mm/page_ext.c: fix a comment
[linux-block.git] / mm / filemap.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/filemap.c
4 *
5 * Copyright (C) 1994-1999 Linus Torvalds
6 */
7
8/*
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
12 */
b95f1b31 13#include <linux/export.h>
1da177e4 14#include <linux/compiler.h>
f9fe48be 15#include <linux/dax.h>
1da177e4 16#include <linux/fs.h>
3f07c014 17#include <linux/sched/signal.h>
c22ce143 18#include <linux/uaccess.h>
c59ede7b 19#include <linux/capability.h>
1da177e4 20#include <linux/kernel_stat.h>
5a0e3ad6 21#include <linux/gfp.h>
1da177e4
LT
22#include <linux/mm.h>
23#include <linux/swap.h>
24#include <linux/mman.h>
25#include <linux/pagemap.h>
26#include <linux/file.h>
27#include <linux/uio.h>
cfcbfb13 28#include <linux/error-injection.h>
1da177e4
LT
29#include <linux/hash.h>
30#include <linux/writeback.h>
53253383 31#include <linux/backing-dev.h>
1da177e4
LT
32#include <linux/pagevec.h>
33#include <linux/blkdev.h>
34#include <linux/security.h>
44110fe3 35#include <linux/cpuset.h>
00501b53 36#include <linux/hugetlb.h>
8a9f3ccd 37#include <linux/memcontrol.h>
c515e1fd 38#include <linux/cleancache.h>
c7df8ad2 39#include <linux/shmem_fs.h>
f1820361 40#include <linux/rmap.h>
b1d29ba8 41#include <linux/delayacct.h>
eb414681 42#include <linux/psi.h>
d0e6a582 43#include <linux/ramfs.h>
b9306a79 44#include <linux/page_idle.h>
f9ce0be7 45#include <asm/pgalloc.h>
de591a82 46#include <asm/tlbflush.h>
0f8053a5
NP
47#include "internal.h"
48
fe0bfaaf
RJ
49#define CREATE_TRACE_POINTS
50#include <trace/events/filemap.h>
51
1da177e4 52/*
1da177e4
LT
53 * FIXME: remove all knowledge of the buffer layer from the core VM
54 */
148f948b 55#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 56
1da177e4
LT
57#include <asm/mman.h>
58
59/*
60 * Shared mappings implemented 30.11.1994. It's not fully working yet,
61 * though.
62 *
63 * Shared mappings now work. 15.8.1995 Bruno.
64 *
65 * finished 'unifying' the page and buffer cache and SMP-threaded the
66 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
67 *
68 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
69 */
70
71/*
72 * Lock ordering:
73 *
c8c06efa 74 * ->i_mmap_rwsem (truncate_pagecache)
1da177e4 75 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91 76 * ->swap_lock (exclusive_swap_page, others)
b93b0163 77 * ->i_pages lock
1da177e4 78 *
9608703e 79 * ->i_rwsem
730633f0
JK
80 * ->invalidate_lock (acquired by fs in truncate path)
81 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
1da177e4 82 *
c1e8d7c6 83 * ->mmap_lock
c8c06efa 84 * ->i_mmap_rwsem
b8072f09 85 * ->page_table_lock or pte_lock (various, mainly in memory.c)
b93b0163 86 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
1da177e4 87 *
c1e8d7c6 88 * ->mmap_lock
730633f0
JK
89 * ->invalidate_lock (filemap_fault)
90 * ->lock_page (filemap_fault, access_process_vm)
1da177e4 91 *
9608703e 92 * ->i_rwsem (generic_perform_write)
c1e8d7c6 93 * ->mmap_lock (fault_in_pages_readable->do_page_fault)
1da177e4 94 *
f758eeab 95 * bdi->wb.list_lock
a66979ab 96 * sb_lock (fs/fs-writeback.c)
b93b0163 97 * ->i_pages lock (__sync_single_inode)
1da177e4 98 *
c8c06efa 99 * ->i_mmap_rwsem
1da177e4
LT
100 * ->anon_vma.lock (vma_adjust)
101 *
102 * ->anon_vma.lock
b8072f09 103 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 104 *
b8072f09 105 * ->page_table_lock or pte_lock
5d337b91 106 * ->swap_lock (try_to_unmap_one)
1da177e4 107 * ->private_lock (try_to_unmap_one)
b93b0163 108 * ->i_pages lock (try_to_unmap_one)
15b44736
HD
109 * ->lruvec->lru_lock (follow_page->mark_page_accessed)
110 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page)
1da177e4 111 * ->private_lock (page_remove_rmap->set_page_dirty)
b93b0163 112 * ->i_pages lock (page_remove_rmap->set_page_dirty)
f758eeab 113 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
250df6ed 114 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
81f8c3a4 115 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
f758eeab 116 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 117 * ->inode->i_lock (zap_pte_range->set_page_dirty)
1da177e4
LT
118 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
119 *
c8c06efa 120 * ->i_mmap_rwsem
9a3c531d 121 * ->tasklist_lock (memory_failure, collect_procs_ao)
1da177e4
LT
122 */
123
5c024e6a 124static void page_cache_delete(struct address_space *mapping,
91b0abe3
JW
125 struct page *page, void *shadow)
126{
5c024e6a
MW
127 XA_STATE(xas, &mapping->i_pages, page->index);
128 unsigned int nr = 1;
c70b647d 129
5c024e6a 130 mapping_set_update(&xas, mapping);
c70b647d 131
5c024e6a
MW
132 /* hugetlb pages are represented by a single entry in the xarray */
133 if (!PageHuge(page)) {
134 xas_set_order(&xas, page->index, compound_order(page));
d8c6546b 135 nr = compound_nr(page);
5c024e6a 136 }
91b0abe3 137
83929372
KS
138 VM_BUG_ON_PAGE(!PageLocked(page), page);
139 VM_BUG_ON_PAGE(PageTail(page), page);
140 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
449dd698 141
5c024e6a
MW
142 xas_store(&xas, shadow);
143 xas_init_marks(&xas);
d3798ae8 144
2300638b
JK
145 page->mapping = NULL;
146 /* Leave page->index set: truncation lookup relies upon it */
d3798ae8 147 mapping->nrpages -= nr;
91b0abe3
JW
148}
149
5ecc4d85
JK
150static void unaccount_page_cache_page(struct address_space *mapping,
151 struct page *page)
1da177e4 152{
5ecc4d85 153 int nr;
1da177e4 154
c515e1fd
DM
155 /*
156 * if we're uptodate, flush out into the cleancache, otherwise
157 * invalidate any existing cleancache entries. We can't leave
158 * stale data around in the cleancache once our page is gone
159 */
160 if (PageUptodate(page) && PageMappedToDisk(page))
161 cleancache_put_page(page);
162 else
3167760f 163 cleancache_invalidate_page(mapping, page);
c515e1fd 164
83929372 165 VM_BUG_ON_PAGE(PageTail(page), page);
06b241f3
HD
166 VM_BUG_ON_PAGE(page_mapped(page), page);
167 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
168 int mapcount;
169
170 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
171 current->comm, page_to_pfn(page));
172 dump_page(page, "still mapped when deleted");
173 dump_stack();
174 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
175
176 mapcount = page_mapcount(page);
177 if (mapping_exiting(mapping) &&
178 page_count(page) >= mapcount + 2) {
179 /*
180 * All vmas have already been torn down, so it's
181 * a good bet that actually the page is unmapped,
182 * and we'd prefer not to leak it: if we're wrong,
183 * some other bad page check should catch it later.
184 */
185 page_mapcount_reset(page);
6d061f9f 186 page_ref_sub(page, mapcount);
06b241f3
HD
187 }
188 }
189
4165b9b4 190 /* hugetlb pages do not participate in page cache accounting. */
5ecc4d85
JK
191 if (PageHuge(page))
192 return;
09612fa6 193
6c357848 194 nr = thp_nr_pages(page);
5ecc4d85 195
0d1c2072 196 __mod_lruvec_page_state(page, NR_FILE_PAGES, -nr);
5ecc4d85 197 if (PageSwapBacked(page)) {
0d1c2072 198 __mod_lruvec_page_state(page, NR_SHMEM, -nr);
5ecc4d85 199 if (PageTransHuge(page))
57b2847d 200 __mod_lruvec_page_state(page, NR_SHMEM_THPS, -nr);
99cb0dbd 201 } else if (PageTransHuge(page)) {
bf9ecead 202 __mod_lruvec_page_state(page, NR_FILE_THPS, -nr);
09d91cda 203 filemap_nr_thps_dec(mapping);
800d8c63 204 }
5ecc4d85
JK
205
206 /*
207 * At this point page must be either written or cleaned by
208 * truncate. Dirty page here signals a bug and loss of
209 * unwritten data.
210 *
211 * This fixes dirty accounting after removing the page entirely
212 * but leaves PageDirty set: it has no effect for truncated
213 * page and anyway will be cleared before returning page into
214 * buddy allocator.
215 */
216 if (WARN_ON_ONCE(PageDirty(page)))
217 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
218}
219
220/*
221 * Delete a page from the page cache and free it. Caller has to make
222 * sure the page is locked and that nobody else uses it - or that usage
b93b0163 223 * is safe. The caller must hold the i_pages lock.
5ecc4d85
JK
224 */
225void __delete_from_page_cache(struct page *page, void *shadow)
226{
227 struct address_space *mapping = page->mapping;
228
229 trace_mm_filemap_delete_from_page_cache(page);
230
231 unaccount_page_cache_page(mapping, page);
5c024e6a 232 page_cache_delete(mapping, page, shadow);
1da177e4
LT
233}
234
59c66c5f
JK
235static void page_cache_free_page(struct address_space *mapping,
236 struct page *page)
237{
238 void (*freepage)(struct page *);
239
240 freepage = mapping->a_ops->freepage;
241 if (freepage)
242 freepage(page);
243
244 if (PageTransHuge(page) && !PageHuge(page)) {
887b22c6 245 page_ref_sub(page, thp_nr_pages(page));
59c66c5f
JK
246 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
247 } else {
248 put_page(page);
249 }
250}
251
702cfbf9
MK
252/**
253 * delete_from_page_cache - delete page from page cache
254 * @page: the page which the kernel is trying to remove from page cache
255 *
256 * This must be called only on pages that have been verified to be in the page
257 * cache and locked. It will never put the page into the free list, the caller
258 * has a reference on the page.
259 */
260void delete_from_page_cache(struct page *page)
1da177e4 261{
83929372 262 struct address_space *mapping = page_mapping(page);
1da177e4 263
cd7619d6 264 BUG_ON(!PageLocked(page));
30472509 265 xa_lock_irq(&mapping->i_pages);
62cccb8c 266 __delete_from_page_cache(page, NULL);
30472509 267 xa_unlock_irq(&mapping->i_pages);
6072d13c 268
59c66c5f 269 page_cache_free_page(mapping, page);
97cecb5a
MK
270}
271EXPORT_SYMBOL(delete_from_page_cache);
272
aa65c29c 273/*
ef8e5717 274 * page_cache_delete_batch - delete several pages from page cache
aa65c29c
JK
275 * @mapping: the mapping to which pages belong
276 * @pvec: pagevec with pages to delete
277 *
b93b0163 278 * The function walks over mapping->i_pages and removes pages passed in @pvec
4101196b
MWO
279 * from the mapping. The function expects @pvec to be sorted by page index
280 * and is optimised for it to be dense.
b93b0163 281 * It tolerates holes in @pvec (mapping entries at those indices are not
aa65c29c 282 * modified). The function expects only THP head pages to be present in the
4101196b 283 * @pvec.
aa65c29c 284 *
b93b0163 285 * The function expects the i_pages lock to be held.
aa65c29c 286 */
ef8e5717 287static void page_cache_delete_batch(struct address_space *mapping,
aa65c29c
JK
288 struct pagevec *pvec)
289{
ef8e5717 290 XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
aa65c29c 291 int total_pages = 0;
4101196b 292 int i = 0;
aa65c29c 293 struct page *page;
aa65c29c 294
ef8e5717
MW
295 mapping_set_update(&xas, mapping);
296 xas_for_each(&xas, page, ULONG_MAX) {
4101196b 297 if (i >= pagevec_count(pvec))
aa65c29c 298 break;
4101196b
MWO
299
300 /* A swap/dax/shadow entry got inserted? Skip it. */
3159f943 301 if (xa_is_value(page))
aa65c29c 302 continue;
4101196b
MWO
303 /*
304 * A page got inserted in our range? Skip it. We have our
305 * pages locked so they are protected from being removed.
306 * If we see a page whose index is higher than ours, it
307 * means our page has been removed, which shouldn't be
308 * possible because we're holding the PageLock.
309 */
310 if (page != pvec->pages[i]) {
311 VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
312 page);
313 continue;
314 }
315
316 WARN_ON_ONCE(!PageLocked(page));
317
318 if (page->index == xas.xa_index)
aa65c29c 319 page->mapping = NULL;
4101196b
MWO
320 /* Leave page->index set: truncation lookup relies on it */
321
322 /*
323 * Move to the next page in the vector if this is a regular
324 * page or the index is of the last sub-page of this compound
325 * page.
326 */
327 if (page->index + compound_nr(page) - 1 == xas.xa_index)
aa65c29c 328 i++;
ef8e5717 329 xas_store(&xas, NULL);
aa65c29c
JK
330 total_pages++;
331 }
332 mapping->nrpages -= total_pages;
333}
334
335void delete_from_page_cache_batch(struct address_space *mapping,
336 struct pagevec *pvec)
337{
338 int i;
aa65c29c
JK
339
340 if (!pagevec_count(pvec))
341 return;
342
30472509 343 xa_lock_irq(&mapping->i_pages);
aa65c29c
JK
344 for (i = 0; i < pagevec_count(pvec); i++) {
345 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
346
347 unaccount_page_cache_page(mapping, pvec->pages[i]);
348 }
ef8e5717 349 page_cache_delete_batch(mapping, pvec);
30472509 350 xa_unlock_irq(&mapping->i_pages);
aa65c29c
JK
351
352 for (i = 0; i < pagevec_count(pvec); i++)
353 page_cache_free_page(mapping, pvec->pages[i]);
354}
355
d72d9e2a 356int filemap_check_errors(struct address_space *mapping)
865ffef3
DM
357{
358 int ret = 0;
359 /* Check for outstanding write errors */
7fcbbaf1
JA
360 if (test_bit(AS_ENOSPC, &mapping->flags) &&
361 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
865ffef3 362 ret = -ENOSPC;
7fcbbaf1
JA
363 if (test_bit(AS_EIO, &mapping->flags) &&
364 test_and_clear_bit(AS_EIO, &mapping->flags))
865ffef3
DM
365 ret = -EIO;
366 return ret;
367}
d72d9e2a 368EXPORT_SYMBOL(filemap_check_errors);
865ffef3 369
76341cab
JL
370static int filemap_check_and_keep_errors(struct address_space *mapping)
371{
372 /* Check for outstanding write errors */
373 if (test_bit(AS_EIO, &mapping->flags))
374 return -EIO;
375 if (test_bit(AS_ENOSPC, &mapping->flags))
376 return -ENOSPC;
377 return 0;
378}
379
5a798493
JB
380/**
381 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
382 * @mapping: address space structure to write
383 * @wbc: the writeback_control controlling the writeout
384 *
385 * Call writepages on the mapping using the provided wbc to control the
386 * writeout.
387 *
388 * Return: %0 on success, negative error code otherwise.
389 */
390int filemap_fdatawrite_wbc(struct address_space *mapping,
391 struct writeback_control *wbc)
392{
393 int ret;
394
395 if (!mapping_can_writeback(mapping) ||
396 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
397 return 0;
398
399 wbc_attach_fdatawrite_inode(wbc, mapping->host);
400 ret = do_writepages(mapping, wbc);
401 wbc_detach_inode(wbc);
402 return ret;
403}
404EXPORT_SYMBOL(filemap_fdatawrite_wbc);
405
1da177e4 406/**
485bb99b 407 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
408 * @mapping: address space structure to write
409 * @start: offset in bytes where the range starts
469eb4d0 410 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 411 * @sync_mode: enable synchronous operation
1da177e4 412 *
485bb99b
RD
413 * Start writeback against all of a mapping's dirty pages that lie
414 * within the byte offsets <start, end> inclusive.
415 *
1da177e4 416 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 417 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
418 * these two operations is that if a dirty page/buffer is encountered, it must
419 * be waited upon, and not just skipped over.
a862f68a
MR
420 *
421 * Return: %0 on success, negative error code otherwise.
1da177e4 422 */
ebcf28e1
AM
423int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
424 loff_t end, int sync_mode)
1da177e4 425{
1da177e4
LT
426 struct writeback_control wbc = {
427 .sync_mode = sync_mode,
05fe478d 428 .nr_to_write = LONG_MAX,
111ebb6e
OH
429 .range_start = start,
430 .range_end = end,
1da177e4
LT
431 };
432
5a798493 433 return filemap_fdatawrite_wbc(mapping, &wbc);
1da177e4
LT
434}
435
436static inline int __filemap_fdatawrite(struct address_space *mapping,
437 int sync_mode)
438{
111ebb6e 439 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
440}
441
442int filemap_fdatawrite(struct address_space *mapping)
443{
444 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
445}
446EXPORT_SYMBOL(filemap_fdatawrite);
447
f4c0a0fd 448int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 449 loff_t end)
1da177e4
LT
450{
451 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
452}
f4c0a0fd 453EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 454
485bb99b
RD
455/**
456 * filemap_flush - mostly a non-blocking flush
457 * @mapping: target address_space
458 *
1da177e4
LT
459 * This is a mostly non-blocking flush. Not suitable for data-integrity
460 * purposes - I/O may not be started against all dirty pages.
a862f68a
MR
461 *
462 * Return: %0 on success, negative error code otherwise.
1da177e4
LT
463 */
464int filemap_flush(struct address_space *mapping)
465{
466 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
467}
468EXPORT_SYMBOL(filemap_flush);
469
7fc9e472
GR
470/**
471 * filemap_range_has_page - check if a page exists in range.
