page cache: Convert find_get_pages_range to XArray
[linux-block.git] / mm / filemap.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
b95f1b31 12#include <linux/export.h>
1da177e4 13#include <linux/compiler.h>
f9fe48be 14#include <linux/dax.h>
1da177e4 15#include <linux/fs.h>
3f07c014 16#include <linux/sched/signal.h>
c22ce143 17#include <linux/uaccess.h>
c59ede7b 18#include <linux/capability.h>
1da177e4 19#include <linux/kernel_stat.h>
5a0e3ad6 20#include <linux/gfp.h>
1da177e4
LT
21#include <linux/mm.h>
22#include <linux/swap.h>
23#include <linux/mman.h>
24#include <linux/pagemap.h>
25#include <linux/file.h>
26#include <linux/uio.h>
27#include <linux/hash.h>
28#include <linux/writeback.h>
53253383 29#include <linux/backing-dev.h>
1da177e4
LT
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/security.h>
44110fe3 33#include <linux/cpuset.h>
00501b53 34#include <linux/hugetlb.h>
8a9f3ccd 35#include <linux/memcontrol.h>
c515e1fd 36#include <linux/cleancache.h>
c7df8ad2 37#include <linux/shmem_fs.h>
f1820361 38#include <linux/rmap.h>
0f8053a5
NP
39#include "internal.h"
40
fe0bfaaf
RJ
41#define CREATE_TRACE_POINTS
42#include <trace/events/filemap.h>
43
1da177e4 44/*
1da177e4
LT
45 * FIXME: remove all knowledge of the buffer layer from the core VM
46 */
148f948b 47#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 48
1da177e4
LT
49#include <asm/mman.h>
50
51/*
52 * Shared mappings implemented 30.11.1994. It's not fully working yet,
53 * though.
54 *
55 * Shared mappings now work. 15.8.1995 Bruno.
56 *
57 * finished 'unifying' the page and buffer cache and SMP-threaded the
58 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
59 *
60 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
61 */
62
63/*
64 * Lock ordering:
65 *
c8c06efa 66 * ->i_mmap_rwsem (truncate_pagecache)
1da177e4 67 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91 68 * ->swap_lock (exclusive_swap_page, others)
b93b0163 69 * ->i_pages lock
1da177e4 70 *
1b1dcc1b 71 * ->i_mutex
c8c06efa 72 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
1da177e4
LT
73 *
74 * ->mmap_sem
c8c06efa 75 * ->i_mmap_rwsem
b8072f09 76 * ->page_table_lock or pte_lock (various, mainly in memory.c)
b93b0163 77 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
1da177e4
LT
78 *
79 * ->mmap_sem
80 * ->lock_page (access_process_vm)
81 *
ccad2365 82 * ->i_mutex (generic_perform_write)
82591e6e 83 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
1da177e4 84 *
f758eeab 85 * bdi->wb.list_lock
a66979ab 86 * sb_lock (fs/fs-writeback.c)
b93b0163 87 * ->i_pages lock (__sync_single_inode)
1da177e4 88 *
c8c06efa 89 * ->i_mmap_rwsem
1da177e4
LT
90 * ->anon_vma.lock (vma_adjust)
91 *
92 * ->anon_vma.lock
b8072f09 93 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 94 *
b8072f09 95 * ->page_table_lock or pte_lock
5d337b91 96 * ->swap_lock (try_to_unmap_one)
1da177e4 97 * ->private_lock (try_to_unmap_one)
b93b0163 98 * ->i_pages lock (try_to_unmap_one)
a52633d8
MG
99 * ->zone_lru_lock(zone) (follow_page->mark_page_accessed)
100 * ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page)
1da177e4 101 * ->private_lock (page_remove_rmap->set_page_dirty)
b93b0163 102 * ->i_pages lock (page_remove_rmap->set_page_dirty)
f758eeab 103 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
250df6ed 104 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
81f8c3a4 105 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
f758eeab 106 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 107 * ->inode->i_lock (zap_pte_range->set_page_dirty)
1da177e4
LT
108 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
109 *
c8c06efa 110 * ->i_mmap_rwsem
9a3c531d 111 * ->tasklist_lock (memory_failure, collect_procs_ao)
1da177e4
LT
112 */
113
5c024e6a 114static void page_cache_delete(struct address_space *mapping,
91b0abe3
JW
115 struct page *page, void *shadow)
116{
5c024e6a
MW
117 XA_STATE(xas, &mapping->i_pages, page->index);
118 unsigned int nr = 1;
c70b647d 119
5c024e6a
MW
120 mapping_set_update(&xas, mapping);
121
122 /* hugetlb pages are represented by a single entry in the xarray */
123 if (!PageHuge(page)) {
124 xas_set_order(&xas, page->index, compound_order(page));
125 nr = 1U << compound_order(page);
126 }
91b0abe3 127
83929372
KS
128 VM_BUG_ON_PAGE(!PageLocked(page), page);
129 VM_BUG_ON_PAGE(PageTail(page), page);
130 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
449dd698 131
5c024e6a
MW
132 xas_store(&xas, shadow);
133 xas_init_marks(&xas);
d3798ae8 134
2300638b
JK
135 page->mapping = NULL;
136 /* Leave page->index set: truncation lookup relies upon it */
137
d3798ae8
JW
138 if (shadow) {
139 mapping->nrexceptional += nr;
140 /*
141 * Make sure the nrexceptional update is committed before
142 * the nrpages update so that final truncate racing
143 * with reclaim does not see both counters 0 at the
144 * same time and miss a shadow entry.
145 */
146 smp_wmb();
147 }
148 mapping->nrpages -= nr;
91b0abe3
JW
149}
150
5ecc4d85
JK
151static void unaccount_page_cache_page(struct address_space *mapping,
152 struct page *page)
1da177e4 153{
5ecc4d85 154 int nr;
1da177e4 155
c515e1fd
DM
156 /*
157 * if we're uptodate, flush out into the cleancache, otherwise
158 * invalidate any existing cleancache entries. We can't leave
159 * stale data around in the cleancache once our page is gone
160 */
161 if (PageUptodate(page) && PageMappedToDisk(page))
162 cleancache_put_page(page);
163 else
3167760f 164 cleancache_invalidate_page(mapping, page);
c515e1fd 165
83929372 166 VM_BUG_ON_PAGE(PageTail(page), page);
06b241f3
HD
167 VM_BUG_ON_PAGE(page_mapped(page), page);
168 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
169 int mapcount;
170
171 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
172 current->comm, page_to_pfn(page));
173 dump_page(page, "still mapped when deleted");
174 dump_stack();
175 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
176
177 mapcount = page_mapcount(page);
178 if (mapping_exiting(mapping) &&
179 page_count(page) >= mapcount + 2) {
180 /*
181 * All vmas have already been torn down, so it's
182 * a good bet that actually the page is unmapped,
183 * and we'd prefer not to leak it: if we're wrong,
184 * some other bad page check should catch it later.
185 */
186 page_mapcount_reset(page);
6d061f9f 187 page_ref_sub(page, mapcount);
06b241f3
HD
188 }
189 }
190
4165b9b4 191 /* hugetlb pages do not participate in page cache accounting. */
5ecc4d85
JK
192 if (PageHuge(page))
193 return;
09612fa6 194
5ecc4d85
JK
195 nr = hpage_nr_pages(page);
196
197 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
198 if (PageSwapBacked(page)) {
199 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
200 if (PageTransHuge(page))
201 __dec_node_page_state(page, NR_SHMEM_THPS);
202 } else {
203 VM_BUG_ON_PAGE(PageTransHuge(page), page);
800d8c63 204 }
5ecc4d85
JK
205
206 /*
207 * At this point page must be either written or cleaned by
208 * truncate. Dirty page here signals a bug and loss of
209 * unwritten data.
210 *
211 * This fixes dirty accounting after removing the page entirely
212 * but leaves PageDirty set: it has no effect for truncated
213 * page and anyway will be cleared before returning page into
214 * buddy allocator.
215 */
216 if (WARN_ON_ONCE(PageDirty(page)))
217 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
218}
219
220/*
221 * Delete a page from the page cache and free it. Caller has to make
222 * sure the page is locked and that nobody else uses it - or that usage
b93b0163 223 * is safe. The caller must hold the i_pages lock.
5ecc4d85
JK
224 */
225void __delete_from_page_cache(struct page *page, void *shadow)
226{
227 struct address_space *mapping = page->mapping;
228
229 trace_mm_filemap_delete_from_page_cache(page);
230
231 unaccount_page_cache_page(mapping, page);
5c024e6a 232 page_cache_delete(mapping, page, shadow);
1da177e4
LT
233}
234
59c66c5f
JK
235static void page_cache_free_page(struct address_space *mapping,
236 struct page *page)
237{
238 void (*freepage)(struct page *);
239
240 freepage = mapping->a_ops->freepage;
241 if (freepage)
242 freepage(page);
243
244 if (PageTransHuge(page) && !PageHuge(page)) {
245 page_ref_sub(page, HPAGE_PMD_NR);
246 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
247 } else {
248 put_page(page);
249 }
250}
251
702cfbf9
MK
252/**
253 * delete_from_page_cache - delete page from page cache
254 * @page: the page which the kernel is trying to remove from page cache
255 *
256 * This must be called only on pages that have been verified to be in the page
257 * cache and locked. It will never put the page into the free list, the caller
258 * has a reference on the page.
259 */
260void delete_from_page_cache(struct page *page)
1da177e4 261{
83929372 262 struct address_space *mapping = page_mapping(page);
c4843a75 263 unsigned long flags;
1da177e4 264
cd7619d6 265 BUG_ON(!PageLocked(page));
b93b0163 266 xa_lock_irqsave(&mapping->i_pages, flags);
62cccb8c 267 __delete_from_page_cache(page, NULL);
b93b0163 268 xa_unlock_irqrestore(&mapping->i_pages, flags);
6072d13c 269
59c66c5f 270 page_cache_free_page(mapping, page);
97cecb5a
MK
271}
272EXPORT_SYMBOL(delete_from_page_cache);
273
aa65c29c
JK
274/*
275 * page_cache_tree_delete_batch - delete several pages from page cache
276 * @mapping: the mapping to which pages belong
277 * @pvec: pagevec with pages to delete
278 *
b93b0163
MW
279 * The function walks over mapping->i_pages and removes pages passed in @pvec
280 * from the mapping. The function expects @pvec to be sorted by page index.
281 * It tolerates holes in @pvec (mapping entries at those indices are not
aa65c29c 282 * modified). The function expects only THP head pages to be present in the
b93b0163
MW
283 * @pvec and takes care to delete all corresponding tail pages from the
284 * mapping as well.
aa65c29c 285 *
b93b0163 286 * The function expects the i_pages lock to be held.
aa65c29c
JK
287 */
288static void
289page_cache_tree_delete_batch(struct address_space *mapping,
290 struct pagevec *pvec)
291{
292 struct radix_tree_iter iter;
293 void **slot;
294 int total_pages = 0;
295 int i = 0, tail_pages = 0;
296 struct page *page;
297 pgoff_t start;
298
299 start = pvec->pages[0]->index;
b93b0163 300 radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
aa65c29c
JK
301 if (i >= pagevec_count(pvec) && !tail_pages)
302 break;
303 page = radix_tree_deref_slot_protected(slot,
b93b0163 304 &mapping->i_pages.xa_lock);
3159f943 305 if (xa_is_value(page))
aa65c29c
JK
306 continue;
307 if (!tail_pages) {
308 /*
309 * Some page got inserted in our range? Skip it. We
310 * have our pages locked so they are protected from
311 * being removed.
312 */
313 if (page != pvec->pages[i])
314 continue;
315 WARN_ON_ONCE(!PageLocked(page));
316 if (PageTransHuge(page) && !PageHuge(page))
317 tail_pages = HPAGE_PMD_NR - 1;
318 page->mapping = NULL;
319 /*
320 * Leave page->index set: truncation lookup relies
321 * upon it
322 */
323 i++;
324 } else {
325 tail_pages--;
326 }
b93b0163
MW
327 radix_tree_clear_tags(&mapping->i_pages, iter.node, slot);
328 __radix_tree_replace(&mapping->i_pages, iter.node, slot, NULL,
c7df8ad2 329 workingset_lookup_update(mapping));
aa65c29c
JK
330 total_pages++;
331 }
332 mapping->nrpages -= total_pages;
333}
334
335void delete_from_page_cache_batch(struct address_space *mapping,
336 struct pagevec *pvec)
337{
338 int i;
339 unsigned long flags;
340
341 if (!pagevec_count(pvec))
342 return;
343
b93b0163 344 xa_lock_irqsave(&mapping->i_pages, flags);
aa65c29c
JK
345 for (i = 0; i < pagevec_count(pvec); i++) {
346 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
347
348 unaccount_page_cache_page(mapping, pvec->pages[i]);
349 }
350 page_cache_tree_delete_batch(mapping, pvec);
b93b0163 351 xa_unlock_irqrestore(&mapping->i_pages, flags);
aa65c29c
JK
352
353 for (i = 0; i < pagevec_count(pvec); i++)
354 page_cache_free_page(mapping, pvec->pages[i]);
355}
356
d72d9e2a 357int filemap_check_errors(struct address_space *mapping)
865ffef3
DM
358{
359 int ret = 0;
360 /* Check for outstanding write errors */
7fcbbaf1
JA
361 if (test_bit(AS_ENOSPC, &mapping->flags) &&
362 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
865ffef3 363 ret = -ENOSPC;
7fcbbaf1
JA
364 if (test_bit(AS_EIO, &mapping->flags) &&
365 test_and_clear_bit(AS_EIO, &mapping->flags))
865ffef3
DM
366 ret = -EIO;
367 return ret;
368}
d72d9e2a 369EXPORT_SYMBOL(filemap_check_errors);
865ffef3 370
76341cab
JL
371static int filemap_check_and_keep_errors(struct address_space *mapping)
372{
373 /* Check for outstanding write errors */
374 if (test_bit(AS_EIO, &mapping->flags))
375 return -EIO;
376 if (test_bit(AS_ENOSPC, &mapping->flags))
377 return -ENOSPC;
378 return 0;
379}
380
1da177e4 381/**
485bb99b 382 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
383 * @mapping: address space structure to write
384 * @start: offset in bytes where the range starts
469eb4d0 385 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 386 * @sync_mode: enable synchronous operation
1da177e4 387 *
485bb99b
RD
388 * Start writeback against all of a mapping's dirty pages that lie
389 * within the byte offsets <start, end> inclusive.
390 *
1da177e4 391 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 392 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
393 * these two operations is that if a dirty page/buffer is encountered, it must
394 * be waited upon, and not just skipped over.
395 */
ebcf28e1
AM
396int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
397 loff_t end, int sync_mode)
1da177e4
LT
398{
399 int ret;
400 struct writeback_control wbc = {
401 .sync_mode = sync_mode,
05fe478d 402 .nr_to_write = LONG_MAX,
111ebb6e
OH
403 .range_start = start,
404 .range_end = end,
1da177e4
LT
405 };
406
407 if (!mapping_cap_writeback_dirty(mapping))
408 return 0;
409
b16b1deb 410 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
1da177e4 411 ret = do_writepages(mapping, &wbc);
b16b1deb 412 wbc_detach_inode(&wbc);
1da177e4
LT
413 return ret;
414}
415
416static inline int __filemap_fdatawrite(struct address_space *mapping,
417 int sync_mode)
418{
111ebb6e 419 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
420}
421
422int filemap_fdatawrite(struct address_space *mapping)
423{
424 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
425}
426EXPORT_SYMBOL(filemap_fdatawrite);
427
f4c0a0fd 428int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 429 loff_t end)
1da177e4
LT
430{
431 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
432}
f4c0a0fd 433EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 434
485bb99b
RD
435/**
436 * filemap_flush - mostly a non-blocking flush
437 * @mapping: target address_space
438 *
1da177e4
LT
439 * This is a mostly non-blocking flush. Not suitable for data-integrity
440 * purposes - I/O may not be started against all dirty pages.
