Commit | Line | Data |
---|---|---|
457c8996 | 1 | // SPDX-License-Identifier: GPL-2.0-only |
4bbd4c77 KS |
2 | #include <linux/kernel.h> |
3 | #include <linux/errno.h> | |
4 | #include <linux/err.h> | |
5 | #include <linux/spinlock.h> | |
6 | ||
4bbd4c77 | 7 | #include <linux/mm.h> |
3565fce3 | 8 | #include <linux/memremap.h> |
4bbd4c77 KS |
9 | #include <linux/pagemap.h> |
10 | #include <linux/rmap.h> | |
11 | #include <linux/swap.h> | |
12 | #include <linux/swapops.h> | |
13 | ||
174cd4b1 | 14 | #include <linux/sched/signal.h> |
2667f50e | 15 | #include <linux/rwsem.h> |
f30c59e9 | 16 | #include <linux/hugetlb.h> |
9a4e9f3b AK |
17 | #include <linux/migrate.h> |
18 | #include <linux/mm_inline.h> | |
19 | #include <linux/sched/mm.h> | |
1027e443 | 20 | |
33a709b2 | 21 | #include <asm/mmu_context.h> |
2667f50e | 22 | #include <asm/pgtable.h> |
1027e443 | 23 | #include <asm/tlbflush.h> |
2667f50e | 24 | |
4bbd4c77 KS |
25 | #include "internal.h" |
26 | ||
df06b37f KB |
27 | struct follow_page_context { |
28 | struct dev_pagemap *pgmap; | |
29 | unsigned int page_mask; | |
30 | }; | |
31 | ||
fc1d8e7c JH |
32 | typedef int (*set_dirty_func_t)(struct page *page); |
33 | ||
34 | static void __put_user_pages_dirty(struct page **pages, | |
35 | unsigned long npages, | |
36 | set_dirty_func_t sdf) | |
37 | { | |
38 | unsigned long index; | |
39 | ||
40 | for (index = 0; index < npages; index++) { | |
41 | struct page *page = compound_head(pages[index]); | |
42 | ||
43 | /* | |
44 | * Checking PageDirty at this point may race with | |
45 | * clear_page_dirty_for_io(), but that's OK. Two key cases: | |
46 | * | |
47 | * 1) This code sees the page as already dirty, so it skips | |
48 | * the call to sdf(). That could happen because | |
49 | * clear_page_dirty_for_io() called page_mkclean(), | |
50 | * followed by set_page_dirty(). However, now the page is | |
51 | * going to get written back, which meets the original | |
52 | * intention of setting it dirty, so all is well: | |
53 | * clear_page_dirty_for_io() goes on to call | |
54 | * TestClearPageDirty(), and write the page back. | |
55 | * | |
56 | * 2) This code sees the page as clean, so it calls sdf(). | |
57 | * The page stays dirty, despite being written back, so it | |
58 | * gets written back again in the next writeback cycle. | |
59 | * This is harmless. | |
60 | */ | |
61 | if (!PageDirty(page)) | |
62 | sdf(page); | |
63 | ||
64 | put_user_page(page); | |
65 | } | |
66 | } | |
67 | ||
68 | /** | |
69 | * put_user_pages_dirty() - release and dirty an array of gup-pinned pages | |
70 | * @pages: array of pages to be marked dirty and released. | |
71 | * @npages: number of pages in the @pages array. | |
72 | * | |
73 | * "gup-pinned page" refers to a page that has had one of the get_user_pages() | |
74 | * variants called on that page. | |
75 | * | |
76 | * For each page in the @pages array, make that page (or its head page, if a | |
77 | * compound page) dirty, if it was previously listed as clean. Then, release | |
78 | * the page using put_user_page(). | |
79 | * | |
80 | * Please see the put_user_page() documentation for details. | |
81 | * | |
82 | * set_page_dirty(), which does not lock the page, is used here. | |
83 | * Therefore, it is the caller's responsibility to ensure that this is | |
84 | * safe. If not, then put_user_pages_dirty_lock() should be called instead. | |
85 | * | |
86 | */ | |
87 | void put_user_pages_dirty(struct page **pages, unsigned long npages) | |
88 | { | |
89 | __put_user_pages_dirty(pages, npages, set_page_dirty); | |
90 | } | |
91 | EXPORT_SYMBOL(put_user_pages_dirty); | |
92 | ||
93 | /** | |
94 | * put_user_pages_dirty_lock() - release and dirty an array of gup-pinned pages | |
95 | * @pages: array of pages to be marked dirty and released. | |
96 | * @npages: number of pages in the @pages array. | |
97 | * | |
98 | * For each page in the @pages array, make that page (or its head page, if a | |
99 | * compound page) dirty, if it was previously listed as clean. Then, release | |
100 | * the page using put_user_page(). | |
101 | * | |
102 | * Please see the put_user_page() documentation for details. | |
103 | * | |
104 | * This is just like put_user_pages_dirty(), except that it invokes | |
105 | * set_page_dirty_lock(), instead of set_page_dirty(). | |
106 | * | |
107 | */ | |
108 | void put_user_pages_dirty_lock(struct page **pages, unsigned long npages) | |
109 | { | |
110 | __put_user_pages_dirty(pages, npages, set_page_dirty_lock); | |
111 | } | |
112 | EXPORT_SYMBOL(put_user_pages_dirty_lock); | |
113 | ||
114 | /** | |
115 | * put_user_pages() - release an array of gup-pinned pages. | |
116 | * @pages: array of pages to be marked dirty and released. | |
117 | * @npages: number of pages in the @pages array. | |
118 | * | |
119 | * For each page in the @pages array, release the page using put_user_page(). | |
120 | * | |
121 | * Please see the put_user_page() documentation for details. | |
122 | */ | |
123 | void put_user_pages(struct page **pages, unsigned long npages) | |
124 | { | |
125 | unsigned long index; | |
126 | ||
127 | /* | |
128 | * TODO: this can be optimized for huge pages: if a series of pages is | |
129 | * physically contiguous and part of the same compound page, then a | |
130 | * single operation to the head page should suffice. | |
131 | */ | |
132 | for (index = 0; index < npages; index++) | |
133 | put_user_page(pages[index]); | |
134 | } | |
135 | EXPORT_SYMBOL(put_user_pages); | |
136 | ||
050a9adc | 137 | #ifdef CONFIG_MMU |
69e68b4f KS |
138 | static struct page *no_page_table(struct vm_area_struct *vma, |
139 | unsigned int flags) | |
4bbd4c77 | 140 | { |
69e68b4f KS |
141 | /* |
142 | * When core dumping an enormous anonymous area that nobody | |
143 | * has touched so far, we don't want to allocate unnecessary pages or | |
144 | * page tables. Return error instead of NULL to skip handle_mm_fault, | |
145 | * then get_dump_page() will return NULL to leave a hole in the dump. | |
146 | * But we can only make this optimization where a hole would surely | |
147 | * be zero-filled if handle_mm_fault() actually did handle it. | |
148 | */ | |
149 | if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault)) | |
150 | return ERR_PTR(-EFAULT); | |
151 | return NULL; | |
152 | } | |
4bbd4c77 | 153 | |
1027e443 KS |
154 | static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, |
155 | pte_t *pte, unsigned int flags) | |
156 | { | |
157 | /* No page to get reference */ | |
158 | if (flags & FOLL_GET) | |
159 | return -EFAULT; | |
160 | ||
161 | if (flags & FOLL_TOUCH) { | |
162 | pte_t entry = *pte; | |
163 | ||
164 | if (flags & FOLL_WRITE) | |
165 | entry = pte_mkdirty(entry); | |
166 | entry = pte_mkyoung(entry); | |
167 | ||
168 | if (!pte_same(*pte, entry)) { | |
169 | set_pte_at(vma->vm_mm, address, pte, entry); | |
170 | update_mmu_cache(vma, address, pte); | |
171 | } | |
172 | } | |
173 | ||
174 | /* Proper page table entry exists, but no corresponding struct page */ | |
175 | return -EEXIST; | |
176 | } | |
177 | ||
19be0eaf LT |
178 | /* |
179 | * FOLL_FORCE can write to even unwritable pte's, but only | |
180 | * after we've gone through a COW cycle and they are dirty. | |
181 | */ | |
182 | static inline bool can_follow_write_pte(pte_t pte, unsigned int flags) | |
183 | { | |
f6f37321 | 184 | return pte_write(pte) || |
19be0eaf LT |
185 | ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte)); |
186 | } | |
187 | ||
69e68b4f | 188 | static struct page *follow_page_pte(struct vm_area_struct *vma, |
df06b37f KB |
189 | unsigned long address, pmd_t *pmd, unsigned int flags, |
190 | struct dev_pagemap **pgmap) | |
69e68b4f KS |
191 | { |
192 | struct mm_struct *mm = vma->vm_mm; | |
193 | struct page *page; | |
194 | spinlock_t *ptl; | |
195 | pte_t *ptep, pte; | |
4bbd4c77 | 196 | |
69e68b4f | 197 | retry: |
4bbd4c77 | 198 | if (unlikely(pmd_bad(*pmd))) |
69e68b4f | 199 | return no_page_table(vma, flags); |
4bbd4c77 KS |
200 | |
201 | ptep = pte_offset_map_lock(mm, pmd, address, &ptl); | |
4bbd4c77 KS |
202 | pte = *ptep; |
203 | if (!pte_present(pte)) { | |
204 | swp_entry_t entry; | |
205 | /* | |
206 | * KSM's break_ksm() relies upon recognizing a ksm page | |
207 | * even while it is being migrated, so for that case we | |
208 | * need migration_entry_wait(). | |
209 | */ | |
210 | if (likely(!(flags & FOLL_MIGRATION))) | |
211 | goto no_page; | |
0661a336 | 212 | if (pte_none(pte)) |
4bbd4c77 KS |
213 | goto no_page; |
214 | entry = pte_to_swp_entry(pte); | |
215 | if (!is_migration_entry(entry)) | |
216 | goto no_page; | |
217 | pte_unmap_unlock(ptep, ptl); | |
218 | migration_entry_wait(mm, pmd, address); | |
69e68b4f | 219 | goto retry; |
4bbd4c77 | 220 | } |
8a0516ed | 221 | if ((flags & FOLL_NUMA) && pte_protnone(pte)) |
4bbd4c77 | 222 | goto no_page; |
19be0eaf | 223 | if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) { |
69e68b4f KS |
224 | pte_unmap_unlock(ptep, ptl); |
225 | return NULL; | |
226 | } | |
4bbd4c77 KS |
227 | |
228 | page = vm_normal_page(vma, address, pte); | |
3565fce3 DW |
229 | if (!page && pte_devmap(pte) && (flags & FOLL_GET)) { |
230 | /* | |
231 | * Only return device mapping pages in the FOLL_GET case since | |
232 | * they are only valid while holding the pgmap reference. | |
233 | */ | |
df06b37f KB |
234 | *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); |
235 | if (*pgmap) | |
3565fce3 DW |
236 | page = pte_page(pte); |
237 | else | |
238 | goto no_page; | |
239 | } else if (unlikely(!page)) { | |
1027e443 KS |
240 | if (flags & FOLL_DUMP) { |
241 | /* Avoid special (like zero) pages in core dumps */ | |
242 | page = ERR_PTR(-EFAULT); | |
243 | goto out; | |
244 | } | |
245 | ||
246 | if (is_zero_pfn(pte_pfn(pte))) { | |
247 | page = pte_page(pte); | |
248 | } else { | |
249 | int ret; | |
250 | ||
251 | ret = follow_pfn_pte(vma, address, ptep, flags); | |
252 | page = ERR_PTR(ret); | |
253 | goto out; | |
254 | } | |
4bbd4c77 KS |
255 | } |
256 | ||
6742d293 KS |
257 | if (flags & FOLL_SPLIT && PageTransCompound(page)) { |
258 | int ret; | |
259 | get_page(page); | |
260 | pte_unmap_unlock(ptep, ptl); | |
261 | lock_page(page); | |
262 | ret = split_huge_page(page); | |
263 | unlock_page(page); | |
264 | put_page(page); | |
265 | if (ret) | |
266 | return ERR_PTR(ret); | |
267 | goto retry; | |
268 | } | |
269 | ||
8fde12ca LT |
270 | if (flags & FOLL_GET) { |
271 | if (unlikely(!try_get_page(page))) { | |
272 | page = ERR_PTR(-ENOMEM); | |
273 | goto out; | |
274 | } | |
275 | } | |
4bbd4c77 KS |
276 | if (flags & FOLL_TOUCH) { |
277 | if ((flags & FOLL_WRITE) && | |
278 | !pte_dirty(pte) && !PageDirty(page)) | |
279 | set_page_dirty(page); | |
280 | /* | |
281 | * pte_mkyoung() would be more correct here, but atomic care | |
282 | * is needed to avoid losing the dirty bit: it is easier to use | |
283 | * mark_page_accessed(). | |
284 | */ | |
285 | mark_page_accessed(page); | |
286 | } | |
de60f5f1 | 287 | if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { |
e90309c9 KS |
288 | /* Do not mlock pte-mapped THP */ |
289 | if (PageTransCompound(page)) | |
290 | goto out; | |
291 | ||
4bbd4c77 KS |
292 | /* |
293 | * The preliminary mapping check is mainly to avoid the | |
294 | * pointless overhead of lock_page on the ZERO_PAGE | |
295 | * which might bounce very badly if there is contention. | |
296 | * | |
297 | * If the page is already locked, we don't need to | |
298 | * handle it now - vmscan will handle it later if and | |
299 | * when it attempts to reclaim the page. | |
300 | */ | |
301 | if (page->mapping && trylock_page(page)) { | |
302 | lru_add_drain(); /* push cached pages to LRU */ | |
303 | /* | |
304 | * Because we lock page here, and migration is | |
305 | * blocked by the pte's page reference, and we | |
306 | * know the page is still mapped, we don't even | |
