). However it does guarantee that the page
613 * won't be freed completely. And mostly callers simply care that the page
614 * contains data that was valid *at some point in time*. Typically, an IO
615 * or similar operation cannot guarantee anything stronger anyway because
616 * locks can't be held over the syscall boundary.
617 *
618 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
619 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
620 * appropriate) must be called after the page is finished with, and
621 * before put_page is called.
622 *
623 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
624 * or mmap_sem contention, and if waiting is needed to pin all pages,
9a95f3cf
PC
625 * *@nonblocking will be set to 0. Further, if @gup_flags does not
626 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
627 * this case.
628 *
629 * A caller using such a combination of @nonblocking and @gup_flags
630 * must therefore hold the mmap_sem for reading only, and recognize
631 * when it's been released. Otherwise, it must be held for either
632 * reading or writing and will not be released.
4bbd4c77
KS
633 *
634 * In most cases, get_user_pages or get_user_pages_fast should be used
635 * instead of __get_user_pages. __get_user_pages should be used only if
636 * you need some special @gup_flags.
637 */
0d731759 638static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
4bbd4c77
KS
639 unsigned long start, unsigned long nr_pages,
640 unsigned int gup_flags, struct page **pages,
641 struct vm_area_struct **vmas, int *nonblocking)
642{
fa5bb209 643 long i = 0;
4bbd4c77 644 unsigned int page_mask;
fa5bb209 645 struct vm_area_struct *vma = NULL;
4bbd4c77
KS
646
647 if (!nr_pages)
648 return 0;
649
650 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
651
652 /*
653 * If FOLL_FORCE is set then do not force a full fault as the hinting
654 * fault information is unrelated to the reference behaviour of a task
655 * using the address space
656 */
657 if (!(gup_flags & FOLL_FORCE))
658 gup_flags |= FOLL_NUMA;
659
4bbd4c77 660 do {
fa5bb209
KS
661 struct page *page;
662 unsigned int foll_flags = gup_flags;
663 unsigned int page_increm;
664
665 /* first iteration or cross vma bound */
666 if (!vma || start >= vma->vm_end) {
667 vma = find_extend_vma(mm, start);
668 if (!vma && in_gate_area(mm, start)) {
669 int ret;
670 ret = get_gate_page(mm, start & PAGE_MASK,
671 gup_flags, &vma,
672 pages ? &pages[i] : NULL);
673 if (ret)
674 return i ? : ret;
675 page_mask = 0;
676 goto next_page;
677 }
4bbd4c77 678
fa5bb209
KS
679 if (!vma || check_vma_flags(vma, gup_flags))
680 return i ? : -EFAULT;
681 if (is_vm_hugetlb_page(vma)) {
682 i = follow_hugetlb_page(mm, vma, pages, vmas,
683 &start, &nr_pages, i,
87ffc118 684 gup_flags, nonblocking);
fa5bb209 685 continue;
4bbd4c77 686 }
fa5bb209
KS
687 }
688retry:
689 /*
690 * If we have a pending SIGKILL, don't keep faulting pages and
691 * potentially allocating memory.
692 */
693 if (unlikely(fatal_signal_pending(current)))
694 return i ? i : -ERESTARTSYS;
695 cond_resched();
696 page = follow_page_mask(vma, start, foll_flags, &page_mask);
697 if (!page) {
698 int ret;
699 ret = faultin_page(tsk, vma, start, &foll_flags,
700 nonblocking);
701 switch (ret) {
702 case 0:
703 goto retry;
704 case -EFAULT:
705 case -ENOMEM:
706 case -EHWPOISON:
707 return i ? i : ret;
708 case -EBUSY:
709 return i;
710 case -ENOENT:
711 goto next_page;
4bbd4c77 712 }
fa5bb209 713 BUG();
1027e443
KS
714 } else if (PTR_ERR(page) == -EEXIST) {
715 /*
716 * Proper page table entry exists, but no corresponding
717 * struct page.
718 */
719 goto next_page;
720 } else if (IS_ERR(page)) {
fa5bb209 721 return i ? i : PTR_ERR(page);
1027e443 722 }
fa5bb209
KS
723 if (pages) {
724 pages[i] = page;
725 flush_anon_page(vma, page, start);
726 flush_dcache_page(page);
727 page_mask = 0;
4bbd4c77 728 }
4bbd4c77 729next_page:
fa5bb209
KS
730 if (vmas) {
731 vmas[i] = vma;
732 page_mask = 0;
733 }
734 page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
735 if (page_increm > nr_pages)
736 page_increm = nr_pages;
737 i += page_increm;
738 start += page_increm * PAGE_SIZE;
739 nr_pages -= page_increm;
4bbd4c77
KS
740 } while (nr_pages);
741 return i;
4bbd4c77 742}
4bbd4c77 743
771ab430
TK
744static bool vma_permits_fault(struct vm_area_struct *vma,
745 unsigned int fault_flags)
d4925e00 746{
1b2ee126
DH
747 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
748 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
33a709b2 749 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
d4925e00
DH
750
751 if (!(vm_flags & vma->vm_flags))
752 return false;
753
33a709b2
DH
754 /*
755 * The architecture might have a hardware protection
1b2ee126 756 * mechanism other than read/write that can deny access.
d61172b4
DH
757 *
758 * gup always represents data access, not instruction
759 * fetches, so execute=false here:
33a709b2 760 */
d61172b4 761 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2
DH
762 return false;
763
d4925e00
DH
764 return true;
765}
766
4bbd4c77
KS
767/*
768 * fixup_user_fault() - manually resolve a user page fault
769 * @tsk: the task_struct to use for page fault accounting, or
770 * NULL if faults are not to be recorded.
