frontswap: make frontswap_init use a pointer for the ops
[linux-2.6-block.git] / mm / frontswap.c
CommitLineData
29f233cf
DM
1/*
2 * Frontswap frontend
3 *
4 * This code provides the generic "frontend" layer to call a matching
5 * "backend" driver implementation of frontswap. See
6 * Documentation/vm/frontswap.txt for more information.
7 *
8 * Copyright (C) 2009-2012 Oracle Corp. All rights reserved.
9 * Author: Dan Magenheimer
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2.
12 */
13
29f233cf
DM
14#include <linux/mman.h>
15#include <linux/swap.h>
16#include <linux/swapops.h>
29f233cf 17#include <linux/security.h>
29f233cf 18#include <linux/module.h>
29f233cf
DM
19#include <linux/debugfs.h>
20#include <linux/frontswap.h>
21#include <linux/swapfile.h>
22
23/*
24 * frontswap_ops is set by frontswap_register_ops to contain the pointers
25 * to the frontswap "backend" implementation functions.
26 */
1e01c968 27static struct frontswap_ops *frontswap_ops __read_mostly;
29f233cf
DM
28
29/*
30 * This global enablement flag reduces overhead on systems where frontswap_ops
31 * has not been registered, so is preferred to the slower alternative: a
32 * function call that checks a non-global.
33 */
34bool frontswap_enabled __read_mostly;
35EXPORT_SYMBOL(frontswap_enabled);
36
37/*
165c8aed 38 * If enabled, frontswap_store will return failure even on success. As
29f233cf
DM
39 * a result, the swap subsystem will always write the page to swap, in
40 * effect converting frontswap into a writethrough cache. In this mode,
41 * there is no direct reduction in swap writes, but a frontswap backend
42 * can unilaterally "reclaim" any pages in use with no data loss, thus
43 * providing increases control over maximum memory usage due to frontswap.
44 */
45static bool frontswap_writethrough_enabled __read_mostly;
46
e3483a5f
DM
47/*
48 * If enabled, the underlying tmem implementation is capable of doing
49 * exclusive gets, so frontswap_load, on a successful tmem_get must
50 * mark the page as no longer in frontswap AND mark it dirty.
51 */
52static bool frontswap_tmem_exclusive_gets_enabled __read_mostly;
53
29f233cf
DM
54#ifdef CONFIG_DEBUG_FS
55/*
56 * Counters available via /sys/kernel/debug/frontswap (if debugfs is
57 * properly configured). These are for information only so are not protected
58 * against increment races.
59 */
165c8aed
KRW
60static u64 frontswap_loads;
61static u64 frontswap_succ_stores;
62static u64 frontswap_failed_stores;
29f233cf
DM
63static u64 frontswap_invalidates;
64
165c8aed
KRW
65static inline void inc_frontswap_loads(void) {
66 frontswap_loads++;
29f233cf 67}
165c8aed
KRW
68static inline void inc_frontswap_succ_stores(void) {
69 frontswap_succ_stores++;
29f233cf 70}
165c8aed
KRW
71static inline void inc_frontswap_failed_stores(void) {
72 frontswap_failed_stores++;
29f233cf
DM
73}
74static inline void inc_frontswap_invalidates(void) {
75 frontswap_invalidates++;
76}
77#else
165c8aed
KRW
78static inline void inc_frontswap_loads(void) { }
79static inline void inc_frontswap_succ_stores(void) { }
80static inline void inc_frontswap_failed_stores(void) { }
29f233cf
DM
81static inline void inc_frontswap_invalidates(void) { }
82#endif
905cd0e1
DM
83
84/*
85 * Due to the asynchronous nature of the backends loading potentially
86 * _after_ the swap system has been activated, we have chokepoints
87 * on all frontswap functions to not call the backend until the backend
88 * has registered.
89 *
90 * Specifically when no backend is registered (nobody called
91 * frontswap_register_ops) all calls to frontswap_init (which is done via
92 * swapon -> enable_swap_info -> frontswap_init) are registered and remembered
93 * (via the setting of need_init bitmap) but fail to create tmem_pools. When a
94 * backend registers with frontswap at some later point the previous
95 * calls to frontswap_init are executed (by iterating over the need_init
96 * bitmap) to create tmem_pools and set the respective poolids. All of that is
97 * guarded by us using atomic bit operations on the 'need_init' bitmap.
98 *
99 * This would not guards us against the user deciding to call swapoff right as
100 * we are calling the backend to initialize (so swapon is in action).
