pagemap: add filemap_grab_folio()
[linux-block.git] / mm / filemap.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/filemap.c
4 *
5 * Copyright (C) 1994-1999 Linus Torvalds
6 */
7
8/*
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
12 */
b95f1b31 13#include <linux/export.h>
1da177e4 14#include <linux/compiler.h>
f9fe48be 15#include <linux/dax.h>
1da177e4 16#include <linux/fs.h>
3f07c014 17#include <linux/sched/signal.h>
c22ce143 18#include <linux/uaccess.h>
c59ede7b 19#include <linux/capability.h>
1da177e4 20#include <linux/kernel_stat.h>
5a0e3ad6 21#include <linux/gfp.h>
1da177e4
LT
22#include <linux/mm.h>
23#include <linux/swap.h>
ffa65753 24#include <linux/swapops.h>
1da177e4
LT
25#include <linux/mman.h>
26#include <linux/pagemap.h>
27#include <linux/file.h>
28#include <linux/uio.h>
cfcbfb13 29#include <linux/error-injection.h>
1da177e4
LT
30#include <linux/hash.h>
31#include <linux/writeback.h>
53253383 32#include <linux/backing-dev.h>
1da177e4 33#include <linux/pagevec.h>
1da177e4 34#include <linux/security.h>
44110fe3 35#include <linux/cpuset.h>
00501b53 36#include <linux/hugetlb.h>
8a9f3ccd 37#include <linux/memcontrol.h>
c7df8ad2 38#include <linux/shmem_fs.h>
f1820361 39#include <linux/rmap.h>
b1d29ba8 40#include <linux/delayacct.h>
eb414681 41#include <linux/psi.h>
d0e6a582 42#include <linux/ramfs.h>
b9306a79 43#include <linux/page_idle.h>
ffa65753 44#include <linux/migrate.h>
f9ce0be7 45#include <asm/pgalloc.h>
de591a82 46#include <asm/tlbflush.h>
0f8053a5
NP
47#include "internal.h"
48
fe0bfaaf
RJ
49#define CREATE_TRACE_POINTS
50#include <trace/events/filemap.h>
51
1da177e4 52/*
1da177e4
LT
53 * FIXME: remove all knowledge of the buffer layer from the core VM
54 */
148f948b 55#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 56
1da177e4
LT
57#include <asm/mman.h>
58
59/*
60 * Shared mappings implemented 30.11.1994. It's not fully working yet,
61 * though.
62 *
63 * Shared mappings now work. 15.8.1995 Bruno.
64 *
65 * finished 'unifying' the page and buffer cache and SMP-threaded the
66 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
67 *
68 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
69 */
70
71/*
72 * Lock ordering:
73 *
c8c06efa 74 * ->i_mmap_rwsem (truncate_pagecache)
e621900a 75 * ->private_lock (__free_pte->block_dirty_folio)
5d337b91 76 * ->swap_lock (exclusive_swap_page, others)
b93b0163 77 * ->i_pages lock
1da177e4 78 *
9608703e 79 * ->i_rwsem
730633f0
JK
80 * ->invalidate_lock (acquired by fs in truncate path)
81 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
1da177e4 82 *
c1e8d7c6 83 * ->mmap_lock
c8c06efa 84 * ->i_mmap_rwsem
b8072f09 85 * ->page_table_lock or pte_lock (various, mainly in memory.c)
b93b0163 86 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
1da177e4 87 *
c1e8d7c6 88 * ->mmap_lock
730633f0
JK
89 * ->invalidate_lock (filemap_fault)
90 * ->lock_page (filemap_fault, access_process_vm)
1da177e4 91 *
9608703e 92 * ->i_rwsem (generic_perform_write)
bb523b40 93 * ->mmap_lock (fault_in_readable->do_page_fault)
1da177e4 94 *
f758eeab 95 * bdi->wb.list_lock
a66979ab 96 * sb_lock (fs/fs-writeback.c)
b93b0163 97 * ->i_pages lock (__sync_single_inode)
1da177e4 98 *
c8c06efa 99 * ->i_mmap_rwsem
1da177e4
LT
100 * ->anon_vma.lock (vma_adjust)
101 *
102 * ->anon_vma.lock
b8072f09 103 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 104 *
b8072f09 105 * ->page_table_lock or pte_lock
5d337b91 106 * ->swap_lock (try_to_unmap_one)
1da177e4 107 * ->private_lock (try_to_unmap_one)
b93b0163 108 * ->i_pages lock (try_to_unmap_one)
15b44736
HD
109 * ->lruvec->lru_lock (follow_page->mark_page_accessed)
110 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page)
1da177e4 111 * ->private_lock (page_remove_rmap->set_page_dirty)
b93b0163 112 * ->i_pages lock (page_remove_rmap->set_page_dirty)
f758eeab 113 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
250df6ed 114 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
81f8c3a4 115 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
f758eeab 116 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 117 * ->inode->i_lock (zap_pte_range->set_page_dirty)
e621900a 118 * ->private_lock (zap_pte_range->block_dirty_folio)
1da177e4 119 *
c8c06efa 120 * ->i_mmap_rwsem
9a3c531d 121 * ->tasklist_lock (memory_failure, collect_procs_ao)
1da177e4
LT
122 */
123
5c024e6a 124static void page_cache_delete(struct address_space *mapping,
a548b615 125 struct folio *folio, void *shadow)
91b0abe3 126{
a548b615
MWO
127 XA_STATE(xas, &mapping->i_pages, folio->index);
128 long nr = 1;
c70b647d 129
5c024e6a 130 mapping_set_update(&xas, mapping);
c70b647d 131
5c024e6a 132 /* hugetlb pages are represented by a single entry in the xarray */
a548b615
MWO
133 if (!folio_test_hugetlb(folio)) {
134 xas_set_order(&xas, folio->index, folio_order(folio));
135 nr = folio_nr_pages(folio);
5c024e6a 136 }
91b0abe3 137
a548b615 138 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
449dd698 139
5c024e6a
MW
140 xas_store(&xas, shadow);
141 xas_init_marks(&xas);
d3798ae8 142
a548b615 143 folio->mapping = NULL;
2300638b 144 /* Leave page->index set: truncation lookup relies upon it */
d3798ae8 145 mapping->nrpages -= nr;
91b0abe3
JW
146}
147
621db488
MWO
148static void filemap_unaccount_folio(struct address_space *mapping,
149 struct folio *folio)
1da177e4 150{
621db488 151 long nr;
1da177e4 152
621db488
MWO
153 VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
154 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
06b241f3 155 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
621db488
MWO
156 current->comm, folio_pfn(folio));
157 dump_page(&folio->page, "still mapped when deleted");
06b241f3
HD
158 dump_stack();
159 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
160
85207ad8
HD
161 if (mapping_exiting(mapping) && !folio_test_large(folio)) {
162 int mapcount = page_mapcount(&folio->page);
163
164 if (folio_ref_count(folio) >= mapcount + 2) {
165 /*
166 * All vmas have already been torn down, so it's
167 * a good bet that actually the page is unmapped
168 * and we'd rather not leak it: if we're wrong,
169 * another bad page check should catch it later.
170 */
171 page_mapcount_reset(&folio->page);
172 folio_ref_sub(folio, mapcount);
173 }
06b241f3
HD
174 }
175 }
176
621db488
MWO
177 /* hugetlb folios do not participate in page cache accounting. */
178 if (folio_test_hugetlb(folio))
5ecc4d85 179 return;
09612fa6 180
621db488 181 nr = folio_nr_pages(folio);
5ecc4d85 182
621db488
MWO
183 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
184 if (folio_test_swapbacked(folio)) {
185 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
186 if (folio_test_pmd_mappable(folio))
187 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
188 } else if (folio_test_pmd_mappable(folio)) {
189 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
09d91cda 190 filemap_nr_thps_dec(mapping);
800d8c63 191 }
5ecc4d85
JK
192
193 /*
621db488
MWO
194 * At this point folio must be either written or cleaned by
195 * truncate. Dirty folio here signals a bug and loss of
566d3362 196 * unwritten data - on ordinary filesystems.
5ecc4d85 197 *
566d3362
HD
198 * But it's harmless on in-memory filesystems like tmpfs; and can
199 * occur when a driver which did get_user_pages() sets page dirty
200 * before putting it, while the inode is being finally evicted.
201 *
202 * Below fixes dirty accounting after removing the folio entirely
621db488
MWO
203 * but leaves the dirty flag set: it has no effect for truncated
204 * folio and anyway will be cleared before returning folio to
5ecc4d85
JK
205 * buddy allocator.
206 */
566d3362
HD
207 if (WARN_ON_ONCE(folio_test_dirty(folio) &&
208 mapping_can_writeback(mapping)))
209 folio_account_cleaned(folio, inode_to_wb(mapping->host));
5ecc4d85
JK
210}
211
212/*
213 * Delete a page from the page cache and free it. Caller has to make
214 * sure the page is locked and that nobody else uses it - or that usage
b93b0163 215 * is safe. The caller must hold the i_pages lock.
5ecc4d85 216 */
452e9e69 217void __filemap_remove_folio(struct folio *folio, void *shadow)
5ecc4d85 218{
452e9e69 219 struct address_space *mapping = folio->mapping;
5ecc4d85 220
a0580c6f 221 trace_mm_filemap_delete_from_page_cache(folio);
621db488 222 filemap_unaccount_folio(mapping, folio);
a548b615 223 page_cache_delete(mapping, folio, shadow);
1da177e4
LT
224}
225
78f42660 226void filemap_free_folio(struct address_space *mapping, struct folio *folio)
59c66c5f 227{
d2329aa0 228 void (*free_folio)(struct folio *);
3abb28e2 229 int refs = 1;
59c66c5f 230
d2329aa0
MWO
231 free_folio = mapping->a_ops->free_folio;
232 if (free_folio)
233 free_folio(folio);
59c66c5f 234
3abb28e2
MWO
235 if (folio_test_large(folio) && !folio_test_hugetlb(folio))
236 refs = folio_nr_pages(folio);
237 folio_put_refs(folio, refs);
59c66c5f
JK
238}
239
702cfbf9 240/**
452e9e69
MWO
241 * filemap_remove_folio - Remove folio from page cache.
242 * @folio: The folio.
702cfbf9 243 *
452e9e69
MWO
244 * This must be called only on folios that are locked and have been
245 * verified to be in the page cache. It will never put the folio into
246 * the free list because the caller has a reference on the page.
702cfbf9 247 */
452e9e69 248void filemap_remove_folio(struct folio *folio)
1da177e4 249{
452e9e69 250 struct address_space *mapping = folio->mapping;
1da177e4 251
452e9e69 252 BUG_ON(!folio_test_locked(folio));
51b8c1fe 253 spin_lock(&mapping->host->i_lock);
30472509 254 xa_lock_irq(&mapping->i_pages);
452e9e69 255 __filemap_remove_folio(folio, NULL);
30472509 256 xa_unlock_irq(&mapping->i_pages);
51b8c1fe
JW
257 if (mapping_shrinkable(mapping))
258 inode_add_lru(mapping->host);
259 spin_unlock(&mapping->host->i_lock);
6072d13c 260
452e9e69 261 filemap_free_folio(mapping, folio);
97cecb5a 262}
97cecb5a 263
aa65c29c 264/*
51dcbdac
MWO
265 * page_cache_delete_batch - delete several folios from page cache
266 * @mapping: the mapping to which folios belong
267 * @fbatch: batch of folios to delete
aa65c29c 268 *
51dcbdac
MWO
269 * The function walks over mapping->i_pages and removes folios passed in
270 * @fbatch from the mapping. The function expects @fbatch to be sorted
271 * by page index and is optimised for it to be dense.
272 * It tolerates holes in @fbatch (mapping entries at those indices are not
273 * modified).
aa65c29c 274 *
b93b0163 275 * The function expects the i_pages lock to be held.
aa65c29c 276 */
ef8e5717 277static void page_cache_delete_batch(struct address_space *mapping,
51dcbdac 278 struct folio_batch *fbatch)
aa65c29c 279{
51dcbdac 280 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
6b24ca4a 281 long total_pages = 0;
4101196b 282 int i = 0;
1afd7ae5 283 struct folio *folio;
aa65c29c 284
ef8e5717 285 mapping_set_update(&xas, mapping);
1afd7ae5 286 xas_for_each(&xas, folio, ULONG_MAX) {
51dcbdac 287 if (i >= folio_batch_count(fbatch))
aa65c29c 288 break;
4101196b
MWO
289
290 /* A swap/dax/shadow entry got inserted? Skip it. */
1afd7ae5 291 if (xa_is_value(folio))
aa65c29c 292 continue;
4101196b
MWO
293 /*
294 * A page got inserted in our range? Skip it. We have our
295 * pages locked so they are protected from being removed.
296 * If we see a page whose index is higher than ours, it
297 * means our page has been removed, which shouldn't be
298 * possible because we're holding the PageLock.
299 */
51dcbdac 300 if (folio != fbatch->folios[i]) {
1afd7ae5 301 VM_BUG_ON_FOLIO(folio->index >
51dcbdac 302 fbatch->folios[i]->index, folio);
4101196b
MWO
303 continue;
304 }
305
1afd7ae5 306 WARN_ON_ONCE(!folio_test_locked(folio));
4101196b 307
6b24ca4a 308 folio->mapping = NULL;
51dcbdac 309 /* Leave folio->index set: truncation lookup relies on it */
4101196b 310
6b24ca4a 311 i++;
ef8e5717 312 xas_store(&xas, NULL);
6b24ca4a 313 total_pages += folio_nr_pages(folio);
aa65c29c
JK
314 }
315 mapping->nrpages -= total_pages;
316}
317
318void delete_from_page_cache_batch(struct address_space *mapping,
51dcbdac 319 struct folio_batch *fbatch)
aa65c29c
JK
320{
321 int i;
aa65c29c 322
51dcbdac 323 if (!folio_batch_count(fbatch))
aa65c29c
JK
324 return;
325
51b8c1fe 326 spin_lock(&mapping->host->i_lock);
30472509 327 xa_lock_irq(&mapping->i_pages);
51dcbdac
MWO
328 for (i = 0; i < folio_batch_count(fbatch); i++) {
329 struct folio *folio = fbatch->folios[i];
aa65c29c 330
a0580c6f
MWO
331 trace_mm_filemap_delete_from_page_cache(folio);
332 filemap_unaccount_folio(mapping, folio);
aa65c29c 333 }
51dcbdac 334 page_cache_delete_batch(mapping, fbatch);
30472509 335 xa_unlock_irq(&mapping->i_pages);
51b8c1fe
JW
336 if (mapping_shrinkable(mapping))
337 inode_add_lru(mapping->host);
338 spin_unlock(&mapping->host->i_lock);
aa65c29c 339
51dcbdac
MWO
340 for (i = 0; i < folio_batch_count(fbatch); i++)
341 filemap_free_folio(mapping, fbatch->folios[i]);
aa65c29c
JK
342}
343
d72d9e2a 344int filemap_check_errors(struct address_space *mapping)
865ffef3
DM
345{
346 int ret = 0;
347 /* Check for outstanding write errors */
7fcbbaf1
JA
348 if (test_bit(AS_ENOSPC, &mapping->flags) &&
349 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
865ffef3 350 ret = -ENOSPC;
7fcbbaf1
JA
351 if (test_bit(AS_EIO, &mapping->flags) &&
352 test_and_clear_bit(AS_EIO, &mapping->flags))
865ffef3
DM
353 ret = -EIO;
354 return ret;
355}
d72d9e2a 356EXPORT_SYMBOL(filemap_check_errors);
865ffef3 357
76341cab
JL
358static int filemap_check_and_keep_errors(struct address_space *mapping)
359{
360 /* Check for outstanding write errors */
361 if (test_bit(AS_EIO, &mapping->flags))
362 return -EIO;
363 if (test_bit(AS_ENOSPC, &mapping->flags))
364 return -ENOSPC;
365 return 0;
366}
367
5a798493
JB
368/**
369 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
370 * @mapping: address space structure to write
371 * @wbc: the writeback_control controlling the writeout
372 *
373 * Call writepages on the mapping using the provided wbc to control the
374 * writeout.
375 *
376 * Return: %0 on success, negative error code otherwise.
377 */
378int filemap_fdatawrite_wbc(struct address_space *mapping,
379 struct writeback_control *wbc)
380{
381 int ret;
382
383 if (!mapping_can_writeback(mapping) ||
384 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
385 return 0;
386
387 wbc_attach_fdatawrite_inode(wbc, mapping->host);
388 ret = do_writepages(mapping, wbc);
389 wbc_detach_inode(wbc);
390 return ret;
391}
392EXPORT_SYMBOL(filemap_fdatawrite_wbc);
393
1da177e4 394/**
485bb99b 395 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
396 * @mapping: address space structure to write
397 * @start: offset in bytes where the range starts
469eb4d0 398 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 399 * @sync_mode: enable synchronous operation
1da177e4 400 *
485bb99b
RD
401 * Start writeback against all of a mapping's dirty pages that lie
402 * within the byte offsets <start, end> inclusive.
403 *
1da177e4 404 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 405 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
406 * these two operations is that if a dirty page/buffer is encountered, it must
407 * be waited upon, and not just skipped over.
a862f68a
MR
408 *
409 * Return: %0 on success, negative error code otherwise.
1da177e4 410 */
ebcf28e1
AM
411int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
412 loff_t end, int sync_mode)
1da177e4 413{
1da177e4
LT
414 struct writeback_control wbc = {
415 .sync_mode = sync_mode,
05fe478d 416 .nr_to_write = LONG_MAX,
111ebb6e
OH
417 .range_start = start,
418 .range_end = end,
1da177e4
LT
419 };
420
5a798493 421 return filemap_fdatawrite_wbc(mapping, &wbc);
1da177e4
LT
422}
423
424static inline int __filemap_fdatawrite(struct address_space *mapping,
425 int sync_mode)
426{
111ebb6e 427 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
428}
429
430int filemap_fdatawrite(struct address_space *mapping)
431{
432 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
433}
434EXPORT_SYMBOL(filemap_fdatawrite);
435
f4c0a0fd 436int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 437 loff_t end)
1da177e4
LT
438{
439 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
440}
f4c0a0fd 441EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 442
485bb99b
RD
443/**
444 * filemap_flush - mostly a non-blocking flush
445 * @mapping: target address_space
446 *
1da177e4
LT
447 * This is a mostly non-blocking flush. Not suitable for data-integrity
448 * purposes - I/O may not be started against all dirty pages.
a862f68a
MR
449 *
450 * Return: %0 on success, negative error code otherwise.
1da177e4
LT
451 */
452int filemap_flush(struct address_space *mapping)
453{
454 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
455}
456EXPORT_SYMBOL(filemap_flush);
457
7fc9e472
GR
458/**
459 * filemap_range_has_page - check if a page exists in range.
460 * @mapping: address space within which to check
461 * @start_byte: offset in bytes where the range starts
462 * @end_byte: offset in bytes where the range ends (inclusive)
463 *
464 * Find at least one page in the range supplied, usually used to check if
465 * direct writing in this range will trigger a writeback.
a862f68a
MR
466 *
467 * Return: %true if at least one page exists in the specified range,
468 * %false otherwise.
7fc9e472
GR
469 */
470bool filemap_range_has_page(struct address_space *mapping,
471 loff_t start_byte, loff_t end_byte)
472{
f7b68046 473 struct page *page;
8fa8e538
MW
474 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
475 pgoff_t max = end_byte >> PAGE_SHIFT;
7fc9e472
GR
476
477 if (end_byte < start_byte)
478 return false;
479
8fa8e538
MW
480 rcu_read_lock();
481 for (;;) {
482 page = xas_find(&xas, max);
483 if (xas_retry(&xas, page))
484 continue;
485 /* Shadow entries don't count */
486 if (xa_is_value(page))
487 continue;
488 /*
489 * We don't need to try to pin this page; we're about to
490 * release the RCU lock anyway. It is enough to know that
491 * there was a page here recently.
