Merge tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[linux-2.6-block.git] / mm / filemap.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/filemap.c
4 *
5 * Copyright (C) 1994-1999 Linus Torvalds
6 */
7
8/*
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
12 */
b95f1b31 13#include <linux/export.h>
1da177e4 14#include <linux/compiler.h>
f9fe48be 15#include <linux/dax.h>
1da177e4 16#include <linux/fs.h>
3f07c014 17#include <linux/sched/signal.h>
c22ce143 18#include <linux/uaccess.h>
c59ede7b 19#include <linux/capability.h>
1da177e4 20#include <linux/kernel_stat.h>
5a0e3ad6 21#include <linux/gfp.h>
1da177e4
LT
22#include <linux/mm.h>
23#include <linux/swap.h>
24#include <linux/mman.h>
25#include <linux/pagemap.h>
26#include <linux/file.h>
27#include <linux/uio.h>
cfcbfb13 28#include <linux/error-injection.h>
1da177e4
LT
29#include <linux/hash.h>
30#include <linux/writeback.h>
53253383 31#include <linux/backing-dev.h>
1da177e4 32#include <linux/pagevec.h>
1da177e4 33#include <linux/security.h>
44110fe3 34#include <linux/cpuset.h>
00501b53 35#include <linux/hugetlb.h>
8a9f3ccd 36#include <linux/memcontrol.h>
c515e1fd 37#include <linux/cleancache.h>
c7df8ad2 38#include <linux/shmem_fs.h>
f1820361 39#include <linux/rmap.h>
b1d29ba8 40#include <linux/delayacct.h>
eb414681 41#include <linux/psi.h>
d0e6a582 42#include <linux/ramfs.h>
b9306a79 43#include <linux/page_idle.h>
f9ce0be7 44#include <asm/pgalloc.h>
de591a82 45#include <asm/tlbflush.h>
0f8053a5
NP
46#include "internal.h"
47
fe0bfaaf
RJ
48#define CREATE_TRACE_POINTS
49#include <trace/events/filemap.h>
50
1da177e4 51/*
1da177e4
LT
52 * FIXME: remove all knowledge of the buffer layer from the core VM
53 */
148f948b 54#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 55
1da177e4
LT
56#include <asm/mman.h>
57
58/*
59 * Shared mappings implemented 30.11.1994. It's not fully working yet,
60 * though.
61 *
62 * Shared mappings now work. 15.8.1995 Bruno.
63 *
64 * finished 'unifying' the page and buffer cache and SMP-threaded the
65 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
66 *
67 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
68 */
69
70/*
71 * Lock ordering:
72 *
c8c06efa 73 * ->i_mmap_rwsem (truncate_pagecache)
1da177e4 74 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91 75 * ->swap_lock (exclusive_swap_page, others)
b93b0163 76 * ->i_pages lock
1da177e4 77 *
9608703e 78 * ->i_rwsem
730633f0
JK
79 * ->invalidate_lock (acquired by fs in truncate path)
80 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
1da177e4 81 *
c1e8d7c6 82 * ->mmap_lock
c8c06efa 83 * ->i_mmap_rwsem
b8072f09 84 * ->page_table_lock or pte_lock (various, mainly in memory.c)
b93b0163 85 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
1da177e4 86 *
c1e8d7c6 87 * ->mmap_lock
730633f0
JK
88 * ->invalidate_lock (filemap_fault)
89 * ->lock_page (filemap_fault, access_process_vm)
1da177e4 90 *
9608703e 91 * ->i_rwsem (generic_perform_write)
bb523b40 92 * ->mmap_lock (fault_in_readable->do_page_fault)
1da177e4 93 *
f758eeab 94 * bdi->wb.list_lock
a66979ab 95 * sb_lock (fs/fs-writeback.c)
b93b0163 96 * ->i_pages lock (__sync_single_inode)
1da177e4 97 *
c8c06efa 98 * ->i_mmap_rwsem
1da177e4
LT
99 * ->anon_vma.lock (vma_adjust)
100 *
101 * ->anon_vma.lock
b8072f09 102 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 103 *
b8072f09 104 * ->page_table_lock or pte_lock
5d337b91 105 * ->swap_lock (try_to_unmap_one)
1da177e4 106 * ->private_lock (try_to_unmap_one)
b93b0163 107 * ->i_pages lock (try_to_unmap_one)
15b44736
HD
108 * ->lruvec->lru_lock (follow_page->mark_page_accessed)
109 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page)
1da177e4 110 * ->private_lock (page_remove_rmap->set_page_dirty)
b93b0163 111 * ->i_pages lock (page_remove_rmap->set_page_dirty)
f758eeab 112 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
250df6ed 113 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
81f8c3a4 114 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
f758eeab 115 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 116 * ->inode->i_lock (zap_pte_range->set_page_dirty)
1da177e4
LT
117 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
118 *
c8c06efa 119 * ->i_mmap_rwsem
9a3c531d 120 * ->tasklist_lock (memory_failure, collect_procs_ao)
1da177e4
LT
121 */
122
5c024e6a 123static void page_cache_delete(struct address_space *mapping,
91b0abe3
JW
124 struct page *page, void *shadow)
125{
5c024e6a
MW
126 XA_STATE(xas, &mapping->i_pages, page->index);
127 unsigned int nr = 1;
c70b647d 128
5c024e6a 129 mapping_set_update(&xas, mapping);
c70b647d 130
5c024e6a
MW
131 /* hugetlb pages are represented by a single entry in the xarray */
132 if (!PageHuge(page)) {
133 xas_set_order(&xas, page->index, compound_order(page));
d8c6546b 134 nr = compound_nr(page);
5c024e6a 135 }
91b0abe3 136
83929372
KS
137 VM_BUG_ON_PAGE(!PageLocked(page), page);
138 VM_BUG_ON_PAGE(PageTail(page), page);
139 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
449dd698 140
5c024e6a
MW
141 xas_store(&xas, shadow);
142 xas_init_marks(&xas);
d3798ae8 143
2300638b
JK
144 page->mapping = NULL;
145 /* Leave page->index set: truncation lookup relies upon it */
d3798ae8 146 mapping->nrpages -= nr;
91b0abe3
JW
147}
148
5ecc4d85
JK
149static void unaccount_page_cache_page(struct address_space *mapping,
150 struct page *page)
1da177e4 151{
5ecc4d85 152 int nr;
1da177e4 153
c515e1fd
DM
154 /*
155 * if we're uptodate, flush out into the cleancache, otherwise
156 * invalidate any existing cleancache entries. We can't leave
157 * stale data around in the cleancache once our page is gone
158 */
159 if (PageUptodate(page) && PageMappedToDisk(page))
160 cleancache_put_page(page);
161 else
3167760f 162 cleancache_invalidate_page(mapping, page);
c515e1fd 163
83929372 164 VM_BUG_ON_PAGE(PageTail(page), page);
06b241f3
HD
165 VM_BUG_ON_PAGE(page_mapped(page), page);
166 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
167 int mapcount;
168
169 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
170 current->comm, page_to_pfn(page));
171 dump_page(page, "still mapped when deleted");
172 dump_stack();
173 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
174
175 mapcount = page_mapcount(page);
176 if (mapping_exiting(mapping) &&
177 page_count(page) >= mapcount + 2) {
178 /*
179 * All vmas have already been torn down, so it's
180 * a good bet that actually the page is unmapped,
181 * and we'd prefer not to leak it: if we're wrong,
182 * some other bad page check should catch it later.
183 */
184 page_mapcount_reset(page);
6d061f9f 185 page_ref_sub(page, mapcount);
06b241f3
HD
186 }
187 }
188
4165b9b4 189 /* hugetlb pages do not participate in page cache accounting. */
5ecc4d85
JK
190 if (PageHuge(page))
191 return;
09612fa6 192
6c357848 193 nr = thp_nr_pages(page);
5ecc4d85 194
0d1c2072 195 __mod_lruvec_page_state(page, NR_FILE_PAGES, -nr);
5ecc4d85 196 if (PageSwapBacked(page)) {
0d1c2072 197 __mod_lruvec_page_state(page, NR_SHMEM, -nr);
5ecc4d85 198 if (PageTransHuge(page))
57b2847d 199 __mod_lruvec_page_state(page, NR_SHMEM_THPS, -nr);
99cb0dbd 200 } else if (PageTransHuge(page)) {
bf9ecead 201 __mod_lruvec_page_state(page, NR_FILE_THPS, -nr);
09d91cda 202 filemap_nr_thps_dec(mapping);
800d8c63 203 }
5ecc4d85
JK
204
205 /*
206 * At this point page must be either written or cleaned by
207 * truncate. Dirty page here signals a bug and loss of
208 * unwritten data.
209 *
210 * This fixes dirty accounting after removing the page entirely
211 * but leaves PageDirty set: it has no effect for truncated
212 * page and anyway will be cleared before returning page into
213 * buddy allocator.
214 */
215 if (WARN_ON_ONCE(PageDirty(page)))
216 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
217}
218
219/*
220 * Delete a page from the page cache and free it. Caller has to make
221 * sure the page is locked and that nobody else uses it - or that usage
b93b0163 222 * is safe. The caller must hold the i_pages lock.
5ecc4d85
JK
223 */
224void __delete_from_page_cache(struct page *page, void *shadow)
225{
226 struct address_space *mapping = page->mapping;
227
228 trace_mm_filemap_delete_from_page_cache(page);
229
230 unaccount_page_cache_page(mapping, page);
5c024e6a 231 page_cache_delete(mapping, page, shadow);
1da177e4
LT
232}
233
59c66c5f
JK
234static void page_cache_free_page(struct address_space *mapping,
235 struct page *page)
236{
237 void (*freepage)(struct page *);
238
239 freepage = mapping->a_ops->freepage;
240 if (freepage)
241 freepage(page);
242
243 if (PageTransHuge(page) && !PageHuge(page)) {
887b22c6 244 page_ref_sub(page, thp_nr_pages(page));
59c66c5f
JK
245 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
246 } else {
247 put_page(page);
248 }
249}
250
702cfbf9
MK
251/**
252 * delete_from_page_cache - delete page from page cache
253 * @page: the page which the kernel is trying to remove from page cache
254 *
255 * This must be called only on pages that have been verified to be in the page
256 * cache and locked. It will never put the page into the free list, the caller
257 * has a reference on the page.
258 */
259void delete_from_page_cache(struct page *page)
1da177e4 260{
83929372 261 struct address_space *mapping = page_mapping(page);
1da177e4 262
cd7619d6 263 BUG_ON(!PageLocked(page));
30472509 264 xa_lock_irq(&mapping->i_pages);
62cccb8c 265 __delete_from_page_cache(page, NULL);
30472509 266 xa_unlock_irq(&mapping->i_pages);
6072d13c 267
59c66c5f 268 page_cache_free_page(mapping, page);
97cecb5a
MK
269}
270EXPORT_SYMBOL(delete_from_page_cache);
271
aa65c29c 272/*
ef8e5717 273 * page_cache_delete_batch - delete several pages from page cache
aa65c29c
JK
274 * @mapping: the mapping to which pages belong
275 * @pvec: pagevec with pages to delete
276 *
b93b0163 277 * The function walks over mapping->i_pages and removes pages passed in @pvec
4101196b
MWO
278 * from the mapping. The function expects @pvec to be sorted by page index
279 * and is optimised for it to be dense.
b93b0163 280 * It tolerates holes in @pvec (mapping entries at those indices are not
aa65c29c 281 * modified). The function expects only THP head pages to be present in the
4101196b 282 * @pvec.
aa65c29c 283 *
b93b0163 284 * The function expects the i_pages lock to be held.
aa65c29c 285 */
ef8e5717 286static void page_cache_delete_batch(struct address_space *mapping,
aa65c29c
JK
287 struct pagevec *pvec)
288{
ef8e5717 289 XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
aa65c29c 290 int total_pages = 0;
4101196b 291 int i = 0;
aa65c29c 292 struct page *page;
aa65c29c 293
ef8e5717
MW
294 mapping_set_update(&xas, mapping);
295 xas_for_each(&xas, page, ULONG_MAX) {
4101196b 296 if (i >= pagevec_count(pvec))
aa65c29c 297 break;
4101196b
MWO
298
299 /* A swap/dax/shadow entry got inserted? Skip it. */
3159f943 300 if (xa_is_value(page))
aa65c29c 301 continue;
4101196b
MWO
302 /*
303 * A page got inserted in our range? Skip it. We have our
304 * pages locked so they are protected from being removed.
305 * If we see a page whose index is higher than ours, it
306 * means our page has been removed, which shouldn't be
307 * possible because we're holding the PageLock.
308 */
309 if (page != pvec->pages[i]) {
310 VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
311 page);
312 continue;
313 }
314
315 WARN_ON_ONCE(!PageLocked(page));
316
317 if (page->index == xas.xa_index)
aa65c29c 318 page->mapping = NULL;
4101196b
MWO
319 /* Leave page->index set: truncation lookup relies on it */
320
321 /*
322 * Move to the next page in the vector if this is a regular
323 * page or the index is of the last sub-page of this compound
324 * page.
325 */
326 if (page->index + compound_nr(page) - 1 == xas.xa_index)
aa65c29c 327 i++;
ef8e5717 328 xas_store(&xas, NULL);
aa65c29c
JK
329 total_pages++;
330 }
331 mapping->nrpages -= total_pages;
332}
333
334void delete_from_page_cache_batch(struct address_space *mapping,
335 struct pagevec *pvec)
336{
337 int i;
aa65c29c
JK
338
339 if (!pagevec_count(pvec))
340 return;
341
30472509 342 xa_lock_irq(&mapping->i_pages);
aa65c29c
JK
343 for (i = 0; i < pagevec_count(pvec); i++) {
344 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
345
346 unaccount_page_cache_page(mapping, pvec->pages[i]);
347 }
ef8e5717 348 page_cache_delete_batch(mapping, pvec);
30472509 349 xa_unlock_irq(&mapping->i_pages);
aa65c29c
JK
350
351 for (i = 0; i < pagevec_count(pvec); i++)
352 page_cache_free_page(mapping, pvec->pages[i]);
353}
354
d72d9e2a 355int filemap_check_errors(struct address_space *mapping)
865ffef3
DM
356{
357 int ret = 0;
358 /* Check for outstanding write errors */
7fcbbaf1
JA
359 if (test_bit(AS_ENOSPC, &mapping->flags) &&
360 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
865ffef3 361 ret = -ENOSPC;
7fcbbaf1
JA
362 if (test_bit(AS_EIO, &mapping->flags) &&
363 test_and_clear_bit(AS_EIO, &mapping->flags))
865ffef3
DM
364 ret = -EIO;
365 return ret;
366}
d72d9e2a 367EXPORT_SYMBOL(filemap_check_errors);
865ffef3 368
76341cab
JL
369static int filemap_check_and_keep_errors(struct address_space *mapping)
370{
371 /* Check for outstanding write errors */
372 if (test_bit(AS_EIO, &mapping->flags))
373 return -EIO;
374 if (test_bit(AS_ENOSPC, &mapping->flags))
375 return -ENOSPC;
376 return 0;
377}
378
5a798493
JB
379/**
380 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
381 * @mapping: address space structure to write
382 * @wbc: the writeback_control controlling the writeout
383 *
384 * Call writepages on the mapping using the provided wbc to control the
385 * writeout.
386 *
387 * Return: %0 on success, negative error code otherwise.
388 */
389int filemap_fdatawrite_wbc(struct address_space *mapping,
390 struct writeback_control *wbc)
391{
392 int ret;
393
394 if (!mapping_can_writeback(mapping) ||
395 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
396 return 0;
397
398 wbc_attach_fdatawrite_inode(wbc, mapping->host);
399 ret = do_writepages(mapping, wbc);
400 wbc_detach_inode(wbc);
401 return ret;
402}
403EXPORT_SYMBOL(filemap_fdatawrite_wbc);
404
1da177e4 405/**
485bb99b 406 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
407 * @mapping: address space structure to write
408 * @start: offset in bytes where the range starts
469eb4d0 409 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 410 * @sync_mode: enable synchronous operation
1da177e4 411 *
485bb99b
RD
412 * Start writeback against all of a mapping's dirty pages that lie
413 * within the byte offsets <start, end> inclusive.
414 *
1da177e4 415 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 416 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
417 * these two operations is that if a dirty page/buffer is encountered, it must
418 * be waited upon, and not just skipped over.
a862f68a
MR
419 *
420 * Return: %0 on success, negative error code otherwise.
1da177e4 421 */
ebcf28e1
AM
422int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
423 loff_t end, int sync_mode)
1da177e4 424{
1da177e4
LT
425 struct writeback_control wbc = {
426 .sync_mode = sync_mode,
05fe478d 427 .nr_to_write = LONG_MAX,
111ebb6e
OH
428 .range_start = start,
429 .range_end = end,
1da177e4
LT
430 };
431
5a798493 432 return filemap_fdatawrite_wbc(mapping, &wbc);
1da177e4
LT
433}
434
435static inline int __filemap_fdatawrite(struct address_space *mapping,
436 int sync_mode)
437{
111ebb6e 438 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
439}
440
441int filemap_fdatawrite(struct address_space *mapping)
442{
443 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
444}
445EXPORT_SYMBOL(filemap_fdatawrite);
446
f4c0a0fd 447int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 448 loff_t end)
1da177e4
LT
449{
450 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
451}
f4c0a0fd 452EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 453
485bb99b
RD
454/**
455 * filemap_flush - mostly a non-blocking flush
456 * @mapping: target address_space
457 *
1da177e4
LT
458 * This is a mostly non-blocking flush. Not suitable for data-integrity
459 * purposes - I/O may not be started against all dirty pages.
a862f68a
MR
460 *
461 * Return: %0 on success, negative error code otherwise.
1da177e4
LT
462 */
463int filemap_flush(struct address_space *mapping)
464{
465 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
466}
467EXPORT_SYMBOL(filemap_flush);
468
7fc9e472
GR
469/**
470 * filemap_range_has_page - check if a page exists in range.
471 * @mapping: address space within which to check
472 * @start_byte: offset in bytes where the range starts
473 * @end_byte: offset in bytes where the range ends (inclusive)
474 *
475 * Find at least one page in the range supplied, usually used to check if
476 * direct writing in this range will trigger a writeback.
a862f68a
MR
477 *
478 * Return: %true if at least one page exists in the specified range,
479 * %false otherwise.
7fc9e472
GR
480 */
481bool filemap_range_has_page(struct address_space *mapping,
482 loff_t start_byte, loff_t end_byte)
483{
f7b68046 484 struct page *page;
8fa8e538
MW
485 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
486 pgoff_t max = end_byte >> PAGE_SHIFT;
7fc9e472
GR
487
488 if (end_byte < start_byte)
489 return false;
490
8fa8e538
MW
491 rcu_read_lock();
492 for (;;) {
493 page = xas_find(&xas, max);
494 if (xas_retry(&xas, page))
495 continue;
496 /* Shadow entries don't count */
497 if (xa_is_value(page))
498 continue;
499 /*
500 * We don't need to try to pin this page; we're about to
501 * release the RCU lock anyway. It is enough to know that
502 * there was a page here recently.