472 * @mapping: address space within which to check
473 * @start_byte: offset in bytes where the range starts
474 * @end_byte: offset in bytes where the range ends (inclusive)
475 *
476 * Find at least one page in the range supplied, usually used to check if
477 * direct writing in this range will trigger a writeback.
a862f68a
MR
478 *
479 * Return: %true if at least one page exists in the specified range,
480 * %false otherwise.
7fc9e472
GR
481 */
482bool filemap_range_has_page(struct address_space *mapping,
483 loff_t start_byte, loff_t end_byte)
484{
f7b68046 485 struct page *page;
8fa8e538
MW
486 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
487 pgoff_t max = end_byte >> PAGE_SHIFT;
7fc9e472
GR
488
489 if (end_byte < start_byte)
490 return false;
491
8fa8e538
MW
492 rcu_read_lock();
493 for (;;) {
494 page = xas_find(&xas, max);
495 if (xas_retry(&xas, page))
496 continue;
497 /* Shadow entries don't count */
498 if (xa_is_value(page))
499 continue;
500 /*
501 * We don't need to try to pin this page; we're about to
502 * release the RCU lock anyway. It is enough to know that
503 * there was a page here recently.
504 */
505 break;
506 }
507 rcu_read_unlock();
7fc9e472 508
8fa8e538 509 return page != NULL;
7fc9e472
GR
510}
511EXPORT_SYMBOL(filemap_range_has_page);
512
5e8fcc1a 513static void __filemap_fdatawait_range(struct address_space *mapping,
aa750fd7 514 loff_t start_byte, loff_t end_byte)
1da177e4 515{
09cbfeaf
KS
516 pgoff_t index = start_byte >> PAGE_SHIFT;
517 pgoff_t end = end_byte >> PAGE_SHIFT;
1da177e4
LT
518 struct pagevec pvec;
519 int nr_pages;
1da177e4 520
94004ed7 521 if (end_byte < start_byte)
5e8fcc1a 522 return;
1da177e4 523
86679820 524 pagevec_init(&pvec);
312e9d2f 525 while (index <= end) {
1da177e4
LT
526 unsigned i;
527
312e9d2f 528 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
67fd707f 529 end, PAGECACHE_TAG_WRITEBACK);
312e9d2f
JK
530 if (!nr_pages)
531 break;
532
1da177e4
LT
533 for (i = 0; i < nr_pages; i++) {
534 struct page *page = pvec.pages[i];
535
1da177e4 536 wait_on_page_writeback(page);
5e8fcc1a 537 ClearPageError(page);
1da177e4
LT
538 }
539 pagevec_release(&pvec);
540 cond_resched();
541 }
aa750fd7
JN
542}
543
544/**
545 * filemap_fdatawait_range - wait for writeback to complete
546 * @mapping: address space structure to wait for
547 * @start_byte: offset in bytes where the range starts
548 * @end_byte: offset in bytes where the range ends (inclusive)
549 *
550 * Walk the list of under-writeback pages of the given address space
551 * in the given range and wait for all of them. Check error status of
552 * the address space and return it.
553 *
554 * Since the error status of the address space is cleared by this function,
555 * callers are responsible for checking the return value and handling and/or
556 * reporting the error.
a862f68a
MR
557 *
558 * Return: error status of the address space.
aa750fd7
JN
559 */
560int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
561 loff_t end_byte)
562{
5e8fcc1a
JL
563 __filemap_fdatawait_range(mapping, start_byte, end_byte);
564 return filemap_check_errors(mapping);
1da177e4 565}
d3bccb6f
JK
566EXPORT_SYMBOL(filemap_fdatawait_range);
567
aa0bfcd9
RZ
568/**
569 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
570 * @mapping: address space structure to wait for
571 * @start_byte: offset in bytes where the range starts
572 * @end_byte: offset in bytes where the range ends (inclusive)
573 *
574 * Walk the list of under-writeback pages of the given address space in the
575 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
576 * this function does not clear error status of the address space.
577 *
578 * Use this function if callers don't handle errors themselves. Expected
579 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
580 * fsfreeze(8)
581 */
582int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
583 loff_t start_byte, loff_t end_byte)
584{
585 __filemap_fdatawait_range(mapping, start_byte, end_byte);
586 return filemap_check_and_keep_errors(mapping);
587}
588EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
589
a823e458
JL
590/**
591 * file_fdatawait_range - wait for writeback to complete
592 * @file: file pointing to address space structure to wait for
593 * @start_byte: offset in bytes where the range starts
594 * @end_byte: offset in bytes where the range ends (inclusive)
595 *
596 * Walk the list of under-writeback pages of the address space that file
597 * refers to, in the given range and wait for all of them. Check error
598 * status of the address space vs. the file->f_wb_err cursor and return it.
599 *
600 * Since the error status of the file is advanced by this function,
601 * callers are responsible for checking the return value and handling and/or
602 * reporting the error.
a862f68a
MR
603 *
604 * Return: error status of the address space vs. the file->f_wb_err cursor.
a823e458
JL
605 */
606int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
607{
608 struct address_space *mapping = file->f_mapping;
609
610 __filemap_fdatawait_range(mapping, start_byte, end_byte);
611 return file_check_and_advance_wb_err(file);
612}
613EXPORT_SYMBOL(file_fdatawait_range);
d3bccb6f 614
aa750fd7
JN
615/**
616 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
617 * @mapping: address space structure to wait for
618 *
619 * Walk the list of under-writeback pages of the given address space
620 * and wait for all of them. Unlike filemap_fdatawait(), this function
621 * does not clear error status of the address space.
622 *
623 * Use this function if callers don't handle errors themselves. Expected
624 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
625 * fsfreeze(8)
a862f68a
MR
626 *
627 * Return: error status of the address space.
aa750fd7 628 */
76341cab 629int filemap_fdatawait_keep_errors(struct address_space *mapping)
aa750fd7 630{
ffb959bb 631 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
76341cab 632 return filemap_check_and_keep_errors(mapping);
aa750fd7 633}
76341cab 634EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
aa750fd7 635
875d91b1 636/* Returns true if writeback might be needed or already in progress. */
9326c9b2 637static bool mapping_needs_writeback(struct address_space *mapping)
1da177e4 638{
875d91b1 639 return mapping->nrpages;
1da177e4 640}
1da177e4 641
63135aa3
JA
642/**
643 * filemap_range_needs_writeback - check if range potentially needs writeback
644 * @mapping: address space within which to check
645 * @start_byte: offset in bytes where the range starts
646 * @end_byte: offset in bytes where the range ends (inclusive)
647 *
648 * Find at least one page in the range supplied, usually used to check if
649 * direct writing in this range will trigger a writeback. Used by O_DIRECT
650 * read/write with IOCB_NOWAIT, to see if the caller needs to do
651 * filemap_write_and_wait_range() before proceeding.
652 *
653 * Return: %true if the caller should do filemap_write_and_wait_range() before
654 * doing O_DIRECT to a page in this range, %false otherwise.
655 */
656bool filemap_range_needs_writeback(struct address_space *mapping,
657 loff_t start_byte, loff_t end_byte)
658{
659 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
660 pgoff_t max = end_byte >> PAGE_SHIFT;
661 struct page *page;
662
663 if (!mapping_needs_writeback(mapping))
664 return false;
665 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
666 !mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
667 return false;
668 if (end_byte < start_byte)
669 return false;
670
671 rcu_read_lock();
672 xas_for_each(&xas, page, max) {
673 if (xas_retry(&xas, page))
674 continue;
675 if (xa_is_value(page))
676 continue;
677 if (PageDirty(page) || PageLocked(page) || PageWriteback(page))
678 break;
679 }
680 rcu_read_unlock();
681 return page != NULL;
682}
683EXPORT_SYMBOL_GPL(filemap_range_needs_writeback);
684
485bb99b
RD
685/**
686 * filemap_write_and_wait_range - write out & wait on a file range
687 * @mapping: the address_space for the pages
688 * @lstart: offset in bytes where the range starts
689 * @lend: offset in bytes where the range ends (inclusive)
690 *
469eb4d0
AM
691 * Write out and wait upon file offsets lstart->lend, inclusive.
692 *
0e056eb5 693 * Note that @lend is inclusive (describes the last byte to be written) so
469eb4d0 694 * that this function can be used to write to the very end-of-file (end = -1).
a862f68a
MR
695 *
696 * Return: error status of the address space.
469eb4d0 697 */
1da177e4
LT
698int filemap_write_and_wait_range(struct address_space *mapping,
699 loff_t lstart, loff_t lend)
700{
28fd1298 701 int err = 0;
1da177e4 702
9326c9b2 703 if (mapping_needs_writeback(mapping)) {
28fd1298
OH
704 err = __filemap_fdatawrite_range(mapping, lstart, lend,
705 WB_SYNC_ALL);
ddf8f376
IW
706 /*
707 * Even if the above returned error, the pages may be
708 * written partially (e.g. -ENOSPC), so we wait for it.
709 * But the -EIO is special case, it may indicate the worst
710 * thing (e.g. bug) happened, so we avoid waiting for it.
711 */
28fd1298 712 if (err != -EIO) {
94004ed7
CH
713 int err2 = filemap_fdatawait_range(mapping,
714 lstart, lend);
28fd1298
OH
715 if (!err)
716 err = err2;
cbeaf951
JL
717 } else {
718 /* Clear any previously stored errors */
719 filemap_check_errors(mapping);
28fd1298 720 }
865ffef3
DM
721 } else {
722 err = filemap_check_errors(mapping);
1da177e4 723 }
28fd1298 724 return err;
1da177e4 725}
f6995585 726EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 727
5660e13d
JL
728void __filemap_set_wb_err(struct address_space *mapping, int err)
729{
3acdfd28 730 errseq_t eseq = errseq_set(&mapping->wb_err, err);
5660e13d
JL
731
732 trace_filemap_set_wb_err(mapping, eseq);
733}
734EXPORT_SYMBOL(__filemap_set_wb_err);
735
736/**
737 * file_check_and_advance_wb_err - report wb error (if any) that was previously
738 * and advance wb_err to current one
739 * @file: struct file on which the error is being reported
740 *
741 * When userland calls fsync (or something like nfsd does the equivalent), we
742 * want to report any writeback errors that occurred since the last fsync (or
743 * since the file was opened if there haven't been any).
744 *
745 * Grab the wb_err from the mapping. If it matches what we have in the file,
746 * then just quickly return 0. The file is all caught up.
747 *
748 * If it doesn't match, then take the mapping value, set the "seen" flag in
749 * it and try to swap it into place. If it works, or another task beat us
750 * to it with the new value, then update the f_wb_err and return the error
751 * portion. The error at this point must be reported via proper channels
752 * (a'la fsync, or NFS COMMIT operation, etc.).
753 *
754 * While we handle mapping->wb_err with atomic operations, the f_wb_err
755 * value is protected by the f_lock since we must ensure that it reflects
756 * the latest value swapped in for this file descriptor.
a862f68a
MR
757 *
758 * Return: %0 on success, negative error code otherwise.
5660e13d
JL
759 */
760int file_check_and_advance_wb_err(struct file *file)
761{
762 int err = 0;
763 errseq_t old = READ_ONCE(file->f_wb_err);
764 struct address_space *mapping = file->f_mapping;
765
766 /* Locklessly handle the common case where nothing has changed */
767 if (errseq_check(&mapping->wb_err, old)) {
768 /* Something changed, must use slow path */
769 spin_lock(&file->f_lock);
770 old = file->f_wb_err;
771 err = errseq_check_and_advance(&mapping->wb_err,
772 &file->f_wb_err);
773 trace_file_check_and_advance_wb_err(file, old);
774 spin_unlock(&file->f_lock);
775 }
f4e222c5
JL
776
777 /*
778 * We're mostly using this function as a drop in replacement for
779 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
780 * that the legacy code would have had on these flags.
781 */
782 clear_bit(AS_EIO, &mapping->flags);
783 clear_bit(AS_ENOSPC, &mapping->flags);
5660e13d
JL
784 return err;
785}
786EXPORT_SYMBOL(file_check_and_advance_wb_err);
787
788/**
789 * file_write_and_wait_range - write out & wait on a file range
790 * @file: file pointing to address_space with pages
791 * @lstart: offset in bytes where the range starts
792 * @lend: offset in bytes where the range ends (inclusive)
793 *
794 * Write out and wait upon file offsets lstart->lend, inclusive.
795 *
796 * Note that @lend is inclusive (describes the last byte to be written) so
797 * that this function can be used to write to the very end-of-file (end = -1).
798 *
799 * After writing out and waiting on the data, we check and advance the
800 * f_wb_err cursor to the latest value, and return any errors detected there.
a862f68a
MR
801 *
802 * Return: %0 on success, negative error code otherwise.
5660e13d
JL
803 */
804int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
805{
806 int err = 0, err2;
807 struct address_space *mapping = file->f_mapping;
808
9326c9b2 809 if (mapping_needs_writeback(mapping)) {
5660e13d
JL
810 err = __filemap_fdatawrite_range(mapping, lstart, lend,
811 WB_SYNC_ALL);
812 /* See comment of filemap_write_and_wait() */
813 if (err != -EIO)
814 __filemap_fdatawait_range(mapping, lstart, lend);
815 }
816 err2 = file_check_and_advance_wb_err(file);
817 if (!err)
818 err = err2;
819 return err;
820}
821EXPORT_SYMBOL(file_write_and_wait_range);
822
ef6a3c63
MS
823/**
824 * replace_page_cache_page - replace a pagecache page with a new one
825 * @old: page to be replaced
826 * @new: page to replace with
ef6a3c63
MS
827 *
828 * This function replaces a page in the pagecache with a new one. On
829 * success it acquires the pagecache reference for the new page and
830 * drops it for the old page. Both the old and new pages must be
831 * locked. This function does not add the new page to the LRU, the
832 * caller must do that.
833 *
74d60958 834 * The remove + add is atomic. This function cannot fail.
ef6a3c63 835 */
1f7ef657 836void replace_page_cache_page(struct page *old, struct page *new)
ef6a3c63 837{
74d60958
MW
838 struct address_space *mapping = old->mapping;
839 void (*freepage)(struct page *) = mapping->a_ops->freepage;
840 pgoff_t offset = old->index;
841 XA_STATE(xas, &mapping->i_pages, offset);
ef6a3c63 842
309381fe
SL
843 VM_BUG_ON_PAGE(!PageLocked(old), old);
844 VM_BUG_ON_PAGE(!PageLocked(new), new);
845 VM_BUG_ON_PAGE(new->mapping, new);
ef6a3c63 846
74d60958
MW
847 get_page(new);
848 new->mapping = mapping;
849 new->index = offset;
ef6a3c63 850
0d1c2072
JW
851 mem_cgroup_migrate(old, new);
852
30472509 853 xas_lock_irq(&xas);
74d60958 854 xas_store(&xas, new);
4165b9b4 855
74d60958
MW
856 old->mapping = NULL;
857 /* hugetlb pages do not participate in page cache accounting. */
858 if (!PageHuge(old))
0d1c2072 859 __dec_lruvec_page_state(old, NR_FILE_PAGES);
74d60958 860 if (!PageHuge(new))
0d1c2072 861 __inc_lruvec_page_state(new, NR_FILE_PAGES);
74d60958 862 if (PageSwapBacked(old))
0d1c2072 863 __dec_lruvec_page_state(old, NR_SHMEM);
74d60958 864 if (PageSwapBacked(new))
0d1c2072 865 __inc_lruvec_page_state(new, NR_SHMEM);
30472509 866 xas_unlock_irq(&xas);
74d60958
MW
867 if (freepage)
868 freepage(old);
869 put_page(old);
ef6a3c63
MS
870}
871EXPORT_SYMBOL_GPL(replace_page_cache_page);
872
16c0cc0c 873noinline int __add_to_page_cache_locked(struct page *page,
76cd6173 874 struct address_space *mapping,
c4cf498d 875 pgoff_t offset, gfp_t gfp,
76cd6173 876 void **shadowp)
1da177e4 877{
74d60958 878 XA_STATE(xas, &mapping->i_pages, offset);
00501b53 879 int huge = PageHuge(page);
e286781d 880 int error;
da74240e 881 bool charged = false;
e286781d 882
309381fe
SL
883 VM_BUG_ON_PAGE(!PageLocked(page), page);
884 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
74d60958 885 mapping_set_update(&xas, mapping);
e286781d 886
09cbfeaf 887 get_page(page);
66a0c8ee
KS
888 page->mapping = mapping;
889 page->index = offset;
890
3fea5a49 891 if (!huge) {
04f94e3f 892 error = mem_cgroup_charge(page, NULL, gfp);
3fea5a49
JW
893 if (error)
894 goto error;
da74240e 895 charged = true;
3fea5a49
JW
896 }
897
198b62f8
MWO
898 gfp &= GFP_RECLAIM_MASK;
899
74d60958 900 do {
198b62f8
MWO
901 unsigned int order = xa_get_order(xas.xa, xas.xa_index);
902 void *entry, *old = NULL;
903
904 if (order > thp_order(page))
905 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
906 order, gfp);
74d60958 907 xas_lock_irq(&xas);
198b62f8
MWO
908 xas_for_each_conflict(&xas, entry) {
909 old = entry;
910 if (!xa_is_value(entry)) {
911 xas_set_err(&xas, -EEXIST);
912 goto unlock;
913 }
914 }
915
916 if (old) {
917 if (shadowp)
918 *shadowp = old;
919 /* entry may have been split before we acquired lock */
920 order = xa_get_order(xas.xa, xas.xa_index);
921 if (order > thp_order(page)) {
922 xas_split(&xas, old, order);
923 xas_reset(&xas);
924 }
925 }
926
74d60958
MW
927 xas_store(&xas, page);
928 if (xas_error(&xas))
929 goto unlock;
930
74d60958
MW
931 mapping->nrpages++;
932
933 /* hugetlb pages do not participate in page cache accounting */
934 if (!huge)
0d1c2072 935 __inc_lruvec_page_state(page, NR_FILE_PAGES);
74d60958
MW
936unlock:
937 xas_unlock_irq(&xas);
198b62f8 938 } while (xas_nomem(&xas, gfp));
74d60958 939
3fea5a49
JW
940 if (xas_error(&xas)) {
941 error = xas_error(&xas);
da74240e
WL
942 if (charged)
943 mem_cgroup_uncharge(page);
74d60958 944 goto error;
3fea5a49 945 }
4165b9b4 946
66a0c8ee
KS
947 trace_mm_filemap_add_to_page_cache(page);
948 return 0;
74d60958 949error:
66a0c8ee
KS
950 page->mapping = NULL;
951 /* Leave page->index set: truncation relies upon it */
09cbfeaf 952 put_page(page);
3fea5a49 953 return error;
1da177e4 954}
cfcbfb13 955ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
a528910e
JW
956
957/**
958 * add_to_page_cache_locked - add a locked page to the pagecache
959 * @page: page to add
960 * @mapping: the page's address_space
961 * @offset: page index
962 * @gfp_mask: page allocation mode
963 *
964 * This function is used to add a page to the pagecache. It must be locked.