771 * @mm: mm_struct of target mm
772 * @address: user address
773 * @fault_flags:flags to pass down to handle_mm_fault()
4a9e1cda
DD
774 * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller
775 * does not allow retry
4bbd4c77
KS
776 *
777 * This is meant to be called in the specific scenario where for locking reasons
778 * we try to access user memory in atomic context (within a pagefault_disable()
779 * section), this returns -EFAULT, and we want to resolve the user fault before
780 * trying again.
781 *
782 * Typically this is meant to be used by the futex code.
783 *
784 * The main difference with get_user_pages() is that this function will
785 * unconditionally call handle_mm_fault() which will in turn perform all the
786 * necessary SW fixup of the dirty and young bits in the PTE, while
4a9e1cda 787 * get_user_pages() only guarantees to update these in the struct page.
4bbd4c77
KS
788 *
789 * This is important for some architectures where those bits also gate the
790 * access permission to the page because they are maintained in software. On
791 * such architectures, gup() will not be enough to make a subsequent access
792 * succeed.
793 *
4a9e1cda
DD
794 * This function will not return with an unlocked mmap_sem. So it has not the
795 * same semantics wrt the @mm->mmap_sem as does filemap_fault().
4bbd4c77
KS
796 */
797int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
4a9e1cda
DD
798 unsigned long address, unsigned int fault_flags,
799 bool *unlocked)
4bbd4c77
KS
800{
801 struct vm_area_struct *vma;
4a9e1cda
DD
802 int ret, major = 0;
803
804 if (unlocked)
805 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4bbd4c77 806
4a9e1cda 807retry:
4bbd4c77
KS
808 vma = find_extend_vma(mm, address);
809 if (!vma || address < vma->vm_start)
810 return -EFAULT;
811
d4925e00 812 if (!vma_permits_fault(vma, fault_flags))
4bbd4c77
KS
813 return -EFAULT;
814
dcddffd4 815 ret = handle_mm_fault(vma, address, fault_flags);
4a9e1cda 816 major |= ret & VM_FAULT_MAJOR;
4bbd4c77 817 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
818 int err = vm_fault_to_errno(ret, 0);
819
820 if (err)
821 return err;
4bbd4c77
KS
822 BUG();
823 }
4a9e1cda
DD
824
825 if (ret & VM_FAULT_RETRY) {
826 down_read(&mm->mmap_sem);
827 if (!(fault_flags & FAULT_FLAG_TRIED)) {
828 *unlocked = true;
829 fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
830 fault_flags |= FAULT_FLAG_TRIED;
831 goto retry;
832 }
833 }
834
4bbd4c77 835 if (tsk) {
4a9e1cda 836 if (major)
4bbd4c77
KS
837 tsk->maj_flt++;
838 else
839 tsk->min_flt++;
840 }
841 return 0;
842}
add6a0cd 843EXPORT_SYMBOL_GPL(fixup_user_fault);
4bbd4c77 844
f0818f47
AA
845static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
846 struct mm_struct *mm,
847 unsigned long start,
848 unsigned long nr_pages,
f0818f47
AA
849 struct page **pages,
850 struct vm_area_struct **vmas,
0fd71a56
AA
851 int *locked, bool notify_drop,
852 unsigned int flags)
f0818f47 853{
f0818f47
AA
854 long ret, pages_done;
855 bool lock_dropped;
856
857 if (locked) {
858 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
859 BUG_ON(vmas);
860 /* check caller initialized locked */
861 BUG_ON(*locked != 1);
862 }
863
864 if (pages)
865 flags |= FOLL_GET;
f0818f47
AA
866
867 pages_done = 0;
868 lock_dropped = false;
869 for (;;) {
870 ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
871 vmas, locked);
872 if (!locked)
873 /* VM_FAULT_RETRY couldn't trigger, bypass */
874 return ret;
875
876 /* VM_FAULT_RETRY cannot return errors */
877 if (!*locked) {
878 BUG_ON(ret < 0);
879 BUG_ON(ret >= nr_pages);
880 }
881
882 if (!pages)
883 /* If it's a prefault don't insist harder */
884 return ret;
885
886 if (ret > 0) {
887 nr_pages -= ret;
888 pages_done += ret;
889 if (!nr_pages)
890 break;
891 }
892 if (*locked) {
893 /* VM_FAULT_RETRY didn't trigger */
894 if (!pages_done)
895 pages_done = ret;
896 break;
897 }
898 /* VM_FAULT_RETRY triggered, so seek to the faulting offset */
899 pages += ret;
900 start += ret << PAGE_SHIFT;
901
902 /*
903 * Repeat on the address that fired VM_FAULT_RETRY
904 * without FAULT_FLAG_ALLOW_RETRY but with
905 * FAULT_FLAG_TRIED.