492 */
493 break;
494 }
495 rcu_read_unlock();
7fc9e472 496
8fa8e538 497 return page != NULL;
7fc9e472
GR
498}
499EXPORT_SYMBOL(filemap_range_has_page);
500
5e8fcc1a 501static void __filemap_fdatawait_range(struct address_space *mapping,
aa750fd7 502 loff_t start_byte, loff_t end_byte)
1da177e4 503{
09cbfeaf
KS
504 pgoff_t index = start_byte >> PAGE_SHIFT;
505 pgoff_t end = end_byte >> PAGE_SHIFT;
1da177e4
LT
506 struct pagevec pvec;
507 int nr_pages;
1da177e4 508
86679820 509 pagevec_init(&pvec);
312e9d2f 510 while (index <= end) {
1da177e4
LT
511 unsigned i;
512
312e9d2f 513 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
67fd707f 514 end, PAGECACHE_TAG_WRITEBACK);
312e9d2f
JK
515 if (!nr_pages)
516 break;
517
1da177e4
LT
518 for (i = 0; i < nr_pages; i++) {
519 struct page *page = pvec.pages[i];
520
1da177e4 521 wait_on_page_writeback(page);
5e8fcc1a 522 ClearPageError(page);
1da177e4
LT
523 }
524 pagevec_release(&pvec);
525 cond_resched();
526 }
aa750fd7
JN
527}
528
529/**
530 * filemap_fdatawait_range - wait for writeback to complete
531 * @mapping: address space structure to wait for
532 * @start_byte: offset in bytes where the range starts
533 * @end_byte: offset in bytes where the range ends (inclusive)
534 *
535 * Walk the list of under-writeback pages of the given address space
536 * in the given range and wait for all of them. Check error status of
537 * the address space and return it.
538 *
539 * Since the error status of the address space is cleared by this function,
540 * callers are responsible for checking the return value and handling and/or
541 * reporting the error.
a862f68a
MR
542 *
543 * Return: error status of the address space.
aa750fd7
JN
544 */
545int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
546 loff_t end_byte)
547{
5e8fcc1a
JL
548 __filemap_fdatawait_range(mapping, start_byte, end_byte);
549 return filemap_check_errors(mapping);
1da177e4 550}
d3bccb6f
JK
551EXPORT_SYMBOL(filemap_fdatawait_range);
552
aa0bfcd9
RZ
553/**
554 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
555 * @mapping: address space structure to wait for
556 * @start_byte: offset in bytes where the range starts
557 * @end_byte: offset in bytes where the range ends (inclusive)
558 *
559 * Walk the list of under-writeback pages of the given address space in the
560 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
561 * this function does not clear error status of the address space.
562 *
563 * Use this function if callers don't handle errors themselves. Expected
564 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
565 * fsfreeze(8)
566 */
567int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
568 loff_t start_byte, loff_t end_byte)
569{
570 __filemap_fdatawait_range(mapping, start_byte, end_byte);
571 return filemap_check_and_keep_errors(mapping);
572}
573EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
574
a823e458
JL
575/**
576 * file_fdatawait_range - wait for writeback to complete
577 * @file: file pointing to address space structure to wait for
578 * @start_byte: offset in bytes where the range starts
579 * @end_byte: offset in bytes where the range ends (inclusive)
580 *
581 * Walk the list of under-writeback pages of the address space that file
582 * refers to, in the given range and wait for all of them. Check error
583 * status of the address space vs. the file->f_wb_err cursor and return it.
584 *
585 * Since the error status of the file is advanced by this function,
586 * callers are responsible for checking the return value and handling and/or
587 * reporting the error.
a862f68a
MR
588 *
589 * Return: error status of the address space vs. the file->f_wb_err cursor.
a823e458
JL
590 */
591int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
592{
593 struct address_space *mapping = file->f_mapping;
594
595 __filemap_fdatawait_range(mapping, start_byte, end_byte);
596 return file_check_and_advance_wb_err(file);
597}
598EXPORT_SYMBOL(file_fdatawait_range);
d3bccb6f 599
aa750fd7
JN
600/**
601 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
602 * @mapping: address space structure to wait for
603 *
604 * Walk the list of under-writeback pages of the given address space
605 * and wait for all of them. Unlike filemap_fdatawait(), this function
606 * does not clear error status of the address space.
607 *
608 * Use this function if callers don't handle errors themselves. Expected
609 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
610 * fsfreeze(8)
a862f68a
MR
611 *
612 * Return: error status of the address space.
aa750fd7 613 */
76341cab 614int filemap_fdatawait_keep_errors(struct address_space *mapping)
aa750fd7 615{
ffb959bb 616 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
76341cab 617 return filemap_check_and_keep_errors(mapping);
aa750fd7 618}
76341cab 619EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
aa750fd7 620
875d91b1 621/* Returns true if writeback might be needed or already in progress. */
9326c9b2 622static bool mapping_needs_writeback(struct address_space *mapping)
1da177e4 623{
875d91b1 624 return mapping->nrpages;
1da177e4 625}
1da177e4 626
4bdcd1dd
JA
627bool filemap_range_has_writeback(struct address_space *mapping,
628 loff_t start_byte, loff_t end_byte)
f8ee8909
JA
629{
630 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
631 pgoff_t max = end_byte >> PAGE_SHIFT;
b05f41a1 632 struct folio *folio;
f8ee8909
JA
633
634 if (end_byte < start_byte)
635 return false;
636
637 rcu_read_lock();
b05f41a1
VMO
638 xas_for_each(&xas, folio, max) {
639 if (xas_retry(&xas, folio))
f8ee8909 640 continue;
b05f41a1 641 if (xa_is_value(folio))
f8ee8909 642 continue;
b05f41a1
VMO
643 if (folio_test_dirty(folio) || folio_test_locked(folio) ||
644 folio_test_writeback(folio))
f8ee8909
JA
645 break;
646 }
647 rcu_read_unlock();
b05f41a1 648 return folio != NULL;
63135aa3 649}
4bdcd1dd 650EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
63135aa3 651
485bb99b
RD
652/**
653 * filemap_write_and_wait_range - write out & wait on a file range
654 * @mapping: the address_space for the pages
655 * @lstart: offset in bytes where the range starts
656 * @lend: offset in bytes where the range ends (inclusive)
657 *
469eb4d0
AM
658 * Write out and wait upon file offsets lstart->lend, inclusive.
659 *
0e056eb5 660 * Note that @lend is inclusive (describes the last byte to be written) so
469eb4d0 661 * that this function can be used to write to the very end-of-file (end = -1).
a862f68a
MR
662 *
663 * Return: error status of the address space.
469eb4d0 664 */
1da177e4
LT
665int filemap_write_and_wait_range(struct address_space *mapping,
666 loff_t lstart, loff_t lend)
667{
ccac11da 668 int err = 0, err2;
1da177e4 669
feeb9b26
BF
670 if (lend < lstart)
671 return 0;
672
9326c9b2 673 if (mapping_needs_writeback(mapping)) {
28fd1298
OH
674 err = __filemap_fdatawrite_range(mapping, lstart, lend,
675 WB_SYNC_ALL);
ddf8f376
IW
676 /*
677 * Even if the above returned error, the pages may be
678 * written partially (e.g. -ENOSPC), so we wait for it.
679 * But the -EIO is special case, it may indicate the worst
680 * thing (e.g. bug) happened, so we avoid waiting for it.
681 */
ccac11da
ML
682 if (err != -EIO)
683 __filemap_fdatawait_range(mapping, lstart, lend);
1da177e4 684 }
ccac11da
ML
685 err2 = filemap_check_errors(mapping);
686 if (!err)
687 err = err2;
28fd1298 688 return err;
1da177e4 689}
f6995585 690EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 691
5660e13d
JL
692void __filemap_set_wb_err(struct address_space *mapping, int err)
693{
3acdfd28 694 errseq_t eseq = errseq_set(&mapping->wb_err, err);
5660e13d
JL
695
696 trace_filemap_set_wb_err(mapping, eseq);
697}
698EXPORT_SYMBOL(__filemap_set_wb_err);
699
700/**
701 * file_check_and_advance_wb_err - report wb error (if any) that was previously
702 * and advance wb_err to current one
703 * @file: struct file on which the error is being reported
704 *
705 * When userland calls fsync (or something like nfsd does the equivalent), we
706 * want to report any writeback errors that occurred since the last fsync (or
707 * since the file was opened if there haven't been any).
708 *
709 * Grab the wb_err from the mapping. If it matches what we have in the file,
710 * then just quickly return 0. The file is all caught up.
711 *
712 * If it doesn't match, then take the mapping value, set the "seen" flag in
713 * it and try to swap it into place. If it works, or another task beat us
714 * to it with the new value, then update the f_wb_err and return the error
715 * portion. The error at this point must be reported via proper channels
716 * (a'la fsync, or NFS COMMIT operation, etc.).
717 *
718 * While we handle mapping->wb_err with atomic operations, the f_wb_err
719 * value is protected by the f_lock since we must ensure that it reflects
720 * the latest value swapped in for this file descriptor.
a862f68a
MR
721 *
722 * Return: %0 on success, negative error code otherwise.
5660e13d
JL
723 */
724int file_check_and_advance_wb_err(struct file *file)
725{
726 int err = 0;
727 errseq_t old = READ_ONCE(file->f_wb_err);
728 struct address_space *mapping = file->f_mapping;
729
730 /* Locklessly handle the common case where nothing has changed */
731 if (errseq_check(&mapping->wb_err, old)) {
732 /* Something changed, must use slow path */
733 spin_lock(&file->f_lock);
734 old = file->f_wb_err;
735 err = errseq_check_and_advance(&mapping->wb_err,
736 &file->f_wb_err);
737 trace_file_check_and_advance_wb_err(file, old);
738 spin_unlock(&file->f_lock);
739 }
f4e222c5
JL
740
741 /*
742 * We're mostly using this function as a drop in replacement for
743 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
744 * that the legacy code would have had on these flags.
745 */
746 clear_bit(AS_EIO, &mapping->flags);
747 clear_bit(AS_ENOSPC, &mapping->flags);
5660e13d
JL
748 return err;
749}
750EXPORT_SYMBOL(file_check_and_advance_wb_err);
751
752/**
753 * file_write_and_wait_range - write out & wait on a file range
754 * @file: file pointing to address_space with pages
755 * @lstart: offset in bytes where the range starts
756 * @lend: offset in bytes where the range ends (inclusive)
757 *
758 * Write out and wait upon file offsets lstart->lend, inclusive.
759 *
760 * Note that @lend is inclusive (describes the last byte to be written) so
761 * that this function can be used to write to the very end-of-file (end = -1).
762 *
763 * After writing out and waiting on the data, we check and advance the
764 * f_wb_err cursor to the latest value, and return any errors detected there.
a862f68a
MR
765 *
766 * Return: %0 on success, negative error code otherwise.
5660e13d
JL
767 */
768int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
769{
770 int err = 0, err2;
771 struct address_space *mapping = file->f_mapping;
772
feeb9b26
BF
773 if (lend < lstart)
774 return 0;
775
9326c9b2 776 if (mapping_needs_writeback(mapping)) {
5660e13d
JL
777 err = __filemap_fdatawrite_range(mapping, lstart, lend,
778 WB_SYNC_ALL);
779 /* See comment of filemap_write_and_wait() */
780 if (err != -EIO)
781 __filemap_fdatawait_range(mapping, lstart, lend);
782 }
783 err2 = file_check_and_advance_wb_err(file);
784 if (!err)
785 err = err2;
786 return err;
787}
788EXPORT_SYMBOL(file_write_and_wait_range);
789
ef6a3c63 790/**
3720dd6d
VMO
791 * replace_page_cache_folio - replace a pagecache folio with a new one
792 * @old: folio to be replaced
793 * @new: folio to replace with
794 *
795 * This function replaces a folio in the pagecache with a new one. On
796 * success it acquires the pagecache reference for the new folio and
797 * drops it for the old folio. Both the old and new folios must be
798 * locked. This function does not add the new folio to the LRU, the
ef6a3c63
MS
799 * caller must do that.
800 *
74d60958 801 * The remove + add is atomic. This function cannot fail.
ef6a3c63 802 */
3720dd6d 803void replace_page_cache_folio(struct folio *old, struct folio *new)
ef6a3c63 804{
74d60958 805 struct address_space *mapping = old->mapping;
d2329aa0 806 void (*free_folio)(struct folio *) = mapping->a_ops->free_folio;
74d60958
MW
807 pgoff_t offset = old->index;
808 XA_STATE(xas, &mapping->i_pages, offset);
ef6a3c63 809
3720dd6d
VMO
810 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
811 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
812 VM_BUG_ON_FOLIO(new->mapping, new);
ef6a3c63 813
3720dd6d 814 folio_get(new);
74d60958
MW
815 new->mapping = mapping;
816 new->index = offset;
ef6a3c63 817
3720dd6d 818 mem_cgroup_migrate(old, new);
0d1c2072 819
30472509 820 xas_lock_irq(&xas);
74d60958 821 xas_store(&xas, new);
4165b9b4 822
74d60958
MW
823 old->mapping = NULL;
824 /* hugetlb pages do not participate in page cache accounting. */
3720dd6d
VMO
825 if (!folio_test_hugetlb(old))
826 __lruvec_stat_sub_folio(old, NR_FILE_PAGES);
827 if (!folio_test_hugetlb(new))
828 __lruvec_stat_add_folio(new, NR_FILE_PAGES);
829 if (folio_test_swapbacked(old))
830 __lruvec_stat_sub_folio(old, NR_SHMEM);
831 if (folio_test_swapbacked(new))
832 __lruvec_stat_add_folio(new, NR_SHMEM);
30472509 833 xas_unlock_irq(&xas);
d2329aa0 834 if (free_folio)
3720dd6d
VMO
835 free_folio(old);
836 folio_put(old);
ef6a3c63 837}
3720dd6d 838EXPORT_SYMBOL_GPL(replace_page_cache_folio);
ef6a3c63 839
9dd3d069
MWO
840noinline int __filemap_add_folio(struct address_space *mapping,
841 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
1da177e4 842{
9dd3d069
MWO
843 XA_STATE(xas, &mapping->i_pages, index);
844 int huge = folio_test_hugetlb(folio);
da74240e 845 bool charged = false;
d68eccad 846 long nr = 1;
e286781d 847
9dd3d069
MWO
848 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
849 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
74d60958 850 mapping_set_update(&xas, mapping);
e286781d 851
3fea5a49 852 if (!huge) {
d68eccad 853 int error = mem_cgroup_charge(folio, NULL, gfp);
9dd3d069 854 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
3fea5a49 855 if (error)
d68eccad 856 return error;
da74240e 857 charged = true;
d68eccad
MWO
858 xas_set_order(&xas, index, folio_order(folio));
859 nr = folio_nr_pages(folio);
3fea5a49
JW
860 }
861
198b62f8 862 gfp &= GFP_RECLAIM_MASK;
d68eccad
MWO
863 folio_ref_add(folio, nr);
864 folio->mapping = mapping;
865 folio->index = xas.xa_index;
198b62f8 866
74d60958 867 do {
198b62f8
MWO
868 unsigned int order = xa_get_order(xas.xa, xas.xa_index);
869 void *entry, *old = NULL;
870
9dd3d069 871 if (order > folio_order(folio))
198b62f8
MWO
872 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
873 order, gfp);
74d60958 874 xas_lock_irq(&xas);
198b62f8
MWO
875 xas_for_each_conflict(&xas, entry) {
876 old = entry;
877 if (!xa_is_value(entry)) {
878 xas_set_err(&xas, -EEXIST);
879 goto unlock;
880 }
881 }
882
883 if (old) {
884 if (shadowp)
885 *shadowp = old;
886 /* entry may have been split before we acquired lock */
887 order = xa_get_order(xas.xa, xas.xa_index);
9dd3d069 888 if (order > folio_order(folio)) {
d68eccad
MWO
889 /* How to handle large swap entries? */
890 BUG_ON(shmem_mapping(mapping));
198b62f8
MWO
891 xas_split(&xas, old, order);
892 xas_reset(&xas);
893 }
894 }
895
9dd3d069 896 xas_store(&xas, folio);
74d60958
MW
897 if (xas_error(&xas))
898 goto unlock;
899
d68eccad 900 mapping->nrpages += nr;
74d60958
MW
901
902 /* hugetlb pages do not participate in page cache accounting */
d68eccad
MWO
903 if (!huge) {
904 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
905 if (folio_test_pmd_mappable(folio))
906 __lruvec_stat_mod_folio(folio,
907 NR_FILE_THPS, nr);
908 }
74d60958
MW
909unlock:
910 xas_unlock_irq(&xas);
198b62f8 911 } while (xas_nomem(&xas, gfp));
74d60958 912
d68eccad 913 if (xas_error(&xas))
74d60958 914 goto error;
4165b9b4 915
a0580c6f 916 trace_mm_filemap_add_to_page_cache(folio);
66a0c8ee 917 return 0;
74d60958 918error:
d68eccad
MWO
919 if (charged)
920 mem_cgroup_uncharge(folio);
9dd3d069 921 folio->mapping = NULL;
66a0c8ee 922 /* Leave page->index set: truncation relies upon it */
d68eccad
MWO
923 folio_put_refs(folio, nr);
924 return xas_error(&xas);
1da177e4 925}
9dd3d069 926ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
a528910e 927
9dd3d069
MWO
928int filemap_add_folio(struct address_space *mapping, struct folio *folio,
929 pgoff_t index, gfp_t gfp)
1da177e4 930{
a528910e 931 void *shadow = NULL;
4f98a2fe
RR
932 int ret;
933
9dd3d069
MWO
934 __folio_set_locked(folio);
935 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
a528910e 936 if (unlikely(ret))
9dd3d069 937 __folio_clear_locked(folio);
a528910e
JW
938 else {
939 /*
9dd3d069 940 * The folio might have been evicted from cache only
a528910e 941 * recently, in which case it should be activated like
9dd3d069
MWO
942 * any other repeatedly accessed folio.
943 * The exception is folios getting rewritten; evicting other
f0281a00
RR
944 * data from the working set, only to cache data that will
945 * get overwritten with something else, is a waste of memory.
a528910e 946 */
9dd3d069
MWO
947 WARN_ON_ONCE(folio_test_active(folio));
948 if (!(gfp & __GFP_WRITE) && shadow)
949 workingset_refault(folio, shadow);
950 folio_add_lru(folio);
a528910e 951 }
1da177e4
LT
952 return ret;
953}
9dd3d069 954EXPORT_SYMBOL_GPL(filemap_add_folio);
1da177e4 955
44110fe3 956#ifdef CONFIG_NUMA
bb3c579e 957struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
44110fe3 958{
c0ff7453 959 int n;
bb3c579e 960 struct folio *folio;
c0ff7453 961
44110fe3 962 if (cpuset_do_page_mem_spread()) {
cc9a6c87
MG
963 unsigned int cpuset_mems_cookie;
964 do {
d26914d1 965 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 966 n = cpuset_mem_spread_node();
bb3c579e
MWO
967 folio = __folio_alloc_node(gfp, order, n);
968 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
cc9a6c87 969
bb3c579e 970 return folio;
44110fe3 971 }
bb3c579e 972 return folio_alloc(gfp, order);
44110fe3 973}
bb3c579e 974EXPORT_SYMBOL(filemap_alloc_folio);
44110fe3
PJ
975#endif
976
7506ae6a
JK
977/*
978 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
979 *
980 * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
981 *
982 * @mapping1: the first mapping to lock
983 * @mapping2: the second mapping to lock
984 */
985void filemap_invalidate_lock_two(struct address_space *mapping1,
986 struct address_space *mapping2)
987{
988 if (mapping1 > mapping2)
989 swap(mapping1, mapping2);
990 if (mapping1)
991 down_write(&mapping1->invalidate_lock);
992 if (mapping2 && mapping1 != mapping2)
993 down_write_nested(&mapping2->invalidate_lock, 1);
994}
995EXPORT_SYMBOL(filemap_invalidate_lock_two);
996
997/*
998 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
999 *
1000 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1001 *
1002 * @mapping1: the first mapping to unlock
1003 * @mapping2: the second mapping to unlock
1004 */
1005void filemap_invalidate_unlock_two(struct address_space *mapping1,
1006 struct address_space *mapping2)
1007{
1008 if (mapping1)
1009 up_write(&mapping1->invalidate_lock);
1010 if (mapping2 && mapping1 != mapping2)
1011 up_write(&mapping2->invalidate_lock);
1012}
1013EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1014
1da177e4
LT
1015/*
1016 * In order to wait for pages to become available there must be
1017 * waitqueues associated with pages. By using a hash table of
1018 * waitqueues where the bucket discipline is to maintain all
1019 * waiters on the same queue and wake all when any of the pages
1020 * become available, and for the woken contexts to check to be
1021 * sure the appropriate page became available, this saves space
1022 * at a cost of "thundering herd" phenomena during rare hash
1023 * collisions.
1024 */
62906027
NP
1025#define PAGE_WAIT_TABLE_BITS 8
1026#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
df4d4f12 1027static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
62906027 1028
df4d4f12 1029static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1da177e4 1030{
df4d4f12 1031 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1da177e4 1032}
1da177e4 1033
62906027 1034void __init pagecache_init(void)
1da177e4 1035{
62906027 1036 int i;
1da177e4 1037
62906027 1038 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
df4d4f12 1039 init_waitqueue_head(&folio_wait_table[i]);
62906027
NP
1040
1041 page_writeback_init();
1da177e4 1042}
1da177e4 1043
5ef64cc8
LT
1044/*
1045 * The page wait code treats the "wait->flags" somewhat unusually, because
5868ec26 1046 * we have multiple different kinds of waits, not just the usual "exclusive"
5ef64cc8
LT
1047 * one.