101 * Fortunatly for us, the swapon_mutex has been taked by the callee so we are
102 * OK. The other scenario where calls to frontswap_store (called via
103 * swap_writepage) is racing with frontswap_invalidate_area (called via
104 * swapoff) is again guarded by the swap subsystem.
105 *
106 * While no backend is registered all calls to frontswap_[store|load|
107 * invalidate_area|invalidate_page] are ignored or fail.
108 *
109 * The time between the backend being registered and the swap file system
110 * calling the backend (via the frontswap_* functions) is indeterminate as
1e01c968 111 * frontswap_ops is not atomic_t (or a value guarded by a spinlock).
905cd0e1
DM
112 * That is OK as we are comfortable missing some of these calls to the newly
113 * registered backend.
114 *
115 * Obviously the opposite (unloading the backend) must be done after all
116 * the frontswap_[store|load|invalidate_area|invalidate_page] start
1e01c968 117 * ignorning or failing the requests - at which point frontswap_ops
905cd0e1
DM
118 * would have to be made in some fashion atomic.
119 */
120static DECLARE_BITMAP(need_init, MAX_SWAPFILES);
905cd0e1 121
29f233cf
DM
122/*
123 * Register operations for frontswap, returning previous thus allowing
124 * detection of multiple backends and possible nesting.
125 */
1e01c968 126struct frontswap_ops *frontswap_register_ops(struct frontswap_ops *ops)
29f233cf 127{
1e01c968 128 struct frontswap_ops *old = frontswap_ops;
905cd0e1 129 int i;
29f233cf 130
29f233cf 131 frontswap_enabled = true;
905cd0e1
DM
132
133 for (i = 0; i < MAX_SWAPFILES; i++) {
134 if (test_and_clear_bit(i, need_init))
1e01c968 135 ops->init(i);
905cd0e1
DM
136 }
137 /*
1e01c968 138 * We MUST have frontswap_ops set _after_ the frontswap_init's
905cd0e1
DM
139 * have been called. Otherwise __frontswap_store might fail. Hence
140 * the barrier to make sure compiler does not re-order us.
141 */
142 barrier();
1e01c968 143 frontswap_ops = ops;
29f233cf
DM
144 return old;
145}
146EXPORT_SYMBOL(frontswap_register_ops);
147
148/*
149 * Enable/disable frontswap writethrough (see above).
150 */
151void frontswap_writethrough(bool enable)
152{
153 frontswap_writethrough_enabled = enable;
154}
155EXPORT_SYMBOL(frontswap_writethrough);
156
e3483a5f
DM
157/*
158 * Enable/disable frontswap exclusive gets (see above).
159 */
160void frontswap_tmem_exclusive_gets(bool enable)
161{
162 frontswap_tmem_exclusive_gets_enabled = enable;
163}
164EXPORT_SYMBOL(frontswap_tmem_exclusive_gets);
165
29f233cf
DM
166/*
167 * Called when a swap device is swapon'd.
168 */
169void __frontswap_init(unsigned type)
170{
171 struct swap_info_struct *sis = swap_info[type];
172
1e01c968 173 if (frontswap_ops) {
905cd0e1
DM
174 BUG_ON(sis == NULL);
175 if (sis->frontswap_map == NULL)
176 return;
1e01c968 177 frontswap_ops->init(type);
905cd0e1
DM
178 } else {
179 BUG_ON(type > MAX_SWAPFILES);
180 set_bit(type, need_init);
181 }
182
29f233cf
DM
183}
184EXPORT_SYMBOL(__frontswap_init);
185
611edfed
SL
186static inline void __frontswap_clear(struct swap_info_struct *sis, pgoff_t offset)
187{
188 frontswap_clear(sis, offset);
189 atomic_dec(&sis->frontswap_pages);
190}
191
29f233cf 192/*
165c8aed 193 * "Store" data from a page to frontswap and associate it with the page's
29f233cf
DM
194 * swaptype and offset. Page must be locked and in the swap cache.
195 * If frontswap already contains a page with matching swaptype and
1d00015e 196 * offset, the frontswap implementation may either overwrite the data and
29f233cf
DM
197 * return success or invalidate the page from frontswap and return failure.