906 */
907 *locked = 1;
908 lock_dropped = true;
909 down_read(&mm->mmap_sem);
910 ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
911 pages, NULL, NULL);
912 if (ret != 1) {
913 BUG_ON(ret > 1);
914 if (!pages_done)
915 pages_done = ret;
916 break;
917 }
918 nr_pages--;
919 pages_done++;
920 if (!nr_pages)
921 break;
922 pages++;
923 start += PAGE_SIZE;
924 }
925 if (notify_drop && lock_dropped && *locked) {
926 /*
927 * We must let the caller know we temporarily dropped the lock
928 * and so the critical section protected by it was lost.
929 */
930 up_read(&mm->mmap_sem);
931 *locked = 0;
932 }
933 return pages_done;
934}
935
936/*
937 * We can leverage the VM_FAULT_RETRY functionality in the page fault
938 * paths better by using either get_user_pages_locked() or
939 * get_user_pages_unlocked().
940 *
941 * get_user_pages_locked() is suitable to replace the form:
942 *
943 * down_read(&mm->mmap_sem);
944 * do_something()
945 * get_user_pages(tsk, mm, ..., pages, NULL);
946 * up_read(&mm->mmap_sem);
947 *
948 * to:
949 *
950 * int locked = 1;
951 * down_read(&mm->mmap_sem);
952 * do_something()
953 * get_user_pages_locked(tsk, mm, ..., pages, &locked);
954 * if (locked)
955 * up_read(&mm->mmap_sem);
956 */
c12d2da5 957long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
3b913179 958 unsigned int gup_flags, struct page **pages,
f0818f47
AA
959 int *locked)
960{
cde70140 961 return __get_user_pages_locked(current, current->mm, start, nr_pages,
3b913179
LS
962 pages, NULL, locked, true,
963 gup_flags | FOLL_TOUCH);
f0818f47 964}
c12d2da5 965EXPORT_SYMBOL(get_user_pages_locked);
f0818f47
AA
966
967/*
968 * get_user_pages_unlocked() is suitable to replace the form:
969 *
970 * down_read(&mm->mmap_sem);
971 * get_user_pages(tsk, mm, ..., pages, NULL);
972 * up_read(&mm->mmap_sem);
973 *
974 * with:
975 *
976 * get_user_pages_unlocked(tsk, mm, ..., pages);
977 *
978 * It is functionally equivalent to get_user_pages_fast so
80a79516
LS
979 * get_user_pages_fast should be used instead if specific gup_flags
980 * (e.g. FOLL_FORCE) are not required.
f0818f47 981 */
c12d2da5 982long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 983 struct page **pages, unsigned int gup_flags)
f0818f47 984{
c803c9c6
AV
985 struct mm_struct *mm = current->mm;
986 int locked = 1;
987 long ret;
988
989 down_read(&mm->mmap_sem);
990 ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL,
14cb138d 991 &locked, true, gup_flags | FOLL_TOUCH);
c803c9c6
AV
992 if (locked)
993 up_read(&mm->mmap_sem);
994 return ret;
f0818f47 995}
c12d2da5 996EXPORT_SYMBOL(get_user_pages_unlocked);
f0818f47 997
4bbd4c77 998/*
1e987790 999 * get_user_pages_remote() - pin user pages in memory
4bbd4c77
KS
1000 * @tsk: the task_struct to use for page fault accounting, or
1001 * NULL if faults are not to be recorded.
1002 * @mm: mm_struct of target mm
1003 * @start: starting user address
1004 * @nr_pages: number of pages from start to pin
9beae1ea 1005 * @gup_flags: flags modifying lookup behaviour
4bbd4c77
KS
1006 * @pages: array that receives pointers to the pages pinned.
1007 * Should be at least nr_pages long. Or NULL, if caller
1008 * only intends to ensure the pages are faulted in.
1009 * @vmas: array of pointers to vmas corresponding to each page.
1010 * Or NULL if the caller does not require them.
5b56d49f
LS
1011 * @locked: pointer to lock flag indicating whether lock is held and
1012 * subsequently whether VM_FAULT_RETRY functionality can be
1013 * utilised. Lock must initially be held.
4bbd4c77
KS
1014 *
1015 * Returns number of pages pinned. This may be fewer than the number
1016 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1017 * were pinned, returns -errno. Each page returned must be released
1018 * with a put_page() call when it is finished with. vmas will only
1019 * remain valid while mmap_sem is held.
1020 *
1021 * Must be called with mmap_sem held for read or write.
1022 *
1023 * get_user_pages walks a process's page tables and takes a reference to
1024 * each struct page that each user address corresponds to at a given
1025 * instant. That is, it takes the page that would be accessed if a user
1026 * thread accesses the given user virtual address at that instant.
1027 *
1028 * This does not guarantee that the page exists in the user mappings when
1029 * get_user_pages returns, and there may even be a completely different
1030 * page there in some cases (eg. if mmapped pagecache has been invalidated
1031 * and subsequently re faulted). However it does guarantee that the page
1032 * won't be freed completely. And mostly callers simply care that the page
1033 * contains data that was valid *at some point in time*. Typically, an IO
1034 * or similar operation cannot guarantee anything stronger anyway because
1035 * locks can't be held over the syscall boundary.