1048 *
1049 * We have:
1050 *
1051 * (a) no special bits set:
1052 *
1053 * We're just waiting for the bit to be released, and when a waker
1054 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1055 * and remove it from the wait queue.
1056 *
1057 * Simple and straightforward.
1058 *
1059 * (b) WQ_FLAG_EXCLUSIVE:
1060 *
1061 * The waiter is waiting to get the lock, and only one waiter should
1062 * be woken up to avoid any thundering herd behavior. We'll set the
1063 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1064 *
1065 * This is the traditional exclusive wait.
1066 *
5868ec26 1067 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
5ef64cc8
LT
1068 *
1069 * The waiter is waiting to get the bit, and additionally wants the
1070 * lock to be transferred to it for fair lock behavior. If the lock
1071 * cannot be taken, we stop walking the wait queue without waking
1072 * the waiter.
1073 *
1074 * This is the "fair lock handoff" case, and in addition to setting
1075 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1076 * that it now has the lock.
1077 */
ac6424b9 1078static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
f62e00cc 1079{
5ef64cc8 1080 unsigned int flags;
62906027
NP
1081 struct wait_page_key *key = arg;
1082 struct wait_page_queue *wait_page
1083 = container_of(wait, struct wait_page_queue, wait);
1084
cdc8fcb4 1085 if (!wake_page_match(wait_page, key))
62906027 1086 return 0;
3510ca20 1087
9a1ea439 1088 /*
5ef64cc8
LT
1089 * If it's a lock handoff wait, we get the bit for it, and
1090 * stop walking (and do not wake it up) if we can't.
9a1ea439 1091 */
5ef64cc8
LT
1092 flags = wait->flags;
1093 if (flags & WQ_FLAG_EXCLUSIVE) {
df4d4f12 1094 if (test_bit(key->bit_nr, &key->folio->flags))
2a9127fc 1095 return -1;
5ef64cc8 1096 if (flags & WQ_FLAG_CUSTOM) {
df4d4f12 1097 if (test_and_set_bit(key->bit_nr, &key->folio->flags))
5ef64cc8
LT
1098 return -1;
1099 flags |= WQ_FLAG_DONE;
1100 }
2a9127fc 1101 }
f62e00cc 1102
5ef64cc8
LT
1103 /*
1104 * We are holding the wait-queue lock, but the waiter that
1105 * is waiting for this will be checking the flags without
1106 * any locking.
1107 *
1108 * So update the flags atomically, and wake up the waiter
1109 * afterwards to avoid any races. This store-release pairs
101c0bf6 1110 * with the load-acquire in folio_wait_bit_common().
5ef64cc8
LT
1111 */
1112 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
2a9127fc
LT
1113 wake_up_state(wait->private, mode);
1114
1115 /*
1116 * Ok, we have successfully done what we're waiting for,
1117 * and we can unconditionally remove the wait entry.
1118 *
5ef64cc8
LT
1119 * Note that this pairs with the "finish_wait()" in the
1120 * waiter, and has to be the absolute last thing we do.
1121 * After this list_del_init(&wait->entry) the wait entry
2a9127fc
LT
1122 * might be de-allocated and the process might even have
1123 * exited.
2a9127fc 1124 */
c6fe44d9 1125 list_del_init_careful(&wait->entry);
5ef64cc8 1126 return (flags & WQ_FLAG_EXCLUSIVE) != 0;
f62e00cc
KM
1127}
1128
6974d7c9 1129static void folio_wake_bit(struct folio *folio, int bit_nr)
cbbce822 1130{
df4d4f12 1131 wait_queue_head_t *q = folio_waitqueue(folio);
62906027
NP
1132 struct wait_page_key key;
1133 unsigned long flags;
11a19c7b 1134 wait_queue_entry_t bookmark;
cbbce822 1135
df4d4f12 1136 key.folio = folio;
62906027
NP
1137 key.bit_nr = bit_nr;
1138 key.page_match = 0;
1139
11a19c7b
TC
1140 bookmark.flags = 0;
1141 bookmark.private = NULL;
1142 bookmark.func = NULL;
1143 INIT_LIST_HEAD(&bookmark.entry);
1144
62906027 1145 spin_lock_irqsave(&q->lock, flags);
11a19c7b
TC
1146 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1147
1148 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1149 /*
1150 * Take a breather from holding the lock,
1151 * allow pages that finish wake up asynchronously
1152 * to acquire the lock and remove themselves
1153 * from wait queue
1154 */
1155 spin_unlock_irqrestore(&q->lock, flags);
1156 cpu_relax();
1157 spin_lock_irqsave(&q->lock, flags);
1158 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1159 }
1160
62906027 1161 /*
bb43b14b
HD
1162 * It's possible to miss clearing waiters here, when we woke our page
1163 * waiters, but the hashed waitqueue has waiters for other pages on it.
1164 * That's okay, it's a rare case. The next waker will clear it.
62906027 1165 *
bb43b14b
HD
1166 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1167 * other), the flag may be cleared in the course of freeing the page;
1168 * but that is not required for correctness.
62906027 1169 */
bb43b14b 1170 if (!waitqueue_active(q) || !key.page_match)
6974d7c9 1171 folio_clear_waiters(folio);
bb43b14b 1172
62906027
NP
1173 spin_unlock_irqrestore(&q->lock, flags);
1174}
74d81bfa 1175
4268b480 1176static void folio_wake(struct folio *folio, int bit)
74d81bfa 1177{
4268b480 1178 if (!folio_test_waiters(folio))
74d81bfa 1179 return;
6974d7c9 1180 folio_wake_bit(folio, bit);
74d81bfa 1181}
62906027 1182
9a1ea439 1183/*
101c0bf6 1184 * A choice of three behaviors for folio_wait_bit_common():
9a1ea439
HD
1185 */
1186enum behavior {
1187 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
7c23c782 1188 * __folio_lock() waiting on then setting PG_locked.
9a1ea439
HD
1189 */
1190 SHARED, /* Hold ref to page and check the bit when woken, like
9f2b04a2 1191 * folio_wait_writeback() waiting on PG_writeback.
9a1ea439
HD
1192 */
1193 DROP, /* Drop ref to page before wait, no check when woken,
9f2b04a2 1194 * like folio_put_wait_locked() on PG_locked.
9a1ea439
HD
1195 */
1196};
1197
2a9127fc 1198/*
101c0bf6 1199 * Attempt to check (or get) the folio flag, and mark us done
5ef64cc8 1200 * if successful.
2a9127fc 1201 */
101c0bf6 1202static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
2a9127fc
LT
1203 struct wait_queue_entry *wait)
1204{
1205 if (wait->flags & WQ_FLAG_EXCLUSIVE) {
101c0bf6 1206 if (test_and_set_bit(bit_nr, &folio->flags))
2a9127fc 1207 return false;
101c0bf6 1208 } else if (test_bit(bit_nr, &folio->flags))
2a9127fc
LT
1209 return false;
1210
5ef64cc8 1211 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
2a9127fc
LT
1212 return true;
1213}
1214
5ef64cc8
LT
1215/* How many times do we accept lock stealing from under a waiter? */
1216int sysctl_page_lock_unfairness = 5;
1217
101c0bf6
MWO
1218static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1219 int state, enum behavior behavior)
62906027 1220{
df4d4f12 1221 wait_queue_head_t *q = folio_waitqueue(folio);
5ef64cc8 1222 int unfairness = sysctl_page_lock_unfairness;
62906027 1223 struct wait_page_queue wait_page;
ac6424b9 1224 wait_queue_entry_t *wait = &wait_page.wait;
b1d29ba8 1225 bool thrashing = false;
eb414681 1226 unsigned long pflags;
aa1cf99b 1227 bool in_thrashing;
62906027 1228
eb414681 1229 if (bit_nr == PG_locked &&
101c0bf6 1230 !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
aa1cf99b 1231 delayacct_thrashing_start(&in_thrashing);
eb414681 1232 psi_memstall_enter(&pflags);
b1d29ba8
JW
1233 thrashing = true;
1234 }
1235
62906027
NP
1236 init_wait(wait);
1237 wait->func = wake_page_function;
df4d4f12 1238 wait_page.folio = folio;
62906027
NP
1239 wait_page.bit_nr = bit_nr;
1240
5ef64cc8
LT
1241repeat:
1242 wait->flags = 0;
1243 if (behavior == EXCLUSIVE) {
1244 wait->flags = WQ_FLAG_EXCLUSIVE;
1245 if (--unfairness < 0)
1246 wait->flags |= WQ_FLAG_CUSTOM;
1247 }
1248
2a9127fc
LT
1249 /*
1250 * Do one last check whether we can get the
1251 * page bit synchronously.
1252 *
101c0bf6 1253 * Do the folio_set_waiters() marking before that
2a9127fc
LT
1254 * to let any waker we _just_ missed know they
1255 * need to wake us up (otherwise they'll never
1256 * even go to the slow case that looks at the
1257 * page queue), and add ourselves to the wait
1258 * queue if we need to sleep.
1259 *
1260 * This part needs to be done under the queue
1261 * lock to avoid races.
1262 */
1263 spin_lock_irq(&q->lock);
101c0bf6
MWO
1264 folio_set_waiters(folio);
1265 if (!folio_trylock_flag(folio, bit_nr, wait))
2a9127fc
LT
1266 __add_wait_queue_entry_tail(q, wait);
1267 spin_unlock_irq(&q->lock);
62906027 1268
2a9127fc
LT
1269 /*
1270 * From now on, all the logic will be based on
5ef64cc8
LT
1271 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1272 * see whether the page bit testing has already
1273 * been done by the wake function.
2a9127fc 1274 *
101c0bf6 1275 * We can drop our reference to the folio.
2a9127fc
LT
1276 */
1277 if (behavior == DROP)
101c0bf6 1278 folio_put(folio);
62906027 1279
5ef64cc8
LT
1280 /*
1281 * Note that until the "finish_wait()", or until
1282 * we see the WQ_FLAG_WOKEN flag, we need to
1283 * be very careful with the 'wait->flags', because
1284 * we may race with a waker that sets them.
1285 */
2a9127fc 1286 for (;;) {
5ef64cc8
LT
1287 unsigned int flags;
1288
62906027
NP
1289 set_current_state(state);
1290
5ef64cc8
LT
1291 /* Loop until we've been woken or interrupted */
1292 flags = smp_load_acquire(&wait->flags);
1293 if (!(flags & WQ_FLAG_WOKEN)) {
1294 if (signal_pending_state(state, current))
1295 break;
1296
1297 io_schedule();
1298 continue;
1299 }
1300
1301 /* If we were non-exclusive, we're done */
1302 if (behavior != EXCLUSIVE)
a8b169af 1303 break;
9a1ea439 1304
5ef64cc8
LT
1305 /* If the waker got the lock for us, we're done */
1306 if (flags & WQ_FLAG_DONE)
9a1ea439 1307 break;
2a9127fc 1308
5ef64cc8
LT
1309 /*
1310 * Otherwise, if we're getting the lock, we need to
1311 * try to get it ourselves.
1312 *
1313 * And if that fails, we'll have to retry this all.
1314 */
101c0bf6 1315 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
5ef64cc8
LT
1316 goto repeat;
1317
1318 wait->flags |= WQ_FLAG_DONE;
1319 break;
62906027
NP
1320 }
1321
5ef64cc8
LT
1322 /*
1323 * If a signal happened, this 'finish_wait()' may remove the last
101c0bf6 1324 * waiter from the wait-queues, but the folio waiters bit will remain
5ef64cc8
LT
1325 * set. That's ok. The next wakeup will take care of it, and trying
1326 * to do it here would be difficult and prone to races.
1327 */
62906027
NP
1328 finish_wait(q, wait);
1329
eb414681 1330 if (thrashing) {
aa1cf99b 1331 delayacct_thrashing_end(&in_thrashing);
eb414681
JW
1332 psi_memstall_leave(&pflags);
1333 }
b1d29ba8 1334
62906027 1335 /*
5ef64cc8
LT
1336 * NOTE! The wait->flags weren't stable until we've done the
1337 * 'finish_wait()', and we could have exited the loop above due
1338 * to a signal, and had a wakeup event happen after the signal
1339 * test but before the 'finish_wait()'.
1340 *
1341 * So only after the finish_wait() can we reliably determine
1342 * if we got woken up or not, so we can now figure out the final
1343 * return value based on that state without races.
1344 *
1345 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1346 * waiter, but an exclusive one requires WQ_FLAG_DONE.
62906027 1347 */
5ef64cc8
LT
1348 if (behavior == EXCLUSIVE)
1349 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
62906027 1350
2a9127fc 1351 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
62906027
NP
1352}
1353
ffa65753
AP
1354#ifdef CONFIG_MIGRATION
1355/**
1356 * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1357 * @entry: migration swap entry.
1358 * @ptep: mapped pte pointer. Will return with the ptep unmapped. Only required
1359 * for pte entries, pass NULL for pmd entries.
1360 * @ptl: already locked ptl. This function will drop the lock.
1361 *
1362 * Wait for a migration entry referencing the given page to be removed. This is
1363 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except
1364 * this can be called without taking a reference on the page. Instead this
1365 * should be called while holding the ptl for the migration entry referencing
1366 * the page.
1367 *
1368 * Returns after unmapping and unlocking the pte/ptl with pte_unmap_unlock().
1369 *
1370 * This follows the same logic as folio_wait_bit_common() so see the comments
1371 * there.
1372 */
1373void migration_entry_wait_on_locked(swp_entry_t entry, pte_t *ptep,
1374 spinlock_t *ptl)
1375{
1376 struct wait_page_queue wait_page;
1377 wait_queue_entry_t *wait = &wait_page.wait;
1378 bool thrashing = false;
ffa65753 1379 unsigned long pflags;
aa1cf99b 1380 bool in_thrashing;
ffa65753
AP
1381 wait_queue_head_t *q;
1382 struct folio *folio = page_folio(pfn_swap_entry_to_page(entry));
1383
1384 q = folio_waitqueue(folio);
1385 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
aa1cf99b 1386 delayacct_thrashing_start(&in_thrashing);
ffa65753
AP
1387 psi_memstall_enter(&pflags);
1388 thrashing = true;
1389 }
1390
1391 init_wait(wait);
1392 wait->func = wake_page_function;
1393 wait_page.folio = folio;
1394 wait_page.bit_nr = PG_locked;
1395 wait->flags = 0;
1396
1397 spin_lock_irq(&q->lock);
1398 folio_set_waiters(folio);
1399 if (!folio_trylock_flag(folio, PG_locked, wait))
1400 __add_wait_queue_entry_tail(q, wait);
1401 spin_unlock_irq(&q->lock);
1402
1403 /*
1404 * If a migration entry exists for the page the migration path must hold
1405 * a valid reference to the page, and it must take the ptl to remove the
1406 * migration entry. So the page is valid until the ptl is dropped.
1407 */
1408 if (ptep)
1409 pte_unmap_unlock(ptep, ptl);
1410 else
1411 spin_unlock(ptl);
1412
1413 for (;;) {
1414 unsigned int flags;
1415
1416 set_current_state(TASK_UNINTERRUPTIBLE);
1417
1418 /* Loop until we've been woken or interrupted */
1419 flags = smp_load_acquire(&wait->flags);
1420 if (!(flags & WQ_FLAG_WOKEN)) {
1421 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1422 break;
1423
1424 io_schedule();
1425 continue;
1426 }
1427 break;
1428 }
1429
1430 finish_wait(q, wait);
1431
1432 if (thrashing) {
aa1cf99b 1433 delayacct_thrashing_end(&in_thrashing);
ffa65753
AP
1434 psi_memstall_leave(&pflags);
1435 }
1436}
1437#endif
1438
101c0bf6 1439void folio_wait_bit(struct folio *folio, int bit_nr)
62906027 1440{
101c0bf6 1441 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
62906027 1442}
101c0bf6 1443EXPORT_SYMBOL(folio_wait_bit);
62906027 1444
101c0bf6 1445int folio_wait_bit_killable(struct folio *folio, int bit_nr)
62906027 1446{
101c0bf6 1447 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
cbbce822 1448}
101c0bf6 1449EXPORT_SYMBOL(folio_wait_bit_killable);
cbbce822 1450
9a1ea439 1451/**
9f2b04a2
MWO
1452 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1453 * @folio: The folio to wait for.
48054625 1454 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
9a1ea439 1455 *
9f2b04a2 1456 * The caller should hold a reference on @folio. They expect the page to
9a1ea439 1457 * become unlocked relatively soon, but do not wish to hold up migration
9f2b04a2 1458 * (for example) by holding the reference while waiting for the folio to
9a1ea439 1459 * come unlocked. After this function returns, the caller should not
9f2b04a2 1460 * dereference @folio.
48054625 1461 *
9f2b04a2 1462 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
9a1ea439 1463 */
c195c321 1464static int folio_put_wait_locked(struct folio *folio, int state)
9a1ea439 1465{
9f2b04a2 1466 return folio_wait_bit_common(folio, PG_locked, state, DROP);
9a1ea439
HD
1467}
1468
385e1ca5 1469/**
df4d4f12
MWO
1470 * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1471 * @folio: Folio defining the wait queue of interest
697f619f 1472 * @waiter: Waiter to add to the queue
385e1ca5 1473 *
df4d4f12 1474 * Add an arbitrary @waiter to the wait queue for the nominated @folio.
385e1ca5 1475 */
df4d4f12 1476void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
385e1ca5 1477{
df4d4f12 1478 wait_queue_head_t *q = folio_waitqueue(folio);
385e1ca5
DH
1479 unsigned long flags;
1480
1481 spin_lock_irqsave(&q->lock, flags);
9c3a815f 1482 __add_wait_queue_entry_tail(q, waiter);
df4d4f12 1483 folio_set_waiters(folio);
385e1ca5
DH
1484 spin_unlock_irqrestore(&q->lock, flags);
1485}
df4d4f12 1486EXPORT_SYMBOL_GPL(folio_add_wait_queue);
385e1ca5 1487
b91e1302
LT
1488#ifndef clear_bit_unlock_is_negative_byte
1489
1490/*
1491 * PG_waiters is the high bit in the same byte as PG_lock.
1492 *
1493 * On x86 (and on many other architectures), we can clear PG_lock and
1494 * test the sign bit at the same time. But if the architecture does
1495 * not support that special operation, we just do this all by hand
1496 * instead.
1497 *
1498 * The read of PG_waiters has to be after (or concurrently with) PG_locked
ffceeb62 1499 * being cleared, but a memory barrier should be unnecessary since it is
b91e1302
LT
1500 * in the same byte as PG_locked.
1501 */
1502static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1503{
1504 clear_bit_unlock(nr, mem);
1505 /* smp_mb__after_atomic(); */
98473f9f 1506 return test_bit(PG_waiters, mem);
b91e1302
LT
1507}
1508
1509#endif
1510
1da177e4 1511/**
4e136428
MWO
1512 * folio_unlock - Unlock a locked folio.
1513 * @folio: The folio.
1514 *
1515 * Unlocks the folio and wakes up any thread sleeping on the page lock.
1516 *
1517 * Context: May be called from interrupt or process context. May not be
1518 * called from NMI context.
1da177e4 1519 */
4e136428 1520void folio_unlock(struct folio *folio)
1da177e4 1521{
4e136428 1522 /* Bit 7 allows x86 to check the byte's sign bit */
b91e1302 1523 BUILD_BUG_ON(PG_waiters != 7);
4e136428
MWO
1524 BUILD_BUG_ON(PG_locked > 7);
1525 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1526 if (clear_bit_unlock_is_negative_byte(PG_locked, folio_flags(folio, 0)))
6974d7c9 1527 folio_wake_bit(folio, PG_locked);
1da177e4 1528}
4e136428 1529EXPORT_SYMBOL(folio_unlock);
1da177e4 1530
73e10ded 1531/**
b47393f8
MWO
1532 * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1533 * @folio: The folio.
73e10ded 1534 *
b47393f8
MWO
1535 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1536 * it. The folio reference held for PG_private_2 being set is released.
73e10ded 1537 *
b47393f8
MWO
1538 * This is, for example, used when a netfs folio is being written to a local
1539 * disk cache, thereby allowing writes to the cache for the same folio to be
73e10ded
DH
1540 * serialised.
1541 */
b47393f8 1542void folio_end_private_2(struct folio *folio)
73e10ded 1543{
6974d7c9
MWO
1544 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1545 clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1546 folio_wake_bit(folio, PG_private_2);
1547 folio_put(folio);
73e10ded 1548}
b47393f8 1549EXPORT_SYMBOL(folio_end_private_2);
73e10ded
DH
1550
1551/**
b47393f8
MWO
1552 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1553 * @folio: The folio to wait on.