965 * This function does not add the page to the LRU. The caller must do that.
a862f68a
MR
966 *
967 * Return: %0 on success, negative error code otherwise.
a528910e
JW
968 */
969int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
970 pgoff_t offset, gfp_t gfp_mask)
971{
972 return __add_to_page_cache_locked(page, mapping, offset,
973 gfp_mask, NULL);
974}
e286781d 975EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4
LT
976
977int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 978 pgoff_t offset, gfp_t gfp_mask)
1da177e4 979{
a528910e 980 void *shadow = NULL;
4f98a2fe
RR
981 int ret;
982
48c935ad 983 __SetPageLocked(page);
a528910e
JW
984 ret = __add_to_page_cache_locked(page, mapping, offset,
985 gfp_mask, &shadow);
986 if (unlikely(ret))
48c935ad 987 __ClearPageLocked(page);
a528910e
JW
988 else {
989 /*
990 * The page might have been evicted from cache only
991 * recently, in which case it should be activated like
992 * any other repeatedly accessed page.
f0281a00
RR
993 * The exception is pages getting rewritten; evicting other
994 * data from the working set, only to cache data that will
995 * get overwritten with something else, is a waste of memory.
a528910e 996 */
1899ad18
JW
997 WARN_ON_ONCE(PageActive(page));
998 if (!(gfp_mask & __GFP_WRITE) && shadow)
999 workingset_refault(page, shadow);
a528910e
JW
1000 lru_cache_add(page);
1001 }
1da177e4
LT
1002 return ret;
1003}
18bc0bbd 1004EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1da177e4 1005
44110fe3 1006#ifdef CONFIG_NUMA
2ae88149 1007struct page *__page_cache_alloc(gfp_t gfp)
44110fe3 1008{
c0ff7453
MX
1009 int n;
1010 struct page *page;
1011
44110fe3 1012 if (cpuset_do_page_mem_spread()) {
cc9a6c87
MG
1013 unsigned int cpuset_mems_cookie;
1014 do {
d26914d1 1015 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 1016 n = cpuset_mem_spread_node();
96db800f 1017 page = __alloc_pages_node(n, gfp, 0);
d26914d1 1018 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
cc9a6c87 1019
c0ff7453 1020 return page;
44110fe3 1021 }
2ae88149 1022 return alloc_pages(gfp, 0);
44110fe3 1023}
2ae88149 1024EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
1025#endif
1026
7506ae6a
JK
1027/*
1028 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
1029 *
1030 * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
1031 *
1032 * @mapping1: the first mapping to lock
1033 * @mapping2: the second mapping to lock
1034 */
1035void filemap_invalidate_lock_two(struct address_space *mapping1,
1036 struct address_space *mapping2)
1037{
1038 if (mapping1 > mapping2)
1039 swap(mapping1, mapping2);
1040 if (mapping1)
1041 down_write(&mapping1->invalidate_lock);
1042 if (mapping2 && mapping1 != mapping2)
1043 down_write_nested(&mapping2->invalidate_lock, 1);
1044}
1045EXPORT_SYMBOL(filemap_invalidate_lock_two);
1046
1047/*
1048 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1049 *
1050 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1051 *
1052 * @mapping1: the first mapping to unlock
1053 * @mapping2: the second mapping to unlock
1054 */
1055void filemap_invalidate_unlock_two(struct address_space *mapping1,
1056 struct address_space *mapping2)
1057{
1058 if (mapping1)
1059 up_write(&mapping1->invalidate_lock);
1060 if (mapping2 && mapping1 != mapping2)
1061 up_write(&mapping2->invalidate_lock);
1062}
1063EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1064
1da177e4
LT
1065/*
1066 * In order to wait for pages to become available there must be
1067 * waitqueues associated with pages. By using a hash table of
1068 * waitqueues where the bucket discipline is to maintain all
1069 * waiters on the same queue and wake all when any of the pages
1070 * become available, and for the woken contexts to check to be
1071 * sure the appropriate page became available, this saves space
1072 * at a cost of "thundering herd" phenomena during rare hash
1073 * collisions.
1074 */
62906027
NP
1075#define PAGE_WAIT_TABLE_BITS 8
1076#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1077static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1078
1079static wait_queue_head_t *page_waitqueue(struct page *page)
1da177e4 1080{
62906027 1081 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
1da177e4 1082}
1da177e4 1083
62906027 1084void __init pagecache_init(void)
1da177e4 1085{
62906027 1086 int i;
1da177e4 1087
62906027
NP
1088 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1089 init_waitqueue_head(&page_wait_table[i]);
1090
1091 page_writeback_init();
1da177e4 1092}
1da177e4 1093
5ef64cc8
LT
1094/*
1095 * The page wait code treats the "wait->flags" somewhat unusually, because
5868ec26 1096 * we have multiple different kinds of waits, not just the usual "exclusive"
5ef64cc8
LT
1097 * one.
1098 *
1099 * We have:
1100 *
1101 * (a) no special bits set:
1102 *
1103 * We're just waiting for the bit to be released, and when a waker
1104 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1105 * and remove it from the wait queue.
1106 *
1107 * Simple and straightforward.
1108 *
1109 * (b) WQ_FLAG_EXCLUSIVE:
1110 *
1111 * The waiter is waiting to get the lock, and only one waiter should
1112 * be woken up to avoid any thundering herd behavior. We'll set the
1113 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1114 *
1115 * This is the traditional exclusive wait.
1116 *
5868ec26 1117 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
5ef64cc8
LT
1118 *
1119 * The waiter is waiting to get the bit, and additionally wants the
1120 * lock to be transferred to it for fair lock behavior. If the lock
1121 * cannot be taken, we stop walking the wait queue without waking
1122 * the waiter.
1123 *
1124 * This is the "fair lock handoff" case, and in addition to setting
1125 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1126 * that it now has the lock.
1127 */
ac6424b9 1128static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
f62e00cc 1129{
5ef64cc8 1130 unsigned int flags;
62906027
NP
1131 struct wait_page_key *key = arg;
1132 struct wait_page_queue *wait_page
1133 = container_of(wait, struct wait_page_queue, wait);
1134
cdc8fcb4 1135 if (!wake_page_match(wait_page, key))
62906027 1136 return 0;
3510ca20 1137
9a1ea439 1138 /*
5ef64cc8
LT
1139 * If it's a lock handoff wait, we get the bit for it, and
1140 * stop walking (and do not wake it up) if we can't.
9a1ea439 1141 */
5ef64cc8
LT
1142 flags = wait->flags;
1143 if (flags & WQ_FLAG_EXCLUSIVE) {
1144 if (test_bit(key->bit_nr, &key->page->flags))
2a9127fc 1145 return -1;
5ef64cc8
LT
1146 if (flags & WQ_FLAG_CUSTOM) {
1147 if (test_and_set_bit(key->bit_nr, &key->page->flags))
1148 return -1;
1149 flags |= WQ_FLAG_DONE;
1150 }
2a9127fc 1151 }
f62e00cc 1152
5ef64cc8
LT
1153 /*
1154 * We are holding the wait-queue lock, but the waiter that
1155 * is waiting for this will be checking the flags without
1156 * any locking.
1157 *
1158 * So update the flags atomically, and wake up the waiter
1159 * afterwards to avoid any races. This store-release pairs
1160 * with the load-acquire in wait_on_page_bit_common().
1161 */
1162 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
2a9127fc
LT
1163 wake_up_state(wait->private, mode);
1164
1165 /*
1166 * Ok, we have successfully done what we're waiting for,
1167 * and we can unconditionally remove the wait entry.
1168 *
5ef64cc8
LT
1169 * Note that this pairs with the "finish_wait()" in the
1170 * waiter, and has to be the absolute last thing we do.
1171 * After this list_del_init(&wait->entry) the wait entry
2a9127fc
LT
1172 * might be de-allocated and the process might even have
1173 * exited.
2a9127fc 1174 */
c6fe44d9 1175 list_del_init_careful(&wait->entry);
5ef64cc8 1176 return (flags & WQ_FLAG_EXCLUSIVE) != 0;
f62e00cc
KM
1177}
1178
74d81bfa 1179static void wake_up_page_bit(struct page *page, int bit_nr)
cbbce822 1180{
62906027
NP
1181 wait_queue_head_t *q = page_waitqueue(page);
1182 struct wait_page_key key;
1183 unsigned long flags;
11a19c7b 1184 wait_queue_entry_t bookmark;
cbbce822 1185
62906027
NP
1186 key.page = page;
1187 key.bit_nr = bit_nr;
1188 key.page_match = 0;
1189
11a19c7b
TC
1190 bookmark.flags = 0;
1191 bookmark.private = NULL;
1192 bookmark.func = NULL;
1193 INIT_LIST_HEAD(&bookmark.entry);
1194
62906027 1195 spin_lock_irqsave(&q->lock, flags);
11a19c7b
TC
1196 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1197
1198 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1199 /*
1200 * Take a breather from holding the lock,
1201 * allow pages that finish wake up asynchronously
1202 * to acquire the lock and remove themselves
1203 * from wait queue
1204 */
1205 spin_unlock_irqrestore(&q->lock, flags);
1206 cpu_relax();
1207 spin_lock_irqsave(&q->lock, flags);
1208 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1209 }
1210
62906027
NP
1211 /*
1212 * It is possible for other pages to have collided on the waitqueue
1213 * hash, so in that case check for a page match. That prevents a long-
1214 * term waiter
1215 *
1216 * It is still possible to miss a case here, when we woke page waiters
1217 * and removed them from the waitqueue, but there are still other
1218 * page waiters.
1219 */
1220 if (!waitqueue_active(q) || !key.page_match) {
1221 ClearPageWaiters(page);
1222 /*
1223 * It's possible to miss clearing Waiters here, when we woke
1224 * our page waiters, but the hashed waitqueue has waiters for
1225 * other pages on it.
1226 *
1227 * That's okay, it's a rare case. The next waker will clear it.
1228 */
1229 }
1230 spin_unlock_irqrestore(&q->lock, flags);
1231}
74d81bfa
NP
1232
1233static void wake_up_page(struct page *page, int bit)
1234{
1235 if (!PageWaiters(page))
1236 return;
1237 wake_up_page_bit(page, bit);
1238}
62906027 1239
9a1ea439
HD
1240/*
1241 * A choice of three behaviors for wait_on_page_bit_common():
1242 */
1243enum behavior {
1244 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
1245 * __lock_page() waiting on then setting PG_locked.
1246 */
1247 SHARED, /* Hold ref to page and check the bit when woken, like
1248 * wait_on_page_writeback() waiting on PG_writeback.
1249 */
1250 DROP, /* Drop ref to page before wait, no check when woken,
1251 * like put_and_wait_on_page_locked() on PG_locked.
1252 */
1253};
1254
2a9127fc 1255/*
5ef64cc8
LT
1256 * Attempt to check (or get) the page bit, and mark us done
1257 * if successful.
2a9127fc
LT
1258 */
1259static inline bool trylock_page_bit_common(struct page *page, int bit_nr,
1260 struct wait_queue_entry *wait)
1261{
1262 if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1263 if (test_and_set_bit(bit_nr, &page->flags))
1264 return false;
1265 } else if (test_bit(bit_nr, &page->flags))
1266 return false;
1267
5ef64cc8 1268 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
2a9127fc
LT
1269 return true;
1270}
1271
5ef64cc8
LT
1272/* How many times do we accept lock stealing from under a waiter? */
1273int sysctl_page_lock_unfairness = 5;
1274
62906027 1275static inline int wait_on_page_bit_common(wait_queue_head_t *q,
9a1ea439 1276 struct page *page, int bit_nr, int state, enum behavior behavior)
62906027 1277{
5ef64cc8 1278 int unfairness = sysctl_page_lock_unfairness;
62906027 1279 struct wait_page_queue wait_page;
ac6424b9 1280 wait_queue_entry_t *wait = &wait_page.wait;
b1d29ba8 1281 bool thrashing = false;
9a1ea439 1282 bool delayacct = false;
eb414681 1283 unsigned long pflags;
62906027 1284
eb414681 1285 if (bit_nr == PG_locked &&
b1d29ba8 1286 !PageUptodate(page) && PageWorkingset(page)) {
9a1ea439 1287 if (!PageSwapBacked(page)) {
eb414681 1288 delayacct_thrashing_start();
9a1ea439
HD
1289 delayacct = true;
1290 }
eb414681 1291 psi_memstall_enter(&pflags);
b1d29ba8
JW
1292 thrashing = true;
1293 }
1294
62906027
NP
1295 init_wait(wait);
1296 wait->func = wake_page_function;
1297 wait_page.page = page;
1298 wait_page.bit_nr = bit_nr;
1299
5ef64cc8
LT
1300repeat:
1301 wait->flags = 0;
1302 if (behavior == EXCLUSIVE) {
1303 wait->flags = WQ_FLAG_EXCLUSIVE;
1304 if (--unfairness < 0)
1305 wait->flags |= WQ_FLAG_CUSTOM;
1306 }
1307
2a9127fc
LT
1308 /*
1309 * Do one last check whether we can get the
1310 * page bit synchronously.
1311 *
1312 * Do the SetPageWaiters() marking before that
1313 * to let any waker we _just_ missed know they
1314 * need to wake us up (otherwise they'll never
1315 * even go to the slow case that looks at the
1316 * page queue), and add ourselves to the wait
1317 * queue if we need to sleep.
1318 *
1319 * This part needs to be done under the queue
1320 * lock to avoid races.
1321 */
1322 spin_lock_irq(&q->lock);
1323 SetPageWaiters(page);
1324 if (!trylock_page_bit_common(page, bit_nr, wait))
1325 __add_wait_queue_entry_tail(q, wait);
1326 spin_unlock_irq(&q->lock);
62906027 1327
2a9127fc
LT
1328 /*
1329 * From now on, all the logic will be based on
5ef64cc8
LT
1330 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1331 * see whether the page bit testing has already
1332 * been done by the wake function.
2a9127fc
LT
1333 *
1334 * We can drop our reference to the page.
1335 */
1336 if (behavior == DROP)
1337 put_page(page);
62906027 1338
5ef64cc8
LT
1339 /*
1340 * Note that until the "finish_wait()", or until
1341 * we see the WQ_FLAG_WOKEN flag, we need to
1342 * be very careful with the 'wait->flags', because
1343 * we may race with a waker that sets them.
1344 */
2a9127fc 1345 for (;;) {
5ef64cc8
LT
1346 unsigned int flags;
1347
62906027
NP
1348 set_current_state(state);
1349
5ef64cc8
LT
1350 /* Loop until we've been woken or interrupted */
1351 flags = smp_load_acquire(&wait->flags);
1352 if (!(flags & WQ_FLAG_WOKEN)) {
1353 if (signal_pending_state(state, current))
1354 break;
1355
1356 io_schedule();
1357 continue;
1358 }
1359
1360 /* If we were non-exclusive, we're done */
1361 if (behavior != EXCLUSIVE)
a8b169af 1362 break;
9a1ea439 1363
5ef64cc8
LT
1364 /* If the waker got the lock for us, we're done */
1365 if (flags & WQ_FLAG_DONE)
9a1ea439 1366 break;
2a9127fc 1367
5ef64cc8
LT
1368 /*
1369 * Otherwise, if we're getting the lock, we need to
1370 * try to get it ourselves.
1371 *
1372 * And if that fails, we'll have to retry this all.
1373 */
1374 if (unlikely(test_and_set_bit(bit_nr, &page->flags)))
1375 goto repeat;
1376
1377 wait->flags |= WQ_FLAG_DONE;
1378 break;
62906027
NP
1379 }
1380
5ef64cc8
LT
1381 /*
1382 * If a signal happened, this 'finish_wait()' may remove the last
1383 * waiter from the wait-queues, but the PageWaiters bit will remain
1384 * set. That's ok. The next wakeup will take care of it, and trying
1385 * to do it here would be difficult and prone to races.
1386 */
62906027
NP
1387 finish_wait(q, wait);
1388
eb414681 1389 if (thrashing) {
9a1ea439 1390 if (delayacct)
eb414681
JW
1391 delayacct_thrashing_end();
1392 psi_memstall_leave(&pflags);
1393 }
b1d29ba8 1394
62906027 1395 /*
5ef64cc8
LT
1396 * NOTE! The wait->flags weren't stable until we've done the
1397 * 'finish_wait()', and we could have exited the loop above due
1398 * to a signal, and had a wakeup event happen after the signal
1399 * test but before the 'finish_wait()'.
1400 *
1401 * So only after the finish_wait() can we reliably determine
1402 * if we got woken up or not, so we can now figure out the final
1403 * return value based on that state without races.
1404 *
1405 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1406 * waiter, but an exclusive one requires WQ_FLAG_DONE.
62906027 1407 */
5ef64cc8
LT
1408 if (behavior == EXCLUSIVE)
1409 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
62906027 1410
2a9127fc 1411 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
62906027
NP
1412}
1413
1414void wait_on_page_bit(struct page *page, int bit_nr)
1415{
1416 wait_queue_head_t *q = page_waitqueue(page);
9a1ea439 1417 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
62906027
NP
1418}
1419EXPORT_SYMBOL(wait_on_page_bit);
1420
1421int wait_on_page_bit_killable(struct page *page, int bit_nr)
1422{
1423 wait_queue_head_t *q = page_waitqueue(page);
9a1ea439 1424 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
cbbce822 1425}
4343d008 1426EXPORT_SYMBOL(wait_on_page_bit_killable);
cbbce822 1427
9a1ea439
HD
1428/**
1429 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1430 * @page: The page to wait for.