1036 *
9beae1ea
LS
1037 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1038 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1039 * be called after the page is finished with, and before put_page is called.
4bbd4c77
KS
1040 *
1041 * get_user_pages is typically used for fewer-copy IO operations, to get a
1042 * handle on the memory by some means other than accesses via the user virtual
1043 * addresses. The pages may be submitted for DMA to devices or accessed via
1044 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1045 * use the correct cache flushing APIs.
1046 *
1047 * See also get_user_pages_fast, for performance critical applications.
f0818f47
AA
1048 *
1049 * get_user_pages should be phased out in favor of
1050 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1051 * should use get_user_pages because it cannot pass
1052 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
4bbd4c77 1053 */
1e987790
DH
1054long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1055 unsigned long start, unsigned long nr_pages,
9beae1ea 1056 unsigned int gup_flags, struct page **pages,
5b56d49f 1057 struct vm_area_struct **vmas, int *locked)
4bbd4c77 1058{
859110d7 1059 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
5b56d49f 1060 locked, true,
9beae1ea 1061 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1e987790
DH
1062}
1063EXPORT_SYMBOL(get_user_pages_remote);
1064
1065/*
d4edcf0d
DH
1066 * This is the same as get_user_pages_remote(), just with a
1067 * less-flexible calling convention where we assume that the task
5b56d49f
LS
1068 * and mm being operated on are the current task's and don't allow
1069 * passing of a locked parameter. We also obviously don't pass
1070 * FOLL_REMOTE in here.
1e987790 1071 */
c12d2da5 1072long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 1073 unsigned int gup_flags, struct page **pages,
1e987790
DH
1074 struct vm_area_struct **vmas)
1075{
cde70140 1076 return __get_user_pages_locked(current, current->mm, start, nr_pages,
768ae309
LS
1077 pages, vmas, NULL, false,
1078 gup_flags | FOLL_TOUCH);
4bbd4c77 1079}
c12d2da5 1080EXPORT_SYMBOL(get_user_pages);
4bbd4c77 1081
acc3c8d1
KS
1082/**
1083 * populate_vma_page_range() - populate a range of pages in the vma.
1084 * @vma: target vma
1085 * @start: start address
1086 * @end: end address
1087 * @nonblocking:
1088 *
1089 * This takes care of mlocking the pages too if VM_LOCKED is set.
1090 *
1091 * return 0 on success, negative error code on error.
1092 *
1093 * vma->vm_mm->mmap_sem must be held.
1094 *
1095 * If @nonblocking is NULL, it may be held for read or write and will
1096 * be unperturbed.
1097 *
1098 * If @nonblocking is non-NULL, it must held for read only and may be
1099 * released. If it's released, *@nonblocking will be set to 0.
1100 */
1101long populate_vma_page_range(struct vm_area_struct *vma,
1102 unsigned long start, unsigned long end, int *nonblocking)
1103{
1104 struct mm_struct *mm = vma->vm_mm;
1105 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1106 int gup_flags;
1107
1108 VM_BUG_ON(start & ~PAGE_MASK);
1109 VM_BUG_ON(end & ~PAGE_MASK);
1110 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1111 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1112 VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
1113
de60f5f1
EM
1114 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1115 if (vma->vm_flags & VM_LOCKONFAULT)
1116 gup_flags &= ~FOLL_POPULATE;
acc3c8d1
KS
1117 /*
1118 * We want to touch writable mappings with a write fault in order
1119 * to break COW, except for shared mappings because these don't COW
1120 * and we would not want to dirty them for nothing.
1121 */
1122 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1123 gup_flags |= FOLL_WRITE;
1124
1125 /*
1126 * We want mlock to succeed for regions that have any permissions
1127 * other than PROT_NONE.
1128 */
1129 if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
1130 gup_flags |= FOLL_FORCE;
1131
1132 /*
1133 * We made sure addr is within a VMA, so the following will
1134 * not result in a stack expansion that recurses back here.
1135 */
1136 return __get_user_pages(current, mm, start, nr_pages, gup_flags,
1137 NULL, NULL, nonblocking);
1138}
1139
1140/*
1141 * __mm_populate - populate and/or mlock pages within a range of address space.
1142 *
1143 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1144 * flags. VMAs must be already marked with the desired vm_flags, and
1145 * mmap_sem must not be held.
1146 */
1147int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1148{
1149 struct mm_struct *mm = current->mm;
1150 unsigned long end, nstart, nend;
1151 struct vm_area_struct *vma = NULL;
1152 int locked = 0;
1153 long ret = 0;
1154
1155 VM_BUG_ON(start & ~PAGE_MASK);
1156 VM_BUG_ON(len != PAGE_ALIGN(len));
1157 end = start + len;
1158
1159 for (nstart = start; nstart < end; nstart = nend) {
1160 /*
1161 * We want to fault in pages for [nstart; end) address range.
1162 * Find first corresponding VMA.
1163 */
1164 if (!locked) {
1165 locked = 1;
1166 down_read(&mm->mmap_sem);
1167 vma = find_vma(mm, nstart);
1168 } else if (nstart >= vma->vm_end)
1169 vma = vma->vm_next;
1170 if (!vma || vma->vm_start >= end)
1171 break;
1172 /*
1173 * Set [nstart; nend) to intersection of desired address
1174 * range with the first VMA. Also, skip undesirable VMA types.