441 */
442int filemap_flush(struct address_space *mapping)
443{
444 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
445}
446EXPORT_SYMBOL(filemap_flush);
447
7fc9e472
GR
448/**
449 * filemap_range_has_page - check if a page exists in range.
450 * @mapping: address space within which to check
451 * @start_byte: offset in bytes where the range starts
452 * @end_byte: offset in bytes where the range ends (inclusive)
453 *
454 * Find at least one page in the range supplied, usually used to check if
455 * direct writing in this range will trigger a writeback.
456 */
457bool filemap_range_has_page(struct address_space *mapping,
458 loff_t start_byte, loff_t end_byte)
459{
460 pgoff_t index = start_byte >> PAGE_SHIFT;
461 pgoff_t end = end_byte >> PAGE_SHIFT;
f7b68046 462 struct page *page;
7fc9e472
GR
463
464 if (end_byte < start_byte)
465 return false;
466
467 if (mapping->nrpages == 0)
468 return false;
469
f7b68046 470 if (!find_get_pages_range(mapping, &index, end, 1, &page))
7fc9e472 471 return false;
f7b68046
JK
472 put_page(page);
473 return true;
7fc9e472
GR
474}
475EXPORT_SYMBOL(filemap_range_has_page);
476
5e8fcc1a 477static void __filemap_fdatawait_range(struct address_space *mapping,
aa750fd7 478 loff_t start_byte, loff_t end_byte)
1da177e4 479{
09cbfeaf
KS
480 pgoff_t index = start_byte >> PAGE_SHIFT;
481 pgoff_t end = end_byte >> PAGE_SHIFT;
1da177e4
LT
482 struct pagevec pvec;
483 int nr_pages;
1da177e4 484
94004ed7 485 if (end_byte < start_byte)
5e8fcc1a 486 return;
1da177e4 487
86679820 488 pagevec_init(&pvec);
312e9d2f 489 while (index <= end) {
1da177e4
LT
490 unsigned i;
491
312e9d2f 492 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
67fd707f 493 end, PAGECACHE_TAG_WRITEBACK);
312e9d2f
JK
494 if (!nr_pages)
495 break;
496
1da177e4
LT
497 for (i = 0; i < nr_pages; i++) {
498 struct page *page = pvec.pages[i];
499
1da177e4 500 wait_on_page_writeback(page);
5e8fcc1a 501 ClearPageError(page);
1da177e4
LT
502 }
503 pagevec_release(&pvec);
504 cond_resched();
505 }
aa750fd7
JN
506}
507
508/**
509 * filemap_fdatawait_range - wait for writeback to complete
510 * @mapping: address space structure to wait for
511 * @start_byte: offset in bytes where the range starts
512 * @end_byte: offset in bytes where the range ends (inclusive)
513 *
514 * Walk the list of under-writeback pages of the given address space
515 * in the given range and wait for all of them. Check error status of
516 * the address space and return it.
517 *
518 * Since the error status of the address space is cleared by this function,
519 * callers are responsible for checking the return value and handling and/or
520 * reporting the error.
521 */
522int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
523 loff_t end_byte)
524{
5e8fcc1a
JL
525 __filemap_fdatawait_range(mapping, start_byte, end_byte);
526 return filemap_check_errors(mapping);
1da177e4 527}
d3bccb6f
JK
528EXPORT_SYMBOL(filemap_fdatawait_range);
529
a823e458
JL
530/**
531 * file_fdatawait_range - wait for writeback to complete
532 * @file: file pointing to address space structure to wait for
533 * @start_byte: offset in bytes where the range starts
534 * @end_byte: offset in bytes where the range ends (inclusive)
535 *
536 * Walk the list of under-writeback pages of the address space that file
537 * refers to, in the given range and wait for all of them. Check error
538 * status of the address space vs. the file->f_wb_err cursor and return it.
539 *
540 * Since the error status of the file is advanced by this function,
541 * callers are responsible for checking the return value and handling and/or
542 * reporting the error.
543 */
544int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
545{
546 struct address_space *mapping = file->f_mapping;
547
548 __filemap_fdatawait_range(mapping, start_byte, end_byte);
549 return file_check_and_advance_wb_err(file);
550}
551EXPORT_SYMBOL(file_fdatawait_range);
d3bccb6f 552
aa750fd7
JN
553/**
554 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
555 * @mapping: address space structure to wait for
556 *
557 * Walk the list of under-writeback pages of the given address space
558 * and wait for all of them. Unlike filemap_fdatawait(), this function
559 * does not clear error status of the address space.
560 *
561 * Use this function if callers don't handle errors themselves. Expected
562 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
563 * fsfreeze(8)
564 */
76341cab 565int filemap_fdatawait_keep_errors(struct address_space *mapping)
aa750fd7 566{
ffb959bb 567 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
76341cab 568 return filemap_check_and_keep_errors(mapping);
aa750fd7 569}
76341cab 570EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
aa750fd7 571
9326c9b2 572static bool mapping_needs_writeback(struct address_space *mapping)
1da177e4 573{
9326c9b2
JL
574 return (!dax_mapping(mapping) && mapping->nrpages) ||
575 (dax_mapping(mapping) && mapping->nrexceptional);
1da177e4 576}
1da177e4
LT
577
578int filemap_write_and_wait(struct address_space *mapping)
579{
28fd1298 580 int err = 0;
1da177e4 581
9326c9b2 582 if (mapping_needs_writeback(mapping)) {
28fd1298
OH
583 err = filemap_fdatawrite(mapping);
584 /*
585 * Even if the above returned error, the pages may be
586 * written partially (e.g. -ENOSPC), so we wait for it.
587 * But the -EIO is special case, it may indicate the worst
588 * thing (e.g. bug) happened, so we avoid waiting for it.
589 */
590 if (err != -EIO) {
591 int err2 = filemap_fdatawait(mapping);
592 if (!err)
593 err = err2;
cbeaf951
JL
594 } else {
595 /* Clear any previously stored errors */
596 filemap_check_errors(mapping);
28fd1298 597 }
865ffef3
DM
598 } else {
599 err = filemap_check_errors(mapping);
1da177e4 600 }
28fd1298 601 return err;
1da177e4 602}
28fd1298 603EXPORT_SYMBOL(filemap_write_and_wait);
1da177e4 604
485bb99b
RD
605/**
606 * filemap_write_and_wait_range - write out & wait on a file range
607 * @mapping: the address_space for the pages
608 * @lstart: offset in bytes where the range starts
609 * @lend: offset in bytes where the range ends (inclusive)
610 *
469eb4d0
AM
611 * Write out and wait upon file offsets lstart->lend, inclusive.
612 *
0e056eb5 613 * Note that @lend is inclusive (describes the last byte to be written) so
469eb4d0
AM
614 * that this function can be used to write to the very end-of-file (end = -1).
615 */
1da177e4
LT
616int filemap_write_and_wait_range(struct address_space *mapping,
617 loff_t lstart, loff_t lend)
618{
28fd1298 619 int err = 0;
1da177e4 620
9326c9b2 621 if (mapping_needs_writeback(mapping)) {
28fd1298
OH
622 err = __filemap_fdatawrite_range(mapping, lstart, lend,
623 WB_SYNC_ALL);
624 /* See comment of filemap_write_and_wait() */
625 if (err != -EIO) {
94004ed7
CH
626 int err2 = filemap_fdatawait_range(mapping,
627 lstart, lend);
28fd1298
OH
628 if (!err)
629 err = err2;
cbeaf951
JL
630 } else {
631 /* Clear any previously stored errors */
632 filemap_check_errors(mapping);
28fd1298 633 }
865ffef3
DM
634 } else {
635 err = filemap_check_errors(mapping);
1da177e4 636 }
28fd1298 637 return err;
1da177e4 638}
f6995585 639EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 640
5660e13d
JL
641void __filemap_set_wb_err(struct address_space *mapping, int err)
642{
3acdfd28 643 errseq_t eseq = errseq_set(&mapping->wb_err, err);
5660e13d
JL
644
645 trace_filemap_set_wb_err(mapping, eseq);
646}
647EXPORT_SYMBOL(__filemap_set_wb_err);
648
649/**
650 * file_check_and_advance_wb_err - report wb error (if any) that was previously
651 * and advance wb_err to current one
652 * @file: struct file on which the error is being reported
653 *
654 * When userland calls fsync (or something like nfsd does the equivalent), we
655 * want to report any writeback errors that occurred since the last fsync (or
656 * since the file was opened if there haven't been any).
657 *
658 * Grab the wb_err from the mapping. If it matches what we have in the file,
659 * then just quickly return 0. The file is all caught up.
660 *
661 * If it doesn't match, then take the mapping value, set the "seen" flag in
662 * it and try to swap it into place. If it works, or another task beat us
663 * to it with the new value, then update the f_wb_err and return the error
664 * portion. The error at this point must be reported via proper channels
665 * (a'la fsync, or NFS COMMIT operation, etc.).
666 *
667 * While we handle mapping->wb_err with atomic operations, the f_wb_err
668 * value is protected by the f_lock since we must ensure that it reflects
669 * the latest value swapped in for this file descriptor.
670 */
671int file_check_and_advance_wb_err(struct file *file)
672{
673 int err = 0;
674 errseq_t old = READ_ONCE(file->f_wb_err);
675 struct address_space *mapping = file->f_mapping;
676
677 /* Locklessly handle the common case where nothing has changed */
678 if (errseq_check(&mapping->wb_err, old)) {
679 /* Something changed, must use slow path */
680 spin_lock(&file->f_lock);
681 old = file->f_wb_err;
682 err = errseq_check_and_advance(&mapping->wb_err,
683 &file->f_wb_err);
684 trace_file_check_and_advance_wb_err(file, old);
685 spin_unlock(&file->f_lock);
686 }
f4e222c5
JL
687
688 /*
689 * We're mostly using this function as a drop in replacement for
690 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
691 * that the legacy code would have had on these flags.
692 */
693 clear_bit(AS_EIO, &mapping->flags);
694 clear_bit(AS_ENOSPC, &mapping->flags);
5660e13d
JL
695 return err;
696}
697EXPORT_SYMBOL(file_check_and_advance_wb_err);
698
699/**
700 * file_write_and_wait_range - write out & wait on a file range
701 * @file: file pointing to address_space with pages
702 * @lstart: offset in bytes where the range starts
703 * @lend: offset in bytes where the range ends (inclusive)
704 *
705 * Write out and wait upon file offsets lstart->lend, inclusive.
706 *
707 * Note that @lend is inclusive (describes the last byte to be written) so
708 * that this function can be used to write to the very end-of-file (end = -1).
709 *
710 * After writing out and waiting on the data, we check and advance the
711 * f_wb_err cursor to the latest value, and return any errors detected there.
712 */
713int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
714{
715 int err = 0, err2;
716 struct address_space *mapping = file->f_mapping;
717
9326c9b2 718 if (mapping_needs_writeback(mapping)) {
5660e13d
JL
719 err = __filemap_fdatawrite_range(mapping, lstart, lend,
720 WB_SYNC_ALL);
721 /* See comment of filemap_write_and_wait() */
722 if (err != -EIO)
723 __filemap_fdatawait_range(mapping, lstart, lend);
724 }
725 err2 = file_check_and_advance_wb_err(file);
726 if (!err)
727 err = err2;
728 return err;
729}
730EXPORT_SYMBOL(file_write_and_wait_range);
731
ef6a3c63
MS
732/**
733 * replace_page_cache_page - replace a pagecache page with a new one
734 * @old: page to be replaced
735 * @new: page to replace with
736 * @gfp_mask: allocation mode
737 *
738 * This function replaces a page in the pagecache with a new one. On
739 * success it acquires the pagecache reference for the new page and
740 * drops it for the old page. Both the old and new pages must be
741 * locked. This function does not add the new page to the LRU, the
742 * caller must do that.
743 *
74d60958 744 * The remove + add is atomic. This function cannot fail.
ef6a3c63
MS
745 */
746int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
747{
74d60958
MW
748 struct address_space *mapping = old->mapping;
749 void (*freepage)(struct page *) = mapping->a_ops->freepage;
750 pgoff_t offset = old->index;
751 XA_STATE(xas, &mapping->i_pages, offset);
752 unsigned long flags;
ef6a3c63 753
309381fe
SL
754 VM_BUG_ON_PAGE(!PageLocked(old), old);
755 VM_BUG_ON_PAGE(!PageLocked(new), new);
756 VM_BUG_ON_PAGE(new->mapping, new);
ef6a3c63 757
74d60958
MW
758 get_page(new);
759 new->mapping = mapping;
760 new->index = offset;
ef6a3c63 761
74d60958
MW
762 xas_lock_irqsave(&xas, flags);
763 xas_store(&xas, new);
ef6a3c63 764
74d60958
MW
765 old->mapping = NULL;
766 /* hugetlb pages do not participate in page cache accounting. */
767 if (!PageHuge(old))
768 __dec_node_page_state(new, NR_FILE_PAGES);
769 if (!PageHuge(new))
770 __inc_node_page_state(new, NR_FILE_PAGES);
771 if (PageSwapBacked(old))
772 __dec_node_page_state(new, NR_SHMEM);
773 if (PageSwapBacked(new))
774 __inc_node_page_state(new, NR_SHMEM);
775 xas_unlock_irqrestore(&xas, flags);
776 mem_cgroup_migrate(old, new);
777 if (freepage)
778 freepage(old);
779 put_page(old);
ef6a3c63 780
74d60958 781 return 0;
ef6a3c63
MS
782}
783EXPORT_SYMBOL_GPL(replace_page_cache_page);
784
a528910e
JW
785static int __add_to_page_cache_locked(struct page *page,
786 struct address_space *mapping,
787 pgoff_t offset, gfp_t gfp_mask,
788 void **shadowp)
1da177e4 789{
74d60958 790 XA_STATE(xas, &mapping->i_pages, offset);
00501b53
JW
791 int huge = PageHuge(page);
792 struct mem_cgroup *memcg;
e286781d 793 int error;
74d60958 794 void *old;
e286781d 795
309381fe
SL
796 VM_BUG_ON_PAGE(!PageLocked(page), page);
797 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
74d60958 798 mapping_set_update(&xas, mapping);
e286781d 799
00501b53
JW
800 if (!huge) {
801 error = mem_cgroup_try_charge(page, current->mm,
f627c2f5 802 gfp_mask, &memcg, false);
00501b53
JW
803 if (error)
804 return error;
805 }
1da177e4 806
09cbfeaf 807 get_page(page);
66a0c8ee
KS
808 page->mapping = mapping;
809 page->index = offset;
810
74d60958
MW
811 do {
812 xas_lock_irq(&xas);
813 old = xas_load(&xas);
814 if (old && !xa_is_value(old))
815 xas_set_err(&xas, -EEXIST);
816 xas_store(&xas, page);
817 if (xas_error(&xas))
818 goto unlock;
819
820 if (xa_is_value(old)) {
821 mapping->nrexceptional--;
822 if (shadowp)
823 *shadowp = old;
824 }
825 mapping->nrpages++;
826
827 /* hugetlb pages do not participate in page cache accounting */
828 if (!huge)
829 __inc_node_page_state(page, NR_FILE_PAGES);
830unlock:
831 xas_unlock_irq(&xas);
832 } while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK));
833
834 if (xas_error(&xas))
835 goto error;
4165b9b4 836
00501b53 837 if (!huge)
f627c2f5 838 mem_cgroup_commit_charge(page, memcg, false, false);
66a0c8ee
KS
839 trace_mm_filemap_add_to_page_cache(page);
840 return 0;
74d60958 841error:
66a0c8ee
KS
842 page->mapping = NULL;
843 /* Leave page->index set: truncation relies upon it */
00501b53 844 if (!huge)
f627c2f5 845 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 846 put_page(page);
74d60958 847 return xas_error(&xas);
1da177e4 848}
a528910e
JW
849
850/**
851 * add_to_page_cache_locked - add a locked page to the pagecache
852 * @page: page to add
853 * @mapping: the page's address_space
854 * @offset: page index
855 * @gfp_mask: page allocation mode
856 *
857 * This function is used to add a page to the pagecache. It must be locked.