73e10ded 1554 *
b47393f8 1555 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio.
73e10ded 1556 */
b47393f8 1557void folio_wait_private_2(struct folio *folio)
73e10ded 1558{
101c0bf6
MWO
1559 while (folio_test_private_2(folio))
1560 folio_wait_bit(folio, PG_private_2);
73e10ded 1561}
b47393f8 1562EXPORT_SYMBOL(folio_wait_private_2);
73e10ded
DH
1563
1564/**
b47393f8
MWO
1565 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1566 * @folio: The folio to wait on.
73e10ded 1567 *
b47393f8 1568 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a
73e10ded
DH
1569 * fatal signal is received by the calling task.
1570 *
1571 * Return:
1572 * - 0 if successful.
1573 * - -EINTR if a fatal signal was encountered.
1574 */
b47393f8 1575int folio_wait_private_2_killable(struct folio *folio)
73e10ded
DH
1576{
1577 int ret = 0;
1578
101c0bf6
MWO
1579 while (folio_test_private_2(folio)) {
1580 ret = folio_wait_bit_killable(folio, PG_private_2);
73e10ded
DH
1581 if (ret < 0)
1582 break;
1583 }
1584
1585 return ret;
1586}
b47393f8 1587EXPORT_SYMBOL(folio_wait_private_2_killable);
73e10ded 1588
485bb99b 1589/**
4268b480
MWO
1590 * folio_end_writeback - End writeback against a folio.
1591 * @folio: The folio.
1da177e4 1592 */
4268b480 1593void folio_end_writeback(struct folio *folio)
1da177e4 1594{
888cf2db 1595 /*
4268b480
MWO
1596 * folio_test_clear_reclaim() could be used here but it is an
1597 * atomic operation and overkill in this particular case. Failing
1598 * to shuffle a folio marked for immediate reclaim is too mild
1599 * a gain to justify taking an atomic operation penalty at the
1600 * end of every folio writeback.
888cf2db 1601 */
4268b480
MWO
1602 if (folio_test_reclaim(folio)) {
1603 folio_clear_reclaim(folio);
575ced1c 1604 folio_rotate_reclaimable(folio);
888cf2db 1605 }
ac6aadb2 1606
073861ed 1607 /*
4268b480 1608 * Writeback does not hold a folio reference of its own, relying
073861ed 1609 * on truncation to wait for the clearing of PG_writeback.
4268b480
MWO
1610 * But here we must make sure that the folio is not freed and
1611 * reused before the folio_wake().
073861ed 1612 */
4268b480 1613 folio_get(folio);
269ccca3 1614 if (!__folio_end_writeback(folio))
ac6aadb2
MS
1615 BUG();
1616
4e857c58 1617 smp_mb__after_atomic();
4268b480 1618 folio_wake(folio, PG_writeback);
512b7931 1619 acct_reclaim_writeback(folio);
4268b480 1620 folio_put(folio);
1da177e4 1621}
4268b480 1622EXPORT_SYMBOL(folio_end_writeback);
1da177e4 1623
57d99845
MW
1624/*
1625 * After completing I/O on a page, call this routine to update the page
1626 * flags appropriately
1627 */
c11f0c0b 1628void page_endio(struct page *page, bool is_write, int err)
57d99845 1629{
223ce491
SH
1630 struct folio *folio = page_folio(page);
1631
c11f0c0b 1632 if (!is_write) {
57d99845 1633 if (!err) {
223ce491 1634 folio_mark_uptodate(folio);
57d99845 1635 } else {
223ce491
SH
1636 folio_clear_uptodate(folio);
1637 folio_set_error(folio);
57d99845 1638 }
223ce491 1639 folio_unlock(folio);
abf54548 1640 } else {
57d99845 1641 if (err) {
dd8416c4
MK
1642 struct address_space *mapping;
1643
223ce491
SH
1644 folio_set_error(folio);
1645 mapping = folio_mapping(folio);
dd8416c4
MK
1646 if (mapping)
1647 mapping_set_error(mapping, err);
57d99845 1648 }
223ce491 1649 folio_end_writeback(folio);
57d99845
MW
1650 }
1651}
1652EXPORT_SYMBOL_GPL(page_endio);
1653
485bb99b 1654/**
7c23c782
MWO
1655 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1656 * @folio: The folio to lock
1da177e4 1657 */
7c23c782 1658void __folio_lock(struct folio *folio)
1da177e4 1659{
101c0bf6 1660 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
9a1ea439 1661 EXCLUSIVE);
1da177e4 1662}
7c23c782 1663EXPORT_SYMBOL(__folio_lock);
1da177e4 1664
af7f29d9 1665int __folio_lock_killable(struct folio *folio)
2687a356 1666{
101c0bf6 1667 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
9a1ea439 1668 EXCLUSIVE);
2687a356 1669}
af7f29d9 1670EXPORT_SYMBOL_GPL(__folio_lock_killable);
2687a356 1671
ffdc8dab 1672static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
dd3e6d50 1673{
df4d4f12 1674 struct wait_queue_head *q = folio_waitqueue(folio);
f32b5dd7
MWO
1675 int ret = 0;
1676
df4d4f12 1677 wait->folio = folio;
f32b5dd7
MWO
1678 wait->bit_nr = PG_locked;
1679
1680 spin_lock_irq(&q->lock);
1681 __add_wait_queue_entry_tail(q, &wait->wait);
ffdc8dab
MWO
1682 folio_set_waiters(folio);
1683 ret = !folio_trylock(folio);
f32b5dd7
MWO
1684 /*
1685 * If we were successful now, we know we're still on the
1686 * waitqueue as we're still under the lock. This means it's
1687 * safe to remove and return success, we know the callback
1688 * isn't going to trigger.
1689 */
1690 if (!ret)
1691 __remove_wait_queue(q, &wait->wait);
1692 else
1693 ret = -EIOCBQUEUED;
1694 spin_unlock_irq(&q->lock);
1695 return ret;
dd3e6d50
JA
1696}
1697
9a95f3cf
PC
1698/*
1699 * Return values:
9138e47e
MWO
1700 * true - folio is locked; mmap_lock is still held.
1701 * false - folio is not locked.
3e4e28c5 1702 * mmap_lock has been released (mmap_read_unlock(), unless flags had both
9a95f3cf 1703 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
c1e8d7c6 1704 * which case mmap_lock is still held.
9a95f3cf 1705 *
9138e47e
MWO
1706 * If neither ALLOW_RETRY nor KILLABLE are set, will always return true
1707 * with the folio locked and the mmap_lock unperturbed.
9a95f3cf 1708 */
9138e47e 1709bool __folio_lock_or_retry(struct folio *folio, struct mm_struct *mm,
d065bd81
ML
1710 unsigned int flags)
1711{
4064b982 1712 if (fault_flag_allow_retry_first(flags)) {
37b23e05 1713 /*
c1e8d7c6 1714 * CAUTION! In this case, mmap_lock is not released
37b23e05
KM
1715 * even though return 0.
1716 */
1717 if (flags & FAULT_FLAG_RETRY_NOWAIT)
9138e47e 1718 return false;
37b23e05 1719
d8ed45c5 1720 mmap_read_unlock(mm);
37b23e05 1721 if (flags & FAULT_FLAG_KILLABLE)
6baa8d60 1722 folio_wait_locked_killable(folio);
37b23e05 1723 else
6baa8d60 1724 folio_wait_locked(folio);
9138e47e 1725 return false;
800bca7c
HL
1726 }
1727 if (flags & FAULT_FLAG_KILLABLE) {
9138e47e 1728 bool ret;
37b23e05 1729
af7f29d9 1730 ret = __folio_lock_killable(folio);
800bca7c
HL
1731 if (ret) {
1732 mmap_read_unlock(mm);
9138e47e 1733 return false;
800bca7c
HL
1734 }
1735 } else {
af7f29d9 1736 __folio_lock(folio);
d065bd81 1737 }
800bca7c 1738
9138e47e 1739 return true;
d065bd81
ML
1740}
1741
e7b563bb 1742/**
0d3f9296
MW
1743 * page_cache_next_miss() - Find the next gap in the page cache.
1744 * @mapping: Mapping.
1745 * @index: Index.
1746 * @max_scan: Maximum range to search.
e7b563bb 1747 *
0d3f9296
MW
1748 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1749 * gap with the lowest index.
e7b563bb 1750 *
0d3f9296
MW
1751 * This function may be called under the rcu_read_lock. However, this will
1752 * not atomically search a snapshot of the cache at a single point in time.
1753 * For example, if a gap is created at index 5, then subsequently a gap is
1754 * created at index 10, page_cache_next_miss covering both indices may
1755 * return 10 if called under the rcu_read_lock.
e7b563bb 1756 *
0d3f9296
MW
1757 * Return: The index of the gap if found, otherwise an index outside the
1758 * range specified (in which case 'return - index >= max_scan' will be true).
1759 * In the rare case of index wrap-around, 0 will be returned.
e7b563bb 1760 */
0d3f9296 1761pgoff_t page_cache_next_miss(struct address_space *mapping,
e7b563bb
JW
1762 pgoff_t index, unsigned long max_scan)
1763{
0d3f9296 1764 XA_STATE(xas, &mapping->i_pages, index);
e7b563bb 1765
0d3f9296
MW
1766 while (max_scan--) {
1767 void *entry = xas_next(&xas);
1768 if (!entry || xa_is_value(entry))
e7b563bb 1769 break;
0d3f9296 1770 if (xas.xa_index == 0)
e7b563bb
JW
1771 break;
1772 }
1773
0d3f9296 1774 return xas.xa_index;
e7b563bb 1775}
0d3f9296 1776EXPORT_SYMBOL(page_cache_next_miss);
e7b563bb
JW
1777
1778/**
2346a560 1779 * page_cache_prev_miss() - Find the previous gap in the page cache.
0d3f9296
MW
1780 * @mapping: Mapping.
1781 * @index: Index.
1782 * @max_scan: Maximum range to search.
e7b563bb 1783 *
0d3f9296
MW
1784 * Search the range [max(index - max_scan + 1, 0), index] for the
1785 * gap with the highest index.
e7b563bb 1786 *
0d3f9296
MW
1787 * This function may be called under the rcu_read_lock. However, this will
1788 * not atomically search a snapshot of the cache at a single point in time.
1789 * For example, if a gap is created at index 10, then subsequently a gap is
1790 * created at index 5, page_cache_prev_miss() covering both indices may
1791 * return 5 if called under the rcu_read_lock.
e7b563bb 1792 *
0d3f9296
MW
1793 * Return: The index of the gap if found, otherwise an index outside the
1794 * range specified (in which case 'index - return >= max_scan' will be true).
1795 * In the rare case of wrap-around, ULONG_MAX will be returned.
e7b563bb 1796 */
0d3f9296 1797pgoff_t page_cache_prev_miss(struct address_space *mapping,
e7b563bb
JW
1798 pgoff_t index, unsigned long max_scan)
1799{
0d3f9296 1800 XA_STATE(xas, &mapping->i_pages, index);
e7b563bb 1801
0d3f9296
MW
1802 while (max_scan--) {
1803 void *entry = xas_prev(&xas);
1804 if (!entry || xa_is_value(entry))
e7b563bb 1805 break;
0d3f9296 1806 if (xas.xa_index == ULONG_MAX)
e7b563bb
JW
1807 break;
1808 }
1809
0d3f9296 1810 return xas.xa_index;
e7b563bb 1811}
0d3f9296 1812EXPORT_SYMBOL(page_cache_prev_miss);
e7b563bb 1813
020853b6
MWO
1814/*
1815 * Lockless page cache protocol:
1816 * On the lookup side:
1817 * 1. Load the folio from i_pages
1818 * 2. Increment the refcount if it's not zero
1819 * 3. If the folio is not found by xas_reload(), put the refcount and retry
1820 *
1821 * On the removal side:
1822 * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1823 * B. Remove the page from i_pages
1824 * C. Return the page to the page allocator
1825 *
1826 * This means that any page may have its reference count temporarily
1827 * increased by a speculative page cache (or fast GUP) lookup as it can
1828 * be allocated by another user before the RCU grace period expires.
1829 * Because the refcount temporarily acquired here may end up being the
1830 * last refcount on the page, any page allocation must be freeable by
1831 * folio_put().
1832 */
1833
44835d20 1834/*
bc5a3011 1835 * mapping_get_entry - Get a page cache entry.
485bb99b 1836 * @mapping: the address_space to search
a6de4b48 1837 * @index: The page cache index.
0cd6144a 1838 *
bca65eea
MWO
1839 * Looks up the page cache entry at @mapping & @index. If it is a folio,
1840 * it is returned with an increased refcount. If it is a shadow entry
1841 * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1842 * it is returned without further action.
485bb99b 1843 *
bca65eea 1844 * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1da177e4 1845 */
bca65eea 1846static void *mapping_get_entry(struct address_space *mapping, pgoff_t index)
1da177e4 1847{
a6de4b48 1848 XA_STATE(xas, &mapping->i_pages, index);
bca65eea 1849 struct folio *folio;
1da177e4 1850
a60637c8
NP
1851 rcu_read_lock();
1852repeat:
4c7472c0 1853 xas_reset(&xas);
bca65eea
MWO
1854 folio = xas_load(&xas);
1855 if (xas_retry(&xas, folio))
4c7472c0
MW
1856 goto repeat;
1857 /*
1858 * A shadow entry of a recently evicted page, or a swap entry from
1859 * shmem/tmpfs. Return it without attempting to raise page count.
1860 */
bca65eea 1861 if (!folio || xa_is_value(folio))
4c7472c0 1862 goto out;
83929372 1863
bca65eea 1864 if (!folio_try_get_rcu(folio))
4c7472c0 1865 goto repeat;
83929372 1866
bca65eea
MWO
1867 if (unlikely(folio != xas_reload(&xas))) {
1868 folio_put(folio);
4c7472c0 1869 goto repeat;
a60637c8 1870 }
27d20fdd 1871out:
a60637c8
NP
1872 rcu_read_unlock();
1873
bca65eea 1874 return folio;
1da177e4 1875}
1da177e4 1876
0cd6144a 1877/**
3f0c6a07 1878 * __filemap_get_folio - Find and get a reference to a folio.
2294b32e
MWO
1879 * @mapping: The address_space to search.
1880 * @index: The page index.
3f0c6a07
MWO
1881 * @fgp_flags: %FGP flags modify how the folio is returned.
1882 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1da177e4 1883 *
2294b32e 1884 * Looks up the page cache entry at @mapping & @index.
0cd6144a 1885 *
2294b32e 1886 * @fgp_flags can be zero or more of these flags:
0e056eb5 1887 *
3f0c6a07
MWO
1888 * * %FGP_ACCESSED - The folio will be marked accessed.
1889 * * %FGP_LOCK - The folio is returned locked.
44835d20 1890 * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it
3f0c6a07 1891 * instead of allocating a new folio to replace it.
2294b32e 1892 * * %FGP_CREAT - If no page is present then a new page is allocated using
3f0c6a07 1893 * @gfp and added to the page cache and the VM's LRU list.
2294b32e
MWO
1894 * The page is returned locked and with an increased refcount.
1895 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1896 * page is already in cache. If the page was allocated, unlock it before
1897 * returning so the caller can do the same dance.
3f0c6a07
MWO
1898 * * %FGP_WRITE - The page will be written to by the caller.
1899 * * %FGP_NOFS - __GFP_FS will get cleared in gfp.
1900 * * %FGP_NOWAIT - Don't get blocked by page lock.
b27652d9 1901 * * %FGP_STABLE - Wait for the folio to be stable (finished writeback)
1da177e4 1902 *
2294b32e
MWO
1903 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1904 * if the %GFP flags specified for %FGP_CREAT are atomic.
1da177e4 1905 *
2457aec6 1906 * If there is a page cache page, it is returned with an increased refcount.
a862f68a 1907 *
3f0c6a07 1908 * Return: The found folio or %NULL otherwise.
1da177e4 1909 */
3f0c6a07
MWO
1910struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1911 int fgp_flags, gfp_t gfp)
1da177e4 1912{
3f0c6a07 1913 struct folio *folio;
2457aec6 1914
1da177e4 1915repeat:
3f0c6a07
MWO
1916 folio = mapping_get_entry(mapping, index);
1917 if (xa_is_value(folio)) {
44835d20 1918 if (fgp_flags & FGP_ENTRY)
3f0c6a07
MWO
1919 return folio;
1920 folio = NULL;
44835d20 1921 }
3f0c6a07 1922 if (!folio)
2457aec6
MG
1923 goto no_page;
1924
1925 if (fgp_flags & FGP_LOCK) {
1926 if (fgp_flags & FGP_NOWAIT) {
3f0c6a07
MWO
1927 if (!folio_trylock(folio)) {
1928 folio_put(folio);
2457aec6
MG
1929 return NULL;
1930 }
1931 } else {
3f0c6a07 1932 folio_lock(folio);
2457aec6
MG
1933 }
1934
1935 /* Has the page been truncated? */
3f0c6a07
MWO
1936 if (unlikely(folio->mapping != mapping)) {
1937 folio_unlock(folio);
1938 folio_put(folio);
2457aec6
MG
1939 goto repeat;
1940 }
3f0c6a07 1941 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
2457aec6
MG
1942 }
1943
c16eb000 1944 if (fgp_flags & FGP_ACCESSED)
3f0c6a07 1945 folio_mark_accessed(folio);
b9306a79
YS
1946 else if (fgp_flags & FGP_WRITE) {
1947 /* Clear idle flag for buffer write */
3f0c6a07
MWO
1948 if (folio_test_idle(folio))
1949 folio_clear_idle(folio);
b9306a79 1950 }
2457aec6 1951
b27652d9
MWO
1952 if (fgp_flags & FGP_STABLE)
1953 folio_wait_stable(folio);
2457aec6 1954no_page:
3f0c6a07 1955 if (!folio && (fgp_flags & FGP_CREAT)) {
2457aec6 1956 int err;
f56753ac 1957 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
3f0c6a07 1958 gfp |= __GFP_WRITE;
45f87de5 1959 if (fgp_flags & FGP_NOFS)
3f0c6a07 1960 gfp &= ~__GFP_FS;
0dd316ba
JA
1961 if (fgp_flags & FGP_NOWAIT) {
1962 gfp &= ~GFP_KERNEL;
1963 gfp |= GFP_NOWAIT | __GFP_NOWARN;
1964 }
2457aec6 1965
3f0c6a07
MWO
1966 folio = filemap_alloc_folio(gfp, 0);
1967 if (!folio)
eb2be189 1968 return NULL;
2457aec6 1969
a75d4c33 1970 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
2457aec6
MG
1971 fgp_flags |= FGP_LOCK;
1972
eb39d618 1973 /* Init accessed so avoid atomic mark_page_accessed later */
2457aec6 1974 if (fgp_flags & FGP_ACCESSED)
3f0c6a07 1975 __folio_set_referenced(folio);
2457aec6 1976
3f0c6a07 1977 err = filemap_add_folio(mapping, folio, index, gfp);
eb2be189 1978 if (unlikely(err)) {
3f0c6a07
MWO
1979 folio_put(folio);
1980 folio = NULL;
eb2be189
NP
1981 if (err == -EEXIST)
1982 goto repeat;
1da177e4 1983 }
a75d4c33
JB
1984
1985 /*
3f0c6a07
MWO
1986 * filemap_add_folio locks the page, and for mmap
1987 * we expect an unlocked page.
a75d4c33 1988 */
3f0c6a07
MWO
1989 if (folio && (fgp_flags & FGP_FOR_MMAP))
1990 folio_unlock(folio);
1da177e4 1991 }
2457aec6 1992
3f0c6a07 1993 return folio;
1da177e4 1994}
3f0c6a07 1995EXPORT_SYMBOL(__filemap_get_folio);
1da177e4 1996
f5e6429a 1997static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
c7bad633
MWO
1998 xa_mark_t mark)
1999{
f5e6429a 2000 struct folio *folio;
c7bad633
MWO
2001
2002retry:
2003 if (mark == XA_PRESENT)
f5e6429a 2004 folio = xas_find(xas, max);
c7bad633 2005 else
f5e6429a 2006 folio = xas_find_marked(xas, max, mark);
c7bad633 2007
f5e6429a 2008 if (xas_retry(xas, folio))
c7bad633
MWO
2009 goto retry;
2010 /*
2011 * A shadow entry of a recently evicted page, a swap
2012 * entry from shmem/tmpfs or a DAX entry. Return it
2013 * without attempting to raise page count.