1175 */
1176 nend = min(end, vma->vm_end);
1177 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1178 continue;
1179 if (nstart < vma->vm_start)
1180 nstart = vma->vm_start;
1181 /*
1182 * Now fault in a range of pages. populate_vma_page_range()
1183 * double checks the vma flags, so that it won't mlock pages
1184 * if the vma was already munlocked.
1185 */
1186 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1187 if (ret < 0) {
1188 if (ignore_errors) {
1189 ret = 0;
1190 continue; /* continue at next VMA */
1191 }
1192 break;
1193 }
1194 nend = nstart + ret * PAGE_SIZE;
1195 ret = 0;
1196 }
1197 if (locked)
1198 up_read(&mm->mmap_sem);
1199 return ret; /* 0 or negative error code */
1200}
1201
4bbd4c77
KS
1202/**
1203 * get_dump_page() - pin user page in memory while writing it to core dump
1204 * @addr: user address
1205 *
1206 * Returns struct page pointer of user page pinned for dump,
ea1754a0 1207 * to be freed afterwards by put_page().
4bbd4c77
KS
1208 *
1209 * Returns NULL on any kind of failure - a hole must then be inserted into
1210 * the corefile, to preserve alignment with its headers; and also returns
1211 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1212 * allowing a hole to be left in the corefile to save diskspace.
1213 *
1214 * Called without mmap_sem, but after all other threads have been killed.
1215 */
1216#ifdef CONFIG_ELF_CORE
1217struct page *get_dump_page(unsigned long addr)
1218{
1219 struct vm_area_struct *vma;
1220 struct page *page;
1221
1222 if (__get_user_pages(current, current->mm, addr, 1,
1223 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1224 NULL) < 1)
1225 return NULL;
1226 flush_cache_page(vma, addr, page_to_pfn(page));
1227 return page;
1228}
1229#endif /* CONFIG_ELF_CORE */
2667f50e
SC
1230
1231/*
e585513b 1232 * Generic Fast GUP
2667f50e
SC
1233 *
1234 * get_user_pages_fast attempts to pin user pages by walking the page
1235 * tables directly and avoids taking locks. Thus the walker needs to be
1236 * protected from page table pages being freed from under it, and should
1237 * block any THP splits.
1238 *
1239 * One way to achieve this is to have the walker disable interrupts, and
1240 * rely on IPIs from the TLB flushing code blocking before the page table
1241 * pages are freed. This is unsuitable for architectures that do not need
1242 * to broadcast an IPI when invalidating TLBs.
1243 *
1244 * Another way to achieve this is to batch up page table containing pages
1245 * belonging to more than one mm_user, then rcu_sched a callback to free those
1246 * pages. Disabling interrupts will allow the fast_gup walker to both block
1247 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1248 * (which is a relatively rare event). The code below adopts this strategy.
1249 *
1250 * Before activating this code, please be aware that the following assumptions
1251 * are currently made:
1252 *
e585513b
KS
1253 * *) Either HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
1254 * free pages containing page tables or TLB flushing requires IPI broadcast.
2667f50e 1255 *
2667f50e
SC
1256 * *) ptes can be read atomically by the architecture.
1257 *
1258 * *) access_ok is sufficient to validate userspace address ranges.
1259 *
1260 * The last two assumptions can be relaxed by the addition of helper functions.
1261 *
1262 * This code is based heavily on the PowerPC implementation by Nick Piggin.
1263 */
e585513b 1264#ifdef CONFIG_HAVE_GENERIC_GUP
2667f50e 1265
0005d20b
KS
1266#ifndef gup_get_pte
1267/*
1268 * We assume that the PTE can be read atomically. If this is not the case for
1269 * your architecture, please provide the helper.
1270 */
1271static inline pte_t gup_get_pte(pte_t *ptep)
1272{
1273 return READ_ONCE(*ptep);
1274}
1275#endif
1276
b59f65fa
KS
1277static void undo_dev_pagemap(int *nr, int nr_start, struct page **pages)
1278{
1279 while ((*nr) - nr_start) {
1280 struct page *page = pages[--(*nr)];
1281
1282 ClearPageReferenced(page);
1283 put_page(page);
1284 }
1285}
1286
2667f50e
SC
1287#ifdef __HAVE_ARCH_PTE_SPECIAL
1288static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1289 int write, struct page **pages, int *nr)
1290{
b59f65fa
KS
1291 struct dev_pagemap *pgmap = NULL;
1292 int nr_start = *nr, ret = 0;
2667f50e 1293 pte_t *ptep, *ptem;
2667f50e
SC
1294
1295 ptem = ptep = pte_offset_map(&pmd, addr);
1296 do {
0005d20b 1297 pte_t pte = gup_get_pte(ptep);
7aef4172 1298 struct page *head, *page;
2667f50e
SC
1299
1300 /*
1301 * Similar to the PMD case below, NUMA hinting must take slow
8a0516ed 1302 * path using the pte_protnone check.
