mm/madvise: fix memory leak from process_madvise
[linux-2.6-block.git] / mm / gup.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
4bbd4c77
KS
2#include <linux/kernel.h>
3#include <linux/errno.h>
4#include <linux/err.h>
5#include <linux/spinlock.h>
6
4bbd4c77 7#include <linux/mm.h>
3565fce3 8#include <linux/memremap.h>
4bbd4c77
KS
9#include <linux/pagemap.h>
10#include <linux/rmap.h>
11#include <linux/swap.h>
12#include <linux/swapops.h>
13
174cd4b1 14#include <linux/sched/signal.h>
2667f50e 15#include <linux/rwsem.h>
f30c59e9 16#include <linux/hugetlb.h>
9a4e9f3b
AK
17#include <linux/migrate.h>
18#include <linux/mm_inline.h>
19#include <linux/sched/mm.h>
1027e443 20
33a709b2 21#include <asm/mmu_context.h>
1027e443 22#include <asm/tlbflush.h>
2667f50e 23
4bbd4c77
KS
24#include "internal.h"
25
df06b37f
KB
26struct follow_page_context {
27 struct dev_pagemap *pgmap;
28 unsigned int page_mask;
29};
30
47e29d32
JH
31static void hpage_pincount_add(struct page *page, int refs)
32{
33 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
34 VM_BUG_ON_PAGE(page != compound_head(page), page);
35
36 atomic_add(refs, compound_pincount_ptr(page));
37}
38
39static void hpage_pincount_sub(struct page *page, int refs)
40{
41 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
42 VM_BUG_ON_PAGE(page != compound_head(page), page);
43
44 atomic_sub(refs, compound_pincount_ptr(page));
45}
46
a707cdd5
JH
47/*
48 * Return the compound head page with ref appropriately incremented,
49 * or NULL if that failed.
50 */
51static inline struct page *try_get_compound_head(struct page *page, int refs)
52{
53 struct page *head = compound_head(page);
54
55 if (WARN_ON_ONCE(page_ref_count(head) < 0))
56 return NULL;
57 if (unlikely(!page_cache_add_speculative(head, refs)))
58 return NULL;
59 return head;
60}
61
3faa52c0
JH
62/*
63 * try_grab_compound_head() - attempt to elevate a page's refcount, by a
64 * flags-dependent amount.
65 *
66 * "grab" names in this file mean, "look at flags to decide whether to use
67 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
68 *
69 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
70 * same time. (That's true throughout the get_user_pages*() and
71 * pin_user_pages*() APIs.) Cases:
72 *
73 * FOLL_GET: page's refcount will be incremented by 1.
74 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
75 *
76 * Return: head page (with refcount appropriately incremented) for success, or
77 * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
78 * considered failure, and furthermore, a likely bug in the caller, so a warning
79 * is also emitted.
80 */
81static __maybe_unused struct page *try_grab_compound_head(struct page *page,
82 int refs,
83 unsigned int flags)
84{
85 if (flags & FOLL_GET)
86 return try_get_compound_head(page, refs);
87 else if (flags & FOLL_PIN) {
1970dc6f
JH
88 int orig_refs = refs;
89
df3a0a21
PL
90 /*
91 * Can't do FOLL_LONGTERM + FOLL_PIN with CMA in the gup fast
92 * path, so fail and let the caller fall back to the slow path.
93 */
94 if (unlikely(flags & FOLL_LONGTERM) &&
95 is_migrate_cma_page(page))
96 return NULL;
97
47e29d32
JH
98 /*
99 * When pinning a compound page of order > 1 (which is what
100 * hpage_pincount_available() checks for), use an exact count to
101 * track it, via hpage_pincount_add/_sub().
102 *
103 * However, be sure to *also* increment the normal page refcount
104 * field at least once, so that the page really is pinned.
105 */
106 if (!hpage_pincount_available(page))
107 refs *= GUP_PIN_COUNTING_BIAS;
108
109 page = try_get_compound_head(page, refs);
110 if (!page)
111 return NULL;
112
113 if (hpage_pincount_available(page))
114 hpage_pincount_add(page, refs);
115
1970dc6f
JH
116 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED,
117 orig_refs);
118
47e29d32 119 return page;
3faa52c0
JH
120 }
121
122 WARN_ON_ONCE(1);
123 return NULL;
124}
125
126/**
127 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
128 *
129 * This might not do anything at all, depending on the flags argument.
130 *
131 * "grab" names in this file mean, "look at flags to decide whether to use
132 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
133 *
134 * @page: pointer to page to be grabbed
135 * @flags: gup flags: these are the FOLL_* flag values.
136 *
137 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
138 * time. Cases:
139 *
140 * FOLL_GET: page's refcount will be incremented by 1.
141 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
142 *
143 * Return: true for success, or if no action was required (if neither FOLL_PIN
144 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
145 * FOLL_PIN was set, but the page could not be grabbed.
146 */
147bool __must_check try_grab_page(struct page *page, unsigned int flags)
148{
149 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
150
151 if (flags & FOLL_GET)
152 return try_get_page(page);
153 else if (flags & FOLL_PIN) {
47e29d32
JH
154 int refs = 1;
155
3faa52c0
JH
156 page = compound_head(page);
157
158 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
159 return false;
160
47e29d32
JH
161 if (hpage_pincount_available(page))
162 hpage_pincount_add(page, 1);
163 else
164 refs = GUP_PIN_COUNTING_BIAS;
165
166 /*
167 * Similar to try_grab_compound_head(): even if using the
168 * hpage_pincount_add/_sub() routines, be sure to
169 * *also* increment the normal page refcount field at least
170 * once, so that the page really is pinned.
171 */
172 page_ref_add(page, refs);
1970dc6f
JH
173
174 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1);
3faa52c0
JH
175 }
176
177 return true;
178}
179
180#ifdef CONFIG_DEV_PAGEMAP_OPS
181static bool __unpin_devmap_managed_user_page(struct page *page)
182{
47e29d32 183 int count, refs = 1;
3faa52c0
JH
184
185 if (!page_is_devmap_managed(page))
186 return false;
187
47e29d32
JH
188 if (hpage_pincount_available(page))
189 hpage_pincount_sub(page, 1);
190 else
191 refs = GUP_PIN_COUNTING_BIAS;
192
193 count = page_ref_sub_return(page, refs);
3faa52c0 194
1970dc6f 195 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
3faa52c0
JH
196 /*
197 * devmap page refcounts are 1-based, rather than 0-based: if
198 * refcount is 1, then the page is free and the refcount is
199 * stable because nobody holds a reference on the page.
200 */
201 if (count == 1)
202 free_devmap_managed_page(page);
203 else if (!count)
204 __put_page(page);
205
206 return true;
207}
208#else
209static bool __unpin_devmap_managed_user_page(struct page *page)
210{
211 return false;
212}
213#endif /* CONFIG_DEV_PAGEMAP_OPS */
214
215/**
216 * unpin_user_page() - release a dma-pinned page
217 * @page: pointer to page to be released
218 *
219 * Pages that were pinned via pin_user_pages*() must be released via either
220 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
221 * that such pages can be separately tracked and uniquely handled. In
222 * particular, interactions with RDMA and filesystems need special handling.
223 */
224void unpin_user_page(struct page *page)
225{
47e29d32
JH
226 int refs = 1;
227
3faa52c0
JH
228 page = compound_head(page);
229
230 /*
231 * For devmap managed pages we need to catch refcount transition from
232 * GUP_PIN_COUNTING_BIAS to 1, when refcount reach one it means the
233 * page is free and we need to inform the device driver through
234 * callback. See include/linux/memremap.h and HMM for details.
235 */
236 if (__unpin_devmap_managed_user_page(page))
237 return;
238
47e29d32
JH
239 if (hpage_pincount_available(page))
240 hpage_pincount_sub(page, 1);
241 else
242 refs = GUP_PIN_COUNTING_BIAS;
243
244 if (page_ref_sub_and_test(page, refs))
3faa52c0 245 __put_page(page);
1970dc6f
JH
246
247 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
3faa52c0
JH
248}
249EXPORT_SYMBOL(unpin_user_page);
250
fc1d8e7c 251/**
f1f6a7dd 252 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
2d15eb31 253 * @pages: array of pages to be maybe marked dirty, and definitely released.
fc1d8e7c 254 * @npages: number of pages in the @pages array.
2d15eb31 255 * @make_dirty: whether to mark the pages dirty
fc1d8e7c
JH
256 *
257 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
258 * variants called on that page.
259 *
260 * For each page in the @pages array, make that page (or its head page, if a
2d15eb31 261 * compound page) dirty, if @make_dirty is true, and if the page was previously
f1f6a7dd
JH
262 * listed as clean. In any case, releases all pages using unpin_user_page(),
263 * possibly via unpin_user_pages(), for the non-dirty case.
fc1d8e7c 264 *
f1f6a7dd 265 * Please see the unpin_user_page() documentation for details.
fc1d8e7c 266 *
2d15eb31 267 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
268 * required, then the caller should a) verify that this is really correct,
269 * because _lock() is usually required, and b) hand code it:
f1f6a7dd 270 * set_page_dirty_lock(), unpin_user_page().
fc1d8e7c
JH
271 *
272 */
f1f6a7dd
JH
273void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
274 bool make_dirty)
fc1d8e7c 275{
2d15eb31 276 unsigned long index;
fc1d8e7c 277
2d15eb31 278 /*
279 * TODO: this can be optimized for huge pages: if a series of pages is
280 * physically contiguous and part of the same compound page, then a
281 * single operation to the head page should suffice.
282 */
283
284 if (!make_dirty) {
f1f6a7dd 285 unpin_user_pages(pages, npages);
2d15eb31 286 return;
287 }
288
289 for (index = 0; index < npages; index++) {
290 struct page *page = compound_head(pages[index]);
291 /*
292 * Checking PageDirty at this point may race with
293 * clear_page_dirty_for_io(), but that's OK. Two key
294 * cases:
295 *
296 * 1) This code sees the page as already dirty, so it
297 * skips the call to set_page_dirty(). That could happen
298 * because clear_page_dirty_for_io() called
299 * page_mkclean(), followed by set_page_dirty().
300 * However, now the page is going to get written back,
301 * which meets the original intention of setting it
302 * dirty, so all is well: clear_page_dirty_for_io() goes
303 * on to call TestClearPageDirty(), and write the page
304 * back.
305 *
306 * 2) This code sees the page as clean, so it calls
307 * set_page_dirty(). The page stays dirty, despite being
308 * written back, so it gets written back again in the
309 * next writeback cycle. This is harmless.
310 */
311 if (!PageDirty(page))
312 set_page_dirty_lock(page);
f1f6a7dd 313 unpin_user_page(page);
2d15eb31 314 }
fc1d8e7c 315}
f1f6a7dd 316EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
fc1d8e7c
JH
317
318/**
f1f6a7dd 319 * unpin_user_pages() - release an array of gup-pinned pages.
fc1d8e7c
JH
320 * @pages: array of pages to be marked dirty and released.
321 * @npages: number of pages in the @pages array.
322 *
f1f6a7dd 323 * For each page in the @pages array, release the page using unpin_user_page().
fc1d8e7c 324 *
f1f6a7dd 325 * Please see the unpin_user_page() documentation for details.
fc1d8e7c 326 */
f1f6a7dd 327void unpin_user_pages(struct page **pages, unsigned long npages)
fc1d8e7c
JH
328{
329 unsigned long index;
330
146608bb
JH
331 /*
332 * If this WARN_ON() fires, then the system *might* be leaking pages (by
333 * leaving them pinned), but probably not. More likely, gup/pup returned
334 * a hard -ERRNO error to the caller, who erroneously passed it here.
335 */
336 if (WARN_ON(IS_ERR_VALUE(npages)))
337 return;
fc1d8e7c
JH
338 /*
339 * TODO: this can be optimized for huge pages: if a series of pages is
340 * physically contiguous and part of the same compound page, then a
341 * single operation to the head page should suffice.
342 */
343 for (index = 0; index < npages; index++)
f1f6a7dd 344 unpin_user_page(pages[index]);
fc1d8e7c 345}
f1f6a7dd 346EXPORT_SYMBOL(unpin_user_pages);
fc1d8e7c 347
050a9adc 348#ifdef CONFIG_MMU
69e68b4f
KS
349static struct page *no_page_table(struct vm_area_struct *vma,
350 unsigned int flags)
4bbd4c77 351{
69e68b4f
KS
352 /*
353 * When core dumping an enormous anonymous area that nobody
354 * has touched so far, we don't want to allocate unnecessary pages or
355 * page tables. Return error instead of NULL to skip handle_mm_fault,
356 * then get_dump_page() will return NULL to leave a hole in the dump.
357 * But we can only make this optimization where a hole would surely
358 * be zero-filled if handle_mm_fault() actually did handle it.
359 */
a0137f16
AK
360 if ((flags & FOLL_DUMP) &&
361 (vma_is_anonymous(vma) || !vma->vm_ops->fault))
69e68b4f
KS
362 return ERR_PTR(-EFAULT);
363 return NULL;
364}
4bbd4c77 365
1027e443
KS
366static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
367 pte_t *pte, unsigned int flags)
368{
369 /* No page to get reference */
370 if (flags & FOLL_GET)
371 return -EFAULT;
372
373 if (flags & FOLL_TOUCH) {
374 pte_t entry = *pte;
375
376 if (flags & FOLL_WRITE)
377 entry = pte_mkdirty(entry);
378 entry = pte_mkyoung(entry);
379
380 if (!pte_same(*pte, entry)) {
381 set_pte_at(vma->vm_mm, address, pte, entry);
382 update_mmu_cache(vma, address, pte);
383 }
384 }
385
386 /* Proper page table entry exists, but no corresponding struct page */
387 return -EEXIST;
388}
389
19be0eaf 390/*
a308c71b
PX
391 * FOLL_FORCE can write to even unwritable pte's, but only
392 * after we've gone through a COW cycle and they are dirty.