2014 */
f5e6429a
MWO
2015 if (!folio || xa_is_value(folio))
2016 return folio;
c7bad633 2017
f5e6429a 2018 if (!folio_try_get_rcu(folio))
c7bad633
MWO
2019 goto reset;
2020
f5e6429a
MWO
2021 if (unlikely(folio != xas_reload(xas))) {
2022 folio_put(folio);
c7bad633
MWO
2023 goto reset;
2024 }
2025
f5e6429a 2026 return folio;
c7bad633
MWO
2027reset:
2028 xas_reset(xas);
2029 goto retry;
2030}
2031
0cd6144a
JW
2032/**
2033 * find_get_entries - gang pagecache lookup
2034 * @mapping: The address_space to search
2035 * @start: The starting page cache index
ca122fe4 2036 * @end: The final page index (inclusive).
0e499ed3 2037 * @fbatch: Where the resulting entries are placed.
0cd6144a
JW
2038 * @indices: The cache indices corresponding to the entries in @entries
2039 *
cf2039af 2040 * find_get_entries() will search for and return a batch of entries in
0e499ed3
MWO
2041 * the mapping. The entries are placed in @fbatch. find_get_entries()
2042 * takes a reference on any actual folios it returns.
0cd6144a 2043 *
0e499ed3
MWO
2044 * The entries have ascending indexes. The indices may not be consecutive
2045 * due to not-present entries or large folios.
0cd6144a 2046 *
0e499ed3 2047 * Any shadow entries of evicted folios, or swap entries from
139b6a6f 2048 * shmem/tmpfs, are included in the returned array.
0cd6144a 2049 *
0e499ed3 2050 * Return: The number of entries which were found.
0cd6144a 2051 */
9fb6beea 2052unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
0e499ed3 2053 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
0cd6144a 2054{
9fb6beea 2055 XA_STATE(xas, &mapping->i_pages, *start);
f5e6429a 2056 struct folio *folio;
0cd6144a
JW
2057
2058 rcu_read_lock();
f5e6429a 2059 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
0e499ed3
MWO
2060 indices[fbatch->nr] = xas.xa_index;
2061 if (!folio_batch_add(fbatch, folio))
0cd6144a
JW
2062 break;
2063 }
2064 rcu_read_unlock();
cf2039af 2065
9fb6beea
VMO
2066 if (folio_batch_count(fbatch)) {
2067 unsigned long nr = 1;
2068 int idx = folio_batch_count(fbatch) - 1;
2069
2070 folio = fbatch->folios[idx];
2071 if (!xa_is_value(folio) && !folio_test_hugetlb(folio))
2072 nr = folio_nr_pages(folio);
2073 *start = indices[idx] + nr;
2074 }
0e499ed3 2075 return folio_batch_count(fbatch);
0cd6144a
JW
2076}
2077
5c211ba2
MWO
2078/**
2079 * find_lock_entries - Find a batch of pagecache entries.
2080 * @mapping: The address_space to search.
2081 * @start: The starting page cache index.
2082 * @end: The final page index (inclusive).
51dcbdac
MWO
2083 * @fbatch: Where the resulting entries are placed.
2084 * @indices: The cache indices of the entries in @fbatch.
5c211ba2
MWO
2085 *
2086 * find_lock_entries() will return a batch of entries from @mapping.
f5e6429a
MWO
2087 * Swap, shadow and DAX entries are included. Folios are returned
2088 * locked and with an incremented refcount. Folios which are locked
2089 * by somebody else or under writeback are skipped. Folios which are
2090 * partially outside the range are not returned.
5c211ba2
MWO
2091 *
2092 * The entries have ascending indexes. The indices may not be consecutive
f5e6429a
MWO
2093 * due to not-present entries, large folios, folios which could not be
2094 * locked or folios under writeback.
5c211ba2
MWO
2095 *
2096 * Return: The number of entries which were found.
2097 */
3392ca12 2098unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
51dcbdac 2099 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
5c211ba2 2100{
3392ca12 2101 XA_STATE(xas, &mapping->i_pages, *start);
f5e6429a 2102 struct folio *folio;
5c211ba2
MWO
2103
2104 rcu_read_lock();
f5e6429a
MWO
2105 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2106 if (!xa_is_value(folio)) {
3392ca12 2107 if (folio->index < *start)
5c211ba2 2108 goto put;
f5e6429a 2109 if (folio->index + folio_nr_pages(folio) - 1 > end)
5c211ba2 2110 goto put;
f5e6429a 2111 if (!folio_trylock(folio))
5c211ba2 2112 goto put;
f5e6429a
MWO
2113 if (folio->mapping != mapping ||
2114 folio_test_writeback(folio))
5c211ba2 2115 goto unlock;
f5e6429a
MWO
2116 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2117 folio);
5c211ba2 2118 }
51dcbdac
MWO
2119 indices[fbatch->nr] = xas.xa_index;
2120 if (!folio_batch_add(fbatch, folio))
5c211ba2 2121 break;
6b24ca4a 2122 continue;
5c211ba2 2123unlock:
f5e6429a 2124 folio_unlock(folio);
5c211ba2 2125put:
f5e6429a 2126 folio_put(folio);
5c211ba2
MWO
2127 }
2128 rcu_read_unlock();
2129
3392ca12
VMO
2130 if (folio_batch_count(fbatch)) {
2131 unsigned long nr = 1;
2132 int idx = folio_batch_count(fbatch) - 1;
2133
2134 folio = fbatch->folios[idx];
2135 if (!xa_is_value(folio) && !folio_test_hugetlb(folio))
2136 nr = folio_nr_pages(folio);
2137 *start = indices[idx] + nr;
2138 }
51dcbdac 2139 return folio_batch_count(fbatch);
5c211ba2
MWO
2140}
2141
1da177e4 2142/**
be0ced5e 2143 * filemap_get_folios - Get a batch of folios
1da177e4
LT
2144 * @mapping: The address_space to search
2145 * @start: The starting page index
b947cee4 2146 * @end: The final page index (inclusive)
be0ced5e 2147 * @fbatch: The batch to fill.
1da177e4 2148 *
be0ced5e
MWO
2149 * Search for and return a batch of folios in the mapping starting at
2150 * index @start and up to index @end (inclusive). The folios are returned
2151 * in @fbatch with an elevated reference count.
1da177e4 2152 *
be0ced5e
MWO
2153 * The first folio may start before @start; if it does, it will contain
2154 * @start. The final folio may extend beyond @end; if it does, it will
2155 * contain @end. The folios have ascending indices. There may be gaps
2156 * between the folios if there are indices which have no folio in the
2157 * page cache. If folios are added to or removed from the page cache
2158 * while this is running, they may or may not be found by this call.
1da177e4 2159 *
be0ced5e
MWO
2160 * Return: The number of folios which were found.
2161 * We also update @start to index the next folio for the traversal.
1da177e4 2162 */
be0ced5e
MWO
2163unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
2164 pgoff_t end, struct folio_batch *fbatch)
1da177e4 2165{
fd1b3cee 2166 XA_STATE(xas, &mapping->i_pages, *start);
f5e6429a 2167 struct folio *folio;
a60637c8
NP
2168
2169 rcu_read_lock();
be0ced5e 2170 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
fd1b3cee 2171 /* Skip over shadow, swap and DAX entries */
f5e6429a 2172 if (xa_is_value(folio))
8079b1c8 2173 continue;
be0ced5e
MWO
2174 if (!folio_batch_add(fbatch, folio)) {
2175 unsigned long nr = folio_nr_pages(folio);
a60637c8 2176
be0ced5e
MWO
2177 if (folio_test_hugetlb(folio))
2178 nr = 1;
2179 *start = folio->index + nr;
b947cee4
JK
2180 goto out;
2181 }
a60637c8 2182 }
5b280c0c 2183
b947cee4
JK
2184 /*
2185 * We come here when there is no page beyond @end. We take care to not
2186 * overflow the index @start as it confuses some of the callers. This
fd1b3cee 2187 * breaks the iteration when there is a page at index -1 but that is
b947cee4
JK
2188 * already broken anyway.
2189 */
2190 if (end == (pgoff_t)-1)
2191 *start = (pgoff_t)-1;
2192 else
2193 *start = end + 1;
2194out:
a60637c8 2195 rcu_read_unlock();
d72dc8a2 2196
be0ced5e
MWO
2197 return folio_batch_count(fbatch);
2198}
2199EXPORT_SYMBOL(filemap_get_folios);
2200
6b24ca4a
MWO
2201static inline
2202bool folio_more_pages(struct folio *folio, pgoff_t index, pgoff_t max)
2203{
2204 if (!folio_test_large(folio) || folio_test_hugetlb(folio))
2205 return false;
2206 if (index >= max)
2207 return false;
2208 return index < folio->index + folio_nr_pages(folio) - 1;
1da177e4
LT
2209}
2210
ebf43500 2211/**
35b47146 2212 * filemap_get_folios_contig - Get a batch of contiguous folios
ebf43500 2213 * @mapping: The address_space to search
35b47146
VMO
2214 * @start: The starting page index
2215 * @end: The final page index (inclusive)
2216 * @fbatch: The batch to fill
ebf43500 2217 *
35b47146
VMO
2218 * filemap_get_folios_contig() works exactly like filemap_get_folios(),
2219 * except the returned folios are guaranteed to be contiguous. This may
2220 * not return all contiguous folios if the batch gets filled up.
ebf43500 2221 *
35b47146
VMO
2222 * Return: The number of folios found.
2223 * Also update @start to be positioned for traversal of the next folio.
ebf43500 2224 */
35b47146
VMO
2225
2226unsigned filemap_get_folios_contig(struct address_space *mapping,
2227 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch)
ebf43500 2228{
35b47146
VMO
2229 XA_STATE(xas, &mapping->i_pages, *start);
2230 unsigned long nr;
e1c37722 2231 struct folio *folio;
a60637c8
NP
2232
2233 rcu_read_lock();
35b47146
VMO
2234
2235 for (folio = xas_load(&xas); folio && xas.xa_index <= end;
2236 folio = xas_next(&xas)) {
e1c37722 2237 if (xas_retry(&xas, folio))
3ece58a2
MW
2238 continue;
2239 /*
2240 * If the entry has been swapped out, we can stop looking.
2241 * No current caller is looking for DAX entries.
2242 */
e1c37722 2243 if (xa_is_value(folio))
35b47146 2244 goto update_start;
ebf43500 2245
e1c37722 2246 if (!folio_try_get_rcu(folio))
3ece58a2 2247 goto retry;
83929372 2248
e1c37722 2249 if (unlikely(folio != xas_reload(&xas)))
35b47146 2250 goto put_folio;
a60637c8 2251
35b47146
VMO
2252 if (!folio_batch_add(fbatch, folio)) {
2253 nr = folio_nr_pages(folio);
2254
2255 if (folio_test_hugetlb(folio))
2256 nr = 1;
2257 *start = folio->index + nr;
2258 goto out;
6b24ca4a 2259 }
3ece58a2 2260 continue;
35b47146 2261put_folio:
e1c37722 2262 folio_put(folio);
35b47146 2263
3ece58a2
MW
2264retry:
2265 xas_reset(&xas);
ebf43500 2266 }
35b47146
VMO
2267
2268update_start:
2269 nr = folio_batch_count(fbatch);
2270
2271 if (nr) {
2272 folio = fbatch->folios[nr - 1];
2273 if (folio_test_hugetlb(folio))
2274 *start = folio->index + 1;
2275 else
2276 *start = folio->index + folio_nr_pages(folio);
2277 }
2278out:
a60637c8 2279 rcu_read_unlock();
35b47146 2280 return folio_batch_count(fbatch);
ebf43500 2281}
35b47146 2282EXPORT_SYMBOL(filemap_get_folios_contig);
ebf43500 2283
485bb99b 2284/**
c49f50d1 2285 * find_get_pages_range_tag - Find and return head pages matching @tag.
485bb99b
RD
2286 * @mapping: the address_space to search
2287 * @index: the starting page index
72b045ae 2288 * @end: The final page index (inclusive)
485bb99b
RD
2289 * @tag: the tag index
2290 * @nr_pages: the maximum number of pages
2291 * @pages: where the resulting pages are placed
2292 *
eb5279fb
ML
2293 * Like find_get_pages_range(), except we only return head pages which are
2294 * tagged with @tag. @index is updated to the index immediately after the
2295 * last page we return, ready for the next iteration.
a862f68a
MR
2296 *
2297 * Return: the number of pages which were found.
1da177e4 2298 */
72b045ae 2299unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
a6906972 2300 pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
72b045ae 2301 struct page **pages)
1da177e4 2302{
a6906972 2303 XA_STATE(xas, &mapping->i_pages, *index);
f5e6429a 2304 struct folio *folio;
0fc9d104
KK
2305 unsigned ret = 0;
2306
2307 if (unlikely(!nr_pages))
2308 return 0;
a60637c8
NP
2309
2310 rcu_read_lock();
f5e6429a 2311 while ((folio = find_get_entry(&xas, end, tag))) {
a6906972
MW
2312 /*
2313 * Shadow entries should never be tagged, but this iteration
2314 * is lockless so there is a window for page reclaim to evict
2315 * a page we saw tagged. Skip over it.
2316 */
f5e6429a 2317 if (xa_is_value(folio))
139b6a6f 2318 continue;
a60637c8 2319
f5e6429a 2320 pages[ret] = &folio->page;
72b045ae 2321 if (++ret == nr_pages) {
f5e6429a 2322 *index = folio->index + folio_nr_pages(folio);
72b045ae
JK
2323 goto out;
2324 }
a60637c8 2325 }
5b280c0c 2326
72b045ae 2327 /*
a6906972 2328 * We come here when we got to @end. We take care to not overflow the
72b045ae 2329 * index @index as it confuses some of the callers. This breaks the
a6906972
MW
2330 * iteration when there is a page at index -1 but that is already
2331 * broken anyway.
72b045ae
JK
2332 */
2333 if (end == (pgoff_t)-1)
2334 *index = (pgoff_t)-1;
2335 else
2336 *index = end + 1;
2337out:
a60637c8 2338 rcu_read_unlock();
1da177e4 2339
1da177e4
LT
2340 return ret;
2341}
72b045ae 2342EXPORT_SYMBOL(find_get_pages_range_tag);
1da177e4 2343
76d42bd9
WF
2344/*
2345 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2346 * a _large_ part of the i/o request. Imagine the worst scenario:
2347 *
2348 * ---R__________________________________________B__________
2349 * ^ reading here ^ bad block(assume 4k)
2350 *
2351 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2352 * => failing the whole request => read(R) => read(R+1) =>
2353 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2354 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2355 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2356 *
2357 * It is going insane. Fix it by quickly scaling down the readahead size.
2358 */
0f8e2db4 2359static void shrink_readahead_size_eio(struct file_ra_state *ra)
76d42bd9 2360{
76d42bd9 2361 ra->ra_pages /= 4;
76d42bd9
WF
2362}
2363
cbd59c48 2364/*
25d6a23e 2365 * filemap_get_read_batch - Get a batch of folios for read
cbd59c48 2366 *
25d6a23e
MWO
2367 * Get a batch of folios which represent a contiguous range of bytes in
2368 * the file. No exceptional entries will be returned. If @index is in
2369 * the middle of a folio, the entire folio will be returned. The last
2370 * folio in the batch may have the readahead flag set or the uptodate flag
2371 * clear so that the caller can take the appropriate action.
cbd59c48
MWO
2372 */
2373static void filemap_get_read_batch(struct address_space *mapping,
25d6a23e 2374 pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
cbd59c48
MWO
2375{
2376 XA_STATE(xas, &mapping->i_pages, index);
bdb72932 2377 struct folio *folio;
cbd59c48
MWO
2378
2379 rcu_read_lock();
bdb72932
MWO
2380 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2381 if (xas_retry(&xas, folio))
cbd59c48 2382 continue;
bdb72932 2383 if (xas.xa_index > max || xa_is_value(folio))
cbd59c48 2384 break;
cb995f4e
MWO
2385 if (xa_is_sibling(folio))
2386 break;
bdb72932 2387 if (!folio_try_get_rcu(folio))
cbd59c48
MWO
2388 goto retry;
2389
bdb72932 2390 if (unlikely(folio != xas_reload(&xas)))
25d6a23e 2391 goto put_folio;
cbd59c48 2392
25d6a23e 2393 if (!folio_batch_add(fbatch, folio))
cbd59c48 2394 break;
bdb72932 2395 if (!folio_test_uptodate(folio))
cbd59c48 2396 break;
bdb72932 2397 if (folio_test_readahead(folio))
cbd59c48 2398 break;
6b24ca4a 2399 xas_advance(&xas, folio->index + folio_nr_pages(folio) - 1);
cbd59c48 2400 continue;
25d6a23e 2401put_folio:
bdb72932 2402 folio_put(folio);
cbd59c48
MWO
2403retry:
2404 xas_reset(&xas);
2405 }
2406 rcu_read_unlock();
2407}
2408
290e1a32 2409static int filemap_read_folio(struct file *file, filler_t filler,
9d427b4e 2410 struct folio *folio)
723ef24b 2411{
17604240
CH
2412 bool workingset = folio_test_workingset(folio);
2413 unsigned long pflags;
723ef24b
KO
2414 int error;
2415
723ef24b 2416 /*
68430303 2417 * A previous I/O error may have been due to temporary failures,
7e0a1265 2418 * eg. multipath errors. PG_error will be set again if read_folio
68430303 2419 * fails.
723ef24b 2420 */
9d427b4e 2421 folio_clear_error(folio);
17604240 2422
723ef24b 2423 /* Start the actual read. The read will unlock the page. */
17604240
CH
2424 if (unlikely(workingset))
2425 psi_memstall_enter(&pflags);
290e1a32 2426 error = filler(file, folio);
17604240
CH
2427 if (unlikely(workingset))
2428 psi_memstall_leave(&pflags);
68430303
MWO
2429 if (error)
2430 return error;
723ef24b 2431
9d427b4e 2432 error = folio_wait_locked_killable(folio);
68430303
MWO
2433 if (error)
2434 return error;
9d427b4e 2435 if (folio_test_uptodate(folio))
aa1ec2f6 2436 return 0;
290e1a32
MWO
2437 if (file)
2438 shrink_readahead_size_eio(&file->f_ra);
aa1ec2f6 2439 return -EIO;
723ef24b
KO
2440}
2441
fce70da3 2442static bool filemap_range_uptodate(struct address_space *mapping,
2fa4eeb8 2443 loff_t pos, struct iov_iter *iter, struct folio *folio)
fce70da3
MWO
2444{
2445 int count;
2446
2fa4eeb8 2447 if (folio_test_uptodate(folio))
fce70da3
MWO
2448 return true;
2449 /* pipes can't handle partially uptodate pages */
2450 if (iov_iter_is_pipe(iter))
2451 return false;
2452 if (!mapping->a_ops->is_partially_uptodate)
2453 return false;
2fa4eeb8 2454 if (mapping->host->i_blkbits >= folio_shift(folio))
fce70da3
MWO
2455 return false;
2456
2457 count = iter->count;
2fa4eeb8
MWO
2458 if (folio_pos(folio) > pos) {
2459 count -= folio_pos(folio) - pos;
fce70da3
MWO
2460 pos = 0;
2461 } else {
2fa4eeb8 2462 pos -= folio_pos(folio);
fce70da3
MWO
2463 }
2464
2e7e80f7 2465 return mapping->a_ops->is_partially_uptodate(folio, pos, count);
fce70da3
MWO
2466}
2467
4612aeef
MWO
2468static int filemap_update_page(struct kiocb *iocb,
2469 struct address_space *mapping, struct iov_iter *iter,
65bca53b 2470 struct folio *folio)
723ef24b 2471{
723ef24b
KO
2472 int error;
2473
730633f0
JK
2474 if (iocb->ki_flags & IOCB_NOWAIT) {
2475 if (!filemap_invalidate_trylock_shared(mapping))
2476 return -EAGAIN;
2477 } else {
2478 filemap_invalidate_lock_shared(mapping);
2479 }
2480
ffdc8dab 2481 if (!folio_trylock(folio)) {
730633f0 2482 error = -EAGAIN;
87d1d7b6 2483 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
730633f0 2484 goto unlock_mapping;
87d1d7b6 2485 if (!(iocb->ki_flags & IOCB_WAITQ)) {
730633f0 2486 filemap_invalidate_unlock_shared(mapping);
9f2b04a2
MWO
2487 /*
2488 * This is where we usually end up waiting for a
2489 * previously submitted readahead to finish.