307 | * need to check for file-cache page truncation. | |
308 | */ | |
309 | mlock_vma_page(page); | |
310 | unlock_page(page); | |
311 | } | |
312 | } | |
1027e443 | 313 | out: |
4bbd4c77 | 314 | pte_unmap_unlock(ptep, ptl); |
4bbd4c77 | 315 | return page; |
4bbd4c77 KS |
316 | no_page: |
317 | pte_unmap_unlock(ptep, ptl); | |
318 | if (!pte_none(pte)) | |
69e68b4f KS |
319 | return NULL; |
320 | return no_page_table(vma, flags); | |
321 | } | |
322 | ||
080dbb61 AK |
323 | static struct page *follow_pmd_mask(struct vm_area_struct *vma, |
324 | unsigned long address, pud_t *pudp, | |
df06b37f KB |
325 | unsigned int flags, |
326 | struct follow_page_context *ctx) | |
69e68b4f | 327 | { |
68827280 | 328 | pmd_t *pmd, pmdval; |
69e68b4f KS |
329 | spinlock_t *ptl; |
330 | struct page *page; | |
331 | struct mm_struct *mm = vma->vm_mm; | |
332 | ||
080dbb61 | 333 | pmd = pmd_offset(pudp, address); |
68827280 HY |
334 | /* |
335 | * The READ_ONCE() will stabilize the pmdval in a register or | |
336 | * on the stack so that it will stop changing under the code. | |
337 | */ | |
338 | pmdval = READ_ONCE(*pmd); | |
339 | if (pmd_none(pmdval)) | |
69e68b4f | 340 | return no_page_table(vma, flags); |
68827280 | 341 | if (pmd_huge(pmdval) && vma->vm_flags & VM_HUGETLB) { |
e66f17ff NH |
342 | page = follow_huge_pmd(mm, address, pmd, flags); |
343 | if (page) | |
344 | return page; | |
345 | return no_page_table(vma, flags); | |
69e68b4f | 346 | } |
68827280 | 347 | if (is_hugepd(__hugepd(pmd_val(pmdval)))) { |
4dc71451 | 348 | page = follow_huge_pd(vma, address, |
68827280 | 349 | __hugepd(pmd_val(pmdval)), flags, |
4dc71451 AK |
350 | PMD_SHIFT); |
351 | if (page) | |
352 | return page; | |
353 | return no_page_table(vma, flags); | |
354 | } | |
84c3fc4e | 355 | retry: |
68827280 | 356 | if (!pmd_present(pmdval)) { |
84c3fc4e ZY |
357 | if (likely(!(flags & FOLL_MIGRATION))) |
358 | return no_page_table(vma, flags); | |
359 | VM_BUG_ON(thp_migration_supported() && | |
68827280 HY |
360 | !is_pmd_migration_entry(pmdval)); |
361 | if (is_pmd_migration_entry(pmdval)) | |
84c3fc4e | 362 | pmd_migration_entry_wait(mm, pmd); |
68827280 HY |
363 | pmdval = READ_ONCE(*pmd); |
364 | /* | |
365 | * MADV_DONTNEED may convert the pmd to null because | |
366 | * mmap_sem is held in read mode | |
367 | */ | |
368 | if (pmd_none(pmdval)) | |
369 | return no_page_table(vma, flags); | |
84c3fc4e ZY |
370 | goto retry; |
371 | } | |
68827280 | 372 | if (pmd_devmap(pmdval)) { |
3565fce3 | 373 | ptl = pmd_lock(mm, pmd); |
df06b37f | 374 | page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); |
3565fce3 DW |
375 | spin_unlock(ptl); |
376 | if (page) | |
377 | return page; | |
378 | } | |
68827280 | 379 | if (likely(!pmd_trans_huge(pmdval))) |
df06b37f | 380 | return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); |
6742d293 | 381 | |
68827280 | 382 | if ((flags & FOLL_NUMA) && pmd_protnone(pmdval)) |
db08f203 AK |
383 | return no_page_table(vma, flags); |
384 | ||
84c3fc4e | 385 | retry_locked: |
6742d293 | 386 | ptl = pmd_lock(mm, pmd); |
68827280 HY |
387 | if (unlikely(pmd_none(*pmd))) { |
388 | spin_unlock(ptl); | |
389 | return no_page_table(vma, flags); | |
390 | } | |
84c3fc4e ZY |
391 | if (unlikely(!pmd_present(*pmd))) { |
392 | spin_unlock(ptl); | |
393 | if (likely(!(flags & FOLL_MIGRATION))) | |
394 | return no_page_table(vma, flags); | |
395 | pmd_migration_entry_wait(mm, pmd); | |
396 | goto retry_locked; | |
397 | } | |
6742d293 KS |
398 | if (unlikely(!pmd_trans_huge(*pmd))) { |
399 | spin_unlock(ptl); | |
df06b37f | 400 | return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); |
6742d293 | 401 | } |
6742d293 KS |
402 | if (flags & FOLL_SPLIT) { |
403 | int ret; | |
404 | page = pmd_page(*pmd); | |
405 | if (is_huge_zero_page(page)) { | |
406 | spin_unlock(ptl); | |
407 | ret = 0; | |
78ddc534 | 408 | split_huge_pmd(vma, pmd, address); |
337d9abf NH |
409 | if (pmd_trans_unstable(pmd)) |
410 | ret = -EBUSY; | |
6742d293 | 411 | } else { |
8fde12ca LT |
412 | if (unlikely(!try_get_page(page))) { |
413 | spin_unlock(ptl); | |
414 | return ERR_PTR(-ENOMEM); | |
415 | } | |
69e68b4f | 416 | spin_unlock(ptl); |
6742d293 KS |
417 | lock_page(page); |
418 | ret = split_huge_page(page); | |
419 | unlock_page(page); | |
420 | put_page(page); | |
baa355fd KS |
421 | if (pmd_none(*pmd)) |
422 | return no_page_table(vma, flags); | |
6742d293 KS |
423 | } |
424 | ||
425 | return ret ? ERR_PTR(ret) : | |
df06b37f | 426 | follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); |
69e68b4f | 427 | } |
6742d293 KS |
428 | page = follow_trans_huge_pmd(vma, address, pmd, flags); |
429 | spin_unlock(ptl); | |
df06b37f | 430 | ctx->page_mask = HPAGE_PMD_NR - 1; |
6742d293 | 431 | return page; |
4bbd4c77 KS |
432 | } |
433 | ||
080dbb61 AK |
434 | static struct page *follow_pud_mask(struct vm_area_struct *vma, |
435 | unsigned long address, p4d_t *p4dp, | |
df06b37f KB |
436 | unsigned int flags, |
437 | struct follow_page_context *ctx) | |
080dbb61 AK |
438 | { |
439 | pud_t *pud; | |
440 | spinlock_t *ptl; | |
441 | struct page *page; | |
442 | struct mm_struct *mm = vma->vm_mm; | |
443 | ||
444 | pud = pud_offset(p4dp, address); | |
445 | if (pud_none(*pud)) | |
446 | return no_page_table(vma, flags); | |
447 | if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) { | |
448 | page = follow_huge_pud(mm, address, pud, flags); | |
449 | if (page) | |
450 | return page; | |
451 | return no_page_table(vma, flags); | |
452 | } | |
4dc71451 AK |
453 | if (is_hugepd(__hugepd(pud_val(*pud)))) { |
454 | page = follow_huge_pd(vma, address, | |
455 | __hugepd(pud_val(*pud)), flags, | |
456 | PUD_SHIFT); | |
457 | if (page) | |
458 | return page; | |
459 | return no_page_table(vma, flags); | |
460 | } | |
080dbb61 AK |
461 | if (pud_devmap(*pud)) { |
462 | ptl = pud_lock(mm, pud); | |
df06b37f | 463 | page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap); |
080dbb61 AK |
464 | spin_unlock(ptl); |
465 | if (page) | |
466 | return page; | |
467 | } | |
468 | if (unlikely(pud_bad(*pud))) | |
469 | return no_page_table(vma, flags); | |
470 | ||
df06b37f | 471 | return follow_pmd_mask(vma, address, pud, flags, ctx); |
080dbb61 AK |
472 | } |
473 | ||
080dbb61 AK |
474 | static struct page *follow_p4d_mask(struct vm_area_struct *vma, |
475 | unsigned long address, pgd_t *pgdp, | |
df06b37f KB |
476 | unsigned int flags, |
477 | struct follow_page_context *ctx) | |
080dbb61 AK |
478 | { |
479 | p4d_t *p4d; | |
4dc71451 | 480 | struct page *page; |
080dbb61 AK |
481 | |
482 | p4d = p4d_offset(pgdp, address); | |
483 | if (p4d_none(*p4d)) | |
484 | return no_page_table(vma, flags); | |
485 | BUILD_BUG_ON(p4d_huge(*p4d)); | |
486 | if (unlikely(p4d_bad(*p4d))) | |
487 | return no_page_table(vma, flags); | |
488 | ||
4dc71451 AK |
489 | if (is_hugepd(__hugepd(p4d_val(*p4d)))) { |
490 | page = follow_huge_pd(vma, address, | |
491 | __hugepd(p4d_val(*p4d)), flags, | |
492 | P4D_SHIFT); | |
493 | if (page) | |
494 | return page; | |
495 | return no_page_table(vma, flags); | |
496 | } | |
df06b37f | 497 | return follow_pud_mask(vma, address, p4d, flags, ctx); |
080dbb61 AK |
498 | } |
499 | ||
500 | /** | |
501 | * follow_page_mask - look up a page descriptor from a user-virtual address | |
502 | * @vma: vm_area_struct mapping @address | |
503 | * @address: virtual address to look up | |
504 | * @flags: flags modifying lookup behaviour | |
78179556 MR |
505 | * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a |
506 | * pointer to output page_mask | |
080dbb61 AK |
507 | * |
508 | * @flags can have FOLL_ flags set, defined in <linux/mm.h> | |
509 | * | |
78179556 MR |
510 | * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches |
511 | * the device's dev_pagemap metadata to avoid repeating expensive lookups. | |
512 | * | |
513 | * On output, the @ctx->page_mask is set according to the size of the page. | |
514 | * | |
515 | * Return: the mapped (struct page *), %NULL if no mapping exists, or | |
080dbb61 AK |
516 | * an error pointer if there is a mapping to something not represented |
517 | * by a page descriptor (see also vm_normal_page()). | |
518 | */ | |
a7030aea | 519 | static struct page *follow_page_mask(struct vm_area_struct *vma, |
080dbb61 | 520 | unsigned long address, unsigned int flags, |
df06b37f | 521 | struct follow_page_context *ctx) |
080dbb61 AK |
522 | { |
523 | pgd_t *pgd; | |
524 | struct page *page; | |
525 | struct mm_struct *mm = vma->vm_mm; | |
526 | ||
df06b37f | 527 | ctx->page_mask = 0; |
080dbb61 AK |
528 | |
529 | /* make this handle hugepd */ | |
530 | page = follow_huge_addr(mm, address, flags & FOLL_WRITE); | |
531 | if (!IS_ERR(page)) { | |
532 | BUG_ON(flags & FOLL_GET); | |
533 | return page; | |
534 | } | |
535 | ||
536 | pgd = pgd_offset(mm, address); | |
537 | ||
538 | if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) | |
539 | return no_page_table(vma, flags); | |
540 | ||
faaa5b62 AK |
541 | if (pgd_huge(*pgd)) { |
542 | page = follow_huge_pgd(mm, address, pgd, flags); | |
543 | if (page) | |
544 | return page; | |
545 | return no_page_table(vma, flags); | |
546 | } | |
4dc71451 AK |
547 | if (is_hugepd(__hugepd(pgd_val(*pgd)))) { |
548 | page = follow_huge_pd(vma, address, | |
549 | __hugepd(pgd_val(*pgd)), flags, | |
550 | PGDIR_SHIFT); | |
551 | if (page) | |
552 | return page; | |
553 | return no_page_table(vma, flags); | |
554 | } | |
faaa5b62 | 555 | |
df06b37f KB |
556 | return follow_p4d_mask(vma, address, pgd, flags, ctx); |
557 | } | |
558 | ||
559 | struct page *follow_page(struct vm_area_struct *vma, unsigned long address, | |
560 | unsigned int foll_flags) | |
561 | { | |
562 | struct follow_page_context ctx = { NULL }; | |
563 | struct page *page; | |
564 | ||
565 | page = follow_page_mask(vma, address, foll_flags, &ctx); | |
566 | if (ctx.pgmap) | |
567 | put_dev_pagemap(ctx.pgmap); | |
568 | return page; | |
080dbb61 AK |
569 | } |
570 | ||
f2b495ca KS |
571 | static int get_gate_page(struct mm_struct *mm, unsigned long address, |
572 | unsigned int gup_flags, struct vm_area_struct **vma, | |
573 | struct page **page) | |
574 | { | |
575 | pgd_t *pgd; | |
c2febafc | 576 | p4d_t *p4d; |
f2b495ca KS |
577 | pud_t *pud; |
578 | pmd_t *pmd; | |
579 | pte_t *pte; | |
580 | int ret = -EFAULT; | |
581 | ||
582 | /* user gate pages are read-only */ | |
583 | if (gup_flags & FOLL_WRITE) | |
584 | return -EFAULT; | |
585 | if (address > TASK_SIZE) | |
586 | pgd = pgd_offset_k(address); | |
587 | else | |
588 | pgd = pgd_offset_gate(mm, address); | |
b5d1c39f AL |
589 | if (pgd_none(*pgd)) |
590 | return -EFAULT; | |
c2febafc | 591 | p4d = p4d_offset(pgd, address); |
b5d1c39f AL |
592 | if (p4d_none(*p4d)) |
593 | return -EFAULT; | |
c2febafc | 594 | pud = pud_offset(p4d, address); |
b5d1c39f AL |
595 | if (pud_none(*pud)) |
596 | return -EFAULT; | |
f2b495ca | 597 | pmd = pmd_offset(pud, address); |
84c3fc4e | 598 | if (!pmd_present(*pmd)) |
f2b495ca KS |
599 | return -EFAULT; |
600 | VM_BUG_ON(pmd_trans_huge(*pmd)); | |
601 | pte = pte_offset_map(pmd, address); | |
602 | if (pte_none(*pte)) | |
603 | goto unmap; | |
604 | *vma = get_gate_vma(mm); | |
605 | if (!page) | |
606 | goto out; | |
607 | *page = vm_normal_page(*vma, address, *pte); | |
608 | if (!*page) { | |
609 | if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) | |
610 | goto unmap; | |
611 | *page = pte_page(*pte); | |
612 | } | |
8fde12ca LT |
613 | if (unlikely(!try_get_page(*page))) { |
614 | ret = -ENOMEM; | |
615 | goto unmap; | |
616 | } | |
f2b495ca KS |
617 | out: |
618 | ret = 0; | |
619 | unmap: | |
620 | pte_unmap(pte); | |
621 | return ret; | |
622 | } | |
623 | ||
9a95f3cf PC |
624 | /* |
625 | * mmap_sem must be held on entry. If @nonblocking != NULL and | |
626 | * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released. | |