858 * This function does not add the page to the LRU. The caller must do that.
859 */
860int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
861 pgoff_t offset, gfp_t gfp_mask)
862{
863 return __add_to_page_cache_locked(page, mapping, offset,
864 gfp_mask, NULL);
865}
e286781d 866EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4
LT
867
868int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 869 pgoff_t offset, gfp_t gfp_mask)
1da177e4 870{
a528910e 871 void *shadow = NULL;
4f98a2fe
RR
872 int ret;
873
48c935ad 874 __SetPageLocked(page);
a528910e
JW
875 ret = __add_to_page_cache_locked(page, mapping, offset,
876 gfp_mask, &shadow);
877 if (unlikely(ret))
48c935ad 878 __ClearPageLocked(page);
a528910e
JW
879 else {
880 /*
881 * The page might have been evicted from cache only
882 * recently, in which case it should be activated like
883 * any other repeatedly accessed page.
f0281a00
RR
884 * The exception is pages getting rewritten; evicting other
885 * data from the working set, only to cache data that will
886 * get overwritten with something else, is a waste of memory.
a528910e 887 */
f0281a00
RR
888 if (!(gfp_mask & __GFP_WRITE) &&
889 shadow && workingset_refault(shadow)) {
a528910e
JW
890 SetPageActive(page);
891 workingset_activation(page);
892 } else
893 ClearPageActive(page);
894 lru_cache_add(page);
895 }
1da177e4
LT
896 return ret;
897}
18bc0bbd 898EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1da177e4 899
44110fe3 900#ifdef CONFIG_NUMA
2ae88149 901struct page *__page_cache_alloc(gfp_t gfp)
44110fe3 902{
c0ff7453
MX
903 int n;
904 struct page *page;
905
44110fe3 906 if (cpuset_do_page_mem_spread()) {
cc9a6c87
MG
907 unsigned int cpuset_mems_cookie;
908 do {
d26914d1 909 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 910 n = cpuset_mem_spread_node();
96db800f 911 page = __alloc_pages_node(n, gfp, 0);
d26914d1 912 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
cc9a6c87 913
c0ff7453 914 return page;
44110fe3 915 }
2ae88149 916 return alloc_pages(gfp, 0);
44110fe3 917}
2ae88149 918EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
919#endif
920
1da177e4
LT
921/*
922 * In order to wait for pages to become available there must be
923 * waitqueues associated with pages. By using a hash table of
924 * waitqueues where the bucket discipline is to maintain all
925 * waiters on the same queue and wake all when any of the pages
926 * become available, and for the woken contexts to check to be
927 * sure the appropriate page became available, this saves space
928 * at a cost of "thundering herd" phenomena during rare hash
929 * collisions.
930 */
62906027
NP
931#define PAGE_WAIT_TABLE_BITS 8
932#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
933static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
934
935static wait_queue_head_t *page_waitqueue(struct page *page)
1da177e4 936{
62906027 937 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
1da177e4 938}
1da177e4 939
62906027 940void __init pagecache_init(void)
1da177e4 941{
62906027 942 int i;
1da177e4 943
62906027
NP
944 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
945 init_waitqueue_head(&page_wait_table[i]);
946
947 page_writeback_init();
1da177e4 948}
1da177e4 949
3510ca20 950/* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
62906027
NP
951struct wait_page_key {
952 struct page *page;
953 int bit_nr;
954 int page_match;
955};
956
957struct wait_page_queue {
958 struct page *page;
959 int bit_nr;
ac6424b9 960 wait_queue_entry_t wait;
62906027
NP
961};
962
ac6424b9 963static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
f62e00cc 964{
62906027
NP
965 struct wait_page_key *key = arg;
966 struct wait_page_queue *wait_page
967 = container_of(wait, struct wait_page_queue, wait);
968
969 if (wait_page->page != key->page)
970 return 0;
971 key->page_match = 1;
f62e00cc 972
62906027
NP
973 if (wait_page->bit_nr != key->bit_nr)
974 return 0;
3510ca20
LT
975
976 /* Stop walking if it's locked */
62906027 977 if (test_bit(key->bit_nr, &key->page->flags))
3510ca20 978 return -1;
f62e00cc 979
62906027 980 return autoremove_wake_function(wait, mode, sync, key);
f62e00cc
KM
981}
982
74d81bfa 983static void wake_up_page_bit(struct page *page, int bit_nr)
cbbce822 984{
62906027
NP
985 wait_queue_head_t *q = page_waitqueue(page);
986 struct wait_page_key key;
987 unsigned long flags;
11a19c7b 988 wait_queue_entry_t bookmark;
cbbce822 989
62906027
NP
990 key.page = page;
991 key.bit_nr = bit_nr;
992 key.page_match = 0;
993
11a19c7b
TC
994 bookmark.flags = 0;
995 bookmark.private = NULL;
996 bookmark.func = NULL;
997 INIT_LIST_HEAD(&bookmark.entry);
998
62906027 999 spin_lock_irqsave(&q->lock, flags);
11a19c7b
TC
1000 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1001
1002 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1003 /*
1004 * Take a breather from holding the lock,
1005 * allow pages that finish wake up asynchronously
1006 * to acquire the lock and remove themselves
1007 * from wait queue
1008 */
1009 spin_unlock_irqrestore(&q->lock, flags);
1010 cpu_relax();
1011 spin_lock_irqsave(&q->lock, flags);
1012 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1013 }
1014
62906027
NP
1015 /*
1016 * It is possible for other pages to have collided on the waitqueue
1017 * hash, so in that case check for a page match. That prevents a long-
1018 * term waiter
1019 *
1020 * It is still possible to miss a case here, when we woke page waiters
1021 * and removed them from the waitqueue, but there are still other
1022 * page waiters.
1023 */
1024 if (!waitqueue_active(q) || !key.page_match) {
1025 ClearPageWaiters(page);
1026 /*
1027 * It's possible to miss clearing Waiters here, when we woke
1028 * our page waiters, but the hashed waitqueue has waiters for
1029 * other pages on it.
1030 *
1031 * That's okay, it's a rare case. The next waker will clear it.
1032 */
1033 }
1034 spin_unlock_irqrestore(&q->lock, flags);
1035}
74d81bfa
NP
1036
1037static void wake_up_page(struct page *page, int bit)
1038{
1039 if (!PageWaiters(page))
1040 return;
1041 wake_up_page_bit(page, bit);
1042}
62906027
NP
1043
1044static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1045 struct page *page, int bit_nr, int state, bool lock)
1046{
1047 struct wait_page_queue wait_page;
ac6424b9 1048 wait_queue_entry_t *wait = &wait_page.wait;
62906027
NP
1049 int ret = 0;
1050
1051 init_wait(wait);
3510ca20 1052 wait->flags = lock ? WQ_FLAG_EXCLUSIVE : 0;
62906027
NP
1053 wait->func = wake_page_function;
1054 wait_page.page = page;
1055 wait_page.bit_nr = bit_nr;
1056
1057 for (;;) {
1058 spin_lock_irq(&q->lock);
1059
2055da97 1060 if (likely(list_empty(&wait->entry))) {
3510ca20 1061 __add_wait_queue_entry_tail(q, wait);
62906027
NP
1062 SetPageWaiters(page);
1063 }
1064
1065 set_current_state(state);
1066
1067 spin_unlock_irq(&q->lock);
1068
1069 if (likely(test_bit(bit_nr, &page->flags))) {
1070 io_schedule();
62906027
NP
1071 }
1072
1073 if (lock) {
1074 if (!test_and_set_bit_lock(bit_nr, &page->flags))
1075 break;
1076 } else {
1077 if (!test_bit(bit_nr, &page->flags))
1078 break;
1079 }
a8b169af
LT
1080
1081 if (unlikely(signal_pending_state(state, current))) {
1082 ret = -EINTR;
1083 break;
1084 }
62906027
NP
1085 }
1086
1087 finish_wait(q, wait);
1088
1089 /*
1090 * A signal could leave PageWaiters set. Clearing it here if
1091 * !waitqueue_active would be possible (by open-coding finish_wait),
1092 * but still fail to catch it in the case of wait hash collision. We
1093 * already can fail to clear wait hash collision cases, so don't
1094 * bother with signals either.
1095 */
1096
1097 return ret;
1098}
1099
1100void wait_on_page_bit(struct page *page, int bit_nr)
1101{
1102 wait_queue_head_t *q = page_waitqueue(page);
1103 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
1104}
1105EXPORT_SYMBOL(wait_on_page_bit);
1106
1107int wait_on_page_bit_killable(struct page *page, int bit_nr)
1108{
1109 wait_queue_head_t *q = page_waitqueue(page);
1110 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
cbbce822 1111}
4343d008 1112EXPORT_SYMBOL(wait_on_page_bit_killable);
cbbce822 1113
385e1ca5
DH
1114/**
1115 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
697f619f
RD
1116 * @page: Page defining the wait queue of interest
1117 * @waiter: Waiter to add to the queue
385e1ca5
DH
1118 *
1119 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1120 */
ac6424b9 1121void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
385e1ca5
DH
1122{
1123 wait_queue_head_t *q = page_waitqueue(page);
1124 unsigned long flags;
1125
1126 spin_lock_irqsave(&q->lock, flags);
9c3a815f 1127 __add_wait_queue_entry_tail(q, waiter);
62906027 1128 SetPageWaiters(page);
385e1ca5
DH
1129 spin_unlock_irqrestore(&q->lock, flags);
1130}
1131EXPORT_SYMBOL_GPL(add_page_wait_queue);
1132
b91e1302
LT
1133#ifndef clear_bit_unlock_is_negative_byte
1134
1135/*
1136 * PG_waiters is the high bit in the same byte as PG_lock.
1137 *
1138 * On x86 (and on many other architectures), we can clear PG_lock and
1139 * test the sign bit at the same time. But if the architecture does
1140 * not support that special operation, we just do this all by hand
1141 * instead.
1142 *
1143 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1144 * being cleared, but a memory barrier should be unneccssary since it is
1145 * in the same byte as PG_locked.
1146 */
1147static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1148{
1149 clear_bit_unlock(nr, mem);
1150 /* smp_mb__after_atomic(); */
98473f9f 1151 return test_bit(PG_waiters, mem);
b91e1302
LT
1152}
1153
1154#endif
1155
1da177e4 1156/**
485bb99b 1157 * unlock_page - unlock a locked page
1da177e4
LT
1158 * @page: the page
1159 *
1160 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1161 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
da3dae54 1162 * mechanism between PageLocked pages and PageWriteback pages is shared.
1da177e4
LT
1163 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1164 *
b91e1302
LT
1165 * Note that this depends on PG_waiters being the sign bit in the byte
1166 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1167 * clear the PG_locked bit and test PG_waiters at the same time fairly
1168 * portably (architectures that do LL/SC can test any bit, while x86 can
1169 * test the sign bit).
1da177e4 1170 */
920c7a5d 1171void unlock_page(struct page *page)
1da177e4 1172{
b91e1302 1173 BUILD_BUG_ON(PG_waiters != 7);
48c935ad 1174 page = compound_head(page);
309381fe 1175 VM_BUG_ON_PAGE(!PageLocked(page), page);
b91e1302
LT
1176 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1177 wake_up_page_bit(page, PG_locked);
1da177e4
LT
1178}
1179EXPORT_SYMBOL(unlock_page);
1180
485bb99b
RD
1181/**
1182 * end_page_writeback - end writeback against a page
1183 * @page: the page
1da177e4
LT
1184 */
1185void end_page_writeback(struct page *page)
1186{
888cf2db
MG
1187 /*
1188 * TestClearPageReclaim could be used here but it is an atomic
1189 * operation and overkill in this particular case. Failing to
1190 * shuffle a page marked for immediate reclaim is too mild to
1191 * justify taking an atomic operation penalty at the end of
1192 * ever page writeback.
1193 */
1194 if (PageReclaim(page)) {
1195 ClearPageReclaim(page);
ac6aadb2 1196 rotate_reclaimable_page(page);
888cf2db 1197 }
ac6aadb2
MS
1198
1199 if (!test_clear_page_writeback(page))
1200 BUG();
1201
4e857c58 1202 smp_mb__after_atomic();
1da177e4
LT
1203 wake_up_page(page, PG_writeback);
1204}
1205EXPORT_SYMBOL(end_page_writeback);
1206
57d99845
MW
1207/*
1208 * After completing I/O on a page, call this routine to update the page
1209 * flags appropriately
1210 */
c11f0c0b 1211void page_endio(struct page *page, bool is_write, int err)
57d99845 1212{
c11f0c0b 1213 if (!is_write) {
57d99845
MW
1214 if (!err) {
1215 SetPageUptodate(page);
1216 } else {
1217 ClearPageUptodate(page);
1218 SetPageError(page);
1219 }
1220 unlock_page(page);
abf54548 1221 } else {
57d99845 1222 if (err) {
dd8416c4
MK
1223 struct address_space *mapping;
1224
57d99845 1225 SetPageError(page);
dd8416c4
MK
1226 mapping = page_mapping(page);
1227 if (mapping)
1228 mapping_set_error(mapping, err);
57d99845
MW
1229 }
1230 end_page_writeback(page);
1231 }
1232}
1233EXPORT_SYMBOL_GPL(page_endio);
1234
485bb99b
RD
1235/**
1236 * __lock_page - get a lock on the page, assuming we need to sleep to get it
87066755 1237 * @__page: the page to lock
1da177e4 1238 */
62906027 1239void __lock_page(struct page *__page)
1da177e4 1240{
62906027
NP
1241 struct page *page = compound_head(__page);
1242 wait_queue_head_t *q = page_waitqueue(page);
1243 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
1da177e4
LT
1244}
1245EXPORT_SYMBOL(__lock_page);
1246
62906027 1247int __lock_page_killable(struct page *__page)
2687a356 1248{
62906027
NP
1249 struct page *page = compound_head(__page);
1250 wait_queue_head_t *q = page_waitqueue(page);
1251 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
2687a356 1252}
18bc0bbd 1253EXPORT_SYMBOL_GPL(__lock_page_killable);
2687a356 1254
9a95f3cf
PC
1255/*
1256 * Return values:
1257 * 1 - page is locked; mmap_sem is still held.
1258 * 0 - page is not locked.
1259 * mmap_sem has been released (up_read()), unless flags had both
1260 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1261 * which case mmap_sem is still held.
1262 *
1263 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1264 * with the page locked and the mmap_sem unperturbed.
1265 */
d065bd81
ML
1266int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1267 unsigned int flags)
1268{
37b23e05
KM
1269 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1270 /*
1271 * CAUTION! In this case, mmap_sem is not released
1272 * even though return 0.