48054625 1431 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
9a1ea439
HD
1432 *
1433 * The caller should hold a reference on @page. They expect the page to
1434 * become unlocked relatively soon, but do not wish to hold up migration
1435 * (for example) by holding the reference while waiting for the page to
1436 * come unlocked. After this function returns, the caller should not
1437 * dereference @page.
48054625
MWO
1438 *
1439 * Return: 0 if the page was unlocked or -EINTR if interrupted by a signal.
9a1ea439 1440 */
48054625 1441int put_and_wait_on_page_locked(struct page *page, int state)
9a1ea439
HD
1442{
1443 wait_queue_head_t *q;
1444
1445 page = compound_head(page);
1446 q = page_waitqueue(page);
48054625 1447 return wait_on_page_bit_common(q, page, PG_locked, state, DROP);
9a1ea439
HD
1448}
1449
385e1ca5
DH
1450/**
1451 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
697f619f
RD
1452 * @page: Page defining the wait queue of interest
1453 * @waiter: Waiter to add to the queue
385e1ca5
DH
1454 *
1455 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1456 */
ac6424b9 1457void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
385e1ca5
DH
1458{
1459 wait_queue_head_t *q = page_waitqueue(page);
1460 unsigned long flags;
1461
1462 spin_lock_irqsave(&q->lock, flags);
9c3a815f 1463 __add_wait_queue_entry_tail(q, waiter);
62906027 1464 SetPageWaiters(page);
385e1ca5
DH
1465 spin_unlock_irqrestore(&q->lock, flags);
1466}
1467EXPORT_SYMBOL_GPL(add_page_wait_queue);
1468
b91e1302
LT
1469#ifndef clear_bit_unlock_is_negative_byte
1470
1471/*
1472 * PG_waiters is the high bit in the same byte as PG_lock.
1473 *
1474 * On x86 (and on many other architectures), we can clear PG_lock and
1475 * test the sign bit at the same time. But if the architecture does
1476 * not support that special operation, we just do this all by hand
1477 * instead.
1478 *
1479 * The read of PG_waiters has to be after (or concurrently with) PG_locked
ffceeb62 1480 * being cleared, but a memory barrier should be unnecessary since it is
b91e1302
LT
1481 * in the same byte as PG_locked.
1482 */
1483static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1484{
1485 clear_bit_unlock(nr, mem);
1486 /* smp_mb__after_atomic(); */
98473f9f 1487 return test_bit(PG_waiters, mem);
b91e1302
LT
1488}
1489
1490#endif
1491
1da177e4 1492/**
485bb99b 1493 * unlock_page - unlock a locked page
1da177e4
LT
1494 * @page: the page
1495 *
0e9aa675 1496 * Unlocks the page and wakes up sleepers in wait_on_page_locked().
1da177e4 1497 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
da3dae54 1498 * mechanism between PageLocked pages and PageWriteback pages is shared.
1da177e4
LT
1499 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1500 *
b91e1302
LT
1501 * Note that this depends on PG_waiters being the sign bit in the byte
1502 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1503 * clear the PG_locked bit and test PG_waiters at the same time fairly
1504 * portably (architectures that do LL/SC can test any bit, while x86 can
1505 * test the sign bit).
1da177e4 1506 */
920c7a5d 1507void unlock_page(struct page *page)
1da177e4 1508{
b91e1302 1509 BUILD_BUG_ON(PG_waiters != 7);
48c935ad 1510 page = compound_head(page);
309381fe 1511 VM_BUG_ON_PAGE(!PageLocked(page), page);
b91e1302
LT
1512 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1513 wake_up_page_bit(page, PG_locked);
1da177e4
LT
1514}
1515EXPORT_SYMBOL(unlock_page);
1516
73e10ded
DH
1517/**
1518 * end_page_private_2 - Clear PG_private_2 and release any waiters
1519 * @page: The page
1520 *
1521 * Clear the PG_private_2 bit on a page and wake up any sleepers waiting for
1522 * this. The page ref held for PG_private_2 being set is released.
1523 *
1524 * This is, for example, used when a netfs page is being written to a local
1525 * disk cache, thereby allowing writes to the cache for the same page to be
1526 * serialised.
1527 */
1528void end_page_private_2(struct page *page)
1529{
1530 page = compound_head(page);
1531 VM_BUG_ON_PAGE(!PagePrivate2(page), page);
1532 clear_bit_unlock(PG_private_2, &page->flags);
1533 wake_up_page_bit(page, PG_private_2);
1534 put_page(page);
1535}
1536EXPORT_SYMBOL(end_page_private_2);
1537
1538/**
1539 * wait_on_page_private_2 - Wait for PG_private_2 to be cleared on a page
1540 * @page: The page to wait on
1541 *
1542 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a page.
1543 */
1544void wait_on_page_private_2(struct page *page)
1545{
1546 page = compound_head(page);
1547 while (PagePrivate2(page))
1548 wait_on_page_bit(page, PG_private_2);
1549}
1550EXPORT_SYMBOL(wait_on_page_private_2);
1551
1552/**
1553 * wait_on_page_private_2_killable - Wait for PG_private_2 to be cleared on a page
1554 * @page: The page to wait on
1555 *
1556 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a page or until a
1557 * fatal signal is received by the calling task.
1558 *
1559 * Return:
1560 * - 0 if successful.
1561 * - -EINTR if a fatal signal was encountered.
1562 */
1563int wait_on_page_private_2_killable(struct page *page)
1564{
1565 int ret = 0;
1566
1567 page = compound_head(page);
1568 while (PagePrivate2(page)) {
1569 ret = wait_on_page_bit_killable(page, PG_private_2);
1570 if (ret < 0)
1571 break;
1572 }
1573
1574 return ret;
1575}
1576EXPORT_SYMBOL(wait_on_page_private_2_killable);
1577
485bb99b
RD
1578/**
1579 * end_page_writeback - end writeback against a page
1580 * @page: the page
1da177e4
LT
1581 */
1582void end_page_writeback(struct page *page)
1583{
888cf2db
MG
1584 /*
1585 * TestClearPageReclaim could be used here but it is an atomic
1586 * operation and overkill in this particular case. Failing to
1587 * shuffle a page marked for immediate reclaim is too mild to
1588 * justify taking an atomic operation penalty at the end of
1589 * ever page writeback.
1590 */
1591 if (PageReclaim(page)) {
1592 ClearPageReclaim(page);
ac6aadb2 1593 rotate_reclaimable_page(page);
888cf2db 1594 }
ac6aadb2 1595
073861ed
HD
1596 /*
1597 * Writeback does not hold a page reference of its own, relying
1598 * on truncation to wait for the clearing of PG_writeback.
1599 * But here we must make sure that the page is not freed and
1600 * reused before the wake_up_page().
1601 */
1602 get_page(page);
ac6aadb2
MS
1603 if (!test_clear_page_writeback(page))
1604 BUG();
1605
4e857c58 1606 smp_mb__after_atomic();
1da177e4 1607 wake_up_page(page, PG_writeback);
073861ed 1608 put_page(page);
1da177e4
LT
1609}
1610EXPORT_SYMBOL(end_page_writeback);
1611
57d99845
MW
1612/*
1613 * After completing I/O on a page, call this routine to update the page
1614 * flags appropriately
1615 */
c11f0c0b 1616void page_endio(struct page *page, bool is_write, int err)
57d99845 1617{
c11f0c0b 1618 if (!is_write) {
57d99845
MW
1619 if (!err) {
1620 SetPageUptodate(page);
1621 } else {
1622 ClearPageUptodate(page);
1623 SetPageError(page);
1624 }
1625 unlock_page(page);
abf54548 1626 } else {
57d99845 1627 if (err) {
dd8416c4
MK
1628 struct address_space *mapping;
1629
57d99845 1630 SetPageError(page);
dd8416c4
MK
1631 mapping = page_mapping(page);
1632 if (mapping)
1633 mapping_set_error(mapping, err);
57d99845
MW
1634 }
1635 end_page_writeback(page);
1636 }
1637}
1638EXPORT_SYMBOL_GPL(page_endio);
1639
485bb99b
RD
1640/**
1641 * __lock_page - get a lock on the page, assuming we need to sleep to get it
87066755 1642 * @__page: the page to lock
1da177e4 1643 */
62906027 1644void __lock_page(struct page *__page)
1da177e4 1645{
62906027
NP
1646 struct page *page = compound_head(__page);
1647 wait_queue_head_t *q = page_waitqueue(page);
9a1ea439
HD
1648 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1649 EXCLUSIVE);
1da177e4
LT
1650}
1651EXPORT_SYMBOL(__lock_page);
1652
62906027 1653int __lock_page_killable(struct page *__page)
2687a356 1654{
62906027
NP
1655 struct page *page = compound_head(__page);
1656 wait_queue_head_t *q = page_waitqueue(page);
9a1ea439
HD
1657 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1658 EXCLUSIVE);
2687a356 1659}
18bc0bbd 1660EXPORT_SYMBOL_GPL(__lock_page_killable);
2687a356 1661
dd3e6d50
JA
1662int __lock_page_async(struct page *page, struct wait_page_queue *wait)
1663{
f32b5dd7
MWO
1664 struct wait_queue_head *q = page_waitqueue(page);
1665 int ret = 0;
1666
1667 wait->page = page;
1668 wait->bit_nr = PG_locked;
1669
1670 spin_lock_irq(&q->lock);
1671 __add_wait_queue_entry_tail(q, &wait->wait);
1672 SetPageWaiters(page);
1673 ret = !trylock_page(page);
1674 /*
1675 * If we were successful now, we know we're still on the
1676 * waitqueue as we're still under the lock. This means it's
1677 * safe to remove and return success, we know the callback
1678 * isn't going to trigger.
1679 */
1680 if (!ret)
1681 __remove_wait_queue(q, &wait->wait);
1682 else
1683 ret = -EIOCBQUEUED;
1684 spin_unlock_irq(&q->lock);
1685 return ret;
dd3e6d50
JA
1686}
1687
9a95f3cf
PC
1688/*
1689 * Return values:
c1e8d7c6 1690 * 1 - page is locked; mmap_lock is still held.
9a95f3cf 1691 * 0 - page is not locked.
3e4e28c5 1692 * mmap_lock has been released (mmap_read_unlock(), unless flags had both
9a95f3cf 1693 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
c1e8d7c6 1694 * which case mmap_lock is still held.
9a95f3cf
PC
1695 *
1696 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
c1e8d7c6 1697 * with the page locked and the mmap_lock unperturbed.
9a95f3cf 1698 */
d065bd81
ML
1699int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1700 unsigned int flags)
1701{
4064b982 1702 if (fault_flag_allow_retry_first(flags)) {
37b23e05 1703 /*
c1e8d7c6 1704 * CAUTION! In this case, mmap_lock is not released
37b23e05
KM
1705 * even though return 0.
1706 */
1707 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1708 return 0;
1709
d8ed45c5 1710 mmap_read_unlock(mm);
37b23e05
KM
1711 if (flags & FAULT_FLAG_KILLABLE)
1712 wait_on_page_locked_killable(page);
1713 else
318b275f 1714 wait_on_page_locked(page);
d065bd81 1715 return 0;
800bca7c
HL
1716 }
1717 if (flags & FAULT_FLAG_KILLABLE) {
1718 int ret;
37b23e05 1719
800bca7c
HL
1720 ret = __lock_page_killable(page);
1721 if (ret) {
1722 mmap_read_unlock(mm);
1723 return 0;
1724 }
1725 } else {
1726 __lock_page(page);
d065bd81 1727 }
800bca7c
HL
1728 return 1;
1729
d065bd81
ML
1730}
1731
e7b563bb 1732/**
0d3f9296
MW
1733 * page_cache_next_miss() - Find the next gap in the page cache.
1734 * @mapping: Mapping.
1735 * @index: Index.
1736 * @max_scan: Maximum range to search.
e7b563bb 1737 *
0d3f9296
MW
1738 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1739 * gap with the lowest index.
e7b563bb 1740 *
0d3f9296
MW
1741 * This function may be called under the rcu_read_lock. However, this will
1742 * not atomically search a snapshot of the cache at a single point in time.
1743 * For example, if a gap is created at index 5, then subsequently a gap is
1744 * created at index 10, page_cache_next_miss covering both indices may
1745 * return 10 if called under the rcu_read_lock.
e7b563bb 1746 *
0d3f9296
MW
1747 * Return: The index of the gap if found, otherwise an index outside the
1748 * range specified (in which case 'return - index >= max_scan' will be true).
1749 * In the rare case of index wrap-around, 0 will be returned.
e7b563bb 1750 */
0d3f9296 1751pgoff_t page_cache_next_miss(struct address_space *mapping,
e7b563bb
JW
1752 pgoff_t index, unsigned long max_scan)
1753{
0d3f9296 1754 XA_STATE(xas, &mapping->i_pages, index);
e7b563bb 1755
0d3f9296
MW
1756 while (max_scan--) {
1757 void *entry = xas_next(&xas);
1758 if (!entry || xa_is_value(entry))
e7b563bb 1759 break;
0d3f9296 1760 if (xas.xa_index == 0)
e7b563bb
JW
1761 break;
1762 }
1763
0d3f9296 1764 return xas.xa_index;
e7b563bb 1765}
0d3f9296 1766EXPORT_SYMBOL(page_cache_next_miss);
e7b563bb
JW
1767
1768/**
2346a560 1769 * page_cache_prev_miss() - Find the previous gap in the page cache.
0d3f9296
MW
1770 * @mapping: Mapping.
1771 * @index: Index.
1772 * @max_scan: Maximum range to search.
e7b563bb 1773 *
0d3f9296
MW
1774 * Search the range [max(index - max_scan + 1, 0), index] for the
1775 * gap with the highest index.
e7b563bb 1776 *
0d3f9296
MW
1777 * This function may be called under the rcu_read_lock. However, this will
1778 * not atomically search a snapshot of the cache at a single point in time.
1779 * For example, if a gap is created at index 10, then subsequently a gap is
1780 * created at index 5, page_cache_prev_miss() covering both indices may
1781 * return 5 if called under the rcu_read_lock.
e7b563bb 1782 *
0d3f9296
MW
1783 * Return: The index of the gap if found, otherwise an index outside the
1784 * range specified (in which case 'index - return >= max_scan' will be true).
1785 * In the rare case of wrap-around, ULONG_MAX will be returned.
e7b563bb 1786 */
0d3f9296 1787pgoff_t page_cache_prev_miss(struct address_space *mapping,
e7b563bb
JW
1788 pgoff_t index, unsigned long max_scan)
1789{
0d3f9296 1790 XA_STATE(xas, &mapping->i_pages, index);
e7b563bb 1791
0d3f9296
MW
1792 while (max_scan--) {
1793 void *entry = xas_prev(&xas);
1794 if (!entry || xa_is_value(entry))
e7b563bb 1795 break;
0d3f9296 1796 if (xas.xa_index == ULONG_MAX)
e7b563bb
JW
1797 break;
1798 }
1799
0d3f9296 1800 return xas.xa_index;
e7b563bb 1801}
0d3f9296 1802EXPORT_SYMBOL(page_cache_prev_miss);
e7b563bb 1803
44835d20 1804/*
bc5a3011 1805 * mapping_get_entry - Get a page cache entry.
485bb99b 1806 * @mapping: the address_space to search
a6de4b48 1807 * @index: The page cache index.
0cd6144a 1808 *
4b17f030 1809 * Looks up the page cache slot at @mapping & @index. If there is a
a6de4b48 1810 * page cache page, the head page is returned with an increased refcount.
485bb99b 1811 *
139b6a6f
JW
1812 * If the slot holds a shadow entry of a previously evicted page, or a
1813 * swap entry from shmem/tmpfs, it is returned.
0cd6144a 1814 *
a6de4b48 1815 * Return: The head page or shadow entry, %NULL if nothing is found.
1da177e4 1816 */
bc5a3011
MWO
1817static struct page *mapping_get_entry(struct address_space *mapping,
1818 pgoff_t index)
1da177e4 1819{
a6de4b48 1820 XA_STATE(xas, &mapping->i_pages, index);
4101196b 1821 struct page *page;
1da177e4 1822
a60637c8
NP
1823 rcu_read_lock();
1824repeat:
4c7472c0
MW
1825 xas_reset(&xas);
1826 page = xas_load(&xas);
1827 if (xas_retry(&xas, page))
1828 goto repeat;
1829 /*
1830 * A shadow entry of a recently evicted page, or a swap entry from
1831 * shmem/tmpfs. Return it without attempting to raise page count.
1832 */
1833 if (!page || xa_is_value(page))
1834 goto out;
83929372 1835
4101196b 1836 if (!page_cache_get_speculative(page))
4c7472c0 1837 goto repeat;
83929372 1838
4c7472c0 1839 /*
4101196b 1840 * Has the page moved or been split?
4c7472c0
MW
1841 * This is part of the lockless pagecache protocol. See
1842 * include/linux/pagemap.h for details.
1843 */
1844 if (unlikely(page != xas_reload(&xas))) {
4101196b 1845 put_page(page);
4c7472c0 1846 goto repeat;
a60637c8 1847 }
27d20fdd 1848out:
a60637c8
NP
1849 rcu_read_unlock();
1850
1da177e4
LT
1851 return page;
1852}
1da177e4 1853
0cd6144a 1854/**
2294b32e
MWO
1855 * pagecache_get_page - Find and get a reference to a page.
1856 * @mapping: The address_space to search.
1857 * @index: The page index.
1858 * @fgp_flags: %FGP flags modify how the page is returned.
1859 * @gfp_mask: Memory allocation flags to use if %FGP_CREAT is specified.
1da177e4 1860 *
2294b32e 1861 * Looks up the page cache entry at @mapping & @index.