2490 */
2491 folio_put_wait_locked(folio, TASK_KILLABLE);
4612aeef 2492 return AOP_TRUNCATED_PAGE;
bd8a1f36 2493 }
ffdc8dab 2494 error = __folio_lock_async(folio, iocb->ki_waitq);
87d1d7b6 2495 if (error)
730633f0 2496 goto unlock_mapping;
723ef24b 2497 }
723ef24b 2498
730633f0 2499 error = AOP_TRUNCATED_PAGE;
ffdc8dab 2500 if (!folio->mapping)
730633f0 2501 goto unlock;
723ef24b 2502
fce70da3 2503 error = 0;
2fa4eeb8 2504 if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, folio))
fce70da3
MWO
2505 goto unlock;
2506
2507 error = -EAGAIN;
2508 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2509 goto unlock;
2510
290e1a32
MWO
2511 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2512 folio);
730633f0 2513 goto unlock_mapping;
fce70da3 2514unlock:
ffdc8dab 2515 folio_unlock(folio);
730633f0
JK
2516unlock_mapping:
2517 filemap_invalidate_unlock_shared(mapping);
2518 if (error == AOP_TRUNCATED_PAGE)
ffdc8dab 2519 folio_put(folio);
fce70da3 2520 return error;
723ef24b
KO
2521}
2522
a5d4ad09 2523static int filemap_create_folio(struct file *file,
f253e185 2524 struct address_space *mapping, pgoff_t index,
25d6a23e 2525 struct folio_batch *fbatch)
723ef24b 2526{
a5d4ad09 2527 struct folio *folio;
723ef24b
KO
2528 int error;
2529
a5d4ad09
MWO
2530 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0);
2531 if (!folio)
f253e185 2532 return -ENOMEM;
723ef24b 2533
730633f0 2534 /*
a5d4ad09
MWO
2535 * Protect against truncate / hole punch. Grabbing invalidate_lock
2536 * here assures we cannot instantiate and bring uptodate new
2537 * pagecache folios after evicting page cache during truncate
2538 * and before actually freeing blocks. Note that we could
2539 * release invalidate_lock after inserting the folio into
2540 * the page cache as the locked folio would then be enough to
2541 * synchronize with hole punching. But there are code paths
2542 * such as filemap_update_page() filling in partially uptodate
704528d8 2543 * pages or ->readahead() that need to hold invalidate_lock
a5d4ad09
MWO
2544 * while mapping blocks for IO so let's hold the lock here as
2545 * well to keep locking rules simple.
730633f0
JK
2546 */
2547 filemap_invalidate_lock_shared(mapping);
a5d4ad09 2548 error = filemap_add_folio(mapping, folio, index,
f253e185
MWO
2549 mapping_gfp_constraint(mapping, GFP_KERNEL));
2550 if (error == -EEXIST)
2551 error = AOP_TRUNCATED_PAGE;
2552 if (error)
2553 goto error;
2554
290e1a32 2555 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
f253e185
MWO
2556 if (error)
2557 goto error;
2558
730633f0 2559 filemap_invalidate_unlock_shared(mapping);
25d6a23e 2560 folio_batch_add(fbatch, folio);
f253e185
MWO
2561 return 0;
2562error:
730633f0 2563 filemap_invalidate_unlock_shared(mapping);
a5d4ad09 2564 folio_put(folio);
f253e185 2565 return error;
723ef24b
KO
2566}
2567
5963fe03 2568static int filemap_readahead(struct kiocb *iocb, struct file *file,
65bca53b 2569 struct address_space *mapping, struct folio *folio,
5963fe03
MWO
2570 pgoff_t last_index)
2571{
65bca53b
MWO
2572 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2573
5963fe03
MWO
2574 if (iocb->ki_flags & IOCB_NOIO)
2575 return -EAGAIN;
65bca53b 2576 page_cache_async_ra(&ractl, folio, last_index - folio->index);
5963fe03
MWO
2577 return 0;
2578}
2579
3a6bae48 2580static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter,
25d6a23e 2581 struct folio_batch *fbatch)
06c04442
KO
2582{
2583 struct file *filp = iocb->ki_filp;
2584 struct address_space *mapping = filp->f_mapping;
2585 struct file_ra_state *ra = &filp->f_ra;
2586 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
cbd59c48 2587 pgoff_t last_index;
65bca53b 2588 struct folio *folio;
cbd59c48 2589 int err = 0;
06c04442 2590
cbd59c48 2591 last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE);
2642fca6 2592retry:
06c04442
KO
2593 if (fatal_signal_pending(current))
2594 return -EINTR;
2595
25d6a23e
MWO
2596 filemap_get_read_batch(mapping, index, last_index, fbatch);
2597 if (!folio_batch_count(fbatch)) {
2642fca6
MWO
2598 if (iocb->ki_flags & IOCB_NOIO)
2599 return -EAGAIN;
2600 page_cache_sync_readahead(mapping, ra, filp, index,
2601 last_index - index);
25d6a23e 2602 filemap_get_read_batch(mapping, index, last_index, fbatch);
2642fca6 2603 }
25d6a23e 2604 if (!folio_batch_count(fbatch)) {
f253e185
MWO
2605 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2606 return -EAGAIN;
a5d4ad09 2607 err = filemap_create_folio(filp, mapping,
25d6a23e 2608 iocb->ki_pos >> PAGE_SHIFT, fbatch);
f253e185 2609 if (err == AOP_TRUNCATED_PAGE)
2642fca6 2610 goto retry;
f253e185
MWO
2611 return err;
2612 }
06c04442 2613
25d6a23e 2614 folio = fbatch->folios[folio_batch_count(fbatch) - 1];
65bca53b
MWO
2615 if (folio_test_readahead(folio)) {
2616 err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2642fca6
MWO
2617 if (err)
2618 goto err;
2619 }
65bca53b 2620 if (!folio_test_uptodate(folio)) {
25d6a23e
MWO
2621 if ((iocb->ki_flags & IOCB_WAITQ) &&
2622 folio_batch_count(fbatch) > 1)
2642fca6 2623 iocb->ki_flags |= IOCB_NOWAIT;
65bca53b 2624 err = filemap_update_page(iocb, mapping, iter, folio);
2642fca6
MWO
2625 if (err)
2626 goto err;
06c04442
KO
2627 }
2628
2642fca6 2629 return 0;
cbd59c48 2630err:
2642fca6 2631 if (err < 0)
65bca53b 2632 folio_put(folio);
25d6a23e 2633 if (likely(--fbatch->nr))
ff993ba1 2634 return 0;
4612aeef 2635 if (err == AOP_TRUNCATED_PAGE)
2642fca6
MWO
2636 goto retry;
2637 return err;
06c04442
KO
2638}
2639
5ccc944d
MWO
2640static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio)
2641{
2642 unsigned int shift = folio_shift(folio);
2643
2644 return (pos1 >> shift == pos2 >> shift);
2645}
2646
485bb99b 2647/**
87fa0f3e
CH
2648 * filemap_read - Read data from the page cache.
2649 * @iocb: The iocb to read.
2650 * @iter: Destination for the data.
2651 * @already_read: Number of bytes already read by the caller.
485bb99b 2652 *
87fa0f3e 2653 * Copies data from the page cache. If the data is not currently present,
7e0a1265 2654 * uses the readahead and read_folio address_space operations to fetch it.
1da177e4 2655 *
87fa0f3e
CH
2656 * Return: Total number of bytes copied, including those already read by
2657 * the caller. If an error happens before any bytes are copied, returns
2658 * a negative error number.
1da177e4 2659 */
87fa0f3e
CH
2660ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2661 ssize_t already_read)
1da177e4 2662{
47c27bc4 2663 struct file *filp = iocb->ki_filp;
06c04442 2664 struct file_ra_state *ra = &filp->f_ra;
36e78914 2665 struct address_space *mapping = filp->f_mapping;
1da177e4 2666 struct inode *inode = mapping->host;
25d6a23e 2667 struct folio_batch fbatch;
ff993ba1 2668 int i, error = 0;
06c04442
KO
2669 bool writably_mapped;
2670 loff_t isize, end_offset;
1da177e4 2671
723ef24b 2672 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
d05c5f7b 2673 return 0;
3644e2d2
KO
2674 if (unlikely(!iov_iter_count(iter)))
2675 return 0;
2676
c2a9737f 2677 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
25d6a23e 2678 folio_batch_init(&fbatch);
c2a9737f 2679
06c04442 2680 do {
1da177e4 2681 cond_resched();
5abf186a 2682
723ef24b 2683 /*
06c04442
KO
2684 * If we've already successfully copied some data, then we
2685 * can no longer safely return -EIOCBQUEUED. Hence mark
2686 * an async read NOWAIT at that point.
723ef24b 2687 */
87fa0f3e 2688 if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
723ef24b
KO
2689 iocb->ki_flags |= IOCB_NOWAIT;
2690
8c8387ee
DH
2691 if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2692 break;
2693
25d6a23e 2694 error = filemap_get_pages(iocb, iter, &fbatch);
ff993ba1 2695 if (error < 0)
06c04442 2696 break;
1da177e4 2697
06c04442
KO
2698 /*
2699 * i_size must be checked after we know the pages are Uptodate.
2700 *
2701 * Checking i_size after the check allows us to calculate
2702 * the correct value for "nr", which means the zero-filled
2703 * part of the page is not copied back to userspace (unless
2704 * another truncate extends the file - this is desired though).
2705 */
2706 isize = i_size_read(inode);
2707 if (unlikely(iocb->ki_pos >= isize))
25d6a23e 2708 goto put_folios;
06c04442
KO
2709 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2710
06c04442
KO
2711 /*
2712 * Once we start copying data, we don't want to be touching any
2713 * cachelines that might be contended:
2714 */
2715 writably_mapped = mapping_writably_mapped(mapping);
2716
2717 /*
5ccc944d 2718 * When a read accesses the same folio several times, only
06c04442
KO
2719 * mark it as accessed the first time.
2720 */
5ccc944d
MWO
2721 if (!pos_same_folio(iocb->ki_pos, ra->prev_pos - 1,
2722 fbatch.folios[0]))
25d6a23e 2723 folio_mark_accessed(fbatch.folios[0]);
06c04442 2724
25d6a23e
MWO
2725 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2726 struct folio *folio = fbatch.folios[i];
d996fc7f
MWO
2727 size_t fsize = folio_size(folio);
2728 size_t offset = iocb->ki_pos & (fsize - 1);
cbd59c48 2729 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
d996fc7f 2730 fsize - offset);
cbd59c48 2731 size_t copied;
06c04442 2732
d996fc7f 2733 if (end_offset < folio_pos(folio))
cbd59c48
MWO
2734 break;
2735 if (i > 0)
d996fc7f 2736 folio_mark_accessed(folio);
06c04442 2737 /*
d996fc7f
MWO
2738 * If users can be writing to this folio using arbitrary
2739 * virtual addresses, take care of potential aliasing
2740 * before reading the folio on the kernel side.
06c04442 2741 */
d996fc7f
MWO
2742 if (writably_mapped)
2743 flush_dcache_folio(folio);
06c04442 2744
d996fc7f 2745 copied = copy_folio_to_iter(folio, offset, bytes, iter);
06c04442 2746
87fa0f3e 2747 already_read += copied;
06c04442
KO
2748 iocb->ki_pos += copied;
2749 ra->prev_pos = iocb->ki_pos;
2750
2751 if (copied < bytes) {
2752 error = -EFAULT;
2753 break;
2754 }
1da177e4 2755 }
25d6a23e
MWO
2756put_folios:
2757 for (i = 0; i < folio_batch_count(&fbatch); i++)
2758 folio_put(fbatch.folios[i]);
2759 folio_batch_init(&fbatch);
06c04442 2760 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
1da177e4 2761
0c6aa263 2762 file_accessed(filp);
06c04442 2763
87fa0f3e 2764 return already_read ? already_read : error;
1da177e4 2765}
87fa0f3e 2766EXPORT_SYMBOL_GPL(filemap_read);
1da177e4 2767
485bb99b 2768/**
6abd2322 2769 * generic_file_read_iter - generic filesystem read routine
485bb99b 2770 * @iocb: kernel I/O control block
6abd2322 2771 * @iter: destination for the data read
485bb99b 2772 *
6abd2322 2773 * This is the "read_iter()" routine for all filesystems
1da177e4 2774 * that can use the page cache directly.
41da51bc
AG
2775 *
2776 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2777 * be returned when no data can be read without waiting for I/O requests
2778 * to complete; it doesn't prevent readahead.
2779 *
2780 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2781 * requests shall be made for the read or for readahead. When no data
2782 * can be read, -EAGAIN shall be returned. When readahead would be
2783 * triggered, a partial, possibly empty read shall be returned.
2784 *
a862f68a
MR
2785 * Return:
2786 * * number of bytes copied, even for partial reads
41da51bc 2787 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
1da177e4
LT
2788 */
2789ssize_t
ed978a81 2790generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1da177e4 2791{
e7080a43 2792 size_t count = iov_iter_count(iter);
47c27bc4 2793 ssize_t retval = 0;
e7080a43
NS
2794
2795 if (!count)
826ea860 2796 return 0; /* skip atime */
1da177e4 2797
2ba48ce5 2798 if (iocb->ki_flags & IOCB_DIRECT) {
47c27bc4 2799 struct file *file = iocb->ki_filp;
ed978a81
AV
2800 struct address_space *mapping = file->f_mapping;
2801 struct inode *inode = mapping->host;
1da177e4 2802
6be96d3a 2803 if (iocb->ki_flags & IOCB_NOWAIT) {
7a60d6d7
JA
2804 if (filemap_range_needs_writeback(mapping, iocb->ki_pos,
2805 iocb->ki_pos + count - 1))
6be96d3a
GR
2806 return -EAGAIN;
2807 } else {
2808 retval = filemap_write_and_wait_range(mapping,
2809 iocb->ki_pos,
2810 iocb->ki_pos + count - 1);
2811 if (retval < 0)
826ea860 2812 return retval;
6be96d3a 2813 }
d8d3d94b 2814
0d5b0cf2
CH
2815 file_accessed(file);
2816
5ecda137 2817 retval = mapping->a_ops->direct_IO(iocb, iter);
c3a69024 2818 if (retval >= 0) {
c64fb5c7 2819 iocb->ki_pos += retval;
5ecda137 2820 count -= retval;
9fe55eea 2821 }
ab2125df
PB
2822 if (retval != -EIOCBQUEUED)
2823 iov_iter_revert(iter, count - iov_iter_count(iter));
66f998f6 2824
9fe55eea
SW
2825 /*
2826 * Btrfs can have a short DIO read if we encounter
2827 * compressed extents, so if there was an error, or if
2828 * we've already read everything we wanted to, or if
2829 * there was a short read because we hit EOF, go ahead
2830 * and return. Otherwise fallthrough to buffered io for
fbbbad4b
MW
2831 * the rest of the read. Buffered reads will not work for
2832 * DAX files, so don't bother trying.
9fe55eea 2833 */
61d0017e
JA
2834 if (retval < 0 || !count || IS_DAX(inode))
2835 return retval;
2836 if (iocb->ki_pos >= i_size_read(inode))
826ea860 2837 return retval;
1da177e4
LT
2838 }
2839
826ea860 2840 return filemap_read(iocb, iter, retval);
1da177e4 2841}
ed978a81 2842EXPORT_SYMBOL(generic_file_read_iter);
1da177e4 2843
f5e6429a
MWO
2844static inline loff_t folio_seek_hole_data(struct xa_state *xas,
2845 struct address_space *mapping, struct folio *folio,
54fa39ac 2846 loff_t start, loff_t end, bool seek_data)
41139aa4 2847{
54fa39ac
MWO
2848 const struct address_space_operations *ops = mapping->a_ops;
2849 size_t offset, bsz = i_blocksize(mapping->host);
2850
f5e6429a 2851 if (xa_is_value(folio) || folio_test_uptodate(folio))
54fa39ac
MWO
2852 return seek_data ? start : end;
2853 if (!ops->is_partially_uptodate)
2854 return seek_data ? end : start;
2855
2856 xas_pause(xas);
2857 rcu_read_unlock();
f5e6429a
MWO
2858 folio_lock(folio);
2859 if (unlikely(folio->mapping != mapping))
54fa39ac
MWO
2860 goto unlock;
2861
f5e6429a 2862 offset = offset_in_folio(folio, start) & ~(bsz - 1);
54fa39ac
MWO
2863
2864 do {
2e7e80f7 2865 if (ops->is_partially_uptodate(folio, offset, bsz) ==
f5e6429a 2866 seek_data)
54fa39ac
MWO
2867 break;
2868 start = (start + bsz) & ~(bsz - 1);
2869 offset += bsz;
f5e6429a 2870 } while (offset < folio_size(folio));
54fa39ac 2871unlock:
f5e6429a 2872 folio_unlock(folio);
54fa39ac
MWO
2873 rcu_read_lock();
2874 return start;
41139aa4
MWO
2875}
2876
f5e6429a 2877static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
41139aa4 2878{
f5e6429a 2879 if (xa_is_value(folio))
41139aa4 2880 return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
f5e6429a 2881 return folio_size(folio);
41139aa4
MWO
2882}
2883
2884/**
2885 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
2886 * @mapping: Address space to search.
2887 * @start: First byte to consider.
2888 * @end: Limit of search (exclusive).
2889 * @whence: Either SEEK_HOLE or SEEK_DATA.
2890 *
2891 * If the page cache knows which blocks contain holes and which blocks
2892 * contain data, your filesystem can use this function to implement
2893 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are
2894 * entirely memory-based such as tmpfs, and filesystems which support
2895 * unwritten extents.
2896 *
f0953a1b 2897 * Return: The requested offset on success, or -ENXIO if @whence specifies
41139aa4
MWO
2898 * SEEK_DATA and there is no data after @start. There is an implicit hole
2899 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
2900 * and @end contain data.
2901 */
2902loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
2903 loff_t end, int whence)
2904{
2905 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
ed98b015 2906 pgoff_t max = (end - 1) >> PAGE_SHIFT;
41139aa4 2907 bool seek_data = (whence == SEEK_DATA);
f5e6429a 2908 struct folio *folio;
41139aa4
MWO
2909
2910 if (end <= start)
2911 return -ENXIO;
2912
2913 rcu_read_lock();
f5e6429a 2914 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
ed98b015 2915 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
f5e6429a 2916 size_t seek_size;
41139aa4
MWO
2917
2918 if (start < pos) {
2919 if (!seek_data)
2920 goto unlock;
2921 start = pos;
2922 }
2923
f5e6429a
MWO
2924 seek_size = seek_folio_size(&xas, folio);
2925 pos = round_up((u64)pos + 1, seek_size);
2926 start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
54fa39ac
MWO
2927 seek_data);
2928 if (start < pos)
41139aa4 2929 goto unlock;
ed98b015
HD
2930 if (start >= end)
2931 break;
2932 if (seek_size > PAGE_SIZE)
2933 xas_set(&xas, pos >> PAGE_SHIFT);
f5e6429a
MWO
2934 if (!xa_is_value(folio))
2935 folio_put(folio);
41139aa4 2936 }
41139aa4 2937 if (seek_data)
ed98b015 2938 start = -ENXIO;
41139aa4
MWO
2939unlock:
2940 rcu_read_unlock();
f5e6429a
MWO
2941 if (folio && !xa_is_value(folio))
2942 folio_put(folio);
41139aa4
MWO
2943 if (start > end)
2944 return end;
2945 return start;
2946}
2947
1da177e4 2948#ifdef CONFIG_MMU
1da177e4 2949#define MMAP_LOTSAMISS (100)
6b4c9f44 2950/*
e292e6d6 2951 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
6b4c9f44 2952 * @vmf - the vm_fault for this fault.
e292e6d6 2953 * @folio - the folio to lock.
6b4c9f44
JB
2954 * @fpin - the pointer to the file we may pin (or is already pinned).
2955 *
e292e6d6
MWO
2956 * This works similar to lock_folio_or_retry in that it can drop the
2957 * mmap_lock. It differs in that it actually returns the folio locked
2958 * if it returns 1 and 0 if it couldn't lock the folio. If we did have
2959 * to drop the mmap_lock then fpin will point to the pinned file and
2960 * needs to be fput()'ed at a later point.
6b4c9f44 2961 */
e292e6d6 2962static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
6b4c9f44
JB
2963 struct file **fpin)
2964{
7c23c782 2965 if (folio_trylock(folio))
6b4c9f44
JB
2966 return 1;
2967
8b0f9fa2
LT
2968 /*
2969 * NOTE! This will make us return with VM_FAULT_RETRY, but with
c1e8d7c6 2970 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
8b0f9fa2
LT
2971 * is supposed to work. We have way too many special cases..
2972 */
6b4c9f44
JB
2973 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2974 return 0;
2975
2976 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2977 if (vmf->flags & FAULT_FLAG_KILLABLE) {
af7f29d9 2978 if (__folio_lock_killable(folio)) {
6b4c9f44 2979 /*
c1e8d7c6 2980 * We didn't have the right flags to drop the mmap_lock,
6b4c9f44
JB
2981 * but all fault_handlers only check for fatal signals
2982 * if we return VM_FAULT_RETRY, so we need to drop the
c1e8d7c6 2983 * mmap_lock here and return 0 if we don't have a fpin.