503 */
504 break;
505 }
506 rcu_read_unlock();
7fc9e472 507
8fa8e538 508 return page != NULL;
7fc9e472
GR
509}
510EXPORT_SYMBOL(filemap_range_has_page);
511
5e8fcc1a 512static void __filemap_fdatawait_range(struct address_space *mapping,
aa750fd7 513 loff_t start_byte, loff_t end_byte)
1da177e4 514{
09cbfeaf
KS
515 pgoff_t index = start_byte >> PAGE_SHIFT;
516 pgoff_t end = end_byte >> PAGE_SHIFT;
1da177e4
LT
517 struct pagevec pvec;
518 int nr_pages;
1da177e4 519
94004ed7 520 if (end_byte < start_byte)
5e8fcc1a 521 return;
1da177e4 522
86679820 523 pagevec_init(&pvec);
312e9d2f 524 while (index <= end) {
1da177e4
LT
525 unsigned i;
526
312e9d2f 527 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
67fd707f 528 end, PAGECACHE_TAG_WRITEBACK);
312e9d2f
JK
529 if (!nr_pages)
530 break;
531
1da177e4
LT
532 for (i = 0; i < nr_pages; i++) {
533 struct page *page = pvec.pages[i];
534
1da177e4 535 wait_on_page_writeback(page);
5e8fcc1a 536 ClearPageError(page);
1da177e4
LT
537 }
538 pagevec_release(&pvec);
539 cond_resched();
540 }
aa750fd7
JN
541}
542
543/**
544 * filemap_fdatawait_range - wait for writeback to complete
545 * @mapping: address space structure to wait for
546 * @start_byte: offset in bytes where the range starts
547 * @end_byte: offset in bytes where the range ends (inclusive)
548 *
549 * Walk the list of under-writeback pages of the given address space
550 * in the given range and wait for all of them. Check error status of
551 * the address space and return it.
552 *
553 * Since the error status of the address space is cleared by this function,
554 * callers are responsible for checking the return value and handling and/or
555 * reporting the error.
a862f68a
MR
556 *
557 * Return: error status of the address space.
aa750fd7
JN
558 */
559int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
560 loff_t end_byte)
561{
5e8fcc1a
JL
562 __filemap_fdatawait_range(mapping, start_byte, end_byte);
563 return filemap_check_errors(mapping);
1da177e4 564}
d3bccb6f
JK
565EXPORT_SYMBOL(filemap_fdatawait_range);
566
aa0bfcd9
RZ
567/**
568 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
569 * @mapping: address space structure to wait for
570 * @start_byte: offset in bytes where the range starts
571 * @end_byte: offset in bytes where the range ends (inclusive)
572 *
573 * Walk the list of under-writeback pages of the given address space in the
574 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
575 * this function does not clear error status of the address space.
576 *
577 * Use this function if callers don't handle errors themselves. Expected
578 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
579 * fsfreeze(8)
580 */
581int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
582 loff_t start_byte, loff_t end_byte)
583{
584 __filemap_fdatawait_range(mapping, start_byte, end_byte);
585 return filemap_check_and_keep_errors(mapping);
586}
587EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
588
a823e458
JL
589/**
590 * file_fdatawait_range - wait for writeback to complete
591 * @file: file pointing to address space structure to wait for
592 * @start_byte: offset in bytes where the range starts
593 * @end_byte: offset in bytes where the range ends (inclusive)
594 *
595 * Walk the list of under-writeback pages of the address space that file
596 * refers to, in the given range and wait for all of them. Check error
597 * status of the address space vs. the file->f_wb_err cursor and return it.
598 *
599 * Since the error status of the file is advanced by this function,
600 * callers are responsible for checking the return value and handling and/or
601 * reporting the error.
a862f68a
MR
602 *
603 * Return: error status of the address space vs. the file->f_wb_err cursor.
a823e458
JL
604 */
605int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
606{
607 struct address_space *mapping = file->f_mapping;
608
609 __filemap_fdatawait_range(mapping, start_byte, end_byte);
610 return file_check_and_advance_wb_err(file);
611}
612EXPORT_SYMBOL(file_fdatawait_range);
d3bccb6f 613
aa750fd7
JN
614/**
615 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
616 * @mapping: address space structure to wait for
617 *
618 * Walk the list of under-writeback pages of the given address space
619 * and wait for all of them. Unlike filemap_fdatawait(), this function
620 * does not clear error status of the address space.
621 *
622 * Use this function if callers don't handle errors themselves. Expected
623 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
624 * fsfreeze(8)
a862f68a
MR
625 *
626 * Return: error status of the address space.
aa750fd7 627 */
76341cab 628int filemap_fdatawait_keep_errors(struct address_space *mapping)
aa750fd7 629{
ffb959bb 630 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
76341cab 631 return filemap_check_and_keep_errors(mapping);
aa750fd7 632}
76341cab 633EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
aa750fd7 634
875d91b1 635/* Returns true if writeback might be needed or already in progress. */
9326c9b2 636static bool mapping_needs_writeback(struct address_space *mapping)
1da177e4 637{
875d91b1 638 return mapping->nrpages;
1da177e4 639}
1da177e4 640
63135aa3
JA
641/**
642 * filemap_range_needs_writeback - check if range potentially needs writeback
643 * @mapping: address space within which to check
644 * @start_byte: offset in bytes where the range starts
645 * @end_byte: offset in bytes where the range ends (inclusive)
646 *
647 * Find at least one page in the range supplied, usually used to check if
648 * direct writing in this range will trigger a writeback. Used by O_DIRECT
649 * read/write with IOCB_NOWAIT, to see if the caller needs to do
650 * filemap_write_and_wait_range() before proceeding.
651 *
652 * Return: %true if the caller should do filemap_write_and_wait_range() before
653 * doing O_DIRECT to a page in this range, %false otherwise.
654 */
655bool filemap_range_needs_writeback(struct address_space *mapping,
656 loff_t start_byte, loff_t end_byte)
657{
658 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
659 pgoff_t max = end_byte >> PAGE_SHIFT;
660 struct page *page;
661
662 if (!mapping_needs_writeback(mapping))
663 return false;
664 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
665 !mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
666 return false;
667 if (end_byte < start_byte)
668 return false;
669
670 rcu_read_lock();
671 xas_for_each(&xas, page, max) {
672 if (xas_retry(&xas, page))
673 continue;
674 if (xa_is_value(page))
675 continue;
676 if (PageDirty(page) || PageLocked(page) || PageWriteback(page))
677 break;
678 }
679 rcu_read_unlock();
680 return page != NULL;
681}
682EXPORT_SYMBOL_GPL(filemap_range_needs_writeback);
683
485bb99b
RD
684/**
685 * filemap_write_and_wait_range - write out & wait on a file range
686 * @mapping: the address_space for the pages
687 * @lstart: offset in bytes where the range starts
688 * @lend: offset in bytes where the range ends (inclusive)
689 *
469eb4d0
AM
690 * Write out and wait upon file offsets lstart->lend, inclusive.
691 *
0e056eb5 692 * Note that @lend is inclusive (describes the last byte to be written) so
469eb4d0 693 * that this function can be used to write to the very end-of-file (end = -1).
a862f68a
MR
694 *
695 * Return: error status of the address space.
469eb4d0 696 */
1da177e4
LT
697int filemap_write_and_wait_range(struct address_space *mapping,
698 loff_t lstart, loff_t lend)
699{
28fd1298 700 int err = 0;
1da177e4 701
9326c9b2 702 if (mapping_needs_writeback(mapping)) {
28fd1298
OH
703 err = __filemap_fdatawrite_range(mapping, lstart, lend,
704 WB_SYNC_ALL);
ddf8f376
IW
705 /*
706 * Even if the above returned error, the pages may be
707 * written partially (e.g. -ENOSPC), so we wait for it.
708 * But the -EIO is special case, it may indicate the worst
709 * thing (e.g. bug) happened, so we avoid waiting for it.
710 */
28fd1298 711 if (err != -EIO) {
94004ed7
CH
712 int err2 = filemap_fdatawait_range(mapping,
713 lstart, lend);
28fd1298
OH
714 if (!err)
715 err = err2;
cbeaf951
JL
716 } else {
717 /* Clear any previously stored errors */
718 filemap_check_errors(mapping);
28fd1298 719 }
865ffef3
DM
720 } else {
721 err = filemap_check_errors(mapping);
1da177e4 722 }
28fd1298 723 return err;
1da177e4 724}
f6995585 725EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 726
5660e13d
JL
727void __filemap_set_wb_err(struct address_space *mapping, int err)
728{
3acdfd28 729 errseq_t eseq = errseq_set(&mapping->wb_err, err);
5660e13d
JL
730
731 trace_filemap_set_wb_err(mapping, eseq);
732}
733EXPORT_SYMBOL(__filemap_set_wb_err);
734
735/**
736 * file_check_and_advance_wb_err - report wb error (if any) that was previously
737 * and advance wb_err to current one
738 * @file: struct file on which the error is being reported
739 *
740 * When userland calls fsync (or something like nfsd does the equivalent), we
741 * want to report any writeback errors that occurred since the last fsync (or
742 * since the file was opened if there haven't been any).
743 *
744 * Grab the wb_err from the mapping. If it matches what we have in the file,
745 * then just quickly return 0. The file is all caught up.
746 *
747 * If it doesn't match, then take the mapping value, set the "seen" flag in
748 * it and try to swap it into place. If it works, or another task beat us
749 * to it with the new value, then update the f_wb_err and return the error
750 * portion. The error at this point must be reported via proper channels
751 * (a'la fsync, or NFS COMMIT operation, etc.).
752 *
753 * While we handle mapping->wb_err with atomic operations, the f_wb_err
754 * value is protected by the f_lock since we must ensure that it reflects
755 * the latest value swapped in for this file descriptor.
a862f68a
MR
756 *
757 * Return: %0 on success, negative error code otherwise.
5660e13d
JL
758 */
759int file_check_and_advance_wb_err(struct file *file)
760{
761 int err = 0;
762 errseq_t old = READ_ONCE(file->f_wb_err);
763 struct address_space *mapping = file->f_mapping;
764
765 /* Locklessly handle the common case where nothing has changed */
766 if (errseq_check(&mapping->wb_err, old)) {
767 /* Something changed, must use slow path */
768 spin_lock(&file->f_lock);
769 old = file->f_wb_err;
770 err = errseq_check_and_advance(&mapping->wb_err,
771 &file->f_wb_err);
772 trace_file_check_and_advance_wb_err(file, old);
773 spin_unlock(&file->f_lock);
774 }
f4e222c5
JL
775
776 /*
777 * We're mostly using this function as a drop in replacement for
778 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
779 * that the legacy code would have had on these flags.
780 */
781 clear_bit(AS_EIO, &mapping->flags);
782 clear_bit(AS_ENOSPC, &mapping->flags);
5660e13d
JL
783 return err;
784}
785EXPORT_SYMBOL(file_check_and_advance_wb_err);
786
787/**
788 * file_write_and_wait_range - write out & wait on a file range
789 * @file: file pointing to address_space with pages
790 * @lstart: offset in bytes where the range starts
791 * @lend: offset in bytes where the range ends (inclusive)
792 *
793 * Write out and wait upon file offsets lstart->lend, inclusive.
794 *
795 * Note that @lend is inclusive (describes the last byte to be written) so
796 * that this function can be used to write to the very end-of-file (end = -1).
797 *
798 * After writing out and waiting on the data, we check and advance the
799 * f_wb_err cursor to the latest value, and return any errors detected there.
a862f68a
MR
800 *
801 * Return: %0 on success, negative error code otherwise.
5660e13d
JL
802 */
803int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
804{
805 int err = 0, err2;
806 struct address_space *mapping = file->f_mapping;
807
9326c9b2 808 if (mapping_needs_writeback(mapping)) {
5660e13d
JL
809 err = __filemap_fdatawrite_range(mapping, lstart, lend,
810 WB_SYNC_ALL);
811 /* See comment of filemap_write_and_wait() */
812 if (err != -EIO)
813 __filemap_fdatawait_range(mapping, lstart, lend);
814 }
815 err2 = file_check_and_advance_wb_err(file);
816 if (!err)
817 err = err2;
818 return err;
819}
820EXPORT_SYMBOL(file_write_and_wait_range);
821
ef6a3c63
MS
822/**
823 * replace_page_cache_page - replace a pagecache page with a new one
824 * @old: page to be replaced
825 * @new: page to replace with
ef6a3c63
MS
826 *
827 * This function replaces a page in the pagecache with a new one. On
828 * success it acquires the pagecache reference for the new page and
829 * drops it for the old page. Both the old and new pages must be
830 * locked. This function does not add the new page to the LRU, the
831 * caller must do that.
832 *
74d60958 833 * The remove + add is atomic. This function cannot fail.
ef6a3c63 834 */
1f7ef657 835void replace_page_cache_page(struct page *old, struct page *new)
ef6a3c63 836{
d21bba2b
MWO
837 struct folio *fold = page_folio(old);
838 struct folio *fnew = page_folio(new);
74d60958
MW
839 struct address_space *mapping = old->mapping;
840 void (*freepage)(struct page *) = mapping->a_ops->freepage;
841 pgoff_t offset = old->index;
842 XA_STATE(xas, &mapping->i_pages, offset);
ef6a3c63 843
309381fe
SL
844 VM_BUG_ON_PAGE(!PageLocked(old), old);
845 VM_BUG_ON_PAGE(!PageLocked(new), new);
846 VM_BUG_ON_PAGE(new->mapping, new);
ef6a3c63 847
74d60958
MW
848 get_page(new);
849 new->mapping = mapping;
850 new->index = offset;
ef6a3c63 851
d21bba2b 852 mem_cgroup_migrate(fold, fnew);
0d1c2072 853
30472509 854 xas_lock_irq(&xas);
74d60958 855 xas_store(&xas, new);
4165b9b4 856
74d60958
MW
857 old->mapping = NULL;
858 /* hugetlb pages do not participate in page cache accounting. */
859 if (!PageHuge(old))
0d1c2072 860 __dec_lruvec_page_state(old, NR_FILE_PAGES);
74d60958 861 if (!PageHuge(new))
0d1c2072 862 __inc_lruvec_page_state(new, NR_FILE_PAGES);
74d60958 863 if (PageSwapBacked(old))
0d1c2072 864 __dec_lruvec_page_state(old, NR_SHMEM);
74d60958 865 if (PageSwapBacked(new))
0d1c2072 866 __inc_lruvec_page_state(new, NR_SHMEM);
30472509 867 xas_unlock_irq(&xas);
74d60958
MW
868 if (freepage)
869 freepage(old);
870 put_page(old);
ef6a3c63
MS
871}
872EXPORT_SYMBOL_GPL(replace_page_cache_page);
873
9dd3d069
MWO
874noinline int __filemap_add_folio(struct address_space *mapping,
875 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
1da177e4 876{
9dd3d069
MWO
877 XA_STATE(xas, &mapping->i_pages, index);
878 int huge = folio_test_hugetlb(folio);
e286781d 879 int error;
da74240e 880 bool charged = false;
e286781d 881
9dd3d069
MWO
882 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
883 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
74d60958 884 mapping_set_update(&xas, mapping);
e286781d 885
9dd3d069
MWO
886 folio_get(folio);
887 folio->mapping = mapping;
888 folio->index = index;
66a0c8ee 889
3fea5a49 890 if (!huge) {
9dd3d069
MWO
891 error = mem_cgroup_charge(folio, NULL, gfp);
892 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
3fea5a49
JW
893 if (error)
894 goto error;
da74240e 895 charged = true;
3fea5a49
JW
896 }
897
198b62f8
MWO
898 gfp &= GFP_RECLAIM_MASK;
899
74d60958 900 do {
198b62f8
MWO
901 unsigned int order = xa_get_order(xas.xa, xas.xa_index);
902 void *entry, *old = NULL;
903
9dd3d069 904 if (order > folio_order(folio))
198b62f8
MWO
905 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
906 order, gfp);
74d60958 907 xas_lock_irq(&xas);
198b62f8
MWO
908 xas_for_each_conflict(&xas, entry) {
909 old = entry;
910 if (!xa_is_value(entry)) {
911 xas_set_err(&xas, -EEXIST);
912 goto unlock;
913 }
914 }
915
916 if (old) {
917 if (shadowp)
918 *shadowp = old;
919 /* entry may have been split before we acquired lock */
920 order = xa_get_order(xas.xa, xas.xa_index);
9dd3d069 921 if (order > folio_order(folio)) {
198b62f8
MWO
922 xas_split(&xas, old, order);
923 xas_reset(&xas);
924 }
925 }
926
9dd3d069 927 xas_store(&xas, folio);
74d60958
MW
928 if (xas_error(&xas))
929 goto unlock;
930
74d60958
MW
931 mapping->nrpages++;
932
933 /* hugetlb pages do not participate in page cache accounting */
934 if (!huge)
9dd3d069 935 __lruvec_stat_add_folio(folio, NR_FILE_PAGES);
74d60958
MW
936unlock:
937 xas_unlock_irq(&xas);
198b62f8 938 } while (xas_nomem(&xas, gfp));
74d60958 939
3fea5a49
JW
940 if (xas_error(&xas)) {
941 error = xas_error(&xas);
da74240e 942 if (charged)
9dd3d069 943 mem_cgroup_uncharge(folio);
74d60958 944 goto error;
3fea5a49 945 }
4165b9b4 946
9dd3d069 947 trace_mm_filemap_add_to_page_cache(&folio->page);
66a0c8ee 948 return 0;
74d60958 949error:
9dd3d069 950 folio->mapping = NULL;
66a0c8ee 951 /* Leave page->index set: truncation relies upon it */
9dd3d069 952 folio_put(folio);
3fea5a49 953 return error;
1da177e4 954}
9dd3d069 955ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
a528910e
JW
956
957/**
958 * add_to_page_cache_locked - add a locked page to the pagecache
959 * @page: page to add
960 * @mapping: the page's address_space
961 * @offset: page index
962 * @gfp_mask: page allocation mode
963 *
964 * This function is used to add a page to the pagecache. It must be locked.
965 * This function does not add the page to the LRU. The caller must do that.
a862f68a
MR
966 *
967 * Return: %0 on success, negative error code otherwise.
a528910e
JW
968 */
969int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
970 pgoff_t offset, gfp_t gfp_mask)
971{
9dd3d069 972 return __filemap_add_folio(mapping, page_folio(page), offset,
a528910e
JW
973 gfp_mask, NULL);
974}
e286781d 975EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4 976
9dd3d069
MWO
977int filemap_add_folio(struct address_space *mapping, struct folio *folio,
978 pgoff_t index, gfp_t gfp)
1da177e4 979{
a528910e 980 void *shadow = NULL;
4f98a2fe
RR
981 int ret;
982
9dd3d069
MWO
983 __folio_set_locked(folio);
984 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
a528910e 985 if (unlikely(ret))
9dd3d069 986 __folio_clear_locked(folio);
a528910e
JW
987 else {
988 /*
9dd3d069 989 * The folio might have been evicted from cache only
a528910e 990 * recently, in which case it should be activated like
9dd3d069
MWO
991 * any other repeatedly accessed folio.
992 * The exception is folios getting rewritten; evicting other
f0281a00
RR
993 * data from the working set, only to cache data that will
994 * get overwritten with something else, is a waste of memory.
a528910e 995 */
9dd3d069
MWO
996 WARN_ON_ONCE(folio_test_active(folio));
997 if (!(gfp & __GFP_WRITE) && shadow)
998 workingset_refault(folio, shadow);
999 folio_add_lru(folio);
a528910e 1000 }
1da177e4
LT
1001 return ret;
1002}
9dd3d069 1003EXPORT_SYMBOL_GPL(filemap_add_folio);
1da177e4 1004
44110fe3 1005#ifdef CONFIG_NUMA
bb3c579e 1006struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
44110fe3 1007{
c0ff7453 1008 int n;
bb3c579e 1009 struct folio *folio;
c0ff7453 1010
44110fe3 1011 if (cpuset_do_page_mem_spread()) {
cc9a6c87
MG
1012 unsigned int cpuset_mems_cookie;
1013 do {
d26914d1 1014 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 1015 n = cpuset_mem_spread_node();
bb3c579e
MWO
1016 folio = __folio_alloc_node(gfp, order, n);
1017 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
cc9a6c87 1018
bb3c579e 1019 return folio;
44110fe3 1020 }
bb3c579e 1021 return folio_alloc(gfp, order);
44110fe3 1022}
bb3c579e 1023EXPORT_SYMBOL(filemap_alloc_folio);
44110fe3
PJ
1024#endif
1025
7506ae6a
JK
1026/*
1027 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
1028 *
1029 * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
1030 *
1031 * @mapping1: the first mapping to lock
1032 * @mapping2: the second mapping to lock
1033 */
1034void filemap_invalidate_lock_two(struct address_space *mapping1,
1035 struct address_space *mapping2)
1036{
1037 if (mapping1 > mapping2)
1038 swap(mapping1, mapping2);
1039 if (mapping1)
1040 down_write(&mapping1->invalidate_lock);
1041 if (mapping2 && mapping1 != mapping2)
1042 down_write_nested(&mapping2->invalidate_lock, 1);
1043}
1044EXPORT_SYMBOL(filemap_invalidate_lock_two);
1045
1046/*
1047 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1048 *
1049 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1050 *
1051 * @mapping1: the first mapping to unlock
1052 * @mapping2: the second mapping to unlock
1053 */
1054void filemap_invalidate_unlock_two(struct address_space *mapping1,
1055 struct address_space *mapping2)
1056{
1057 if (mapping1)
1058 up_write(&mapping1->invalidate_lock);
1059 if (mapping2 && mapping1 != mapping2)
1060 up_write(&mapping2->invalidate_lock);
1061}
1062EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1063
1da177e4
LT
1064/*
1065 * In order to wait for pages to become available there must be
1066 * waitqueues associated with pages. By using a hash table of
1067 * waitqueues where the bucket discipline is to maintain all
1068 * waiters on the same queue and wake all when any of the pages
1069 * become available, and for the woken contexts to check to be
1070 * sure the appropriate page became available, this saves space
1071 * at a cost of "thundering herd" phenomena during rare hash
1072 * collisions.