1273 */
1274 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1275 return 0;
1276
1277 up_read(&mm->mmap_sem);
1278 if (flags & FAULT_FLAG_KILLABLE)
1279 wait_on_page_locked_killable(page);
1280 else
318b275f 1281 wait_on_page_locked(page);
d065bd81 1282 return 0;
37b23e05
KM
1283 } else {
1284 if (flags & FAULT_FLAG_KILLABLE) {
1285 int ret;
1286
1287 ret = __lock_page_killable(page);
1288 if (ret) {
1289 up_read(&mm->mmap_sem);
1290 return 0;
1291 }
1292 } else
1293 __lock_page(page);
1294 return 1;
d065bd81
ML
1295 }
1296}
1297
e7b563bb 1298/**
0d3f9296
MW
1299 * page_cache_next_miss() - Find the next gap in the page cache.
1300 * @mapping: Mapping.
1301 * @index: Index.
1302 * @max_scan: Maximum range to search.
e7b563bb 1303 *
0d3f9296
MW
1304 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1305 * gap with the lowest index.
e7b563bb 1306 *
0d3f9296
MW
1307 * This function may be called under the rcu_read_lock. However, this will
1308 * not atomically search a snapshot of the cache at a single point in time.
1309 * For example, if a gap is created at index 5, then subsequently a gap is
1310 * created at index 10, page_cache_next_miss covering both indices may
1311 * return 10 if called under the rcu_read_lock.
e7b563bb 1312 *
0d3f9296
MW
1313 * Return: The index of the gap if found, otherwise an index outside the
1314 * range specified (in which case 'return - index >= max_scan' will be true).
1315 * In the rare case of index wrap-around, 0 will be returned.
e7b563bb 1316 */
0d3f9296 1317pgoff_t page_cache_next_miss(struct address_space *mapping,
e7b563bb
JW
1318 pgoff_t index, unsigned long max_scan)
1319{
0d3f9296 1320 XA_STATE(xas, &mapping->i_pages, index);
e7b563bb 1321
0d3f9296
MW
1322 while (max_scan--) {
1323 void *entry = xas_next(&xas);
1324 if (!entry || xa_is_value(entry))
e7b563bb 1325 break;
0d3f9296 1326 if (xas.xa_index == 0)
e7b563bb
JW
1327 break;
1328 }
1329
0d3f9296 1330 return xas.xa_index;
e7b563bb 1331}
0d3f9296 1332EXPORT_SYMBOL(page_cache_next_miss);
e7b563bb
JW
1333
1334/**
0d3f9296
MW
1335 * page_cache_prev_miss() - Find the next gap in the page cache.
1336 * @mapping: Mapping.
1337 * @index: Index.
1338 * @max_scan: Maximum range to search.
e7b563bb 1339 *
0d3f9296
MW
1340 * Search the range [max(index - max_scan + 1, 0), index] for the
1341 * gap with the highest index.
e7b563bb 1342 *
0d3f9296
MW
1343 * This function may be called under the rcu_read_lock. However, this will
1344 * not atomically search a snapshot of the cache at a single point in time.
1345 * For example, if a gap is created at index 10, then subsequently a gap is
1346 * created at index 5, page_cache_prev_miss() covering both indices may
1347 * return 5 if called under the rcu_read_lock.
e7b563bb 1348 *
0d3f9296
MW
1349 * Return: The index of the gap if found, otherwise an index outside the
1350 * range specified (in which case 'index - return >= max_scan' will be true).
1351 * In the rare case of wrap-around, ULONG_MAX will be returned.
e7b563bb 1352 */
0d3f9296 1353pgoff_t page_cache_prev_miss(struct address_space *mapping,
e7b563bb
JW
1354 pgoff_t index, unsigned long max_scan)
1355{
0d3f9296 1356 XA_STATE(xas, &mapping->i_pages, index);
0cd6144a 1357
0d3f9296
MW
1358 while (max_scan--) {
1359 void *entry = xas_prev(&xas);
1360 if (!entry || xa_is_value(entry))
e7b563bb 1361 break;
0d3f9296 1362 if (xas.xa_index == ULONG_MAX)
e7b563bb
JW
1363 break;
1364 }
1365
0d3f9296 1366 return xas.xa_index;
e7b563bb 1367}
0d3f9296 1368EXPORT_SYMBOL(page_cache_prev_miss);
e7b563bb 1369
485bb99b 1370/**
0cd6144a 1371 * find_get_entry - find and get a page cache entry
485bb99b 1372 * @mapping: the address_space to search
0cd6144a
JW
1373 * @offset: the page cache index
1374 *
1375 * Looks up the page cache slot at @mapping & @offset. If there is a
1376 * page cache page, it is returned with an increased refcount.
485bb99b 1377 *
139b6a6f
JW
1378 * If the slot holds a shadow entry of a previously evicted page, or a
1379 * swap entry from shmem/tmpfs, it is returned.
0cd6144a
JW
1380 *
1381 * Otherwise, %NULL is returned.
1da177e4 1382 */
0cd6144a 1383struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1da177e4 1384{
4c7472c0 1385 XA_STATE(xas, &mapping->i_pages, offset);
83929372 1386 struct page *head, *page;
1da177e4 1387
a60637c8
NP
1388 rcu_read_lock();
1389repeat:
4c7472c0
MW
1390 xas_reset(&xas);
1391 page = xas_load(&xas);
1392 if (xas_retry(&xas, page))
1393 goto repeat;
1394 /*
1395 * A shadow entry of a recently evicted page, or a swap entry from
1396 * shmem/tmpfs. Return it without attempting to raise page count.
1397 */
1398 if (!page || xa_is_value(page))
1399 goto out;
83929372 1400
4c7472c0
MW
1401 head = compound_head(page);
1402 if (!page_cache_get_speculative(head))
1403 goto repeat;
83929372 1404
4c7472c0
MW
1405 /* The page was split under us? */
1406 if (compound_head(page) != head) {
1407 put_page(head);
1408 goto repeat;
1409 }
a60637c8 1410
4c7472c0
MW
1411 /*
1412 * Has the page moved?
1413 * This is part of the lockless pagecache protocol. See
1414 * include/linux/pagemap.h for details.
1415 */
1416 if (unlikely(page != xas_reload(&xas))) {
1417 put_page(head);
1418 goto repeat;
a60637c8 1419 }
27d20fdd 1420out:
a60637c8
NP
1421 rcu_read_unlock();
1422
1da177e4
LT
1423 return page;
1424}
0cd6144a 1425EXPORT_SYMBOL(find_get_entry);
1da177e4 1426
0cd6144a
JW
1427/**
1428 * find_lock_entry - locate, pin and lock a page cache entry
1429 * @mapping: the address_space to search
1430 * @offset: the page cache index
1431 *
1432 * Looks up the page cache slot at @mapping & @offset. If there is a
1433 * page cache page, it is returned locked and with an increased
1434 * refcount.
1435 *
139b6a6f
JW
1436 * If the slot holds a shadow entry of a previously evicted page, or a
1437 * swap entry from shmem/tmpfs, it is returned.
0cd6144a
JW
1438 *
1439 * Otherwise, %NULL is returned.
1440 *
1441 * find_lock_entry() may sleep.
1442 */
1443struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1da177e4
LT
1444{
1445 struct page *page;
1446
1da177e4 1447repeat:
0cd6144a 1448 page = find_get_entry(mapping, offset);
4c7472c0 1449 if (page && !xa_is_value(page)) {
a60637c8
NP
1450 lock_page(page);
1451 /* Has the page been truncated? */
83929372 1452 if (unlikely(page_mapping(page) != mapping)) {
a60637c8 1453 unlock_page(page);
09cbfeaf 1454 put_page(page);
a60637c8 1455 goto repeat;
1da177e4 1456 }
83929372 1457 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1da177e4 1458 }
1da177e4
LT
1459 return page;
1460}
0cd6144a
JW
1461EXPORT_SYMBOL(find_lock_entry);
1462
1463/**
2457aec6 1464 * pagecache_get_page - find and get a page reference
0cd6144a
JW
1465 * @mapping: the address_space to search
1466 * @offset: the page index
2457aec6 1467 * @fgp_flags: PCG flags
45f87de5 1468 * @gfp_mask: gfp mask to use for the page cache data page allocation
0cd6144a 1469 *
2457aec6 1470 * Looks up the page cache slot at @mapping & @offset.
1da177e4 1471 *
75325189 1472 * PCG flags modify how the page is returned.
0cd6144a 1473 *
0e056eb5 1474 * @fgp_flags can be:
1475 *
1476 * - FGP_ACCESSED: the page will be marked accessed
1477 * - FGP_LOCK: Page is return locked
1478 * - FGP_CREAT: If page is not present then a new page is allocated using
1479 * @gfp_mask and added to the page cache and the VM's LRU
1480 * list. The page is returned locked and with an increased
1481 * refcount. Otherwise, NULL is returned.
1da177e4 1482 *
2457aec6
MG
1483 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1484 * if the GFP flags specified for FGP_CREAT are atomic.
1da177e4 1485 *
2457aec6 1486 * If there is a page cache page, it is returned with an increased refcount.
1da177e4 1487 */
2457aec6 1488struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
45f87de5 1489 int fgp_flags, gfp_t gfp_mask)
1da177e4 1490{
eb2be189 1491 struct page *page;
2457aec6 1492
1da177e4 1493repeat:
2457aec6 1494 page = find_get_entry(mapping, offset);
3159f943 1495 if (xa_is_value(page))
2457aec6
MG
1496 page = NULL;
1497 if (!page)
1498 goto no_page;
1499
1500 if (fgp_flags & FGP_LOCK) {
1501 if (fgp_flags & FGP_NOWAIT) {
1502 if (!trylock_page(page)) {
09cbfeaf 1503 put_page(page);
2457aec6
MG
1504 return NULL;
1505 }
1506 } else {
1507 lock_page(page);
1508 }
1509
1510 /* Has the page been truncated? */
1511 if (unlikely(page->mapping != mapping)) {
1512 unlock_page(page);
09cbfeaf 1513 put_page(page);
2457aec6
MG
1514 goto repeat;
1515 }
1516 VM_BUG_ON_PAGE(page->index != offset, page);
1517 }
1518
1519 if (page && (fgp_flags & FGP_ACCESSED))
1520 mark_page_accessed(page);
1521
1522no_page:
1523 if (!page && (fgp_flags & FGP_CREAT)) {
1524 int err;
1525 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
45f87de5
MH
1526 gfp_mask |= __GFP_WRITE;
1527 if (fgp_flags & FGP_NOFS)
1528 gfp_mask &= ~__GFP_FS;
2457aec6 1529
45f87de5 1530 page = __page_cache_alloc(gfp_mask);
eb2be189
NP
1531 if (!page)
1532 return NULL;
2457aec6
MG
1533
1534 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1535 fgp_flags |= FGP_LOCK;
1536
eb39d618 1537 /* Init accessed so avoid atomic mark_page_accessed later */
2457aec6 1538 if (fgp_flags & FGP_ACCESSED)
eb39d618 1539 __SetPageReferenced(page);
2457aec6 1540
abc1be13 1541 err = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
eb2be189 1542 if (unlikely(err)) {
09cbfeaf 1543 put_page(page);
eb2be189
NP
1544 page = NULL;
1545 if (err == -EEXIST)
1546 goto repeat;
1da177e4 1547 }
1da177e4 1548 }
2457aec6 1549
1da177e4
LT
1550 return page;
1551}
2457aec6 1552EXPORT_SYMBOL(pagecache_get_page);
1da177e4 1553
0cd6144a
JW
1554/**
1555 * find_get_entries - gang pagecache lookup
1556 * @mapping: The address_space to search
1557 * @start: The starting page cache index
1558 * @nr_entries: The maximum number of entries
1559 * @entries: Where the resulting entries are placed
1560 * @indices: The cache indices corresponding to the entries in @entries
1561 *
1562 * find_get_entries() will search for and return a group of up to
1563 * @nr_entries entries in the mapping. The entries are placed at
1564 * @entries. find_get_entries() takes a reference against any actual
1565 * pages it returns.
1566 *
1567 * The search returns a group of mapping-contiguous page cache entries
1568 * with ascending indexes. There may be holes in the indices due to
1569 * not-present pages.
1570 *
139b6a6f
JW
1571 * Any shadow entries of evicted pages, or swap entries from
1572 * shmem/tmpfs, are included in the returned array.
0cd6144a
JW
1573 *
1574 * find_get_entries() returns the number of pages and shadow entries
1575 * which were found.
1576 */
1577unsigned find_get_entries(struct address_space *mapping,
1578 pgoff_t start, unsigned int nr_entries,
1579 struct page **entries, pgoff_t *indices)
1580{
f280bf09
MW
1581 XA_STATE(xas, &mapping->i_pages, start);
1582 struct page *page;
0cd6144a 1583 unsigned int ret = 0;
0cd6144a
JW
1584
1585 if (!nr_entries)
1586 return 0;
1587
1588 rcu_read_lock();
f280bf09
MW
1589 xas_for_each(&xas, page, ULONG_MAX) {
1590 struct page *head;
1591 if (xas_retry(&xas, page))
0cd6144a 1592 continue;
f280bf09
MW
1593 /*
1594 * A shadow entry of a recently evicted page, a swap
1595 * entry from shmem/tmpfs or a DAX entry. Return it
1596 * without attempting to raise page count.
1597 */
1598 if (xa_is_value(page))
0cd6144a 1599 goto export;
83929372
KS
1600
1601 head = compound_head(page);
1602 if (!page_cache_get_speculative(head))
f280bf09 1603 goto retry;
83929372
KS
1604
1605 /* The page was split under us? */
f280bf09
MW
1606 if (compound_head(page) != head)
1607 goto put_page;
0cd6144a
JW
1608
1609 /* Has the page moved? */
f280bf09
MW
1610 if (unlikely(page != xas_reload(&xas)))
1611 goto put_page;
1612
0cd6144a 1613export:
f280bf09 1614 indices[ret] = xas.xa_index;
0cd6144a
JW
1615 entries[ret] = page;
1616 if (++ret == nr_entries)
1617 break;
f280bf09
MW
1618 continue;
1619put_page:
1620 put_page(head);
1621retry:
1622 xas_reset(&xas);
0cd6144a
JW
1623 }
1624 rcu_read_unlock();
1625 return ret;
1626}
1627
1da177e4 1628/**
b947cee4 1629 * find_get_pages_range - gang pagecache lookup
1da177e4
LT
1630 * @mapping: The address_space to search
1631 * @start: The starting page index
b947cee4 1632 * @end: The final page index (inclusive)
1da177e4
LT
1633 * @nr_pages: The maximum number of pages
1634 * @pages: Where the resulting pages are placed
1635 *
b947cee4
JK
1636 * find_get_pages_range() will search for and return a group of up to @nr_pages
1637 * pages in the mapping starting at index @start and up to index @end
1638 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes
1639 * a reference against the returned pages.
1da177e4
LT
1640 *
1641 * The search returns a group of mapping-contiguous pages with ascending
1642 * indexes. There may be holes in the indices due to not-present pages.
d72dc8a2 1643 * We also update @start to index the next page for the traversal.
1da177e4 1644 *
b947cee4
JK
1645 * find_get_pages_range() returns the number of pages which were found. If this
1646 * number is smaller than @nr_pages, the end of specified range has been
1647 * reached.