2667f50e 1303 */
e7884f8e
KS
1304 if (pte_protnone(pte))
1305 goto pte_unmap;
1306
1307 if (!pte_access_permitted(pte, write))
1308 goto pte_unmap;
1309
b59f65fa
KS
1310 if (pte_devmap(pte)) {
1311 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
1312 if (unlikely(!pgmap)) {
1313 undo_dev_pagemap(nr, nr_start, pages);
1314 goto pte_unmap;
1315 }
1316 } else if (pte_special(pte))
2667f50e
SC
1317 goto pte_unmap;
1318
1319 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1320 page = pte_page(pte);
7aef4172 1321 head = compound_head(page);
2667f50e 1322
7aef4172 1323 if (!page_cache_get_speculative(head))
2667f50e
SC
1324 goto pte_unmap;
1325
1326 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
7aef4172 1327 put_page(head);
2667f50e
SC
1328 goto pte_unmap;
1329 }
1330
7aef4172 1331 VM_BUG_ON_PAGE(compound_head(page) != head, page);
e9348053 1332
b59f65fa 1333 put_dev_pagemap(pgmap);
e9348053 1334 SetPageReferenced(page);
2667f50e
SC
1335 pages[*nr] = page;
1336 (*nr)++;
1337
1338 } while (ptep++, addr += PAGE_SIZE, addr != end);
1339
1340 ret = 1;
1341
1342pte_unmap:
1343 pte_unmap(ptem);
1344 return ret;
1345}
1346#else
1347
1348/*
1349 * If we can't determine whether or not a pte is special, then fail immediately
1350 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1351 * to be special.
1352 *
1353 * For a futex to be placed on a THP tail page, get_futex_key requires a
1354 * __get_user_pages_fast implementation that can pin pages. Thus it's still
1355 * useful to have gup_huge_pmd even if we can't operate on ptes.
1356 */
1357static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1358 int write, struct page **pages, int *nr)
1359{
1360 return 0;
1361}
1362#endif /* __HAVE_ARCH_PTE_SPECIAL */
1363
09180ca4 1364#if defined(__HAVE_ARCH_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
b59f65fa
KS
1365static int __gup_device_huge(unsigned long pfn, unsigned long addr,
1366 unsigned long end, struct page **pages, int *nr)
1367{
1368 int nr_start = *nr;
1369 struct dev_pagemap *pgmap = NULL;
1370
1371 do {
1372 struct page *page = pfn_to_page(pfn);
1373
1374 pgmap = get_dev_pagemap(pfn, pgmap);
1375 if (unlikely(!pgmap)) {
1376 undo_dev_pagemap(nr, nr_start, pages);
1377 return 0;
1378 }
1379 SetPageReferenced(page);
1380 pages[*nr] = page;
1381 get_page(page);
1382 put_dev_pagemap(pgmap);
1383 (*nr)++;
1384 pfn++;
1385 } while (addr += PAGE_SIZE, addr != end);
1386 return 1;
1387}
1388
1389static int __gup_device_huge_pmd(pmd_t pmd, unsigned long addr,
1390 unsigned long end, struct page **pages, int *nr)
1391{
1392 unsigned long fault_pfn;
1393
1394 fault_pfn = pmd_pfn(pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1395 return __gup_device_huge(fault_pfn, addr, end, pages, nr);
1396}
1397
1398static int __gup_device_huge_pud(pud_t pud, unsigned long addr,
1399 unsigned long end, struct page **pages, int *nr)
1400{
1401 unsigned long fault_pfn;
1402
1403 fault_pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1404 return __gup_device_huge(fault_pfn, addr, end, pages, nr);
1405}
1406#else
1407static int __gup_device_huge_pmd(pmd_t pmd, unsigned long addr,
1408 unsigned long end, struct page **pages, int *nr)
1409{
1410 BUILD_BUG();
1411 return 0;
1412}
1413
1414static int __gup_device_huge_pud(pud_t pud, unsigned long addr,
1415 unsigned long end, struct page **pages, int *nr)
1416{
1417 BUILD_BUG();
1418 return 0;
1419}
1420#endif
1421
2667f50e
SC
1422static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1423 unsigned long end, int write, struct page **pages, int *nr)
1424{
ddc58f27 1425 struct page *head, *page;
2667f50e
SC
1426 int refs;
1427
e7884f8e 1428 if (!pmd_access_permitted(orig, write))
2667f50e
SC
1429 return 0;
1430
b59f65fa
KS
1431 if (pmd_devmap(orig))
1432 return __gup_device_huge_pmd(orig, addr, end, pages, nr);
1433
2667f50e 1434 refs = 0;
d63206ee 1435 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2667f50e 1436 do {
2667f50e
SC
1437 pages[*nr] = page;
1438 (*nr)++;
1439 page++;
1440 refs++;
1441 } while (addr += PAGE_SIZE, addr != end);
1442
d63206ee 1443 head = compound_head(pmd_page(orig));
2667f50e
SC
1444 if (!page_cache_add_speculative(head, refs)) {
1445 *nr -= refs;
1446 return 0;
1447 }
1448
1449 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1450 *nr -= refs;
1451 while (refs--)
1452 put_page(head);
1453 return 0;
1454 }
1455
e9348053 1456 SetPageReferenced(head);
2667f50e
SC
1457 return 1;
1458}
1459
1460static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1461 unsigned long end, int write, struct page **pages, int *nr)