1073 */
62906027
NP
1074#define PAGE_WAIT_TABLE_BITS 8
1075#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
df4d4f12 1076static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
62906027 1077
df4d4f12 1078static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1da177e4 1079{
df4d4f12 1080 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1da177e4 1081}
1da177e4 1082
62906027 1083void __init pagecache_init(void)
1da177e4 1084{
62906027 1085 int i;
1da177e4 1086
62906027 1087 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
df4d4f12 1088 init_waitqueue_head(&folio_wait_table[i]);
62906027
NP
1089
1090 page_writeback_init();
1da177e4 1091}
1da177e4 1092
5ef64cc8
LT
1093/*
1094 * The page wait code treats the "wait->flags" somewhat unusually, because
5868ec26 1095 * we have multiple different kinds of waits, not just the usual "exclusive"
5ef64cc8
LT
1096 * one.
1097 *
1098 * We have:
1099 *
1100 * (a) no special bits set:
1101 *
1102 * We're just waiting for the bit to be released, and when a waker
1103 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1104 * and remove it from the wait queue.
1105 *
1106 * Simple and straightforward.
1107 *
1108 * (b) WQ_FLAG_EXCLUSIVE:
1109 *
1110 * The waiter is waiting to get the lock, and only one waiter should
1111 * be woken up to avoid any thundering herd behavior. We'll set the
1112 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1113 *
1114 * This is the traditional exclusive wait.
1115 *
5868ec26 1116 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
5ef64cc8
LT
1117 *
1118 * The waiter is waiting to get the bit, and additionally wants the
1119 * lock to be transferred to it for fair lock behavior. If the lock
1120 * cannot be taken, we stop walking the wait queue without waking
1121 * the waiter.
1122 *
1123 * This is the "fair lock handoff" case, and in addition to setting
1124 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1125 * that it now has the lock.
1126 */
ac6424b9 1127static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
f62e00cc 1128{
5ef64cc8 1129 unsigned int flags;
62906027
NP
1130 struct wait_page_key *key = arg;
1131 struct wait_page_queue *wait_page
1132 = container_of(wait, struct wait_page_queue, wait);
1133
cdc8fcb4 1134 if (!wake_page_match(wait_page, key))
62906027 1135 return 0;
3510ca20 1136
9a1ea439 1137 /*
5ef64cc8
LT
1138 * If it's a lock handoff wait, we get the bit for it, and
1139 * stop walking (and do not wake it up) if we can't.
9a1ea439 1140 */
5ef64cc8
LT
1141 flags = wait->flags;
1142 if (flags & WQ_FLAG_EXCLUSIVE) {
df4d4f12 1143 if (test_bit(key->bit_nr, &key->folio->flags))
2a9127fc 1144 return -1;
5ef64cc8 1145 if (flags & WQ_FLAG_CUSTOM) {
df4d4f12 1146 if (test_and_set_bit(key->bit_nr, &key->folio->flags))
5ef64cc8
LT
1147 return -1;
1148 flags |= WQ_FLAG_DONE;
1149 }
2a9127fc 1150 }
f62e00cc 1151
5ef64cc8
LT
1152 /*
1153 * We are holding the wait-queue lock, but the waiter that
1154 * is waiting for this will be checking the flags without
1155 * any locking.
1156 *
1157 * So update the flags atomically, and wake up the waiter
1158 * afterwards to avoid any races. This store-release pairs
101c0bf6 1159 * with the load-acquire in folio_wait_bit_common().
5ef64cc8
LT
1160 */
1161 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
2a9127fc
LT
1162 wake_up_state(wait->private, mode);
1163
1164 /*
1165 * Ok, we have successfully done what we're waiting for,
1166 * and we can unconditionally remove the wait entry.
1167 *
5ef64cc8
LT
1168 * Note that this pairs with the "finish_wait()" in the
1169 * waiter, and has to be the absolute last thing we do.
1170 * After this list_del_init(&wait->entry) the wait entry
2a9127fc
LT
1171 * might be de-allocated and the process might even have
1172 * exited.
2a9127fc 1173 */
c6fe44d9 1174 list_del_init_careful(&wait->entry);
5ef64cc8 1175 return (flags & WQ_FLAG_EXCLUSIVE) != 0;
f62e00cc
KM
1176}
1177
6974d7c9 1178static void folio_wake_bit(struct folio *folio, int bit_nr)
cbbce822 1179{
df4d4f12 1180 wait_queue_head_t *q = folio_waitqueue(folio);
62906027
NP
1181 struct wait_page_key key;
1182 unsigned long flags;
11a19c7b 1183 wait_queue_entry_t bookmark;
cbbce822 1184
df4d4f12 1185 key.folio = folio;
62906027
NP
1186 key.bit_nr = bit_nr;
1187 key.page_match = 0;
1188
11a19c7b
TC
1189 bookmark.flags = 0;
1190 bookmark.private = NULL;
1191 bookmark.func = NULL;
1192 INIT_LIST_HEAD(&bookmark.entry);
1193
62906027 1194 spin_lock_irqsave(&q->lock, flags);
11a19c7b
TC
1195 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1196
1197 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1198 /*
1199 * Take a breather from holding the lock,
1200 * allow pages that finish wake up asynchronously
1201 * to acquire the lock and remove themselves
1202 * from wait queue
1203 */
1204 spin_unlock_irqrestore(&q->lock, flags);
1205 cpu_relax();
1206 spin_lock_irqsave(&q->lock, flags);
1207 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1208 }
1209
62906027
NP
1210 /*
1211 * It is possible for other pages to have collided on the waitqueue
1212 * hash, so in that case check for a page match. That prevents a long-
1213 * term waiter
1214 *
1215 * It is still possible to miss a case here, when we woke page waiters
1216 * and removed them from the waitqueue, but there are still other
1217 * page waiters.
1218 */
1219 if (!waitqueue_active(q) || !key.page_match) {
6974d7c9 1220 folio_clear_waiters(folio);
62906027
NP
1221 /*
1222 * It's possible to miss clearing Waiters here, when we woke
1223 * our page waiters, but the hashed waitqueue has waiters for
1224 * other pages on it.
1225 *
1226 * That's okay, it's a rare case. The next waker will clear it.
1227 */
1228 }
1229 spin_unlock_irqrestore(&q->lock, flags);
1230}
74d81bfa 1231
4268b480 1232static void folio_wake(struct folio *folio, int bit)
74d81bfa 1233{
4268b480 1234 if (!folio_test_waiters(folio))
74d81bfa 1235 return;
6974d7c9 1236 folio_wake_bit(folio, bit);
74d81bfa 1237}
62906027 1238
9a1ea439 1239/*
101c0bf6 1240 * A choice of three behaviors for folio_wait_bit_common():
9a1ea439
HD
1241 */
1242enum behavior {
1243 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
7c23c782 1244 * __folio_lock() waiting on then setting PG_locked.
9a1ea439
HD
1245 */
1246 SHARED, /* Hold ref to page and check the bit when woken, like
1247 * wait_on_page_writeback() waiting on PG_writeback.
1248 */
1249 DROP, /* Drop ref to page before wait, no check when woken,
1250 * like put_and_wait_on_page_locked() on PG_locked.
1251 */
1252};
1253
2a9127fc 1254/*
101c0bf6 1255 * Attempt to check (or get) the folio flag, and mark us done
5ef64cc8 1256 * if successful.
2a9127fc 1257 */
101c0bf6 1258static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
2a9127fc
LT
1259 struct wait_queue_entry *wait)
1260{
1261 if (wait->flags & WQ_FLAG_EXCLUSIVE) {
101c0bf6 1262 if (test_and_set_bit(bit_nr, &folio->flags))
2a9127fc 1263 return false;
101c0bf6 1264 } else if (test_bit(bit_nr, &folio->flags))
2a9127fc
LT
1265 return false;
1266
5ef64cc8 1267 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
2a9127fc
LT
1268 return true;
1269}
1270
5ef64cc8
LT
1271/* How many times do we accept lock stealing from under a waiter? */
1272int sysctl_page_lock_unfairness = 5;
1273
101c0bf6
MWO
1274static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1275 int state, enum behavior behavior)
62906027 1276{
df4d4f12 1277 wait_queue_head_t *q = folio_waitqueue(folio);
5ef64cc8 1278 int unfairness = sysctl_page_lock_unfairness;
62906027 1279 struct wait_page_queue wait_page;
ac6424b9 1280 wait_queue_entry_t *wait = &wait_page.wait;
b1d29ba8 1281 bool thrashing = false;
9a1ea439 1282 bool delayacct = false;
eb414681 1283 unsigned long pflags;
62906027 1284
eb414681 1285 if (bit_nr == PG_locked &&
101c0bf6
MWO
1286 !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1287 if (!folio_test_swapbacked(folio)) {
eb414681 1288 delayacct_thrashing_start();
9a1ea439
HD
1289 delayacct = true;
1290 }
eb414681 1291 psi_memstall_enter(&pflags);
b1d29ba8
JW
1292 thrashing = true;
1293 }
1294
62906027
NP
1295 init_wait(wait);
1296 wait->func = wake_page_function;
df4d4f12 1297 wait_page.folio = folio;
62906027
NP
1298 wait_page.bit_nr = bit_nr;
1299
5ef64cc8
LT
1300repeat:
1301 wait->flags = 0;
1302 if (behavior == EXCLUSIVE) {
1303 wait->flags = WQ_FLAG_EXCLUSIVE;
1304 if (--unfairness < 0)
1305 wait->flags |= WQ_FLAG_CUSTOM;
1306 }
1307
2a9127fc
LT
1308 /*
1309 * Do one last check whether we can get the
1310 * page bit synchronously.
1311 *
101c0bf6 1312 * Do the folio_set_waiters() marking before that
2a9127fc
LT
1313 * to let any waker we _just_ missed know they
1314 * need to wake us up (otherwise they'll never
1315 * even go to the slow case that looks at the
1316 * page queue), and add ourselves to the wait
1317 * queue if we need to sleep.
1318 *
1319 * This part needs to be done under the queue
1320 * lock to avoid races.
1321 */
1322 spin_lock_irq(&q->lock);
101c0bf6
MWO
1323 folio_set_waiters(folio);
1324 if (!folio_trylock_flag(folio, bit_nr, wait))
2a9127fc
LT
1325 __add_wait_queue_entry_tail(q, wait);
1326 spin_unlock_irq(&q->lock);
62906027 1327
2a9127fc
LT
1328 /*
1329 * From now on, all the logic will be based on
5ef64cc8
LT
1330 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1331 * see whether the page bit testing has already
1332 * been done by the wake function.
2a9127fc 1333 *
101c0bf6 1334 * We can drop our reference to the folio.
2a9127fc
LT
1335 */
1336 if (behavior == DROP)
101c0bf6 1337 folio_put(folio);
62906027 1338
5ef64cc8
LT
1339 /*
1340 * Note that until the "finish_wait()", or until
1341 * we see the WQ_FLAG_WOKEN flag, we need to
1342 * be very careful with the 'wait->flags', because
1343 * we may race with a waker that sets them.
1344 */
2a9127fc 1345 for (;;) {
5ef64cc8
LT
1346 unsigned int flags;
1347
62906027
NP
1348 set_current_state(state);
1349
5ef64cc8
LT
1350 /* Loop until we've been woken or interrupted */
1351 flags = smp_load_acquire(&wait->flags);
1352 if (!(flags & WQ_FLAG_WOKEN)) {
1353 if (signal_pending_state(state, current))
1354 break;
1355
1356 io_schedule();
1357 continue;
1358 }
1359
1360 /* If we were non-exclusive, we're done */
1361 if (behavior != EXCLUSIVE)
a8b169af 1362 break;
9a1ea439 1363
5ef64cc8
LT
1364 /* If the waker got the lock for us, we're done */
1365 if (flags & WQ_FLAG_DONE)
9a1ea439 1366 break;
2a9127fc 1367
5ef64cc8
LT
1368 /*
1369 * Otherwise, if we're getting the lock, we need to
1370 * try to get it ourselves.
1371 *
1372 * And if that fails, we'll have to retry this all.
1373 */
101c0bf6 1374 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
5ef64cc8
LT
1375 goto repeat;
1376
1377 wait->flags |= WQ_FLAG_DONE;
1378 break;
62906027
NP
1379 }
1380
5ef64cc8
LT
1381 /*
1382 * If a signal happened, this 'finish_wait()' may remove the last
101c0bf6 1383 * waiter from the wait-queues, but the folio waiters bit will remain
5ef64cc8
LT
1384 * set. That's ok. The next wakeup will take care of it, and trying
1385 * to do it here would be difficult and prone to races.
1386 */
62906027
NP
1387 finish_wait(q, wait);
1388
eb414681 1389 if (thrashing) {
9a1ea439 1390 if (delayacct)
eb414681
JW
1391 delayacct_thrashing_end();
1392 psi_memstall_leave(&pflags);
1393 }
b1d29ba8 1394
62906027 1395 /*
5ef64cc8
LT
1396 * NOTE! The wait->flags weren't stable until we've done the
1397 * 'finish_wait()', and we could have exited the loop above due
1398 * to a signal, and had a wakeup event happen after the signal
1399 * test but before the 'finish_wait()'.
1400 *
1401 * So only after the finish_wait() can we reliably determine
1402 * if we got woken up or not, so we can now figure out the final
1403 * return value based on that state without races.
1404 *
1405 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1406 * waiter, but an exclusive one requires WQ_FLAG_DONE.
62906027 1407 */
5ef64cc8
LT
1408 if (behavior == EXCLUSIVE)
1409 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
62906027 1410
2a9127fc 1411 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
62906027
NP
1412}
1413
101c0bf6 1414void folio_wait_bit(struct folio *folio, int bit_nr)
62906027 1415{
101c0bf6 1416 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
62906027 1417}
101c0bf6 1418EXPORT_SYMBOL(folio_wait_bit);
62906027 1419
101c0bf6 1420int folio_wait_bit_killable(struct folio *folio, int bit_nr)
62906027 1421{
101c0bf6 1422 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
cbbce822 1423}
101c0bf6 1424EXPORT_SYMBOL(folio_wait_bit_killable);
cbbce822 1425
9a1ea439
HD
1426/**
1427 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1428 * @page: The page to wait for.
48054625 1429 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
9a1ea439
HD
1430 *
1431 * The caller should hold a reference on @page. They expect the page to
1432 * become unlocked relatively soon, but do not wish to hold up migration
1433 * (for example) by holding the reference while waiting for the page to
1434 * come unlocked. After this function returns, the caller should not
1435 * dereference @page.
48054625
MWO
1436 *
1437 * Return: 0 if the page was unlocked or -EINTR if interrupted by a signal.
9a1ea439 1438 */
48054625 1439int put_and_wait_on_page_locked(struct page *page, int state)
9a1ea439 1440{
101c0bf6
MWO
1441 return folio_wait_bit_common(page_folio(page), PG_locked, state,
1442 DROP);
9a1ea439
HD
1443}
1444
385e1ca5 1445/**
df4d4f12
MWO
1446 * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1447 * @folio: Folio defining the wait queue of interest
697f619f 1448 * @waiter: Waiter to add to the queue
385e1ca5 1449 *
df4d4f12 1450 * Add an arbitrary @waiter to the wait queue for the nominated @folio.
385e1ca5 1451 */
df4d4f12 1452void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
385e1ca5 1453{
df4d4f12 1454 wait_queue_head_t *q = folio_waitqueue(folio);
385e1ca5
DH
1455 unsigned long flags;
1456
1457 spin_lock_irqsave(&q->lock, flags);
9c3a815f 1458 __add_wait_queue_entry_tail(q, waiter);
df4d4f12 1459 folio_set_waiters(folio);
385e1ca5
DH
1460 spin_unlock_irqrestore(&q->lock, flags);
1461}
df4d4f12 1462EXPORT_SYMBOL_GPL(folio_add_wait_queue);
385e1ca5 1463
b91e1302
LT
1464#ifndef clear_bit_unlock_is_negative_byte
1465
1466/*
1467 * PG_waiters is the high bit in the same byte as PG_lock.
1468 *
1469 * On x86 (and on many other architectures), we can clear PG_lock and
1470 * test the sign bit at the same time. But if the architecture does
1471 * not support that special operation, we just do this all by hand
1472 * instead.
1473 *
1474 * The read of PG_waiters has to be after (or concurrently with) PG_locked
ffceeb62 1475 * being cleared, but a memory barrier should be unnecessary since it is
b91e1302
LT
1476 * in the same byte as PG_locked.
1477 */
1478static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1479{
1480 clear_bit_unlock(nr, mem);
1481 /* smp_mb__after_atomic(); */
98473f9f 1482 return test_bit(PG_waiters, mem);
b91e1302
LT
1483}
1484
1485#endif
1486
1da177e4 1487/**
4e136428
MWO
1488 * folio_unlock - Unlock a locked folio.
1489 * @folio: The folio.
1490 *
1491 * Unlocks the folio and wakes up any thread sleeping on the page lock.
1492 *
1493 * Context: May be called from interrupt or process context. May not be
1494 * called from NMI context.
1da177e4 1495 */
4e136428 1496void folio_unlock(struct folio *folio)
1da177e4 1497{
4e136428 1498 /* Bit 7 allows x86 to check the byte's sign bit */
b91e1302 1499 BUILD_BUG_ON(PG_waiters != 7);
4e136428
MWO
1500 BUILD_BUG_ON(PG_locked > 7);
1501 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1502 if (clear_bit_unlock_is_negative_byte(PG_locked, folio_flags(folio, 0)))
6974d7c9 1503 folio_wake_bit(folio, PG_locked);
1da177e4 1504}
4e136428 1505EXPORT_SYMBOL(folio_unlock);
1da177e4 1506
73e10ded 1507/**
b47393f8
MWO
1508 * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1509 * @folio: The folio.
73e10ded 1510 *
b47393f8
MWO
1511 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1512 * it. The folio reference held for PG_private_2 being set is released.
73e10ded 1513 *
b47393f8
MWO
1514 * This is, for example, used when a netfs folio is being written to a local
1515 * disk cache, thereby allowing writes to the cache for the same folio to be
73e10ded
DH
1516 * serialised.
1517 */
b47393f8 1518void folio_end_private_2(struct folio *folio)
73e10ded 1519{
6974d7c9
MWO
1520 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1521 clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1522 folio_wake_bit(folio, PG_private_2);
1523 folio_put(folio);
73e10ded 1524}
b47393f8 1525EXPORT_SYMBOL(folio_end_private_2);
73e10ded
DH
1526
1527/**
b47393f8
MWO
1528 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1529 * @folio: The folio to wait on.