0cd6144a 1862 *
2294b32e 1863 * @fgp_flags can be zero or more of these flags:
0e056eb5 1864 *
2294b32e
MWO
1865 * * %FGP_ACCESSED - The page will be marked accessed.
1866 * * %FGP_LOCK - The page is returned locked.
a8cf7f27
MWO
1867 * * %FGP_HEAD - If the page is present and a THP, return the head page
1868 * rather than the exact page specified by the index.
44835d20
MWO
1869 * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it
1870 * instead of allocating a new page to replace it.
2294b32e
MWO
1871 * * %FGP_CREAT - If no page is present then a new page is allocated using
1872 * @gfp_mask and added to the page cache and the VM's LRU list.
1873 * The page is returned locked and with an increased refcount.
1874 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1875 * page is already in cache. If the page was allocated, unlock it before
1876 * returning so the caller can do the same dance.
605cad83
YS
1877 * * %FGP_WRITE - The page will be written
1878 * * %FGP_NOFS - __GFP_FS will get cleared in gfp mask
1879 * * %FGP_NOWAIT - Don't get blocked by page lock
1da177e4 1880 *
2294b32e
MWO
1881 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1882 * if the %GFP flags specified for %FGP_CREAT are atomic.
1da177e4 1883 *
2457aec6 1884 * If there is a page cache page, it is returned with an increased refcount.
a862f68a 1885 *
2294b32e 1886 * Return: The found page or %NULL otherwise.
1da177e4 1887 */
2294b32e
MWO
1888struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
1889 int fgp_flags, gfp_t gfp_mask)
1da177e4 1890{
eb2be189 1891 struct page *page;
2457aec6 1892
1da177e4 1893repeat:
bc5a3011 1894 page = mapping_get_entry(mapping, index);
44835d20
MWO
1895 if (xa_is_value(page)) {
1896 if (fgp_flags & FGP_ENTRY)
1897 return page;
2457aec6 1898 page = NULL;
44835d20 1899 }
2457aec6
MG
1900 if (!page)
1901 goto no_page;
1902
1903 if (fgp_flags & FGP_LOCK) {
1904 if (fgp_flags & FGP_NOWAIT) {
1905 if (!trylock_page(page)) {
09cbfeaf 1906 put_page(page);
2457aec6
MG
1907 return NULL;
1908 }
1909 } else {
1910 lock_page(page);
1911 }
1912
1913 /* Has the page been truncated? */
a8cf7f27 1914 if (unlikely(page->mapping != mapping)) {
2457aec6 1915 unlock_page(page);
09cbfeaf 1916 put_page(page);
2457aec6
MG
1917 goto repeat;
1918 }
a8cf7f27 1919 VM_BUG_ON_PAGE(!thp_contains(page, index), page);
2457aec6
MG
1920 }
1921
c16eb000 1922 if (fgp_flags & FGP_ACCESSED)
2457aec6 1923 mark_page_accessed(page);
b9306a79
YS
1924 else if (fgp_flags & FGP_WRITE) {
1925 /* Clear idle flag for buffer write */
1926 if (page_is_idle(page))
1927 clear_page_idle(page);
1928 }
a8cf7f27
MWO
1929 if (!(fgp_flags & FGP_HEAD))
1930 page = find_subpage(page, index);
2457aec6
MG
1931
1932no_page:
1933 if (!page && (fgp_flags & FGP_CREAT)) {
1934 int err;
f56753ac 1935 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
45f87de5
MH
1936 gfp_mask |= __GFP_WRITE;
1937 if (fgp_flags & FGP_NOFS)
1938 gfp_mask &= ~__GFP_FS;
2457aec6 1939
45f87de5 1940 page = __page_cache_alloc(gfp_mask);
eb2be189
NP
1941 if (!page)
1942 return NULL;
2457aec6 1943
a75d4c33 1944 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
2457aec6
MG
1945 fgp_flags |= FGP_LOCK;
1946
eb39d618 1947 /* Init accessed so avoid atomic mark_page_accessed later */
2457aec6 1948 if (fgp_flags & FGP_ACCESSED)
eb39d618 1949 __SetPageReferenced(page);
2457aec6 1950
2294b32e 1951 err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
eb2be189 1952 if (unlikely(err)) {
09cbfeaf 1953 put_page(page);
eb2be189
NP
1954 page = NULL;
1955 if (err == -EEXIST)
1956 goto repeat;
1da177e4 1957 }
a75d4c33
JB
1958
1959 /*
1960 * add_to_page_cache_lru locks the page, and for mmap we expect
1961 * an unlocked page.
1962 */
1963 if (page && (fgp_flags & FGP_FOR_MMAP))
1964 unlock_page(page);
1da177e4 1965 }
2457aec6 1966
1da177e4
LT
1967 return page;
1968}
2457aec6 1969EXPORT_SYMBOL(pagecache_get_page);
1da177e4 1970
c7bad633
MWO
1971static inline struct page *find_get_entry(struct xa_state *xas, pgoff_t max,
1972 xa_mark_t mark)
1973{
1974 struct page *page;
1975
1976retry:
1977 if (mark == XA_PRESENT)
1978 page = xas_find(xas, max);
1979 else
1980 page = xas_find_marked(xas, max, mark);
1981
1982 if (xas_retry(xas, page))
1983 goto retry;
1984 /*
1985 * A shadow entry of a recently evicted page, a swap
1986 * entry from shmem/tmpfs or a DAX entry. Return it
1987 * without attempting to raise page count.
1988 */
1989 if (!page || xa_is_value(page))
1990 return page;
1991
1992 if (!page_cache_get_speculative(page))
1993 goto reset;
1994
1995 /* Has the page moved or been split? */
1996 if (unlikely(page != xas_reload(xas))) {
1997 put_page(page);
1998 goto reset;
1999 }
2000
2001 return page;
2002reset:
2003 xas_reset(xas);
2004 goto retry;
2005}
2006
0cd6144a
JW
2007/**
2008 * find_get_entries - gang pagecache lookup
2009 * @mapping: The address_space to search
2010 * @start: The starting page cache index
ca122fe4 2011 * @end: The final page index (inclusive).
cf2039af 2012 * @pvec: Where the resulting entries are placed.
0cd6144a
JW
2013 * @indices: The cache indices corresponding to the entries in @entries
2014 *
cf2039af
MWO
2015 * find_get_entries() will search for and return a batch of entries in
2016 * the mapping. The entries are placed in @pvec. find_get_entries()
2017 * takes a reference on any actual pages it returns.
0cd6144a
JW
2018 *
2019 * The search returns a group of mapping-contiguous page cache entries
2020 * with ascending indexes. There may be holes in the indices due to
2021 * not-present pages.
2022 *
139b6a6f
JW
2023 * Any shadow entries of evicted pages, or swap entries from
2024 * shmem/tmpfs, are included in the returned array.
0cd6144a 2025 *
71725ed1
HD
2026 * If it finds a Transparent Huge Page, head or tail, find_get_entries()
2027 * stops at that page: the caller is likely to have a better way to handle
2028 * the compound page as a whole, and then skip its extent, than repeatedly
2029 * calling find_get_entries() to return all its tails.
2030 *
a862f68a 2031 * Return: the number of pages and shadow entries which were found.
0cd6144a 2032 */
ca122fe4 2033unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
cf2039af 2034 pgoff_t end, struct pagevec *pvec, pgoff_t *indices)
0cd6144a 2035{
f280bf09
MW
2036 XA_STATE(xas, &mapping->i_pages, start);
2037 struct page *page;
0cd6144a 2038 unsigned int ret = 0;
cf2039af 2039 unsigned nr_entries = PAGEVEC_SIZE;
0cd6144a
JW
2040
2041 rcu_read_lock();
ca122fe4 2042 while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
71725ed1
HD
2043 /*
2044 * Terminate early on finding a THP, to allow the caller to
2045 * handle it all at once; but continue if this is hugetlbfs.
2046 */
c7bad633
MWO
2047 if (!xa_is_value(page) && PageTransHuge(page) &&
2048 !PageHuge(page)) {
71725ed1
HD
2049 page = find_subpage(page, xas.xa_index);
2050 nr_entries = ret + 1;
2051 }
c7bad633 2052
f280bf09 2053 indices[ret] = xas.xa_index;
cf2039af 2054 pvec->pages[ret] = page;
0cd6144a
JW
2055 if (++ret == nr_entries)
2056 break;
2057 }
2058 rcu_read_unlock();
cf2039af
MWO
2059
2060 pvec->nr = ret;
0cd6144a
JW
2061 return ret;
2062}
2063
5c211ba2
MWO
2064/**
2065 * find_lock_entries - Find a batch of pagecache entries.
2066 * @mapping: The address_space to search.
2067 * @start: The starting page cache index.
2068 * @end: The final page index (inclusive).
2069 * @pvec: Where the resulting entries are placed.
2070 * @indices: The cache indices of the entries in @pvec.
2071 *
2072 * find_lock_entries() will return a batch of entries from @mapping.
2073 * Swap, shadow and DAX entries are included. Pages are returned
2074 * locked and with an incremented refcount. Pages which are locked by
2075 * somebody else or under writeback are skipped. Only the head page of
2076 * a THP is returned. Pages which are partially outside the range are
2077 * not returned.
2078 *
2079 * The entries have ascending indexes. The indices may not be consecutive
2080 * due to not-present entries, THP pages, pages which could not be locked
2081 * or pages under writeback.
2082 *
2083 * Return: The number of entries which were found.
2084 */
2085unsigned find_lock_entries(struct address_space *mapping, pgoff_t start,
2086 pgoff_t end, struct pagevec *pvec, pgoff_t *indices)
2087{
2088 XA_STATE(xas, &mapping->i_pages, start);
2089 struct page *page;
2090
2091 rcu_read_lock();
2092 while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
2093 if (!xa_is_value(page)) {
2094 if (page->index < start)
2095 goto put;
2096 VM_BUG_ON_PAGE(page->index != xas.xa_index, page);
2097 if (page->index + thp_nr_pages(page) - 1 > end)
2098 goto put;
2099 if (!trylock_page(page))
2100 goto put;
2101 if (page->mapping != mapping || PageWriteback(page))
2102 goto unlock;
2103 VM_BUG_ON_PAGE(!thp_contains(page, xas.xa_index),
2104 page);
2105 }
2106 indices[pvec->nr] = xas.xa_index;
2107 if (!pagevec_add(pvec, page))
2108 break;
2109 goto next;
2110unlock:
2111 unlock_page(page);
2112put:
2113 put_page(page);
2114next:
2d11e738
HD
2115 if (!xa_is_value(page) && PageTransHuge(page)) {
2116 unsigned int nr_pages = thp_nr_pages(page);
2117
2118 /* Final THP may cross MAX_LFS_FILESIZE on 32-bit */
2119 xas_set(&xas, page->index + nr_pages);
2120 if (xas.xa_index < nr_pages)
2121 break;
2122 }
5c211ba2
MWO
2123 }
2124 rcu_read_unlock();
2125
2126 return pagevec_count(pvec);
2127}
2128
1da177e4 2129/**
b947cee4 2130 * find_get_pages_range - gang pagecache lookup
1da177e4
LT
2131 * @mapping: The address_space to search
2132 * @start: The starting page index
b947cee4 2133 * @end: The final page index (inclusive)
1da177e4
LT
2134 * @nr_pages: The maximum number of pages
2135 * @pages: Where the resulting pages are placed
2136 *
b947cee4
JK
2137 * find_get_pages_range() will search for and return a group of up to @nr_pages
2138 * pages in the mapping starting at index @start and up to index @end
2139 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes
2140 * a reference against the returned pages.
1da177e4
LT
2141 *
2142 * The search returns a group of mapping-contiguous pages with ascending
2143 * indexes. There may be holes in the indices due to not-present pages.
d72dc8a2 2144 * We also update @start to index the next page for the traversal.
1da177e4 2145 *
a862f68a
MR
2146 * Return: the number of pages which were found. If this number is
2147 * smaller than @nr_pages, the end of specified range has been
b947cee4 2148 * reached.
1da177e4 2149 */
b947cee4
JK
2150unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
2151 pgoff_t end, unsigned int nr_pages,
2152 struct page **pages)
1da177e4 2153{
fd1b3cee
MW
2154 XA_STATE(xas, &mapping->i_pages, *start);
2155 struct page *page;
0fc9d104
KK
2156 unsigned ret = 0;
2157
2158 if (unlikely(!nr_pages))
2159 return 0;
a60637c8
NP
2160
2161 rcu_read_lock();
c7bad633 2162 while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
fd1b3cee
MW
2163 /* Skip over shadow, swap and DAX entries */
2164 if (xa_is_value(page))
8079b1c8 2165 continue;
a60637c8 2166
4101196b 2167 pages[ret] = find_subpage(page, xas.xa_index);
b947cee4 2168 if (++ret == nr_pages) {
5d3ee42f 2169 *start = xas.xa_index + 1;
b947cee4
JK
2170 goto out;
2171 }
a60637c8 2172 }
5b280c0c 2173
b947cee4
JK
2174 /*
2175 * We come here when there is no page beyond @end. We take care to not
2176 * overflow the index @start as it confuses some of the callers. This
fd1b3cee 2177 * breaks the iteration when there is a page at index -1 but that is
b947cee4
JK
2178 * already broken anyway.
2179 */
2180 if (end == (pgoff_t)-1)
2181 *start = (pgoff_t)-1;
2182 else
2183 *start = end + 1;
2184out:
a60637c8 2185 rcu_read_unlock();
d72dc8a2 2186
1da177e4
LT
2187 return ret;
2188}
2189
ebf43500
JA
2190/**
2191 * find_get_pages_contig - gang contiguous pagecache lookup
2192 * @mapping: The address_space to search
2193 * @index: The starting page index
2194 * @nr_pages: The maximum number of pages
2195 * @pages: Where the resulting pages are placed
2196 *
2197 * find_get_pages_contig() works exactly like find_get_pages(), except
2198 * that the returned number of pages are guaranteed to be contiguous.
2199 *
a862f68a 2200 * Return: the number of pages which were found.
ebf43500
JA
2201 */
2202unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
2203 unsigned int nr_pages, struct page **pages)
2204{
3ece58a2
MW
2205 XA_STATE(xas, &mapping->i_pages, index);
2206 struct page *page;
0fc9d104
KK
2207 unsigned int ret = 0;
2208
2209 if (unlikely(!nr_pages))
2210 return 0;
a60637c8
NP
2211
2212 rcu_read_lock();
3ece58a2 2213 for (page = xas_load(&xas); page; page = xas_next(&xas)) {
3ece58a2
MW
2214 if (xas_retry(&xas, page))
2215 continue;
2216 /*
2217 * If the entry has been swapped out, we can stop looking.
2218 * No current caller is looking for DAX entries.
2219 */
2220 if (xa_is_value(page))
8079b1c8 2221 break;
ebf43500 2222
4101196b 2223 if (!page_cache_get_speculative(page))
3ece58a2 2224 goto retry;
83929372 2225
4101196b 2226 /* Has the page moved or been split? */
3ece58a2
MW
2227 if (unlikely(page != xas_reload(&xas)))
2228 goto put_page;
a60637c8 2229
4101196b 2230 pages[ret] = find_subpage(page, xas.xa_index);
0fc9d104
KK
2231 if (++ret == nr_pages)
2232 break;
3ece58a2
MW
2233 continue;
2234put_page:
4101196b 2235 put_page(page);
3ece58a2
MW
2236retry:
2237 xas_reset(&xas);
ebf43500 2238 }
a60637c8
NP
2239 rcu_read_unlock();
2240 return ret;
ebf43500 2241}
ef71c15c 2242EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 2243
485bb99b 2244/**
c49f50d1 2245 * find_get_pages_range_tag - Find and return head pages matching @tag.
485bb99b
RD
2246 * @mapping: the address_space to search
2247 * @index: the starting page index
72b045ae 2248 * @end: The final page index (inclusive)
485bb99b
RD
2249 * @tag: the tag index
2250 * @nr_pages: the maximum number of pages
2251 * @pages: where the resulting pages are placed
2252 *
c49f50d1
MWO
2253 * Like find_get_pages(), except we only return head pages which are tagged
2254 * with @tag. @index is updated to the index immediately after the last
2255 * page we return, ready for the next iteration.
a862f68a
MR
2256 *
2257 * Return: the number of pages which were found.
1da177e4 2258 */
72b045ae 2259unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
a6906972 2260 pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
72b045ae 2261 struct page **pages)
1da177e4 2262{
a6906972
MW
2263 XA_STATE(xas, &mapping->i_pages, *index);
2264 struct page *page;
0fc9d104
KK
2265 unsigned ret = 0;
2266
2267 if (unlikely(!nr_pages))
2268 return 0;
a60637c8
NP
2269
2270 rcu_read_lock();
c7bad633 2271 while ((page = find_get_entry(&xas, end, tag))) {
a6906972
MW
2272 /*
2273 * Shadow entries should never be tagged, but this iteration
2274 * is lockless so there is a window for page reclaim to evict
2275 * a page we saw tagged. Skip over it.
2276 */
2277 if (xa_is_value(page))
139b6a6f 2278 continue;
a60637c8 2279
c49f50d1 2280 pages[ret] = page;
72b045ae 2281 if (++ret == nr_pages) {
c49f50d1 2282 *index = page->index + thp_nr_pages(page);
72b045ae
JK
2283 goto out;
2284 }
a60637c8 2285 }
5b280c0c 2286
72b045ae 2287 /*
a6906972 2288 * We come here when we got to @end. We take care to not overflow the
72b045ae 2289 * index @index as it confuses some of the callers. This breaks the
a6906972
MW
2290 * iteration when there is a page at index -1 but that is already
2291 * broken anyway.
72b045ae
JK
2292 */
2293 if (end == (pgoff_t)-1)
2294 *index = (pgoff_t)-1;
2295 else
2296 *index = end + 1;
2297out:
a60637c8 2298 rcu_read_unlock();
1da177e4 2299
1da177e4
LT
2300 return ret;
2301}
72b045ae 2302EXPORT_SYMBOL(find_get_pages_range_tag);
1da177e4 2303
76d42bd9
WF
2304/*
2305 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2306 * a _large_ part of the i/o request. Imagine the worst scenario:
2307 *
2308 * ---R__________________________________________B__________
2309 * ^ reading here ^ bad block(assume 4k)
2310 *
2311 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2312 * => failing the whole request => read(R) => read(R+1) =>
2313 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2314 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2315 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2316 *
2317 * It is going insane. Fix it by quickly scaling down the readahead size.