1462{
ddc58f27 1463 struct page *head, *page;
2667f50e
SC
1464 int refs;
1465
e7884f8e 1466 if (!pud_access_permitted(orig, write))
2667f50e
SC
1467 return 0;
1468
b59f65fa
KS
1469 if (pud_devmap(orig))
1470 return __gup_device_huge_pud(orig, addr, end, pages, nr);
1471
2667f50e 1472 refs = 0;
d63206ee 1473 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2667f50e 1474 do {
2667f50e
SC
1475 pages[*nr] = page;
1476 (*nr)++;
1477 page++;
1478 refs++;
1479 } while (addr += PAGE_SIZE, addr != end);
1480
d63206ee 1481 head = compound_head(pud_page(orig));
2667f50e
SC
1482 if (!page_cache_add_speculative(head, refs)) {
1483 *nr -= refs;
1484 return 0;
1485 }
1486
1487 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1488 *nr -= refs;
1489 while (refs--)
1490 put_page(head);
1491 return 0;
1492 }
1493
e9348053 1494 SetPageReferenced(head);
2667f50e
SC
1495 return 1;
1496}
1497
f30c59e9
AK
1498static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
1499 unsigned long end, int write,
1500 struct page **pages, int *nr)
1501{
1502 int refs;
ddc58f27 1503 struct page *head, *page;
f30c59e9 1504
e7884f8e 1505 if (!pgd_access_permitted(orig, write))
f30c59e9
AK
1506 return 0;
1507
b59f65fa 1508 BUILD_BUG_ON(pgd_devmap(orig));
f30c59e9 1509 refs = 0;
d63206ee 1510 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
f30c59e9 1511 do {
f30c59e9
AK
1512 pages[*nr] = page;
1513 (*nr)++;
1514 page++;
1515 refs++;
1516 } while (addr += PAGE_SIZE, addr != end);
1517
d63206ee 1518 head = compound_head(pgd_page(orig));
f30c59e9
AK
1519 if (!page_cache_add_speculative(head, refs)) {
1520 *nr -= refs;
1521 return 0;
1522 }
1523
1524 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
1525 *nr -= refs;
1526 while (refs--)
1527 put_page(head);
1528 return 0;
1529 }
1530
e9348053 1531 SetPageReferenced(head);
f30c59e9
AK
1532 return 1;
1533}
1534
2667f50e
SC
1535static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
1536 int write, struct page **pages, int *nr)
1537{
1538 unsigned long next;
1539 pmd_t *pmdp;
1540
1541 pmdp = pmd_offset(&pud, addr);
1542 do {
38c5ce93 1543 pmd_t pmd = READ_ONCE(*pmdp);
2667f50e
SC
1544
1545 next = pmd_addr_end(addr, end);
84c3fc4e 1546 if (!pmd_present(pmd))
2667f50e
SC
1547 return 0;
1548
1549 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd))) {
1550 /*
1551 * NUMA hinting faults need to be handled in the GUP
1552 * slowpath for accounting purposes and so that they
1553 * can be serialised against THP migration.
1554 */
8a0516ed 1555 if (pmd_protnone(pmd))
2667f50e
SC
1556 return 0;
1557
1558 if (!gup_huge_pmd(pmd, pmdp, addr, next, write,
1559 pages, nr))
1560 return 0;
1561
f30c59e9
AK
1562 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
1563 /*
1564 * architecture have different format for hugetlbfs
1565 * pmd format and THP pmd format
1566 */
1567 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
1568 PMD_SHIFT, next, write, pages, nr))
1569 return 0;
2667f50e
SC
1570 } else if (!gup_pte_range(pmd, addr, next, write, pages, nr))
1571 return 0;
1572 } while (pmdp++, addr = next, addr != end);
1573
1574 return 1;
1575}
1576
c2febafc 1577static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
f30c59e9 1578 int write, struct page **pages, int *nr)
2667f50e
SC
1579{
1580 unsigned long next;
1581 pud_t *pudp;
1582
c2febafc 1583 pudp = pud_offset(&p4d, addr);
2667f50e 1584 do {
e37c6982 1585 pud_t pud = READ_ONCE(*pudp);
2667f50e
SC
1586
1587 next = pud_addr_end(addr, end);
1588 if (pud_none(pud))
1589 return 0;
f30c59e9 1590 if (unlikely(pud_huge(pud))) {
2667f50e 1591 if (!gup_huge_pud(pud, pudp, addr, next, write,
f30c59e9
AK
1592 pages, nr))
1593 return 0;
1594 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
1595 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
1596 PUD_SHIFT, next, write, pages, nr))
2667f50e
SC
1597 return 0;
1598 } else if (!gup_pmd_range(pud, addr, next, write, pages, nr))
1599 return 0;
1600 } while (pudp++, addr = next, addr != end);
1601
1602 return 1;
1603}
1604
c2febafc
KS
1605static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
1606 int write, struct page **pages, int *nr)
1607{
1608 unsigned long next;
1609 p4d_t *p4dp;
1610
1611 p4dp = p4d_offset(&pgd, addr);
1612 do {
1613 p4d_t p4d = READ_ONCE(*p4dp);
1614
1615 next = p4d_addr_end(addr, end);
1616 if (p4d_none(p4d))
1617 return 0;
1618 BUILD_BUG_ON(p4d_huge(p4d));
1619 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
1620 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