73e10ded 1530 *
b47393f8 1531 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio.
73e10ded 1532 */
b47393f8 1533void folio_wait_private_2(struct folio *folio)
73e10ded 1534{
101c0bf6
MWO
1535 while (folio_test_private_2(folio))
1536 folio_wait_bit(folio, PG_private_2);
73e10ded 1537}
b47393f8 1538EXPORT_SYMBOL(folio_wait_private_2);
73e10ded
DH
1539
1540/**
b47393f8
MWO
1541 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1542 * @folio: The folio to wait on.
73e10ded 1543 *
b47393f8 1544 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a
73e10ded
DH
1545 * fatal signal is received by the calling task.
1546 *
1547 * Return:
1548 * - 0 if successful.
1549 * - -EINTR if a fatal signal was encountered.
1550 */
b47393f8 1551int folio_wait_private_2_killable(struct folio *folio)
73e10ded
DH
1552{
1553 int ret = 0;
1554
101c0bf6
MWO
1555 while (folio_test_private_2(folio)) {
1556 ret = folio_wait_bit_killable(folio, PG_private_2);
73e10ded
DH
1557 if (ret < 0)
1558 break;
1559 }
1560
1561 return ret;
1562}
b47393f8 1563EXPORT_SYMBOL(folio_wait_private_2_killable);
73e10ded 1564
485bb99b 1565/**
4268b480
MWO
1566 * folio_end_writeback - End writeback against a folio.
1567 * @folio: The folio.
1da177e4 1568 */
4268b480 1569void folio_end_writeback(struct folio *folio)
1da177e4 1570{
888cf2db 1571 /*
4268b480
MWO
1572 * folio_test_clear_reclaim() could be used here but it is an
1573 * atomic operation and overkill in this particular case. Failing
1574 * to shuffle a folio marked for immediate reclaim is too mild
1575 * a gain to justify taking an atomic operation penalty at the
1576 * end of every folio writeback.
888cf2db 1577 */
4268b480
MWO
1578 if (folio_test_reclaim(folio)) {
1579 folio_clear_reclaim(folio);
575ced1c 1580 folio_rotate_reclaimable(folio);
888cf2db 1581 }
ac6aadb2 1582
073861ed 1583 /*
4268b480 1584 * Writeback does not hold a folio reference of its own, relying
073861ed 1585 * on truncation to wait for the clearing of PG_writeback.
4268b480
MWO
1586 * But here we must make sure that the folio is not freed and
1587 * reused before the folio_wake().
073861ed 1588 */
4268b480 1589 folio_get(folio);
269ccca3 1590 if (!__folio_end_writeback(folio))
ac6aadb2
MS
1591 BUG();
1592
4e857c58 1593 smp_mb__after_atomic();
4268b480
MWO
1594 folio_wake(folio, PG_writeback);
1595 folio_put(folio);
1da177e4 1596}
4268b480 1597EXPORT_SYMBOL(folio_end_writeback);
1da177e4 1598
57d99845
MW
1599/*
1600 * After completing I/O on a page, call this routine to update the page
1601 * flags appropriately
1602 */
c11f0c0b 1603void page_endio(struct page *page, bool is_write, int err)
57d99845 1604{
c11f0c0b 1605 if (!is_write) {
57d99845
MW
1606 if (!err) {
1607 SetPageUptodate(page);
1608 } else {
1609 ClearPageUptodate(page);
1610 SetPageError(page);
1611 }
1612 unlock_page(page);
abf54548 1613 } else {
57d99845 1614 if (err) {
dd8416c4
MK
1615 struct address_space *mapping;
1616
57d99845 1617 SetPageError(page);
dd8416c4
MK
1618 mapping = page_mapping(page);
1619 if (mapping)
1620 mapping_set_error(mapping, err);
57d99845
MW
1621 }
1622 end_page_writeback(page);
1623 }
1624}
1625EXPORT_SYMBOL_GPL(page_endio);
1626
485bb99b 1627/**
7c23c782
MWO
1628 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1629 * @folio: The folio to lock
1da177e4 1630 */
7c23c782 1631void __folio_lock(struct folio *folio)
1da177e4 1632{
101c0bf6 1633 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
9a1ea439 1634 EXCLUSIVE);
1da177e4 1635}
7c23c782 1636EXPORT_SYMBOL(__folio_lock);
1da177e4 1637
af7f29d9 1638int __folio_lock_killable(struct folio *folio)
2687a356 1639{
101c0bf6 1640 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
9a1ea439 1641 EXCLUSIVE);
2687a356 1642}
af7f29d9 1643EXPORT_SYMBOL_GPL(__folio_lock_killable);
2687a356 1644
ffdc8dab 1645static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
dd3e6d50 1646{
df4d4f12 1647 struct wait_queue_head *q = folio_waitqueue(folio);
f32b5dd7
MWO
1648 int ret = 0;
1649
df4d4f12 1650 wait->folio = folio;
f32b5dd7
MWO
1651 wait->bit_nr = PG_locked;
1652
1653 spin_lock_irq(&q->lock);
1654 __add_wait_queue_entry_tail(q, &wait->wait);
ffdc8dab
MWO
1655 folio_set_waiters(folio);
1656 ret = !folio_trylock(folio);
f32b5dd7
MWO
1657 /*
1658 * If we were successful now, we know we're still on the
1659 * waitqueue as we're still under the lock. This means it's
1660 * safe to remove and return success, we know the callback
1661 * isn't going to trigger.
1662 */
1663 if (!ret)
1664 __remove_wait_queue(q, &wait->wait);
1665 else
1666 ret = -EIOCBQUEUED;
1667 spin_unlock_irq(&q->lock);
1668 return ret;
dd3e6d50
JA
1669}
1670
9a95f3cf
PC
1671/*
1672 * Return values:
9138e47e
MWO
1673 * true - folio is locked; mmap_lock is still held.
1674 * false - folio is not locked.
3e4e28c5 1675 * mmap_lock has been released (mmap_read_unlock(), unless flags had both
9a95f3cf 1676 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
c1e8d7c6 1677 * which case mmap_lock is still held.
9a95f3cf 1678 *
9138e47e
MWO
1679 * If neither ALLOW_RETRY nor KILLABLE are set, will always return true
1680 * with the folio locked and the mmap_lock unperturbed.
9a95f3cf 1681 */
9138e47e 1682bool __folio_lock_or_retry(struct folio *folio, struct mm_struct *mm,
d065bd81
ML
1683 unsigned int flags)
1684{
4064b982 1685 if (fault_flag_allow_retry_first(flags)) {
37b23e05 1686 /*
c1e8d7c6 1687 * CAUTION! In this case, mmap_lock is not released
37b23e05
KM
1688 * even though return 0.
1689 */
1690 if (flags & FAULT_FLAG_RETRY_NOWAIT)
9138e47e 1691 return false;
37b23e05 1692
d8ed45c5 1693 mmap_read_unlock(mm);
37b23e05 1694 if (flags & FAULT_FLAG_KILLABLE)
6baa8d60 1695 folio_wait_locked_killable(folio);
37b23e05 1696 else
6baa8d60 1697 folio_wait_locked(folio);
9138e47e 1698 return false;
800bca7c
HL
1699 }
1700 if (flags & FAULT_FLAG_KILLABLE) {
9138e47e 1701 bool ret;
37b23e05 1702
af7f29d9 1703 ret = __folio_lock_killable(folio);
800bca7c
HL
1704 if (ret) {
1705 mmap_read_unlock(mm);
9138e47e 1706 return false;
800bca7c
HL
1707 }
1708 } else {
af7f29d9 1709 __folio_lock(folio);
d065bd81 1710 }
800bca7c 1711
9138e47e 1712 return true;
d065bd81
ML
1713}
1714
e7b563bb 1715/**
0d3f9296
MW
1716 * page_cache_next_miss() - Find the next gap in the page cache.
1717 * @mapping: Mapping.
1718 * @index: Index.
1719 * @max_scan: Maximum range to search.
e7b563bb 1720 *
0d3f9296
MW
1721 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1722 * gap with the lowest index.
e7b563bb 1723 *
0d3f9296
MW
1724 * This function may be called under the rcu_read_lock. However, this will
1725 * not atomically search a snapshot of the cache at a single point in time.
1726 * For example, if a gap is created at index 5, then subsequently a gap is
1727 * created at index 10, page_cache_next_miss covering both indices may
1728 * return 10 if called under the rcu_read_lock.
e7b563bb 1729 *
0d3f9296
MW
1730 * Return: The index of the gap if found, otherwise an index outside the
1731 * range specified (in which case 'return - index >= max_scan' will be true).
1732 * In the rare case of index wrap-around, 0 will be returned.
e7b563bb 1733 */
0d3f9296 1734pgoff_t page_cache_next_miss(struct address_space *mapping,
e7b563bb
JW
1735 pgoff_t index, unsigned long max_scan)
1736{
0d3f9296 1737 XA_STATE(xas, &mapping->i_pages, index);
e7b563bb 1738
0d3f9296
MW
1739 while (max_scan--) {
1740 void *entry = xas_next(&xas);
1741 if (!entry || xa_is_value(entry))
e7b563bb 1742 break;
0d3f9296 1743 if (xas.xa_index == 0)
e7b563bb
JW
1744 break;
1745 }
1746
0d3f9296 1747 return xas.xa_index;
e7b563bb 1748}
0d3f9296 1749EXPORT_SYMBOL(page_cache_next_miss);
e7b563bb
JW
1750
1751/**
2346a560 1752 * page_cache_prev_miss() - Find the previous gap in the page cache.
0d3f9296
MW
1753 * @mapping: Mapping.
1754 * @index: Index.
1755 * @max_scan: Maximum range to search.
e7b563bb 1756 *
0d3f9296
MW
1757 * Search the range [max(index - max_scan + 1, 0), index] for the
1758 * gap with the highest index.
e7b563bb 1759 *
0d3f9296
MW
1760 * This function may be called under the rcu_read_lock. However, this will
1761 * not atomically search a snapshot of the cache at a single point in time.
1762 * For example, if a gap is created at index 10, then subsequently a gap is
1763 * created at index 5, page_cache_prev_miss() covering both indices may
1764 * return 5 if called under the rcu_read_lock.
e7b563bb 1765 *
0d3f9296
MW
1766 * Return: The index of the gap if found, otherwise an index outside the
1767 * range specified (in which case 'index - return >= max_scan' will be true).
1768 * In the rare case of wrap-around, ULONG_MAX will be returned.
e7b563bb 1769 */
0d3f9296 1770pgoff_t page_cache_prev_miss(struct address_space *mapping,
e7b563bb
JW
1771 pgoff_t index, unsigned long max_scan)
1772{
0d3f9296 1773 XA_STATE(xas, &mapping->i_pages, index);
e7b563bb 1774
0d3f9296
MW
1775 while (max_scan--) {
1776 void *entry = xas_prev(&xas);
1777 if (!entry || xa_is_value(entry))
e7b563bb 1778 break;
0d3f9296 1779 if (xas.xa_index == ULONG_MAX)
e7b563bb
JW
1780 break;
1781 }
1782
0d3f9296 1783 return xas.xa_index;
e7b563bb 1784}
0d3f9296 1785EXPORT_SYMBOL(page_cache_prev_miss);
e7b563bb 1786
020853b6
MWO
1787/*
1788 * Lockless page cache protocol:
1789 * On the lookup side:
1790 * 1. Load the folio from i_pages
1791 * 2. Increment the refcount if it's not zero
1792 * 3. If the folio is not found by xas_reload(), put the refcount and retry
1793 *
1794 * On the removal side:
1795 * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1796 * B. Remove the page from i_pages
1797 * C. Return the page to the page allocator
1798 *
1799 * This means that any page may have its reference count temporarily
1800 * increased by a speculative page cache (or fast GUP) lookup as it can
1801 * be allocated by another user before the RCU grace period expires.
1802 * Because the refcount temporarily acquired here may end up being the
1803 * last refcount on the page, any page allocation must be freeable by
1804 * folio_put().
1805 */
1806
44835d20 1807/*
bc5a3011 1808 * mapping_get_entry - Get a page cache entry.
485bb99b 1809 * @mapping: the address_space to search
a6de4b48 1810 * @index: The page cache index.
0cd6144a 1811 *
bca65eea
MWO
1812 * Looks up the page cache entry at @mapping & @index. If it is a folio,
1813 * it is returned with an increased refcount. If it is a shadow entry
1814 * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1815 * it is returned without further action.
485bb99b 1816 *
bca65eea 1817 * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1da177e4 1818 */
bca65eea 1819static void *mapping_get_entry(struct address_space *mapping, pgoff_t index)
1da177e4 1820{
a6de4b48 1821 XA_STATE(xas, &mapping->i_pages, index);
bca65eea 1822 struct folio *folio;
1da177e4 1823
a60637c8
NP
1824 rcu_read_lock();
1825repeat:
4c7472c0 1826 xas_reset(&xas);
bca65eea
MWO
1827 folio = xas_load(&xas);
1828 if (xas_retry(&xas, folio))
4c7472c0
MW
1829 goto repeat;
1830 /*
1831 * A shadow entry of a recently evicted page, or a swap entry from
1832 * shmem/tmpfs. Return it without attempting to raise page count.
1833 */
bca65eea 1834 if (!folio || xa_is_value(folio))
4c7472c0 1835 goto out;
83929372 1836
bca65eea 1837 if (!folio_try_get_rcu(folio))
4c7472c0 1838 goto repeat;
83929372 1839
bca65eea
MWO
1840 if (unlikely(folio != xas_reload(&xas))) {
1841 folio_put(folio);
4c7472c0 1842 goto repeat;
a60637c8 1843 }
27d20fdd 1844out:
a60637c8
NP
1845 rcu_read_unlock();
1846
bca65eea 1847 return folio;
1da177e4 1848}
1da177e4 1849
0cd6144a 1850/**
3f0c6a07 1851 * __filemap_get_folio - Find and get a reference to a folio.
2294b32e
MWO
1852 * @mapping: The address_space to search.
1853 * @index: The page index.
3f0c6a07
MWO
1854 * @fgp_flags: %FGP flags modify how the folio is returned.
1855 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1da177e4 1856 *
2294b32e 1857 * Looks up the page cache entry at @mapping & @index.
0cd6144a 1858 *
2294b32e 1859 * @fgp_flags can be zero or more of these flags:
0e056eb5 1860 *
3f0c6a07
MWO
1861 * * %FGP_ACCESSED - The folio will be marked accessed.
1862 * * %FGP_LOCK - The folio is returned locked.
44835d20 1863 * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it
3f0c6a07 1864 * instead of allocating a new folio to replace it.
2294b32e 1865 * * %FGP_CREAT - If no page is present then a new page is allocated using
3f0c6a07 1866 * @gfp and added to the page cache and the VM's LRU list.
2294b32e
MWO
1867 * The page is returned locked and with an increased refcount.
1868 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1869 * page is already in cache. If the page was allocated, unlock it before
1870 * returning so the caller can do the same dance.
3f0c6a07
MWO
1871 * * %FGP_WRITE - The page will be written to by the caller.
1872 * * %FGP_NOFS - __GFP_FS will get cleared in gfp.
1873 * * %FGP_NOWAIT - Don't get blocked by page lock.
b27652d9 1874 * * %FGP_STABLE - Wait for the folio to be stable (finished writeback)
1da177e4 1875 *
2294b32e
MWO
1876 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1877 * if the %GFP flags specified for %FGP_CREAT are atomic.
1da177e4 1878 *
2457aec6 1879 * If there is a page cache page, it is returned with an increased refcount.
a862f68a 1880 *
3f0c6a07 1881 * Return: The found folio or %NULL otherwise.
1da177e4 1882 */
3f0c6a07
MWO
1883struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1884 int fgp_flags, gfp_t gfp)
1da177e4 1885{
3f0c6a07 1886 struct folio *folio;
2457aec6 1887
1da177e4 1888repeat:
3f0c6a07
MWO
1889 folio = mapping_get_entry(mapping, index);
1890 if (xa_is_value(folio)) {
44835d20 1891 if (fgp_flags & FGP_ENTRY)
3f0c6a07
MWO
1892 return folio;
1893 folio = NULL;
44835d20 1894 }
3f0c6a07 1895 if (!folio)
2457aec6
MG
1896 goto no_page;
1897
1898 if (fgp_flags & FGP_LOCK) {
1899 if (fgp_flags & FGP_NOWAIT) {
3f0c6a07
MWO
1900 if (!folio_trylock(folio)) {
1901 folio_put(folio);
2457aec6
MG
1902 return NULL;
1903 }
1904 } else {
3f0c6a07 1905 folio_lock(folio);
2457aec6
MG
1906 }
1907
1908 /* Has the page been truncated? */
3f0c6a07
MWO
1909 if (unlikely(folio->mapping != mapping)) {
1910 folio_unlock(folio);
1911 folio_put(folio);
2457aec6
MG
1912 goto repeat;
1913 }
3f0c6a07 1914 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
2457aec6
MG
1915 }
1916
c16eb000 1917 if (fgp_flags & FGP_ACCESSED)
3f0c6a07 1918 folio_mark_accessed(folio);
b9306a79
YS
1919 else if (fgp_flags & FGP_WRITE) {
1920 /* Clear idle flag for buffer write */
3f0c6a07
MWO
1921 if (folio_test_idle(folio))
1922 folio_clear_idle(folio);
b9306a79 1923 }
2457aec6 1924
b27652d9
MWO
1925 if (fgp_flags & FGP_STABLE)
1926 folio_wait_stable(folio);
2457aec6 1927no_page:
3f0c6a07 1928 if (!folio && (fgp_flags & FGP_CREAT)) {
2457aec6 1929 int err;
f56753ac 1930 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
3f0c6a07 1931 gfp |= __GFP_WRITE;
45f87de5 1932 if (fgp_flags & FGP_NOFS)
3f0c6a07 1933 gfp &= ~__GFP_FS;
2457aec6 1934
3f0c6a07
MWO
1935 folio = filemap_alloc_folio(gfp, 0);
1936 if (!folio)
eb2be189 1937 return NULL;
2457aec6 1938
a75d4c33 1939 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
2457aec6
MG
1940 fgp_flags |= FGP_LOCK;
1941
eb39d618 1942 /* Init accessed so avoid atomic mark_page_accessed later */
2457aec6 1943 if (fgp_flags & FGP_ACCESSED)
3f0c6a07 1944 __folio_set_referenced(folio);
2457aec6 1945
3f0c6a07 1946 err = filemap_add_folio(mapping, folio, index, gfp);
eb2be189 1947 if (unlikely(err)) {
3f0c6a07
MWO
1948 folio_put(folio);
1949 folio = NULL;
eb2be189
NP
1950 if (err == -EEXIST)
1951 goto repeat;
1da177e4 1952 }
a75d4c33
JB
1953
1954 /*
3f0c6a07
MWO
1955 * filemap_add_folio locks the page, and for mmap
1956 * we expect an unlocked page.
a75d4c33 1957 */
3f0c6a07
MWO
1958 if (folio && (fgp_flags & FGP_FOR_MMAP))
1959 folio_unlock(folio);
1da177e4 1960 }
2457aec6 1961
3f0c6a07 1962 return folio;
1da177e4 1963}
3f0c6a07 1964EXPORT_SYMBOL(__filemap_get_folio);
1da177e4 1965
c7bad633
MWO
1966static inline struct page *find_get_entry(struct xa_state *xas, pgoff_t max,
1967 xa_mark_t mark)
1968{
1969 struct page *page;
1970
1971retry:
1972 if (mark == XA_PRESENT)
1973 page = xas_find(xas, max);
1974 else
1975 page = xas_find_marked(xas, max, mark);
1976
1977 if (xas_retry(xas, page))
1978 goto retry;
1979 /*
1980 * A shadow entry of a recently evicted page, a swap
1981 * entry from shmem/tmpfs or a DAX entry. Return it
1982 * without attempting to raise page count.