1da177e4 1648 */
b947cee4
JK
1649unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1650 pgoff_t end, unsigned int nr_pages,
1651 struct page **pages)
1da177e4 1652{
fd1b3cee
MW
1653 XA_STATE(xas, &mapping->i_pages, *start);
1654 struct page *page;
0fc9d104
KK
1655 unsigned ret = 0;
1656
1657 if (unlikely(!nr_pages))
1658 return 0;
a60637c8
NP
1659
1660 rcu_read_lock();
fd1b3cee
MW
1661 xas_for_each(&xas, page, end) {
1662 struct page *head;
1663 if (xas_retry(&xas, page))
a60637c8 1664 continue;
fd1b3cee
MW
1665 /* Skip over shadow, swap and DAX entries */
1666 if (xa_is_value(page))
8079b1c8 1667 continue;
a60637c8 1668
83929372
KS
1669 head = compound_head(page);
1670 if (!page_cache_get_speculative(head))
fd1b3cee 1671 goto retry;
83929372
KS
1672
1673 /* The page was split under us? */
fd1b3cee
MW
1674 if (compound_head(page) != head)
1675 goto put_page;
a60637c8
NP
1676
1677 /* Has the page moved? */
fd1b3cee
MW
1678 if (unlikely(page != xas_reload(&xas)))
1679 goto put_page;
1da177e4 1680
a60637c8 1681 pages[ret] = page;
b947cee4 1682 if (++ret == nr_pages) {
fd1b3cee 1683 *start = page->index + 1;
b947cee4
JK
1684 goto out;
1685 }
fd1b3cee
MW
1686 continue;
1687put_page:
1688 put_page(head);
1689retry:
1690 xas_reset(&xas);
a60637c8 1691 }
5b280c0c 1692
b947cee4
JK
1693 /*
1694 * We come here when there is no page beyond @end. We take care to not
1695 * overflow the index @start as it confuses some of the callers. This
fd1b3cee 1696 * breaks the iteration when there is a page at index -1 but that is
b947cee4
JK
1697 * already broken anyway.
1698 */
1699 if (end == (pgoff_t)-1)
1700 *start = (pgoff_t)-1;
1701 else
1702 *start = end + 1;
1703out:
a60637c8 1704 rcu_read_unlock();
d72dc8a2 1705
1da177e4
LT
1706 return ret;
1707}
1708
ebf43500
JA
1709/**
1710 * find_get_pages_contig - gang contiguous pagecache lookup
1711 * @mapping: The address_space to search
1712 * @index: The starting page index
1713 * @nr_pages: The maximum number of pages
1714 * @pages: Where the resulting pages are placed
1715 *
1716 * find_get_pages_contig() works exactly like find_get_pages(), except
1717 * that the returned number of pages are guaranteed to be contiguous.
1718 *
1719 * find_get_pages_contig() returns the number of pages which were found.
1720 */
1721unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1722 unsigned int nr_pages, struct page **pages)
1723{
0fc9d104
KK
1724 struct radix_tree_iter iter;
1725 void **slot;
1726 unsigned int ret = 0;
1727
1728 if (unlikely(!nr_pages))
1729 return 0;
a60637c8
NP
1730
1731 rcu_read_lock();
b93b0163 1732 radix_tree_for_each_contig(slot, &mapping->i_pages, &iter, index) {
83929372 1733 struct page *head, *page;
a60637c8 1734repeat:
0fc9d104
KK
1735 page = radix_tree_deref_slot(slot);
1736 /* The hole, there no reason to continue */
a60637c8 1737 if (unlikely(!page))
0fc9d104 1738 break;
9d8aa4ea 1739
a2c16d6c 1740 if (radix_tree_exception(page)) {
8079b1c8 1741 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1742 slot = radix_tree_iter_retry(&iter);
1743 continue;
8079b1c8 1744 }
a2c16d6c 1745 /*
139b6a6f
JW
1746 * A shadow entry of a recently evicted page,
1747 * or a swap entry from shmem/tmpfs. Stop
1748 * looking for contiguous pages.
a2c16d6c 1749 */
8079b1c8 1750 break;
a2c16d6c 1751 }
ebf43500 1752
83929372
KS
1753 head = compound_head(page);
1754 if (!page_cache_get_speculative(head))
1755 goto repeat;
1756
1757 /* The page was split under us? */
1758 if (compound_head(page) != head) {
1759 put_page(head);
a60637c8 1760 goto repeat;
83929372 1761 }
a60637c8
NP
1762
1763 /* Has the page moved? */
0fc9d104 1764 if (unlikely(page != *slot)) {
83929372 1765 put_page(head);
a60637c8
NP
1766 goto repeat;
1767 }
1768
9cbb4cb2
NP
1769 /*
1770 * must check mapping and index after taking the ref.
1771 * otherwise we can get both false positives and false
1772 * negatives, which is just confusing to the caller.
1773 */
83929372 1774 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
09cbfeaf 1775 put_page(page);
9cbb4cb2
NP
1776 break;
1777 }
1778
a60637c8 1779 pages[ret] = page;
0fc9d104
KK
1780 if (++ret == nr_pages)
1781 break;
ebf43500 1782 }
a60637c8
NP
1783 rcu_read_unlock();
1784 return ret;
ebf43500 1785}
ef71c15c 1786EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 1787
485bb99b 1788/**
72b045ae 1789 * find_get_pages_range_tag - find and return pages in given range matching @tag
485bb99b
RD
1790 * @mapping: the address_space to search
1791 * @index: the starting page index
72b045ae 1792 * @end: The final page index (inclusive)
485bb99b
RD
1793 * @tag: the tag index
1794 * @nr_pages: the maximum number of pages
1795 * @pages: where the resulting pages are placed
1796 *
1da177e4 1797 * Like find_get_pages, except we only return pages which are tagged with
485bb99b 1798 * @tag. We update @index to index the next page for the traversal.
1da177e4 1799 */
72b045ae
JK
1800unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
1801 pgoff_t end, int tag, unsigned int nr_pages,
1802 struct page **pages)
1da177e4 1803{
0fc9d104
KK
1804 struct radix_tree_iter iter;
1805 void **slot;
1806 unsigned ret = 0;
1807
1808 if (unlikely(!nr_pages))
1809 return 0;
a60637c8
NP
1810
1811 rcu_read_lock();
b93b0163 1812 radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, *index, tag) {
83929372 1813 struct page *head, *page;
72b045ae
JK
1814
1815 if (iter.index > end)
1816 break;
a60637c8 1817repeat:
0fc9d104 1818 page = radix_tree_deref_slot(slot);
a60637c8
NP
1819 if (unlikely(!page))
1820 continue;
9d8aa4ea 1821
a2c16d6c 1822 if (radix_tree_exception(page)) {
8079b1c8 1823 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1824 slot = radix_tree_iter_retry(&iter);
1825 continue;
8079b1c8 1826 }
a2c16d6c 1827 /*
139b6a6f
JW
1828 * A shadow entry of a recently evicted page.
1829 *
1830 * Those entries should never be tagged, but
1831 * this tree walk is lockless and the tags are
1832 * looked up in bulk, one radix tree node at a
1833 * time, so there is a sizable window for page
1834 * reclaim to evict a page we saw tagged.
1835 *
1836 * Skip over it.
a2c16d6c 1837 */
139b6a6f 1838 continue;
a2c16d6c 1839 }
a60637c8 1840
83929372
KS
1841 head = compound_head(page);
1842 if (!page_cache_get_speculative(head))
a60637c8
NP
1843 goto repeat;
1844
83929372
KS
1845 /* The page was split under us? */
1846 if (compound_head(page) != head) {
1847 put_page(head);
1848 goto repeat;
1849 }
1850
a60637c8 1851 /* Has the page moved? */
0fc9d104 1852 if (unlikely(page != *slot)) {
83929372 1853 put_page(head);
a60637c8
NP
1854 goto repeat;
1855 }
1856
1857 pages[ret] = page;
72b045ae
JK
1858 if (++ret == nr_pages) {
1859 *index = pages[ret - 1]->index + 1;
1860 goto out;
1861 }
a60637c8 1862 }
5b280c0c 1863
72b045ae
JK
1864 /*
1865 * We come here when we got at @end. We take care to not overflow the
1866 * index @index as it confuses some of the callers. This breaks the
1867 * iteration when there is page at index -1 but that is already broken
1868 * anyway.
1869 */
1870 if (end == (pgoff_t)-1)
1871 *index = (pgoff_t)-1;
1872 else
1873 *index = end + 1;
1874out:
a60637c8 1875 rcu_read_unlock();
1da177e4 1876
1da177e4
LT
1877 return ret;
1878}
72b045ae 1879EXPORT_SYMBOL(find_get_pages_range_tag);
1da177e4 1880
7e7f7749
RZ
1881/**
1882 * find_get_entries_tag - find and return entries that match @tag
1883 * @mapping: the address_space to search
1884 * @start: the starting page cache index
1885 * @tag: the tag index
1886 * @nr_entries: the maximum number of entries
1887 * @entries: where the resulting entries are placed
1888 * @indices: the cache indices corresponding to the entries in @entries
1889 *
1890 * Like find_get_entries, except we only return entries which are tagged with
1891 * @tag.
1892 */
1893unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1894 int tag, unsigned int nr_entries,
1895 struct page **entries, pgoff_t *indices)
1896{
1897 void **slot;
1898 unsigned int ret = 0;
1899 struct radix_tree_iter iter;
1900
1901 if (!nr_entries)
1902 return 0;
1903
1904 rcu_read_lock();
b93b0163 1905 radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, start, tag) {
83929372 1906 struct page *head, *page;
7e7f7749
RZ
1907repeat:
1908 page = radix_tree_deref_slot(slot);
1909 if (unlikely(!page))
1910 continue;
1911 if (radix_tree_exception(page)) {
1912 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1913 slot = radix_tree_iter_retry(&iter);
1914 continue;
7e7f7749
RZ
1915 }
1916
1917 /*
1918 * A shadow entry of a recently evicted page, a swap
1919 * entry from shmem/tmpfs or a DAX entry. Return it
1920 * without attempting to raise page count.
1921 */
1922 goto export;
1923 }
83929372
KS
1924
1925 head = compound_head(page);
1926 if (!page_cache_get_speculative(head))
7e7f7749
RZ
1927 goto repeat;
1928
83929372
KS
1929 /* The page was split under us? */
1930 if (compound_head(page) != head) {
1931 put_page(head);
1932 goto repeat;
1933 }
1934
7e7f7749
RZ
1935 /* Has the page moved? */
1936 if (unlikely(page != *slot)) {
83929372 1937 put_page(head);
7e7f7749
RZ
1938 goto repeat;
1939 }
1940export:
1941 indices[ret] = iter.index;
1942 entries[ret] = page;
1943 if (++ret == nr_entries)
1944 break;
1945 }
1946 rcu_read_unlock();
1947 return ret;
1948}
1949EXPORT_SYMBOL(find_get_entries_tag);
1950
76d42bd9
WF
1951/*
1952 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1953 * a _large_ part of the i/o request. Imagine the worst scenario:
1954 *
1955 * ---R__________________________________________B__________
1956 * ^ reading here ^ bad block(assume 4k)
1957 *
1958 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1959 * => failing the whole request => read(R) => read(R+1) =>
1960 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1961 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1962 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1963 *
1964 * It is going insane. Fix it by quickly scaling down the readahead size.
1965 */
1966static void shrink_readahead_size_eio(struct file *filp,
1967 struct file_ra_state *ra)
1968{
76d42bd9 1969 ra->ra_pages /= 4;
76d42bd9
WF
1970}
1971
485bb99b 1972/**
47c27bc4
CH
1973 * generic_file_buffered_read - generic file read routine
1974 * @iocb: the iocb to read
6e58e79d
AV
1975 * @iter: data destination
1976 * @written: already copied
485bb99b 1977 *
1da177e4 1978 * This is a generic file read routine, and uses the
485bb99b 1979 * mapping->a_ops->readpage() function for the actual low-level stuff.
1da177e4
LT
1980 *
1981 * This is really ugly. But the goto's actually try to clarify some
1982 * of the logic when it comes to error handling etc.
1da177e4 1983 */
47c27bc4 1984static ssize_t generic_file_buffered_read(struct kiocb *iocb,
6e58e79d 1985 struct iov_iter *iter, ssize_t written)
1da177e4 1986{
47c27bc4 1987 struct file *filp = iocb->ki_filp;
36e78914 1988 struct address_space *mapping = filp->f_mapping;
1da177e4 1989 struct inode *inode = mapping->host;
36e78914 1990 struct file_ra_state *ra = &filp->f_ra;
47c27bc4 1991 loff_t *ppos = &iocb->ki_pos;
57f6b96c
FW
1992 pgoff_t index;
1993 pgoff_t last_index;
1994 pgoff_t prev_index;
1995 unsigned long offset; /* offset into pagecache page */
ec0f1637 1996 unsigned int prev_offset;
6e58e79d 1997 int error = 0;
1da177e4 1998
c2a9737f 1999 if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
d05c5f7b 2000 return 0;
c2a9737f
WF
2001 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2002
09cbfeaf
KS
2003 index = *ppos >> PAGE_SHIFT;
2004 prev_index = ra->prev_pos >> PAGE_SHIFT;
2005 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
2006 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2007 offset = *ppos & ~PAGE_MASK;
1da177e4 2008
1da177e4
LT
2009 for (;;) {
2010 struct page *page;
57f6b96c 2011 pgoff_t end_index;
a32ea1e1 2012 loff_t isize;
1da177e4
LT
2013 unsigned long nr, ret;
2014
1da177e4 2015 cond_resched();
1da177e4 2016find_page:
5abf186a
MH
2017 if (fatal_signal_pending(current)) {
2018 error = -EINTR;
2019 goto out;
2020 }
2021
1da177e4 2022 page = find_get_page(mapping, index);
3ea89ee8 2023 if (!page) {
3239d834
MT
2024 if (iocb->ki_flags & IOCB_NOWAIT)
2025 goto would_block;
cf914a7d 2026 page_cache_sync_readahead(mapping,
7ff81078 2027 ra, filp,
3ea89ee8
FW
2028 index, last_index - index);
2029 page = find_get_page(mapping, index);
2030 if (unlikely(page == NULL))
2031 goto no_cached_page;
2032 }
2033 if (PageReadahead(page)) {
cf914a7d 2034 page_cache_async_readahead(mapping,
7ff81078 2035 ra, filp, page,
3ea89ee8 2036 index, last_index - index);
1da177e4 2037 }
8ab22b9a 2038 if (!PageUptodate(page)) {
3239d834
MT
2039 if (iocb->ki_flags & IOCB_NOWAIT) {
2040 put_page(page);
2041 goto would_block;
2042 }
2043
ebded027
MG
2044 /*
2045 * See comment in do_read_cache_page on why
2046 * wait_on_page_locked is used to avoid unnecessarily
2047 * serialisations and why it's safe.
2048 */
c4b209a4
BVA
2049 error = wait_on_page_locked_killable(page);
2050 if (unlikely(error))
2051 goto readpage_error;
ebded027
MG
2052 if (PageUptodate(page))
2053 goto page_ok;
2054
09cbfeaf 2055 if (inode->i_blkbits == PAGE_SHIFT ||
8ab22b9a
HH
2056 !mapping->a_ops->is_partially_uptodate)
2057 goto page_not_up_to_date;
6d6d36bc
EG
2058 /* pipes can't handle partially uptodate pages */
2059 if (unlikely(iter->type & ITER_PIPE))
2060 goto page_not_up_to_date;
529ae9aa 2061 if (!trylock_page(page))
8ab22b9a 2062 goto page_not_up_to_date;
8d056cb9
DH
2063 /* Did it get truncated before we got the lock? */
2064 if (!page->mapping)
2065 goto page_not_up_to_date_locked;
8ab22b9a 2066 if (!mapping->a_ops->is_partially_uptodate(page,
6e58e79d 2067 offset, iter->count))
8ab22b9a
HH
2068 goto page_not_up_to_date_locked;
2069 unlock_page(page);
2070 }
1da177e4 2071page_ok:
a32ea1e1
N
2072 /*
2073 * i_size must be checked after we know the page is Uptodate.
2074 *
2075 * Checking i_size after the check allows us to calculate
2076 * the correct value for "nr", which means the zero-filled
2077 * part of the page is not copied back to userspace (unless
2078 * another truncate extends the file - this is desired though).