627 | * If it is, *@nonblocking will be set to 0 and -EBUSY returned. | |
628 | */ | |
16744483 KS |
629 | static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma, |
630 | unsigned long address, unsigned int *flags, int *nonblocking) | |
631 | { | |
16744483 | 632 | unsigned int fault_flags = 0; |
2b740303 | 633 | vm_fault_t ret; |
16744483 | 634 | |
de60f5f1 EM |
635 | /* mlock all present pages, but do not fault in new pages */ |
636 | if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK) | |
637 | return -ENOENT; | |
16744483 KS |
638 | if (*flags & FOLL_WRITE) |
639 | fault_flags |= FAULT_FLAG_WRITE; | |
1b2ee126 DH |
640 | if (*flags & FOLL_REMOTE) |
641 | fault_flags |= FAULT_FLAG_REMOTE; | |
16744483 KS |
642 | if (nonblocking) |
643 | fault_flags |= FAULT_FLAG_ALLOW_RETRY; | |
644 | if (*flags & FOLL_NOWAIT) | |
645 | fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; | |
234b239b ALC |
646 | if (*flags & FOLL_TRIED) { |
647 | VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY); | |
648 | fault_flags |= FAULT_FLAG_TRIED; | |
649 | } | |
16744483 | 650 | |
dcddffd4 | 651 | ret = handle_mm_fault(vma, address, fault_flags); |
16744483 | 652 | if (ret & VM_FAULT_ERROR) { |
9a291a7c JM |
653 | int err = vm_fault_to_errno(ret, *flags); |
654 | ||
655 | if (err) | |
656 | return err; | |
16744483 KS |
657 | BUG(); |
658 | } | |
659 | ||
660 | if (tsk) { | |
661 | if (ret & VM_FAULT_MAJOR) | |
662 | tsk->maj_flt++; | |
663 | else | |
664 | tsk->min_flt++; | |
665 | } | |
666 | ||
667 | if (ret & VM_FAULT_RETRY) { | |
96312e61 | 668 | if (nonblocking && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) |
16744483 KS |
669 | *nonblocking = 0; |
670 | return -EBUSY; | |
671 | } | |
672 | ||
673 | /* | |
674 | * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when | |
675 | * necessary, even if maybe_mkwrite decided not to set pte_write. We | |
676 | * can thus safely do subsequent page lookups as if they were reads. | |
677 | * But only do so when looping for pte_write is futile: in some cases | |
678 | * userspace may also be wanting to write to the gotten user page, | |
679 | * which a read fault here might prevent (a readonly page might get | |
680 | * reCOWed by userspace write). | |
681 | */ | |
682 | if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE)) | |
2923117b | 683 | *flags |= FOLL_COW; |
16744483 KS |
684 | return 0; |
685 | } | |
686 | ||
fa5bb209 KS |
687 | static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) |
688 | { | |
689 | vm_flags_t vm_flags = vma->vm_flags; | |
1b2ee126 DH |
690 | int write = (gup_flags & FOLL_WRITE); |
691 | int foreign = (gup_flags & FOLL_REMOTE); | |
fa5bb209 KS |
692 | |
693 | if (vm_flags & (VM_IO | VM_PFNMAP)) | |
694 | return -EFAULT; | |
695 | ||
7f7ccc2c WT |
696 | if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma)) |
697 | return -EFAULT; | |
698 | ||
1b2ee126 | 699 | if (write) { |
fa5bb209 KS |
700 | if (!(vm_flags & VM_WRITE)) { |
701 | if (!(gup_flags & FOLL_FORCE)) | |
702 | return -EFAULT; | |
703 | /* | |
704 | * We used to let the write,force case do COW in a | |
705 | * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could | |
706 | * set a breakpoint in a read-only mapping of an | |
707 | * executable, without corrupting the file (yet only | |
708 | * when that file had been opened for writing!). | |
709 | * Anon pages in shared mappings are surprising: now | |
710 | * just reject it. | |
711 | */ | |
46435364 | 712 | if (!is_cow_mapping(vm_flags)) |
fa5bb209 | 713 | return -EFAULT; |
fa5bb209 KS |
714 | } |
715 | } else if (!(vm_flags & VM_READ)) { | |
716 | if (!(gup_flags & FOLL_FORCE)) | |
717 | return -EFAULT; | |
718 | /* | |
719 | * Is there actually any vma we can reach here which does not | |
720 | * have VM_MAYREAD set? | |
721 | */ | |
722 | if (!(vm_flags & VM_MAYREAD)) | |
723 | return -EFAULT; | |
724 | } | |
d61172b4 DH |
725 | /* |
726 | * gups are always data accesses, not instruction | |
727 | * fetches, so execute=false here | |
728 | */ | |
729 | if (!arch_vma_access_permitted(vma, write, false, foreign)) | |
33a709b2 | 730 | return -EFAULT; |
fa5bb209 KS |
731 | return 0; |
732 | } | |
733 | ||
4bbd4c77 KS |
734 | /** |
735 | * __get_user_pages() - pin user pages in memory | |
736 | * @tsk: task_struct of target task | |
737 | * @mm: mm_struct of target mm | |
738 | * @start: starting user address | |
739 | * @nr_pages: number of pages from start to pin | |
740 | * @gup_flags: flags modifying pin behaviour | |
741 | * @pages: array that receives pointers to the pages pinned. | |
742 | * Should be at least nr_pages long. Or NULL, if caller | |
743 | * only intends to ensure the pages are faulted in. | |
744 | * @vmas: array of pointers to vmas corresponding to each page. | |
745 | * Or NULL if the caller does not require them. | |
746 | * @nonblocking: whether waiting for disk IO or mmap_sem contention | |
747 | * | |
748 | * Returns number of pages pinned. This may be fewer than the number | |
749 | * requested. If nr_pages is 0 or negative, returns 0. If no pages | |
750 | * were pinned, returns -errno. Each page returned must be released | |
751 | * with a put_page() call when it is finished with. vmas will only | |
752 | * remain valid while mmap_sem is held. | |
753 | * | |
9a95f3cf | 754 | * Must be called with mmap_sem held. It may be released. See below. |
4bbd4c77 KS |
755 | * |
756 | * __get_user_pages walks a process's page tables and takes a reference to | |
757 | * each struct page that each user address corresponds to at a given | |
758 | * instant. That is, it takes the page that would be accessed if a user | |
759 | * thread accesses the given user virtual address at that instant. | |
760 | * | |
761 | * This does not guarantee that the page exists in the user mappings when | |
762 | * __get_user_pages returns, and there may even be a completely different | |
763 | * page there in some cases (eg. if mmapped pagecache has been invalidated | |
764 | * and subsequently re faulted). However it does guarantee that the page | |
765 | * won't be freed completely. And mostly callers simply care that the page | |
766 | * contains data that was valid *at some point in time*. Typically, an IO | |
767 | * or similar operation cannot guarantee anything stronger anyway because | |
768 | * locks can't be held over the syscall boundary. | |
769 | * | |
770 | * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If | |
771 | * the page is written to, set_page_dirty (or set_page_dirty_lock, as | |
772 | * appropriate) must be called after the page is finished with, and | |
773 | * before put_page is called. | |
774 | * | |
775 | * If @nonblocking != NULL, __get_user_pages will not wait for disk IO | |
776 | * or mmap_sem contention, and if waiting is needed to pin all pages, | |
9a95f3cf PC |
777 | * *@nonblocking will be set to 0. Further, if @gup_flags does not |
778 | * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in | |
779 | * this case. | |
780 | * | |
781 | * A caller using such a combination of @nonblocking and @gup_flags | |
782 | * must therefore hold the mmap_sem for reading only, and recognize | |
783 | * when it's been released. Otherwise, it must be held for either | |
784 | * reading or writing and will not be released. | |
4bbd4c77 KS |
785 | * |
786 | * In most cases, get_user_pages or get_user_pages_fast should be used | |
787 | * instead of __get_user_pages. __get_user_pages should be used only if | |
788 | * you need some special @gup_flags. | |
789 | */ | |
0d731759 | 790 | static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, |
4bbd4c77 KS |
791 | unsigned long start, unsigned long nr_pages, |
792 | unsigned int gup_flags, struct page **pages, | |
793 | struct vm_area_struct **vmas, int *nonblocking) | |
794 | { | |
df06b37f | 795 | long ret = 0, i = 0; |
fa5bb209 | 796 | struct vm_area_struct *vma = NULL; |
df06b37f | 797 | struct follow_page_context ctx = { NULL }; |
4bbd4c77 KS |
798 | |
799 | if (!nr_pages) | |
800 | return 0; | |
801 | ||
802 | VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET)); | |
803 | ||
804 | /* | |
805 | * If FOLL_FORCE is set then do not force a full fault as the hinting | |
806 | * fault information is unrelated to the reference behaviour of a task | |
807 | * using the address space | |
808 | */ | |
809 | if (!(gup_flags & FOLL_FORCE)) | |
810 | gup_flags |= FOLL_NUMA; | |
811 | ||
4bbd4c77 | 812 | do { |
fa5bb209 KS |
813 | struct page *page; |
814 | unsigned int foll_flags = gup_flags; | |
815 | unsigned int page_increm; | |
816 | ||
817 | /* first iteration or cross vma bound */ | |
818 | if (!vma || start >= vma->vm_end) { | |
819 | vma = find_extend_vma(mm, start); | |
820 | if (!vma && in_gate_area(mm, start)) { | |
fa5bb209 KS |
821 | ret = get_gate_page(mm, start & PAGE_MASK, |
822 | gup_flags, &vma, | |
823 | pages ? &pages[i] : NULL); | |
824 | if (ret) | |
08be37b7 | 825 | goto out; |
df06b37f | 826 | ctx.page_mask = 0; |
fa5bb209 KS |
827 | goto next_page; |
828 | } | |
4bbd4c77 | 829 | |
df06b37f KB |
830 | if (!vma || check_vma_flags(vma, gup_flags)) { |
831 | ret = -EFAULT; | |
832 | goto out; | |
833 | } | |
fa5bb209 KS |
834 | if (is_vm_hugetlb_page(vma)) { |
835 | i = follow_hugetlb_page(mm, vma, pages, vmas, | |
836 | &start, &nr_pages, i, | |
87ffc118 | 837 | gup_flags, nonblocking); |
fa5bb209 | 838 | continue; |
4bbd4c77 | 839 | } |
fa5bb209 KS |
840 | } |
841 | retry: | |
842 | /* | |
843 | * If we have a pending SIGKILL, don't keep faulting pages and | |
844 | * potentially allocating memory. | |
845 | */ | |
fa45f116 | 846 | if (fatal_signal_pending(current)) { |
df06b37f KB |
847 | ret = -ERESTARTSYS; |
848 | goto out; | |
849 | } | |
fa5bb209 | 850 | cond_resched(); |
df06b37f KB |
851 | |
852 | page = follow_page_mask(vma, start, foll_flags, &ctx); | |
fa5bb209 | 853 | if (!page) { |
fa5bb209 KS |
854 | ret = faultin_page(tsk, vma, start, &foll_flags, |
855 | nonblocking); | |
856 | switch (ret) { | |
857 | case 0: | |
858 | goto retry; | |
df06b37f KB |
859 | case -EBUSY: |
860 | ret = 0; | |
861 | /* FALLTHRU */ | |
fa5bb209 KS |
862 | case -EFAULT: |
863 | case -ENOMEM: | |
864 | case -EHWPOISON: | |
df06b37f | 865 | goto out; |
fa5bb209 KS |
866 | case -ENOENT: |
867 | goto next_page; | |
4bbd4c77 | 868 | } |
fa5bb209 | 869 | BUG(); |
1027e443 KS |
870 | } else if (PTR_ERR(page) == -EEXIST) { |
871 | /* | |
872 | * Proper page table entry exists, but no corresponding | |
873 | * struct page. | |
874 | */ | |
875 | goto next_page; | |
876 | } else if (IS_ERR(page)) { | |
df06b37f KB |
877 | ret = PTR_ERR(page); |
878 | goto out; | |
1027e443 | 879 | } |
fa5bb209 KS |
880 | if (pages) { |
881 | pages[i] = page; | |
882 | flush_anon_page(vma, page, start); | |
883 | flush_dcache_page(page); | |
df06b37f | 884 | ctx.page_mask = 0; |
4bbd4c77 | 885 | } |
4bbd4c77 | 886 | next_page: |
fa5bb209 KS |
887 | if (vmas) { |
888 | vmas[i] = vma; | |
df06b37f | 889 | ctx.page_mask = 0; |
fa5bb209 | 890 | } |
df06b37f | 891 | page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); |
fa5bb209 KS |
892 | if (page_increm > nr_pages) |
893 | page_increm = nr_pages; | |
894 | i += page_increm; | |
895 | start += page_increm * PAGE_SIZE; | |
896 | nr_pages -= page_increm; | |
4bbd4c77 | 897 | } while (nr_pages); |
df06b37f KB |
898 | out: |
899 | if (ctx.pgmap) | |
900 | put_dev_pagemap(ctx.pgmap); | |
901 | return i ? i : ret; | |
4bbd4c77 | 902 | } |
4bbd4c77 | 903 | |
771ab430 TK |
904 | static bool vma_permits_fault(struct vm_area_struct *vma, |
905 | unsigned int fault_flags) | |
d4925e00 | 906 | { |
1b2ee126 DH |
907 | bool write = !!(fault_flags & FAULT_FLAG_WRITE); |
908 | bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); | |
33a709b2 | 909 | vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; |