1983 */
1984 if (!page || xa_is_value(page))
1985 return page;
1986
1987 if (!page_cache_get_speculative(page))
1988 goto reset;
1989
1990 /* Has the page moved or been split? */
1991 if (unlikely(page != xas_reload(xas))) {
1992 put_page(page);
1993 goto reset;
1994 }
1995
1996 return page;
1997reset:
1998 xas_reset(xas);
1999 goto retry;
2000}
2001
0cd6144a
JW
2002/**
2003 * find_get_entries - gang pagecache lookup
2004 * @mapping: The address_space to search
2005 * @start: The starting page cache index
ca122fe4 2006 * @end: The final page index (inclusive).
cf2039af 2007 * @pvec: Where the resulting entries are placed.
0cd6144a
JW
2008 * @indices: The cache indices corresponding to the entries in @entries
2009 *
cf2039af
MWO
2010 * find_get_entries() will search for and return a batch of entries in
2011 * the mapping. The entries are placed in @pvec. find_get_entries()
2012 * takes a reference on any actual pages it returns.
0cd6144a
JW
2013 *
2014 * The search returns a group of mapping-contiguous page cache entries
2015 * with ascending indexes. There may be holes in the indices due to
2016 * not-present pages.
2017 *
139b6a6f
JW
2018 * Any shadow entries of evicted pages, or swap entries from
2019 * shmem/tmpfs, are included in the returned array.
0cd6144a 2020 *
71725ed1
HD
2021 * If it finds a Transparent Huge Page, head or tail, find_get_entries()
2022 * stops at that page: the caller is likely to have a better way to handle
2023 * the compound page as a whole, and then skip its extent, than repeatedly
2024 * calling find_get_entries() to return all its tails.
2025 *
a862f68a 2026 * Return: the number of pages and shadow entries which were found.
0cd6144a 2027 */
ca122fe4 2028unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
cf2039af 2029 pgoff_t end, struct pagevec *pvec, pgoff_t *indices)
0cd6144a 2030{
f280bf09
MW
2031 XA_STATE(xas, &mapping->i_pages, start);
2032 struct page *page;
0cd6144a 2033 unsigned int ret = 0;
cf2039af 2034 unsigned nr_entries = PAGEVEC_SIZE;
0cd6144a
JW
2035
2036 rcu_read_lock();
ca122fe4 2037 while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
71725ed1
HD
2038 /*
2039 * Terminate early on finding a THP, to allow the caller to
2040 * handle it all at once; but continue if this is hugetlbfs.
2041 */
c7bad633
MWO
2042 if (!xa_is_value(page) && PageTransHuge(page) &&
2043 !PageHuge(page)) {
71725ed1
HD
2044 page = find_subpage(page, xas.xa_index);
2045 nr_entries = ret + 1;
2046 }
c7bad633 2047
f280bf09 2048 indices[ret] = xas.xa_index;
cf2039af 2049 pvec->pages[ret] = page;
0cd6144a
JW
2050 if (++ret == nr_entries)
2051 break;
2052 }
2053 rcu_read_unlock();
cf2039af
MWO
2054
2055 pvec->nr = ret;
0cd6144a
JW
2056 return ret;
2057}
2058
5c211ba2
MWO
2059/**
2060 * find_lock_entries - Find a batch of pagecache entries.
2061 * @mapping: The address_space to search.
2062 * @start: The starting page cache index.
2063 * @end: The final page index (inclusive).
2064 * @pvec: Where the resulting entries are placed.
2065 * @indices: The cache indices of the entries in @pvec.
2066 *
2067 * find_lock_entries() will return a batch of entries from @mapping.
2068 * Swap, shadow and DAX entries are included. Pages are returned
2069 * locked and with an incremented refcount. Pages which are locked by
2070 * somebody else or under writeback are skipped. Only the head page of
2071 * a THP is returned. Pages which are partially outside the range are
2072 * not returned.
2073 *
2074 * The entries have ascending indexes. The indices may not be consecutive
2075 * due to not-present entries, THP pages, pages which could not be locked
2076 * or pages under writeback.
2077 *
2078 * Return: The number of entries which were found.
2079 */
2080unsigned find_lock_entries(struct address_space *mapping, pgoff_t start,
2081 pgoff_t end, struct pagevec *pvec, pgoff_t *indices)
2082{
2083 XA_STATE(xas, &mapping->i_pages, start);
2084 struct page *page;
2085
2086 rcu_read_lock();
2087 while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
2088 if (!xa_is_value(page)) {
2089 if (page->index < start)
2090 goto put;
2091 VM_BUG_ON_PAGE(page->index != xas.xa_index, page);
2092 if (page->index + thp_nr_pages(page) - 1 > end)
2093 goto put;
2094 if (!trylock_page(page))
2095 goto put;
2096 if (page->mapping != mapping || PageWriteback(page))
2097 goto unlock;
2098 VM_BUG_ON_PAGE(!thp_contains(page, xas.xa_index),
2099 page);
2100 }
2101 indices[pvec->nr] = xas.xa_index;
2102 if (!pagevec_add(pvec, page))
2103 break;
2104 goto next;
2105unlock:
2106 unlock_page(page);
2107put:
2108 put_page(page);
2109next:
2d11e738
HD
2110 if (!xa_is_value(page) && PageTransHuge(page)) {
2111 unsigned int nr_pages = thp_nr_pages(page);
2112
2113 /* Final THP may cross MAX_LFS_FILESIZE on 32-bit */
2114 xas_set(&xas, page->index + nr_pages);
2115 if (xas.xa_index < nr_pages)
2116 break;
2117 }
5c211ba2
MWO
2118 }
2119 rcu_read_unlock();
2120
2121 return pagevec_count(pvec);
2122}
2123
1da177e4 2124/**
b947cee4 2125 * find_get_pages_range - gang pagecache lookup
1da177e4
LT
2126 * @mapping: The address_space to search
2127 * @start: The starting page index
b947cee4 2128 * @end: The final page index (inclusive)
1da177e4
LT
2129 * @nr_pages: The maximum number of pages
2130 * @pages: Where the resulting pages are placed
2131 *
b947cee4
JK
2132 * find_get_pages_range() will search for and return a group of up to @nr_pages
2133 * pages in the mapping starting at index @start and up to index @end
2134 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes
2135 * a reference against the returned pages.
1da177e4
LT
2136 *
2137 * The search returns a group of mapping-contiguous pages with ascending
2138 * indexes. There may be holes in the indices due to not-present pages.
d72dc8a2 2139 * We also update @start to index the next page for the traversal.
1da177e4 2140 *
a862f68a
MR
2141 * Return: the number of pages which were found. If this number is
2142 * smaller than @nr_pages, the end of specified range has been
b947cee4 2143 * reached.
1da177e4 2144 */
b947cee4
JK
2145unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
2146 pgoff_t end, unsigned int nr_pages,
2147 struct page **pages)
1da177e4 2148{
fd1b3cee
MW
2149 XA_STATE(xas, &mapping->i_pages, *start);
2150 struct page *page;
0fc9d104
KK
2151 unsigned ret = 0;
2152
2153 if (unlikely(!nr_pages))
2154 return 0;
a60637c8
NP
2155
2156 rcu_read_lock();
c7bad633 2157 while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
fd1b3cee
MW
2158 /* Skip over shadow, swap and DAX entries */
2159 if (xa_is_value(page))
8079b1c8 2160 continue;
a60637c8 2161
4101196b 2162 pages[ret] = find_subpage(page, xas.xa_index);
b947cee4 2163 if (++ret == nr_pages) {
5d3ee42f 2164 *start = xas.xa_index + 1;
b947cee4
JK
2165 goto out;
2166 }
a60637c8 2167 }
5b280c0c 2168
b947cee4
JK
2169 /*
2170 * We come here when there is no page beyond @end. We take care to not
2171 * overflow the index @start as it confuses some of the callers. This
fd1b3cee 2172 * breaks the iteration when there is a page at index -1 but that is
b947cee4
JK
2173 * already broken anyway.
2174 */
2175 if (end == (pgoff_t)-1)
2176 *start = (pgoff_t)-1;
2177 else
2178 *start = end + 1;
2179out:
a60637c8 2180 rcu_read_unlock();
d72dc8a2 2181
1da177e4
LT
2182 return ret;
2183}
2184
ebf43500
JA
2185/**
2186 * find_get_pages_contig - gang contiguous pagecache lookup
2187 * @mapping: The address_space to search
2188 * @index: The starting page index
2189 * @nr_pages: The maximum number of pages
2190 * @pages: Where the resulting pages are placed
2191 *
2192 * find_get_pages_contig() works exactly like find_get_pages(), except
2193 * that the returned number of pages are guaranteed to be contiguous.
2194 *
a862f68a 2195 * Return: the number of pages which were found.
ebf43500
JA
2196 */
2197unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
2198 unsigned int nr_pages, struct page **pages)
2199{
3ece58a2
MW
2200 XA_STATE(xas, &mapping->i_pages, index);
2201 struct page *page;
0fc9d104
KK
2202 unsigned int ret = 0;
2203
2204 if (unlikely(!nr_pages))
2205 return 0;
a60637c8
NP
2206
2207 rcu_read_lock();
3ece58a2 2208 for (page = xas_load(&xas); page; page = xas_next(&xas)) {
3ece58a2
MW
2209 if (xas_retry(&xas, page))
2210 continue;
2211 /*
2212 * If the entry has been swapped out, we can stop looking.
2213 * No current caller is looking for DAX entries.
2214 */
2215 if (xa_is_value(page))
8079b1c8 2216 break;
ebf43500 2217
4101196b 2218 if (!page_cache_get_speculative(page))
3ece58a2 2219 goto retry;
83929372 2220
4101196b 2221 /* Has the page moved or been split? */
3ece58a2
MW
2222 if (unlikely(page != xas_reload(&xas)))
2223 goto put_page;
a60637c8 2224
4101196b 2225 pages[ret] = find_subpage(page, xas.xa_index);
0fc9d104
KK
2226 if (++ret == nr_pages)
2227 break;
3ece58a2
MW
2228 continue;
2229put_page:
4101196b 2230 put_page(page);
3ece58a2
MW
2231retry:
2232 xas_reset(&xas);
ebf43500 2233 }
a60637c8
NP
2234 rcu_read_unlock();
2235 return ret;
ebf43500 2236}
ef71c15c 2237EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 2238
485bb99b 2239/**
c49f50d1 2240 * find_get_pages_range_tag - Find and return head pages matching @tag.
485bb99b
RD
2241 * @mapping: the address_space to search
2242 * @index: the starting page index
72b045ae 2243 * @end: The final page index (inclusive)
485bb99b
RD
2244 * @tag: the tag index
2245 * @nr_pages: the maximum number of pages
2246 * @pages: where the resulting pages are placed
2247 *
c49f50d1
MWO
2248 * Like find_get_pages(), except we only return head pages which are tagged
2249 * with @tag. @index is updated to the index immediately after the last
2250 * page we return, ready for the next iteration.
a862f68a
MR
2251 *
2252 * Return: the number of pages which were found.
1da177e4 2253 */
72b045ae 2254unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
a6906972 2255 pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
72b045ae 2256 struct page **pages)
1da177e4 2257{
a6906972
MW
2258 XA_STATE(xas, &mapping->i_pages, *index);
2259 struct page *page;
0fc9d104
KK
2260 unsigned ret = 0;
2261
2262 if (unlikely(!nr_pages))
2263 return 0;
a60637c8
NP
2264
2265 rcu_read_lock();
c7bad633 2266 while ((page = find_get_entry(&xas, end, tag))) {
a6906972
MW
2267 /*
2268 * Shadow entries should never be tagged, but this iteration
2269 * is lockless so there is a window for page reclaim to evict
2270 * a page we saw tagged. Skip over it.
2271 */
2272 if (xa_is_value(page))
139b6a6f 2273 continue;
a60637c8 2274
c49f50d1 2275 pages[ret] = page;
72b045ae 2276 if (++ret == nr_pages) {
c49f50d1 2277 *index = page->index + thp_nr_pages(page);
72b045ae
JK
2278 goto out;
2279 }
a60637c8 2280 }
5b280c0c 2281
72b045ae 2282 /*
a6906972 2283 * We come here when we got to @end. We take care to not overflow the
72b045ae 2284 * index @index as it confuses some of the callers. This breaks the
a6906972
MW
2285 * iteration when there is a page at index -1 but that is already
2286 * broken anyway.
72b045ae
JK
2287 */
2288 if (end == (pgoff_t)-1)
2289 *index = (pgoff_t)-1;
2290 else
2291 *index = end + 1;
2292out:
a60637c8 2293 rcu_read_unlock();
1da177e4 2294
1da177e4
LT
2295 return ret;
2296}
72b045ae 2297EXPORT_SYMBOL(find_get_pages_range_tag);
1da177e4 2298
76d42bd9
WF
2299/*
2300 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2301 * a _large_ part of the i/o request. Imagine the worst scenario:
2302 *
2303 * ---R__________________________________________B__________
2304 * ^ reading here ^ bad block(assume 4k)
2305 *
2306 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2307 * => failing the whole request => read(R) => read(R+1) =>
2308 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2309 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2310 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2311 *
2312 * It is going insane. Fix it by quickly scaling down the readahead size.
2313 */
0f8e2db4 2314static void shrink_readahead_size_eio(struct file_ra_state *ra)
76d42bd9 2315{
76d42bd9 2316 ra->ra_pages /= 4;
76d42bd9
WF
2317}
2318
cbd59c48
MWO
2319/*
2320 * filemap_get_read_batch - Get a batch of pages for read
2321 *
2322 * Get a batch of pages which represent a contiguous range of bytes
2323 * in the file. No tail pages will be returned. If @index is in the
2324 * middle of a THP, the entire THP will be returned. The last page in
2325 * the batch may have Readahead set or be not Uptodate so that the
2326 * caller can take the appropriate action.
2327 */
2328static void filemap_get_read_batch(struct address_space *mapping,
2329 pgoff_t index, pgoff_t max, struct pagevec *pvec)
2330{
2331 XA_STATE(xas, &mapping->i_pages, index);
2332 struct page *head;
2333
2334 rcu_read_lock();
2335 for (head = xas_load(&xas); head; head = xas_next(&xas)) {
2336 if (xas_retry(&xas, head))
2337 continue;
2338 if (xas.xa_index > max || xa_is_value(head))
2339 break;
2340 if (!page_cache_get_speculative(head))
2341 goto retry;
2342
2343 /* Has the page moved or been split? */
2344 if (unlikely(head != xas_reload(&xas)))
2345 goto put_page;
2346
2347 if (!pagevec_add(pvec, head))
2348 break;
2349 if (!PageUptodate(head))
2350 break;
2351 if (PageReadahead(head))
2352 break;
2353 xas.xa_index = head->index + thp_nr_pages(head) - 1;
2354 xas.xa_offset = (xas.xa_index >> xas.xa_shift) & XA_CHUNK_MASK;
2355 continue;
2356put_page:
2357 put_page(head);
2358retry:
2359 xas_reset(&xas);
2360 }
2361 rcu_read_unlock();
2362}
2363
68430303
MWO
2364static int filemap_read_page(struct file *file, struct address_space *mapping,
2365 struct page *page)
723ef24b 2366{
723ef24b
KO
2367 int error;
2368
723ef24b 2369 /*
68430303
MWO
2370 * A previous I/O error may have been due to temporary failures,
2371 * eg. multipath errors. PG_error will be set again if readpage
2372 * fails.
723ef24b
KO
2373 */
2374 ClearPageError(page);
2375 /* Start the actual read. The read will unlock the page. */
68430303
MWO
2376 error = mapping->a_ops->readpage(file, page);
2377 if (error)
2378 return error;
723ef24b 2379
aa1ec2f6 2380 error = wait_on_page_locked_killable(page);
68430303
MWO
2381 if (error)
2382 return error;
aa1ec2f6
MWO
2383 if (PageUptodate(page))
2384 return 0;
aa1ec2f6
MWO
2385 shrink_readahead_size_eio(&file->f_ra);
2386 return -EIO;
723ef24b
KO
2387}
2388
fce70da3
MWO
2389static bool filemap_range_uptodate(struct address_space *mapping,
2390 loff_t pos, struct iov_iter *iter, struct page *page)
2391{
2392 int count;
2393
2394 if (PageUptodate(page))
2395 return true;
2396 /* pipes can't handle partially uptodate pages */
2397 if (iov_iter_is_pipe(iter))
2398 return false;
2399 if (!mapping->a_ops->is_partially_uptodate)
2400 return false;
2401 if (mapping->host->i_blkbits >= (PAGE_SHIFT + thp_order(page)))
2402 return false;
2403
2404 count = iter->count;
2405 if (page_offset(page) > pos) {
2406 count -= page_offset(page) - pos;
2407 pos = 0;
2408 } else {
2409 pos -= page_offset(page);
2410 }
2411
2412 return mapping->a_ops->is_partially_uptodate(page, pos, count);
2413}
2414
4612aeef
MWO
2415static int filemap_update_page(struct kiocb *iocb,
2416 struct address_space *mapping, struct iov_iter *iter,
fce70da3 2417 struct page *page)
723ef24b 2418{
ffdc8dab 2419 struct folio *folio = page_folio(page);
723ef24b
KO
2420 int error;
2421
730633f0
JK
2422 if (iocb->ki_flags & IOCB_NOWAIT) {
2423 if (!filemap_invalidate_trylock_shared(mapping))
2424 return -EAGAIN;
2425 } else {
2426 filemap_invalidate_lock_shared(mapping);
2427 }
2428
ffdc8dab 2429 if (!folio_trylock(folio)) {
730633f0 2430 error = -EAGAIN;
87d1d7b6 2431 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
730633f0 2432 goto unlock_mapping;
87d1d7b6 2433 if (!(iocb->ki_flags & IOCB_WAITQ)) {
730633f0 2434 filemap_invalidate_unlock_shared(mapping);
ffdc8dab 2435 put_and_wait_on_page_locked(&folio->page, TASK_KILLABLE);
4612aeef 2436 return AOP_TRUNCATED_PAGE;
bd8a1f36 2437 }
ffdc8dab 2438 error = __folio_lock_async(folio, iocb->ki_waitq);
87d1d7b6 2439 if (error)
730633f0 2440 goto unlock_mapping;
723ef24b 2441 }
723ef24b 2442
730633f0 2443 error = AOP_TRUNCATED_PAGE;
ffdc8dab 2444 if (!folio->mapping)
730633f0 2445 goto unlock;
723ef24b 2446
fce70da3 2447 error = 0;
ffdc8dab 2448 if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, &folio->page))
fce70da3
MWO
2449 goto unlock;
2450
2451 error = -EAGAIN;
2452 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2453 goto unlock;
2454
ffdc8dab 2455 error = filemap_read_page(iocb->ki_filp, mapping, &folio->page);
730633f0 2456 goto unlock_mapping;
fce70da3 2457unlock:
ffdc8dab 2458 folio_unlock(folio);
730633f0
JK
2459unlock_mapping:
2460 filemap_invalidate_unlock_shared(mapping);
2461 if (error == AOP_TRUNCATED_PAGE)
ffdc8dab 2462 folio_put(folio);
fce70da3 2463 return error;
723ef24b
KO
2464}
2465
f253e185
MWO
2466static int filemap_create_page(struct file *file,
2467 struct address_space *mapping, pgoff_t index,
2468 struct pagevec *pvec)
723ef24b 2469{
723ef24b
KO
2470 struct page *page;
2471 int error;
2472
723ef24b
KO
2473 page = page_cache_alloc(mapping);
2474 if (!page)
f253e185 2475 return -ENOMEM;
723ef24b 2476
730633f0
JK
2477 /*
2478 * Protect against truncate / hole punch. Grabbing invalidate_lock here
2479 * assures we cannot instantiate and bring uptodate new pagecache pages
2480 * after evicting page cache during truncate and before actually
2481 * freeing blocks. Note that we could release invalidate_lock after
2482 * inserting the page into page cache as the locked page would then be
2483 * enough to synchronize with hole punching. But there are code paths
2484 * such as filemap_update_page() filling in partially uptodate pages or
2485 * ->readpages() that need to hold invalidate_lock while mapping blocks
2486 * for IO so let's hold the lock here as well to keep locking rules
2487 * simple.