6b4c9f44
JB
2984 */
2985 if (*fpin == NULL)
d8ed45c5 2986 mmap_read_unlock(vmf->vma->vm_mm);
6b4c9f44
JB
2987 return 0;
2988 }
2989 } else
7c23c782
MWO
2990 __folio_lock(folio);
2991
6b4c9f44
JB
2992 return 1;
2993}
2994
ef00e08e 2995/*
6b4c9f44
JB
2996 * Synchronous readahead happens when we don't even find a page in the page
2997 * cache at all. We don't want to perform IO under the mmap sem, so if we have
2998 * to drop the mmap sem we return the file that was pinned in order for us to do
2999 * that. If we didn't pin a file then we return NULL. The file that is
3000 * returned needs to be fput()'ed when we're done with it.
ef00e08e 3001 */
6b4c9f44 3002static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
ef00e08e 3003{
2a1180f1
JB
3004 struct file *file = vmf->vma->vm_file;
3005 struct file_ra_state *ra = &file->f_ra;
ef00e08e 3006 struct address_space *mapping = file->f_mapping;
fcd9ae4f 3007 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
6b4c9f44 3008 struct file *fpin = NULL;
dcfa24ba 3009 unsigned long vm_flags = vmf->vma->vm_flags;
e630bfac 3010 unsigned int mmap_miss;
ef00e08e 3011
4687fdbb
MWO
3012#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3013 /* Use the readahead code, even if readahead is disabled */
dcfa24ba 3014 if (vm_flags & VM_HUGEPAGE) {
4687fdbb
MWO
3015 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3016 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
3017 ra->size = HPAGE_PMD_NR;
3018 /*
3019 * Fetch two PMD folios, so we get the chance to actually
3020 * readahead, unless we've been told not to.
3021 */
dcfa24ba 3022 if (!(vm_flags & VM_RAND_READ))
4687fdbb
MWO
3023 ra->size *= 2;
3024 ra->async_size = HPAGE_PMD_NR;
3025 page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER);
3026 return fpin;
3027 }
3028#endif
3029
ef00e08e 3030 /* If we don't want any read-ahead, don't bother */
dcfa24ba 3031 if (vm_flags & VM_RAND_READ)
6b4c9f44 3032 return fpin;
275b12bf 3033 if (!ra->ra_pages)
6b4c9f44 3034 return fpin;
ef00e08e 3035
dcfa24ba 3036 if (vm_flags & VM_SEQ_READ) {
6b4c9f44 3037 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
fcd9ae4f 3038 page_cache_sync_ra(&ractl, ra->ra_pages);
6b4c9f44 3039 return fpin;
ef00e08e
LT
3040 }
3041
207d04ba 3042 /* Avoid banging the cache line if not needed */
e630bfac
KS
3043 mmap_miss = READ_ONCE(ra->mmap_miss);
3044 if (mmap_miss < MMAP_LOTSAMISS * 10)
3045 WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
ef00e08e
LT
3046
3047 /*
3048 * Do we miss much more than hit in this file? If so,
3049 * stop bothering with read-ahead. It will only hurt.
3050 */
e630bfac 3051 if (mmap_miss > MMAP_LOTSAMISS)
6b4c9f44 3052 return fpin;
ef00e08e 3053
d30a1100
WF
3054 /*
3055 * mmap read-around
3056 */
6b4c9f44 3057 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
db660d46 3058 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
600e19af
RG
3059 ra->size = ra->ra_pages;
3060 ra->async_size = ra->ra_pages / 4;
db660d46 3061 ractl._index = ra->start;
56a4d67c 3062 page_cache_ra_order(&ractl, ra, 0);
6b4c9f44 3063 return fpin;
ef00e08e
LT
3064}
3065
3066/*
3067 * Asynchronous readahead happens when we find the page and PG_readahead,
6b4c9f44 3068 * so we want to possibly extend the readahead further. We return the file that
c1e8d7c6 3069 * was pinned if we have to drop the mmap_lock in order to do IO.
ef00e08e 3070 */
6b4c9f44 3071static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
79598ced 3072 struct folio *folio)
ef00e08e 3073{
2a1180f1
JB
3074 struct file *file = vmf->vma->vm_file;
3075 struct file_ra_state *ra = &file->f_ra;
79598ced 3076 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
6b4c9f44 3077 struct file *fpin = NULL;
e630bfac 3078 unsigned int mmap_miss;
ef00e08e
LT
3079
3080 /* If we don't want any read-ahead, don't bother */
5c72feee 3081 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
6b4c9f44 3082 return fpin;
79598ced 3083
e630bfac
KS
3084 mmap_miss = READ_ONCE(ra->mmap_miss);
3085 if (mmap_miss)
3086 WRITE_ONCE(ra->mmap_miss, --mmap_miss);
79598ced
MWO
3087
3088 if (folio_test_readahead(folio)) {
6b4c9f44 3089 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
79598ced 3090 page_cache_async_ra(&ractl, folio, ra->ra_pages);
6b4c9f44
JB
3091 }
3092 return fpin;
ef00e08e
LT
3093}
3094
485bb99b 3095/**
54cb8821 3096 * filemap_fault - read in file data for page fault handling
d0217ac0 3097 * @vmf: struct vm_fault containing details of the fault
485bb99b 3098 *
54cb8821 3099 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
3100 * mapped memory region to read in file data during a page fault.
3101 *
3102 * The goto's are kind of ugly, but this streamlines the normal case of having
3103 * it in the page cache, and handles the special cases reasonably without
3104 * having a lot of duplicated code.
9a95f3cf 3105 *
c1e8d7c6 3106 * vma->vm_mm->mmap_lock must be held on entry.
9a95f3cf 3107 *
c1e8d7c6 3108 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
e292e6d6 3109 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
9a95f3cf 3110 *
c1e8d7c6 3111 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
9a95f3cf
PC
3112 * has not been released.
3113 *
3114 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
a862f68a
MR
3115 *
3116 * Return: bitwise-OR of %VM_FAULT_ codes.
1da177e4 3117 */
2bcd6454 3118vm_fault_t filemap_fault(struct vm_fault *vmf)
1da177e4
LT
3119{
3120 int error;
11bac800 3121 struct file *file = vmf->vma->vm_file;
6b4c9f44 3122 struct file *fpin = NULL;
1da177e4 3123 struct address_space *mapping = file->f_mapping;
1da177e4 3124 struct inode *inode = mapping->host;
e292e6d6
MWO
3125 pgoff_t max_idx, index = vmf->pgoff;
3126 struct folio *folio;
2bcd6454 3127 vm_fault_t ret = 0;
730633f0 3128 bool mapping_locked = false;
1da177e4 3129
e292e6d6
MWO
3130 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3131 if (unlikely(index >= max_idx))
5307cc1a 3132 return VM_FAULT_SIGBUS;
1da177e4 3133
1da177e4 3134 /*
49426420 3135 * Do we have something in the page cache already?
1da177e4 3136 */
e292e6d6
MWO
3137 folio = filemap_get_folio(mapping, index);
3138 if (likely(folio)) {
1da177e4 3139 /*
730633f0
JK
3140 * We found the page, so try async readahead before waiting for
3141 * the lock.
1da177e4 3142 */
730633f0 3143 if (!(vmf->flags & FAULT_FLAG_TRIED))
79598ced 3144 fpin = do_async_mmap_readahead(vmf, folio);
e292e6d6 3145 if (unlikely(!folio_test_uptodate(folio))) {
730633f0
JK
3146 filemap_invalidate_lock_shared(mapping);
3147 mapping_locked = true;
3148 }
3149 } else {
ef00e08e 3150 /* No page in the page cache at all */
ef00e08e 3151 count_vm_event(PGMAJFAULT);
2262185c 3152 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
ef00e08e 3153 ret = VM_FAULT_MAJOR;
6b4c9f44 3154 fpin = do_sync_mmap_readahead(vmf);
ef00e08e 3155retry_find:
730633f0 3156 /*
e292e6d6 3157 * See comment in filemap_create_folio() why we need
730633f0
JK
3158 * invalidate_lock
3159 */
3160 if (!mapping_locked) {
3161 filemap_invalidate_lock_shared(mapping);
3162 mapping_locked = true;
3163 }
e292e6d6 3164 folio = __filemap_get_folio(mapping, index,
a75d4c33
JB
3165 FGP_CREAT|FGP_FOR_MMAP,
3166 vmf->gfp_mask);
e292e6d6 3167 if (!folio) {
6b4c9f44
JB
3168 if (fpin)
3169 goto out_retry;
730633f0 3170 filemap_invalidate_unlock_shared(mapping);
e520e932 3171 return VM_FAULT_OOM;
6b4c9f44 3172 }
1da177e4
LT
3173 }
3174
e292e6d6 3175 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
6b4c9f44 3176 goto out_retry;
b522c94d
ML
3177
3178 /* Did it get truncated? */
e292e6d6
MWO
3179 if (unlikely(folio->mapping != mapping)) {
3180 folio_unlock(folio);
3181 folio_put(folio);
b522c94d
ML
3182 goto retry_find;
3183 }
e292e6d6 3184 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
b522c94d 3185
1da177e4 3186 /*
d00806b1
NP
3187 * We have a locked page in the page cache, now we need to check
3188 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 3189 */
e292e6d6 3190 if (unlikely(!folio_test_uptodate(folio))) {
730633f0
JK
3191 /*
3192 * The page was in cache and uptodate and now it is not.
3193 * Strange but possible since we didn't hold the page lock all
3194 * the time. Let's drop everything get the invalidate lock and
3195 * try again.
3196 */
3197 if (!mapping_locked) {
e292e6d6
MWO
3198 folio_unlock(folio);
3199 folio_put(folio);
730633f0
JK
3200 goto retry_find;
3201 }
1da177e4 3202 goto page_not_uptodate;
730633f0 3203 }
1da177e4 3204
6b4c9f44 3205 /*
c1e8d7c6 3206 * We've made it this far and we had to drop our mmap_lock, now is the
6b4c9f44
JB
3207 * time to return to the upper layer and have it re-find the vma and
3208 * redo the fault.
3209 */
3210 if (fpin) {
e292e6d6 3211 folio_unlock(folio);
6b4c9f44
JB
3212 goto out_retry;
3213 }
730633f0
JK
3214 if (mapping_locked)
3215 filemap_invalidate_unlock_shared(mapping);
6b4c9f44 3216
ef00e08e
LT
3217 /*
3218 * Found the page and have a reference on it.
3219 * We must recheck i_size under page lock.
3220 */
e292e6d6
MWO
3221 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3222 if (unlikely(index >= max_idx)) {
3223 folio_unlock(folio);
3224 folio_put(folio);
5307cc1a 3225 return VM_FAULT_SIGBUS;
d00806b1
NP
3226 }
3227
e292e6d6 3228 vmf->page = folio_file_page(folio, index);
83c54070 3229 return ret | VM_FAULT_LOCKED;
1da177e4 3230
1da177e4 3231page_not_uptodate:
1da177e4
LT
3232 /*
3233 * Umm, take care of errors if the page isn't up-to-date.
3234 * Try to re-read it _once_. We do this synchronously,
3235 * because there really aren't any performance issues here
3236 * and we need to check for errors.
3237 */
6b4c9f44 3238 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
290e1a32 3239 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
6b4c9f44
JB
3240 if (fpin)
3241 goto out_retry;
e292e6d6 3242 folio_put(folio);
d00806b1
NP
3243
3244 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 3245 goto retry_find;
730633f0 3246 filemap_invalidate_unlock_shared(mapping);
1da177e4 3247
d0217ac0 3248 return VM_FAULT_SIGBUS;
6b4c9f44
JB
3249
3250out_retry:
3251 /*
c1e8d7c6 3252 * We dropped the mmap_lock, we need to return to the fault handler to
6b4c9f44
JB
3253 * re-find the vma and come back and find our hopefully still populated
3254 * page.
3255 */
e292e6d6
MWO
3256 if (folio)
3257 folio_put(folio);
730633f0
JK
3258 if (mapping_locked)
3259 filemap_invalidate_unlock_shared(mapping);
6b4c9f44
JB
3260 if (fpin)
3261 fput(fpin);
3262 return ret | VM_FAULT_RETRY;
54cb8821
NP
3263}
3264EXPORT_SYMBOL(filemap_fault);
3265
f9ce0be7 3266static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page)
f1820361 3267{
f9ce0be7
KS
3268 struct mm_struct *mm = vmf->vma->vm_mm;
3269
3270 /* Huge page is mapped? No need to proceed. */
3271 if (pmd_trans_huge(*vmf->pmd)) {
3272 unlock_page(page);
3273 put_page(page);
3274 return true;
3275 }
3276
3277 if (pmd_none(*vmf->pmd) && PageTransHuge(page)) {
e0f43fa5
YS
3278 vm_fault_t ret = do_set_pmd(vmf, page);
3279 if (!ret) {
3280 /* The page is mapped successfully, reference consumed. */
3281 unlock_page(page);
3282 return true;
f9ce0be7 3283 }
f9ce0be7
KS
3284 }
3285
03c4f204
QZ
3286 if (pmd_none(*vmf->pmd))
3287 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
f9ce0be7
KS
3288
3289 /* See comment in handle_pte_fault() */
3290 if (pmd_devmap_trans_unstable(vmf->pmd)) {
3291 unlock_page(page);
3292 put_page(page);
3293 return true;
3294 }
3295
3296 return false;
3297}
3298
820b05e9 3299static struct folio *next_uptodate_page(struct folio *folio,
f9ce0be7
KS
3300 struct address_space *mapping,
3301 struct xa_state *xas, pgoff_t end_pgoff)
3302{
3303 unsigned long max_idx;
3304
3305 do {
9184a307 3306 if (!folio)
f9ce0be7 3307 return NULL;
9184a307 3308 if (xas_retry(xas, folio))
f9ce0be7 3309 continue;
9184a307 3310 if (xa_is_value(folio))
f9ce0be7 3311 continue;
9184a307 3312 if (folio_test_locked(folio))
f9ce0be7 3313 continue;
9184a307 3314 if (!folio_try_get_rcu(folio))
f9ce0be7
KS
3315 continue;
3316 /* Has the page moved or been split? */
9184a307 3317 if (unlikely(folio != xas_reload(xas)))
f9ce0be7 3318 goto skip;
9184a307 3319 if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
f9ce0be7 3320 goto skip;
9184a307 3321 if (!folio_trylock(folio))
f9ce0be7 3322 goto skip;
9184a307 3323 if (folio->mapping != mapping)
f9ce0be7 3324 goto unlock;
9184a307 3325 if (!folio_test_uptodate(folio))
f9ce0be7
KS
3326 goto unlock;
3327 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3328 if (xas->xa_index >= max_idx)
3329 goto unlock;
820b05e9 3330 return folio;
f9ce0be7 3331unlock:
9184a307 3332 folio_unlock(folio);
f9ce0be7 3333skip:
9184a307
MWO
3334 folio_put(folio);
3335 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
f9ce0be7
KS
3336
3337 return NULL;
3338}
3339
820b05e9 3340static inline struct folio *first_map_page(struct address_space *mapping,
f9ce0be7
KS
3341 struct xa_state *xas,
3342 pgoff_t end_pgoff)
3343{
3344 return next_uptodate_page(xas_find(xas, end_pgoff),
3345 mapping, xas, end_pgoff);
3346}
3347
820b05e9 3348static inline struct folio *next_map_page(struct address_space *mapping,
f9ce0be7
KS
3349 struct xa_state *xas,
3350 pgoff_t end_pgoff)
3351{
3352 return next_uptodate_page(xas_next_entry(xas, end_pgoff),
3353 mapping, xas, end_pgoff);
3354}
3355
3356vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3357 pgoff_t start_pgoff, pgoff_t end_pgoff)
3358{
3359 struct vm_area_struct *vma = vmf->vma;
3360 struct file *file = vma->vm_file;
f1820361 3361 struct address_space *mapping = file->f_mapping;
bae473a4 3362 pgoff_t last_pgoff = start_pgoff;
9d3af4b4 3363 unsigned long addr;
070e807c 3364 XA_STATE(xas, &mapping->i_pages, start_pgoff);
820b05e9
MWO
3365 struct folio *folio;
3366 struct page *page;
e630bfac 3367 unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
f9ce0be7 3368 vm_fault_t ret = 0;
f1820361
KS
3369
3370 rcu_read_lock();
820b05e9
MWO
3371 folio = first_map_page(mapping, &xas, end_pgoff);
3372 if (!folio)
f9ce0be7 3373 goto out;
f1820361 3374
820b05e9 3375 if (filemap_map_pmd(vmf, &folio->page)) {
f9ce0be7
KS
3376 ret = VM_FAULT_NOPAGE;
3377 goto out;
3378 }
f1820361 3379
9d3af4b4
WD
3380 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3381 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
f9ce0be7 3382 do {
6b24ca4a 3383again:
820b05e9 3384 page = folio_file_page(folio, xas.xa_index);
f9ce0be7 3385 if (PageHWPoison(page))
f1820361
KS
3386 goto unlock;
3387
e630bfac
KS
3388 if (mmap_miss > 0)
3389 mmap_miss--;
7267ec00 3390
9d3af4b4 3391 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
f9ce0be7 3392 vmf->pte += xas.xa_index - last_pgoff;
070e807c 3393 last_pgoff = xas.xa_index;
f9ce0be7 3394
5c041f5d
PX
3395 /*
3396 * NOTE: If there're PTE markers, we'll leave them to be
3397 * handled in the specific fault path, and it'll prohibit the
3398 * fault-around logic.
3399 */
f9ce0be7 3400 if (!pte_none(*vmf->pte))
7267ec00 3401 goto unlock;
f9ce0be7 3402
46bdb427 3403 /* We're about to handle the fault */
9d3af4b4 3404 if (vmf->address == addr)
46bdb427 3405 ret = VM_FAULT_NOPAGE;
46bdb427 3406
9d3af4b4 3407 do_set_pte(vmf, page, addr);
f9ce0be7 3408 /* no need to invalidate: a not-present page won't be cached */
9d3af4b4 3409 update_mmu_cache(vma, addr, vmf->pte);
6b24ca4a
MWO
3410 if (folio_more_pages(folio, xas.xa_index, end_pgoff)) {
3411 xas.xa_index++;
3412 folio_ref_inc(folio);
3413 goto again;
3414 }
820b05e9 3415 folio_unlock(folio);
f9ce0be7 3416 continue;
f1820361 3417unlock:
6b24ca4a
MWO
3418 if (folio_more_pages(folio, xas.xa_index, end_pgoff)) {
3419 xas.xa_index++;
3420 goto again;
3421 }
820b05e9
MWO
3422 folio_unlock(folio);
3423 folio_put(folio);
3424 } while ((folio = next_map_page(mapping, &xas, end_pgoff)) != NULL);
f9ce0be7
KS
3425 pte_unmap_unlock(vmf->pte, vmf->ptl);
3426out:
f1820361 3427 rcu_read_unlock();
e630bfac 3428 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
f9ce0be7 3429 return ret;
f1820361
KS
3430}
3431EXPORT_SYMBOL(filemap_map_pages);
3432
2bcd6454 3433vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
4fcf1c62 3434{
5df1a672 3435 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
960ea971 3436 struct folio *folio = page_folio(vmf->page);
2bcd6454 3437 vm_fault_t ret = VM_FAULT_LOCKED;
4fcf1c62 3438
5df1a672 3439 sb_start_pagefault(mapping->host->i_sb);
11bac800 3440 file_update_time(vmf->vma->vm_file);
960ea971
MWO
3441 folio_lock(folio);
3442 if (folio->mapping != mapping) {
3443 folio_unlock(folio);
4fcf1c62
JK
3444 ret = VM_FAULT_NOPAGE;
3445 goto out;
3446 }
14da9200 3447 /*
960ea971 3448 * We mark the folio dirty already here so that when freeze is in
14da9200 3449 * progress, we are guaranteed that writeback during freezing will
960ea971 3450 * see the dirty folio and writeprotect it again.
14da9200 3451 */
960ea971
MWO
3452 folio_mark_dirty(folio);
3453 folio_wait_stable(folio);
4fcf1c62 3454out:
5df1a672 3455 sb_end_pagefault(mapping->host->i_sb);
4fcf1c62
JK
3456 return ret;
3457}
4fcf1c62 3458
f0f37e2f 3459const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 3460 .fault = filemap_fault,
f1820361 3461 .map_pages = filemap_map_pages,
4fcf1c62 3462 .page_mkwrite = filemap_page_mkwrite,
1da177e4
LT
3463};
3464
3465/* This is used for a general mmap of a disk file */
3466
68d68ff6 3467int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
3468{
3469 struct address_space *mapping = file->f_mapping;
3470
7e0a1265 3471 if (!mapping->a_ops->read_folio)
1da177e4
LT
3472 return -ENOEXEC;
3473 file_accessed(file);
3474 vma->vm_ops = &generic_file_vm_ops;
3475 return 0;
3476}
1da177e4
LT
3477
3478/*
3479 * This is for filesystems which do not implement ->writepage.