2318 */
0f8e2db4 2319static void shrink_readahead_size_eio(struct file_ra_state *ra)
76d42bd9 2320{
76d42bd9 2321 ra->ra_pages /= 4;
76d42bd9
WF
2322}
2323
cbd59c48
MWO
2324/*
2325 * filemap_get_read_batch - Get a batch of pages for read
2326 *
2327 * Get a batch of pages which represent a contiguous range of bytes
2328 * in the file. No tail pages will be returned. If @index is in the
2329 * middle of a THP, the entire THP will be returned. The last page in
2330 * the batch may have Readahead set or be not Uptodate so that the
2331 * caller can take the appropriate action.
2332 */
2333static void filemap_get_read_batch(struct address_space *mapping,
2334 pgoff_t index, pgoff_t max, struct pagevec *pvec)
2335{
2336 XA_STATE(xas, &mapping->i_pages, index);
2337 struct page *head;
2338
2339 rcu_read_lock();
2340 for (head = xas_load(&xas); head; head = xas_next(&xas)) {
2341 if (xas_retry(&xas, head))
2342 continue;
2343 if (xas.xa_index > max || xa_is_value(head))
2344 break;
2345 if (!page_cache_get_speculative(head))
2346 goto retry;
2347
2348 /* Has the page moved or been split? */
2349 if (unlikely(head != xas_reload(&xas)))
2350 goto put_page;
2351
2352 if (!pagevec_add(pvec, head))
2353 break;
2354 if (!PageUptodate(head))
2355 break;
2356 if (PageReadahead(head))
2357 break;
2358 xas.xa_index = head->index + thp_nr_pages(head) - 1;
2359 xas.xa_offset = (xas.xa_index >> xas.xa_shift) & XA_CHUNK_MASK;
2360 continue;
2361put_page:
2362 put_page(head);
2363retry:
2364 xas_reset(&xas);
2365 }
2366 rcu_read_unlock();
2367}
2368
68430303
MWO
2369static int filemap_read_page(struct file *file, struct address_space *mapping,
2370 struct page *page)
723ef24b 2371{
723ef24b
KO
2372 int error;
2373
723ef24b 2374 /*
68430303
MWO
2375 * A previous I/O error may have been due to temporary failures,
2376 * eg. multipath errors. PG_error will be set again if readpage
2377 * fails.
723ef24b
KO
2378 */
2379 ClearPageError(page);
2380 /* Start the actual read. The read will unlock the page. */
68430303
MWO
2381 error = mapping->a_ops->readpage(file, page);
2382 if (error)
2383 return error;
723ef24b 2384
aa1ec2f6 2385 error = wait_on_page_locked_killable(page);
68430303
MWO
2386 if (error)
2387 return error;
aa1ec2f6
MWO
2388 if (PageUptodate(page))
2389 return 0;
aa1ec2f6
MWO
2390 shrink_readahead_size_eio(&file->f_ra);
2391 return -EIO;
723ef24b
KO
2392}
2393
fce70da3
MWO
2394static bool filemap_range_uptodate(struct address_space *mapping,
2395 loff_t pos, struct iov_iter *iter, struct page *page)
2396{
2397 int count;
2398
2399 if (PageUptodate(page))
2400 return true;
2401 /* pipes can't handle partially uptodate pages */
2402 if (iov_iter_is_pipe(iter))
2403 return false;
2404 if (!mapping->a_ops->is_partially_uptodate)
2405 return false;
2406 if (mapping->host->i_blkbits >= (PAGE_SHIFT + thp_order(page)))
2407 return false;
2408
2409 count = iter->count;
2410 if (page_offset(page) > pos) {
2411 count -= page_offset(page) - pos;
2412 pos = 0;
2413 } else {
2414 pos -= page_offset(page);
2415 }
2416
2417 return mapping->a_ops->is_partially_uptodate(page, pos, count);
2418}
2419
4612aeef
MWO
2420static int filemap_update_page(struct kiocb *iocb,
2421 struct address_space *mapping, struct iov_iter *iter,
fce70da3 2422 struct page *page)
723ef24b 2423{
723ef24b
KO
2424 int error;
2425
730633f0
JK
2426 if (iocb->ki_flags & IOCB_NOWAIT) {
2427 if (!filemap_invalidate_trylock_shared(mapping))
2428 return -EAGAIN;
2429 } else {
2430 filemap_invalidate_lock_shared(mapping);
2431 }
2432
87d1d7b6 2433 if (!trylock_page(page)) {
730633f0 2434 error = -EAGAIN;
87d1d7b6 2435 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
730633f0 2436 goto unlock_mapping;
87d1d7b6 2437 if (!(iocb->ki_flags & IOCB_WAITQ)) {
730633f0 2438 filemap_invalidate_unlock_shared(mapping);
bd8a1f36 2439 put_and_wait_on_page_locked(page, TASK_KILLABLE);
4612aeef 2440 return AOP_TRUNCATED_PAGE;
bd8a1f36 2441 }
87d1d7b6
MWO
2442 error = __lock_page_async(page, iocb->ki_waitq);
2443 if (error)
730633f0 2444 goto unlock_mapping;
723ef24b 2445 }
723ef24b 2446
730633f0 2447 error = AOP_TRUNCATED_PAGE;
bd8a1f36 2448 if (!page->mapping)
730633f0 2449 goto unlock;
723ef24b 2450
fce70da3
MWO
2451 error = 0;
2452 if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, page))
2453 goto unlock;
2454
2455 error = -EAGAIN;
2456 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2457 goto unlock;
2458
68430303 2459 error = filemap_read_page(iocb->ki_filp, mapping, page);
730633f0 2460 goto unlock_mapping;
fce70da3
MWO
2461unlock:
2462 unlock_page(page);
730633f0
JK
2463unlock_mapping:
2464 filemap_invalidate_unlock_shared(mapping);
2465 if (error == AOP_TRUNCATED_PAGE)
2466 put_page(page);
fce70da3 2467 return error;
723ef24b
KO
2468}
2469
f253e185
MWO
2470static int filemap_create_page(struct file *file,
2471 struct address_space *mapping, pgoff_t index,
2472 struct pagevec *pvec)
723ef24b 2473{
723ef24b
KO
2474 struct page *page;
2475 int error;
2476
723ef24b
KO
2477 page = page_cache_alloc(mapping);
2478 if (!page)
f253e185 2479 return -ENOMEM;
723ef24b 2480
730633f0
JK
2481 /*
2482 * Protect against truncate / hole punch. Grabbing invalidate_lock here
2483 * assures we cannot instantiate and bring uptodate new pagecache pages
2484 * after evicting page cache during truncate and before actually
2485 * freeing blocks. Note that we could release invalidate_lock after
2486 * inserting the page into page cache as the locked page would then be
2487 * enough to synchronize with hole punching. But there are code paths
2488 * such as filemap_update_page() filling in partially uptodate pages or
2489 * ->readpages() that need to hold invalidate_lock while mapping blocks
2490 * for IO so let's hold the lock here as well to keep locking rules
2491 * simple.
2492 */
2493 filemap_invalidate_lock_shared(mapping);
723ef24b 2494 error = add_to_page_cache_lru(page, mapping, index,
f253e185
MWO
2495 mapping_gfp_constraint(mapping, GFP_KERNEL));
2496 if (error == -EEXIST)
2497 error = AOP_TRUNCATED_PAGE;
2498 if (error)
2499 goto error;
2500
2501 error = filemap_read_page(file, mapping, page);
2502 if (error)
2503 goto error;
2504
730633f0 2505 filemap_invalidate_unlock_shared(mapping);
f253e185
MWO
2506 pagevec_add(pvec, page);
2507 return 0;
2508error:
730633f0 2509 filemap_invalidate_unlock_shared(mapping);
68430303 2510 put_page(page);
f253e185 2511 return error;
723ef24b
KO
2512}
2513
5963fe03
MWO
2514static int filemap_readahead(struct kiocb *iocb, struct file *file,
2515 struct address_space *mapping, struct page *page,
2516 pgoff_t last_index)
2517{
2518 if (iocb->ki_flags & IOCB_NOIO)
2519 return -EAGAIN;
2520 page_cache_async_readahead(mapping, &file->f_ra, file, page,
2521 page->index, last_index - page->index);
2522 return 0;
2523}
2524
3a6bae48 2525static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter,
ff993ba1 2526 struct pagevec *pvec)
06c04442
KO
2527{
2528 struct file *filp = iocb->ki_filp;
2529 struct address_space *mapping = filp->f_mapping;
2530 struct file_ra_state *ra = &filp->f_ra;
2531 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
cbd59c48 2532 pgoff_t last_index;
2642fca6 2533 struct page *page;
cbd59c48 2534 int err = 0;
06c04442 2535
cbd59c48 2536 last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE);
2642fca6 2537retry:
06c04442
KO
2538 if (fatal_signal_pending(current))
2539 return -EINTR;
2540
cbd59c48 2541 filemap_get_read_batch(mapping, index, last_index, pvec);
2642fca6
MWO
2542 if (!pagevec_count(pvec)) {
2543 if (iocb->ki_flags & IOCB_NOIO)
2544 return -EAGAIN;
2545 page_cache_sync_readahead(mapping, ra, filp, index,
2546 last_index - index);
2547 filemap_get_read_batch(mapping, index, last_index, pvec);
2548 }
f253e185
MWO
2549 if (!pagevec_count(pvec)) {
2550 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2551 return -EAGAIN;
2552 err = filemap_create_page(filp, mapping,
2553 iocb->ki_pos >> PAGE_SHIFT, pvec);
2554 if (err == AOP_TRUNCATED_PAGE)
2642fca6 2555 goto retry;
f253e185
MWO
2556 return err;
2557 }
06c04442 2558
2642fca6
MWO
2559 page = pvec->pages[pagevec_count(pvec) - 1];
2560 if (PageReadahead(page)) {
2561 err = filemap_readahead(iocb, filp, mapping, page, last_index);
2562 if (err)
2563 goto err;
2564 }
2565 if (!PageUptodate(page)) {
2566 if ((iocb->ki_flags & IOCB_WAITQ) && pagevec_count(pvec) > 1)
2567 iocb->ki_flags |= IOCB_NOWAIT;
2568 err = filemap_update_page(iocb, mapping, iter, page);
2569 if (err)
2570 goto err;
06c04442
KO
2571 }
2572
2642fca6 2573 return 0;
cbd59c48 2574err:
2642fca6
MWO
2575 if (err < 0)
2576 put_page(page);
2577 if (likely(--pvec->nr))
ff993ba1 2578 return 0;
4612aeef 2579 if (err == AOP_TRUNCATED_PAGE)
2642fca6
MWO
2580 goto retry;
2581 return err;
06c04442
KO
2582}
2583
485bb99b 2584/**
87fa0f3e
CH
2585 * filemap_read - Read data from the page cache.
2586 * @iocb: The iocb to read.
2587 * @iter: Destination for the data.
2588 * @already_read: Number of bytes already read by the caller.
485bb99b 2589 *
87fa0f3e
CH
2590 * Copies data from the page cache. If the data is not currently present,
2591 * uses the readahead and readpage address_space operations to fetch it.
1da177e4 2592 *
87fa0f3e
CH
2593 * Return: Total number of bytes copied, including those already read by
2594 * the caller. If an error happens before any bytes are copied, returns
2595 * a negative error number.
1da177e4 2596 */
87fa0f3e
CH
2597ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2598 ssize_t already_read)
1da177e4 2599{
47c27bc4 2600 struct file *filp = iocb->ki_filp;
06c04442 2601 struct file_ra_state *ra = &filp->f_ra;
36e78914 2602 struct address_space *mapping = filp->f_mapping;
1da177e4 2603 struct inode *inode = mapping->host;
ff993ba1
MWO
2604 struct pagevec pvec;
2605 int i, error = 0;
06c04442
KO
2606 bool writably_mapped;
2607 loff_t isize, end_offset;
1da177e4 2608
723ef24b 2609 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
d05c5f7b 2610 return 0;
3644e2d2
KO
2611 if (unlikely(!iov_iter_count(iter)))
2612 return 0;
2613
c2a9737f 2614 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
cbd59c48 2615 pagevec_init(&pvec);
c2a9737f 2616
06c04442 2617 do {
1da177e4 2618 cond_resched();
5abf186a 2619
723ef24b 2620 /*
06c04442
KO
2621 * If we've already successfully copied some data, then we
2622 * can no longer safely return -EIOCBQUEUED. Hence mark
2623 * an async read NOWAIT at that point.
723ef24b 2624 */
87fa0f3e 2625 if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
723ef24b
KO
2626 iocb->ki_flags |= IOCB_NOWAIT;
2627
ff993ba1
MWO
2628 error = filemap_get_pages(iocb, iter, &pvec);
2629 if (error < 0)
06c04442 2630 break;
1da177e4 2631
06c04442
KO
2632 /*
2633 * i_size must be checked after we know the pages are Uptodate.
2634 *
2635 * Checking i_size after the check allows us to calculate
2636 * the correct value for "nr", which means the zero-filled
2637 * part of the page is not copied back to userspace (unless
2638 * another truncate extends the file - this is desired though).
2639 */
2640 isize = i_size_read(inode);
2641 if (unlikely(iocb->ki_pos >= isize))
2642 goto put_pages;
06c04442
KO
2643 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2644
06c04442
KO
2645 /*
2646 * Once we start copying data, we don't want to be touching any
2647 * cachelines that might be contended:
2648 */
2649 writably_mapped = mapping_writably_mapped(mapping);
2650
2651 /*
2652 * When a sequential read accesses a page several times, only
2653 * mark it as accessed the first time.
2654 */
2655 if (iocb->ki_pos >> PAGE_SHIFT !=
2656 ra->prev_pos >> PAGE_SHIFT)
ff993ba1 2657 mark_page_accessed(pvec.pages[0]);
06c04442 2658
ff993ba1 2659 for (i = 0; i < pagevec_count(&pvec); i++) {
cbd59c48
MWO
2660 struct page *page = pvec.pages[i];
2661 size_t page_size = thp_size(page);
2662 size_t offset = iocb->ki_pos & (page_size - 1);
2663 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2664 page_size - offset);
2665 size_t copied;
06c04442 2666
cbd59c48
MWO
2667 if (end_offset < page_offset(page))
2668 break;
2669 if (i > 0)
2670 mark_page_accessed(page);
06c04442
KO
2671 /*
2672 * If users can be writing to this page using arbitrary
2673 * virtual addresses, take care about potential aliasing
2674 * before reading the page on the kernel side.
2675 */
cbd59c48
MWO
2676 if (writably_mapped) {
2677 int j;
2678
2679 for (j = 0; j < thp_nr_pages(page); j++)
2680 flush_dcache_page(page + j);
2681 }
06c04442 2682
cbd59c48 2683 copied = copy_page_to_iter(page, offset, bytes, iter);
06c04442 2684
87fa0f3e 2685 already_read += copied;
06c04442
KO
2686 iocb->ki_pos += copied;
2687 ra->prev_pos = iocb->ki_pos;
2688
2689 if (copied < bytes) {
2690 error = -EFAULT;
2691 break;
2692 }
1da177e4 2693 }
06c04442 2694put_pages:
ff993ba1
MWO
2695 for (i = 0; i < pagevec_count(&pvec); i++)
2696 put_page(pvec.pages[i]);
cbd59c48 2697 pagevec_reinit(&pvec);
06c04442 2698 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
1da177e4 2699
0c6aa263 2700 file_accessed(filp);
06c04442 2701
87fa0f3e 2702 return already_read ? already_read : error;
1da177e4 2703}
87fa0f3e 2704EXPORT_SYMBOL_GPL(filemap_read);
1da177e4 2705
485bb99b 2706/**
6abd2322 2707 * generic_file_read_iter - generic filesystem read routine
485bb99b 2708 * @iocb: kernel I/O control block
6abd2322 2709 * @iter: destination for the data read
485bb99b 2710 *
6abd2322 2711 * This is the "read_iter()" routine for all filesystems
1da177e4 2712 * that can use the page cache directly.
41da51bc
AG
2713 *
2714 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2715 * be returned when no data can be read without waiting for I/O requests
2716 * to complete; it doesn't prevent readahead.
2717 *
2718 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2719 * requests shall be made for the read or for readahead. When no data
2720 * can be read, -EAGAIN shall be returned. When readahead would be
2721 * triggered, a partial, possibly empty read shall be returned.
2722 *
a862f68a
MR
2723 * Return:
2724 * * number of bytes copied, even for partial reads
41da51bc 2725 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
1da177e4
LT
2726 */
2727ssize_t
ed978a81 2728generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1da177e4 2729{
e7080a43 2730 size_t count = iov_iter_count(iter);
47c27bc4 2731 ssize_t retval = 0;
e7080a43
NS
2732
2733 if (!count)
826ea860 2734 return 0; /* skip atime */
1da177e4 2735
2ba48ce5 2736 if (iocb->ki_flags & IOCB_DIRECT) {
47c27bc4 2737 struct file *file = iocb->ki_filp;
ed978a81
AV
2738 struct address_space *mapping = file->f_mapping;
2739 struct inode *inode = mapping->host;
543ade1f 2740 loff_t size;
1da177e4 2741
1da177e4 2742 size = i_size_read(inode);
6be96d3a 2743 if (iocb->ki_flags & IOCB_NOWAIT) {
7a60d6d7
JA
2744 if (filemap_range_needs_writeback(mapping, iocb->ki_pos,
2745 iocb->ki_pos + count - 1))
6be96d3a
GR
2746 return -EAGAIN;
2747 } else {
2748 retval = filemap_write_and_wait_range(mapping,
2749 iocb->ki_pos,
2750 iocb->ki_pos + count - 1);
2751 if (retval < 0)
826ea860 2752 return retval;
6be96d3a 2753 }
d8d3d94b 2754
0d5b0cf2
CH
2755 file_accessed(file);
2756
5ecda137 2757 retval = mapping->a_ops->direct_IO(iocb, iter);
c3a69024 2758 if (retval >= 0) {
c64fb5c7 2759 iocb->ki_pos += retval;
5ecda137 2760 count -= retval;
9fe55eea 2761 }
ab2125df
PB
2762 if (retval != -EIOCBQUEUED)
2763 iov_iter_revert(iter, count - iov_iter_count(iter));
66f998f6 2764
9fe55eea
SW
2765 /*
2766 * Btrfs can have a short DIO read if we encounter
2767 * compressed extents, so if there was an error, or if
2768 * we've already read everything we wanted to, or if
2769 * there was a short read because we hit EOF, go ahead
2770 * and return. Otherwise fallthrough to buffered io for
fbbbad4b
MW
2771 * the rest of the read. Buffered reads will not work for
2772 * DAX files, so don't bother trying.