19be0eaf
LT
393 */
394static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
395{
a308c71b
PX
396 return pte_write(pte) ||
397 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
19be0eaf
LT
398}
399
69e68b4f 400static struct page *follow_page_pte(struct vm_area_struct *vma,
df06b37f
KB
401 unsigned long address, pmd_t *pmd, unsigned int flags,
402 struct dev_pagemap **pgmap)
69e68b4f
KS
403{
404 struct mm_struct *mm = vma->vm_mm;
405 struct page *page;
406 spinlock_t *ptl;
407 pte_t *ptep, pte;
f28d4363 408 int ret;
4bbd4c77 409
eddb1c22
JH
410 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
411 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
412 (FOLL_PIN | FOLL_GET)))
413 return ERR_PTR(-EINVAL);
69e68b4f 414retry:
4bbd4c77 415 if (unlikely(pmd_bad(*pmd)))
69e68b4f 416 return no_page_table(vma, flags);
4bbd4c77
KS
417
418 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
4bbd4c77
KS
419 pte = *ptep;
420 if (!pte_present(pte)) {
421 swp_entry_t entry;
422 /*
423 * KSM's break_ksm() relies upon recognizing a ksm page
424 * even while it is being migrated, so for that case we
425 * need migration_entry_wait().
426 */
427 if (likely(!(flags & FOLL_MIGRATION)))
428 goto no_page;
0661a336 429 if (pte_none(pte))
4bbd4c77
KS
430 goto no_page;
431 entry = pte_to_swp_entry(pte);
432 if (!is_migration_entry(entry))
433 goto no_page;
434 pte_unmap_unlock(ptep, ptl);
435 migration_entry_wait(mm, pmd, address);
69e68b4f 436 goto retry;
4bbd4c77 437 }
8a0516ed 438 if ((flags & FOLL_NUMA) && pte_protnone(pte))
4bbd4c77 439 goto no_page;
19be0eaf 440 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
69e68b4f
KS
441 pte_unmap_unlock(ptep, ptl);
442 return NULL;
443 }
4bbd4c77
KS
444
445 page = vm_normal_page(vma, address, pte);
3faa52c0 446 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
3565fce3 447 /*
3faa52c0
JH
448 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
449 * case since they are only valid while holding the pgmap
450 * reference.
3565fce3 451 */
df06b37f
KB
452 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
453 if (*pgmap)
3565fce3
DW
454 page = pte_page(pte);
455 else
456 goto no_page;
457 } else if (unlikely(!page)) {
1027e443
KS
458 if (flags & FOLL_DUMP) {
459 /* Avoid special (like zero) pages in core dumps */
460 page = ERR_PTR(-EFAULT);
461 goto out;
462 }
463
464 if (is_zero_pfn(pte_pfn(pte))) {
465 page = pte_page(pte);
466 } else {
1027e443
KS
467 ret = follow_pfn_pte(vma, address, ptep, flags);
468 page = ERR_PTR(ret);
469 goto out;
470 }
4bbd4c77
KS
471 }
472
6742d293 473 if (flags & FOLL_SPLIT && PageTransCompound(page)) {
6742d293
KS
474 get_page(page);
475 pte_unmap_unlock(ptep, ptl);
476 lock_page(page);
477 ret = split_huge_page(page);
478 unlock_page(page);
479 put_page(page);
480 if (ret)
481 return ERR_PTR(ret);
482 goto retry;
483 }
484
3faa52c0
JH
485 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
486 if (unlikely(!try_grab_page(page, flags))) {
487 page = ERR_PTR(-ENOMEM);
488 goto out;
8fde12ca 489 }
f28d4363
CI
490 /*
491 * We need to make the page accessible if and only if we are going
492 * to access its content (the FOLL_PIN case). Please see
493 * Documentation/core-api/pin_user_pages.rst for details.
494 */
495 if (flags & FOLL_PIN) {
496 ret = arch_make_page_accessible(page);
497 if (ret) {
498 unpin_user_page(page);
499 page = ERR_PTR(ret);
500 goto out;
501 }
502 }
4bbd4c77
KS
503 if (flags & FOLL_TOUCH) {
504 if ((flags & FOLL_WRITE) &&
505 !pte_dirty(pte) && !PageDirty(page))
506 set_page_dirty(page);
507 /*
508 * pte_mkyoung() would be more correct here, but atomic care
509 * is needed to avoid losing the dirty bit: it is easier to use
510 * mark_page_accessed().
511 */
512 mark_page_accessed(page);
513 }
de60f5f1 514 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
515 /* Do not mlock pte-mapped THP */
516 if (PageTransCompound(page))
517 goto out;
518
4bbd4c77
KS
519 /*
520 * The preliminary mapping check is mainly to avoid the
521 * pointless overhead of lock_page on the ZERO_PAGE
522 * which might bounce very badly if there is contention.
523 *
524 * If the page is already locked, we don't need to
525 * handle it now - vmscan will handle it later if and
526 * when it attempts to reclaim the page.
527 */
528 if (page->mapping && trylock_page(page)) {
529 lru_add_drain(); /* push cached pages to LRU */
530 /*
531 * Because we lock page here, and migration is
532 * blocked by the pte's page reference, and we
533 * know the page is still mapped, we don't even
534 * need to check for file-cache page truncation.
535 */
536 mlock_vma_page(page);
537 unlock_page(page);
538 }
539 }
1027e443 540out:
4bbd4c77 541 pte_unmap_unlock(ptep, ptl);
4bbd4c77 542 return page;
4bbd4c77
KS
543no_page:
544 pte_unmap_unlock(ptep, ptl);
545 if (!pte_none(pte))
69e68b4f
KS
546 return NULL;
547 return no_page_table(vma, flags);
548}
549
080dbb61
AK
550static struct page *follow_pmd_mask(struct vm_area_struct *vma,
551 unsigned long address, pud_t *pudp,
df06b37f
KB
552 unsigned int flags,
553 struct follow_page_context *ctx)
69e68b4f 554{
68827280 555 pmd_t *pmd, pmdval;
69e68b4f
KS
556 spinlock_t *ptl;
557 struct page *page;
558 struct mm_struct *mm = vma->vm_mm;
559
080dbb61 560 pmd = pmd_offset(pudp, address);
68827280
HY
561 /*
562 * The READ_ONCE() will stabilize the pmdval in a register or
563 * on the stack so that it will stop changing under the code.
564 */
565 pmdval = READ_ONCE(*pmd);
566 if (pmd_none(pmdval))
69e68b4f 567 return no_page_table(vma, flags);
be9d3045 568 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
e66f17ff
NH
569 page = follow_huge_pmd(mm, address, pmd, flags);
570 if (page)
571 return page;
572 return no_page_table(vma, flags);
69e68b4f 573 }
68827280 574 if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
4dc71451 575 page = follow_huge_pd(vma, address,
68827280 576 __hugepd(pmd_val(pmdval)), flags,
4dc71451
AK
577 PMD_SHIFT);
578 if (page)
579 return page;
580 return no_page_table(vma, flags);
581 }
84c3fc4e 582retry:
68827280 583 if (!pmd_present(pmdval)) {
84c3fc4e
ZY
584 if (likely(!(flags & FOLL_MIGRATION)))
585 return no_page_table(vma, flags);
586 VM_BUG_ON(thp_migration_supported() &&
68827280
HY
587 !is_pmd_migration_entry(pmdval));
588 if (is_pmd_migration_entry(pmdval))
84c3fc4e 589 pmd_migration_entry_wait(mm, pmd);
68827280
HY
590 pmdval = READ_ONCE(*pmd);
591 /*
592 * MADV_DONTNEED may convert the pmd to null because
c1e8d7c6 593 * mmap_lock is held in read mode
68827280
HY
594 */
595 if (pmd_none(pmdval))
596 return no_page_table(vma, flags);
84c3fc4e
ZY
597 goto retry;
598 }
68827280 599 if (pmd_devmap(pmdval)) {
3565fce3 600 ptl = pmd_lock(mm, pmd);
df06b37f 601 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
3565fce3
DW
602 spin_unlock(ptl);
603 if (page)
604 return page;
605 }
68827280 606 if (likely(!pmd_trans_huge(pmdval)))
df06b37f 607 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 608
68827280 609 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
db08f203
AK
610 return no_page_table(vma, flags);
611
84c3fc4e 612retry_locked:
6742d293 613 ptl = pmd_lock(mm, pmd);
68827280
HY
614 if (unlikely(pmd_none(*pmd))) {
615 spin_unlock(ptl);
616 return no_page_table(vma, flags);
617 }
84c3fc4e
ZY
618 if (unlikely(!pmd_present(*pmd))) {
619 spin_unlock(ptl);
620 if (likely(!(flags & FOLL_MIGRATION)))
621 return no_page_table(vma, flags);
622 pmd_migration_entry_wait(mm, pmd);
623 goto retry_locked;
624 }
6742d293
KS
625 if (unlikely(!pmd_trans_huge(*pmd))) {
626 spin_unlock(ptl);
df06b37f 627 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 628 }
bfe7b00d 629 if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) {
6742d293
KS
630 int ret;
631 page = pmd_page(*pmd);
632 if (is_huge_zero_page(page)) {
633 spin_unlock(ptl);
634 ret = 0;
78ddc534 635 split_huge_pmd(vma, pmd, address);
337d9abf
NH
636 if (pmd_trans_unstable(pmd))
637 ret = -EBUSY;
bfe7b00d 638 } else if (flags & FOLL_SPLIT) {
8fde12ca
LT
639 if (unlikely(!try_get_page(page))) {
640 spin_unlock(ptl);
641 return ERR_PTR(-ENOMEM);
642 }
69e68b4f 643 spin_unlock(ptl);
6742d293
KS
644 lock_page(page);
645 ret = split_huge_page(page);
646 unlock_page(page);
647 put_page(page);
baa355fd
KS
648 if (pmd_none(*pmd))
649 return no_page_table(vma, flags);
bfe7b00d
SL
650 } else { /* flags & FOLL_SPLIT_PMD */
651 spin_unlock(ptl);
652 split_huge_pmd(vma, pmd, address);
653 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
6742d293
KS
654 }
655
656 return ret ? ERR_PTR(ret) :
df06b37f 657 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
69e68b4f 658 }
6742d293
KS
659 page = follow_trans_huge_pmd(vma, address, pmd, flags);
660 spin_unlock(ptl);
df06b37f 661 ctx->page_mask = HPAGE_PMD_NR - 1;
6742d293 662 return page;
4bbd4c77
KS
663}
664
080dbb61
AK
665static struct page *follow_pud_mask(struct vm_area_struct *vma,
666 unsigned long address, p4d_t *p4dp,
df06b37f
KB
667 unsigned int flags,
668 struct follow_page_context *ctx)
080dbb61
AK
669{
670 pud_t *pud;
671 spinlock_t *ptl;
672 struct page *page;
673 struct mm_struct *mm = vma->vm_mm;
674
675 pud = pud_offset(p4dp, address);
676 if (pud_none(*pud))
677 return no_page_table(vma, flags);
be9d3045 678 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
080dbb61
AK
679 page = follow_huge_pud(mm, address, pud, flags);
680 if (page)
681 return page;
682 return no_page_table(vma, flags);
683 }
4dc71451
AK
684 if (is_hugepd(__hugepd(pud_val(*pud)))) {
685 page = follow_huge_pd(vma, address,
686 __hugepd(pud_val(*pud)), flags,
687 PUD_SHIFT);
688 if (page)
689 return page;
690 return no_page_table(vma, flags);
691 }
080dbb61
AK
692 if (pud_devmap(*pud)) {
693 ptl = pud_lock(mm, pud);
df06b37f 694 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
080dbb61
AK
695 spin_unlock(ptl);
696 if (page)
697 return page;
698 }
699 if (unlikely(pud_bad(*pud)))
700 return no_page_table(vma, flags);
701
df06b37f 702 return follow_pmd_mask(vma, address, pud, flags, ctx);
080dbb61
AK
703}
704
080dbb61
AK
705static struct page *follow_p4d_mask(struct vm_area_struct *vma,
706 unsigned long address, pgd_t *pgdp,
df06b37f
KB
707 unsigned int flags,
708 struct follow_page_context *ctx)
080dbb61
AK
709{
710 p4d_t *p4d;
4dc71451 711 struct page *page;
080dbb61
AK
712
713 p4d = p4d_offset(pgdp, address);
714 if (p4d_none(*p4d))
715 return no_page_table(vma, flags);
716 BUILD_BUG_ON(p4d_huge(*p4d));
717 if (unlikely(p4d_bad(*p4d)))
718 return no_page_table(vma, flags);
719
4dc71451
AK
720 if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
721 page = follow_huge_pd(vma, address,
722 __hugepd(p4d_val(*p4d)), flags,
723 P4D_SHIFT);
724 if (page)
725 return page;
726 return no_page_table(vma, flags);
727 }
df06b37f 728 return follow_pud_mask(vma, address, p4d, flags, ctx);
080dbb61
AK
729}
730
731/**
732 * follow_page_mask - look up a page descriptor from a user-virtual address
733 * @vma: vm_area_struct mapping @address
734 * @address: virtual address to look up
735 * @flags: flags modifying lookup behaviour
78179556
MR
736 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
737 * pointer to output page_mask
080dbb61
AK
738 *
739 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
740 *
78179556
MR
741 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
742 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
743 *
744 * On output, the @ctx->page_mask is set according to the size of the page.
745 *
746 * Return: the mapped (struct page *), %NULL if no mapping exists, or
080dbb61
AK
747 * an error pointer if there is a mapping to something not represented
748 * by a page descriptor (see also vm_normal_page()).