2079 */
2080
2081 isize = i_size_read(inode);
09cbfeaf 2082 end_index = (isize - 1) >> PAGE_SHIFT;
a32ea1e1 2083 if (unlikely(!isize || index > end_index)) {
09cbfeaf 2084 put_page(page);
a32ea1e1
N
2085 goto out;
2086 }
2087
2088 /* nr is the maximum number of bytes to copy from this page */
09cbfeaf 2089 nr = PAGE_SIZE;
a32ea1e1 2090 if (index == end_index) {
09cbfeaf 2091 nr = ((isize - 1) & ~PAGE_MASK) + 1;
a32ea1e1 2092 if (nr <= offset) {
09cbfeaf 2093 put_page(page);
a32ea1e1
N
2094 goto out;
2095 }
2096 }
2097 nr = nr - offset;
1da177e4
LT
2098
2099 /* If users can be writing to this page using arbitrary
2100 * virtual addresses, take care about potential aliasing
2101 * before reading the page on the kernel side.
2102 */
2103 if (mapping_writably_mapped(mapping))
2104 flush_dcache_page(page);
2105
2106 /*
ec0f1637
JK
2107 * When a sequential read accesses a page several times,
2108 * only mark it as accessed the first time.
1da177e4 2109 */
ec0f1637 2110 if (prev_index != index || offset != prev_offset)
1da177e4
LT
2111 mark_page_accessed(page);
2112 prev_index = index;
2113
2114 /*
2115 * Ok, we have the page, and it's up-to-date, so
2116 * now we can copy it to user space...
1da177e4 2117 */
6e58e79d
AV
2118
2119 ret = copy_page_to_iter(page, offset, nr, iter);
1da177e4 2120 offset += ret;
09cbfeaf
KS
2121 index += offset >> PAGE_SHIFT;
2122 offset &= ~PAGE_MASK;
6ce745ed 2123 prev_offset = offset;
1da177e4 2124
09cbfeaf 2125 put_page(page);
6e58e79d
AV
2126 written += ret;
2127 if (!iov_iter_count(iter))
2128 goto out;
2129 if (ret < nr) {
2130 error = -EFAULT;
2131 goto out;
2132 }
2133 continue;
1da177e4
LT
2134
2135page_not_up_to_date:
2136 /* Get exclusive access to the page ... */
85462323
ON
2137 error = lock_page_killable(page);
2138 if (unlikely(error))
2139 goto readpage_error;
1da177e4 2140
8ab22b9a 2141page_not_up_to_date_locked:
da6052f7 2142 /* Did it get truncated before we got the lock? */
1da177e4
LT
2143 if (!page->mapping) {
2144 unlock_page(page);
09cbfeaf 2145 put_page(page);
1da177e4
LT
2146 continue;
2147 }
2148
2149 /* Did somebody else fill it already? */
2150 if (PageUptodate(page)) {
2151 unlock_page(page);
2152 goto page_ok;
2153 }
2154
2155readpage:
91803b49
JM
2156 /*
2157 * A previous I/O error may have been due to temporary
2158 * failures, eg. multipath errors.
2159 * PG_error will be set again if readpage fails.
2160 */
2161 ClearPageError(page);
1da177e4
LT
2162 /* Start the actual read. The read will unlock the page. */
2163 error = mapping->a_ops->readpage(filp, page);
2164
994fc28c
ZB
2165 if (unlikely(error)) {
2166 if (error == AOP_TRUNCATED_PAGE) {
09cbfeaf 2167 put_page(page);
6e58e79d 2168 error = 0;
994fc28c
ZB
2169 goto find_page;
2170 }
1da177e4 2171 goto readpage_error;
994fc28c 2172 }
1da177e4
LT
2173
2174 if (!PageUptodate(page)) {
85462323
ON
2175 error = lock_page_killable(page);
2176 if (unlikely(error))
2177 goto readpage_error;
1da177e4
LT
2178 if (!PageUptodate(page)) {
2179 if (page->mapping == NULL) {
2180 /*
2ecdc82e 2181 * invalidate_mapping_pages got it
1da177e4
LT
2182 */
2183 unlock_page(page);
09cbfeaf 2184 put_page(page);
1da177e4
LT
2185 goto find_page;
2186 }
2187 unlock_page(page);
7ff81078 2188 shrink_readahead_size_eio(filp, ra);
85462323
ON
2189 error = -EIO;
2190 goto readpage_error;
1da177e4
LT
2191 }
2192 unlock_page(page);
2193 }
2194
1da177e4
LT
2195 goto page_ok;
2196
2197readpage_error:
2198 /* UHHUH! A synchronous read error occurred. Report it */
09cbfeaf 2199 put_page(page);
1da177e4
LT
2200 goto out;
2201
2202no_cached_page:
2203 /*
2204 * Ok, it wasn't cached, so we need to create a new
2205 * page..
2206 */
453f85d4 2207 page = page_cache_alloc(mapping);
eb2be189 2208 if (!page) {
6e58e79d 2209 error = -ENOMEM;
eb2be189 2210 goto out;
1da177e4 2211 }
6afdb859 2212 error = add_to_page_cache_lru(page, mapping, index,
c62d2555 2213 mapping_gfp_constraint(mapping, GFP_KERNEL));
1da177e4 2214 if (error) {
09cbfeaf 2215 put_page(page);
6e58e79d
AV
2216 if (error == -EEXIST) {
2217 error = 0;
1da177e4 2218 goto find_page;
6e58e79d 2219 }
1da177e4
LT
2220 goto out;
2221 }
1da177e4
LT
2222 goto readpage;
2223 }
2224
3239d834
MT
2225would_block:
2226 error = -EAGAIN;
1da177e4 2227out:
7ff81078 2228 ra->prev_pos = prev_index;
09cbfeaf 2229 ra->prev_pos <<= PAGE_SHIFT;
7ff81078 2230 ra->prev_pos |= prev_offset;
1da177e4 2231
09cbfeaf 2232 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
0c6aa263 2233 file_accessed(filp);
6e58e79d 2234 return written ? written : error;
1da177e4
LT
2235}
2236
485bb99b 2237/**
6abd2322 2238 * generic_file_read_iter - generic filesystem read routine
485bb99b 2239 * @iocb: kernel I/O control block
6abd2322 2240 * @iter: destination for the data read
485bb99b 2241 *
6abd2322 2242 * This is the "read_iter()" routine for all filesystems
1da177e4
LT
2243 * that can use the page cache directly.
2244 */
2245ssize_t
ed978a81 2246generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1da177e4 2247{
e7080a43 2248 size_t count = iov_iter_count(iter);
47c27bc4 2249 ssize_t retval = 0;
e7080a43
NS
2250
2251 if (!count)
2252 goto out; /* skip atime */
1da177e4 2253
2ba48ce5 2254 if (iocb->ki_flags & IOCB_DIRECT) {
47c27bc4 2255 struct file *file = iocb->ki_filp;
ed978a81
AV
2256 struct address_space *mapping = file->f_mapping;
2257 struct inode *inode = mapping->host;
543ade1f 2258 loff_t size;
1da177e4 2259
1da177e4 2260 size = i_size_read(inode);
6be96d3a
GR
2261 if (iocb->ki_flags & IOCB_NOWAIT) {
2262 if (filemap_range_has_page(mapping, iocb->ki_pos,
2263 iocb->ki_pos + count - 1))
2264 return -EAGAIN;
2265 } else {
2266 retval = filemap_write_and_wait_range(mapping,
2267 iocb->ki_pos,
2268 iocb->ki_pos + count - 1);
2269 if (retval < 0)
2270 goto out;
2271 }
d8d3d94b 2272
0d5b0cf2
CH
2273 file_accessed(file);
2274
5ecda137 2275 retval = mapping->a_ops->direct_IO(iocb, iter);
c3a69024 2276 if (retval >= 0) {
c64fb5c7 2277 iocb->ki_pos += retval;
5ecda137 2278 count -= retval;
9fe55eea 2279 }
5b47d59a 2280 iov_iter_revert(iter, count - iov_iter_count(iter));
66f998f6 2281
9fe55eea
SW
2282 /*
2283 * Btrfs can have a short DIO read if we encounter
2284 * compressed extents, so if there was an error, or if
2285 * we've already read everything we wanted to, or if
2286 * there was a short read because we hit EOF, go ahead
2287 * and return. Otherwise fallthrough to buffered io for
fbbbad4b
MW
2288 * the rest of the read. Buffered reads will not work for
2289 * DAX files, so don't bother trying.
9fe55eea 2290 */
5ecda137 2291 if (retval < 0 || !count || iocb->ki_pos >= size ||
0d5b0cf2 2292 IS_DAX(inode))
9fe55eea 2293 goto out;
1da177e4
LT
2294 }
2295
47c27bc4 2296 retval = generic_file_buffered_read(iocb, iter, retval);
1da177e4
LT
2297out:
2298 return retval;
2299}
ed978a81 2300EXPORT_SYMBOL(generic_file_read_iter);
1da177e4 2301
1da177e4 2302#ifdef CONFIG_MMU
485bb99b
RD
2303/**
2304 * page_cache_read - adds requested page to the page cache if not already there
2305 * @file: file to read
2306 * @offset: page index
62eb320a 2307 * @gfp_mask: memory allocation flags
485bb99b 2308 *
1da177e4
LT
2309 * This adds the requested page to the page cache if it isn't already there,
2310 * and schedules an I/O to read in its contents from disk.
2311 */
c20cd45e 2312static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1da177e4
LT
2313{
2314 struct address_space *mapping = file->f_mapping;
99dadfdd 2315 struct page *page;
994fc28c 2316 int ret;
1da177e4 2317
994fc28c 2318 do {
453f85d4 2319 page = __page_cache_alloc(gfp_mask);
994fc28c
ZB
2320 if (!page)
2321 return -ENOMEM;
2322
abc1be13 2323 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
994fc28c
ZB
2324 if (ret == 0)
2325 ret = mapping->a_ops->readpage(file, page);
2326 else if (ret == -EEXIST)
2327 ret = 0; /* losing race to add is OK */
1da177e4 2328
09cbfeaf 2329 put_page(page);
1da177e4 2330
994fc28c 2331 } while (ret == AOP_TRUNCATED_PAGE);
99dadfdd 2332
994fc28c 2333 return ret;
1da177e4
LT
2334}
2335
2336#define MMAP_LOTSAMISS (100)
2337
ef00e08e
LT
2338/*
2339 * Synchronous readahead happens when we don't even find
2340 * a page in the page cache at all.
2341 */
2342static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2343 struct file_ra_state *ra,
2344 struct file *file,
2345 pgoff_t offset)
2346{
ef00e08e
LT
2347 struct address_space *mapping = file->f_mapping;
2348
2349 /* If we don't want any read-ahead, don't bother */
64363aad 2350 if (vma->vm_flags & VM_RAND_READ)
ef00e08e 2351 return;
275b12bf
WF
2352 if (!ra->ra_pages)
2353 return;
ef00e08e 2354
64363aad 2355 if (vma->vm_flags & VM_SEQ_READ) {
7ffc59b4
WF
2356 page_cache_sync_readahead(mapping, ra, file, offset,
2357 ra->ra_pages);
ef00e08e
LT
2358 return;
2359 }
2360
207d04ba
AK
2361 /* Avoid banging the cache line if not needed */
2362 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
ef00e08e
LT
2363 ra->mmap_miss++;
2364
2365 /*
2366 * Do we miss much more than hit in this file? If so,
2367 * stop bothering with read-ahead. It will only hurt.
2368 */
2369 if (ra->mmap_miss > MMAP_LOTSAMISS)
2370 return;
2371
d30a1100
WF
2372 /*
2373 * mmap read-around
2374 */
600e19af
RG
2375 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2376 ra->size = ra->ra_pages;
2377 ra->async_size = ra->ra_pages / 4;
275b12bf 2378 ra_submit(ra, mapping, file);
ef00e08e
LT
2379}
2380
2381/*
2382 * Asynchronous readahead happens when we find the page and PG_readahead,
2383 * so we want to possibly extend the readahead further..
2384 */
2385static void do_async_mmap_readahead(struct vm_area_struct *vma,
2386 struct file_ra_state *ra,
2387 struct file *file,
2388 struct page *page,
2389 pgoff_t offset)
2390{
2391 struct address_space *mapping = file->f_mapping;
2392
2393 /* If we don't want any read-ahead, don't bother */
64363aad 2394 if (vma->vm_flags & VM_RAND_READ)
ef00e08e
LT
2395 return;
2396 if (ra->mmap_miss > 0)
2397 ra->mmap_miss--;
2398 if (PageReadahead(page))
2fad6f5d
WF
2399 page_cache_async_readahead(mapping, ra, file,
2400 page, offset, ra->ra_pages);
ef00e08e
LT
2401}
2402
485bb99b 2403/**
54cb8821 2404 * filemap_fault - read in file data for page fault handling
d0217ac0 2405 * @vmf: struct vm_fault containing details of the fault
485bb99b 2406 *
54cb8821 2407 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
2408 * mapped memory region to read in file data during a page fault.
2409 *
2410 * The goto's are kind of ugly, but this streamlines the normal case of having
2411 * it in the page cache, and handles the special cases reasonably without
2412 * having a lot of duplicated code.
9a95f3cf
PC
2413 *
2414 * vma->vm_mm->mmap_sem must be held on entry.
2415 *
2416 * If our return value has VM_FAULT_RETRY set, it's because
2417 * lock_page_or_retry() returned 0.
2418 * The mmap_sem has usually been released in this case.
2419 * See __lock_page_or_retry() for the exception.
2420 *
2421 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2422 * has not been released.
2423 *
2424 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
1da177e4 2425 */
2bcd6454 2426vm_fault_t filemap_fault(struct vm_fault *vmf)
1da177e4
LT
2427{
2428 int error;
11bac800 2429 struct file *file = vmf->vma->vm_file;
1da177e4
LT
2430 struct address_space *mapping = file->f_mapping;
2431 struct file_ra_state *ra = &file->f_ra;
2432 struct inode *inode = mapping->host;
ef00e08e 2433 pgoff_t offset = vmf->pgoff;
9ab2594f 2434 pgoff_t max_off;
1da177e4 2435 struct page *page;
2bcd6454 2436 vm_fault_t ret = 0;
1da177e4 2437
9ab2594f
MW
2438 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2439 if (unlikely(offset >= max_off))
5307cc1a 2440 return VM_FAULT_SIGBUS;
1da177e4 2441
1da177e4 2442 /*
49426420 2443 * Do we have something in the page cache already?
1da177e4 2444 */
ef00e08e 2445 page = find_get_page(mapping, offset);
45cac65b 2446 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1da177e4 2447 /*
ef00e08e
LT
2448 * We found the page, so try async readahead before
2449 * waiting for the lock.
1da177e4 2450 */
11bac800 2451 do_async_mmap_readahead(vmf->vma, ra, file, page, offset);
45cac65b 2452 } else if (!page) {
ef00e08e 2453 /* No page in the page cache at all */
11bac800 2454 do_sync_mmap_readahead(vmf->vma, ra, file, offset);
ef00e08e 2455 count_vm_event(PGMAJFAULT);
2262185c 2456 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
ef00e08e
LT
2457 ret = VM_FAULT_MAJOR;
2458retry_find:
b522c94d 2459 page = find_get_page(mapping, offset);
1da177e4
LT
2460 if (!page)
2461 goto no_cached_page;
2462 }
2463
11bac800 2464 if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
09cbfeaf 2465 put_page(page);
d065bd81 2466 return ret | VM_FAULT_RETRY;
d88c0922 2467 }
b522c94d
ML
2468
2469 /* Did it get truncated? */
2470 if (unlikely(page->mapping != mapping)) {
2471 unlock_page(page);
2472 put_page(page);
2473 goto retry_find;
2474 }
309381fe 2475 VM_BUG_ON_PAGE(page->index != offset, page);
b522c94d 2476
1da177e4 2477 /*
d00806b1
NP
2478 * We have a locked page in the page cache, now we need to check
2479 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 2480 */
d00806b1 2481 if (unlikely(!PageUptodate(page)))
1da177e4
LT
2482 goto page_not_uptodate;
2483
ef00e08e
LT
2484 /*
2485 * Found the page and have a reference on it.