2488 */
2489 filemap_invalidate_lock_shared(mapping);
723ef24b 2490 error = add_to_page_cache_lru(page, mapping, index,
f253e185
MWO
2491 mapping_gfp_constraint(mapping, GFP_KERNEL));
2492 if (error == -EEXIST)
2493 error = AOP_TRUNCATED_PAGE;
2494 if (error)
2495 goto error;
2496
2497 error = filemap_read_page(file, mapping, page);
2498 if (error)
2499 goto error;
2500
730633f0 2501 filemap_invalidate_unlock_shared(mapping);
f253e185
MWO
2502 pagevec_add(pvec, page);
2503 return 0;
2504error:
730633f0 2505 filemap_invalidate_unlock_shared(mapping);
68430303 2506 put_page(page);
f253e185 2507 return error;
723ef24b
KO
2508}
2509
5963fe03
MWO
2510static int filemap_readahead(struct kiocb *iocb, struct file *file,
2511 struct address_space *mapping, struct page *page,
2512 pgoff_t last_index)
2513{
2514 if (iocb->ki_flags & IOCB_NOIO)
2515 return -EAGAIN;
2516 page_cache_async_readahead(mapping, &file->f_ra, file, page,
2517 page->index, last_index - page->index);
2518 return 0;
2519}
2520
3a6bae48 2521static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter,
ff993ba1 2522 struct pagevec *pvec)
06c04442
KO
2523{
2524 struct file *filp = iocb->ki_filp;
2525 struct address_space *mapping = filp->f_mapping;
2526 struct file_ra_state *ra = &filp->f_ra;
2527 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
cbd59c48 2528 pgoff_t last_index;
2642fca6 2529 struct page *page;
cbd59c48 2530 int err = 0;
06c04442 2531
cbd59c48 2532 last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE);
2642fca6 2533retry:
06c04442
KO
2534 if (fatal_signal_pending(current))
2535 return -EINTR;
2536
cbd59c48 2537 filemap_get_read_batch(mapping, index, last_index, pvec);
2642fca6
MWO
2538 if (!pagevec_count(pvec)) {
2539 if (iocb->ki_flags & IOCB_NOIO)
2540 return -EAGAIN;
2541 page_cache_sync_readahead(mapping, ra, filp, index,
2542 last_index - index);
2543 filemap_get_read_batch(mapping, index, last_index, pvec);
2544 }
f253e185
MWO
2545 if (!pagevec_count(pvec)) {
2546 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2547 return -EAGAIN;
2548 err = filemap_create_page(filp, mapping,
2549 iocb->ki_pos >> PAGE_SHIFT, pvec);
2550 if (err == AOP_TRUNCATED_PAGE)
2642fca6 2551 goto retry;
f253e185
MWO
2552 return err;
2553 }
06c04442 2554
2642fca6
MWO
2555 page = pvec->pages[pagevec_count(pvec) - 1];
2556 if (PageReadahead(page)) {
2557 err = filemap_readahead(iocb, filp, mapping, page, last_index);
2558 if (err)
2559 goto err;
2560 }
2561 if (!PageUptodate(page)) {
2562 if ((iocb->ki_flags & IOCB_WAITQ) && pagevec_count(pvec) > 1)
2563 iocb->ki_flags |= IOCB_NOWAIT;
2564 err = filemap_update_page(iocb, mapping, iter, page);
2565 if (err)
2566 goto err;
06c04442
KO
2567 }
2568
2642fca6 2569 return 0;
cbd59c48 2570err:
2642fca6
MWO
2571 if (err < 0)
2572 put_page(page);
2573 if (likely(--pvec->nr))
ff993ba1 2574 return 0;
4612aeef 2575 if (err == AOP_TRUNCATED_PAGE)
2642fca6
MWO
2576 goto retry;
2577 return err;
06c04442
KO
2578}
2579
485bb99b 2580/**
87fa0f3e
CH
2581 * filemap_read - Read data from the page cache.
2582 * @iocb: The iocb to read.
2583 * @iter: Destination for the data.
2584 * @already_read: Number of bytes already read by the caller.
485bb99b 2585 *
87fa0f3e
CH
2586 * Copies data from the page cache. If the data is not currently present,
2587 * uses the readahead and readpage address_space operations to fetch it.
1da177e4 2588 *
87fa0f3e
CH
2589 * Return: Total number of bytes copied, including those already read by
2590 * the caller. If an error happens before any bytes are copied, returns
2591 * a negative error number.
1da177e4 2592 */
87fa0f3e
CH
2593ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2594 ssize_t already_read)
1da177e4 2595{
47c27bc4 2596 struct file *filp = iocb->ki_filp;
06c04442 2597 struct file_ra_state *ra = &filp->f_ra;
36e78914 2598 struct address_space *mapping = filp->f_mapping;
1da177e4 2599 struct inode *inode = mapping->host;
ff993ba1
MWO
2600 struct pagevec pvec;
2601 int i, error = 0;
06c04442
KO
2602 bool writably_mapped;
2603 loff_t isize, end_offset;
1da177e4 2604
723ef24b 2605 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
d05c5f7b 2606 return 0;
3644e2d2
KO
2607 if (unlikely(!iov_iter_count(iter)))
2608 return 0;
2609
c2a9737f 2610 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
cbd59c48 2611 pagevec_init(&pvec);
c2a9737f 2612
06c04442 2613 do {
1da177e4 2614 cond_resched();
5abf186a 2615
723ef24b 2616 /*
06c04442
KO
2617 * If we've already successfully copied some data, then we
2618 * can no longer safely return -EIOCBQUEUED. Hence mark
2619 * an async read NOWAIT at that point.
723ef24b 2620 */
87fa0f3e 2621 if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
723ef24b
KO
2622 iocb->ki_flags |= IOCB_NOWAIT;
2623
ff993ba1
MWO
2624 error = filemap_get_pages(iocb, iter, &pvec);
2625 if (error < 0)
06c04442 2626 break;
1da177e4 2627
06c04442
KO
2628 /*
2629 * i_size must be checked after we know the pages are Uptodate.
2630 *
2631 * Checking i_size after the check allows us to calculate
2632 * the correct value for "nr", which means the zero-filled
2633 * part of the page is not copied back to userspace (unless
2634 * another truncate extends the file - this is desired though).
2635 */
2636 isize = i_size_read(inode);
2637 if (unlikely(iocb->ki_pos >= isize))
2638 goto put_pages;
06c04442
KO
2639 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2640
06c04442
KO
2641 /*
2642 * Once we start copying data, we don't want to be touching any
2643 * cachelines that might be contended:
2644 */
2645 writably_mapped = mapping_writably_mapped(mapping);
2646
2647 /*
2648 * When a sequential read accesses a page several times, only
2649 * mark it as accessed the first time.
2650 */
2651 if (iocb->ki_pos >> PAGE_SHIFT !=
2652 ra->prev_pos >> PAGE_SHIFT)
ff993ba1 2653 mark_page_accessed(pvec.pages[0]);
06c04442 2654
ff993ba1 2655 for (i = 0; i < pagevec_count(&pvec); i++) {
cbd59c48
MWO
2656 struct page *page = pvec.pages[i];
2657 size_t page_size = thp_size(page);
2658 size_t offset = iocb->ki_pos & (page_size - 1);
2659 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2660 page_size - offset);
2661 size_t copied;
06c04442 2662
cbd59c48
MWO
2663 if (end_offset < page_offset(page))
2664 break;
2665 if (i > 0)
2666 mark_page_accessed(page);
06c04442
KO
2667 /*
2668 * If users can be writing to this page using arbitrary
2669 * virtual addresses, take care about potential aliasing
2670 * before reading the page on the kernel side.
2671 */
cbd59c48
MWO
2672 if (writably_mapped) {
2673 int j;
2674
2675 for (j = 0; j < thp_nr_pages(page); j++)
2676 flush_dcache_page(page + j);
2677 }
06c04442 2678
cbd59c48 2679 copied = copy_page_to_iter(page, offset, bytes, iter);
06c04442 2680
87fa0f3e 2681 already_read += copied;
06c04442
KO
2682 iocb->ki_pos += copied;
2683 ra->prev_pos = iocb->ki_pos;
2684
2685 if (copied < bytes) {
2686 error = -EFAULT;
2687 break;
2688 }
1da177e4 2689 }
06c04442 2690put_pages:
ff993ba1
MWO
2691 for (i = 0; i < pagevec_count(&pvec); i++)
2692 put_page(pvec.pages[i]);
cbd59c48 2693 pagevec_reinit(&pvec);
06c04442 2694 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
1da177e4 2695
0c6aa263 2696 file_accessed(filp);
06c04442 2697
87fa0f3e 2698 return already_read ? already_read : error;
1da177e4 2699}
87fa0f3e 2700EXPORT_SYMBOL_GPL(filemap_read);
1da177e4 2701
485bb99b 2702/**
6abd2322 2703 * generic_file_read_iter - generic filesystem read routine
485bb99b 2704 * @iocb: kernel I/O control block
6abd2322 2705 * @iter: destination for the data read
485bb99b 2706 *
6abd2322 2707 * This is the "read_iter()" routine for all filesystems
1da177e4 2708 * that can use the page cache directly.
41da51bc
AG
2709 *
2710 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2711 * be returned when no data can be read without waiting for I/O requests
2712 * to complete; it doesn't prevent readahead.
2713 *
2714 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2715 * requests shall be made for the read or for readahead. When no data
2716 * can be read, -EAGAIN shall be returned. When readahead would be
2717 * triggered, a partial, possibly empty read shall be returned.
2718 *
a862f68a
MR
2719 * Return:
2720 * * number of bytes copied, even for partial reads
41da51bc 2721 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
1da177e4
LT
2722 */
2723ssize_t
ed978a81 2724generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1da177e4 2725{
e7080a43 2726 size_t count = iov_iter_count(iter);
47c27bc4 2727 ssize_t retval = 0;
e7080a43
NS
2728
2729 if (!count)
826ea860 2730 return 0; /* skip atime */
1da177e4 2731
2ba48ce5 2732 if (iocb->ki_flags & IOCB_DIRECT) {
47c27bc4 2733 struct file *file = iocb->ki_filp;
ed978a81
AV
2734 struct address_space *mapping = file->f_mapping;
2735 struct inode *inode = mapping->host;
543ade1f 2736 loff_t size;
1da177e4 2737
1da177e4 2738 size = i_size_read(inode);
6be96d3a 2739 if (iocb->ki_flags & IOCB_NOWAIT) {
7a60d6d7
JA
2740 if (filemap_range_needs_writeback(mapping, iocb->ki_pos,
2741 iocb->ki_pos + count - 1))
6be96d3a
GR
2742 return -EAGAIN;
2743 } else {
2744 retval = filemap_write_and_wait_range(mapping,
2745 iocb->ki_pos,
2746 iocb->ki_pos + count - 1);
2747 if (retval < 0)
826ea860 2748 return retval;
6be96d3a 2749 }
d8d3d94b 2750
0d5b0cf2
CH
2751 file_accessed(file);
2752
5ecda137 2753 retval = mapping->a_ops->direct_IO(iocb, iter);
c3a69024 2754 if (retval >= 0) {
c64fb5c7 2755 iocb->ki_pos += retval;
5ecda137 2756 count -= retval;
9fe55eea 2757 }
ab2125df
PB
2758 if (retval != -EIOCBQUEUED)
2759 iov_iter_revert(iter, count - iov_iter_count(iter));
66f998f6 2760
9fe55eea
SW
2761 /*
2762 * Btrfs can have a short DIO read if we encounter
2763 * compressed extents, so if there was an error, or if
2764 * we've already read everything we wanted to, or if
2765 * there was a short read because we hit EOF, go ahead
2766 * and return. Otherwise fallthrough to buffered io for
fbbbad4b
MW
2767 * the rest of the read. Buffered reads will not work for
2768 * DAX files, so don't bother trying.
9fe55eea 2769 */
5ecda137 2770 if (retval < 0 || !count || iocb->ki_pos >= size ||
0d5b0cf2 2771 IS_DAX(inode))
826ea860 2772 return retval;
1da177e4
LT
2773 }
2774
826ea860 2775 return filemap_read(iocb, iter, retval);
1da177e4 2776}
ed978a81 2777EXPORT_SYMBOL(generic_file_read_iter);
1da177e4 2778
54fa39ac
MWO
2779static inline loff_t page_seek_hole_data(struct xa_state *xas,
2780 struct address_space *mapping, struct page *page,
2781 loff_t start, loff_t end, bool seek_data)
41139aa4 2782{
54fa39ac
MWO
2783 const struct address_space_operations *ops = mapping->a_ops;
2784 size_t offset, bsz = i_blocksize(mapping->host);
2785
41139aa4 2786 if (xa_is_value(page) || PageUptodate(page))
54fa39ac
MWO
2787 return seek_data ? start : end;
2788 if (!ops->is_partially_uptodate)
2789 return seek_data ? end : start;
2790
2791 xas_pause(xas);
2792 rcu_read_unlock();
2793 lock_page(page);
2794 if (unlikely(page->mapping != mapping))
2795 goto unlock;
2796
2797 offset = offset_in_thp(page, start) & ~(bsz - 1);
2798
2799 do {
2800 if (ops->is_partially_uptodate(page, offset, bsz) == seek_data)
2801 break;
2802 start = (start + bsz) & ~(bsz - 1);
2803 offset += bsz;
2804 } while (offset < thp_size(page));
2805unlock:
2806 unlock_page(page);
2807 rcu_read_lock();
2808 return start;
41139aa4
MWO
2809}
2810
2811static inline
2812unsigned int seek_page_size(struct xa_state *xas, struct page *page)
2813{
2814 if (xa_is_value(page))
2815 return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
2816 return thp_size(page);
2817}
2818
2819/**
2820 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
2821 * @mapping: Address space to search.
2822 * @start: First byte to consider.
2823 * @end: Limit of search (exclusive).
2824 * @whence: Either SEEK_HOLE or SEEK_DATA.
2825 *
2826 * If the page cache knows which blocks contain holes and which blocks
2827 * contain data, your filesystem can use this function to implement
2828 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are
2829 * entirely memory-based such as tmpfs, and filesystems which support
2830 * unwritten extents.
2831 *
f0953a1b 2832 * Return: The requested offset on success, or -ENXIO if @whence specifies
41139aa4
MWO
2833 * SEEK_DATA and there is no data after @start. There is an implicit hole
2834 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
2835 * and @end contain data.
2836 */
2837loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
2838 loff_t end, int whence)
2839{
2840 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
ed98b015 2841 pgoff_t max = (end - 1) >> PAGE_SHIFT;
41139aa4
MWO
2842 bool seek_data = (whence == SEEK_DATA);
2843 struct page *page;
2844
2845 if (end <= start)
2846 return -ENXIO;
2847
2848 rcu_read_lock();
2849 while ((page = find_get_entry(&xas, max, XA_PRESENT))) {
ed98b015
HD
2850 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
2851 unsigned int seek_size;
41139aa4
MWO
2852
2853 if (start < pos) {
2854 if (!seek_data)
2855 goto unlock;
2856 start = pos;
2857 }
2858
ed98b015
HD
2859 seek_size = seek_page_size(&xas, page);
2860 pos = round_up(pos + 1, seek_size);
54fa39ac
MWO
2861 start = page_seek_hole_data(&xas, mapping, page, start, pos,
2862 seek_data);
2863 if (start < pos)
41139aa4 2864 goto unlock;
ed98b015
HD
2865 if (start >= end)
2866 break;
2867 if (seek_size > PAGE_SIZE)
2868 xas_set(&xas, pos >> PAGE_SHIFT);
41139aa4
MWO
2869 if (!xa_is_value(page))
2870 put_page(page);
2871 }
41139aa4 2872 if (seek_data)
ed98b015 2873 start = -ENXIO;
41139aa4
MWO
2874unlock:
2875 rcu_read_unlock();
ed98b015 2876 if (page && !xa_is_value(page))
41139aa4 2877 put_page(page);
41139aa4
MWO
2878 if (start > end)
2879 return end;
2880 return start;
2881}
2882
1da177e4 2883#ifdef CONFIG_MMU
1da177e4 2884#define MMAP_LOTSAMISS (100)
6b4c9f44 2885/*
c1e8d7c6 2886 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
6b4c9f44
JB
2887 * @vmf - the vm_fault for this fault.
2888 * @page - the page to lock.
2889 * @fpin - the pointer to the file we may pin (or is already pinned).
2890 *
c1e8d7c6 2891 * This works similar to lock_page_or_retry in that it can drop the mmap_lock.
6b4c9f44 2892 * It differs in that it actually returns the page locked if it returns 1 and 0
c1e8d7c6 2893 * if it couldn't lock the page. If we did have to drop the mmap_lock then fpin
6b4c9f44
JB
2894 * will point to the pinned file and needs to be fput()'ed at a later point.
2895 */
2896static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2897 struct file **fpin)
2898{
7c23c782
MWO
2899 struct folio *folio = page_folio(page);
2900
2901 if (folio_trylock(folio))
6b4c9f44
JB
2902 return 1;
2903
8b0f9fa2
LT
2904 /*
2905 * NOTE! This will make us return with VM_FAULT_RETRY, but with
c1e8d7c6 2906 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
8b0f9fa2
LT
2907 * is supposed to work. We have way too many special cases..
2908 */
6b4c9f44
JB
2909 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2910 return 0;
2911
2912 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2913 if (vmf->flags & FAULT_FLAG_KILLABLE) {
af7f29d9 2914 if (__folio_lock_killable(folio)) {
6b4c9f44 2915 /*
c1e8d7c6 2916 * We didn't have the right flags to drop the mmap_lock,
6b4c9f44
JB
2917 * but all fault_handlers only check for fatal signals
2918 * if we return VM_FAULT_RETRY, so we need to drop the
c1e8d7c6 2919 * mmap_lock here and return 0 if we don't have a fpin.
6b4c9f44
JB
2920 */
2921 if (*fpin == NULL)
d8ed45c5 2922 mmap_read_unlock(vmf->vma->vm_mm);
6b4c9f44
JB
2923 return 0;
2924 }
2925 } else
7c23c782
MWO
2926 __folio_lock(folio);
2927
6b4c9f44
JB
2928 return 1;
2929}
2930
ef00e08e 2931/*
6b4c9f44
JB
2932 * Synchronous readahead happens when we don't even find a page in the page
2933 * cache at all. We don't want to perform IO under the mmap sem, so if we have
2934 * to drop the mmap sem we return the file that was pinned in order for us to do
2935 * that. If we didn't pin a file then we return NULL. The file that is
2936 * returned needs to be fput()'ed when we're done with it.
ef00e08e 2937 */
6b4c9f44 2938static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
ef00e08e 2939{
2a1180f1
JB
2940 struct file *file = vmf->vma->vm_file;
2941 struct file_ra_state *ra = &file->f_ra;
ef00e08e 2942 struct address_space *mapping = file->f_mapping;
fcd9ae4f 2943 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
6b4c9f44 2944 struct file *fpin = NULL;
e630bfac 2945 unsigned int mmap_miss;
ef00e08e
LT
2946
2947 /* If we don't want any read-ahead, don't bother */
2a1180f1 2948 if (vmf->vma->vm_flags & VM_RAND_READ)
6b4c9f44 2949 return fpin;
275b12bf 2950 if (!ra->ra_pages)
6b4c9f44 2951 return fpin;
ef00e08e 2952
2a1180f1 2953 if (vmf->vma->vm_flags & VM_SEQ_READ) {
6b4c9f44 2954 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
fcd9ae4f 2955 page_cache_sync_ra(&ractl, ra->ra_pages);
6b4c9f44 2956 return fpin;
ef00e08e
LT
2957 }
2958
207d04ba 2959 /* Avoid banging the cache line if not needed */
e630bfac
KS
2960 mmap_miss = READ_ONCE(ra->mmap_miss);
2961 if (mmap_miss < MMAP_LOTSAMISS * 10)
2962 WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
ef00e08e
LT
2963
2964 /*
2965 * Do we miss much more than hit in this file? If so,
2966 * stop bothering with read-ahead. It will only hurt.