3480 */
3481int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3482{
3483 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3484 return -EINVAL;
3485 return generic_file_mmap(file, vma);
3486}
3487#else
4b96a37d 3488vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
45397228 3489{
4b96a37d 3490 return VM_FAULT_SIGBUS;
45397228 3491}
68d68ff6 3492int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
3493{
3494 return -ENOSYS;
3495}
68d68ff6 3496int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
3497{
3498 return -ENOSYS;
3499}
3500#endif /* CONFIG_MMU */
3501
45397228 3502EXPORT_SYMBOL(filemap_page_mkwrite);
1da177e4
LT
3503EXPORT_SYMBOL(generic_file_mmap);
3504EXPORT_SYMBOL(generic_file_readonly_mmap);
3505
539a3322 3506static struct folio *do_read_cache_folio(struct address_space *mapping,
e9b5b23e 3507 pgoff_t index, filler_t filler, struct file *file, gfp_t gfp)
67f9fd91 3508{
539a3322 3509 struct folio *folio;
1da177e4 3510 int err;
07950008
MWO
3511
3512 if (!filler)
3513 filler = mapping->a_ops->read_folio;
1da177e4 3514repeat:
539a3322
MWO
3515 folio = filemap_get_folio(mapping, index);
3516 if (!folio) {
3517 folio = filemap_alloc_folio(gfp, 0);
3518 if (!folio)
eb2be189 3519 return ERR_PTR(-ENOMEM);
539a3322 3520 err = filemap_add_folio(mapping, folio, index, gfp);
eb2be189 3521 if (unlikely(err)) {
539a3322 3522 folio_put(folio);
eb2be189
NP
3523 if (err == -EEXIST)
3524 goto repeat;
22ecdb4f 3525 /* Presumably ENOMEM for xarray node */
1da177e4
LT
3526 return ERR_PTR(err);
3527 }
32b63529 3528
9bc3e869 3529 goto filler;
32b63529 3530 }
539a3322 3531 if (folio_test_uptodate(folio))
1da177e4
LT
3532 goto out;
3533
81f4c03b
MWO
3534 if (!folio_trylock(folio)) {
3535 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3536 goto repeat;
3537 }
ebded027 3538
81f4c03b 3539 /* Folio was truncated from mapping */
539a3322
MWO
3540 if (!folio->mapping) {
3541 folio_unlock(folio);
3542 folio_put(folio);
32b63529 3543 goto repeat;
1da177e4 3544 }
ebded027
MG
3545
3546 /* Someone else locked and filled the page in a very small window */
539a3322
MWO
3547 if (folio_test_uptodate(folio)) {
3548 folio_unlock(folio);
1da177e4
LT
3549 goto out;
3550 }
faffdfa0 3551
9bc3e869 3552filler:
290e1a32 3553 err = filemap_read_folio(file, filler, folio);
1dfa24a4 3554 if (err) {
9bc3e869 3555 folio_put(folio);
1dfa24a4
MWO
3556 if (err == AOP_TRUNCATED_PAGE)
3557 goto repeat;
9bc3e869
MWO
3558 return ERR_PTR(err);
3559 }
32b63529 3560
c855ff37 3561out:
539a3322
MWO
3562 folio_mark_accessed(folio);
3563 return folio;
6fe6900e 3564}
0531b2aa
LT
3565
3566/**
e9b5b23e
MWO
3567 * read_cache_folio - Read into page cache, fill it if needed.
3568 * @mapping: The address_space to read from.
3569 * @index: The index to read.
3570 * @filler: Function to perform the read, or NULL to use aops->read_folio().
3571 * @file: Passed to filler function, may be NULL if not required.
0531b2aa 3572 *
e9b5b23e
MWO
3573 * Read one page into the page cache. If it succeeds, the folio returned
3574 * will contain @index, but it may not be the first page of the folio.
a862f68a 3575 *
e9b5b23e
MWO
3576 * If the filler function returns an error, it will be returned to the
3577 * caller.
730633f0 3578 *
e9b5b23e
MWO
3579 * Context: May sleep. Expects mapping->invalidate_lock to be held.
3580 * Return: An uptodate folio on success, ERR_PTR() on failure.
0531b2aa 3581 */
539a3322 3582struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
e9b5b23e 3583 filler_t filler, struct file *file)
539a3322 3584{
e9b5b23e 3585 return do_read_cache_folio(mapping, index, filler, file,
539a3322
MWO
3586 mapping_gfp_mask(mapping));
3587}
3588EXPORT_SYMBOL(read_cache_folio);
3589
3590static struct page *do_read_cache_page(struct address_space *mapping,
e9b5b23e 3591 pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp)
539a3322
MWO
3592{
3593 struct folio *folio;
3594
e9b5b23e 3595 folio = do_read_cache_folio(mapping, index, filler, file, gfp);
539a3322
MWO
3596 if (IS_ERR(folio))
3597 return &folio->page;
3598 return folio_file_page(folio, index);
3599}
3600
67f9fd91 3601struct page *read_cache_page(struct address_space *mapping,
e9b5b23e 3602 pgoff_t index, filler_t *filler, struct file *file)
0531b2aa 3603{
e9b5b23e 3604 return do_read_cache_page(mapping, index, filler, file,
d322a8e5 3605 mapping_gfp_mask(mapping));
0531b2aa 3606}
67f9fd91 3607EXPORT_SYMBOL(read_cache_page);
0531b2aa
LT
3608
3609/**
3610 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3611 * @mapping: the page's address_space
3612 * @index: the page index
3613 * @gfp: the page allocator flags to use if allocating
3614 *
3615 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
e6f67b8c 3616 * any new page allocations done using the specified allocation flags.
0531b2aa
LT
3617 *
3618 * If the page does not get brought uptodate, return -EIO.
a862f68a 3619 *
730633f0
JK
3620 * The function expects mapping->invalidate_lock to be already held.
3621 *
a862f68a 3622 * Return: up to date page on success, ERR_PTR() on failure.
0531b2aa
LT
3623 */
3624struct page *read_cache_page_gfp(struct address_space *mapping,
3625 pgoff_t index,
3626 gfp_t gfp)
3627{
6c45b454 3628 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
0531b2aa
LT
3629}
3630EXPORT_SYMBOL(read_cache_page_gfp);
3631
a92853b6
KK
3632/*
3633 * Warn about a page cache invalidation failure during a direct I/O write.
3634 */
3635void dio_warn_stale_pagecache(struct file *filp)
3636{
3637 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3638 char pathname[128];
a92853b6
KK
3639 char *path;
3640
5df1a672 3641 errseq_set(&filp->f_mapping->wb_err, -EIO);
a92853b6
KK
3642 if (__ratelimit(&_rs)) {
3643 path = file_path(filp, pathname, sizeof(pathname));
3644 if (IS_ERR(path))
3645 path = "(unknown)";
3646 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
3647 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3648 current->comm);
3649 }
3650}
3651
1da177e4 3652ssize_t
1af5bb49 3653generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3654{
3655 struct file *file = iocb->ki_filp;
3656 struct address_space *mapping = file->f_mapping;
3657 struct inode *inode = mapping->host;
1af5bb49 3658 loff_t pos = iocb->ki_pos;
1da177e4 3659 ssize_t written;
a969e903
CH
3660 size_t write_len;
3661 pgoff_t end;
1da177e4 3662
0c949334 3663 write_len = iov_iter_count(from);
09cbfeaf 3664 end = (pos + write_len - 1) >> PAGE_SHIFT;
a969e903 3665
6be96d3a
GR
3666 if (iocb->ki_flags & IOCB_NOWAIT) {
3667 /* If there are pages to writeback, return */
5df1a672 3668 if (filemap_range_has_page(file->f_mapping, pos,
35f12f0f 3669 pos + write_len - 1))
6be96d3a
GR
3670 return -EAGAIN;
3671 } else {
3672 written = filemap_write_and_wait_range(mapping, pos,
3673 pos + write_len - 1);
3674 if (written)
3675 goto out;
3676 }
a969e903
CH
3677
3678 /*
3679 * After a write we want buffered reads to be sure to go to disk to get
3680 * the new data. We invalidate clean cached page from the region we're
3681 * about to write. We do this *before* the write so that we can return
6ccfa806 3682 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903 3683 */
55635ba7 3684 written = invalidate_inode_pages2_range(mapping,
09cbfeaf 3685 pos >> PAGE_SHIFT, end);
55635ba7
AR
3686 /*
3687 * If a page can not be invalidated, return 0 to fall back
3688 * to buffered write.
3689 */
3690 if (written) {
3691 if (written == -EBUSY)
3692 return 0;
3693 goto out;
a969e903
CH
3694 }
3695
639a93a5 3696 written = mapping->a_ops->direct_IO(iocb, from);
a969e903
CH
3697
3698 /*
3699 * Finally, try again to invalidate clean pages which might have been
3700 * cached by non-direct readahead, or faulted in by get_user_pages()
3701 * if the source of the write was an mmap'ed region of the file
3702 * we're writing. Either one is a pretty crazy thing to do,
3703 * so we don't support it 100%. If this invalidation
3704 * fails, tough, the write still worked...
332391a9
LC
3705 *
3706 * Most of the time we do not need this since dio_complete() will do
3707 * the invalidation for us. However there are some file systems that
3708 * do not end up with dio_complete() being called, so let's not break
80c1fe90
KK
3709 * them by removing it completely.
3710 *
9266a140
KK
3711 * Noticeable example is a blkdev_direct_IO().
3712 *
80c1fe90 3713 * Skip invalidation for async writes or if mapping has no pages.
a969e903 3714 */
9266a140
KK
3715 if (written > 0 && mapping->nrpages &&
3716 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3717 dio_warn_stale_pagecache(file);
a969e903 3718
1da177e4 3719 if (written > 0) {
0116651c 3720 pos += written;
639a93a5 3721 write_len -= written;
0116651c
NK
3722 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3723 i_size_write(inode, pos);
1da177e4
LT
3724 mark_inode_dirty(inode);
3725 }
5cb6c6c7 3726 iocb->ki_pos = pos;
1da177e4 3727 }
ab2125df
PB
3728 if (written != -EIOCBQUEUED)
3729 iov_iter_revert(from, write_len - iov_iter_count(from));
a969e903 3730out:
1da177e4
LT
3731 return written;
3732}
3733EXPORT_SYMBOL(generic_file_direct_write);
3734
800ba295 3735ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
afddba49 3736{
800ba295
MWO
3737 struct file *file = iocb->ki_filp;
3738 loff_t pos = iocb->ki_pos;
afddba49
NP
3739 struct address_space *mapping = file->f_mapping;
3740 const struct address_space_operations *a_ops = mapping->a_ops;
3741 long status = 0;
3742 ssize_t written = 0;
674b892e 3743
afddba49
NP
3744 do {
3745 struct page *page;
afddba49
NP
3746 unsigned long offset; /* Offset into pagecache page */
3747 unsigned long bytes; /* Bytes to write to page */
3748 size_t copied; /* Bytes copied from user */
1468c6f4 3749 void *fsdata = NULL;
afddba49 3750
09cbfeaf
KS
3751 offset = (pos & (PAGE_SIZE - 1));
3752 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
3753 iov_iter_count(i));
3754
3755again:
00a3d660
LT
3756 /*
3757 * Bring in the user page that we will copy from _first_.
3758 * Otherwise there's a nasty deadlock on copying from the
3759 * same page as we're writing to, without it being marked
3760 * up-to-date.
00a3d660 3761 */
631f871f 3762 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
00a3d660
LT
3763 status = -EFAULT;
3764 break;
3765 }
3766
296291cd
JK
3767 if (fatal_signal_pending(current)) {
3768 status = -EINTR;
3769 break;
3770 }
3771
9d6b0cd7 3772 status = a_ops->write_begin(file, mapping, pos, bytes,
afddba49 3773 &page, &fsdata);
2457aec6 3774 if (unlikely(status < 0))
afddba49
NP
3775 break;
3776
931e80e4 3777 if (mapping_writably_mapped(mapping))
3778 flush_dcache_page(page);
00a3d660 3779
f0b65f39 3780 copied = copy_page_from_iter_atomic(page, offset, bytes, i);
afddba49
NP
3781 flush_dcache_page(page);
3782
3783 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3784 page, fsdata);
f0b65f39
AV
3785 if (unlikely(status != copied)) {
3786 iov_iter_revert(i, copied - max(status, 0L));
3787 if (unlikely(status < 0))
3788 break;
3789 }
afddba49
NP
3790 cond_resched();
3791
bc1bb416 3792 if (unlikely(status == 0)) {
afddba49 3793 /*
bc1bb416
AV
3794 * A short copy made ->write_end() reject the
3795 * thing entirely. Might be memory poisoning
3796 * halfway through, might be a race with munmap,
3797 * might be severe memory pressure.
afddba49 3798 */
bc1bb416
AV
3799 if (copied)
3800 bytes = copied;
afddba49
NP
3801 goto again;
3802 }
f0b65f39
AV
3803 pos += status;
3804 written += status;
afddba49
NP
3805
3806 balance_dirty_pages_ratelimited(mapping);
afddba49
NP
3807 } while (iov_iter_count(i));
3808
3809 return written ? written : status;
3810}
3b93f911 3811EXPORT_SYMBOL(generic_perform_write);
1da177e4 3812
e4dd9de3 3813/**
8174202b 3814 * __generic_file_write_iter - write data to a file
e4dd9de3 3815 * @iocb: IO state structure (file, offset, etc.)
8174202b 3816 * @from: iov_iter with data to write
e4dd9de3
JK
3817 *
3818 * This function does all the work needed for actually writing data to a
3819 * file. It does all basic checks, removes SUID from the file, updates
3820 * modification times and calls proper subroutines depending on whether we
3821 * do direct IO or a standard buffered write.
3822 *
9608703e 3823 * It expects i_rwsem to be grabbed unless we work on a block device or similar
e4dd9de3
JK
3824 * object which does not need locking at all.
3825 *
3826 * This function does *not* take care of syncing data in case of O_SYNC write.
3827 * A caller has to handle it. This is mainly due to the fact that we want to
9608703e 3828 * avoid syncing under i_rwsem.
a862f68a
MR
3829 *
3830 * Return:
3831 * * number of bytes written, even for truncated writes
3832 * * negative error code if no data has been written at all
e4dd9de3 3833 */
8174202b 3834ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3835{
3836 struct file *file = iocb->ki_filp;
68d68ff6 3837 struct address_space *mapping = file->f_mapping;
1da177e4 3838 struct inode *inode = mapping->host;
3b93f911 3839 ssize_t written = 0;
1da177e4 3840 ssize_t err;
3b93f911 3841 ssize_t status;
1da177e4 3842
1da177e4 3843 /* We can write back this queue in page reclaim */
de1414a6 3844 current->backing_dev_info = inode_to_bdi(inode);
5fa8e0a1 3845 err = file_remove_privs(file);
1da177e4
LT
3846 if (err)
3847 goto out;
3848
c3b2da31
JB
3849 err = file_update_time(file);
3850 if (err)
3851 goto out;
1da177e4 3852
2ba48ce5 3853 if (iocb->ki_flags & IOCB_DIRECT) {
0b8def9d 3854 loff_t pos, endbyte;
fb5527e6 3855
1af5bb49 3856 written = generic_file_direct_write(iocb, from);
1da177e4 3857 /*
fbbbad4b
MW
3858 * If the write stopped short of completing, fall back to
3859 * buffered writes. Some filesystems do this for writes to
3860 * holes, for example. For DAX files, a buffered write will
3861 * not succeed (even if it did, DAX does not handle dirty
3862 * page-cache pages correctly).
1da177e4 3863 */
0b8def9d 3864 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
fbbbad4b
MW
3865 goto out;
3866
800ba295
MWO
3867 pos = iocb->ki_pos;
3868 status = generic_perform_write(iocb, from);
fb5527e6 3869 /*
3b93f911 3870 * If generic_perform_write() returned a synchronous error
fb5527e6
JM
3871 * then we want to return the number of bytes which were
3872 * direct-written, or the error code if that was zero. Note
3873 * that this differs from normal direct-io semantics, which
3874 * will return -EFOO even if some bytes were written.
3875 */
60bb4529 3876 if (unlikely(status < 0)) {
3b93f911 3877 err = status;
fb5527e6
JM
3878 goto out;
3879 }
fb5527e6
JM
3880 /*
3881 * We need to ensure that the page cache pages are written to
3882 * disk and invalidated to preserve the expected O_DIRECT
3883 * semantics.
3884 */
3b93f911 3885 endbyte = pos + status - 1;
0b8def9d 3886 err = filemap_write_and_wait_range(mapping, pos, endbyte);
fb5527e6 3887 if (err == 0) {
0b8def9d 3888 iocb->ki_pos = endbyte + 1;
3b93f911 3889 written += status;
fb5527e6 3890 invalidate_mapping_pages(mapping,
09cbfeaf
KS
3891 pos >> PAGE_SHIFT,
3892 endbyte >> PAGE_SHIFT);
fb5527e6
JM
3893 } else {
3894 /*
3895 * We don't know how much we wrote, so just return
3896 * the number of bytes which were direct-written
3897 */
3898 }
3899 } else {
800ba295 3900 written = generic_perform_write(iocb, from);
0b8def9d
AV
3901 if (likely(written > 0))
3902 iocb->ki_pos += written;
fb5527e6 3903 }
1da177e4
LT
3904out:
3905 current->backing_dev_info = NULL;
3906 return written ? written : err;
3907}
8174202b 3908EXPORT_SYMBOL(__generic_file_write_iter);
e4dd9de3 3909
e4dd9de3 3910/**
8174202b 3911 * generic_file_write_iter - write data to a file
e4dd9de3 3912 * @iocb: IO state structure
8174202b 3913 * @from: iov_iter with data to write
e4dd9de3 3914 *
8174202b 3915 * This is a wrapper around __generic_file_write_iter() to be used by most
e4dd9de3 3916 * filesystems. It takes care of syncing the file in case of O_SYNC file
9608703e 3917 * and acquires i_rwsem as needed.
a862f68a
MR
3918 * Return:
3919 * * negative error code if no data has been written at all of
3920 * vfs_fsync_range() failed for a synchronous write
3921 * * number of bytes written, even for truncated writes
e4dd9de3 3922 */
8174202b 3923ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3924{
3925 struct file *file = iocb->ki_filp;
148f948b 3926 struct inode *inode = file->f_mapping->host;
1da177e4 3927 ssize_t ret;
1da177e4 3928
5955102c 3929 inode_lock(inode);
3309dd04
AV
3930 ret = generic_write_checks(iocb, from);
3931 if (ret > 0)
5f380c7f 3932 ret = __generic_file_write_iter(iocb, from);
5955102c 3933 inode_unlock(inode);
1da177e4 3934
e2592217
CH
3935 if (ret > 0)
3936 ret = generic_write_sync(iocb, ret);
1da177e4
LT
3937 return ret;
3938}
8174202b 3939EXPORT_SYMBOL(generic_file_write_iter);
1da177e4 3940
cf9a2ae8 3941/**
82c50f8b
MWO
3942 * filemap_release_folio() - Release fs-specific metadata on a folio.
3943 * @folio: The folio which the kernel is trying to free.
3944 * @gfp: Memory allocation flags (and I/O mode).
cf9a2ae8 3945 *
82c50f8b
MWO
3946 * The address_space is trying to release any data attached to a folio
3947 * (presumably at folio->private).
cf9a2ae8 3948 *
82c50f8b
MWO
3949 * This will also be called if the private_2 flag is set on a page,
3950 * indicating that the folio has other metadata associated with it.
266cf658 3951 *
82c50f8b
MWO
3952 * The @gfp argument specifies whether I/O may be performed to release
3953 * this page (__GFP_IO), and whether the call may block
3954 * (__GFP_RECLAIM & __GFP_FS).
cf9a2ae8 3955 *
82c50f8b 3956 * Return: %true if the release was successful, otherwise %false.
cf9a2ae8 3957 */
82c50f8b 3958bool filemap_release_folio(struct folio *folio, gfp_t gfp)
cf9a2ae8 3959{
82c50f8b 3960 struct address_space * const mapping = folio->mapping;
cf9a2ae8 3961
82c50f8b
MWO
3962 BUG_ON(!folio_test_locked(folio));
3963 if (folio_test_writeback(folio))
3964 return false;
cf9a2ae8 3965
fa29000b
MWO
3966 if (mapping && mapping->a_ops->release_folio)
3967 return mapping->a_ops->release_folio(folio, gfp);
68189fef 3968 return try_to_free_buffers(folio);
cf9a2ae8 3969}
82c50f8b 3970EXPORT_SYMBOL(filemap_release_folio);