2486 * We must recheck i_size under page lock.
2487 */
9ab2594f
MW
2488 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2489 if (unlikely(offset >= max_off)) {
d00806b1 2490 unlock_page(page);
09cbfeaf 2491 put_page(page);
5307cc1a 2492 return VM_FAULT_SIGBUS;
d00806b1
NP
2493 }
2494
d0217ac0 2495 vmf->page = page;
83c54070 2496 return ret | VM_FAULT_LOCKED;
1da177e4 2497
1da177e4
LT
2498no_cached_page:
2499 /*
2500 * We're only likely to ever get here if MADV_RANDOM is in
2501 * effect.
2502 */
c20cd45e 2503 error = page_cache_read(file, offset, vmf->gfp_mask);
1da177e4
LT
2504
2505 /*
2506 * The page we want has now been added to the page cache.
2507 * In the unlikely event that someone removed it in the
2508 * meantime, we'll just come back here and read it again.
2509 */
2510 if (error >= 0)
2511 goto retry_find;
2512
2513 /*
2514 * An error return from page_cache_read can result if the
2515 * system is low on memory, or a problem occurs while trying
2516 * to schedule I/O.
2517 */
2518 if (error == -ENOMEM)
d0217ac0
NP
2519 return VM_FAULT_OOM;
2520 return VM_FAULT_SIGBUS;
1da177e4
LT
2521
2522page_not_uptodate:
1da177e4
LT
2523 /*
2524 * Umm, take care of errors if the page isn't up-to-date.
2525 * Try to re-read it _once_. We do this synchronously,
2526 * because there really aren't any performance issues here
2527 * and we need to check for errors.
2528 */
1da177e4 2529 ClearPageError(page);
994fc28c 2530 error = mapping->a_ops->readpage(file, page);
3ef0f720
MS
2531 if (!error) {
2532 wait_on_page_locked(page);
2533 if (!PageUptodate(page))
2534 error = -EIO;
2535 }
09cbfeaf 2536 put_page(page);
d00806b1
NP
2537
2538 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 2539 goto retry_find;
1da177e4 2540
d00806b1 2541 /* Things didn't work out. Return zero to tell the mm layer so. */
76d42bd9 2542 shrink_readahead_size_eio(file, ra);
d0217ac0 2543 return VM_FAULT_SIGBUS;
54cb8821
NP
2544}
2545EXPORT_SYMBOL(filemap_fault);
2546
82b0f8c3 2547void filemap_map_pages(struct vm_fault *vmf,
bae473a4 2548 pgoff_t start_pgoff, pgoff_t end_pgoff)
f1820361
KS
2549{
2550 struct radix_tree_iter iter;
2551 void **slot;
82b0f8c3 2552 struct file *file = vmf->vma->vm_file;
f1820361 2553 struct address_space *mapping = file->f_mapping;
bae473a4 2554 pgoff_t last_pgoff = start_pgoff;
9ab2594f 2555 unsigned long max_idx;
83929372 2556 struct page *head, *page;
f1820361
KS
2557
2558 rcu_read_lock();
b93b0163 2559 radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start_pgoff) {
bae473a4 2560 if (iter.index > end_pgoff)
f1820361
KS
2561 break;
2562repeat:
2563 page = radix_tree_deref_slot(slot);
2564 if (unlikely(!page))
2565 goto next;
2566 if (radix_tree_exception(page)) {
2cf938aa
MW
2567 if (radix_tree_deref_retry(page)) {
2568 slot = radix_tree_iter_retry(&iter);
2569 continue;
2570 }
2571 goto next;
f1820361
KS
2572 }
2573
83929372
KS
2574 head = compound_head(page);
2575 if (!page_cache_get_speculative(head))
f1820361
KS
2576 goto repeat;
2577
83929372
KS
2578 /* The page was split under us? */
2579 if (compound_head(page) != head) {
2580 put_page(head);
2581 goto repeat;
2582 }
2583
f1820361
KS
2584 /* Has the page moved? */
2585 if (unlikely(page != *slot)) {
83929372 2586 put_page(head);
f1820361
KS
2587 goto repeat;
2588 }
2589
2590 if (!PageUptodate(page) ||
2591 PageReadahead(page) ||
2592 PageHWPoison(page))
2593 goto skip;
2594 if (!trylock_page(page))
2595 goto skip;
2596
2597 if (page->mapping != mapping || !PageUptodate(page))
2598 goto unlock;
2599
9ab2594f
MW
2600 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2601 if (page->index >= max_idx)
f1820361
KS
2602 goto unlock;
2603
f1820361
KS
2604 if (file->f_ra.mmap_miss > 0)
2605 file->f_ra.mmap_miss--;
7267ec00 2606
82b0f8c3
JK
2607 vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2608 if (vmf->pte)
2609 vmf->pte += iter.index - last_pgoff;
7267ec00 2610 last_pgoff = iter.index;
82b0f8c3 2611 if (alloc_set_pte(vmf, NULL, page))
7267ec00 2612 goto unlock;
f1820361
KS
2613 unlock_page(page);
2614 goto next;
2615unlock:
2616 unlock_page(page);
2617skip:
09cbfeaf 2618 put_page(page);
f1820361 2619next:
7267ec00 2620 /* Huge page is mapped? No need to proceed. */
82b0f8c3 2621 if (pmd_trans_huge(*vmf->pmd))
7267ec00 2622 break;
bae473a4 2623 if (iter.index == end_pgoff)
f1820361
KS
2624 break;
2625 }
2626 rcu_read_unlock();
2627}
2628EXPORT_SYMBOL(filemap_map_pages);
2629
2bcd6454 2630vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
4fcf1c62
JK
2631{
2632 struct page *page = vmf->page;
11bac800 2633 struct inode *inode = file_inode(vmf->vma->vm_file);
2bcd6454 2634 vm_fault_t ret = VM_FAULT_LOCKED;
4fcf1c62 2635
14da9200 2636 sb_start_pagefault(inode->i_sb);
11bac800 2637 file_update_time(vmf->vma->vm_file);
4fcf1c62
JK
2638 lock_page(page);
2639 if (page->mapping != inode->i_mapping) {
2640 unlock_page(page);
2641 ret = VM_FAULT_NOPAGE;
2642 goto out;
2643 }
14da9200
JK
2644 /*
2645 * We mark the page dirty already here so that when freeze is in
2646 * progress, we are guaranteed that writeback during freezing will
2647 * see the dirty page and writeprotect it again.
2648 */
2649 set_page_dirty(page);
1d1d1a76 2650 wait_for_stable_page(page);
4fcf1c62 2651out:
14da9200 2652 sb_end_pagefault(inode->i_sb);
4fcf1c62
JK
2653 return ret;
2654}
4fcf1c62 2655
f0f37e2f 2656const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 2657 .fault = filemap_fault,
f1820361 2658 .map_pages = filemap_map_pages,
4fcf1c62 2659 .page_mkwrite = filemap_page_mkwrite,
1da177e4
LT
2660};
2661
2662/* This is used for a general mmap of a disk file */
2663
2664int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2665{
2666 struct address_space *mapping = file->f_mapping;
2667
2668 if (!mapping->a_ops->readpage)
2669 return -ENOEXEC;
2670 file_accessed(file);
2671 vma->vm_ops = &generic_file_vm_ops;
2672 return 0;
2673}
1da177e4
LT
2674
2675/*
2676 * This is for filesystems which do not implement ->writepage.
2677 */
2678int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2679{
2680 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2681 return -EINVAL;
2682 return generic_file_mmap(file, vma);
2683}
2684#else
45397228
AB
2685int filemap_page_mkwrite(struct vm_fault *vmf)
2686{
2687 return -ENOSYS;
2688}
1da177e4
LT
2689int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2690{
2691 return -ENOSYS;
2692}
2693int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2694{
2695 return -ENOSYS;
2696}
2697#endif /* CONFIG_MMU */
2698
45397228 2699EXPORT_SYMBOL(filemap_page_mkwrite);
1da177e4
LT
2700EXPORT_SYMBOL(generic_file_mmap);
2701EXPORT_SYMBOL(generic_file_readonly_mmap);
2702
67f9fd91
SL
2703static struct page *wait_on_page_read(struct page *page)
2704{
2705 if (!IS_ERR(page)) {
2706 wait_on_page_locked(page);
2707 if (!PageUptodate(page)) {
09cbfeaf 2708 put_page(page);
67f9fd91
SL
2709 page = ERR_PTR(-EIO);
2710 }
2711 }
2712 return page;
2713}
2714
32b63529 2715static struct page *do_read_cache_page(struct address_space *mapping,
57f6b96c 2716 pgoff_t index,
5e5358e7 2717 int (*filler)(void *, struct page *),
0531b2aa
LT
2718 void *data,
2719 gfp_t gfp)
1da177e4 2720{
eb2be189 2721 struct page *page;
1da177e4
LT
2722 int err;
2723repeat:
2724 page = find_get_page(mapping, index);
2725 if (!page) {
453f85d4 2726 page = __page_cache_alloc(gfp);
eb2be189
NP
2727 if (!page)
2728 return ERR_PTR(-ENOMEM);
e6f67b8c 2729 err = add_to_page_cache_lru(page, mapping, index, gfp);
eb2be189 2730 if (unlikely(err)) {
09cbfeaf 2731 put_page(page);
eb2be189
NP
2732 if (err == -EEXIST)
2733 goto repeat;
1da177e4 2734 /* Presumably ENOMEM for radix tree node */
1da177e4
LT
2735 return ERR_PTR(err);
2736 }
32b63529
MG
2737
2738filler:
1da177e4
LT
2739 err = filler(data, page);
2740 if (err < 0) {
09cbfeaf 2741 put_page(page);
32b63529 2742 return ERR_PTR(err);
1da177e4 2743 }
1da177e4 2744
32b63529
MG
2745 page = wait_on_page_read(page);
2746 if (IS_ERR(page))
2747 return page;
2748 goto out;
2749 }
1da177e4
LT
2750 if (PageUptodate(page))
2751 goto out;
2752
ebded027
MG
2753 /*
2754 * Page is not up to date and may be locked due one of the following
2755 * case a: Page is being filled and the page lock is held
2756 * case b: Read/write error clearing the page uptodate status
2757 * case c: Truncation in progress (page locked)
2758 * case d: Reclaim in progress
2759 *
2760 * Case a, the page will be up to date when the page is unlocked.
2761 * There is no need to serialise on the page lock here as the page
2762 * is pinned so the lock gives no additional protection. Even if the
2763 * the page is truncated, the data is still valid if PageUptodate as
2764 * it's a race vs truncate race.
2765 * Case b, the page will not be up to date
2766 * Case c, the page may be truncated but in itself, the data may still
2767 * be valid after IO completes as it's a read vs truncate race. The
2768 * operation must restart if the page is not uptodate on unlock but
2769 * otherwise serialising on page lock to stabilise the mapping gives
2770 * no additional guarantees to the caller as the page lock is
2771 * released before return.
2772 * Case d, similar to truncation. If reclaim holds the page lock, it
2773 * will be a race with remove_mapping that determines if the mapping
2774 * is valid on unlock but otherwise the data is valid and there is
2775 * no need to serialise with page lock.
2776 *
2777 * As the page lock gives no additional guarantee, we optimistically
2778 * wait on the page to be unlocked and check if it's up to date and
2779 * use the page if it is. Otherwise, the page lock is required to
2780 * distinguish between the different cases. The motivation is that we
2781 * avoid spurious serialisations and wakeups when multiple processes
2782 * wait on the same page for IO to complete.
2783 */
2784 wait_on_page_locked(page);
2785 if (PageUptodate(page))
2786 goto out;
2787
2788 /* Distinguish between all the cases under the safety of the lock */
1da177e4 2789 lock_page(page);
ebded027
MG
2790
2791 /* Case c or d, restart the operation */
1da177e4
LT
2792 if (!page->mapping) {
2793 unlock_page(page);
09cbfeaf 2794 put_page(page);
32b63529 2795 goto repeat;
1da177e4 2796 }
ebded027
MG
2797
2798 /* Someone else locked and filled the page in a very small window */
1da177e4
LT
2799 if (PageUptodate(page)) {
2800 unlock_page(page);
2801 goto out;
2802 }
32b63529
MG
2803 goto filler;
2804
c855ff37 2805out:
6fe6900e
NP
2806 mark_page_accessed(page);
2807 return page;
2808}
0531b2aa
LT
2809
2810/**
67f9fd91 2811 * read_cache_page - read into page cache, fill it if needed
0531b2aa
LT
2812 * @mapping: the page's address_space
2813 * @index: the page index
2814 * @filler: function to perform the read
5e5358e7 2815 * @data: first arg to filler(data, page) function, often left as NULL
0531b2aa 2816 *
0531b2aa 2817 * Read into the page cache. If a page already exists, and PageUptodate() is
67f9fd91 2818 * not set, try to fill the page and wait for it to become unlocked.
0531b2aa
LT
2819 *
2820 * If the page does not get brought uptodate, return -EIO.
2821 */
67f9fd91 2822struct page *read_cache_page(struct address_space *mapping,
0531b2aa 2823 pgoff_t index,
5e5358e7 2824 int (*filler)(void *, struct page *),
0531b2aa
LT
2825 void *data)
2826{
2827 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2828}
67f9fd91 2829EXPORT_SYMBOL(read_cache_page);
0531b2aa
LT
2830
2831/**
2832 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2833 * @mapping: the page's address_space
2834 * @index: the page index
2835 * @gfp: the page allocator flags to use if allocating
2836 *
2837 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
e6f67b8c 2838 * any new page allocations done using the specified allocation flags.
0531b2aa
LT
2839 *
2840 * If the page does not get brought uptodate, return -EIO.
2841 */
2842struct page *read_cache_page_gfp(struct address_space *mapping,
2843 pgoff_t index,
2844 gfp_t gfp)
2845{
2846 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2847
67f9fd91 2848 return do_read_cache_page(mapping, index, filler, NULL, gfp);
0531b2aa
LT
2849}
2850EXPORT_SYMBOL(read_cache_page_gfp);
2851
1da177e4
LT
2852/*
2853 * Performs necessary checks before doing a write
2854 *
485bb99b 2855 * Can adjust writing position or amount of bytes to write.
1da177e4
LT
2856 * Returns appropriate error code that caller should return or
2857 * zero in case that write should be allowed.
2858 */
3309dd04 2859inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
1da177e4 2860{
3309dd04 2861 struct file *file = iocb->ki_filp;
1da177e4 2862 struct inode *inode = file->f_mapping->host;
59e99e5b 2863 unsigned long limit = rlimit(RLIMIT_FSIZE);
3309dd04 2864 loff_t pos;
1da177e4 2865
3309dd04
AV
2866 if (!iov_iter_count(from))
2867 return 0;
1da177e4 2868
0fa6b005 2869 /* FIXME: this is for backwards compatibility with 2.4 */
2ba48ce5 2870 if (iocb->ki_flags & IOCB_APPEND)
3309dd04 2871 iocb->ki_pos = i_size_read(inode);
1da177e4 2872
3309dd04 2873 pos = iocb->ki_pos;
1da177e4 2874
6be96d3a
GR
2875 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2876 return -EINVAL;
2877
0fa6b005 2878 if (limit != RLIM_INFINITY) {
3309dd04 2879 if (iocb->ki_pos >= limit) {
0fa6b005
AV
2880 send_sig(SIGXFSZ, current, 0);
2881 return -EFBIG;
1da177e4 2882 }
3309dd04 2883 iov_iter_truncate(from, limit - (unsigned long)pos);
1da177e4
LT
2884 }
2885
2886 /*
2887 * LFS rule
2888 */
3309dd04 2889 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
1da177e4 2890 !(file->f_flags & O_LARGEFILE))) {
3309dd04 2891 if (pos >= MAX_NON_LFS)
1da177e4 2892 return -EFBIG;
3309dd04 2893 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
1da177e4
LT
2894 }
2895
2896 /*
2897 * Are we about to exceed the fs block limit ?