198 */
165c8aed 199int __frontswap_store(struct page *page)
29f233cf
DM
200{
201 int ret = -1, dup = 0;
202 swp_entry_t entry = { .val = page_private(page), };
203 int type = swp_type(entry);
204 struct swap_info_struct *sis = swap_info[type];
205 pgoff_t offset = swp_offset(entry);
206
1e01c968 207 if (!frontswap_ops) {
905cd0e1
DM
208 inc_frontswap_failed_stores();
209 return ret;
210 }
211
29f233cf
DM
212 BUG_ON(!PageLocked(page));
213 BUG_ON(sis == NULL);
214 if (frontswap_test(sis, offset))
215 dup = 1;
1e01c968 216 ret = frontswap_ops->store(type, offset, page);
29f233cf
DM
217 if (ret == 0) {
218 frontswap_set(sis, offset);
165c8aed 219 inc_frontswap_succ_stores();
29f233cf
DM
220 if (!dup)
221 atomic_inc(&sis->frontswap_pages);
d9674dda 222 } else {
29f233cf
DM
223 /*
224 failed dup always results in automatic invalidate of
225 the (older) page from frontswap
226 */
165c8aed 227 inc_frontswap_failed_stores();
611edfed
SL
228 if (dup)
229 __frontswap_clear(sis, offset);
4bb3e31e 230 }
29f233cf
DM
231 if (frontswap_writethrough_enabled)
232 /* report failure so swap also writes to swap device */
233 ret = -1;
234 return ret;
235}
165c8aed 236EXPORT_SYMBOL(__frontswap_store);
29f233cf
DM
237
238/*
239 * "Get" data from frontswap associated with swaptype and offset that were
240 * specified when the data was put to frontswap and use it to fill the
241 * specified page with data. Page must be locked and in the swap cache.
242 */
165c8aed 243int __frontswap_load(struct page *page)
29f233cf
DM
244{
245 int ret = -1;
246 swp_entry_t entry = { .val = page_private(page), };
247 int type = swp_type(entry);
248 struct swap_info_struct *sis = swap_info[type];
249 pgoff_t offset = swp_offset(entry);
250
1e01c968 251 if (!frontswap_ops)
905cd0e1
DM
252 return ret;
253
29f233cf
DM
254 BUG_ON(!PageLocked(page));
255 BUG_ON(sis == NULL);
256 if (frontswap_test(sis, offset))
1e01c968 257 ret = frontswap_ops->load(type, offset, page);
e3483a5f 258 if (ret == 0) {
165c8aed 259 inc_frontswap_loads();
e3483a5f
DM
260 if (frontswap_tmem_exclusive_gets_enabled) {
261 SetPageDirty(page);
262 frontswap_clear(sis, offset);
263 }
264 }
29f233cf
DM
265 return ret;
266}
165c8aed 267EXPORT_SYMBOL(__frontswap_load);
29f233cf
DM
268
269/*
270 * Invalidate any data from frontswap associated with the specified swaptype
271 * and offset so that a subsequent "get" will fail.
272 */
273void __frontswap_invalidate_page(unsigned type, pgoff_t offset)
274{
275 struct swap_info_struct *sis = swap_info[type];
276
1e01c968 277 if (!frontswap_ops)
905cd0e1
DM
278 return;
279
29f233cf
DM
280 BUG_ON(sis == NULL);
281 if (frontswap_test(sis, offset)) {
1e01c968 282 frontswap_ops->invalidate_page(type, offset);
611edfed 283 __frontswap_clear(sis, offset);
29f233cf
DM
284 inc_frontswap_invalidates();
285 }
286}
287EXPORT_SYMBOL(__frontswap_invalidate_page);
288
289/*
290 * Invalidate all data from frontswap associated with all offsets for the
291 * specified swaptype.
292 */
293void __frontswap_invalidate_area(unsigned type)
294{
295 struct swap_info_struct *sis = swap_info[type];
296
1e01c968 297 if (frontswap_ops) {
905cd0e1
DM
298 BUG_ON(sis == NULL);
299 if (sis->frontswap_map == NULL)
300 return;
1e01c968 301 frontswap_ops->invalidate_area(type);
905cd0e1
DM
302 atomic_set(&sis->frontswap_pages, 0);
303 memset(sis->frontswap_map, 0, sis->max / sizeof(long));
304 }
305 clear_bit(type, need_init);
29f233cf
DM
306}
307EXPORT_SYMBOL(__frontswap_invalidate_area);
308
96253444
SL
309static unsigned long __frontswap_curr_pages(void)
310{
311 int type;
312 unsigned long totalpages = 0;
313 struct swap_info_struct *si = NULL;
314
315 assert_spin_locked(&swap_lock);
316 for (type = swap_list.head; type >= 0; type = si->next) {
317 si = swap_info[type];
318 totalpages += atomic_read(&si->frontswap_pages);
319 }
320 return totalpages;
321}
322
f116695a
SL
323static int __frontswap_unuse_pages(unsigned long total, unsigned long *unused,
324 int *swapid)
325{
326 int ret = -EINVAL;
327 struct swap_info_struct *si = NULL;
328 int si_frontswap_pages;
329 unsigned long total_pages_to_unuse = total;
330 unsigned long pages = 0, pages_to_unuse = 0;
331 int type;
332
333 assert_spin_locked(&swap_lock);
334 for (type = swap_list.head; type >= 0; type = si->next) {
335 si = swap_info[type];
336 si_frontswap_pages = atomic_read(&si->frontswap_pages);
337 if (total_pages_to_unuse < si_frontswap_pages) {
338 pages = pages_to_unuse = total_pages_to_unuse;
339 } else {
340 pages = si_frontswap_pages;
341 pages_to_unuse = 0; /* unuse all */
342 }
343 /* ensure there is enough RAM to fetch pages from frontswap */
344 if (security_vm_enough_memory_mm(current->mm, pages)) {
345 ret = -ENOMEM;
346 continue;
347 }
348 vm_unacct_memory(pages);
349 *unused = pages_to_unuse;
350 *swapid = type;
351 ret = 0;
352 break;
353 }
354
355 return ret;
356}
357
a00bb1e9
ZD
358/*
359 * Used to check if it's necessory and feasible to unuse pages.