749 */
a7030aea 750static struct page *follow_page_mask(struct vm_area_struct *vma,
080dbb61 751 unsigned long address, unsigned int flags,
df06b37f 752 struct follow_page_context *ctx)
080dbb61
AK
753{
754 pgd_t *pgd;
755 struct page *page;
756 struct mm_struct *mm = vma->vm_mm;
757
df06b37f 758 ctx->page_mask = 0;
080dbb61
AK
759
760 /* make this handle hugepd */
761 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
762 if (!IS_ERR(page)) {
3faa52c0 763 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
080dbb61
AK
764 return page;
765 }
766
767 pgd = pgd_offset(mm, address);
768
769 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
770 return no_page_table(vma, flags);
771
faaa5b62
AK
772 if (pgd_huge(*pgd)) {
773 page = follow_huge_pgd(mm, address, pgd, flags);
774 if (page)
775 return page;
776 return no_page_table(vma, flags);
777 }
4dc71451
AK
778 if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
779 page = follow_huge_pd(vma, address,
780 __hugepd(pgd_val(*pgd)), flags,
781 PGDIR_SHIFT);
782 if (page)
783 return page;
784 return no_page_table(vma, flags);
785 }
faaa5b62 786
df06b37f
KB
787 return follow_p4d_mask(vma, address, pgd, flags, ctx);
788}
789
790struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
791 unsigned int foll_flags)
792{
793 struct follow_page_context ctx = { NULL };
794 struct page *page;
795
796 page = follow_page_mask(vma, address, foll_flags, &ctx);
797 if (ctx.pgmap)
798 put_dev_pagemap(ctx.pgmap);
799 return page;
080dbb61
AK
800}
801
f2b495ca
KS
802static int get_gate_page(struct mm_struct *mm, unsigned long address,
803 unsigned int gup_flags, struct vm_area_struct **vma,
804 struct page **page)
805{
806 pgd_t *pgd;
c2febafc 807 p4d_t *p4d;
f2b495ca
KS
808 pud_t *pud;
809 pmd_t *pmd;
810 pte_t *pte;
811 int ret = -EFAULT;
812
813 /* user gate pages are read-only */
814 if (gup_flags & FOLL_WRITE)
815 return -EFAULT;
816 if (address > TASK_SIZE)
817 pgd = pgd_offset_k(address);
818 else
819 pgd = pgd_offset_gate(mm, address);
b5d1c39f
AL
820 if (pgd_none(*pgd))
821 return -EFAULT;
c2febafc 822 p4d = p4d_offset(pgd, address);
b5d1c39f
AL
823 if (p4d_none(*p4d))
824 return -EFAULT;
c2febafc 825 pud = pud_offset(p4d, address);
b5d1c39f
AL
826 if (pud_none(*pud))
827 return -EFAULT;
f2b495ca 828 pmd = pmd_offset(pud, address);
84c3fc4e 829 if (!pmd_present(*pmd))
f2b495ca
KS
830 return -EFAULT;
831 VM_BUG_ON(pmd_trans_huge(*pmd));
832 pte = pte_offset_map(pmd, address);
833 if (pte_none(*pte))
834 goto unmap;
835 *vma = get_gate_vma(mm);
836 if (!page)
837 goto out;
838 *page = vm_normal_page(*vma, address, *pte);
839 if (!*page) {
840 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
841 goto unmap;
842 *page = pte_page(*pte);
843 }
9fa2dd94 844 if (unlikely(!try_grab_page(*page, gup_flags))) {
8fde12ca
LT
845 ret = -ENOMEM;
846 goto unmap;
847 }
f2b495ca
KS
848out:
849 ret = 0;
850unmap:
851 pte_unmap(pte);
852 return ret;
853}
854
9a95f3cf 855/*
c1e8d7c6
ML
856 * mmap_lock must be held on entry. If @locked != NULL and *@flags
857 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it
4f6da934 858 * is, *@locked will be set to 0 and -EBUSY returned.
9a95f3cf 859 */
64019a2e 860static int faultin_page(struct vm_area_struct *vma,
4f6da934 861 unsigned long address, unsigned int *flags, int *locked)
16744483 862{
16744483 863 unsigned int fault_flags = 0;
2b740303 864 vm_fault_t ret;
16744483 865
de60f5f1
EM
866 /* mlock all present pages, but do not fault in new pages */
867 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
868 return -ENOENT;
16744483
KS
869 if (*flags & FOLL_WRITE)
870 fault_flags |= FAULT_FLAG_WRITE;
1b2ee126
DH
871 if (*flags & FOLL_REMOTE)
872 fault_flags |= FAULT_FLAG_REMOTE;
4f6da934 873 if (locked)
71335f37 874 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
16744483
KS
875 if (*flags & FOLL_NOWAIT)
876 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
234b239b 877 if (*flags & FOLL_TRIED) {
4426e945
PX
878 /*
879 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
880 * can co-exist
881 */
234b239b
ALC
882 fault_flags |= FAULT_FLAG_TRIED;
883 }
16744483 884
bce617ed 885 ret = handle_mm_fault(vma, address, fault_flags, NULL);
16744483 886 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
887 int err = vm_fault_to_errno(ret, *flags);
888
889 if (err)
890 return err;
16744483
KS
891 BUG();
892 }
893
16744483 894 if (ret & VM_FAULT_RETRY) {
4f6da934
PX
895 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
896 *locked = 0;
16744483
KS
897 return -EBUSY;
898 }
899
900 /*
901 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
902 * necessary, even if maybe_mkwrite decided not to set pte_write. We
903 * can thus safely do subsequent page lookups as if they were reads.
904 * But only do so when looping for pte_write is futile: in some cases
905 * userspace may also be wanting to write to the gotten user page,
906 * which a read fault here might prevent (a readonly page might get
907 * reCOWed by userspace write).
908 */
909 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
2923117b 910 *flags |= FOLL_COW;
16744483
KS
911 return 0;
912}
913
fa5bb209
KS
914static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
915{
916 vm_flags_t vm_flags = vma->vm_flags;
1b2ee126
DH
917 int write = (gup_flags & FOLL_WRITE);
918 int foreign = (gup_flags & FOLL_REMOTE);
fa5bb209
KS
919
920 if (vm_flags & (VM_IO | VM_PFNMAP))
921 return -EFAULT;
922
7f7ccc2c
WT
923 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
924 return -EFAULT;
925
1b2ee126 926 if (write) {
fa5bb209
KS
927 if (!(vm_flags & VM_WRITE)) {
928 if (!(gup_flags & FOLL_FORCE))
929 return -EFAULT;
930 /*
931 * We used to let the write,force case do COW in a
932 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
933 * set a breakpoint in a read-only mapping of an
934 * executable, without corrupting the file (yet only
935 * when that file had been opened for writing!).
936 * Anon pages in shared mappings are surprising: now
937 * just reject it.
938 */
46435364 939 if (!is_cow_mapping(vm_flags))
fa5bb209 940 return -EFAULT;
fa5bb209
KS
941 }
942 } else if (!(vm_flags & VM_READ)) {
943 if (!(gup_flags & FOLL_FORCE))
944 return -EFAULT;
945 /*
946 * Is there actually any vma we can reach here which does not
947 * have VM_MAYREAD set?
948 */
949 if (!(vm_flags & VM_MAYREAD))
950 return -EFAULT;
951 }
d61172b4
DH
952 /*
953 * gups are always data accesses, not instruction
954 * fetches, so execute=false here
955 */
956 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2 957 return -EFAULT;
fa5bb209
KS
958 return 0;
959}
960
4bbd4c77
KS
961/**
962 * __get_user_pages() - pin user pages in memory
4bbd4c77
KS
963 * @mm: mm_struct of target mm
964 * @start: starting user address
965 * @nr_pages: number of pages from start to pin
966 * @gup_flags: flags modifying pin behaviour
967 * @pages: array that receives pointers to the pages pinned.
968 * Should be at least nr_pages long. Or NULL, if caller
969 * only intends to ensure the pages are faulted in.
970 * @vmas: array of pointers to vmas corresponding to each page.
971 * Or NULL if the caller does not require them.
c1e8d7c6 972 * @locked: whether we're still with the mmap_lock held
4bbd4c77 973 *
d2dfbe47
LX
974 * Returns either number of pages pinned (which may be less than the
975 * number requested), or an error. Details about the return value:
976 *
977 * -- If nr_pages is 0, returns 0.
978 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
979 * -- If nr_pages is >0, and some pages were pinned, returns the number of
980 * pages pinned. Again, this may be less than nr_pages.
2d3a36a4 981 * -- 0 return value is possible when the fault would need to be retried.
d2dfbe47
LX
982 *
983 * The caller is responsible for releasing returned @pages, via put_page().
984 *
c1e8d7c6 985 * @vmas are valid only as long as mmap_lock is held.
4bbd4c77 986 *
c1e8d7c6 987 * Must be called with mmap_lock held. It may be released. See below.
4bbd4c77
KS
988 *
989 * __get_user_pages walks a process's page tables and takes a reference to
990 * each struct page that each user address corresponds to at a given
991 * instant. That is, it takes the page that would be accessed if a user
992 * thread accesses the given user virtual address at that instant.
993 *
994 * This does not guarantee that the page exists in the user mappings when
995 * __get_user_pages returns, and there may even be a completely different
996 * page there in some cases (eg. if mmapped pagecache has been invalidated
997 * and subsequently re faulted). However it does guarantee that the page
998 * won't be freed completely. And mostly callers simply care that the page
999 * contains data that was valid *at some point in time*. Typically, an IO
1000 * or similar operation cannot guarantee anything stronger anyway because
1001 * locks can't be held over the syscall boundary.
1002 *
1003 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1004 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1005 * appropriate) must be called after the page is finished with, and
1006 * before put_page is called.
1007 *
c1e8d7c6 1008 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
4f6da934
PX
1009 * released by an up_read(). That can happen if @gup_flags does not
1010 * have FOLL_NOWAIT.
9a95f3cf 1011 *
4f6da934 1012 * A caller using such a combination of @locked and @gup_flags
c1e8d7c6 1013 * must therefore hold the mmap_lock for reading only, and recognize
9a95f3cf
PC
1014 * when it's been released. Otherwise, it must be held for either
1015 * reading or writing and will not be released.
4bbd4c77
KS
1016 *
1017 * In most cases, get_user_pages or get_user_pages_fast should be used
1018 * instead of __get_user_pages. __get_user_pages should be used only if
1019 * you need some special @gup_flags.
1020 */
64019a2e 1021static long __get_user_pages(struct mm_struct *mm,
4bbd4c77
KS
1022 unsigned long start, unsigned long nr_pages,
1023 unsigned int gup_flags, struct page **pages,
4f6da934 1024 struct vm_area_struct **vmas, int *locked)
4bbd4c77 1025{
df06b37f 1026 long ret = 0, i = 0;
fa5bb209 1027 struct vm_area_struct *vma = NULL;
df06b37f 1028 struct follow_page_context ctx = { NULL };
4bbd4c77
KS
1029
1030 if (!nr_pages)
1031 return 0;
1032
f9652594
AK
1033 start = untagged_addr(start);
1034
eddb1c22 1035 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
4bbd4c77
KS
1036
1037 /*
1038 * If FOLL_FORCE is set then do not force a full fault as the hinting
1039 * fault information is unrelated to the reference behaviour of a task
1040 * using the address space
1041 */
1042 if (!(gup_flags & FOLL_FORCE))
1043 gup_flags |= FOLL_NUMA;
1044
4bbd4c77 1045 do {
fa5bb209
KS
1046 struct page *page;
1047 unsigned int foll_flags = gup_flags;
1048 unsigned int page_increm;
1049
1050 /* first iteration or cross vma bound */
1051 if (!vma || start >= vma->vm_end) {
1052 vma = find_extend_vma(mm, start);
1053 if (!vma && in_gate_area(mm, start)) {
fa5bb209
KS
1054 ret = get_gate_page(mm, start & PAGE_MASK,
1055 gup_flags, &vma,
1056 pages ? &pages[i] : NULL);
1057 if (ret)
08be37b7 1058 goto out;
df06b37f 1059 ctx.page_mask = 0;
fa5bb209
KS
1060 goto next_page;
1061 }
4bbd4c77 1062
df06b37f
KB
1063 if (!vma || check_vma_flags(vma, gup_flags)) {
1064 ret = -EFAULT;
1065 goto out;
1066 }
fa5bb209
KS
1067 if (is_vm_hugetlb_page(vma)) {
1068 i = follow_hugetlb_page(mm, vma, pages, vmas,
1069 &start, &nr_pages, i,
a308c71b 1070 gup_flags, locked);
ad415db8
PX
1071 if (locked && *locked == 0) {
1072 /*
1073 * We've got a VM_FAULT_RETRY
c1e8d7c6 1074 * and we've lost mmap_lock.
ad415db8
PX
1075 * We must stop here.
1076 */
1077 BUG_ON(gup_flags & FOLL_NOWAIT);
1078 BUG_ON(ret != 0);
1079 goto out;
1080 }
fa5bb209 1081 continue;
4bbd4c77 1082 }
fa5bb209
KS
1083 }
1084retry:
1085 /*
1086 * If we have a pending SIGKILL, don't keep faulting pages and
1087 * potentially allocating memory.
1088 */
fa45f116 1089 if (fatal_signal_pending(current)) {
d180870d 1090 ret = -EINTR;
df06b37f
KB
1091 goto out;
1092 }
fa5bb209 1093 cond_resched();
df06b37f
KB
1094
1095 page = follow_page_mask(vma, start, foll_flags, &ctx);
fa5bb209 1096 if (!page) {
64019a2e 1097 ret = faultin_page(vma, start, &foll_flags, locked);
fa5bb209
KS
1098 switch (ret) {
1099 case 0:
1100 goto retry;
df06b37f
KB
1101 case -EBUSY:
1102 ret = 0;
e4a9bc58 1103 fallthrough;
fa5bb209
KS
1104 case -EFAULT:
1105 case -ENOMEM:
1106 case -EHWPOISON:
df06b37f 1107 goto out;
fa5bb209
KS
1108 case -ENOENT:
1109 goto next_page;
4bbd4c77 1110 }
fa5bb209 1111 BUG();
1027e443
KS
1112 } else if (PTR_ERR(page) == -EEXIST) {
1113 /*
1114 * Proper page table entry exists, but no corresponding
1115 * struct page.