1621 P4D_SHIFT, next, write, pages, nr))
1622 return 0;
ce70df08 1623 } else if (!gup_pud_range(p4d, addr, next, write, pages, nr))
c2febafc
KS
1624 return 0;
1625 } while (p4dp++, addr = next, addr != end);
1626
1627 return 1;
1628}
1629
5b65c467
KS
1630static void gup_pgd_range(unsigned long addr, unsigned long end,
1631 int write, struct page **pages, int *nr)
1632{
1633 unsigned long next;
1634 pgd_t *pgdp;
1635
1636 pgdp = pgd_offset(current->mm, addr);
1637 do {
1638 pgd_t pgd = READ_ONCE(*pgdp);
1639
1640 next = pgd_addr_end(addr, end);
1641 if (pgd_none(pgd))
1642 return;
1643 if (unlikely(pgd_huge(pgd))) {
1644 if (!gup_huge_pgd(pgd, pgdp, addr, next, write,
1645 pages, nr))
1646 return;
1647 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
1648 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
1649 PGDIR_SHIFT, next, write, pages, nr))
1650 return;
1651 } else if (!gup_p4d_range(pgd, addr, next, write, pages, nr))
1652 return;
1653 } while (pgdp++, addr = next, addr != end);
1654}
1655
1656#ifndef gup_fast_permitted
1657/*
1658 * Check if it's allowed to use __get_user_pages_fast() for the range, or
1659 * we need to fall back to the slow version:
1660 */
1661bool gup_fast_permitted(unsigned long start, int nr_pages, int write)
1662{
1663 unsigned long len, end;
1664
1665 len = (unsigned long) nr_pages << PAGE_SHIFT;
1666 end = start + len;
1667 return end >= start;
1668}
1669#endif
1670
2667f50e
SC
1671/*
1672 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
1673 * the regular GUP. It will only return non-negative values.
1674 */
1675int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1676 struct page **pages)
1677{
2667f50e 1678 unsigned long addr, len, end;
5b65c467 1679 unsigned long flags;
2667f50e
SC
1680 int nr = 0;
1681
1682 start &= PAGE_MASK;
1683 addr = start;
1684 len = (unsigned long) nr_pages << PAGE_SHIFT;
1685 end = start + len;
1686
1687 if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
aa2369f1 1688 (void __user *)start, len)))
2667f50e
SC
1689 return 0;
1690
1691 /*
1692 * Disable interrupts. We use the nested form as we can already have
1693 * interrupts disabled by get_futex_key.
1694 *
1695 * With interrupts disabled, we block page table pages from being
1696 * freed from under us. See mmu_gather_tlb in asm-generic/tlb.h
1697 * for more details.
1698 *
1699 * We do not adopt an rcu_read_lock(.) here as we also want to
1700 * block IPIs that come from THPs splitting.
1701 */
1702
5b65c467
KS
1703 if (gup_fast_permitted(start, nr_pages, write)) {
1704 local_irq_save(flags);
1705 gup_pgd_range(addr, end, write, pages, &nr);
1706 local_irq_restore(flags);
1707 }
2667f50e
SC
1708
1709 return nr;
1710}
1711
1712/**
1713 * get_user_pages_fast() - pin user pages in memory
1714 * @start: starting user address
1715 * @nr_pages: number of pages from start to pin
1716 * @write: whether pages will be written to
1717 * @pages: array that receives pointers to the pages pinned.
1718 * Should be at least nr_pages long.
1719 *
1720 * Attempt to pin user pages in memory without taking mm->mmap_sem.
1721 * If not successful, it will fall back to taking the lock and
1722 * calling get_user_pages().
1723 *
1724 * Returns number of pages pinned. This may be fewer than the number
1725 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1726 * were pinned, returns -errno.
1727 */
1728int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1729 struct page **pages)
1730{
5b65c467 1731 unsigned long addr, len, end;
73e10a61 1732 int nr = 0, ret = 0;
2667f50e
SC
1733
1734 start &= PAGE_MASK;
5b65c467
KS
1735 addr = start;
1736 len = (unsigned long) nr_pages << PAGE_SHIFT;
1737 end = start + len;
1738
1739 if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
1740 (void __user *)start, len)))
1741 return 0;
73e10a61
KS
1742
1743 if (gup_fast_permitted(start, nr_pages, write)) {
5b65c467
KS
1744 local_irq_disable();
1745 gup_pgd_range(addr, end, write, pages, &nr);
1746 local_irq_enable();
73e10a61
KS
1747 ret = nr;
1748 }
2667f50e
SC
1749
1750 if (nr < nr_pages) {
1751 /* Try to get the remaining pages with get_user_pages */
1752 start += nr << PAGE_SHIFT;
1753 pages += nr;
1754
c164154f
LS
1755 ret = get_user_pages_unlocked(start, nr_pages - nr, pages,
1756 write ? FOLL_WRITE : 0);
2667f50e
SC
1757
1758 /* Have to be a bit careful with return values */
1759 if (nr > 0) {
1760 if (ret < 0)
1761 ret = nr;
1762 else
1763 ret += nr;
1764 }
1765 }
1766
1767 return ret;
1768}
1769
e585513b 1770#endif /* CONFIG_HAVE_GENERIC_GUP */