d4925e00 DH |
910 | |
911 | if (!(vm_flags & vma->vm_flags)) | |
912 | return false; | |
913 | ||
33a709b2 DH |
914 | /* |
915 | * The architecture might have a hardware protection | |
1b2ee126 | 916 | * mechanism other than read/write that can deny access. |
d61172b4 DH |
917 | * |
918 | * gup always represents data access, not instruction | |
919 | * fetches, so execute=false here: | |
33a709b2 | 920 | */ |
d61172b4 | 921 | if (!arch_vma_access_permitted(vma, write, false, foreign)) |
33a709b2 DH |
922 | return false; |
923 | ||
d4925e00 DH |
924 | return true; |
925 | } | |
926 | ||
4bbd4c77 KS |
927 | /* |
928 | * fixup_user_fault() - manually resolve a user page fault | |
929 | * @tsk: the task_struct to use for page fault accounting, or | |
930 | * NULL if faults are not to be recorded. | |
931 | * @mm: mm_struct of target mm | |
932 | * @address: user address | |
933 | * @fault_flags:flags to pass down to handle_mm_fault() | |
4a9e1cda DD |
934 | * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller |
935 | * does not allow retry | |
4bbd4c77 KS |
936 | * |
937 | * This is meant to be called in the specific scenario where for locking reasons | |
938 | * we try to access user memory in atomic context (within a pagefault_disable() | |
939 | * section), this returns -EFAULT, and we want to resolve the user fault before | |
940 | * trying again. | |
941 | * | |
942 | * Typically this is meant to be used by the futex code. | |
943 | * | |
944 | * The main difference with get_user_pages() is that this function will | |
945 | * unconditionally call handle_mm_fault() which will in turn perform all the | |
946 | * necessary SW fixup of the dirty and young bits in the PTE, while | |
4a9e1cda | 947 | * get_user_pages() only guarantees to update these in the struct page. |
4bbd4c77 KS |
948 | * |
949 | * This is important for some architectures where those bits also gate the | |
950 | * access permission to the page because they are maintained in software. On | |
951 | * such architectures, gup() will not be enough to make a subsequent access | |
952 | * succeed. | |
953 | * | |
4a9e1cda DD |
954 | * This function will not return with an unlocked mmap_sem. So it has not the |
955 | * same semantics wrt the @mm->mmap_sem as does filemap_fault(). | |
4bbd4c77 KS |
956 | */ |
957 | int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, | |
4a9e1cda DD |
958 | unsigned long address, unsigned int fault_flags, |
959 | bool *unlocked) | |
4bbd4c77 KS |
960 | { |
961 | struct vm_area_struct *vma; | |
2b740303 | 962 | vm_fault_t ret, major = 0; |
4a9e1cda DD |
963 | |
964 | if (unlocked) | |
965 | fault_flags |= FAULT_FLAG_ALLOW_RETRY; | |
4bbd4c77 | 966 | |
4a9e1cda | 967 | retry: |
4bbd4c77 KS |
968 | vma = find_extend_vma(mm, address); |
969 | if (!vma || address < vma->vm_start) | |
970 | return -EFAULT; | |
971 | ||
d4925e00 | 972 | if (!vma_permits_fault(vma, fault_flags)) |
4bbd4c77 KS |
973 | return -EFAULT; |
974 | ||
dcddffd4 | 975 | ret = handle_mm_fault(vma, address, fault_flags); |
4a9e1cda | 976 | major |= ret & VM_FAULT_MAJOR; |
4bbd4c77 | 977 | if (ret & VM_FAULT_ERROR) { |
9a291a7c JM |
978 | int err = vm_fault_to_errno(ret, 0); |
979 | ||
980 | if (err) | |
981 | return err; | |
4bbd4c77 KS |
982 | BUG(); |
983 | } | |
4a9e1cda DD |
984 | |
985 | if (ret & VM_FAULT_RETRY) { | |
986 | down_read(&mm->mmap_sem); | |
987 | if (!(fault_flags & FAULT_FLAG_TRIED)) { | |
988 | *unlocked = true; | |
989 | fault_flags &= ~FAULT_FLAG_ALLOW_RETRY; | |
990 | fault_flags |= FAULT_FLAG_TRIED; | |
991 | goto retry; | |
992 | } | |
993 | } | |
994 | ||
4bbd4c77 | 995 | if (tsk) { |
4a9e1cda | 996 | if (major) |
4bbd4c77 KS |
997 | tsk->maj_flt++; |
998 | else | |
999 | tsk->min_flt++; | |
1000 | } | |
1001 | return 0; | |
1002 | } | |
add6a0cd | 1003 | EXPORT_SYMBOL_GPL(fixup_user_fault); |
4bbd4c77 | 1004 | |
f0818f47 AA |
1005 | static __always_inline long __get_user_pages_locked(struct task_struct *tsk, |
1006 | struct mm_struct *mm, | |
1007 | unsigned long start, | |
1008 | unsigned long nr_pages, | |
f0818f47 AA |
1009 | struct page **pages, |
1010 | struct vm_area_struct **vmas, | |
e716712f | 1011 | int *locked, |
0fd71a56 | 1012 | unsigned int flags) |
f0818f47 | 1013 | { |
f0818f47 AA |
1014 | long ret, pages_done; |
1015 | bool lock_dropped; | |
1016 | ||
1017 | if (locked) { | |
1018 | /* if VM_FAULT_RETRY can be returned, vmas become invalid */ | |
1019 | BUG_ON(vmas); | |
1020 | /* check caller initialized locked */ | |
1021 | BUG_ON(*locked != 1); | |
1022 | } | |
1023 | ||
1024 | if (pages) | |
1025 | flags |= FOLL_GET; | |
f0818f47 AA |
1026 | |
1027 | pages_done = 0; | |
1028 | lock_dropped = false; | |
1029 | for (;;) { | |
1030 | ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages, | |
1031 | vmas, locked); | |
1032 | if (!locked) | |
1033 | /* VM_FAULT_RETRY couldn't trigger, bypass */ | |
1034 | return ret; | |
1035 | ||
1036 | /* VM_FAULT_RETRY cannot return errors */ | |
1037 | if (!*locked) { | |
1038 | BUG_ON(ret < 0); | |
1039 | BUG_ON(ret >= nr_pages); | |
1040 | } | |
1041 | ||
f0818f47 AA |
1042 | if (ret > 0) { |
1043 | nr_pages -= ret; | |
1044 | pages_done += ret; | |
1045 | if (!nr_pages) | |
1046 | break; | |
1047 | } | |
1048 | if (*locked) { | |
96312e61 AA |
1049 | /* |
1050 | * VM_FAULT_RETRY didn't trigger or it was a | |
1051 | * FOLL_NOWAIT. | |
1052 | */ | |
f0818f47 AA |
1053 | if (!pages_done) |
1054 | pages_done = ret; | |
1055 | break; | |
1056 | } | |
df17277b MR |
1057 | /* |
1058 | * VM_FAULT_RETRY triggered, so seek to the faulting offset. | |
1059 | * For the prefault case (!pages) we only update counts. | |
1060 | */ | |
1061 | if (likely(pages)) | |
1062 | pages += ret; | |
f0818f47 AA |
1063 | start += ret << PAGE_SHIFT; |
1064 | ||
1065 | /* | |
1066 | * Repeat on the address that fired VM_FAULT_RETRY | |
1067 | * without FAULT_FLAG_ALLOW_RETRY but with | |
1068 | * FAULT_FLAG_TRIED. | |
1069 | */ | |
1070 | *locked = 1; | |
1071 | lock_dropped = true; | |
1072 | down_read(&mm->mmap_sem); | |
1073 | ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED, | |
1074 | pages, NULL, NULL); | |
1075 | if (ret != 1) { | |
1076 | BUG_ON(ret > 1); | |
1077 | if (!pages_done) | |
1078 | pages_done = ret; | |
1079 | break; | |
1080 | } | |
1081 | nr_pages--; | |
1082 | pages_done++; | |
1083 | if (!nr_pages) | |
1084 | break; | |
df17277b MR |
1085 | if (likely(pages)) |
1086 | pages++; | |
f0818f47 AA |
1087 | start += PAGE_SIZE; |
1088 | } | |
e716712f | 1089 | if (lock_dropped && *locked) { |
f0818f47 AA |
1090 | /* |
1091 | * We must let the caller know we temporarily dropped the lock | |
1092 | * and so the critical section protected by it was lost. | |
1093 | */ | |
1094 | up_read(&mm->mmap_sem); | |
1095 | *locked = 0; | |
1096 | } | |
1097 | return pages_done; | |
1098 | } | |
1099 | ||
4bbd4c77 | 1100 | /* |
1e987790 | 1101 | * get_user_pages_remote() - pin user pages in memory |
4bbd4c77 KS |
1102 | * @tsk: the task_struct to use for page fault accounting, or |
1103 | * NULL if faults are not to be recorded. | |
1104 | * @mm: mm_struct of target mm | |
1105 | * @start: starting user address | |
1106 | * @nr_pages: number of pages from start to pin | |
9beae1ea | 1107 | * @gup_flags: flags modifying lookup behaviour |
4bbd4c77 KS |
1108 | * @pages: array that receives pointers to the pages pinned. |
1109 | * Should be at least nr_pages long. Or NULL, if caller | |
1110 | * only intends to ensure the pages are faulted in. | |
1111 | * @vmas: array of pointers to vmas corresponding to each page. | |
1112 | * Or NULL if the caller does not require them. | |
5b56d49f LS |
1113 | * @locked: pointer to lock flag indicating whether lock is held and |
1114 | * subsequently whether VM_FAULT_RETRY functionality can be | |
1115 | * utilised. Lock must initially be held. | |
4bbd4c77 KS |
1116 | * |
1117 | * Returns number of pages pinned. This may be fewer than the number | |
1118 | * requested. If nr_pages is 0 or negative, returns 0. If no pages | |
1119 | * were pinned, returns -errno. Each page returned must be released | |
1120 | * with a put_page() call when it is finished with. vmas will only | |
1121 | * remain valid while mmap_sem is held. | |
1122 | * | |
1123 | * Must be called with mmap_sem held for read or write. | |
1124 | * | |
1125 | * get_user_pages walks a process's page tables and takes a reference to | |
1126 | * each struct page that each user address corresponds to at a given | |
1127 | * instant. That is, it takes the page that would be accessed if a user | |
1128 | * thread accesses the given user virtual address at that instant. | |
1129 | * | |
1130 | * This does not guarantee that the page exists in the user mappings when | |
1131 | * get_user_pages returns, and there may even be a completely different | |
1132 | * page there in some cases (eg. if mmapped pagecache has been invalidated | |
1133 | * and subsequently re faulted). However it does guarantee that the page | |
1134 | * won't be freed completely. And mostly callers simply care that the page | |
1135 | * contains data that was valid *at some point in time*. Typically, an IO | |
1136 | * or similar operation cannot guarantee anything stronger anyway because | |
1137 | * locks can't be held over the syscall boundary. | |
1138 | * | |
9beae1ea LS |
1139 | * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page |
1140 | * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must | |
1141 | * be called after the page is finished with, and before put_page is called. | |
4bbd4c77 KS |
1142 | * |
1143 | * get_user_pages is typically used for fewer-copy IO operations, to get a | |
1144 | * handle on the memory by some means other than accesses via the user virtual | |
1145 | * addresses. The pages may be submitted for DMA to devices or accessed via | |
1146 | * their kernel linear mapping (via the kmap APIs). Care should be taken to | |
1147 | * use the correct cache flushing APIs. | |
1148 | * | |
1149 | * See also get_user_pages_fast, for performance critical applications. | |
f0818f47 AA |
1150 | * |
1151 | * get_user_pages should be phased out in favor of | |
1152 | * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing | |
1153 | * should use get_user_pages because it cannot pass | |
1154 | * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. | |
4bbd4c77 | 1155 | */ |
1e987790 DH |
1156 | long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, |
1157 | unsigned long start, unsigned long nr_pages, | |
9beae1ea | 1158 | unsigned int gup_flags, struct page **pages, |
5b56d49f | 1159 | struct vm_area_struct **vmas, int *locked) |
4bbd4c77 | 1160 | { |
932f4a63 IW |
1161 | /* |
1162 | * FIXME: Current FOLL_LONGTERM behavior is incompatible with | |
1163 | * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on | |
1164 | * vmas. As there are no users of this flag in this call we simply | |
1165 | * disallow this option for now. | |
1166 | */ | |
1167 | if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) | |
1168 | return -EINVAL; | |
1169 | ||
859110d7 | 1170 | return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas, |
e716712f | 1171 | locked, |
9beae1ea | 1172 | gup_flags | FOLL_TOUCH | FOLL_REMOTE); |
1e987790 DH |
1173 | } |
1174 | EXPORT_SYMBOL(get_user_pages_remote); | |
1175 | ||
d3649f68 CH |
1176 | /** |
1177 | * populate_vma_page_range() - populate a range of pages in the vma. | |
1178 | * @vma: target vma | |
1179 | * @start: start address | |
1180 | * @end: end address | |
1181 | * @nonblocking: | |
1182 | * | |
1183 | * This takes care of mlocking the pages too if VM_LOCKED is set. | |
1184 | * | |
1185 | * return 0 on success, negative error code on error. | |
1186 | * | |
1187 | * vma->vm_mm->mmap_sem must be held. | |
1188 | * | |
1189 | * If @nonblocking is NULL, it may be held for read or write and will | |