360 * Return 1 when nothing to do, 0 when need to shink pages,
361 * error code when there is an error.
362 */
69217b4c
SL
363static int __frontswap_shrink(unsigned long target_pages,
364 unsigned long *pages_to_unuse,
365 int *type)
366{
367 unsigned long total_pages = 0, total_pages_to_unuse;
368
369 assert_spin_locked(&swap_lock);
370
371 total_pages = __frontswap_curr_pages();
372 if (total_pages <= target_pages) {
373 /* Nothing to do */
374 *pages_to_unuse = 0;
a00bb1e9 375 return 1;
69217b4c
SL
376 }
377 total_pages_to_unuse = total_pages - target_pages;
378 return __frontswap_unuse_pages(total_pages_to_unuse, pages_to_unuse, type);
379}
380
29f233cf
DM
381/*
382 * Frontswap, like a true swap device, may unnecessarily retain pages
383 * under certain circumstances; "shrink" frontswap is essentially a
384 * "partial swapoff" and works by calling try_to_unuse to attempt to
385 * unuse enough frontswap pages to attempt to -- subject to memory
386 * constraints -- reduce the number of pages in frontswap to the
387 * number given in the parameter target_pages.
388 */
389void frontswap_shrink(unsigned long target_pages)
390{
f116695a 391 unsigned long pages_to_unuse = 0;
6b982fcf 392 int uninitialized_var(type), ret;
29f233cf
DM
393
394 /*
395 * we don't want to hold swap_lock while doing a very
396 * lengthy try_to_unuse, but swap_list may change
397 * so restart scan from swap_list.head each time
398 */
399 spin_lock(&swap_lock);
69217b4c 400 ret = __frontswap_shrink(target_pages, &pages_to_unuse, &type);
29f233cf 401 spin_unlock(&swap_lock);
a00bb1e9 402 if (ret == 0)
69217b4c 403 try_to_unuse(type, true, pages_to_unuse);
29f233cf
DM
404 return;
405}
406EXPORT_SYMBOL(frontswap_shrink);
407
408/*
409 * Count and return the number of frontswap pages across all
410 * swap devices. This is exported so that backend drivers can
411 * determine current usage without reading debugfs.
412 */
413unsigned long frontswap_curr_pages(void)
414{
29f233cf 415 unsigned long totalpages = 0;
29f233cf
DM
416
417 spin_lock(&swap_lock);
96253444 418 totalpages = __frontswap_curr_pages();
29f233cf 419 spin_unlock(&swap_lock);
96253444 420
29f233cf
DM
421 return totalpages;
422}
423EXPORT_SYMBOL(frontswap_curr_pages);
424
425static int __init init_frontswap(void)
426{
427#ifdef CONFIG_DEBUG_FS
428 struct dentry *root = debugfs_create_dir("frontswap", NULL);
429 if (root == NULL)
430 return -ENXIO;
165c8aed
KRW
431 debugfs_create_u64("loads", S_IRUGO, root, &frontswap_loads);
432 debugfs_create_u64("succ_stores", S_IRUGO, root, &frontswap_succ_stores);
433 debugfs_create_u64("failed_stores", S_IRUGO, root,
434 &frontswap_failed_stores);
29f233cf
DM
435 debugfs_create_u64("invalidates", S_IRUGO,
436 root, &frontswap_invalidates);
437#endif
905cd0e1 438 frontswap_enabled = 1;
29f233cf
DM
439 return 0;
440}
441
442module_init(init_frontswap);