9fe55eea 2773 */
5ecda137 2774 if (retval < 0 || !count || iocb->ki_pos >= size ||
0d5b0cf2 2775 IS_DAX(inode))
826ea860 2776 return retval;
1da177e4
LT
2777 }
2778
826ea860 2779 return filemap_read(iocb, iter, retval);
1da177e4 2780}
ed978a81 2781EXPORT_SYMBOL(generic_file_read_iter);
1da177e4 2782
54fa39ac
MWO
2783static inline loff_t page_seek_hole_data(struct xa_state *xas,
2784 struct address_space *mapping, struct page *page,
2785 loff_t start, loff_t end, bool seek_data)
41139aa4 2786{
54fa39ac
MWO
2787 const struct address_space_operations *ops = mapping->a_ops;
2788 size_t offset, bsz = i_blocksize(mapping->host);
2789
41139aa4 2790 if (xa_is_value(page) || PageUptodate(page))
54fa39ac
MWO
2791 return seek_data ? start : end;
2792 if (!ops->is_partially_uptodate)
2793 return seek_data ? end : start;
2794
2795 xas_pause(xas);
2796 rcu_read_unlock();
2797 lock_page(page);
2798 if (unlikely(page->mapping != mapping))
2799 goto unlock;
2800
2801 offset = offset_in_thp(page, start) & ~(bsz - 1);
2802
2803 do {
2804 if (ops->is_partially_uptodate(page, offset, bsz) == seek_data)
2805 break;
2806 start = (start + bsz) & ~(bsz - 1);
2807 offset += bsz;
2808 } while (offset < thp_size(page));
2809unlock:
2810 unlock_page(page);
2811 rcu_read_lock();
2812 return start;
41139aa4
MWO
2813}
2814
2815static inline
2816unsigned int seek_page_size(struct xa_state *xas, struct page *page)
2817{
2818 if (xa_is_value(page))
2819 return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
2820 return thp_size(page);
2821}
2822
2823/**
2824 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
2825 * @mapping: Address space to search.
2826 * @start: First byte to consider.
2827 * @end: Limit of search (exclusive).
2828 * @whence: Either SEEK_HOLE or SEEK_DATA.
2829 *
2830 * If the page cache knows which blocks contain holes and which blocks
2831 * contain data, your filesystem can use this function to implement
2832 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are
2833 * entirely memory-based such as tmpfs, and filesystems which support
2834 * unwritten extents.
2835 *
f0953a1b 2836 * Return: The requested offset on success, or -ENXIO if @whence specifies
41139aa4
MWO
2837 * SEEK_DATA and there is no data after @start. There is an implicit hole
2838 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
2839 * and @end contain data.
2840 */
2841loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
2842 loff_t end, int whence)
2843{
2844 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
ed98b015 2845 pgoff_t max = (end - 1) >> PAGE_SHIFT;
41139aa4
MWO
2846 bool seek_data = (whence == SEEK_DATA);
2847 struct page *page;
2848
2849 if (end <= start)
2850 return -ENXIO;
2851
2852 rcu_read_lock();
2853 while ((page = find_get_entry(&xas, max, XA_PRESENT))) {
ed98b015
HD
2854 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
2855 unsigned int seek_size;
41139aa4
MWO
2856
2857 if (start < pos) {
2858 if (!seek_data)
2859 goto unlock;
2860 start = pos;
2861 }
2862
ed98b015
HD
2863 seek_size = seek_page_size(&xas, page);
2864 pos = round_up(pos + 1, seek_size);
54fa39ac
MWO
2865 start = page_seek_hole_data(&xas, mapping, page, start, pos,
2866 seek_data);
2867 if (start < pos)
41139aa4 2868 goto unlock;
ed98b015
HD
2869 if (start >= end)
2870 break;
2871 if (seek_size > PAGE_SIZE)
2872 xas_set(&xas, pos >> PAGE_SHIFT);
41139aa4
MWO
2873 if (!xa_is_value(page))
2874 put_page(page);
2875 }
41139aa4 2876 if (seek_data)
ed98b015 2877 start = -ENXIO;
41139aa4
MWO
2878unlock:
2879 rcu_read_unlock();
ed98b015 2880 if (page && !xa_is_value(page))
41139aa4 2881 put_page(page);
41139aa4
MWO
2882 if (start > end)
2883 return end;
2884 return start;
2885}
2886
1da177e4 2887#ifdef CONFIG_MMU
1da177e4 2888#define MMAP_LOTSAMISS (100)
6b4c9f44 2889/*
c1e8d7c6 2890 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
6b4c9f44
JB
2891 * @vmf - the vm_fault for this fault.
2892 * @page - the page to lock.
2893 * @fpin - the pointer to the file we may pin (or is already pinned).
2894 *
c1e8d7c6 2895 * This works similar to lock_page_or_retry in that it can drop the mmap_lock.
6b4c9f44 2896 * It differs in that it actually returns the page locked if it returns 1 and 0
c1e8d7c6 2897 * if it couldn't lock the page. If we did have to drop the mmap_lock then fpin
6b4c9f44
JB
2898 * will point to the pinned file and needs to be fput()'ed at a later point.
2899 */
2900static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2901 struct file **fpin)
2902{
2903 if (trylock_page(page))
2904 return 1;
2905
8b0f9fa2
LT
2906 /*
2907 * NOTE! This will make us return with VM_FAULT_RETRY, but with
c1e8d7c6 2908 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
8b0f9fa2
LT
2909 * is supposed to work. We have way too many special cases..
2910 */
6b4c9f44
JB
2911 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2912 return 0;
2913
2914 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2915 if (vmf->flags & FAULT_FLAG_KILLABLE) {
2916 if (__lock_page_killable(page)) {
2917 /*
c1e8d7c6 2918 * We didn't have the right flags to drop the mmap_lock,
6b4c9f44
JB
2919 * but all fault_handlers only check for fatal signals
2920 * if we return VM_FAULT_RETRY, so we need to drop the
c1e8d7c6 2921 * mmap_lock here and return 0 if we don't have a fpin.
6b4c9f44
JB
2922 */
2923 if (*fpin == NULL)
d8ed45c5 2924 mmap_read_unlock(vmf->vma->vm_mm);
6b4c9f44
JB
2925 return 0;
2926 }
2927 } else
2928 __lock_page(page);
2929 return 1;
2930}
2931
1da177e4 2932
ef00e08e 2933/*
6b4c9f44
JB
2934 * Synchronous readahead happens when we don't even find a page in the page
2935 * cache at all. We don't want to perform IO under the mmap sem, so if we have
2936 * to drop the mmap sem we return the file that was pinned in order for us to do
2937 * that. If we didn't pin a file then we return NULL. The file that is
2938 * returned needs to be fput()'ed when we're done with it.
ef00e08e 2939 */
6b4c9f44 2940static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
ef00e08e 2941{
2a1180f1
JB
2942 struct file *file = vmf->vma->vm_file;
2943 struct file_ra_state *ra = &file->f_ra;
ef00e08e 2944 struct address_space *mapping = file->f_mapping;
fcd9ae4f 2945 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
6b4c9f44 2946 struct file *fpin = NULL;
e630bfac 2947 unsigned int mmap_miss;
ef00e08e
LT
2948
2949 /* If we don't want any read-ahead, don't bother */
2a1180f1 2950 if (vmf->vma->vm_flags & VM_RAND_READ)
6b4c9f44 2951 return fpin;
275b12bf 2952 if (!ra->ra_pages)
6b4c9f44 2953 return fpin;
ef00e08e 2954
2a1180f1 2955 if (vmf->vma->vm_flags & VM_SEQ_READ) {
6b4c9f44 2956 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
fcd9ae4f 2957 page_cache_sync_ra(&ractl, ra->ra_pages);
6b4c9f44 2958 return fpin;
ef00e08e
LT
2959 }
2960
207d04ba 2961 /* Avoid banging the cache line if not needed */
e630bfac
KS
2962 mmap_miss = READ_ONCE(ra->mmap_miss);
2963 if (mmap_miss < MMAP_LOTSAMISS * 10)
2964 WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
ef00e08e
LT
2965
2966 /*
2967 * Do we miss much more than hit in this file? If so,
2968 * stop bothering with read-ahead. It will only hurt.
2969 */
e630bfac 2970 if (mmap_miss > MMAP_LOTSAMISS)
6b4c9f44 2971 return fpin;
ef00e08e 2972
d30a1100
WF
2973 /*
2974 * mmap read-around
2975 */
6b4c9f44 2976 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
db660d46 2977 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
600e19af
RG
2978 ra->size = ra->ra_pages;
2979 ra->async_size = ra->ra_pages / 4;
db660d46
DH
2980 ractl._index = ra->start;
2981 do_page_cache_ra(&ractl, ra->size, ra->async_size);
6b4c9f44 2982 return fpin;
ef00e08e
LT
2983}
2984
2985/*
2986 * Asynchronous readahead happens when we find the page and PG_readahead,
6b4c9f44 2987 * so we want to possibly extend the readahead further. We return the file that
c1e8d7c6 2988 * was pinned if we have to drop the mmap_lock in order to do IO.
ef00e08e 2989 */
6b4c9f44
JB
2990static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2991 struct page *page)
ef00e08e 2992{
2a1180f1
JB
2993 struct file *file = vmf->vma->vm_file;
2994 struct file_ra_state *ra = &file->f_ra;
ef00e08e 2995 struct address_space *mapping = file->f_mapping;
6b4c9f44 2996 struct file *fpin = NULL;
e630bfac 2997 unsigned int mmap_miss;
2a1180f1 2998 pgoff_t offset = vmf->pgoff;
ef00e08e
LT
2999
3000 /* If we don't want any read-ahead, don't bother */
5c72feee 3001 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
6b4c9f44 3002 return fpin;
e630bfac
KS
3003 mmap_miss = READ_ONCE(ra->mmap_miss);
3004 if (mmap_miss)
3005 WRITE_ONCE(ra->mmap_miss, --mmap_miss);
6b4c9f44
JB
3006 if (PageReadahead(page)) {
3007 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2fad6f5d
WF
3008 page_cache_async_readahead(mapping, ra, file,
3009 page, offset, ra->ra_pages);
6b4c9f44
JB
3010 }
3011 return fpin;
ef00e08e
LT
3012}
3013
485bb99b 3014/**
54cb8821 3015 * filemap_fault - read in file data for page fault handling
d0217ac0 3016 * @vmf: struct vm_fault containing details of the fault
485bb99b 3017 *
54cb8821 3018 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
3019 * mapped memory region to read in file data during a page fault.
3020 *
3021 * The goto's are kind of ugly, but this streamlines the normal case of having
3022 * it in the page cache, and handles the special cases reasonably without
3023 * having a lot of duplicated code.
9a95f3cf 3024 *
c1e8d7c6 3025 * vma->vm_mm->mmap_lock must be held on entry.
9a95f3cf 3026 *
c1e8d7c6 3027 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
a4985833 3028 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
9a95f3cf 3029 *
c1e8d7c6 3030 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
9a95f3cf
PC
3031 * has not been released.
3032 *
3033 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
a862f68a
MR
3034 *
3035 * Return: bitwise-OR of %VM_FAULT_ codes.
1da177e4 3036 */
2bcd6454 3037vm_fault_t filemap_fault(struct vm_fault *vmf)
1da177e4
LT
3038{
3039 int error;
11bac800 3040 struct file *file = vmf->vma->vm_file;
6b4c9f44 3041 struct file *fpin = NULL;
1da177e4 3042 struct address_space *mapping = file->f_mapping;
1da177e4 3043 struct inode *inode = mapping->host;
ef00e08e 3044 pgoff_t offset = vmf->pgoff;
9ab2594f 3045 pgoff_t max_off;
1da177e4 3046 struct page *page;
2bcd6454 3047 vm_fault_t ret = 0;
730633f0 3048 bool mapping_locked = false;
1da177e4 3049
9ab2594f
MW
3050 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3051 if (unlikely(offset >= max_off))
5307cc1a 3052 return VM_FAULT_SIGBUS;
1da177e4 3053
1da177e4 3054 /*
49426420 3055 * Do we have something in the page cache already?
1da177e4 3056 */
ef00e08e 3057 page = find_get_page(mapping, offset);
730633f0 3058 if (likely(page)) {
1da177e4 3059 /*
730633f0
JK
3060 * We found the page, so try async readahead before waiting for
3061 * the lock.
1da177e4 3062 */
730633f0
JK
3063 if (!(vmf->flags & FAULT_FLAG_TRIED))
3064 fpin = do_async_mmap_readahead(vmf, page);
3065 if (unlikely(!PageUptodate(page))) {
3066 filemap_invalidate_lock_shared(mapping);
3067 mapping_locked = true;
3068 }
3069 } else {
ef00e08e 3070 /* No page in the page cache at all */
ef00e08e 3071 count_vm_event(PGMAJFAULT);
2262185c 3072 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
ef00e08e 3073 ret = VM_FAULT_MAJOR;
6b4c9f44 3074 fpin = do_sync_mmap_readahead(vmf);
ef00e08e 3075retry_find:
730633f0
JK
3076 /*
3077 * See comment in filemap_create_page() why we need
3078 * invalidate_lock
3079 */
3080 if (!mapping_locked) {
3081 filemap_invalidate_lock_shared(mapping);
3082 mapping_locked = true;
3083 }
a75d4c33
JB
3084 page = pagecache_get_page(mapping, offset,
3085 FGP_CREAT|FGP_FOR_MMAP,
3086 vmf->gfp_mask);
6b4c9f44
JB
3087 if (!page) {
3088 if (fpin)
3089 goto out_retry;
730633f0 3090 filemap_invalidate_unlock_shared(mapping);
e520e932 3091 return VM_FAULT_OOM;
6b4c9f44 3092 }
1da177e4
LT
3093 }
3094
6b4c9f44
JB
3095 if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
3096 goto out_retry;
b522c94d
ML
3097
3098 /* Did it get truncated? */
585e5a7b 3099 if (unlikely(compound_head(page)->mapping != mapping)) {
b522c94d
ML
3100 unlock_page(page);
3101 put_page(page);
3102 goto retry_find;
3103 }
520e5ba4 3104 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
b522c94d 3105
1da177e4 3106 /*
d00806b1
NP
3107 * We have a locked page in the page cache, now we need to check
3108 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 3109 */
730633f0
JK
3110 if (unlikely(!PageUptodate(page))) {
3111 /*
3112 * The page was in cache and uptodate and now it is not.
3113 * Strange but possible since we didn't hold the page lock all
3114 * the time. Let's drop everything get the invalidate lock and
3115 * try again.
3116 */
3117 if (!mapping_locked) {
3118 unlock_page(page);
3119 put_page(page);
3120 goto retry_find;
3121 }
1da177e4 3122 goto page_not_uptodate;
730633f0 3123 }
1da177e4 3124
6b4c9f44 3125 /*
c1e8d7c6 3126 * We've made it this far and we had to drop our mmap_lock, now is the
6b4c9f44
JB
3127 * time to return to the upper layer and have it re-find the vma and
3128 * redo the fault.
3129 */
3130 if (fpin) {
3131 unlock_page(page);
3132 goto out_retry;
3133 }
730633f0
JK
3134 if (mapping_locked)
3135 filemap_invalidate_unlock_shared(mapping);
6b4c9f44 3136
ef00e08e
LT
3137 /*
3138 * Found the page and have a reference on it.
3139 * We must recheck i_size under page lock.
3140 */
9ab2594f
MW
3141 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3142 if (unlikely(offset >= max_off)) {
d00806b1 3143 unlock_page(page);
09cbfeaf 3144 put_page(page);
5307cc1a 3145 return VM_FAULT_SIGBUS;
d00806b1
NP
3146 }
3147
d0217ac0 3148 vmf->page = page;
83c54070 3149 return ret | VM_FAULT_LOCKED;
1da177e4 3150
1da177e4 3151page_not_uptodate:
1da177e4
LT
3152 /*
3153 * Umm, take care of errors if the page isn't up-to-date.
3154 * Try to re-read it _once_. We do this synchronously,
3155 * because there really aren't any performance issues here
3156 * and we need to check for errors.
3157 */
6b4c9f44 3158 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
d31fa86a 3159 error = filemap_read_page(file, mapping, page);
6b4c9f44
JB
3160 if (fpin)
3161 goto out_retry;
09cbfeaf 3162 put_page(page);
d00806b1
NP
3163
3164 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 3165 goto retry_find;
730633f0 3166 filemap_invalidate_unlock_shared(mapping);
1da177e4 3167
d0217ac0 3168 return VM_FAULT_SIGBUS;
6b4c9f44
JB
3169
3170out_retry:
3171 /*
c1e8d7c6 3172 * We dropped the mmap_lock, we need to return to the fault handler to
6b4c9f44
JB
3173 * re-find the vma and come back and find our hopefully still populated
3174 * page.