1190 | * be unperturbed. | |
1191 | * | |
1192 | * If @nonblocking is non-NULL, it must held for read only and may be | |
1193 | * released. If it's released, *@nonblocking will be set to 0. | |
1194 | */ | |
1195 | long populate_vma_page_range(struct vm_area_struct *vma, | |
1196 | unsigned long start, unsigned long end, int *nonblocking) | |
1197 | { | |
1198 | struct mm_struct *mm = vma->vm_mm; | |
1199 | unsigned long nr_pages = (end - start) / PAGE_SIZE; | |
1200 | int gup_flags; | |
1201 | ||
1202 | VM_BUG_ON(start & ~PAGE_MASK); | |
1203 | VM_BUG_ON(end & ~PAGE_MASK); | |
1204 | VM_BUG_ON_VMA(start < vma->vm_start, vma); | |
1205 | VM_BUG_ON_VMA(end > vma->vm_end, vma); | |
1206 | VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm); | |
1207 | ||
1208 | gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK; | |
1209 | if (vma->vm_flags & VM_LOCKONFAULT) | |
1210 | gup_flags &= ~FOLL_POPULATE; | |
1211 | /* | |
1212 | * We want to touch writable mappings with a write fault in order | |
1213 | * to break COW, except for shared mappings because these don't COW | |
1214 | * and we would not want to dirty them for nothing. | |
1215 | */ | |
1216 | if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) | |
1217 | gup_flags |= FOLL_WRITE; | |
1218 | ||
1219 | /* | |
1220 | * We want mlock to succeed for regions that have any permissions | |
1221 | * other than PROT_NONE. | |
1222 | */ | |
1223 | if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC)) | |
1224 | gup_flags |= FOLL_FORCE; | |
1225 | ||
1226 | /* | |
1227 | * We made sure addr is within a VMA, so the following will | |
1228 | * not result in a stack expansion that recurses back here. | |
1229 | */ | |
1230 | return __get_user_pages(current, mm, start, nr_pages, gup_flags, | |
1231 | NULL, NULL, nonblocking); | |
1232 | } | |
1233 | ||
1234 | /* | |
1235 | * __mm_populate - populate and/or mlock pages within a range of address space. | |
1236 | * | |
1237 | * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap | |
1238 | * flags. VMAs must be already marked with the desired vm_flags, and | |
1239 | * mmap_sem must not be held. | |
1240 | */ | |
1241 | int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) | |
1242 | { | |
1243 | struct mm_struct *mm = current->mm; | |
1244 | unsigned long end, nstart, nend; | |
1245 | struct vm_area_struct *vma = NULL; | |
1246 | int locked = 0; | |
1247 | long ret = 0; | |
1248 | ||
1249 | end = start + len; | |
1250 | ||
1251 | for (nstart = start; nstart < end; nstart = nend) { | |
1252 | /* | |
1253 | * We want to fault in pages for [nstart; end) address range. | |
1254 | * Find first corresponding VMA. | |
1255 | */ | |
1256 | if (!locked) { | |
1257 | locked = 1; | |
1258 | down_read(&mm->mmap_sem); | |
1259 | vma = find_vma(mm, nstart); | |
1260 | } else if (nstart >= vma->vm_end) | |
1261 | vma = vma->vm_next; | |
1262 | if (!vma || vma->vm_start >= end) | |
1263 | break; | |
1264 | /* | |
1265 | * Set [nstart; nend) to intersection of desired address | |
1266 | * range with the first VMA. Also, skip undesirable VMA types. | |
1267 | */ | |
1268 | nend = min(end, vma->vm_end); | |
1269 | if (vma->vm_flags & (VM_IO | VM_PFNMAP)) | |
1270 | continue; | |
1271 | if (nstart < vma->vm_start) | |
1272 | nstart = vma->vm_start; | |
1273 | /* | |
1274 | * Now fault in a range of pages. populate_vma_page_range() | |
1275 | * double checks the vma flags, so that it won't mlock pages | |
1276 | * if the vma was already munlocked. | |
1277 | */ | |
1278 | ret = populate_vma_page_range(vma, nstart, nend, &locked); | |
1279 | if (ret < 0) { | |
1280 | if (ignore_errors) { | |
1281 | ret = 0; | |
1282 | continue; /* continue at next VMA */ | |
1283 | } | |
1284 | break; | |
1285 | } | |
1286 | nend = nstart + ret * PAGE_SIZE; | |
1287 | ret = 0; | |
1288 | } | |
1289 | if (locked) | |
1290 | up_read(&mm->mmap_sem); | |
1291 | return ret; /* 0 or negative error code */ | |
1292 | } | |
1293 | ||
1294 | /** | |
1295 | * get_dump_page() - pin user page in memory while writing it to core dump | |
1296 | * @addr: user address | |
1297 | * | |
1298 | * Returns struct page pointer of user page pinned for dump, | |
1299 | * to be freed afterwards by put_page(). | |
1300 | * | |
1301 | * Returns NULL on any kind of failure - a hole must then be inserted into | |
1302 | * the corefile, to preserve alignment with its headers; and also returns | |
1303 | * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - | |
1304 | * allowing a hole to be left in the corefile to save diskspace. | |
1305 | * | |
1306 | * Called without mmap_sem, but after all other threads have been killed. | |
1307 | */ | |
1308 | #ifdef CONFIG_ELF_CORE | |
1309 | struct page *get_dump_page(unsigned long addr) | |
1310 | { | |
1311 | struct vm_area_struct *vma; | |
1312 | struct page *page; | |
1313 | ||
1314 | if (__get_user_pages(current, current->mm, addr, 1, | |
1315 | FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma, | |
1316 | NULL) < 1) | |
1317 | return NULL; | |
1318 | flush_cache_page(vma, addr, page_to_pfn(page)); | |
1319 | return page; | |
1320 | } | |
1321 | #endif /* CONFIG_ELF_CORE */ | |
050a9adc CH |
1322 | #else /* CONFIG_MMU */ |
1323 | static long __get_user_pages_locked(struct task_struct *tsk, | |
1324 | struct mm_struct *mm, unsigned long start, | |
1325 | unsigned long nr_pages, struct page **pages, | |
1326 | struct vm_area_struct **vmas, int *locked, | |
1327 | unsigned int foll_flags) | |
1328 | { | |
1329 | struct vm_area_struct *vma; | |
1330 | unsigned long vm_flags; | |
1331 | int i; | |
1332 | ||
1333 | /* calculate required read or write permissions. | |
1334 | * If FOLL_FORCE is set, we only require the "MAY" flags. | |
1335 | */ | |
1336 | vm_flags = (foll_flags & FOLL_WRITE) ? | |
1337 | (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); | |
1338 | vm_flags &= (foll_flags & FOLL_FORCE) ? | |
1339 | (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); | |
1340 | ||
1341 | for (i = 0; i < nr_pages; i++) { | |
1342 | vma = find_vma(mm, start); | |
1343 | if (!vma) | |
1344 | goto finish_or_fault; | |
1345 | ||
1346 | /* protect what we can, including chardevs */ | |
1347 | if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || | |
1348 | !(vm_flags & vma->vm_flags)) | |
1349 | goto finish_or_fault; | |
1350 | ||
1351 | if (pages) { | |
1352 | pages[i] = virt_to_page(start); | |
1353 | if (pages[i]) | |
1354 | get_page(pages[i]); | |
1355 | } | |
1356 | if (vmas) | |
1357 | vmas[i] = vma; | |
1358 | start = (start + PAGE_SIZE) & PAGE_MASK; | |
1359 | } | |
1360 | ||
1361 | return i; | |
1362 | ||
1363 | finish_or_fault: | |
1364 | return i ? : -EFAULT; | |
1365 | } | |
1366 | #endif /* !CONFIG_MMU */ | |
d3649f68 | 1367 | |
9a4e9f3b | 1368 | #if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA) |
9a4e9f3b AK |
1369 | static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages) |
1370 | { | |
1371 | long i; | |
1372 | struct vm_area_struct *vma_prev = NULL; | |
1373 | ||
1374 | for (i = 0; i < nr_pages; i++) { | |
1375 | struct vm_area_struct *vma = vmas[i]; | |
1376 | ||
1377 | if (vma == vma_prev) | |
1378 | continue; | |
1379 | ||
1380 | vma_prev = vma; | |
1381 | ||
1382 | if (vma_is_fsdax(vma)) | |
1383 | return true; | |
1384 | } | |
1385 | return false; | |
1386 | } | |
9a4e9f3b AK |
1387 | |
1388 | #ifdef CONFIG_CMA | |
1389 | static struct page *new_non_cma_page(struct page *page, unsigned long private) | |
1390 | { | |
1391 | /* | |
1392 | * We want to make sure we allocate the new page from the same node | |
1393 | * as the source page. | |
1394 | */ | |
1395 | int nid = page_to_nid(page); | |
1396 | /* | |
1397 | * Trying to allocate a page for migration. Ignore allocation | |
1398 | * failure warnings. We don't force __GFP_THISNODE here because | |
1399 | * this node here is the node where we have CMA reservation and | |
1400 | * in some case these nodes will have really less non movable | |
1401 | * allocation memory. | |
1402 | */ | |
1403 | gfp_t gfp_mask = GFP_USER | __GFP_NOWARN; | |
1404 | ||
1405 | if (PageHighMem(page)) | |
1406 | gfp_mask |= __GFP_HIGHMEM; | |
1407 | ||
1408 | #ifdef CONFIG_HUGETLB_PAGE | |
1409 | if (PageHuge(page)) { | |
1410 | struct hstate *h = page_hstate(page); | |
1411 | /* | |
1412 | * We don't want to dequeue from the pool because pool pages will | |
1413 | * mostly be from the CMA region. | |
1414 | */ | |
1415 | return alloc_migrate_huge_page(h, gfp_mask, nid, NULL); | |
1416 | } | |
1417 | #endif | |
1418 | if (PageTransHuge(page)) { | |
1419 | struct page *thp; | |
1420 | /* | |
1421 | * ignore allocation failure warnings | |
1422 | */ | |
1423 | gfp_t thp_gfpmask = GFP_TRANSHUGE | __GFP_NOWARN; | |
1424 | ||
1425 | /* | |
1426 | * Remove the movable mask so that we don't allocate from | |
1427 | * CMA area again. | |
1428 | */ | |
1429 | thp_gfpmask &= ~__GFP_MOVABLE; | |
1430 | thp = __alloc_pages_node(nid, thp_gfpmask, HPAGE_PMD_ORDER); | |
1431 | if (!thp) | |
1432 | return NULL; | |
1433 | prep_transhuge_page(thp); | |
1434 | return thp; | |
1435 | } | |
1436 | ||
1437 | return __alloc_pages_node(nid, gfp_mask, 0); | |
1438 | } | |
1439 | ||
932f4a63 IW |
1440 | static long check_and_migrate_cma_pages(struct task_struct *tsk, |
1441 | struct mm_struct *mm, | |
1442 | unsigned long start, | |
1443 | unsigned long nr_pages, | |
9a4e9f3b | 1444 | struct page **pages, |
932f4a63 IW |
1445 | struct vm_area_struct **vmas, |
1446 | unsigned int gup_flags) | |
9a4e9f3b | 1447 | { |
aa712399 PL |
1448 | unsigned long i; |
1449 | unsigned long step; | |
9a4e9f3b AK |
1450 | bool drain_allow = true; |
1451 | bool migrate_allow = true; | |
1452 | LIST_HEAD(cma_page_list); | |
1453 | ||
1454 | check_again: | |
aa712399 PL |
1455 | for (i = 0; i < nr_pages;) { |
1456 | ||
1457 | struct page *head = compound_head(pages[i]); | |
1458 | ||
1459 | /* | |
1460 | * gup may start from a tail page. Advance step by the left | |
1461 | * part. | |
1462 | */ | |
1463 | step = (1 << compound_order(head)) - (pages[i] - head); | |
9a4e9f3b AK |
1464 | /* |
1465 | * If we get a page from the CMA zone, since we are going to | |
1466 | * be pinning these entries, we might as well move them out | |
1467 | * of the CMA zone if possible. | |
1468 | */ | |
aa712399 PL |
1469 | if (is_migrate_cma_page(head)) { |
1470 | if (PageHuge(head)) | |
9a4e9f3b | 1471 | isolate_huge_page(head, &cma_page_list); |
aa712399 | 1472 | else { |
9a4e9f3b AK |
1473 | if (!PageLRU(head) && drain_allow) { |
1474 | lru_add_drain_all(); | |
1475 | drain_allow = false; | |
1476 | } | |
1477 | ||
1478 | if (!isolate_lru_page(head)) { | |
1479 | list_add_tail(&head->lru, &cma_page_list); | |
1480 | mod_node_page_state(page_pgdat(head), | |
1481 | NR_ISOLATED_ANON + | |
1482 | page_is_file_cache(head), | |
1483 | hpage_nr_pages(head)); | |
1484 | } | |
1485 | } | |
1486 | } | |
aa712399 PL |
1487 | |
1488 | i += step; | |
9a4e9f3b AK |
1489 | } |
1490 | ||
1491 | if (!list_empty(&cma_page_list)) { | |
1492 | /* | |
1493 | * drop the above get_user_pages reference. | |
1494 | */ | |
1495 | for (i = 0; i < nr_pages; i++) | |
1496 | put_page(pages[i]); | |
1497 | ||
1498 | if (migrate_pages(&cma_page_list, new_non_cma_page, | |
1499 | NULL, 0, MIGRATE_SYNC, MR_CONTIG_RANGE)) { | |
1500 | /* | |
1501 | * some of the pages failed migration. Do get_user_pages | |
1502 | * without migration. | |
1503 | */ | |
1504 | migrate_allow = false; | |
1505 | ||
1506 | if (!list_empty(&cma_page_list)) | |
1507 | putback_movable_pages(&cma_page_list); | |
1508 | } | |
1509 | /* | |
932f4a63 IW |
1510 | * We did migrate all the pages, Try to get the page references |
1511 | * again migrating any new CMA pages which we failed to isolate | |
1512 | * earlier. | |
9a4e9f3b | 1513 | */ |
932f4a63 IW |