1116 */
1117 goto next_page;
1118 } else if (IS_ERR(page)) {
df06b37f
KB
1119 ret = PTR_ERR(page);
1120 goto out;
1027e443 1121 }
fa5bb209
KS
1122 if (pages) {
1123 pages[i] = page;
1124 flush_anon_page(vma, page, start);
1125 flush_dcache_page(page);
df06b37f 1126 ctx.page_mask = 0;
4bbd4c77 1127 }
4bbd4c77 1128next_page:
fa5bb209
KS
1129 if (vmas) {
1130 vmas[i] = vma;
df06b37f 1131 ctx.page_mask = 0;
fa5bb209 1132 }
df06b37f 1133 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
fa5bb209
KS
1134 if (page_increm > nr_pages)
1135 page_increm = nr_pages;
1136 i += page_increm;
1137 start += page_increm * PAGE_SIZE;
1138 nr_pages -= page_increm;
4bbd4c77 1139 } while (nr_pages);
df06b37f
KB
1140out:
1141 if (ctx.pgmap)
1142 put_dev_pagemap(ctx.pgmap);
1143 return i ? i : ret;
4bbd4c77 1144}
4bbd4c77 1145
771ab430
TK
1146static bool vma_permits_fault(struct vm_area_struct *vma,
1147 unsigned int fault_flags)
d4925e00 1148{
1b2ee126
DH
1149 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1150 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
33a709b2 1151 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
d4925e00
DH
1152
1153 if (!(vm_flags & vma->vm_flags))
1154 return false;
1155
33a709b2
DH
1156 /*
1157 * The architecture might have a hardware protection
1b2ee126 1158 * mechanism other than read/write that can deny access.
d61172b4
DH
1159 *
1160 * gup always represents data access, not instruction
1161 * fetches, so execute=false here:
33a709b2 1162 */
d61172b4 1163 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2
DH
1164 return false;
1165
d4925e00
DH
1166 return true;
1167}
1168
adc8cb40 1169/**
4bbd4c77 1170 * fixup_user_fault() - manually resolve a user page fault
4bbd4c77
KS
1171 * @mm: mm_struct of target mm
1172 * @address: user address
1173 * @fault_flags:flags to pass down to handle_mm_fault()
c1e8d7c6 1174 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
548b6a1e
MC
1175 * does not allow retry. If NULL, the caller must guarantee
1176 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
4bbd4c77
KS
1177 *
1178 * This is meant to be called in the specific scenario where for locking reasons
1179 * we try to access user memory in atomic context (within a pagefault_disable()
1180 * section), this returns -EFAULT, and we want to resolve the user fault before
1181 * trying again.
1182 *
1183 * Typically this is meant to be used by the futex code.
1184 *
1185 * The main difference with get_user_pages() is that this function will
1186 * unconditionally call handle_mm_fault() which will in turn perform all the
1187 * necessary SW fixup of the dirty and young bits in the PTE, while
4a9e1cda 1188 * get_user_pages() only guarantees to update these in the struct page.
4bbd4c77
KS
1189 *
1190 * This is important for some architectures where those bits also gate the
1191 * access permission to the page because they are maintained in software. On
1192 * such architectures, gup() will not be enough to make a subsequent access
1193 * succeed.
1194 *
c1e8d7c6
ML
1195 * This function will not return with an unlocked mmap_lock. So it has not the
1196 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
4bbd4c77 1197 */
64019a2e 1198int fixup_user_fault(struct mm_struct *mm,
4a9e1cda
DD
1199 unsigned long address, unsigned int fault_flags,
1200 bool *unlocked)
4bbd4c77
KS
1201{
1202 struct vm_area_struct *vma;
2b740303 1203 vm_fault_t ret, major = 0;
4a9e1cda 1204
f9652594
AK
1205 address = untagged_addr(address);
1206
4a9e1cda 1207 if (unlocked)
71335f37 1208 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
4bbd4c77 1209
4a9e1cda 1210retry:
4bbd4c77
KS
1211 vma = find_extend_vma(mm, address);
1212 if (!vma || address < vma->vm_start)
1213 return -EFAULT;
1214
d4925e00 1215 if (!vma_permits_fault(vma, fault_flags))
4bbd4c77
KS
1216 return -EFAULT;
1217
475f4dfc
PX
1218 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1219 fatal_signal_pending(current))
1220 return -EINTR;
1221
bce617ed 1222 ret = handle_mm_fault(vma, address, fault_flags, NULL);
4a9e1cda 1223 major |= ret & VM_FAULT_MAJOR;
4bbd4c77 1224 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
1225 int err = vm_fault_to_errno(ret, 0);
1226
1227 if (err)
1228 return err;
4bbd4c77
KS
1229 BUG();
1230 }
4a9e1cda
DD
1231
1232 if (ret & VM_FAULT_RETRY) {
d8ed45c5 1233 mmap_read_lock(mm);
475f4dfc
PX
1234 *unlocked = true;
1235 fault_flags |= FAULT_FLAG_TRIED;
1236 goto retry;
4a9e1cda
DD
1237 }
1238
4bbd4c77
KS
1239 return 0;
1240}
add6a0cd 1241EXPORT_SYMBOL_GPL(fixup_user_fault);
4bbd4c77 1242
2d3a36a4
MH
1243/*
1244 * Please note that this function, unlike __get_user_pages will not
1245 * return 0 for nr_pages > 0 without FOLL_NOWAIT
1246 */
64019a2e 1247static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
f0818f47
AA
1248 unsigned long start,
1249 unsigned long nr_pages,
f0818f47
AA
1250 struct page **pages,
1251 struct vm_area_struct **vmas,
e716712f 1252 int *locked,
0fd71a56 1253 unsigned int flags)
f0818f47 1254{
f0818f47
AA
1255 long ret, pages_done;
1256 bool lock_dropped;
1257
1258 if (locked) {
1259 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
1260 BUG_ON(vmas);
1261 /* check caller initialized locked */
1262 BUG_ON(*locked != 1);
1263 }
1264
008cfe44 1265 if (flags & FOLL_PIN)
a4d63c37 1266 atomic_set(&mm->has_pinned, 1);
008cfe44 1267
eddb1c22
JH
1268 /*
1269 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1270 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1271 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1272 * for FOLL_GET, not for the newer FOLL_PIN.
1273 *
1274 * FOLL_PIN always expects pages to be non-null, but no need to assert
1275 * that here, as any failures will be obvious enough.
1276 */
1277 if (pages && !(flags & FOLL_PIN))
f0818f47 1278 flags |= FOLL_GET;
f0818f47
AA
1279
1280 pages_done = 0;
1281 lock_dropped = false;
1282 for (;;) {
64019a2e 1283 ret = __get_user_pages(mm, start, nr_pages, flags, pages,
f0818f47
AA
1284 vmas, locked);
1285 if (!locked)
1286 /* VM_FAULT_RETRY couldn't trigger, bypass */
1287 return ret;
1288
1289 /* VM_FAULT_RETRY cannot return errors */
1290 if (!*locked) {
1291 BUG_ON(ret < 0);
1292 BUG_ON(ret >= nr_pages);
1293 }
1294
f0818f47
AA
1295 if (ret > 0) {
1296 nr_pages -= ret;
1297 pages_done += ret;
1298 if (!nr_pages)
1299 break;
1300 }
1301 if (*locked) {
96312e61
AA
1302 /*
1303 * VM_FAULT_RETRY didn't trigger or it was a
1304 * FOLL_NOWAIT.
1305 */
f0818f47
AA
1306 if (!pages_done)
1307 pages_done = ret;
1308 break;
1309 }
df17277b
MR
1310 /*
1311 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1312 * For the prefault case (!pages) we only update counts.
1313 */
1314 if (likely(pages))
1315 pages += ret;
f0818f47 1316 start += ret << PAGE_SHIFT;
4426e945 1317 lock_dropped = true;
f0818f47 1318
4426e945 1319retry:
f0818f47
AA
1320 /*
1321 * Repeat on the address that fired VM_FAULT_RETRY
4426e945
PX
1322 * with both FAULT_FLAG_ALLOW_RETRY and
1323 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
1324 * by fatal signals, so we need to check it before we
1325 * start trying again otherwise it can loop forever.
f0818f47 1326 */
4426e945 1327
ae46d2aa
HD
1328 if (fatal_signal_pending(current)) {
1329 if (!pages_done)
1330 pages_done = -EINTR;
4426e945 1331 break;
ae46d2aa 1332 }
4426e945 1333
d8ed45c5 1334 ret = mmap_read_lock_killable(mm);
71335f37
PX
1335 if (ret) {
1336 BUG_ON(ret > 0);
1337 if (!pages_done)
1338 pages_done = ret;
1339 break;
1340 }
4426e945 1341
c7b6a566 1342 *locked = 1;
64019a2e 1343 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
4426e945
PX
1344 pages, NULL, locked);
1345 if (!*locked) {
1346 /* Continue to retry until we succeeded */
1347 BUG_ON(ret != 0);
1348 goto retry;
1349 }
f0818f47
AA
1350 if (ret != 1) {
1351 BUG_ON(ret > 1);
1352 if (!pages_done)
1353 pages_done = ret;
1354 break;
1355 }
1356 nr_pages--;
1357 pages_done++;
1358 if (!nr_pages)
1359 break;
df17277b
MR
1360 if (likely(pages))
1361 pages++;
f0818f47
AA
1362 start += PAGE_SIZE;
1363 }
e716712f 1364 if (lock_dropped && *locked) {
f0818f47
AA
1365 /*
1366 * We must let the caller know we temporarily dropped the lock
1367 * and so the critical section protected by it was lost.
1368 */
d8ed45c5 1369 mmap_read_unlock(mm);
f0818f47
AA
1370 *locked = 0;
1371 }
1372 return pages_done;
1373}
1374
d3649f68
CH
1375/**
1376 * populate_vma_page_range() - populate a range of pages in the vma.
1377 * @vma: target vma
1378 * @start: start address
1379 * @end: end address
c1e8d7c6 1380 * @locked: whether the mmap_lock is still held
d3649f68
CH
1381 *
1382 * This takes care of mlocking the pages too if VM_LOCKED is set.
1383 *
0a36f7f8
TY
1384 * Return either number of pages pinned in the vma, or a negative error
1385 * code on error.
d3649f68 1386 *
c1e8d7c6 1387 * vma->vm_mm->mmap_lock must be held.
d3649f68 1388 *
4f6da934 1389 * If @locked is NULL, it may be held for read or write and will
d3649f68
CH
1390 * be unperturbed.
1391 *
4f6da934
PX
1392 * If @locked is non-NULL, it must held for read only and may be
1393 * released. If it's released, *@locked will be set to 0.
d3649f68
CH
1394 */
1395long populate_vma_page_range(struct vm_area_struct *vma,
4f6da934 1396 unsigned long start, unsigned long end, int *locked)
d3649f68
CH
1397{
1398 struct mm_struct *mm = vma->vm_mm;
1399 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1400 int gup_flags;
1401
1402 VM_BUG_ON(start & ~PAGE_MASK);
1403 VM_BUG_ON(end & ~PAGE_MASK);
1404 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1405 VM_BUG_ON_VMA(end > vma->vm_end, vma);
42fc5414 1406 mmap_assert_locked(mm);
d3649f68
CH
1407
1408 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1409 if (vma->vm_flags & VM_LOCKONFAULT)
1410 gup_flags &= ~FOLL_POPULATE;
1411 /*
1412 * We want to touch writable mappings with a write fault in order
1413 * to break COW, except for shared mappings because these don't COW
1414 * and we would not want to dirty them for nothing.
1415 */
1416 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1417 gup_flags |= FOLL_WRITE;
1418
1419 /*
1420 * We want mlock to succeed for regions that have any permissions
1421 * other than PROT_NONE.
1422 */
3122e80e 1423 if (vma_is_accessible(vma))
d3649f68
CH
1424 gup_flags |= FOLL_FORCE;
1425
1426 /*
1427 * We made sure addr is within a VMA, so the following will
1428 * not result in a stack expansion that recurses back here.
1429 */
64019a2e 1430 return __get_user_pages(mm, start, nr_pages, gup_flags,
4f6da934 1431 NULL, NULL, locked);
d3649f68
CH
1432}
1433
1434/*
1435 * __mm_populate - populate and/or mlock pages within a range of address space.
1436 *
1437 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1438 * flags. VMAs must be already marked with the desired vm_flags, and
c1e8d7c6 1439 * mmap_lock must not be held.
d3649f68
CH
1440 */
1441int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1442{
1443 struct mm_struct *mm = current->mm;
1444 unsigned long end, nstart, nend;
1445 struct vm_area_struct *vma = NULL;
1446 int locked = 0;
1447 long ret = 0;
1448
1449 end = start + len;
1450
1451 for (nstart = start; nstart < end; nstart = nend) {
1452 /*
1453 * We want to fault in pages for [nstart; end) address range.
1454 * Find first corresponding VMA.
1455 */
1456 if (!locked) {
1457 locked = 1;
d8ed45c5 1458 mmap_read_lock(mm);
d3649f68
CH
1459 vma = find_vma(mm, nstart);
1460 } else if (nstart >= vma->vm_end)
1461 vma = vma->vm_next;
1462 if (!vma || vma->vm_start >= end)
1463 break;
1464 /*
1465 * Set [nstart; nend) to intersection of desired address
1466 * range with the first VMA. Also, skip undesirable VMA types.
1467 */
1468 nend = min(end, vma->vm_end);
1469 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1470 continue;
1471 if (nstart < vma->vm_start)
1472 nstart = vma->vm_start;
1473 /*
1474 * Now fault in a range of pages. populate_vma_page_range()
1475 * double checks the vma flags, so that it won't mlock pages
1476 * if the vma was already munlocked.
1477 */
1478 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1479 if (ret < 0) {
1480 if (ignore_errors) {
1481 ret = 0;
1482 continue; /* continue at next VMA */
1483 }
1484 break;
1485 }
1486 nend = nstart + ret * PAGE_SIZE;
1487 ret = 0;
1488 }
1489 if (locked)
d8ed45c5 1490 mmap_read_unlock(mm);
d3649f68
CH
1491 return ret; /* 0 or negative error code */
1492}
050a9adc 1493#else /* CONFIG_MMU */
64019a2e 1494static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
050a9adc
CH
1495 unsigned long nr_pages, struct page **pages,
1496 struct vm_area_struct **vmas, int *locked,
1497 unsigned int foll_flags)
1498{
1499 struct vm_area_struct *vma;
1500 unsigned long vm_flags;
1501 int i;
1502
1503 /* calculate required read or write permissions.
1504 * If FOLL_FORCE is set, we only require the "MAY" flags.
1505 */
1506 vm_flags = (foll_flags & FOLL_WRITE) ?