2967 */
e630bfac 2968 if (mmap_miss > MMAP_LOTSAMISS)
6b4c9f44 2969 return fpin;
ef00e08e 2970
d30a1100
WF
2971 /*
2972 * mmap read-around
2973 */
6b4c9f44 2974 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
db660d46 2975 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
600e19af
RG
2976 ra->size = ra->ra_pages;
2977 ra->async_size = ra->ra_pages / 4;
db660d46
DH
2978 ractl._index = ra->start;
2979 do_page_cache_ra(&ractl, ra->size, ra->async_size);
6b4c9f44 2980 return fpin;
ef00e08e
LT
2981}
2982
2983/*
2984 * Asynchronous readahead happens when we find the page and PG_readahead,
6b4c9f44 2985 * so we want to possibly extend the readahead further. We return the file that
c1e8d7c6 2986 * was pinned if we have to drop the mmap_lock in order to do IO.
ef00e08e 2987 */
6b4c9f44
JB
2988static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2989 struct page *page)
ef00e08e 2990{
2a1180f1
JB
2991 struct file *file = vmf->vma->vm_file;
2992 struct file_ra_state *ra = &file->f_ra;
ef00e08e 2993 struct address_space *mapping = file->f_mapping;
6b4c9f44 2994 struct file *fpin = NULL;
e630bfac 2995 unsigned int mmap_miss;
2a1180f1 2996 pgoff_t offset = vmf->pgoff;
ef00e08e
LT
2997
2998 /* If we don't want any read-ahead, don't bother */
5c72feee 2999 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
6b4c9f44 3000 return fpin;
e630bfac
KS
3001 mmap_miss = READ_ONCE(ra->mmap_miss);
3002 if (mmap_miss)
3003 WRITE_ONCE(ra->mmap_miss, --mmap_miss);
6b4c9f44
JB
3004 if (PageReadahead(page)) {
3005 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2fad6f5d
WF
3006 page_cache_async_readahead(mapping, ra, file,
3007 page, offset, ra->ra_pages);
6b4c9f44
JB
3008 }
3009 return fpin;
ef00e08e
LT
3010}
3011
485bb99b 3012/**
54cb8821 3013 * filemap_fault - read in file data for page fault handling
d0217ac0 3014 * @vmf: struct vm_fault containing details of the fault
485bb99b 3015 *
54cb8821 3016 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
3017 * mapped memory region to read in file data during a page fault.
3018 *
3019 * The goto's are kind of ugly, but this streamlines the normal case of having
3020 * it in the page cache, and handles the special cases reasonably without
3021 * having a lot of duplicated code.
9a95f3cf 3022 *
c1e8d7c6 3023 * vma->vm_mm->mmap_lock must be held on entry.
9a95f3cf 3024 *
c1e8d7c6 3025 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
a4985833 3026 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
9a95f3cf 3027 *
c1e8d7c6 3028 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
9a95f3cf
PC
3029 * has not been released.
3030 *
3031 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
a862f68a
MR
3032 *
3033 * Return: bitwise-OR of %VM_FAULT_ codes.
1da177e4 3034 */
2bcd6454 3035vm_fault_t filemap_fault(struct vm_fault *vmf)
1da177e4
LT
3036{
3037 int error;
11bac800 3038 struct file *file = vmf->vma->vm_file;
6b4c9f44 3039 struct file *fpin = NULL;
1da177e4 3040 struct address_space *mapping = file->f_mapping;
1da177e4 3041 struct inode *inode = mapping->host;
ef00e08e 3042 pgoff_t offset = vmf->pgoff;
9ab2594f 3043 pgoff_t max_off;
1da177e4 3044 struct page *page;
2bcd6454 3045 vm_fault_t ret = 0;
730633f0 3046 bool mapping_locked = false;
1da177e4 3047
9ab2594f
MW
3048 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3049 if (unlikely(offset >= max_off))
5307cc1a 3050 return VM_FAULT_SIGBUS;
1da177e4 3051
1da177e4 3052 /*
49426420 3053 * Do we have something in the page cache already?
1da177e4 3054 */
ef00e08e 3055 page = find_get_page(mapping, offset);
730633f0 3056 if (likely(page)) {
1da177e4 3057 /*
730633f0
JK
3058 * We found the page, so try async readahead before waiting for
3059 * the lock.
1da177e4 3060 */
730633f0
JK
3061 if (!(vmf->flags & FAULT_FLAG_TRIED))
3062 fpin = do_async_mmap_readahead(vmf, page);
3063 if (unlikely(!PageUptodate(page))) {
3064 filemap_invalidate_lock_shared(mapping);
3065 mapping_locked = true;
3066 }
3067 } else {
ef00e08e 3068 /* No page in the page cache at all */
ef00e08e 3069 count_vm_event(PGMAJFAULT);
2262185c 3070 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
ef00e08e 3071 ret = VM_FAULT_MAJOR;
6b4c9f44 3072 fpin = do_sync_mmap_readahead(vmf);
ef00e08e 3073retry_find:
730633f0
JK
3074 /*
3075 * See comment in filemap_create_page() why we need
3076 * invalidate_lock
3077 */
3078 if (!mapping_locked) {
3079 filemap_invalidate_lock_shared(mapping);
3080 mapping_locked = true;
3081 }
a75d4c33
JB
3082 page = pagecache_get_page(mapping, offset,
3083 FGP_CREAT|FGP_FOR_MMAP,
3084 vmf->gfp_mask);
6b4c9f44
JB
3085 if (!page) {
3086 if (fpin)
3087 goto out_retry;
730633f0 3088 filemap_invalidate_unlock_shared(mapping);
e520e932 3089 return VM_FAULT_OOM;
6b4c9f44 3090 }
1da177e4
LT
3091 }
3092
6b4c9f44
JB
3093 if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
3094 goto out_retry;
b522c94d
ML
3095
3096 /* Did it get truncated? */
585e5a7b 3097 if (unlikely(compound_head(page)->mapping != mapping)) {
b522c94d
ML
3098 unlock_page(page);
3099 put_page(page);
3100 goto retry_find;
3101 }
520e5ba4 3102 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
b522c94d 3103
1da177e4 3104 /*
d00806b1
NP
3105 * We have a locked page in the page cache, now we need to check
3106 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 3107 */
730633f0
JK
3108 if (unlikely(!PageUptodate(page))) {
3109 /*
3110 * The page was in cache and uptodate and now it is not.
3111 * Strange but possible since we didn't hold the page lock all
3112 * the time. Let's drop everything get the invalidate lock and
3113 * try again.
3114 */
3115 if (!mapping_locked) {
3116 unlock_page(page);
3117 put_page(page);
3118 goto retry_find;
3119 }
1da177e4 3120 goto page_not_uptodate;
730633f0 3121 }
1da177e4 3122
6b4c9f44 3123 /*
c1e8d7c6 3124 * We've made it this far and we had to drop our mmap_lock, now is the
6b4c9f44
JB
3125 * time to return to the upper layer and have it re-find the vma and
3126 * redo the fault.
3127 */
3128 if (fpin) {
3129 unlock_page(page);
3130 goto out_retry;
3131 }
730633f0
JK
3132 if (mapping_locked)
3133 filemap_invalidate_unlock_shared(mapping);
6b4c9f44 3134
ef00e08e
LT
3135 /*
3136 * Found the page and have a reference on it.
3137 * We must recheck i_size under page lock.
3138 */
9ab2594f
MW
3139 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3140 if (unlikely(offset >= max_off)) {
d00806b1 3141 unlock_page(page);
09cbfeaf 3142 put_page(page);
5307cc1a 3143 return VM_FAULT_SIGBUS;
d00806b1
NP
3144 }
3145
d0217ac0 3146 vmf->page = page;
83c54070 3147 return ret | VM_FAULT_LOCKED;
1da177e4 3148
1da177e4 3149page_not_uptodate:
1da177e4
LT
3150 /*
3151 * Umm, take care of errors if the page isn't up-to-date.
3152 * Try to re-read it _once_. We do this synchronously,
3153 * because there really aren't any performance issues here
3154 * and we need to check for errors.
3155 */
6b4c9f44 3156 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
d31fa86a 3157 error = filemap_read_page(file, mapping, page);
6b4c9f44
JB
3158 if (fpin)
3159 goto out_retry;
09cbfeaf 3160 put_page(page);
d00806b1
NP
3161
3162 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 3163 goto retry_find;
730633f0 3164 filemap_invalidate_unlock_shared(mapping);
1da177e4 3165
d0217ac0 3166 return VM_FAULT_SIGBUS;
6b4c9f44
JB
3167
3168out_retry:
3169 /*
c1e8d7c6 3170 * We dropped the mmap_lock, we need to return to the fault handler to
6b4c9f44
JB
3171 * re-find the vma and come back and find our hopefully still populated
3172 * page.
3173 */
3174 if (page)
3175 put_page(page);
730633f0
JK
3176 if (mapping_locked)
3177 filemap_invalidate_unlock_shared(mapping);
6b4c9f44
JB
3178 if (fpin)
3179 fput(fpin);
3180 return ret | VM_FAULT_RETRY;
54cb8821
NP
3181}
3182EXPORT_SYMBOL(filemap_fault);
3183
f9ce0be7 3184static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page)
f1820361 3185{
f9ce0be7
KS
3186 struct mm_struct *mm = vmf->vma->vm_mm;
3187
3188 /* Huge page is mapped? No need to proceed. */
3189 if (pmd_trans_huge(*vmf->pmd)) {
3190 unlock_page(page);
3191 put_page(page);
3192 return true;
3193 }
3194
3195 if (pmd_none(*vmf->pmd) && PageTransHuge(page)) {
3196 vm_fault_t ret = do_set_pmd(vmf, page);
3197 if (!ret) {
3198 /* The page is mapped successfully, reference consumed. */
3199 unlock_page(page);
3200 return true;
3201 }
3202 }
3203
3204 if (pmd_none(*vmf->pmd)) {
3205 vmf->ptl = pmd_lock(mm, vmf->pmd);
3206 if (likely(pmd_none(*vmf->pmd))) {
3207 mm_inc_nr_ptes(mm);
3208 pmd_populate(mm, vmf->pmd, vmf->prealloc_pte);
3209 vmf->prealloc_pte = NULL;
3210 }
3211 spin_unlock(vmf->ptl);
3212 }
3213
3214 /* See comment in handle_pte_fault() */
3215 if (pmd_devmap_trans_unstable(vmf->pmd)) {
3216 unlock_page(page);
3217 put_page(page);
3218 return true;
3219 }
3220
3221 return false;
3222}
3223
3224static struct page *next_uptodate_page(struct page *page,
3225 struct address_space *mapping,
3226 struct xa_state *xas, pgoff_t end_pgoff)
3227{
3228 unsigned long max_idx;
3229
3230 do {
3231 if (!page)
3232 return NULL;
3233 if (xas_retry(xas, page))
3234 continue;
3235 if (xa_is_value(page))
3236 continue;
3237 if (PageLocked(page))
3238 continue;
3239 if (!page_cache_get_speculative(page))
3240 continue;
3241 /* Has the page moved or been split? */
3242 if (unlikely(page != xas_reload(xas)))
3243 goto skip;
3244 if (!PageUptodate(page) || PageReadahead(page))
3245 goto skip;
3246 if (PageHWPoison(page))
3247 goto skip;
3248 if (!trylock_page(page))
3249 goto skip;
3250 if (page->mapping != mapping)
3251 goto unlock;
3252 if (!PageUptodate(page))
3253 goto unlock;
3254 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3255 if (xas->xa_index >= max_idx)
3256 goto unlock;
3257 return page;
3258unlock:
3259 unlock_page(page);
3260skip:
3261 put_page(page);
3262 } while ((page = xas_next_entry(xas, end_pgoff)) != NULL);
3263
3264 return NULL;
3265}
3266
3267static inline struct page *first_map_page(struct address_space *mapping,
3268 struct xa_state *xas,
3269 pgoff_t end_pgoff)
3270{
3271 return next_uptodate_page(xas_find(xas, end_pgoff),
3272 mapping, xas, end_pgoff);
3273}
3274
3275static inline struct page *next_map_page(struct address_space *mapping,
3276 struct xa_state *xas,
3277 pgoff_t end_pgoff)
3278{
3279 return next_uptodate_page(xas_next_entry(xas, end_pgoff),
3280 mapping, xas, end_pgoff);
3281}
3282
3283vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3284 pgoff_t start_pgoff, pgoff_t end_pgoff)
3285{
3286 struct vm_area_struct *vma = vmf->vma;
3287 struct file *file = vma->vm_file;
f1820361 3288 struct address_space *mapping = file->f_mapping;
bae473a4 3289 pgoff_t last_pgoff = start_pgoff;
9d3af4b4 3290 unsigned long addr;
070e807c 3291 XA_STATE(xas, &mapping->i_pages, start_pgoff);
27a83a60 3292 struct page *head, *page;
e630bfac 3293 unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
f9ce0be7 3294 vm_fault_t ret = 0;
f1820361
KS
3295
3296 rcu_read_lock();
f9ce0be7
KS
3297 head = first_map_page(mapping, &xas, end_pgoff);
3298 if (!head)
3299 goto out;
f1820361 3300
f9ce0be7
KS
3301 if (filemap_map_pmd(vmf, head)) {
3302 ret = VM_FAULT_NOPAGE;
3303 goto out;
3304 }
f1820361 3305
9d3af4b4
WD
3306 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3307 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
f9ce0be7 3308 do {
27a83a60 3309 page = find_subpage(head, xas.xa_index);
f9ce0be7 3310 if (PageHWPoison(page))
f1820361
KS
3311 goto unlock;
3312
e630bfac
KS
3313 if (mmap_miss > 0)
3314 mmap_miss--;
7267ec00 3315
9d3af4b4 3316 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
f9ce0be7 3317 vmf->pte += xas.xa_index - last_pgoff;
070e807c 3318 last_pgoff = xas.xa_index;
f9ce0be7
KS
3319
3320 if (!pte_none(*vmf->pte))
7267ec00 3321 goto unlock;
f9ce0be7 3322
46bdb427 3323 /* We're about to handle the fault */
9d3af4b4 3324 if (vmf->address == addr)
46bdb427 3325 ret = VM_FAULT_NOPAGE;
46bdb427 3326
9d3af4b4 3327 do_set_pte(vmf, page, addr);
f9ce0be7 3328 /* no need to invalidate: a not-present page won't be cached */
9d3af4b4 3329 update_mmu_cache(vma, addr, vmf->pte);
27a83a60 3330 unlock_page(head);
f9ce0be7 3331 continue;
f1820361 3332unlock:
27a83a60 3333 unlock_page(head);
27a83a60 3334 put_page(head);
f9ce0be7
KS
3335 } while ((head = next_map_page(mapping, &xas, end_pgoff)) != NULL);
3336 pte_unmap_unlock(vmf->pte, vmf->ptl);
3337out:
f1820361 3338 rcu_read_unlock();
e630bfac 3339 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
f9ce0be7 3340 return ret;
f1820361
KS
3341}
3342EXPORT_SYMBOL(filemap_map_pages);
3343
2bcd6454 3344vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
4fcf1c62 3345{
5df1a672 3346 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
4fcf1c62 3347 struct page *page = vmf->page;
2bcd6454 3348 vm_fault_t ret = VM_FAULT_LOCKED;
4fcf1c62 3349
5df1a672 3350 sb_start_pagefault(mapping->host->i_sb);
11bac800 3351 file_update_time(vmf->vma->vm_file);
4fcf1c62 3352 lock_page(page);
5df1a672 3353 if (page->mapping != mapping) {
4fcf1c62
JK
3354 unlock_page(page);
3355 ret = VM_FAULT_NOPAGE;
3356 goto out;
3357 }
14da9200
JK
3358 /*
3359 * We mark the page dirty already here so that when freeze is in
3360 * progress, we are guaranteed that writeback during freezing will
3361 * see the dirty page and writeprotect it again.
3362 */
3363 set_page_dirty(page);
1d1d1a76 3364 wait_for_stable_page(page);
4fcf1c62 3365out:
5df1a672 3366 sb_end_pagefault(mapping->host->i_sb);
4fcf1c62
JK
3367 return ret;
3368}
4fcf1c62 3369
f0f37e2f 3370const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 3371 .fault = filemap_fault,
f1820361 3372 .map_pages = filemap_map_pages,
4fcf1c62 3373 .page_mkwrite = filemap_page_mkwrite,
1da177e4
LT
3374};
3375
3376/* This is used for a general mmap of a disk file */
3377
68d68ff6 3378int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
3379{
3380 struct address_space *mapping = file->f_mapping;
3381
3382 if (!mapping->a_ops->readpage)
3383 return -ENOEXEC;
3384 file_accessed(file);
3385 vma->vm_ops = &generic_file_vm_ops;
3386 return 0;
3387}
1da177e4
LT
3388
3389/*
3390 * This is for filesystems which do not implement ->writepage.
3391 */
3392int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3393{
3394 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3395 return -EINVAL;
3396 return generic_file_mmap(file, vma);
3397}
3398#else
4b96a37d 3399vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
45397228 3400{
4b96a37d 3401 return VM_FAULT_SIGBUS;
45397228 3402}
68d68ff6 3403int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
3404{
3405 return -ENOSYS;
3406}
68d68ff6 3407int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
3408{
3409 return -ENOSYS;
3410}
3411#endif /* CONFIG_MMU */
3412
45397228 3413EXPORT_SYMBOL(filemap_page_mkwrite);
1da177e4
LT
3414EXPORT_SYMBOL(generic_file_mmap);
3415EXPORT_SYMBOL(generic_file_readonly_mmap);
3416
67f9fd91
SL
3417static struct page *wait_on_page_read(struct page *page)
3418{
3419 if (!IS_ERR(page)) {
3420 wait_on_page_locked(page);
3421 if (!PageUptodate(page)) {
09cbfeaf 3422 put_page(page);
67f9fd91
SL
3423 page = ERR_PTR(-EIO);
3424 }
3425 }
3426 return page;
3427}
3428
32b63529 3429static struct page *do_read_cache_page(struct address_space *mapping,
57f6b96c 3430 pgoff_t index,
5e5358e7 3431 int (*filler)(void *, struct page *),
0531b2aa
LT
3432 void *data,
3433 gfp_t gfp)
1da177e4 3434{
eb2be189 3435 struct page *page;
1da177e4
LT
3436 int err;
3437repeat:
3438 page = find_get_page(mapping, index);
3439 if (!page) {
453f85d4 3440 page = __page_cache_alloc(gfp);
eb2be189
NP
3441 if (!page)
3442 return ERR_PTR(-ENOMEM);
e6f67b8c 3443 err = add_to_page_cache_lru(page, mapping, index, gfp);
eb2be189 3444 if (unlikely(err)) {
09cbfeaf 3445 put_page(page);
eb2be189
NP
3446 if (err == -EEXIST)
3447 goto repeat;
22ecdb4f 3448 /* Presumably ENOMEM for xarray node */
1da177e4
LT
3449 return ERR_PTR(err);
3450 }
32b63529
MG
3451
3452filler:
6c45b454
CH
3453 if (filler)
3454 err = filler(data, page);
3455 else
3456 err = mapping->a_ops->readpage(data, page);
3457
1da177e4 3458 if (err < 0) {
09cbfeaf 3459 put_page(page);
32b63529 3460 return ERR_PTR(err);
1da177e4 3461 }
1da177e4 3462
32b63529
MG
3463 page = wait_on_page_read(page);
3464 if (IS_ERR(page))
3465 return page;
3466 goto out;
3467 }
1da177e4
LT
3468 if (PageUptodate(page))
3469 goto out;
3470
ebded027 3471 /*
0e9aa675 3472 * Page is not up to date and may be locked due to one of the following
ebded027
MG
3473 * case a: Page is being filled and the page lock is held
3474 * case b: Read/write error clearing the page uptodate status
3475 * case c: Truncation in progress (page locked)
3476 * case d: Reclaim in progress
3477 *
3478 * Case a, the page will be up to date when the page is unlocked.