1514 | nr_pages = __get_user_pages_locked(tsk, mm, start, nr_pages, |
1515 | pages, vmas, NULL, | |
1516 | gup_flags); | |
1517 | ||
9a4e9f3b AK |
1518 | if ((nr_pages > 0) && migrate_allow) { |
1519 | drain_allow = true; | |
1520 | goto check_again; | |
1521 | } | |
1522 | } | |
1523 | ||
1524 | return nr_pages; | |
1525 | } | |
1526 | #else | |
932f4a63 IW |
1527 | static long check_and_migrate_cma_pages(struct task_struct *tsk, |
1528 | struct mm_struct *mm, | |
1529 | unsigned long start, | |
1530 | unsigned long nr_pages, | |
1531 | struct page **pages, | |
1532 | struct vm_area_struct **vmas, | |
1533 | unsigned int gup_flags) | |
9a4e9f3b AK |
1534 | { |
1535 | return nr_pages; | |
1536 | } | |
050a9adc | 1537 | #endif /* CONFIG_CMA */ |
9a4e9f3b | 1538 | |
2bb6d283 | 1539 | /* |
932f4a63 IW |
1540 | * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which |
1541 | * allows us to process the FOLL_LONGTERM flag. | |
2bb6d283 | 1542 | */ |
932f4a63 IW |
1543 | static long __gup_longterm_locked(struct task_struct *tsk, |
1544 | struct mm_struct *mm, | |
1545 | unsigned long start, | |
1546 | unsigned long nr_pages, | |
1547 | struct page **pages, | |
1548 | struct vm_area_struct **vmas, | |
1549 | unsigned int gup_flags) | |
2bb6d283 | 1550 | { |
932f4a63 IW |
1551 | struct vm_area_struct **vmas_tmp = vmas; |
1552 | unsigned long flags = 0; | |
2bb6d283 DW |
1553 | long rc, i; |
1554 | ||
932f4a63 IW |
1555 | if (gup_flags & FOLL_LONGTERM) { |
1556 | if (!pages) | |
1557 | return -EINVAL; | |
1558 | ||
1559 | if (!vmas_tmp) { | |
1560 | vmas_tmp = kcalloc(nr_pages, | |
1561 | sizeof(struct vm_area_struct *), | |
1562 | GFP_KERNEL); | |
1563 | if (!vmas_tmp) | |
1564 | return -ENOMEM; | |
1565 | } | |
1566 | flags = memalloc_nocma_save(); | |
2bb6d283 DW |
1567 | } |
1568 | ||
932f4a63 IW |
1569 | rc = __get_user_pages_locked(tsk, mm, start, nr_pages, pages, |
1570 | vmas_tmp, NULL, gup_flags); | |
2bb6d283 | 1571 | |
932f4a63 IW |
1572 | if (gup_flags & FOLL_LONGTERM) { |
1573 | memalloc_nocma_restore(flags); | |
1574 | if (rc < 0) | |
1575 | goto out; | |
1576 | ||
1577 | if (check_dax_vmas(vmas_tmp, rc)) { | |
1578 | for (i = 0; i < rc; i++) | |
1579 | put_page(pages[i]); | |
1580 | rc = -EOPNOTSUPP; | |
1581 | goto out; | |
1582 | } | |
1583 | ||
1584 | rc = check_and_migrate_cma_pages(tsk, mm, start, rc, pages, | |
1585 | vmas_tmp, gup_flags); | |
9a4e9f3b | 1586 | } |
2bb6d283 | 1587 | |
2bb6d283 | 1588 | out: |
932f4a63 IW |
1589 | if (vmas_tmp != vmas) |
1590 | kfree(vmas_tmp); | |
2bb6d283 DW |
1591 | return rc; |
1592 | } | |
932f4a63 IW |
1593 | #else /* !CONFIG_FS_DAX && !CONFIG_CMA */ |
1594 | static __always_inline long __gup_longterm_locked(struct task_struct *tsk, | |
1595 | struct mm_struct *mm, | |
1596 | unsigned long start, | |
1597 | unsigned long nr_pages, | |
1598 | struct page **pages, | |
1599 | struct vm_area_struct **vmas, | |
1600 | unsigned int flags) | |
1601 | { | |
1602 | return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas, | |
1603 | NULL, flags); | |
1604 | } | |
1605 | #endif /* CONFIG_FS_DAX || CONFIG_CMA */ | |
1606 | ||
1607 | /* | |
1608 | * This is the same as get_user_pages_remote(), just with a | |
1609 | * less-flexible calling convention where we assume that the task | |
1610 | * and mm being operated on are the current task's and don't allow | |
1611 | * passing of a locked parameter. We also obviously don't pass | |
1612 | * FOLL_REMOTE in here. | |
1613 | */ | |
1614 | long get_user_pages(unsigned long start, unsigned long nr_pages, | |
1615 | unsigned int gup_flags, struct page **pages, | |
1616 | struct vm_area_struct **vmas) | |
1617 | { | |
1618 | return __gup_longterm_locked(current, current->mm, start, nr_pages, | |
1619 | pages, vmas, gup_flags | FOLL_TOUCH); | |
1620 | } | |
1621 | EXPORT_SYMBOL(get_user_pages); | |
2bb6d283 | 1622 | |
d3649f68 CH |
1623 | /* |
1624 | * We can leverage the VM_FAULT_RETRY functionality in the page fault | |
1625 | * paths better by using either get_user_pages_locked() or | |
1626 | * get_user_pages_unlocked(). | |
acc3c8d1 | 1627 | * |
d3649f68 | 1628 | * get_user_pages_locked() is suitable to replace the form: |
acc3c8d1 | 1629 | * |
d3649f68 CH |
1630 | * down_read(&mm->mmap_sem); |
1631 | * do_something() | |
1632 | * get_user_pages(tsk, mm, ..., pages, NULL); | |
1633 | * up_read(&mm->mmap_sem); | |
acc3c8d1 | 1634 | * |
d3649f68 | 1635 | * to: |
acc3c8d1 | 1636 | * |
d3649f68 CH |
1637 | * int locked = 1; |
1638 | * down_read(&mm->mmap_sem); | |
1639 | * do_something() | |
1640 | * get_user_pages_locked(tsk, mm, ..., pages, &locked); | |
1641 | * if (locked) | |
1642 | * up_read(&mm->mmap_sem); | |
acc3c8d1 | 1643 | */ |
d3649f68 CH |
1644 | long get_user_pages_locked(unsigned long start, unsigned long nr_pages, |
1645 | unsigned int gup_flags, struct page **pages, | |
1646 | int *locked) | |
acc3c8d1 | 1647 | { |
acc3c8d1 | 1648 | /* |
d3649f68 CH |
1649 | * FIXME: Current FOLL_LONGTERM behavior is incompatible with |
1650 | * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on | |
1651 | * vmas. As there are no users of this flag in this call we simply | |
1652 | * disallow this option for now. | |
acc3c8d1 | 1653 | */ |
d3649f68 CH |
1654 | if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) |
1655 | return -EINVAL; | |
acc3c8d1 | 1656 | |
d3649f68 CH |
1657 | return __get_user_pages_locked(current, current->mm, start, nr_pages, |
1658 | pages, NULL, locked, | |
1659 | gup_flags | FOLL_TOUCH); | |
acc3c8d1 | 1660 | } |
d3649f68 | 1661 | EXPORT_SYMBOL(get_user_pages_locked); |
acc3c8d1 KS |
1662 | |
1663 | /* | |
d3649f68 | 1664 | * get_user_pages_unlocked() is suitable to replace the form: |
acc3c8d1 | 1665 | * |
d3649f68 CH |
1666 | * down_read(&mm->mmap_sem); |
1667 | * get_user_pages(tsk, mm, ..., pages, NULL); | |
1668 | * up_read(&mm->mmap_sem); | |
1669 | * | |
1670 | * with: | |
1671 | * | |
1672 | * get_user_pages_unlocked(tsk, mm, ..., pages); | |
1673 | * | |
1674 | * It is functionally equivalent to get_user_pages_fast so | |
1675 | * get_user_pages_fast should be used instead if specific gup_flags | |
1676 | * (e.g. FOLL_FORCE) are not required. | |
acc3c8d1 | 1677 | */ |
d3649f68 CH |
1678 | long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, |
1679 | struct page **pages, unsigned int gup_flags) | |
acc3c8d1 KS |
1680 | { |
1681 | struct mm_struct *mm = current->mm; | |
d3649f68 CH |
1682 | int locked = 1; |
1683 | long ret; | |
acc3c8d1 | 1684 | |
d3649f68 CH |
1685 | /* |
1686 | * FIXME: Current FOLL_LONGTERM behavior is incompatible with | |
1687 | * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on | |
1688 | * vmas. As there are no users of this flag in this call we simply | |
1689 | * disallow this option for now. | |
1690 | */ | |
1691 | if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) | |
1692 | return -EINVAL; | |
acc3c8d1 | 1693 | |
d3649f68 CH |
1694 | down_read(&mm->mmap_sem); |
1695 | ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL, | |
1696 | &locked, gup_flags | FOLL_TOUCH); | |
acc3c8d1 KS |
1697 | if (locked) |
1698 | up_read(&mm->mmap_sem); | |
d3649f68 | 1699 | return ret; |
4bbd4c77 | 1700 | } |
d3649f68 | 1701 | EXPORT_SYMBOL(get_user_pages_unlocked); |
2667f50e SC |
1702 | |
1703 | /* | |
67a929e0 | 1704 | * Fast GUP |
2667f50e SC |
1705 | * |
1706 | * get_user_pages_fast attempts to pin user pages by walking the page | |
1707 | * tables directly and avoids taking locks. Thus the walker needs to be | |
1708 | * protected from page table pages being freed from under it, and should | |
1709 | * block any THP splits. | |
1710 | * | |
1711 | * One way to achieve this is to have the walker disable interrupts, and | |
1712 | * rely on IPIs from the TLB flushing code blocking before the page table | |
1713 | * pages are freed. This is unsuitable for architectures that do not need | |
1714 | * to broadcast an IPI when invalidating TLBs. | |
1715 | * | |
1716 | * Another way to achieve this is to batch up page table containing pages | |
1717 | * belonging to more than one mm_user, then rcu_sched a callback to free those | |
1718 | * pages. Disabling interrupts will allow the fast_gup walker to both block | |
1719 | * the rcu_sched callback, and an IPI that we broadcast for splitting THPs | |
1720 | * (which is a relatively rare event). The code below adopts this strategy. | |
1721 | * | |
1722 | * Before activating this code, please be aware that the following assumptions | |
1723 | * are currently made: | |
1724 | * | |
e585513b KS |
1725 | * *) Either HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to |
1726 | * free pages containing page tables or TLB flushing requires IPI broadcast. | |
2667f50e | 1727 | * |
2667f50e SC |
1728 | * *) ptes can be read atomically by the architecture. |
1729 | * | |
1730 | * *) access_ok is sufficient to validate userspace address ranges. | |
1731 | * | |
1732 | * The last two assumptions can be relaxed by the addition of helper functions. | |
1733 | * | |
1734 | * This code is based heavily on the PowerPC implementation by Nick Piggin. | |
1735 | */ | |
67a929e0 | 1736 | #ifdef CONFIG_HAVE_FAST_GUP |
39656e83 CH |
1737 | #ifdef CONFIG_GUP_GET_PTE_LOW_HIGH |
1738 | /* | |
1739 | * WARNING: only to be used in the get_user_pages_fast() implementation. | |
1740 | * | |
1741 | * With get_user_pages_fast(), we walk down the pagetables without taking any | |
1742 | * locks. For this we would like to load the pointers atomically, but sometimes | |
1743 | * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE). What | |
1744 | * we do have is the guarantee that a PTE will only either go from not present | |
1745 | * to present, or present to not present or both -- it will not switch to a | |
1746 | * completely different present page without a TLB flush in between; something | |
1747 | * that we are blocking by holding interrupts off. | |
1748 | * | |
1749 | * Setting ptes from not present to present goes: | |
1750 | * | |
1751 | * ptep->pte_high = h; | |
1752 | * smp_wmb(); | |
1753 | * ptep->pte_low = l; | |
1754 | * | |
1755 | * And present to not present goes: | |
1756 | * | |
1757 | * ptep->pte_low = 0; | |
1758 | * smp_wmb(); | |
1759 | * ptep->pte_high = 0; | |
1760 | * | |
1761 | * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'. | |
1762 | * We load pte_high *after* loading pte_low, which ensures we don't see an older | |
1763 | * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't | |
1764 | * picked up a changed pte high. We might have gotten rubbish values from | |
1765 | * pte_low and pte_high, but we are guaranteed that pte_low will not have the | |
1766 | * present bit set *unless* it is 'l'. Because get_user_pages_fast() only | |
1767 | * operates on present ptes we're safe. | |
1768 | */ | |
1769 | static inline pte_t gup_get_pte(pte_t *ptep) | |
1770 | { | |
1771 | pte_t pte; | |
2667f50e | 1772 | |
39656e83 CH |
1773 | do { |
1774 | pte.pte_low = ptep->pte_low; | |
1775 | smp_rmb(); | |
1776 | pte.pte_high = ptep->pte_high; | |
1777 | smp_rmb(); | |
1778 | } while (unlikely(pte.pte_low != ptep->pte_low)); | |
1779 | ||
1780 | return pte; | |
1781 | } | |
1782 | #else /* CONFIG_GUP_GET_PTE_LOW_HIGH */ | |
0005d20b | 1783 | /* |
39656e83 | 1784 | * We require that the PTE can be read atomically. |
0005d20b KS |
1785 | */ |
1786 | static inline pte_t gup_get_pte(pte_t *ptep) | |
1787 | { | |
1788 | return READ_ONCE(*ptep); | |
1789 | } | |
39656e83 | 1790 | #endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */ |
0005d20b | 1791 | |
790c7369 GR |
1792 | static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start, |
1793 | struct page **pages) | |
b59f65fa KS |
1794 | { |
1795 | while ((*nr) - nr_start) { | |
1796 | struct page *page = pages[--(*nr)]; | |
1797 | ||
1798 | ClearPageReferenced(page); | |
1799 | put_page(page); | |
1800 | } | |