1507 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1508 vm_flags &= (foll_flags & FOLL_FORCE) ?
1509 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1510
1511 for (i = 0; i < nr_pages; i++) {
1512 vma = find_vma(mm, start);
1513 if (!vma)
1514 goto finish_or_fault;
1515
1516 /* protect what we can, including chardevs */
1517 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1518 !(vm_flags & vma->vm_flags))
1519 goto finish_or_fault;
1520
1521 if (pages) {
1522 pages[i] = virt_to_page(start);
1523 if (pages[i])
1524 get_page(pages[i]);
1525 }
1526 if (vmas)
1527 vmas[i] = vma;
1528 start = (start + PAGE_SIZE) & PAGE_MASK;
1529 }
1530
1531 return i;
1532
1533finish_or_fault:
1534 return i ? : -EFAULT;
1535}
1536#endif /* !CONFIG_MMU */
d3649f68 1537
8f942eea
JH
1538/**
1539 * get_dump_page() - pin user page in memory while writing it to core dump
1540 * @addr: user address
1541 *
1542 * Returns struct page pointer of user page pinned for dump,
1543 * to be freed afterwards by put_page().
1544 *
1545 * Returns NULL on any kind of failure - a hole must then be inserted into
1546 * the corefile, to preserve alignment with its headers; and also returns
1547 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1548 * allowing a hole to be left in the corefile to save diskspace.
1549 *
7f3bfab5 1550 * Called without mmap_lock (takes and releases the mmap_lock by itself).
8f942eea
JH
1551 */
1552#ifdef CONFIG_ELF_CORE
1553struct page *get_dump_page(unsigned long addr)
1554{
7f3bfab5 1555 struct mm_struct *mm = current->mm;
8f942eea 1556 struct page *page;
7f3bfab5
JH
1557 int locked = 1;
1558 int ret;
8f942eea 1559
7f3bfab5 1560 if (mmap_read_lock_killable(mm))
8f942eea 1561 return NULL;
7f3bfab5
JH
1562 ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
1563 FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1564 if (locked)
1565 mmap_read_unlock(mm);
1566 return (ret == 1) ? page : NULL;
8f942eea
JH
1567}
1568#endif /* CONFIG_ELF_CORE */
1569
9a4e9f3b 1570#if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA)
9a4e9f3b
AK
1571static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages)
1572{
1573 long i;
1574 struct vm_area_struct *vma_prev = NULL;
1575
1576 for (i = 0; i < nr_pages; i++) {
1577 struct vm_area_struct *vma = vmas[i];
1578
1579 if (vma == vma_prev)
1580 continue;
1581
1582 vma_prev = vma;
1583
1584 if (vma_is_fsdax(vma))
1585 return true;
1586 }
1587 return false;
1588}
9a4e9f3b
AK
1589
1590#ifdef CONFIG_CMA
64019a2e 1591static long check_and_migrate_cma_pages(struct mm_struct *mm,
932f4a63
IW
1592 unsigned long start,
1593 unsigned long nr_pages,
9a4e9f3b 1594 struct page **pages,
932f4a63
IW
1595 struct vm_area_struct **vmas,
1596 unsigned int gup_flags)
9a4e9f3b 1597{
aa712399
PL
1598 unsigned long i;
1599 unsigned long step;
9a4e9f3b
AK
1600 bool drain_allow = true;
1601 bool migrate_allow = true;
1602 LIST_HEAD(cma_page_list);
b96cc655 1603 long ret = nr_pages;
ed03d924
JK
1604 struct migration_target_control mtc = {
1605 .nid = NUMA_NO_NODE,
1606 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_NOWARN,
1607 };
9a4e9f3b
AK
1608
1609check_again:
aa712399
PL
1610 for (i = 0; i < nr_pages;) {
1611
1612 struct page *head = compound_head(pages[i]);
1613
1614 /*
1615 * gup may start from a tail page. Advance step by the left
1616 * part.
1617 */
d8c6546b 1618 step = compound_nr(head) - (pages[i] - head);
9a4e9f3b
AK
1619 /*
1620 * If we get a page from the CMA zone, since we are going to
1621 * be pinning these entries, we might as well move them out
1622 * of the CMA zone if possible.
1623 */
aa712399
PL
1624 if (is_migrate_cma_page(head)) {
1625 if (PageHuge(head))
9a4e9f3b 1626 isolate_huge_page(head, &cma_page_list);
aa712399 1627 else {
9a4e9f3b
AK
1628 if (!PageLRU(head) && drain_allow) {
1629 lru_add_drain_all();
1630 drain_allow = false;
1631 }
1632
1633 if (!isolate_lru_page(head)) {
1634 list_add_tail(&head->lru, &cma_page_list);
1635 mod_node_page_state(page_pgdat(head),
1636 NR_ISOLATED_ANON +
9de4f22a 1637 page_is_file_lru(head),
6c357848 1638 thp_nr_pages(head));
9a4e9f3b
AK
1639 }
1640 }
1641 }
aa712399
PL
1642
1643 i += step;
9a4e9f3b
AK
1644 }
1645
1646 if (!list_empty(&cma_page_list)) {
1647 /*
1648 * drop the above get_user_pages reference.
1649 */
96e1fac1
JG
1650 if (gup_flags & FOLL_PIN)
1651 unpin_user_pages(pages, nr_pages);
1652 else
1653 for (i = 0; i < nr_pages; i++)
1654 put_page(pages[i]);
9a4e9f3b 1655
ed03d924
JK
1656 if (migrate_pages(&cma_page_list, alloc_migration_target, NULL,
1657 (unsigned long)&mtc, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
9a4e9f3b
AK
1658 /*
1659 * some of the pages failed migration. Do get_user_pages
1660 * without migration.
1661 */
1662 migrate_allow = false;
1663
1664 if (!list_empty(&cma_page_list))
1665 putback_movable_pages(&cma_page_list);
1666 }
1667 /*
932f4a63
IW
1668 * We did migrate all the pages, Try to get the page references
1669 * again migrating any new CMA pages which we failed to isolate
1670 * earlier.
9a4e9f3b 1671 */
64019a2e 1672 ret = __get_user_pages_locked(mm, start, nr_pages,
932f4a63
IW
1673 pages, vmas, NULL,
1674 gup_flags);
1675
b96cc655 1676 if ((ret > 0) && migrate_allow) {
1677 nr_pages = ret;
9a4e9f3b
AK
1678 drain_allow = true;
1679 goto check_again;
1680 }
1681 }
1682
b96cc655 1683 return ret;
9a4e9f3b
AK
1684}
1685#else
64019a2e 1686static long check_and_migrate_cma_pages(struct mm_struct *mm,
932f4a63
IW
1687 unsigned long start,
1688 unsigned long nr_pages,
1689 struct page **pages,
1690 struct vm_area_struct **vmas,
1691 unsigned int gup_flags)
9a4e9f3b
AK
1692{
1693 return nr_pages;
1694}
050a9adc 1695#endif /* CONFIG_CMA */
9a4e9f3b 1696
2bb6d283 1697/*
932f4a63
IW
1698 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1699 * allows us to process the FOLL_LONGTERM flag.
2bb6d283 1700 */
64019a2e 1701static long __gup_longterm_locked(struct mm_struct *mm,
932f4a63
IW
1702 unsigned long start,
1703 unsigned long nr_pages,
1704 struct page **pages,
1705 struct vm_area_struct **vmas,
1706 unsigned int gup_flags)
2bb6d283 1707{
932f4a63
IW
1708 struct vm_area_struct **vmas_tmp = vmas;
1709 unsigned long flags = 0;
2bb6d283
DW
1710 long rc, i;
1711
932f4a63
IW
1712 if (gup_flags & FOLL_LONGTERM) {
1713 if (!pages)
1714 return -EINVAL;
1715
1716 if (!vmas_tmp) {
1717 vmas_tmp = kcalloc(nr_pages,
1718 sizeof(struct vm_area_struct *),
1719 GFP_KERNEL);
1720 if (!vmas_tmp)
1721 return -ENOMEM;
1722 }
1723 flags = memalloc_nocma_save();
2bb6d283
DW
1724 }
1725
64019a2e 1726 rc = __get_user_pages_locked(mm, start, nr_pages, pages,
932f4a63 1727 vmas_tmp, NULL, gup_flags);
2bb6d283 1728
932f4a63 1729 if (gup_flags & FOLL_LONGTERM) {
932f4a63
IW
1730 if (rc < 0)
1731 goto out;
1732
1733 if (check_dax_vmas(vmas_tmp, rc)) {
96e1fac1
JG
1734 if (gup_flags & FOLL_PIN)
1735 unpin_user_pages(pages, rc);
1736 else
1737 for (i = 0; i < rc; i++)
1738 put_page(pages[i]);
932f4a63
IW
1739 rc = -EOPNOTSUPP;
1740 goto out;
1741 }
1742
64019a2e 1743 rc = check_and_migrate_cma_pages(mm, start, rc, pages,
932f4a63 1744 vmas_tmp, gup_flags);
41b4dc14
JK
1745out:
1746 memalloc_nocma_restore(flags);
9a4e9f3b 1747 }
2bb6d283 1748
932f4a63
IW
1749 if (vmas_tmp != vmas)
1750 kfree(vmas_tmp);
2bb6d283
DW
1751 return rc;
1752}
932f4a63 1753#else /* !CONFIG_FS_DAX && !CONFIG_CMA */
64019a2e 1754static __always_inline long __gup_longterm_locked(struct mm_struct *mm,
932f4a63
IW
1755 unsigned long start,
1756 unsigned long nr_pages,
1757 struct page **pages,
1758 struct vm_area_struct **vmas,
1759 unsigned int flags)
1760{
64019a2e 1761 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
932f4a63
IW
1762 NULL, flags);
1763}
1764#endif /* CONFIG_FS_DAX || CONFIG_CMA */
1765
447f3e45
BS
1766static bool is_valid_gup_flags(unsigned int gup_flags)
1767{
1768 /*
1769 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1770 * never directly by the caller, so enforce that with an assertion:
1771 */
1772 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1773 return false;
1774 /*
1775 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
1776 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
1777 * FOLL_PIN.
1778 */
1779 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1780 return false;
1781
1782 return true;
1783}
1784
22bf29b6 1785#ifdef CONFIG_MMU
64019a2e 1786static long __get_user_pages_remote(struct mm_struct *mm,
22bf29b6
JH
1787 unsigned long start, unsigned long nr_pages,
1788 unsigned int gup_flags, struct page **pages,
1789 struct vm_area_struct **vmas, int *locked)
1790{
1791 /*
1792 * Parts of FOLL_LONGTERM behavior are incompatible with
1793 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1794 * vmas. However, this only comes up if locked is set, and there are
1795 * callers that do request FOLL_LONGTERM, but do not set locked. So,
1796 * allow what we can.
1797 */
1798 if (gup_flags & FOLL_LONGTERM) {
1799 if (WARN_ON_ONCE(locked))
1800 return -EINVAL;
1801 /*
1802 * This will check the vmas (even if our vmas arg is NULL)
1803 * and return -ENOTSUPP if DAX isn't allowed in this case:
1804 */
64019a2e 1805 return __gup_longterm_locked(mm, start, nr_pages, pages,
22bf29b6
JH
1806 vmas, gup_flags | FOLL_TOUCH |
1807 FOLL_REMOTE);
1808 }
1809
64019a2e 1810 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
22bf29b6
JH
1811 locked,
1812 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1813}
1814
adc8cb40 1815/**
c4237f8b 1816 * get_user_pages_remote() - pin user pages in memory
c4237f8b
JH
1817 * @mm: mm_struct of target mm
1818 * @start: starting user address
1819 * @nr_pages: number of pages from start to pin
1820 * @gup_flags: flags modifying lookup behaviour
1821 * @pages: array that receives pointers to the pages pinned.
1822 * Should be at least nr_pages long. Or NULL, if caller
1823 * only intends to ensure the pages are faulted in.
1824 * @vmas: array of pointers to vmas corresponding to each page.
1825 * Or NULL if the caller does not require them.
1826 * @locked: pointer to lock flag indicating whether lock is held and
1827 * subsequently whether VM_FAULT_RETRY functionality can be
1828 * utilised. Lock must initially be held.
1829 *
1830 * Returns either number of pages pinned (which may be less than the
1831 * number requested), or an error. Details about the return value:
1832 *
1833 * -- If nr_pages is 0, returns 0.
1834 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1835 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1836 * pages pinned. Again, this may be less than nr_pages.
1837 *
1838 * The caller is responsible for releasing returned @pages, via put_page().
1839 *
c1e8d7c6 1840 * @vmas are valid only as long as mmap_lock is held.
c4237f8b 1841 *
c1e8d7c6 1842 * Must be called with mmap_lock held for read or write.
c4237f8b 1843 *
adc8cb40
SJ
1844 * get_user_pages_remote walks a process's page tables and takes a reference
1845 * to each struct page that each user address corresponds to at a given
c4237f8b
JH
1846 * instant. That is, it takes the page that would be accessed if a user
1847 * thread accesses the given user virtual address at that instant.
1848 *
1849 * This does not guarantee that the page exists in the user mappings when
adc8cb40 1850 * get_user_pages_remote returns, and there may even be a completely different
c4237f8b
JH
1851 * page there in some cases (eg. if mmapped pagecache has been invalidated
1852 * and subsequently re faulted). However it does guarantee that the page
1853 * won't be freed completely. And mostly callers simply care that the page
1854 * contains data that was valid *at some point in time*. Typically, an IO
1855 * or similar operation cannot guarantee anything stronger anyway because
1856 * locks can't be held over the syscall boundary.
1857 *
1858 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1859 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1860 * be called after the page is finished with, and before put_page is called.
1861 *
adc8cb40
SJ
1862 * get_user_pages_remote is typically used for fewer-copy IO operations,
1863 * to get a handle on the memory by some means other than accesses
1864 * via the user virtual addresses. The pages may be submitted for
1865 * DMA to devices or accessed via their kernel linear mapping (via the
1866 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
c4237f8b
JH
1867 *
1868 * See also get_user_pages_fast, for performance critical applications.