3479 * There is no need to serialise on the page lock here as the page
3480 * is pinned so the lock gives no additional protection. Even if the
ce89fddf 3481 * page is truncated, the data is still valid if PageUptodate as
ebded027
MG
3482 * it's a race vs truncate race.
3483 * Case b, the page will not be up to date
3484 * Case c, the page may be truncated but in itself, the data may still
3485 * be valid after IO completes as it's a read vs truncate race. The
3486 * operation must restart if the page is not uptodate on unlock but
3487 * otherwise serialising on page lock to stabilise the mapping gives
3488 * no additional guarantees to the caller as the page lock is
3489 * released before return.
3490 * Case d, similar to truncation. If reclaim holds the page lock, it
3491 * will be a race with remove_mapping that determines if the mapping
3492 * is valid on unlock but otherwise the data is valid and there is
3493 * no need to serialise with page lock.
3494 *
3495 * As the page lock gives no additional guarantee, we optimistically
3496 * wait on the page to be unlocked and check if it's up to date and
3497 * use the page if it is. Otherwise, the page lock is required to
3498 * distinguish between the different cases. The motivation is that we
3499 * avoid spurious serialisations and wakeups when multiple processes
3500 * wait on the same page for IO to complete.
3501 */
3502 wait_on_page_locked(page);
3503 if (PageUptodate(page))
3504 goto out;
3505
3506 /* Distinguish between all the cases under the safety of the lock */
1da177e4 3507 lock_page(page);
ebded027
MG
3508
3509 /* Case c or d, restart the operation */
1da177e4
LT
3510 if (!page->mapping) {
3511 unlock_page(page);
09cbfeaf 3512 put_page(page);
32b63529 3513 goto repeat;
1da177e4 3514 }
ebded027
MG
3515
3516 /* Someone else locked and filled the page in a very small window */
1da177e4
LT
3517 if (PageUptodate(page)) {
3518 unlock_page(page);
3519 goto out;
3520 }
faffdfa0
XT
3521
3522 /*
3523 * A previous I/O error may have been due to temporary
3524 * failures.
3525 * Clear page error before actual read, PG_error will be
3526 * set again if read page fails.
3527 */
3528 ClearPageError(page);
32b63529
MG
3529 goto filler;
3530
c855ff37 3531out:
6fe6900e
NP
3532 mark_page_accessed(page);
3533 return page;
3534}
0531b2aa
LT
3535
3536/**
67f9fd91 3537 * read_cache_page - read into page cache, fill it if needed
0531b2aa
LT
3538 * @mapping: the page's address_space
3539 * @index: the page index
3540 * @filler: function to perform the read
5e5358e7 3541 * @data: first arg to filler(data, page) function, often left as NULL
0531b2aa 3542 *
0531b2aa 3543 * Read into the page cache. If a page already exists, and PageUptodate() is
67f9fd91 3544 * not set, try to fill the page and wait for it to become unlocked.
0531b2aa
LT
3545 *
3546 * If the page does not get brought uptodate, return -EIO.
a862f68a 3547 *
730633f0
JK
3548 * The function expects mapping->invalidate_lock to be already held.
3549 *
a862f68a 3550 * Return: up to date page on success, ERR_PTR() on failure.
0531b2aa 3551 */
67f9fd91 3552struct page *read_cache_page(struct address_space *mapping,
0531b2aa 3553 pgoff_t index,
5e5358e7 3554 int (*filler)(void *, struct page *),
0531b2aa
LT
3555 void *data)
3556{
d322a8e5
CH
3557 return do_read_cache_page(mapping, index, filler, data,
3558 mapping_gfp_mask(mapping));
0531b2aa 3559}
67f9fd91 3560EXPORT_SYMBOL(read_cache_page);
0531b2aa
LT
3561
3562/**
3563 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3564 * @mapping: the page's address_space
3565 * @index: the page index
3566 * @gfp: the page allocator flags to use if allocating
3567 *
3568 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
e6f67b8c 3569 * any new page allocations done using the specified allocation flags.
0531b2aa
LT
3570 *
3571 * If the page does not get brought uptodate, return -EIO.
a862f68a 3572 *
730633f0
JK
3573 * The function expects mapping->invalidate_lock to be already held.
3574 *
a862f68a 3575 * Return: up to date page on success, ERR_PTR() on failure.
0531b2aa
LT
3576 */
3577struct page *read_cache_page_gfp(struct address_space *mapping,
3578 pgoff_t index,
3579 gfp_t gfp)
3580{
6c45b454 3581 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
0531b2aa
LT
3582}
3583EXPORT_SYMBOL(read_cache_page_gfp);
3584
afddba49
NP
3585int pagecache_write_begin(struct file *file, struct address_space *mapping,
3586 loff_t pos, unsigned len, unsigned flags,
3587 struct page **pagep, void **fsdata)
3588{
3589 const struct address_space_operations *aops = mapping->a_ops;
3590
4e02ed4b 3591 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 3592 pagep, fsdata);
afddba49
NP
3593}
3594EXPORT_SYMBOL(pagecache_write_begin);
3595
3596int pagecache_write_end(struct file *file, struct address_space *mapping,
3597 loff_t pos, unsigned len, unsigned copied,
3598 struct page *page, void *fsdata)
3599{
3600 const struct address_space_operations *aops = mapping->a_ops;
afddba49 3601
4e02ed4b 3602 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
3603}
3604EXPORT_SYMBOL(pagecache_write_end);
3605
a92853b6
KK
3606/*
3607 * Warn about a page cache invalidation failure during a direct I/O write.
3608 */
3609void dio_warn_stale_pagecache(struct file *filp)
3610{
3611 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3612 char pathname[128];
a92853b6
KK
3613 char *path;
3614
5df1a672 3615 errseq_set(&filp->f_mapping->wb_err, -EIO);
a92853b6
KK
3616 if (__ratelimit(&_rs)) {
3617 path = file_path(filp, pathname, sizeof(pathname));
3618 if (IS_ERR(path))
3619 path = "(unknown)";
3620 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
3621 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3622 current->comm);
3623 }
3624}
3625
1da177e4 3626ssize_t
1af5bb49 3627generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3628{
3629 struct file *file = iocb->ki_filp;
3630 struct address_space *mapping = file->f_mapping;
3631 struct inode *inode = mapping->host;
1af5bb49 3632 loff_t pos = iocb->ki_pos;
1da177e4 3633 ssize_t written;
a969e903
CH
3634 size_t write_len;
3635 pgoff_t end;
1da177e4 3636
0c949334 3637 write_len = iov_iter_count(from);
09cbfeaf 3638 end = (pos + write_len - 1) >> PAGE_SHIFT;
a969e903 3639
6be96d3a
GR
3640 if (iocb->ki_flags & IOCB_NOWAIT) {
3641 /* If there are pages to writeback, return */
5df1a672 3642 if (filemap_range_has_page(file->f_mapping, pos,
35f12f0f 3643 pos + write_len - 1))
6be96d3a
GR
3644 return -EAGAIN;
3645 } else {
3646 written = filemap_write_and_wait_range(mapping, pos,
3647 pos + write_len - 1);
3648 if (written)
3649 goto out;
3650 }
a969e903
CH
3651
3652 /*
3653 * After a write we want buffered reads to be sure to go to disk to get
3654 * the new data. We invalidate clean cached page from the region we're
3655 * about to write. We do this *before* the write so that we can return
6ccfa806 3656 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903 3657 */
55635ba7 3658 written = invalidate_inode_pages2_range(mapping,
09cbfeaf 3659 pos >> PAGE_SHIFT, end);
55635ba7
AR
3660 /*
3661 * If a page can not be invalidated, return 0 to fall back
3662 * to buffered write.
3663 */
3664 if (written) {
3665 if (written == -EBUSY)
3666 return 0;
3667 goto out;
a969e903
CH
3668 }
3669
639a93a5 3670 written = mapping->a_ops->direct_IO(iocb, from);
a969e903
CH
3671
3672 /*
3673 * Finally, try again to invalidate clean pages which might have been
3674 * cached by non-direct readahead, or faulted in by get_user_pages()
3675 * if the source of the write was an mmap'ed region of the file
3676 * we're writing. Either one is a pretty crazy thing to do,
3677 * so we don't support it 100%. If this invalidation
3678 * fails, tough, the write still worked...
332391a9
LC
3679 *
3680 * Most of the time we do not need this since dio_complete() will do
3681 * the invalidation for us. However there are some file systems that
3682 * do not end up with dio_complete() being called, so let's not break
80c1fe90
KK
3683 * them by removing it completely.
3684 *
9266a140
KK
3685 * Noticeable example is a blkdev_direct_IO().
3686 *
80c1fe90 3687 * Skip invalidation for async writes or if mapping has no pages.
a969e903 3688 */
9266a140
KK
3689 if (written > 0 && mapping->nrpages &&
3690 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3691 dio_warn_stale_pagecache(file);
a969e903 3692
1da177e4 3693 if (written > 0) {
0116651c 3694 pos += written;
639a93a5 3695 write_len -= written;
0116651c
NK
3696 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3697 i_size_write(inode, pos);
1da177e4
LT
3698 mark_inode_dirty(inode);
3699 }
5cb6c6c7 3700 iocb->ki_pos = pos;
1da177e4 3701 }
ab2125df
PB
3702 if (written != -EIOCBQUEUED)
3703 iov_iter_revert(from, write_len - iov_iter_count(from));
a969e903 3704out:
1da177e4
LT
3705 return written;
3706}
3707EXPORT_SYMBOL(generic_file_direct_write);
3708
3b93f911 3709ssize_t generic_perform_write(struct file *file,
afddba49
NP
3710 struct iov_iter *i, loff_t pos)
3711{
3712 struct address_space *mapping = file->f_mapping;
3713 const struct address_space_operations *a_ops = mapping->a_ops;
3714 long status = 0;
3715 ssize_t written = 0;
674b892e
NP
3716 unsigned int flags = 0;
3717
afddba49
NP
3718 do {
3719 struct page *page;
afddba49
NP
3720 unsigned long offset; /* Offset into pagecache page */
3721 unsigned long bytes; /* Bytes to write to page */
3722 size_t copied; /* Bytes copied from user */
3723 void *fsdata;
3724
09cbfeaf
KS
3725 offset = (pos & (PAGE_SIZE - 1));
3726 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
3727 iov_iter_count(i));
3728
3729again:
00a3d660
LT
3730 /*
3731 * Bring in the user page that we will copy from _first_.
3732 * Otherwise there's a nasty deadlock on copying from the
3733 * same page as we're writing to, without it being marked
3734 * up-to-date.
00a3d660 3735 */
a6294593 3736 if (unlikely(fault_in_iov_iter_readable(i, bytes))) {
00a3d660
LT
3737 status = -EFAULT;
3738 break;
3739 }
3740
296291cd
JK
3741 if (fatal_signal_pending(current)) {
3742 status = -EINTR;
3743 break;
3744 }
3745
674b892e 3746 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49 3747 &page, &fsdata);
2457aec6 3748 if (unlikely(status < 0))
afddba49
NP
3749 break;
3750
931e80e4 3751 if (mapping_writably_mapped(mapping))
3752 flush_dcache_page(page);
00a3d660 3753
f0b65f39 3754 copied = copy_page_from_iter_atomic(page, offset, bytes, i);
afddba49
NP
3755 flush_dcache_page(page);
3756
3757 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3758 page, fsdata);
f0b65f39
AV
3759 if (unlikely(status != copied)) {
3760 iov_iter_revert(i, copied - max(status, 0L));
3761 if (unlikely(status < 0))
3762 break;
3763 }
afddba49
NP
3764 cond_resched();
3765
bc1bb416 3766 if (unlikely(status == 0)) {
afddba49 3767 /*
bc1bb416
AV
3768 * A short copy made ->write_end() reject the
3769 * thing entirely. Might be memory poisoning
3770 * halfway through, might be a race with munmap,
3771 * might be severe memory pressure.
afddba49 3772 */
bc1bb416
AV
3773 if (copied)
3774 bytes = copied;
afddba49
NP
3775 goto again;
3776 }
f0b65f39
AV
3777 pos += status;
3778 written += status;
afddba49
NP
3779
3780 balance_dirty_pages_ratelimited(mapping);
afddba49
NP
3781 } while (iov_iter_count(i));
3782
3783 return written ? written : status;
3784}
3b93f911 3785EXPORT_SYMBOL(generic_perform_write);
1da177e4 3786
e4dd9de3 3787/**
8174202b 3788 * __generic_file_write_iter - write data to a file
e4dd9de3 3789 * @iocb: IO state structure (file, offset, etc.)
8174202b 3790 * @from: iov_iter with data to write
e4dd9de3
JK
3791 *
3792 * This function does all the work needed for actually writing data to a
3793 * file. It does all basic checks, removes SUID from the file, updates
3794 * modification times and calls proper subroutines depending on whether we
3795 * do direct IO or a standard buffered write.
3796 *
9608703e 3797 * It expects i_rwsem to be grabbed unless we work on a block device or similar
e4dd9de3
JK
3798 * object which does not need locking at all.
3799 *
3800 * This function does *not* take care of syncing data in case of O_SYNC write.
3801 * A caller has to handle it. This is mainly due to the fact that we want to
9608703e 3802 * avoid syncing under i_rwsem.
a862f68a
MR
3803 *
3804 * Return:
3805 * * number of bytes written, even for truncated writes
3806 * * negative error code if no data has been written at all
e4dd9de3 3807 */
8174202b 3808ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3809{
3810 struct file *file = iocb->ki_filp;
68d68ff6 3811 struct address_space *mapping = file->f_mapping;
1da177e4 3812 struct inode *inode = mapping->host;
3b93f911 3813 ssize_t written = 0;
1da177e4 3814 ssize_t err;
3b93f911 3815 ssize_t status;
1da177e4 3816
1da177e4 3817 /* We can write back this queue in page reclaim */
de1414a6 3818 current->backing_dev_info = inode_to_bdi(inode);
5fa8e0a1 3819 err = file_remove_privs(file);
1da177e4
LT
3820 if (err)
3821 goto out;
3822
c3b2da31
JB
3823 err = file_update_time(file);
3824 if (err)
3825 goto out;
1da177e4 3826
2ba48ce5 3827 if (iocb->ki_flags & IOCB_DIRECT) {
0b8def9d 3828 loff_t pos, endbyte;
fb5527e6 3829
1af5bb49 3830 written = generic_file_direct_write(iocb, from);
1da177e4 3831 /*
fbbbad4b
MW
3832 * If the write stopped short of completing, fall back to
3833 * buffered writes. Some filesystems do this for writes to
3834 * holes, for example. For DAX files, a buffered write will
3835 * not succeed (even if it did, DAX does not handle dirty
3836 * page-cache pages correctly).
1da177e4 3837 */
0b8def9d 3838 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
fbbbad4b
MW
3839 goto out;
3840
0b8def9d 3841 status = generic_perform_write(file, from, pos = iocb->ki_pos);
fb5527e6 3842 /*
3b93f911 3843 * If generic_perform_write() returned a synchronous error
fb5527e6
JM
3844 * then we want to return the number of bytes which were
3845 * direct-written, or the error code if that was zero. Note
3846 * that this differs from normal direct-io semantics, which
3847 * will return -EFOO even if some bytes were written.
3848 */
60bb4529 3849 if (unlikely(status < 0)) {
3b93f911 3850 err = status;
fb5527e6
JM
3851 goto out;
3852 }
fb5527e6
JM
3853 /*
3854 * We need to ensure that the page cache pages are written to
3855 * disk and invalidated to preserve the expected O_DIRECT
3856 * semantics.
3857 */
3b93f911 3858 endbyte = pos + status - 1;
0b8def9d 3859 err = filemap_write_and_wait_range(mapping, pos, endbyte);
fb5527e6 3860 if (err == 0) {
0b8def9d 3861 iocb->ki_pos = endbyte + 1;
3b93f911 3862 written += status;
fb5527e6 3863 invalidate_mapping_pages(mapping,
09cbfeaf
KS
3864 pos >> PAGE_SHIFT,
3865 endbyte >> PAGE_SHIFT);
fb5527e6
JM
3866 } else {
3867 /*
3868 * We don't know how much we wrote, so just return
3869 * the number of bytes which were direct-written
3870 */
3871 }
3872 } else {
0b8def9d
AV
3873 written = generic_perform_write(file, from, iocb->ki_pos);
3874 if (likely(written > 0))
3875 iocb->ki_pos += written;
fb5527e6 3876 }
1da177e4
LT
3877out:
3878 current->backing_dev_info = NULL;
3879 return written ? written : err;
3880}
8174202b 3881EXPORT_SYMBOL(__generic_file_write_iter);
e4dd9de3 3882
e4dd9de3 3883/**
8174202b 3884 * generic_file_write_iter - write data to a file
e4dd9de3 3885 * @iocb: IO state structure
8174202b 3886 * @from: iov_iter with data to write
e4dd9de3 3887 *
8174202b 3888 * This is a wrapper around __generic_file_write_iter() to be used by most
e4dd9de3 3889 * filesystems. It takes care of syncing the file in case of O_SYNC file
9608703e 3890 * and acquires i_rwsem as needed.
a862f68a
MR
3891 * Return:
3892 * * negative error code if no data has been written at all of
3893 * vfs_fsync_range() failed for a synchronous write
3894 * * number of bytes written, even for truncated writes
e4dd9de3 3895 */
8174202b 3896ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3897{
3898 struct file *file = iocb->ki_filp;
148f948b 3899 struct inode *inode = file->f_mapping->host;
1da177e4 3900 ssize_t ret;
1da177e4 3901
5955102c 3902 inode_lock(inode);
3309dd04
AV
3903 ret = generic_write_checks(iocb, from);
3904 if (ret > 0)
5f380c7f 3905 ret = __generic_file_write_iter(iocb, from);
5955102c 3906 inode_unlock(inode);
1da177e4 3907
e2592217
CH
3908 if (ret > 0)
3909 ret = generic_write_sync(iocb, ret);
1da177e4
LT
3910 return ret;
3911}
8174202b 3912EXPORT_SYMBOL(generic_file_write_iter);
1da177e4 3913
cf9a2ae8
DH
3914/**
3915 * try_to_release_page() - release old fs-specific metadata on a page
3916 *
3917 * @page: the page which the kernel is trying to free
3918 * @gfp_mask: memory allocation flags (and I/O mode)
3919 *
3920 * The address_space is to try to release any data against the page
a862f68a 3921 * (presumably at page->private).
cf9a2ae8 3922 *
266cf658
DH
3923 * This may also be called if PG_fscache is set on a page, indicating that the
3924 * page is known to the local caching routines.
3925 *
cf9a2ae8 3926 * The @gfp_mask argument specifies whether I/O may be performed to release
71baba4b 3927 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
cf9a2ae8 3928 *
a862f68a 3929 * Return: %1 if the release was successful, otherwise return zero.
cf9a2ae8
DH
3930 */
3931int try_to_release_page(struct page *page, gfp_t gfp_mask)
3932{
3933 struct address_space * const mapping = page->mapping;
3934
3935 BUG_ON(!PageLocked(page));
3936 if (PageWriteback(page))
3937 return 0;
3938
3939 if (mapping && mapping->a_ops->releasepage)
3940 return mapping->a_ops->releasepage(page, gfp_mask);
3941 return try_to_free_buffers(page);
3942}
3943
3944EXPORT_SYMBOL(try_to_release_page);