1801 | } | |
1802 | ||
8fde12ca LT |
1803 | /* |
1804 | * Return the compund head page with ref appropriately incremented, | |
1805 | * or NULL if that failed. | |
1806 | */ | |
1807 | static inline struct page *try_get_compound_head(struct page *page, int refs) | |
1808 | { | |
1809 | struct page *head = compound_head(page); | |
1810 | if (WARN_ON_ONCE(page_ref_count(head) < 0)) | |
1811 | return NULL; | |
1812 | if (unlikely(!page_cache_add_speculative(head, refs))) | |
1813 | return NULL; | |
1814 | return head; | |
1815 | } | |
1816 | ||
3010a5ea | 1817 | #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL |
2667f50e | 1818 | static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, |
b798bec4 | 1819 | unsigned int flags, struct page **pages, int *nr) |
2667f50e | 1820 | { |
b59f65fa KS |
1821 | struct dev_pagemap *pgmap = NULL; |
1822 | int nr_start = *nr, ret = 0; | |
2667f50e | 1823 | pte_t *ptep, *ptem; |
2667f50e SC |
1824 | |
1825 | ptem = ptep = pte_offset_map(&pmd, addr); | |
1826 | do { | |
0005d20b | 1827 | pte_t pte = gup_get_pte(ptep); |
7aef4172 | 1828 | struct page *head, *page; |
2667f50e SC |
1829 | |
1830 | /* | |
1831 | * Similar to the PMD case below, NUMA hinting must take slow | |
8a0516ed | 1832 | * path using the pte_protnone check. |
2667f50e | 1833 | */ |
e7884f8e KS |
1834 | if (pte_protnone(pte)) |
1835 | goto pte_unmap; | |
1836 | ||
b798bec4 | 1837 | if (!pte_access_permitted(pte, flags & FOLL_WRITE)) |
e7884f8e KS |
1838 | goto pte_unmap; |
1839 | ||
b59f65fa | 1840 | if (pte_devmap(pte)) { |
7af75561 IW |
1841 | if (unlikely(flags & FOLL_LONGTERM)) |
1842 | goto pte_unmap; | |
1843 | ||
b59f65fa KS |
1844 | pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); |
1845 | if (unlikely(!pgmap)) { | |
1846 | undo_dev_pagemap(nr, nr_start, pages); | |
1847 | goto pte_unmap; | |
1848 | } | |
1849 | } else if (pte_special(pte)) | |
2667f50e SC |
1850 | goto pte_unmap; |
1851 | ||
1852 | VM_BUG_ON(!pfn_valid(pte_pfn(pte))); | |
1853 | page = pte_page(pte); | |
1854 | ||
8fde12ca LT |
1855 | head = try_get_compound_head(page, 1); |
1856 | if (!head) | |
2667f50e SC |
1857 | goto pte_unmap; |
1858 | ||
1859 | if (unlikely(pte_val(pte) != pte_val(*ptep))) { | |
7aef4172 | 1860 | put_page(head); |
2667f50e SC |
1861 | goto pte_unmap; |
1862 | } | |
1863 | ||
7aef4172 | 1864 | VM_BUG_ON_PAGE(compound_head(page) != head, page); |
e9348053 KS |
1865 | |
1866 | SetPageReferenced(page); | |
2667f50e SC |
1867 | pages[*nr] = page; |
1868 | (*nr)++; | |
1869 | ||
1870 | } while (ptep++, addr += PAGE_SIZE, addr != end); | |
1871 | ||
1872 | ret = 1; | |
1873 | ||
1874 | pte_unmap: | |
832d7aa0 CH |
1875 | if (pgmap) |
1876 | put_dev_pagemap(pgmap); | |
2667f50e SC |
1877 | pte_unmap(ptem); |
1878 | return ret; | |
1879 | } | |
1880 | #else | |
1881 | ||
1882 | /* | |
1883 | * If we can't determine whether or not a pte is special, then fail immediately | |
1884 | * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not | |
1885 | * to be special. | |
1886 | * | |
1887 | * For a futex to be placed on a THP tail page, get_futex_key requires a | |
1888 | * __get_user_pages_fast implementation that can pin pages. Thus it's still | |
1889 | * useful to have gup_huge_pmd even if we can't operate on ptes. | |
1890 | */ | |
1891 | static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, | |
b798bec4 | 1892 | unsigned int flags, struct page **pages, int *nr) |
2667f50e SC |
1893 | { |
1894 | return 0; | |
1895 | } | |
3010a5ea | 1896 | #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ |
2667f50e | 1897 | |
17596731 | 1898 | #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) |
b59f65fa KS |
1899 | static int __gup_device_huge(unsigned long pfn, unsigned long addr, |
1900 | unsigned long end, struct page **pages, int *nr) | |
1901 | { | |
1902 | int nr_start = *nr; | |
1903 | struct dev_pagemap *pgmap = NULL; | |
1904 | ||
1905 | do { | |
1906 | struct page *page = pfn_to_page(pfn); | |
1907 | ||
1908 | pgmap = get_dev_pagemap(pfn, pgmap); | |
1909 | if (unlikely(!pgmap)) { | |
1910 | undo_dev_pagemap(nr, nr_start, pages); | |
1911 | return 0; | |
1912 | } | |
1913 | SetPageReferenced(page); | |
1914 | pages[*nr] = page; | |
1915 | get_page(page); | |
b59f65fa KS |
1916 | (*nr)++; |
1917 | pfn++; | |
1918 | } while (addr += PAGE_SIZE, addr != end); | |
832d7aa0 CH |
1919 | |
1920 | if (pgmap) | |
1921 | put_dev_pagemap(pgmap); | |
b59f65fa KS |
1922 | return 1; |
1923 | } | |
1924 | ||
a9b6de77 | 1925 | static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, |
b59f65fa KS |
1926 | unsigned long end, struct page **pages, int *nr) |
1927 | { | |
1928 | unsigned long fault_pfn; | |
a9b6de77 DW |
1929 | int nr_start = *nr; |
1930 | ||
1931 | fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); | |
1932 | if (!__gup_device_huge(fault_pfn, addr, end, pages, nr)) | |
1933 | return 0; | |
b59f65fa | 1934 | |
a9b6de77 DW |
1935 | if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { |
1936 | undo_dev_pagemap(nr, nr_start, pages); | |
1937 | return 0; | |
1938 | } | |
1939 | return 1; | |
b59f65fa KS |
1940 | } |
1941 | ||
a9b6de77 | 1942 | static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, |
b59f65fa KS |
1943 | unsigned long end, struct page **pages, int *nr) |
1944 | { | |
1945 | unsigned long fault_pfn; | |
a9b6de77 DW |
1946 | int nr_start = *nr; |
1947 | ||
1948 | fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); | |
1949 | if (!__gup_device_huge(fault_pfn, addr, end, pages, nr)) | |
1950 | return 0; | |
b59f65fa | 1951 | |
a9b6de77 DW |
1952 | if (unlikely(pud_val(orig) != pud_val(*pudp))) { |
1953 | undo_dev_pagemap(nr, nr_start, pages); | |
1954 | return 0; | |
1955 | } | |
1956 | return 1; | |
b59f65fa KS |
1957 | } |
1958 | #else | |
a9b6de77 | 1959 | static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, |
b59f65fa KS |
1960 | unsigned long end, struct page **pages, int *nr) |
1961 | { | |
1962 | BUILD_BUG(); | |
1963 | return 0; | |
1964 | } | |
1965 | ||
a9b6de77 | 1966 | static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr, |
b59f65fa KS |
1967 | unsigned long end, struct page **pages, int *nr) |
1968 | { | |
1969 | BUILD_BUG(); | |
1970 | return 0; | |
1971 | } | |
1972 | #endif | |
1973 | ||
cbd34da7 CH |
1974 | #ifdef CONFIG_ARCH_HAS_HUGEPD |
1975 | static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, | |
1976 | unsigned long sz) | |
1977 | { | |
1978 | unsigned long __boundary = (addr + sz) & ~(sz-1); | |
1979 | return (__boundary - 1 < end - 1) ? __boundary : end; | |
1980 | } | |
1981 | ||
1982 | static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, | |
1983 | unsigned long end, int write, struct page **pages, int *nr) | |
1984 | { | |
1985 | unsigned long pte_end; | |
1986 | struct page *head, *page; | |
1987 | pte_t pte; | |
1988 | int refs; | |
1989 | ||
1990 | pte_end = (addr + sz) & ~(sz-1); | |
1991 | if (pte_end < end) | |
1992 | end = pte_end; | |
1993 | ||
1994 | pte = READ_ONCE(*ptep); | |
1995 | ||
1996 | if (!pte_access_permitted(pte, write)) | |
1997 | return 0; | |
1998 | ||
1999 | /* hugepages are never "special" */ | |
2000 | VM_BUG_ON(!pfn_valid(pte_pfn(pte))); | |
2001 | ||
2002 | refs = 0; | |
2003 | head = pte_page(pte); | |
2004 | ||
2005 | page = head + ((addr & (sz-1)) >> PAGE_SHIFT); | |
2006 | do { | |
2007 | VM_BUG_ON(compound_head(page) != head); | |
2008 | pages[*nr] = page; | |
2009 | (*nr)++; | |
2010 | page++; | |
2011 | refs++; | |
2012 | } while (addr += PAGE_SIZE, addr != end); | |
2013 | ||
01a36916 CH |
2014 | head = try_get_compound_head(head, refs); |
2015 | if (!head) { | |
cbd34da7 CH |
2016 | *nr -= refs; |
2017 | return 0; | |
2018 | } | |
2019 | ||
2020 | if (unlikely(pte_val(pte) != pte_val(*ptep))) { | |
2021 | /* Could be optimized better */ | |
2022 | *nr -= refs; | |
2023 | while (refs--) | |
2024 | put_page(head); | |
2025 | return 0; | |
2026 | } | |
2027 | ||
520b4a44 | 2028 | SetPageReferenced(head); |
cbd34da7 CH |
2029 | return 1; |
2030 | } | |
2031 | ||
2032 | static int gup_huge_pd(hugepd_t hugepd, unsigned long addr, | |
2033 | unsigned int pdshift, unsigned long end, int write, | |
2034 | struct page **pages, int *nr) | |
2035 | { | |
2036 | pte_t *ptep; | |
2037 | unsigned long sz = 1UL << hugepd_shift(hugepd); | |
2038 | unsigned long next; | |
2039 | ||
2040 | ptep = hugepte_offset(hugepd, addr, pdshift); | |
2041 | do { | |
2042 | next = hugepte_addr_end(addr, end, sz); | |
2043 | if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr)) | |
2044 | return 0; | |
2045 | } while (ptep++, addr = next, addr != end); | |
2046 | ||
2047 | return 1; | |
2048 | } | |
2049 | #else | |
2050 | static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr, | |
2051 | unsigned pdshift, unsigned long end, int write, | |
2052 | struct page **pages, int *nr) | |
2053 | { | |
2054 | return 0; | |
2055 | } | |
2056 | #endif /* CONFIG_ARCH_HAS_HUGEPD */ | |
2057 | ||
2667f50e | 2058 | static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, |
b798bec4 | 2059 | unsigned long end, unsigned int flags, struct page **pages, int *nr) |
2667f50e | 2060 | { |
ddc58f27 | 2061 | struct page *head, *page; |
2667f50e SC |
2062 | int refs; |
2063 | ||
b798bec4 | 2064 | if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) |
2667f50e SC |
2065 | return 0; |
2066 | ||
7af75561 IW |
2067 | if (pmd_devmap(orig)) { |
2068 | if (unlikely(flags & FOLL_LONGTERM)) | |
2069 | return 0; | |
a9b6de77 | 2070 | return __gup_device_huge_pmd(orig, pmdp, addr, end, pages, nr); |
7af75561 | 2071 | } |
b59f65fa | 2072 | |
2667f50e | 2073 | refs = 0; |
d63206ee | 2074 | page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); |
2667f50e | 2075 | do { |
2667f50e SC |
2076 | pages[*nr] = page; |
2077 | (*nr)++; | |
2078 | page++; | |
2079 | refs++; | |
2080 | } while (addr += PAGE_SIZE, addr != end); | |
2081 | ||
8fde12ca LT |
2082 | head = try_get_compound_head(pmd_page(orig), refs); |
2083 | if (!head) { | |
2667f50e SC |
2084 | *nr -= refs; |
2085 | return 0; | |
2086 | } | |
2087 | ||
2088 | if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { | |
2089 | *nr -= refs; | |
2090 | while (refs--) | |
2091 | put_page(head); | |
2092 | return 0; | |
2093 | } | |
2094 | ||
e9348053 | 2095 | SetPageReferenced(head); |
2667f50e SC |
2096 | return 1; |
2097 | } | |
2098 | ||
2099 | static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, | |
b798bec4 | 2100 | unsigned long end, unsigned int flags, struct page **pages, int *nr) |
2667f50e | 2101 | { |
ddc58f27 | 2102 | struct page *head, *page; |
2667f50e SC |
2103 | int refs; |
2104 | ||
b798bec4 | 2105 | if (!pud_access_permitted(orig, flags & FOLL_WRITE)) |
2667f50e SC |
2106 | return 0; |
2107 | ||
7af75561 IW |
2108 | if (pud_devmap(orig)) { |
2109 | if (unlikely(flags & FOLL_LONGTERM)) | |
2110 | return 0; | |
a9b6de77 | 2111 | return __gup_device_huge_pud(orig, pudp, addr, end, pages, nr); |
7af75561 | 2112 | } |
b59f65fa | 2113 | |
2667f50e | 2114 | refs = 0; |
d63206ee | 2115 | page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); |
2667f50e | 2116 | do { |
2667f50e SC |
2117 | pages[*nr] = page; |
2118 | (*nr)++; | |
2119 | page++; | |
2120 | refs++; | |
2121 | } while (addr += PAGE_SIZE, addr != end); | |
2122 | ||
8fde12ca LT |
2123 | head = try_get_compound_head(pud_page(orig), refs); |
2124 | if (!head) { | |
2667f50e SC |
2125 | *nr -= refs; |
2126 | return 0; | |
2127 | } | |
2128 | ||
2129 | if (unlikely(pud_val(orig) != pud_val(*pudp))) { | |
2130 | *nr -= refs; | |
2131 | while (refs--) | |
2132 | put_page(head); | |
2133 | return 0; | |
2134 | } | |
2135 | ||
e9348053 | 2136 | SetPageReferenced(head); |
2667f50e SC |
2137 | return 1; |
2138 | } | |
2139 | ||
f30c59e9 | 2140 | static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, |