1869 *
adc8cb40 1870 * get_user_pages_remote should be phased out in favor of
c4237f8b 1871 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
adc8cb40 1872 * should use get_user_pages_remote because it cannot pass
c4237f8b
JH
1873 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1874 */
64019a2e 1875long get_user_pages_remote(struct mm_struct *mm,
c4237f8b
JH
1876 unsigned long start, unsigned long nr_pages,
1877 unsigned int gup_flags, struct page **pages,
1878 struct vm_area_struct **vmas, int *locked)
1879{
447f3e45 1880 if (!is_valid_gup_flags(gup_flags))
eddb1c22
JH
1881 return -EINVAL;
1882
64019a2e 1883 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
22bf29b6 1884 pages, vmas, locked);
c4237f8b
JH
1885}
1886EXPORT_SYMBOL(get_user_pages_remote);
1887
eddb1c22 1888#else /* CONFIG_MMU */
64019a2e 1889long get_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
1890 unsigned long start, unsigned long nr_pages,
1891 unsigned int gup_flags, struct page **pages,
1892 struct vm_area_struct **vmas, int *locked)
1893{
1894 return 0;
1895}
3faa52c0 1896
64019a2e 1897static long __get_user_pages_remote(struct mm_struct *mm,
3faa52c0
JH
1898 unsigned long start, unsigned long nr_pages,
1899 unsigned int gup_flags, struct page **pages,
1900 struct vm_area_struct **vmas, int *locked)
1901{
1902 return 0;
1903}
eddb1c22
JH
1904#endif /* !CONFIG_MMU */
1905
adc8cb40
SJ
1906/**
1907 * get_user_pages() - pin user pages in memory
1908 * @start: starting user address
1909 * @nr_pages: number of pages from start to pin
1910 * @gup_flags: flags modifying lookup behaviour
1911 * @pages: array that receives pointers to the pages pinned.
1912 * Should be at least nr_pages long. Or NULL, if caller
1913 * only intends to ensure the pages are faulted in.
1914 * @vmas: array of pointers to vmas corresponding to each page.
1915 * Or NULL if the caller does not require them.
1916 *
64019a2e
PX
1917 * This is the same as get_user_pages_remote(), just with a less-flexible
1918 * calling convention where we assume that the mm being operated on belongs to
1919 * the current task, and doesn't allow passing of a locked parameter. We also
1920 * obviously don't pass FOLL_REMOTE in here.
932f4a63
IW
1921 */
1922long get_user_pages(unsigned long start, unsigned long nr_pages,
1923 unsigned int gup_flags, struct page **pages,
1924 struct vm_area_struct **vmas)
1925{
447f3e45 1926 if (!is_valid_gup_flags(gup_flags))
eddb1c22
JH
1927 return -EINVAL;
1928
64019a2e 1929 return __gup_longterm_locked(current->mm, start, nr_pages,
932f4a63
IW
1930 pages, vmas, gup_flags | FOLL_TOUCH);
1931}
1932EXPORT_SYMBOL(get_user_pages);
2bb6d283 1933
adc8cb40 1934/**
d3649f68 1935 * get_user_pages_locked() is suitable to replace the form:
acc3c8d1 1936 *
3e4e28c5 1937 * mmap_read_lock(mm);
d3649f68 1938 * do_something()
64019a2e 1939 * get_user_pages(mm, ..., pages, NULL);
3e4e28c5 1940 * mmap_read_unlock(mm);
acc3c8d1 1941 *
d3649f68 1942 * to:
acc3c8d1 1943 *
d3649f68 1944 * int locked = 1;
3e4e28c5 1945 * mmap_read_lock(mm);
d3649f68 1946 * do_something()
64019a2e 1947 * get_user_pages_locked(mm, ..., pages, &locked);
d3649f68 1948 * if (locked)
3e4e28c5 1949 * mmap_read_unlock(mm);
adc8cb40
SJ
1950 *
1951 * @start: starting user address
1952 * @nr_pages: number of pages from start to pin
1953 * @gup_flags: flags modifying lookup behaviour
1954 * @pages: array that receives pointers to the pages pinned.
1955 * Should be at least nr_pages long. Or NULL, if caller
1956 * only intends to ensure the pages are faulted in.
1957 * @locked: pointer to lock flag indicating whether lock is held and
1958 * subsequently whether VM_FAULT_RETRY functionality can be
1959 * utilised. Lock must initially be held.
1960 *
1961 * We can leverage the VM_FAULT_RETRY functionality in the page fault
1962 * paths better by using either get_user_pages_locked() or
1963 * get_user_pages_unlocked().
1964 *
acc3c8d1 1965 */
d3649f68
CH
1966long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1967 unsigned int gup_flags, struct page **pages,
1968 int *locked)
acc3c8d1 1969{
acc3c8d1 1970 /*
d3649f68
CH
1971 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1972 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1973 * vmas. As there are no users of this flag in this call we simply
1974 * disallow this option for now.
acc3c8d1 1975 */
d3649f68
CH
1976 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1977 return -EINVAL;
420c2091
JH
1978 /*
1979 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1980 * never directly by the caller, so enforce that:
1981 */
1982 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1983 return -EINVAL;
acc3c8d1 1984
64019a2e 1985 return __get_user_pages_locked(current->mm, start, nr_pages,
d3649f68
CH
1986 pages, NULL, locked,
1987 gup_flags | FOLL_TOUCH);
acc3c8d1 1988}
d3649f68 1989EXPORT_SYMBOL(get_user_pages_locked);
acc3c8d1
KS
1990
1991/*
d3649f68 1992 * get_user_pages_unlocked() is suitable to replace the form:
acc3c8d1 1993 *
3e4e28c5 1994 * mmap_read_lock(mm);
64019a2e 1995 * get_user_pages(mm, ..., pages, NULL);
3e4e28c5 1996 * mmap_read_unlock(mm);
d3649f68
CH
1997 *
1998 * with:
1999 *
64019a2e 2000 * get_user_pages_unlocked(mm, ..., pages);
d3649f68
CH
2001 *
2002 * It is functionally equivalent to get_user_pages_fast so
2003 * get_user_pages_fast should be used instead if specific gup_flags
2004 * (e.g. FOLL_FORCE) are not required.
acc3c8d1 2005 */
d3649f68
CH
2006long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2007 struct page **pages, unsigned int gup_flags)
acc3c8d1
KS
2008{
2009 struct mm_struct *mm = current->mm;
d3649f68
CH
2010 int locked = 1;
2011 long ret;
acc3c8d1 2012
d3649f68
CH
2013 /*
2014 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2015 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2016 * vmas. As there are no users of this flag in this call we simply
2017 * disallow this option for now.
2018 */
2019 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2020 return -EINVAL;
acc3c8d1 2021
d8ed45c5 2022 mmap_read_lock(mm);
64019a2e 2023 ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
d3649f68 2024 &locked, gup_flags | FOLL_TOUCH);
acc3c8d1 2025 if (locked)
d8ed45c5 2026 mmap_read_unlock(mm);
d3649f68 2027 return ret;
4bbd4c77 2028}
d3649f68 2029EXPORT_SYMBOL(get_user_pages_unlocked);
2667f50e
SC
2030
2031/*
67a929e0 2032 * Fast GUP
2667f50e
SC
2033 *
2034 * get_user_pages_fast attempts to pin user pages by walking the page
2035 * tables directly and avoids taking locks. Thus the walker needs to be
2036 * protected from page table pages being freed from under it, and should
2037 * block any THP splits.
2038 *
2039 * One way to achieve this is to have the walker disable interrupts, and
2040 * rely on IPIs from the TLB flushing code blocking before the page table
2041 * pages are freed. This is unsuitable for architectures that do not need
2042 * to broadcast an IPI when invalidating TLBs.
2043 *
2044 * Another way to achieve this is to batch up page table containing pages
2045 * belonging to more than one mm_user, then rcu_sched a callback to free those
2046 * pages. Disabling interrupts will allow the fast_gup walker to both block
2047 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2048 * (which is a relatively rare event). The code below adopts this strategy.
2049 *
2050 * Before activating this code, please be aware that the following assumptions
2051 * are currently made:
2052 *
ff2e6d72 2053 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
e585513b 2054 * free pages containing page tables or TLB flushing requires IPI broadcast.
2667f50e 2055 *
2667f50e
SC
2056 * *) ptes can be read atomically by the architecture.
2057 *
2058 * *) access_ok is sufficient to validate userspace address ranges.
2059 *
2060 * The last two assumptions can be relaxed by the addition of helper functions.
2061 *
2062 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2063 */
67a929e0 2064#ifdef CONFIG_HAVE_FAST_GUP
3faa52c0
JH
2065
2066static void put_compound_head(struct page *page, int refs, unsigned int flags)
2067{
47e29d32 2068 if (flags & FOLL_PIN) {
1970dc6f
JH
2069 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED,
2070 refs);
2071
47e29d32
JH
2072 if (hpage_pincount_available(page))
2073 hpage_pincount_sub(page, refs);
2074 else
2075 refs *= GUP_PIN_COUNTING_BIAS;
2076 }
3faa52c0
JH
2077
2078 VM_BUG_ON_PAGE(page_ref_count(page) < refs, page);
2079 /*
2080 * Calling put_page() for each ref is unnecessarily slow. Only the last
2081 * ref needs a put_page().
2082 */
2083 if (refs > 1)
2084 page_ref_sub(page, refs - 1);
2085 put_page(page);
2086}
2087
39656e83 2088#ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
3faa52c0 2089
39656e83
CH
2090/*
2091 * WARNING: only to be used in the get_user_pages_fast() implementation.
2092 *
2093 * With get_user_pages_fast(), we walk down the pagetables without taking any
2094 * locks. For this we would like to load the pointers atomically, but sometimes
2095 * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE). What
2096 * we do have is the guarantee that a PTE will only either go from not present
2097 * to present, or present to not present or both -- it will not switch to a
2098 * completely different present page without a TLB flush in between; something
2099 * that we are blocking by holding interrupts off.
2100 *
2101 * Setting ptes from not present to present goes:
2102 *
2103 * ptep->pte_high = h;
2104 * smp_wmb();
2105 * ptep->pte_low = l;
2106 *
2107 * And present to not present goes:
2108 *
2109 * ptep->pte_low = 0;
2110 * smp_wmb();
2111 * ptep->pte_high = 0;
2112 *
2113 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
2114 * We load pte_high *after* loading pte_low, which ensures we don't see an older
2115 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't
2116 * picked up a changed pte high. We might have gotten rubbish values from
2117 * pte_low and pte_high, but we are guaranteed that pte_low will not have the
2118 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
2119 * operates on present ptes we're safe.
2120 */
2121static inline pte_t gup_get_pte(pte_t *ptep)
2122{
2123 pte_t pte;
2667f50e 2124
39656e83
CH
2125 do {
2126 pte.pte_low = ptep->pte_low;
2127 smp_rmb();
2128 pte.pte_high = ptep->pte_high;
2129 smp_rmb();
2130 } while (unlikely(pte.pte_low != ptep->pte_low));
2131
2132 return pte;
2133}
2134#else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
0005d20b 2135/*
39656e83 2136 * We require that the PTE can be read atomically.
0005d20b
KS
2137 */
2138static inline pte_t gup_get_pte(pte_t *ptep)
2139{
481e980a 2140 return ptep_get(ptep);
0005d20b 2141}
39656e83 2142#endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
0005d20b 2143
790c7369 2144static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
3b78d834 2145 unsigned int flags,
790c7369 2146 struct page **pages)
b59f65fa
KS
2147{
2148 while ((*nr) - nr_start) {
2149 struct page *page = pages[--(*nr)];
2150
2151 ClearPageReferenced(page);
3faa52c0
JH
2152 if (flags & FOLL_PIN)
2153 unpin_user_page(page);
2154 else
2155 put_page(page);
b59f65fa
KS
2156 }
2157}
2158
3010a5ea 2159#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2667f50e 2160static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
b798bec4 2161 unsigned int flags, struct page **pages, int *nr)
2667f50e 2162{
b59f65fa
KS
2163 struct dev_pagemap *pgmap = NULL;
2164 int nr_start = *nr, ret = 0;
2667f50e 2165 pte_t *ptep, *ptem;
2667f50e
SC
2166
2167 ptem = ptep = pte_offset_map(&pmd, addr);
2168 do {
0005d20b 2169 pte_t pte = gup_get_pte(ptep);
7aef4172 2170 struct page *head, *page;
2667f50e
SC
2171
2172 /*
2173 * Similar to the PMD case below, NUMA hinting must take slow
8a0516ed 2174 * path using the pte_protnone check.
2667f50e 2175 */
e7884f8e
KS
2176 if (pte_protnone(pte))
2177 goto pte_unmap;
2178
b798bec4 2179 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
e7884f8e
KS
2180 goto pte_unmap;
2181
b59f65fa 2182 if (pte_devmap(pte)) {
7af75561
IW
2183 if (unlikely(flags & FOLL_LONGTERM))
2184 goto pte_unmap;
2185
b59f65fa
KS
2186 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2187 if (unlikely(!pgmap)) {
3b78d834 2188 undo_dev_pagemap(nr, nr_start, flags, pages);
b59f65fa
KS
2189 goto pte_unmap;
2190 }
2191 } else if (pte_special(pte))
2667f50e
SC
2192 goto pte_unmap;
2193
2194 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2195 page = pte_page(pte);
2196
3faa52c0 2197 head = try_grab_compound_head(page, 1, flags);
8fde12ca 2198 if (!head)
2667f50e
SC
2199 goto pte_unmap;
2200
2201 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
3faa52c0 2202 put_compound_head(head, 1, flags);
2667f50e
SC
2203 goto pte_unmap;
2204 }
2205
7aef4172 2206 VM_BUG_ON_PAGE(compound_head(page) != head, page);
e9348053 2207
f28d4363
CI
2208 /*
2209 * We need to make the page accessible if and only if we are
2210 * going to access its content (the FOLL_PIN case). Please
2211 * see Documentation/core-api/pin_user_pages.rst for
2212 * details.