2898 *
2899 * If we have written data it becomes a short write. If we have
2900 * exceeded without writing data we send a signal and return EFBIG.
2901 * Linus frestrict idea will clean these up nicely..
2902 */
3309dd04
AV
2903 if (unlikely(pos >= inode->i_sb->s_maxbytes))
2904 return -EFBIG;
1da177e4 2905
3309dd04
AV
2906 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2907 return iov_iter_count(from);
1da177e4
LT
2908}
2909EXPORT_SYMBOL(generic_write_checks);
2910
afddba49
NP
2911int pagecache_write_begin(struct file *file, struct address_space *mapping,
2912 loff_t pos, unsigned len, unsigned flags,
2913 struct page **pagep, void **fsdata)
2914{
2915 const struct address_space_operations *aops = mapping->a_ops;
2916
4e02ed4b 2917 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 2918 pagep, fsdata);
afddba49
NP
2919}
2920EXPORT_SYMBOL(pagecache_write_begin);
2921
2922int pagecache_write_end(struct file *file, struct address_space *mapping,
2923 loff_t pos, unsigned len, unsigned copied,
2924 struct page *page, void *fsdata)
2925{
2926 const struct address_space_operations *aops = mapping->a_ops;
afddba49 2927
4e02ed4b 2928 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
2929}
2930EXPORT_SYMBOL(pagecache_write_end);
2931
1da177e4 2932ssize_t
1af5bb49 2933generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
2934{
2935 struct file *file = iocb->ki_filp;
2936 struct address_space *mapping = file->f_mapping;
2937 struct inode *inode = mapping->host;
1af5bb49 2938 loff_t pos = iocb->ki_pos;
1da177e4 2939 ssize_t written;
a969e903
CH
2940 size_t write_len;
2941 pgoff_t end;
1da177e4 2942
0c949334 2943 write_len = iov_iter_count(from);
09cbfeaf 2944 end = (pos + write_len - 1) >> PAGE_SHIFT;
a969e903 2945
6be96d3a
GR
2946 if (iocb->ki_flags & IOCB_NOWAIT) {
2947 /* If there are pages to writeback, return */
2948 if (filemap_range_has_page(inode->i_mapping, pos,
2949 pos + iov_iter_count(from)))
2950 return -EAGAIN;
2951 } else {
2952 written = filemap_write_and_wait_range(mapping, pos,
2953 pos + write_len - 1);
2954 if (written)
2955 goto out;
2956 }
a969e903
CH
2957
2958 /*
2959 * After a write we want buffered reads to be sure to go to disk to get
2960 * the new data. We invalidate clean cached page from the region we're
2961 * about to write. We do this *before* the write so that we can return
6ccfa806 2962 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903 2963 */
55635ba7 2964 written = invalidate_inode_pages2_range(mapping,
09cbfeaf 2965 pos >> PAGE_SHIFT, end);
55635ba7
AR
2966 /*
2967 * If a page can not be invalidated, return 0 to fall back
2968 * to buffered write.
2969 */
2970 if (written) {
2971 if (written == -EBUSY)
2972 return 0;
2973 goto out;
a969e903
CH
2974 }
2975
639a93a5 2976 written = mapping->a_ops->direct_IO(iocb, from);
a969e903
CH
2977
2978 /*
2979 * Finally, try again to invalidate clean pages which might have been
2980 * cached by non-direct readahead, or faulted in by get_user_pages()
2981 * if the source of the write was an mmap'ed region of the file
2982 * we're writing. Either one is a pretty crazy thing to do,
2983 * so we don't support it 100%. If this invalidation
2984 * fails, tough, the write still worked...
332391a9
LC
2985 *
2986 * Most of the time we do not need this since dio_complete() will do
2987 * the invalidation for us. However there are some file systems that
2988 * do not end up with dio_complete() being called, so let's not break
2989 * them by removing it completely
a969e903 2990 */
332391a9
LC
2991 if (mapping->nrpages)
2992 invalidate_inode_pages2_range(mapping,
2993 pos >> PAGE_SHIFT, end);
a969e903 2994
1da177e4 2995 if (written > 0) {
0116651c 2996 pos += written;
639a93a5 2997 write_len -= written;
0116651c
NK
2998 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2999 i_size_write(inode, pos);
1da177e4
LT
3000 mark_inode_dirty(inode);
3001 }
5cb6c6c7 3002 iocb->ki_pos = pos;
1da177e4 3003 }
639a93a5 3004 iov_iter_revert(from, write_len - iov_iter_count(from));
a969e903 3005out:
1da177e4
LT
3006 return written;
3007}
3008EXPORT_SYMBOL(generic_file_direct_write);
3009
eb2be189
NP
3010/*
3011 * Find or create a page at the given pagecache position. Return the locked
3012 * page. This function is specifically for buffered writes.
3013 */
54566b2c
NP
3014struct page *grab_cache_page_write_begin(struct address_space *mapping,
3015 pgoff_t index, unsigned flags)
eb2be189 3016{
eb2be189 3017 struct page *page;
bbddabe2 3018 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
0faa70cb 3019
54566b2c 3020 if (flags & AOP_FLAG_NOFS)
2457aec6
MG
3021 fgp_flags |= FGP_NOFS;
3022
3023 page = pagecache_get_page(mapping, index, fgp_flags,
45f87de5 3024 mapping_gfp_mask(mapping));
c585a267 3025 if (page)
2457aec6 3026 wait_for_stable_page(page);
eb2be189 3027
eb2be189
NP
3028 return page;
3029}
54566b2c 3030EXPORT_SYMBOL(grab_cache_page_write_begin);
eb2be189 3031
3b93f911 3032ssize_t generic_perform_write(struct file *file,
afddba49
NP
3033 struct iov_iter *i, loff_t pos)
3034{
3035 struct address_space *mapping = file->f_mapping;
3036 const struct address_space_operations *a_ops = mapping->a_ops;
3037 long status = 0;
3038 ssize_t written = 0;
674b892e
NP
3039 unsigned int flags = 0;
3040
afddba49
NP
3041 do {
3042 struct page *page;
afddba49
NP
3043 unsigned long offset; /* Offset into pagecache page */
3044 unsigned long bytes; /* Bytes to write to page */
3045 size_t copied; /* Bytes copied from user */
3046 void *fsdata;
3047
09cbfeaf
KS
3048 offset = (pos & (PAGE_SIZE - 1));
3049 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
3050 iov_iter_count(i));
3051
3052again:
00a3d660
LT
3053 /*
3054 * Bring in the user page that we will copy from _first_.
3055 * Otherwise there's a nasty deadlock on copying from the
3056 * same page as we're writing to, without it being marked
3057 * up-to-date.
3058 *
3059 * Not only is this an optimisation, but it is also required
3060 * to check that the address is actually valid, when atomic
3061 * usercopies are used, below.
3062 */
3063 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3064 status = -EFAULT;
3065 break;
3066 }
3067
296291cd
JK
3068 if (fatal_signal_pending(current)) {
3069 status = -EINTR;
3070 break;
3071 }
3072
674b892e 3073 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49 3074 &page, &fsdata);
2457aec6 3075 if (unlikely(status < 0))
afddba49
NP
3076 break;
3077
931e80e4 3078 if (mapping_writably_mapped(mapping))
3079 flush_dcache_page(page);
00a3d660 3080
afddba49 3081 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
afddba49
NP
3082 flush_dcache_page(page);
3083
3084 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3085 page, fsdata);
3086 if (unlikely(status < 0))
3087 break;
3088 copied = status;
3089
3090 cond_resched();
3091
124d3b70 3092 iov_iter_advance(i, copied);
afddba49
NP
3093 if (unlikely(copied == 0)) {
3094 /*
3095 * If we were unable to copy any data at all, we must
3096 * fall back to a single segment length write.
3097 *
3098 * If we didn't fallback here, we could livelock
3099 * because not all segments in the iov can be copied at
3100 * once without a pagefault.
3101 */
09cbfeaf 3102 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
3103 iov_iter_single_seg_count(i));
3104 goto again;
3105 }
afddba49
NP
3106 pos += copied;
3107 written += copied;
3108
3109 balance_dirty_pages_ratelimited(mapping);
afddba49
NP
3110 } while (iov_iter_count(i));
3111
3112 return written ? written : status;
3113}
3b93f911 3114EXPORT_SYMBOL(generic_perform_write);
1da177e4 3115
e4dd9de3 3116/**
8174202b 3117 * __generic_file_write_iter - write data to a file
e4dd9de3 3118 * @iocb: IO state structure (file, offset, etc.)
8174202b 3119 * @from: iov_iter with data to write
e4dd9de3
JK
3120 *
3121 * This function does all the work needed for actually writing data to a
3122 * file. It does all basic checks, removes SUID from the file, updates
3123 * modification times and calls proper subroutines depending on whether we
3124 * do direct IO or a standard buffered write.
3125 *
3126 * It expects i_mutex to be grabbed unless we work on a block device or similar
3127 * object which does not need locking at all.
3128 *
3129 * This function does *not* take care of syncing data in case of O_SYNC write.
3130 * A caller has to handle it. This is mainly due to the fact that we want to
3131 * avoid syncing under i_mutex.
3132 */
8174202b 3133ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3134{
3135 struct file *file = iocb->ki_filp;
fb5527e6 3136 struct address_space * mapping = file->f_mapping;
1da177e4 3137 struct inode *inode = mapping->host;
3b93f911 3138 ssize_t written = 0;
1da177e4 3139 ssize_t err;
3b93f911 3140 ssize_t status;
1da177e4 3141
1da177e4 3142 /* We can write back this queue in page reclaim */
de1414a6 3143 current->backing_dev_info = inode_to_bdi(inode);
5fa8e0a1 3144 err = file_remove_privs(file);
1da177e4
LT
3145 if (err)
3146 goto out;
3147
c3b2da31
JB
3148 err = file_update_time(file);
3149 if (err)
3150 goto out;
1da177e4 3151
2ba48ce5 3152 if (iocb->ki_flags & IOCB_DIRECT) {
0b8def9d 3153 loff_t pos, endbyte;
fb5527e6 3154
1af5bb49 3155 written = generic_file_direct_write(iocb, from);
1da177e4 3156 /*
fbbbad4b
MW
3157 * If the write stopped short of completing, fall back to
3158 * buffered writes. Some filesystems do this for writes to
3159 * holes, for example. For DAX files, a buffered write will
3160 * not succeed (even if it did, DAX does not handle dirty
3161 * page-cache pages correctly).
1da177e4 3162 */
0b8def9d 3163 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
fbbbad4b
MW
3164 goto out;
3165
0b8def9d 3166 status = generic_perform_write(file, from, pos = iocb->ki_pos);
fb5527e6 3167 /*
3b93f911 3168 * If generic_perform_write() returned a synchronous error
fb5527e6
JM
3169 * then we want to return the number of bytes which were
3170 * direct-written, or the error code if that was zero. Note
3171 * that this differs from normal direct-io semantics, which
3172 * will return -EFOO even if some bytes were written.
3173 */
60bb4529 3174 if (unlikely(status < 0)) {
3b93f911 3175 err = status;
fb5527e6
JM
3176 goto out;
3177 }
fb5527e6
JM
3178 /*
3179 * We need to ensure that the page cache pages are written to
3180 * disk and invalidated to preserve the expected O_DIRECT
3181 * semantics.
3182 */
3b93f911 3183 endbyte = pos + status - 1;
0b8def9d 3184 err = filemap_write_and_wait_range(mapping, pos, endbyte);
fb5527e6 3185 if (err == 0) {
0b8def9d 3186 iocb->ki_pos = endbyte + 1;
3b93f911 3187 written += status;
fb5527e6 3188 invalidate_mapping_pages(mapping,
09cbfeaf
KS
3189 pos >> PAGE_SHIFT,
3190 endbyte >> PAGE_SHIFT);
fb5527e6
JM
3191 } else {
3192 /*
3193 * We don't know how much we wrote, so just return
3194 * the number of bytes which were direct-written
3195 */
3196 }
3197 } else {
0b8def9d
AV
3198 written = generic_perform_write(file, from, iocb->ki_pos);
3199 if (likely(written > 0))
3200 iocb->ki_pos += written;
fb5527e6 3201 }
1da177e4
LT
3202out:
3203 current->backing_dev_info = NULL;
3204 return written ? written : err;
3205}
8174202b 3206EXPORT_SYMBOL(__generic_file_write_iter);
e4dd9de3 3207
e4dd9de3 3208/**
8174202b 3209 * generic_file_write_iter - write data to a file
e4dd9de3 3210 * @iocb: IO state structure
8174202b 3211 * @from: iov_iter with data to write
e4dd9de3 3212 *
8174202b 3213 * This is a wrapper around __generic_file_write_iter() to be used by most
e4dd9de3
JK
3214 * filesystems. It takes care of syncing the file in case of O_SYNC file
3215 * and acquires i_mutex as needed.
3216 */
8174202b 3217ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3218{
3219 struct file *file = iocb->ki_filp;
148f948b 3220 struct inode *inode = file->f_mapping->host;
1da177e4 3221 ssize_t ret;
1da177e4 3222
5955102c 3223 inode_lock(inode);
3309dd04
AV
3224 ret = generic_write_checks(iocb, from);
3225 if (ret > 0)
5f380c7f 3226 ret = __generic_file_write_iter(iocb, from);
5955102c 3227 inode_unlock(inode);
1da177e4 3228
e2592217
CH
3229 if (ret > 0)
3230 ret = generic_write_sync(iocb, ret);
1da177e4
LT
3231 return ret;
3232}
8174202b 3233EXPORT_SYMBOL(generic_file_write_iter);
1da177e4 3234
cf9a2ae8
DH
3235/**
3236 * try_to_release_page() - release old fs-specific metadata on a page
3237 *
3238 * @page: the page which the kernel is trying to free
3239 * @gfp_mask: memory allocation flags (and I/O mode)
3240 *
3241 * The address_space is to try to release any data against the page
0e056eb5 3242 * (presumably at page->private). If the release was successful, return '1'.
cf9a2ae8
DH
3243 * Otherwise return zero.
3244 *
266cf658
DH
3245 * This may also be called if PG_fscache is set on a page, indicating that the
3246 * page is known to the local caching routines.
3247 *
cf9a2ae8 3248 * The @gfp_mask argument specifies whether I/O may be performed to release
71baba4b 3249 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
cf9a2ae8 3250 *
cf9a2ae8
DH
3251 */
3252int try_to_release_page(struct page *page, gfp_t gfp_mask)
3253{
3254 struct address_space * const mapping = page->mapping;
3255
3256 BUG_ON(!PageLocked(page));
3257 if (PageWriteback(page))
3258 return 0;
3259
3260 if (mapping && mapping->a_ops->releasepage)
3261 return mapping->a_ops->releasepage(page, gfp_mask);
3262 return try_to_free_buffers(page);
3263}
3264
3265EXPORT_SYMBOL(try_to_release_page);