b798bec4 | 2141 | unsigned long end, unsigned int flags, |
f30c59e9 AK |
2142 | struct page **pages, int *nr) |
2143 | { | |
2144 | int refs; | |
ddc58f27 | 2145 | struct page *head, *page; |
f30c59e9 | 2146 | |
b798bec4 | 2147 | if (!pgd_access_permitted(orig, flags & FOLL_WRITE)) |
f30c59e9 AK |
2148 | return 0; |
2149 | ||
b59f65fa | 2150 | BUILD_BUG_ON(pgd_devmap(orig)); |
f30c59e9 | 2151 | refs = 0; |
d63206ee | 2152 | page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT); |
f30c59e9 | 2153 | do { |
f30c59e9 AK |
2154 | pages[*nr] = page; |
2155 | (*nr)++; | |
2156 | page++; | |
2157 | refs++; | |
2158 | } while (addr += PAGE_SIZE, addr != end); | |
2159 | ||
8fde12ca LT |
2160 | head = try_get_compound_head(pgd_page(orig), refs); |
2161 | if (!head) { | |
f30c59e9 AK |
2162 | *nr -= refs; |
2163 | return 0; | |
2164 | } | |
2165 | ||
2166 | if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { | |
2167 | *nr -= refs; | |
2168 | while (refs--) | |
2169 | put_page(head); | |
2170 | return 0; | |
2171 | } | |
2172 | ||
e9348053 | 2173 | SetPageReferenced(head); |
f30c59e9 AK |
2174 | return 1; |
2175 | } | |
2176 | ||
2667f50e | 2177 | static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end, |
b798bec4 | 2178 | unsigned int flags, struct page **pages, int *nr) |
2667f50e SC |
2179 | { |
2180 | unsigned long next; | |
2181 | pmd_t *pmdp; | |
2182 | ||
2183 | pmdp = pmd_offset(&pud, addr); | |
2184 | do { | |
38c5ce93 | 2185 | pmd_t pmd = READ_ONCE(*pmdp); |
2667f50e SC |
2186 | |
2187 | next = pmd_addr_end(addr, end); | |
84c3fc4e | 2188 | if (!pmd_present(pmd)) |
2667f50e SC |
2189 | return 0; |
2190 | ||
414fd080 YZ |
2191 | if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) || |
2192 | pmd_devmap(pmd))) { | |
2667f50e SC |
2193 | /* |
2194 | * NUMA hinting faults need to be handled in the GUP | |
2195 | * slowpath for accounting purposes and so that they | |
2196 | * can be serialised against THP migration. | |
2197 | */ | |
8a0516ed | 2198 | if (pmd_protnone(pmd)) |
2667f50e SC |
2199 | return 0; |
2200 | ||
b798bec4 | 2201 | if (!gup_huge_pmd(pmd, pmdp, addr, next, flags, |
2667f50e SC |
2202 | pages, nr)) |
2203 | return 0; | |
2204 | ||
f30c59e9 AK |
2205 | } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { |
2206 | /* | |
2207 | * architecture have different format for hugetlbfs | |
2208 | * pmd format and THP pmd format | |
2209 | */ | |
2210 | if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, | |
b798bec4 | 2211 | PMD_SHIFT, next, flags, pages, nr)) |
f30c59e9 | 2212 | return 0; |
b798bec4 | 2213 | } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr)) |
2923117b | 2214 | return 0; |
2667f50e SC |
2215 | } while (pmdp++, addr = next, addr != end); |
2216 | ||
2217 | return 1; | |
2218 | } | |
2219 | ||
c2febafc | 2220 | static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end, |
b798bec4 | 2221 | unsigned int flags, struct page **pages, int *nr) |
2667f50e SC |
2222 | { |
2223 | unsigned long next; | |
2224 | pud_t *pudp; | |
2225 | ||
c2febafc | 2226 | pudp = pud_offset(&p4d, addr); |
2667f50e | 2227 | do { |
e37c6982 | 2228 | pud_t pud = READ_ONCE(*pudp); |
2667f50e SC |
2229 | |
2230 | next = pud_addr_end(addr, end); | |
2231 | if (pud_none(pud)) | |
2232 | return 0; | |
f30c59e9 | 2233 | if (unlikely(pud_huge(pud))) { |
b798bec4 | 2234 | if (!gup_huge_pud(pud, pudp, addr, next, flags, |
f30c59e9 AK |
2235 | pages, nr)) |
2236 | return 0; | |
2237 | } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { | |
2238 | if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, | |
b798bec4 | 2239 | PUD_SHIFT, next, flags, pages, nr)) |
2667f50e | 2240 | return 0; |
b798bec4 | 2241 | } else if (!gup_pmd_range(pud, addr, next, flags, pages, nr)) |
2667f50e SC |
2242 | return 0; |
2243 | } while (pudp++, addr = next, addr != end); | |
2244 | ||
2245 | return 1; | |
2246 | } | |
2247 | ||
c2febafc | 2248 | static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end, |
b798bec4 | 2249 | unsigned int flags, struct page **pages, int *nr) |
c2febafc KS |
2250 | { |
2251 | unsigned long next; | |
2252 | p4d_t *p4dp; | |
2253 | ||
2254 | p4dp = p4d_offset(&pgd, addr); | |
2255 | do { | |
2256 | p4d_t p4d = READ_ONCE(*p4dp); | |
2257 | ||
2258 | next = p4d_addr_end(addr, end); | |
2259 | if (p4d_none(p4d)) | |
2260 | return 0; | |
2261 | BUILD_BUG_ON(p4d_huge(p4d)); | |
2262 | if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { | |
2263 | if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr, | |
b798bec4 | 2264 | P4D_SHIFT, next, flags, pages, nr)) |
c2febafc | 2265 | return 0; |
b798bec4 | 2266 | } else if (!gup_pud_range(p4d, addr, next, flags, pages, nr)) |
c2febafc KS |
2267 | return 0; |
2268 | } while (p4dp++, addr = next, addr != end); | |
2269 | ||
2270 | return 1; | |
2271 | } | |
2272 | ||
5b65c467 | 2273 | static void gup_pgd_range(unsigned long addr, unsigned long end, |
b798bec4 | 2274 | unsigned int flags, struct page **pages, int *nr) |
5b65c467 KS |
2275 | { |
2276 | unsigned long next; | |
2277 | pgd_t *pgdp; | |
2278 | ||
2279 | pgdp = pgd_offset(current->mm, addr); | |
2280 | do { | |
2281 | pgd_t pgd = READ_ONCE(*pgdp); | |
2282 | ||
2283 | next = pgd_addr_end(addr, end); | |
2284 | if (pgd_none(pgd)) | |
2285 | return; | |
2286 | if (unlikely(pgd_huge(pgd))) { | |
b798bec4 | 2287 | if (!gup_huge_pgd(pgd, pgdp, addr, next, flags, |
5b65c467 KS |
2288 | pages, nr)) |
2289 | return; | |
2290 | } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { | |
2291 | if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, | |
b798bec4 | 2292 | PGDIR_SHIFT, next, flags, pages, nr)) |
5b65c467 | 2293 | return; |
b798bec4 | 2294 | } else if (!gup_p4d_range(pgd, addr, next, flags, pages, nr)) |
5b65c467 KS |
2295 | return; |
2296 | } while (pgdp++, addr = next, addr != end); | |
2297 | } | |
050a9adc CH |
2298 | #else |
2299 | static inline void gup_pgd_range(unsigned long addr, unsigned long end, | |
2300 | unsigned int flags, struct page **pages, int *nr) | |
2301 | { | |
2302 | } | |
2303 | #endif /* CONFIG_HAVE_FAST_GUP */ | |
5b65c467 KS |
2304 | |
2305 | #ifndef gup_fast_permitted | |
2306 | /* | |
2307 | * Check if it's allowed to use __get_user_pages_fast() for the range, or | |
2308 | * we need to fall back to the slow version: | |
2309 | */ | |
26f4c328 | 2310 | static bool gup_fast_permitted(unsigned long start, unsigned long end) |
5b65c467 | 2311 | { |
26f4c328 | 2312 | return true; |
5b65c467 KS |
2313 | } |
2314 | #endif | |
2315 | ||
2667f50e SC |
2316 | /* |
2317 | * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to | |
d0811078 MT |
2318 | * the regular GUP. |
2319 | * Note a difference with get_user_pages_fast: this always returns the | |
2320 | * number of pages pinned, 0 if no pages were pinned. | |
050a9adc CH |
2321 | * |
2322 | * If the architecture does not support this function, simply return with no | |
2323 | * pages pinned. | |
2667f50e SC |
2324 | */ |
2325 | int __get_user_pages_fast(unsigned long start, int nr_pages, int write, | |
2326 | struct page **pages) | |
2327 | { | |
d4faa402 | 2328 | unsigned long len, end; |
5b65c467 | 2329 | unsigned long flags; |
2667f50e SC |
2330 | int nr = 0; |
2331 | ||
f455c854 | 2332 | start = untagged_addr(start) & PAGE_MASK; |
2667f50e SC |
2333 | len = (unsigned long) nr_pages << PAGE_SHIFT; |
2334 | end = start + len; | |
2335 | ||
26f4c328 CH |
2336 | if (end <= start) |
2337 | return 0; | |
96d4f267 | 2338 | if (unlikely(!access_ok((void __user *)start, len))) |
2667f50e SC |
2339 | return 0; |
2340 | ||
2341 | /* | |
2342 | * Disable interrupts. We use the nested form as we can already have | |
2343 | * interrupts disabled by get_futex_key. | |
2344 | * | |
2345 | * With interrupts disabled, we block page table pages from being | |
2ebe8228 FW |
2346 | * freed from under us. See struct mmu_table_batch comments in |
2347 | * include/asm-generic/tlb.h for more details. | |
2667f50e SC |
2348 | * |
2349 | * We do not adopt an rcu_read_lock(.) here as we also want to | |
2350 | * block IPIs that come from THPs splitting. | |
2351 | */ | |
2352 | ||
050a9adc CH |
2353 | if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) && |
2354 | gup_fast_permitted(start, end)) { | |
5b65c467 | 2355 | local_irq_save(flags); |
b798bec4 | 2356 | gup_pgd_range(start, end, write ? FOLL_WRITE : 0, pages, &nr); |
5b65c467 KS |
2357 | local_irq_restore(flags); |
2358 | } | |
2667f50e SC |
2359 | |
2360 | return nr; | |
2361 | } | |
050a9adc | 2362 | EXPORT_SYMBOL_GPL(__get_user_pages_fast); |
2667f50e | 2363 | |
7af75561 IW |
2364 | static int __gup_longterm_unlocked(unsigned long start, int nr_pages, |
2365 | unsigned int gup_flags, struct page **pages) | |
2366 | { | |
2367 | int ret; | |
2368 | ||
2369 | /* | |
2370 | * FIXME: FOLL_LONGTERM does not work with | |
2371 | * get_user_pages_unlocked() (see comments in that function) | |
2372 | */ | |
2373 | if (gup_flags & FOLL_LONGTERM) { | |
2374 | down_read(¤t->mm->mmap_sem); | |
2375 | ret = __gup_longterm_locked(current, current->mm, | |
2376 | start, nr_pages, | |
2377 | pages, NULL, gup_flags); | |
2378 | up_read(¤t->mm->mmap_sem); | |
2379 | } else { | |
2380 | ret = get_user_pages_unlocked(start, nr_pages, | |
2381 | pages, gup_flags); | |
2382 | } | |
2383 | ||
2384 | return ret; | |
2385 | } | |
2386 | ||
2667f50e SC |
2387 | /** |
2388 | * get_user_pages_fast() - pin user pages in memory | |
2389 | * @start: starting user address | |
2390 | * @nr_pages: number of pages from start to pin | |
73b0140b | 2391 | * @gup_flags: flags modifying pin behaviour |
2667f50e SC |
2392 | * @pages: array that receives pointers to the pages pinned. |
2393 | * Should be at least nr_pages long. | |
2394 | * | |
2395 | * Attempt to pin user pages in memory without taking mm->mmap_sem. | |
2396 | * If not successful, it will fall back to taking the lock and | |
2397 | * calling get_user_pages(). | |
2398 | * | |
2399 | * Returns number of pages pinned. This may be fewer than the number | |
2400 | * requested. If nr_pages is 0 or negative, returns 0. If no pages | |
2401 | * were pinned, returns -errno. | |
2402 | */ | |
73b0140b IW |
2403 | int get_user_pages_fast(unsigned long start, int nr_pages, |
2404 | unsigned int gup_flags, struct page **pages) | |
2667f50e | 2405 | { |
5b65c467 | 2406 | unsigned long addr, len, end; |
73e10a61 | 2407 | int nr = 0, ret = 0; |
2667f50e | 2408 | |
817be129 CH |
2409 | if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM))) |
2410 | return -EINVAL; | |
2411 | ||
f455c854 | 2412 | start = untagged_addr(start) & PAGE_MASK; |
5b65c467 KS |
2413 | addr = start; |
2414 | len = (unsigned long) nr_pages << PAGE_SHIFT; | |
2415 | end = start + len; | |
2416 | ||
26f4c328 | 2417 | if (end <= start) |
c61611f7 | 2418 | return 0; |
96d4f267 | 2419 | if (unlikely(!access_ok((void __user *)start, len))) |
c61611f7 | 2420 | return -EFAULT; |
73e10a61 | 2421 | |
050a9adc CH |
2422 | if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) && |
2423 | gup_fast_permitted(start, end)) { | |
5b65c467 | 2424 | local_irq_disable(); |
73b0140b | 2425 | gup_pgd_range(addr, end, gup_flags, pages, &nr); |
5b65c467 | 2426 | local_irq_enable(); |
73e10a61 KS |
2427 | ret = nr; |
2428 | } | |
2667f50e SC |
2429 | |
2430 | if (nr < nr_pages) { | |
2431 | /* Try to get the remaining pages with get_user_pages */ | |
2432 | start += nr << PAGE_SHIFT; | |
2433 | pages += nr; | |
2434 | ||
7af75561 IW |
2435 | ret = __gup_longterm_unlocked(start, nr_pages - nr, |
2436 | gup_flags, pages); | |
2667f50e SC |
2437 | |
2438 | /* Have to be a bit careful with return values */ | |
2439 | if (nr > 0) { | |
2440 | if (ret < 0) | |
2441 | ret = nr; | |
2442 | else | |
2443 | ret += nr; | |
2444 | } | |
2445 | } | |
2446 | ||
2447 | return ret; | |
2448 | } | |
050a9adc | 2449 | EXPORT_SYMBOL_GPL(get_user_pages_fast); |