2213 */
2214 if (flags & FOLL_PIN) {
2215 ret = arch_make_page_accessible(page);
2216 if (ret) {
2217 unpin_user_page(page);
2218 goto pte_unmap;
2219 }
2220 }
e9348053 2221 SetPageReferenced(page);
2667f50e
SC
2222 pages[*nr] = page;
2223 (*nr)++;
2224
2225 } while (ptep++, addr += PAGE_SIZE, addr != end);
2226
2227 ret = 1;
2228
2229pte_unmap:
832d7aa0
CH
2230 if (pgmap)
2231 put_dev_pagemap(pgmap);
2667f50e
SC
2232 pte_unmap(ptem);
2233 return ret;
2234}
2235#else
2236
2237/*
2238 * If we can't determine whether or not a pte is special, then fail immediately
2239 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2240 * to be special.
2241 *
2242 * For a futex to be placed on a THP tail page, get_futex_key requires a
dadbb612 2243 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2667f50e
SC
2244 * useful to have gup_huge_pmd even if we can't operate on ptes.
2245 */
2246static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
b798bec4 2247 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2248{
2249 return 0;
2250}
3010a5ea 2251#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2667f50e 2252
17596731 2253#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
b59f65fa 2254static int __gup_device_huge(unsigned long pfn, unsigned long addr,
86dfbed4
JH
2255 unsigned long end, unsigned int flags,
2256 struct page **pages, int *nr)
b59f65fa
KS
2257{
2258 int nr_start = *nr;
2259 struct dev_pagemap *pgmap = NULL;
2260
2261 do {
2262 struct page *page = pfn_to_page(pfn);
2263
2264 pgmap = get_dev_pagemap(pfn, pgmap);
2265 if (unlikely(!pgmap)) {
3b78d834 2266 undo_dev_pagemap(nr, nr_start, flags, pages);
b59f65fa
KS
2267 return 0;
2268 }
2269 SetPageReferenced(page);
2270 pages[*nr] = page;
3faa52c0
JH
2271 if (unlikely(!try_grab_page(page, flags))) {
2272 undo_dev_pagemap(nr, nr_start, flags, pages);
2273 return 0;
2274 }
b59f65fa
KS
2275 (*nr)++;
2276 pfn++;
2277 } while (addr += PAGE_SIZE, addr != end);
832d7aa0
CH
2278
2279 if (pgmap)
2280 put_dev_pagemap(pgmap);
b59f65fa
KS
2281 return 1;
2282}
2283
a9b6de77 2284static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
86dfbed4
JH
2285 unsigned long end, unsigned int flags,
2286 struct page **pages, int *nr)
b59f65fa
KS
2287{
2288 unsigned long fault_pfn;
a9b6de77
DW
2289 int nr_start = *nr;
2290
2291 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
86dfbed4 2292 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
a9b6de77 2293 return 0;
b59f65fa 2294
a9b6de77 2295 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3b78d834 2296 undo_dev_pagemap(nr, nr_start, flags, pages);
a9b6de77
DW
2297 return 0;
2298 }
2299 return 1;
b59f65fa
KS
2300}
2301
a9b6de77 2302static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2303 unsigned long end, unsigned int flags,
2304 struct page **pages, int *nr)
b59f65fa
KS
2305{
2306 unsigned long fault_pfn;
a9b6de77
DW
2307 int nr_start = *nr;
2308
2309 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
86dfbed4 2310 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
a9b6de77 2311 return 0;
b59f65fa 2312
a9b6de77 2313 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3b78d834 2314 undo_dev_pagemap(nr, nr_start, flags, pages);
a9b6de77
DW
2315 return 0;
2316 }
2317 return 1;
b59f65fa
KS
2318}
2319#else
a9b6de77 2320static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
86dfbed4
JH
2321 unsigned long end, unsigned int flags,
2322 struct page **pages, int *nr)
b59f65fa
KS
2323{
2324 BUILD_BUG();
2325 return 0;
2326}
2327
a9b6de77 2328static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2329 unsigned long end, unsigned int flags,
2330 struct page **pages, int *nr)
b59f65fa
KS
2331{
2332 BUILD_BUG();
2333 return 0;
2334}
2335#endif
2336
a43e9820
JH
2337static int record_subpages(struct page *page, unsigned long addr,
2338 unsigned long end, struct page **pages)
2339{
2340 int nr;
2341
2342 for (nr = 0; addr != end; addr += PAGE_SIZE)
2343 pages[nr++] = page++;
2344
2345 return nr;
2346}
2347
cbd34da7
CH
2348#ifdef CONFIG_ARCH_HAS_HUGEPD
2349static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2350 unsigned long sz)
2351{
2352 unsigned long __boundary = (addr + sz) & ~(sz-1);
2353 return (__boundary - 1 < end - 1) ? __boundary : end;
2354}
2355
2356static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
0cd22afd
JH
2357 unsigned long end, unsigned int flags,
2358 struct page **pages, int *nr)
cbd34da7
CH
2359{
2360 unsigned long pte_end;
2361 struct page *head, *page;
2362 pte_t pte;
2363 int refs;
2364
2365 pte_end = (addr + sz) & ~(sz-1);
2366 if (pte_end < end)
2367 end = pte_end;
2368
55ca2263 2369 pte = huge_ptep_get(ptep);
cbd34da7 2370
0cd22afd 2371 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
cbd34da7
CH
2372 return 0;
2373
2374 /* hugepages are never "special" */
2375 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2376
cbd34da7 2377 head = pte_page(pte);
cbd34da7 2378 page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
a43e9820 2379 refs = record_subpages(page, addr, end, pages + *nr);
cbd34da7 2380
3faa52c0 2381 head = try_grab_compound_head(head, refs, flags);
a43e9820 2382 if (!head)
cbd34da7 2383 return 0;
cbd34da7
CH
2384
2385 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
3b78d834 2386 put_compound_head(head, refs, flags);
cbd34da7
CH
2387 return 0;
2388 }
2389
a43e9820 2390 *nr += refs;
520b4a44 2391 SetPageReferenced(head);
cbd34da7
CH
2392 return 1;
2393}
2394
2395static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
0cd22afd 2396 unsigned int pdshift, unsigned long end, unsigned int flags,
cbd34da7
CH
2397 struct page **pages, int *nr)
2398{
2399 pte_t *ptep;
2400 unsigned long sz = 1UL << hugepd_shift(hugepd);
2401 unsigned long next;
2402
2403 ptep = hugepte_offset(hugepd, addr, pdshift);
2404 do {
2405 next = hugepte_addr_end(addr, end, sz);
0cd22afd 2406 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
cbd34da7
CH
2407 return 0;
2408 } while (ptep++, addr = next, addr != end);
2409
2410 return 1;
2411}
2412#else
2413static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
0cd22afd 2414 unsigned int pdshift, unsigned long end, unsigned int flags,
cbd34da7
CH
2415 struct page **pages, int *nr)
2416{
2417 return 0;
2418}
2419#endif /* CONFIG_ARCH_HAS_HUGEPD */
2420
2667f50e 2421static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
0cd22afd
JH
2422 unsigned long end, unsigned int flags,
2423 struct page **pages, int *nr)
2667f50e 2424{
ddc58f27 2425 struct page *head, *page;
2667f50e
SC
2426 int refs;
2427
b798bec4 2428 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
2429 return 0;
2430
7af75561
IW
2431 if (pmd_devmap(orig)) {
2432 if (unlikely(flags & FOLL_LONGTERM))
2433 return 0;
86dfbed4
JH
2434 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2435 pages, nr);
7af75561 2436 }
b59f65fa 2437
d63206ee 2438 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
a43e9820 2439 refs = record_subpages(page, addr, end, pages + *nr);
2667f50e 2440
3faa52c0 2441 head = try_grab_compound_head(pmd_page(orig), refs, flags);
a43e9820 2442 if (!head)
2667f50e 2443 return 0;
2667f50e
SC
2444
2445 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3b78d834 2446 put_compound_head(head, refs, flags);
2667f50e
SC
2447 return 0;
2448 }
2449
a43e9820 2450 *nr += refs;
e9348053 2451 SetPageReferenced(head);
2667f50e
SC
2452 return 1;
2453}
2454
2455static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2456 unsigned long end, unsigned int flags,
2457 struct page **pages, int *nr)
2667f50e 2458{
ddc58f27 2459 struct page *head, *page;
2667f50e
SC
2460 int refs;
2461
b798bec4 2462 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
2463 return 0;
2464
7af75561
IW
2465 if (pud_devmap(orig)) {
2466 if (unlikely(flags & FOLL_LONGTERM))
2467 return 0;
86dfbed4
JH
2468 return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2469 pages, nr);
7af75561 2470 }
b59f65fa 2471
d63206ee 2472 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
a43e9820 2473 refs = record_subpages(page, addr, end, pages + *nr);
2667f50e 2474
3faa52c0 2475 head = try_grab_compound_head(pud_page(orig), refs, flags);
a43e9820 2476 if (!head)
2667f50e 2477 return 0;
2667f50e
SC
2478
2479 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3b78d834 2480 put_compound_head(head, refs, flags);
2667f50e
SC
2481 return 0;
2482 }
2483
a43e9820 2484 *nr += refs;
e9348053 2485 SetPageReferenced(head);
2667f50e
SC
2486 return 1;
2487}
2488
f30c59e9 2489static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
b798bec4 2490 unsigned long end, unsigned int flags,
f30c59e9
AK
2491 struct page **pages, int *nr)
2492{
2493 int refs;
ddc58f27 2494 struct page *head, *page;
f30c59e9 2495
b798bec4 2496 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
f30c59e9
AK
2497 return 0;
2498
b59f65fa 2499 BUILD_BUG_ON(pgd_devmap(orig));
a43e9820 2500
d63206ee 2501 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
a43e9820 2502 refs = record_subpages(page, addr, end, pages + *nr);
f30c59e9 2503
3faa52c0 2504 head = try_grab_compound_head(pgd_page(orig), refs, flags);
a43e9820 2505 if (!head)
f30c59e9 2506 return 0;
f30c59e9
AK
2507
2508 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
3b78d834 2509 put_compound_head(head, refs, flags);
f30c59e9
AK
2510 return 0;
2511 }
2512
a43e9820 2513 *nr += refs;
e9348053 2514 SetPageReferenced(head);
f30c59e9
AK
2515 return 1;
2516}
2517
d3f7b1bb 2518static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
b798bec4 2519 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2520{
2521 unsigned long next;
2522 pmd_t *pmdp;
2523
d3f7b1bb 2524 pmdp = pmd_offset_lockless(pudp, pud, addr);
2667f50e 2525 do {
38c5ce93 2526 pmd_t pmd = READ_ONCE(*pmdp);
2667f50e
SC
2527
2528 next = pmd_addr_end(addr, end);
84c3fc4e 2529 if (!pmd_present(pmd))
2667f50e
SC
2530 return 0;
2531
414fd080
YZ
2532 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2533 pmd_devmap(pmd))) {
2667f50e
SC
2534 /*
2535 * NUMA hinting faults need to be handled in the GUP
2536 * slowpath for accounting purposes and so that they
2537 * can be serialised against THP migration.
2538 */
8a0516ed 2539 if (pmd_protnone(pmd))
2667f50e
SC
2540 return 0;
2541
b798bec4 2542 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2667f50e
SC
2543 pages, nr))
2544 return 0;
2545
f30c59e9
AK
2546 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2547 /*
2548 * architecture have different format for hugetlbfs
2549 * pmd format and THP pmd format
2550 */
2551 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
b798bec4 2552 PMD_SHIFT, next, flags, pages, nr))
f30c59e9 2553 return 0;
b798bec4 2554 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2923117b 2555 return 0;
2667f50e
SC
2556 } while (pmdp++, addr = next, addr != end);
2557
2558 return 1;
2559}
2560
d3f7b1bb 2561static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
b798bec4 2562 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2563{
2564 unsigned long next;
2565 pud_t *pudp;
2566
d3f7b1bb 2567 pudp = pud_offset_lockless(p4dp, p4d, addr);
2667f50e 2568 do {
e37c6982 2569 pud_t pud = READ_ONCE(*pudp);
2667f50e
SC
2570
2571 next = pud_addr_end(addr, end);
15494520 2572 if (unlikely(!pud_present(pud)))
2667f50e 2573 return 0;
f30c59e9 2574 if (unlikely(pud_huge(pud))) {
b798bec4 2575 if (!gup_huge_pud(pud, pudp, addr, next, flags,
f30c59e9
AK
2576 pages, nr))
2577 return 0;
2578 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2579 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
b798bec4 2580 PUD_SHIFT, next, flags, pages, nr))
2667f50e 2581 return 0;
d3f7b1bb 2582 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2667f50e
SC
2583 return 0;
2584 } while (pudp++, addr = next, addr != end);
2585
2586 return 1;
2587}
2588
d3f7b1bb 2589static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
b798bec4 2590 unsigned int flags, struct page **pages, int *nr)
c2febafc
KS
2591{
2592 unsigned long next;
2593 p4d_t *p4dp;
2594
d3f7b1bb 2595 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
c2febafc
KS
2596 do {
2597 p4d_t p4d = READ_ONCE(*p4dp);
2598
2599 next = p4d_addr_end(addr, end);
2600 if (p4d_none(p4d))
2601 return 0;
2602 BUILD_BUG_ON(p4d_huge(p4d));
2603 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2604 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
b798bec4 2605 P4D_SHIFT, next, flags, pages, nr))
c2febafc 2606 return 0;
d3f7b1bb 2607 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
c2febafc
KS
2608 return 0;
2609 } while (p4dp++, addr = next, addr != end);
2610
2611 return 1;
2612}
2613
5b65c467 2614static void gup_pgd_range(unsigned long addr, unsigned long end,
b798bec4 2615 unsigned int flags, struct page **pages, int *nr)
5b65c467
KS
2616{
2617 unsigned long next;
2618 pgd_t *pgdp;
2619
2620 pgdp = pgd_offset(current->mm, addr);
2621 do {
2622 pgd_t pgd = READ_ONCE(*pgdp);
2623
2624 next = pgd_addr_end(addr, end);
2625 if (pgd_none(pgd))
2626 return;
2627 if (unlikely(pgd_huge(pgd))) {
b798bec4 2628 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
5b65c467
KS
2629 pages, nr))
2630 return;
2631 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2632 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
b798bec4 2633 PGDIR_SHIFT, next, flags, pages, nr))
5b65c467 2634 return;
d3f7b1bb 2635 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
5b65c467
KS
2636 return;
2637 } while (pgdp++, addr = next, addr != end);
2638}
050a9adc
CH
2639#else
2640static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2641 unsigned int flags, struct page **pages, int *nr)
2642{
2643}
2644#endif /* CONFIG_HAVE_FAST_GUP */
5b65c467
KS
2645
2646#ifndef gup_fast_permitted
2647/*
dadbb612 2648 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
5b65c467
KS
2649 * we need to fall back to the slow version:
2650 */
26f4c328 2651static bool gup_fast_permitted(unsigned long start, unsigned long end)
5b65c467 2652{
26f4c328 2653 return true;
5b65c467
KS
2654}
2655#endif
2656
7af75561
IW
2657static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2658 unsigned int gup_flags, struct page **pages)
2659{
2660 int ret;
2661
2662 /*
2663 * FIXME: FOLL_LONGTERM does not work with
2664 * get_user_pages_unlocked() (see comments in that function)
2665 */
2666 if (gup_flags & FOLL_LONGTERM) {
d8ed45c5 2667 mmap_read_lock(current->mm);
64019a2e 2668 ret = __gup_longterm_locked(current->mm,
7af75561
IW
2669 start, nr_pages,
2670 pages, NULL, gup_flags);
d8ed45c5 2671 mmap_read_unlock(current->mm);
7af75561
IW
2672 } else {
2673 ret = get_user_pages_unlocked(start, nr_pages,
2674 pages, gup_flags);
2675 }
2676
2677 return ret;
2678}
2679
eddb1c22
JH
2680static int internal_get_user_pages_fast(unsigned long start, int nr_pages,
2681 unsigned int gup_flags,
2682 struct page **pages)
2667f50e 2683{
5b65c467 2684 unsigned long addr, len, end;
376a34ef 2685 unsigned long flags;
4628b063 2686 int nr_pinned = 0, ret = 0;
2667f50e 2687
f4000fdf 2688 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
376a34ef
JH
2689 FOLL_FORCE | FOLL_PIN | FOLL_GET |
2690 FOLL_FAST_ONLY)))
817be129
CH
2691 return -EINVAL;
2692
008cfe44
PX
2693 if (gup_flags & FOLL_PIN)
2694 atomic_set(&current->mm->has_pinned, 1);
2695
f81cd178 2696 if (!(gup_flags & FOLL_FAST_ONLY))
da1c55f1 2697 might_lock_read(&current->mm->mmap_lock);
f81cd178 2698
f455c854 2699 start = untagged_addr(start) & PAGE_MASK;
5b65c467
KS
2700 addr = start;
2701 len = (unsigned long) nr_pages << PAGE_SHIFT;
2702 end = start + len;
2703
26f4c328 2704 if (end <= start)
c61611f7 2705 return 0;
96d4f267 2706 if (unlikely(!access_ok((void __user *)start, len)))
c61611f7 2707 return -EFAULT;
73e10a61 2708
17839856 2709 /*
376a34ef
JH
2710 * Disable interrupts. The nested form is used, in order to allow
2711 * full, general purpose use of this routine.
2712 *
2713 * With interrupts disabled, we block page table pages from being
2714 * freed from under us. See struct mmu_table_batch comments in
2715 * include/asm-generic/tlb.h for more details.
2716 *
2717 * We do not adopt an rcu_read_lock(.) here as we also want to
2718 * block IPIs that come from THPs splitting.
17839856 2719 */
376a34ef
JH
2720 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) && gup_fast_permitted(start, end)) {
2721 unsigned long fast_flags = gup_flags;
376a34ef
JH
2722
2723 local_irq_save(flags);
2724 gup_pgd_range(addr, end, fast_flags, pages, &nr_pinned);
2725 local_irq_restore(flags);
4628b063 2726 ret = nr_pinned;
73e10a61 2727 }
2667f50e 2728
376a34ef 2729 if (nr_pinned < nr_pages && !(gup_flags & FOLL_FAST_ONLY)) {
2667f50e 2730 /* Try to get the remaining pages with get_user_pages */
4628b063
PL
2731 start += nr_pinned << PAGE_SHIFT;
2732 pages += nr_pinned;
2667f50e 2733
4628b063 2734 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned,
7af75561 2735 gup_flags, pages);
2667f50e
SC
2736
2737 /* Have to be a bit careful with return values */
4628b063 2738 if (nr_pinned > 0) {
2667f50e 2739 if (ret < 0)
4628b063 2740 ret = nr_pinned;
2667f50e 2741 else
4628b063 2742 ret += nr_pinned;
2667f50e
SC
2743 }
2744 }
2745
2746 return ret;
2747}
dadbb612
SJ
2748/**
2749 * get_user_pages_fast_only() - pin user pages in memory
2750 * @start: starting user address
2751 * @nr_pages: number of pages from start to pin
2752 * @gup_flags: flags modifying pin behaviour
2753 * @pages: array that receives pointers to the pages pinned.
2754 * Should be at least nr_pages long.
2755 *
9e1f0580
JH
2756 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2757 * the regular GUP.
2758 * Note a difference with get_user_pages_fast: this always returns the
2759 * number of pages pinned, 0 if no pages were pinned.
2760 *
2761 * If the architecture does not support this function, simply return with no
2762 * pages pinned.
2763 *
2764 * Careful, careful! COW breaking can go either way, so a non-write
2765 * access can get ambiguous page results. If you call this function without
2766 * 'write' set, you'd better be sure that you're ok with that ambiguity.
2767 */
dadbb612
SJ
2768int get_user_pages_fast_only(unsigned long start, int nr_pages,
2769 unsigned int gup_flags, struct page **pages)
9e1f0580 2770{
376a34ef 2771 int nr_pinned;
9e1f0580
JH
2772 /*
2773 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2774 * because gup fast is always a "pin with a +1 page refcount" request.
376a34ef
JH
2775 *
2776 * FOLL_FAST_ONLY is required in order to match the API description of
2777 * this routine: no fall back to regular ("slow") GUP.
9e1f0580 2778 */
dadbb612 2779 gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
9e1f0580 2780
376a34ef
JH
2781 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2782 pages);
9e1f0580
JH
2783
2784 /*
376a34ef
JH
2785 * As specified in the API description above, this routine is not
2786 * allowed to return negative values. However, the common core
2787 * routine internal_get_user_pages_fast() *can* return -errno.
2788 * Therefore, correct for that here:
9e1f0580 2789 */
376a34ef
JH
2790 if (nr_pinned < 0)
2791 nr_pinned = 0;
9e1f0580
JH
2792
2793 return nr_pinned;
2794}
dadbb612 2795EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
9e1f0580 2796
eddb1c22
JH
2797/**
2798 * get_user_pages_fast() - pin user pages in memory
3faa52c0
JH
2799 * @start: starting user address
2800 * @nr_pages: number of pages from start to pin
2801 * @gup_flags: flags modifying pin behaviour
2802 * @pages: array that receives pointers to the pages pinned.
2803 * Should be at least nr_pages long.
eddb1c22 2804 *
c1e8d7c6 2805 * Attempt to pin user pages in memory without taking mm->mmap_lock.
eddb1c22
JH
2806 * If not successful, it will fall back to taking the lock and
2807 * calling get_user_pages().
2808 *
2809 * Returns number of pages pinned. This may be fewer than the number requested.
2810 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2811 * -errno.
2812 */
2813int get_user_pages_fast(unsigned long start, int nr_pages,
2814 unsigned int gup_flags, struct page **pages)
2815{
447f3e45 2816 if (!is_valid_gup_flags(gup_flags))
eddb1c22
JH
2817 return -EINVAL;
2818
94202f12
JH
2819 /*
2820 * The caller may or may not have explicitly set FOLL_GET; either way is
2821 * OK. However, internally (within mm/gup.c), gup fast variants must set
2822 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2823 * request.
2824 */
2825 gup_flags |= FOLL_GET;
eddb1c22
JH
2826 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2827}
050a9adc 2828EXPORT_SYMBOL_GPL(get_user_pages_fast);
eddb1c22
JH
2829
2830/**
2831 * pin_user_pages_fast() - pin user pages in memory without taking locks
2832 *
3faa52c0
JH
2833 * @start: starting user address
2834 * @nr_pages: number of pages from start to pin
2835 * @gup_flags: flags modifying pin behaviour
2836 * @pages: array that receives pointers to the pages pinned.
2837 * Should be at least nr_pages long.
2838 *
2839 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
2840 * get_user_pages_fast() for documentation on the function arguments, because
2841 * the arguments here are identical.
2842 *
2843 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 2844 * see Documentation/core-api/pin_user_pages.rst for further details.
eddb1c22
JH
2845 */
2846int pin_user_pages_fast(unsigned long start, int nr_pages,
2847 unsigned int gup_flags, struct page **pages)
2848{
3faa52c0
JH
2849 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2850 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2851 return -EINVAL;
2852
2853 gup_flags |= FOLL_PIN;
2854 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
eddb1c22
JH
2855}
2856EXPORT_SYMBOL_GPL(pin_user_pages_fast);
2857
104acc32 2858/*
dadbb612
SJ
2859 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
2860 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
104acc32
JH
2861 *
2862 * The API rules are the same, too: no negative values may be returned.
2863 */
2864int pin_user_pages_fast_only(unsigned long start, int nr_pages,
2865 unsigned int gup_flags, struct page **pages)
2866{
2867 int nr_pinned;
2868
2869 /*
2870 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
2871 * rules require returning 0, rather than -errno:
2872 */
2873 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2874 return 0;
2875 /*
2876 * FOLL_FAST_ONLY is required in order to match the API description of
2877 * this routine: no fall back to regular ("slow") GUP.
2878 */
2879 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
2880 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2881 pages);
2882 /*
2883 * This routine is not allowed to return negative values. However,
2884 * internal_get_user_pages_fast() *can* return -errno. Therefore,
2885 * correct for that here:
2886 */
2887 if (nr_pinned < 0)
2888 nr_pinned = 0;
2889
2890 return nr_pinned;
2891}
2892EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
2893
eddb1c22 2894/**
64019a2e 2895 * pin_user_pages_remote() - pin pages of a remote process
eddb1c22 2896 *
3faa52c0
JH
2897 * @mm: mm_struct of target mm
2898 * @start: starting user address
2899 * @nr_pages: number of pages from start to pin
2900 * @gup_flags: flags modifying lookup behaviour
2901 * @pages: array that receives pointers to the pages pinned.
2902 * Should be at least nr_pages long. Or NULL, if caller
2903 * only intends to ensure the pages are faulted in.
2904 * @vmas: array of pointers to vmas corresponding to each page.
2905 * Or NULL if the caller does not require them.
2906 * @locked: pointer to lock flag indicating whether lock is held and
2907 * subsequently whether VM_FAULT_RETRY functionality can be
2908 * utilised. Lock must initially be held.
2909 *
2910 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
2911 * get_user_pages_remote() for documentation on the function arguments, because
2912 * the arguments here are identical.
2913 *
2914 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 2915 * see Documentation/core-api/pin_user_pages.rst for details.
eddb1c22 2916 */
64019a2e 2917long pin_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
2918 unsigned long start, unsigned long nr_pages,
2919 unsigned int gup_flags, struct page **pages,
2920 struct vm_area_struct **vmas, int *locked)
2921{
3faa52c0
JH
2922 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2923 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2924 return -EINVAL;
2925
2926 gup_flags |= FOLL_PIN;
64019a2e 2927 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
3faa52c0 2928 pages, vmas, locked);
eddb1c22
JH
2929}
2930EXPORT_SYMBOL(pin_user_pages_remote);
2931
2932/**
2933 * pin_user_pages() - pin user pages in memory for use by other devices
2934 *
3faa52c0
JH
2935 * @start: starting user address
2936 * @nr_pages: number of pages from start to pin
2937 * @gup_flags: flags modifying lookup behaviour
2938 * @pages: array that receives pointers to the pages pinned.
2939 * Should be at least nr_pages long. Or NULL, if caller
2940 * only intends to ensure the pages are faulted in.
2941 * @vmas: array of pointers to vmas corresponding to each page.
2942 * Or NULL if the caller does not require them.
2943 *
2944 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
2945 * FOLL_PIN is set.
2946 *
2947 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 2948 * see Documentation/core-api/pin_user_pages.rst for details.
eddb1c22
JH
2949 */
2950long pin_user_pages(unsigned long start, unsigned long nr_pages,
2951 unsigned int gup_flags, struct page **pages,
2952 struct vm_area_struct **vmas)
2953{
3faa52c0
JH
2954 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2955 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2956 return -EINVAL;
2957
2958 gup_flags |= FOLL_PIN;
64019a2e 2959 return __gup_longterm_locked(current->mm, start, nr_pages,
3faa52c0 2960 pages, vmas, gup_flags);
eddb1c22
JH
2961}
2962EXPORT_SYMBOL(pin_user_pages);
91429023
JH
2963
2964/*
2965 * pin_user_pages_unlocked() is the FOLL_PIN variant of
2966 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
2967 * FOLL_PIN and rejects FOLL_GET.
2968 */
2969long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2970 struct page **pages, unsigned int gup_flags)
2971{
2972 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2973 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2974 return -EINVAL;
2975
2976 gup_flags |= FOLL_PIN;
2977 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
2978}
2979EXPORT_SYMBOL(pin_user_pages_unlocked);
420c2091
JH
2980
2981/*
2982 * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked().
2983 * Behavior is the same, except that this one sets FOLL_PIN and rejects
2984 * FOLL_GET.
2985 */
2986long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
2987 unsigned int gup_flags, struct page **pages,
2988 int *locked)
2989{
2990 /*
2991 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2992 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2993 * vmas. As there are no users of this flag in this call we simply
2994 * disallow this option for now.
2995 */
2996 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2997 return -EINVAL;
2998
2999 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3000 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3001 return -EINVAL;
3002
3003 gup_flags |= FOLL_PIN;
64019a2e 3004 return __get_user_pages_locked(current->mm, start, nr_pages,
420c2091
JH
3005 pages, NULL, locked,
3006 gup_flags | FOLL_TOUCH);
3007}
3008EXPORT_SYMBOL(pin_user_pages_locked);