3175 */
3176 if (page)
3177 put_page(page);
730633f0
JK
3178 if (mapping_locked)
3179 filemap_invalidate_unlock_shared(mapping);
6b4c9f44
JB
3180 if (fpin)
3181 fput(fpin);
3182 return ret | VM_FAULT_RETRY;
54cb8821
NP
3183}
3184EXPORT_SYMBOL(filemap_fault);
3185
f9ce0be7 3186static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page)
f1820361 3187{
f9ce0be7
KS
3188 struct mm_struct *mm = vmf->vma->vm_mm;
3189
3190 /* Huge page is mapped? No need to proceed. */
3191 if (pmd_trans_huge(*vmf->pmd)) {
3192 unlock_page(page);
3193 put_page(page);
3194 return true;
3195 }
3196
3197 if (pmd_none(*vmf->pmd) && PageTransHuge(page)) {
3198 vm_fault_t ret = do_set_pmd(vmf, page);
3199 if (!ret) {
3200 /* The page is mapped successfully, reference consumed. */
3201 unlock_page(page);
3202 return true;
3203 }
3204 }
3205
3206 if (pmd_none(*vmf->pmd)) {
3207 vmf->ptl = pmd_lock(mm, vmf->pmd);
3208 if (likely(pmd_none(*vmf->pmd))) {
3209 mm_inc_nr_ptes(mm);
3210 pmd_populate(mm, vmf->pmd, vmf->prealloc_pte);
3211 vmf->prealloc_pte = NULL;
3212 }
3213 spin_unlock(vmf->ptl);
3214 }
3215
3216 /* See comment in handle_pte_fault() */
3217 if (pmd_devmap_trans_unstable(vmf->pmd)) {
3218 unlock_page(page);
3219 put_page(page);
3220 return true;
3221 }
3222
3223 return false;
3224}
3225
3226static struct page *next_uptodate_page(struct page *page,
3227 struct address_space *mapping,
3228 struct xa_state *xas, pgoff_t end_pgoff)
3229{
3230 unsigned long max_idx;
3231
3232 do {
3233 if (!page)
3234 return NULL;
3235 if (xas_retry(xas, page))
3236 continue;
3237 if (xa_is_value(page))
3238 continue;
3239 if (PageLocked(page))
3240 continue;
3241 if (!page_cache_get_speculative(page))
3242 continue;
3243 /* Has the page moved or been split? */
3244 if (unlikely(page != xas_reload(xas)))
3245 goto skip;
3246 if (!PageUptodate(page) || PageReadahead(page))
3247 goto skip;
3248 if (PageHWPoison(page))
3249 goto skip;
3250 if (!trylock_page(page))
3251 goto skip;
3252 if (page->mapping != mapping)
3253 goto unlock;
3254 if (!PageUptodate(page))
3255 goto unlock;
3256 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3257 if (xas->xa_index >= max_idx)
3258 goto unlock;
3259 return page;
3260unlock:
3261 unlock_page(page);
3262skip:
3263 put_page(page);
3264 } while ((page = xas_next_entry(xas, end_pgoff)) != NULL);
3265
3266 return NULL;
3267}
3268
3269static inline struct page *first_map_page(struct address_space *mapping,
3270 struct xa_state *xas,
3271 pgoff_t end_pgoff)
3272{
3273 return next_uptodate_page(xas_find(xas, end_pgoff),
3274 mapping, xas, end_pgoff);
3275}
3276
3277static inline struct page *next_map_page(struct address_space *mapping,
3278 struct xa_state *xas,
3279 pgoff_t end_pgoff)
3280{
3281 return next_uptodate_page(xas_next_entry(xas, end_pgoff),
3282 mapping, xas, end_pgoff);
3283}
3284
3285vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3286 pgoff_t start_pgoff, pgoff_t end_pgoff)
3287{
3288 struct vm_area_struct *vma = vmf->vma;
3289 struct file *file = vma->vm_file;
f1820361 3290 struct address_space *mapping = file->f_mapping;
bae473a4 3291 pgoff_t last_pgoff = start_pgoff;
9d3af4b4 3292 unsigned long addr;
070e807c 3293 XA_STATE(xas, &mapping->i_pages, start_pgoff);
27a83a60 3294 struct page *head, *page;
e630bfac 3295 unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
f9ce0be7 3296 vm_fault_t ret = 0;
f1820361
KS
3297
3298 rcu_read_lock();
f9ce0be7
KS
3299 head = first_map_page(mapping, &xas, end_pgoff);
3300 if (!head)
3301 goto out;
f1820361 3302
f9ce0be7
KS
3303 if (filemap_map_pmd(vmf, head)) {
3304 ret = VM_FAULT_NOPAGE;
3305 goto out;
3306 }
f1820361 3307
9d3af4b4
WD
3308 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3309 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
f9ce0be7 3310 do {
27a83a60 3311 page = find_subpage(head, xas.xa_index);
f9ce0be7 3312 if (PageHWPoison(page))
f1820361
KS
3313 goto unlock;
3314
e630bfac
KS
3315 if (mmap_miss > 0)
3316 mmap_miss--;
7267ec00 3317
9d3af4b4 3318 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
f9ce0be7 3319 vmf->pte += xas.xa_index - last_pgoff;
070e807c 3320 last_pgoff = xas.xa_index;
f9ce0be7
KS
3321
3322 if (!pte_none(*vmf->pte))
7267ec00 3323 goto unlock;
f9ce0be7 3324
46bdb427 3325 /* We're about to handle the fault */
9d3af4b4 3326 if (vmf->address == addr)
46bdb427 3327 ret = VM_FAULT_NOPAGE;
46bdb427 3328
9d3af4b4 3329 do_set_pte(vmf, page, addr);
f9ce0be7 3330 /* no need to invalidate: a not-present page won't be cached */
9d3af4b4 3331 update_mmu_cache(vma, addr, vmf->pte);
27a83a60 3332 unlock_page(head);
f9ce0be7 3333 continue;
f1820361 3334unlock:
27a83a60 3335 unlock_page(head);
27a83a60 3336 put_page(head);
f9ce0be7
KS
3337 } while ((head = next_map_page(mapping, &xas, end_pgoff)) != NULL);
3338 pte_unmap_unlock(vmf->pte, vmf->ptl);
3339out:
f1820361 3340 rcu_read_unlock();
e630bfac 3341 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
f9ce0be7 3342 return ret;
f1820361
KS
3343}
3344EXPORT_SYMBOL(filemap_map_pages);
3345
2bcd6454 3346vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
4fcf1c62 3347{
5df1a672 3348 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
4fcf1c62 3349 struct page *page = vmf->page;
2bcd6454 3350 vm_fault_t ret = VM_FAULT_LOCKED;
4fcf1c62 3351
5df1a672 3352 sb_start_pagefault(mapping->host->i_sb);
11bac800 3353 file_update_time(vmf->vma->vm_file);
4fcf1c62 3354 lock_page(page);
5df1a672 3355 if (page->mapping != mapping) {
4fcf1c62
JK
3356 unlock_page(page);
3357 ret = VM_FAULT_NOPAGE;
3358 goto out;
3359 }
14da9200
JK
3360 /*
3361 * We mark the page dirty already here so that when freeze is in
3362 * progress, we are guaranteed that writeback during freezing will
3363 * see the dirty page and writeprotect it again.
3364 */
3365 set_page_dirty(page);
1d1d1a76 3366 wait_for_stable_page(page);
4fcf1c62 3367out:
5df1a672 3368 sb_end_pagefault(mapping->host->i_sb);
4fcf1c62
JK
3369 return ret;
3370}
4fcf1c62 3371
f0f37e2f 3372const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 3373 .fault = filemap_fault,
f1820361 3374 .map_pages = filemap_map_pages,
4fcf1c62 3375 .page_mkwrite = filemap_page_mkwrite,
1da177e4
LT
3376};
3377
3378/* This is used for a general mmap of a disk file */
3379
68d68ff6 3380int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
3381{
3382 struct address_space *mapping = file->f_mapping;
3383
3384 if (!mapping->a_ops->readpage)
3385 return -ENOEXEC;
3386 file_accessed(file);
3387 vma->vm_ops = &generic_file_vm_ops;
3388 return 0;
3389}
1da177e4
LT
3390
3391/*
3392 * This is for filesystems which do not implement ->writepage.
3393 */
3394int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3395{
3396 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3397 return -EINVAL;
3398 return generic_file_mmap(file, vma);
3399}
3400#else
4b96a37d 3401vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
45397228 3402{
4b96a37d 3403 return VM_FAULT_SIGBUS;
45397228 3404}
68d68ff6 3405int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
3406{
3407 return -ENOSYS;
3408}
68d68ff6 3409int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
3410{
3411 return -ENOSYS;
3412}
3413#endif /* CONFIG_MMU */
3414
45397228 3415EXPORT_SYMBOL(filemap_page_mkwrite);
1da177e4
LT
3416EXPORT_SYMBOL(generic_file_mmap);
3417EXPORT_SYMBOL(generic_file_readonly_mmap);
3418
67f9fd91
SL
3419static struct page *wait_on_page_read(struct page *page)
3420{
3421 if (!IS_ERR(page)) {
3422 wait_on_page_locked(page);
3423 if (!PageUptodate(page)) {
09cbfeaf 3424 put_page(page);
67f9fd91
SL
3425 page = ERR_PTR(-EIO);
3426 }
3427 }
3428 return page;
3429}
3430
32b63529 3431static struct page *do_read_cache_page(struct address_space *mapping,
57f6b96c 3432 pgoff_t index,
5e5358e7 3433 int (*filler)(void *, struct page *),
0531b2aa
LT
3434 void *data,
3435 gfp_t gfp)
1da177e4 3436{
eb2be189 3437 struct page *page;
1da177e4
LT
3438 int err;
3439repeat:
3440 page = find_get_page(mapping, index);
3441 if (!page) {
453f85d4 3442 page = __page_cache_alloc(gfp);
eb2be189
NP
3443 if (!page)
3444 return ERR_PTR(-ENOMEM);
e6f67b8c 3445 err = add_to_page_cache_lru(page, mapping, index, gfp);
eb2be189 3446 if (unlikely(err)) {
09cbfeaf 3447 put_page(page);
eb2be189
NP
3448 if (err == -EEXIST)
3449 goto repeat;
22ecdb4f 3450 /* Presumably ENOMEM for xarray node */
1da177e4
LT
3451 return ERR_PTR(err);
3452 }
32b63529
MG
3453
3454filler:
6c45b454
CH
3455 if (filler)
3456 err = filler(data, page);
3457 else
3458 err = mapping->a_ops->readpage(data, page);
3459
1da177e4 3460 if (err < 0) {
09cbfeaf 3461 put_page(page);
32b63529 3462 return ERR_PTR(err);
1da177e4 3463 }
1da177e4 3464
32b63529
MG
3465 page = wait_on_page_read(page);
3466 if (IS_ERR(page))
3467 return page;
3468 goto out;
3469 }
1da177e4
LT
3470 if (PageUptodate(page))
3471 goto out;
3472
ebded027 3473 /*
0e9aa675 3474 * Page is not up to date and may be locked due to one of the following
ebded027
MG
3475 * case a: Page is being filled and the page lock is held
3476 * case b: Read/write error clearing the page uptodate status
3477 * case c: Truncation in progress (page locked)
3478 * case d: Reclaim in progress
3479 *
3480 * Case a, the page will be up to date when the page is unlocked.
3481 * There is no need to serialise on the page lock here as the page
3482 * is pinned so the lock gives no additional protection. Even if the
ce89fddf 3483 * page is truncated, the data is still valid if PageUptodate as
ebded027
MG
3484 * it's a race vs truncate race.
3485 * Case b, the page will not be up to date
3486 * Case c, the page may be truncated but in itself, the data may still
3487 * be valid after IO completes as it's a read vs truncate race. The
3488 * operation must restart if the page is not uptodate on unlock but
3489 * otherwise serialising on page lock to stabilise the mapping gives
3490 * no additional guarantees to the caller as the page lock is
3491 * released before return.
3492 * Case d, similar to truncation. If reclaim holds the page lock, it
3493 * will be a race with remove_mapping that determines if the mapping
3494 * is valid on unlock but otherwise the data is valid and there is
3495 * no need to serialise with page lock.
3496 *
3497 * As the page lock gives no additional guarantee, we optimistically
3498 * wait on the page to be unlocked and check if it's up to date and
3499 * use the page if it is. Otherwise, the page lock is required to
3500 * distinguish between the different cases. The motivation is that we
3501 * avoid spurious serialisations and wakeups when multiple processes
3502 * wait on the same page for IO to complete.
3503 */
3504 wait_on_page_locked(page);
3505 if (PageUptodate(page))
3506 goto out;
3507
3508 /* Distinguish between all the cases under the safety of the lock */
1da177e4 3509 lock_page(page);
ebded027
MG
3510
3511 /* Case c or d, restart the operation */
1da177e4
LT
3512 if (!page->mapping) {
3513 unlock_page(page);
09cbfeaf 3514 put_page(page);
32b63529 3515 goto repeat;
1da177e4 3516 }
ebded027
MG
3517
3518 /* Someone else locked and filled the page in a very small window */
1da177e4
LT
3519 if (PageUptodate(page)) {
3520 unlock_page(page);
3521 goto out;
3522 }
faffdfa0
XT
3523
3524 /*
3525 * A previous I/O error may have been due to temporary
3526 * failures.
3527 * Clear page error before actual read, PG_error will be
3528 * set again if read page fails.
3529 */
3530 ClearPageError(page);
32b63529
MG
3531 goto filler;
3532
c855ff37 3533out:
6fe6900e
NP
3534 mark_page_accessed(page);
3535 return page;
3536}
0531b2aa
LT
3537
3538/**
67f9fd91 3539 * read_cache_page - read into page cache, fill it if needed
0531b2aa
LT
3540 * @mapping: the page's address_space
3541 * @index: the page index
3542 * @filler: function to perform the read
5e5358e7 3543 * @data: first arg to filler(data, page) function, often left as NULL
0531b2aa 3544 *
0531b2aa 3545 * Read into the page cache. If a page already exists, and PageUptodate() is
67f9fd91 3546 * not set, try to fill the page and wait for it to become unlocked.
0531b2aa
LT
3547 *
3548 * If the page does not get brought uptodate, return -EIO.
a862f68a 3549 *
730633f0
JK
3550 * The function expects mapping->invalidate_lock to be already held.
3551 *
a862f68a 3552 * Return: up to date page on success, ERR_PTR() on failure.
0531b2aa 3553 */
67f9fd91 3554struct page *read_cache_page(struct address_space *mapping,
0531b2aa 3555 pgoff_t index,
5e5358e7 3556 int (*filler)(void *, struct page *),
0531b2aa
LT
3557 void *data)
3558{
d322a8e5
CH
3559 return do_read_cache_page(mapping, index, filler, data,
3560 mapping_gfp_mask(mapping));
0531b2aa 3561}
67f9fd91 3562EXPORT_SYMBOL(read_cache_page);
0531b2aa
LT
3563
3564/**
3565 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3566 * @mapping: the page's address_space
3567 * @index: the page index
3568 * @gfp: the page allocator flags to use if allocating
3569 *
3570 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
e6f67b8c 3571 * any new page allocations done using the specified allocation flags.
0531b2aa
LT
3572 *
3573 * If the page does not get brought uptodate, return -EIO.
a862f68a 3574 *
730633f0
JK
3575 * The function expects mapping->invalidate_lock to be already held.
3576 *
a862f68a 3577 * Return: up to date page on success, ERR_PTR() on failure.
0531b2aa
LT
3578 */
3579struct page *read_cache_page_gfp(struct address_space *mapping,
3580 pgoff_t index,
3581 gfp_t gfp)
3582{
6c45b454 3583 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
0531b2aa
LT
3584}
3585EXPORT_SYMBOL(read_cache_page_gfp);
3586
afddba49
NP
3587int pagecache_write_begin(struct file *file, struct address_space *mapping,
3588 loff_t pos, unsigned len, unsigned flags,
3589 struct page **pagep, void **fsdata)
3590{
3591 const struct address_space_operations *aops = mapping->a_ops;
3592
4e02ed4b 3593 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 3594 pagep, fsdata);
afddba49
NP
3595}
3596EXPORT_SYMBOL(pagecache_write_begin);
3597
3598int pagecache_write_end(struct file *file, struct address_space *mapping,
3599 loff_t pos, unsigned len, unsigned copied,
3600 struct page *page, void *fsdata)
3601{
3602 const struct address_space_operations *aops = mapping->a_ops;
afddba49 3603
4e02ed4b 3604 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
3605}
3606EXPORT_SYMBOL(pagecache_write_end);
3607
a92853b6
KK
3608/*
3609 * Warn about a page cache invalidation failure during a direct I/O write.
3610 */
3611void dio_warn_stale_pagecache(struct file *filp)
3612{
3613 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3614 char pathname[128];
a92853b6
KK
3615 char *path;
3616
5df1a672 3617 errseq_set(&filp->f_mapping->wb_err, -EIO);
a92853b6
KK
3618 if (__ratelimit(&_rs)) {
3619 path = file_path(filp, pathname, sizeof(pathname));
3620 if (IS_ERR(path))
3621 path = "(unknown)";
3622 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
3623 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3624 current->comm);
3625 }
3626}
3627
1da177e4 3628ssize_t
1af5bb49 3629generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3630{
3631 struct file *file = iocb->ki_filp;
3632 struct address_space *mapping = file->f_mapping;
3633 struct inode *inode = mapping->host;
1af5bb49 3634 loff_t pos = iocb->ki_pos;
1da177e4 3635 ssize_t written;
a969e903
CH
3636 size_t write_len;
3637 pgoff_t end;
1da177e4 3638
0c949334 3639 write_len = iov_iter_count(from);
09cbfeaf 3640 end = (pos + write_len - 1) >> PAGE_SHIFT;
a969e903 3641
6be96d3a
GR
3642 if (iocb->ki_flags & IOCB_NOWAIT) {
3643 /* If there are pages to writeback, return */
5df1a672 3644 if (filemap_range_has_page(file->f_mapping, pos,
35f12f0f 3645 pos + write_len - 1))
6be96d3a
GR
3646 return -EAGAIN;
3647 } else {
3648 written = filemap_write_and_wait_range(mapping, pos,
3649 pos + write_len - 1);
3650 if (written)
3651 goto out;
3652 }
a969e903
CH
3653
3654 /*
3655 * After a write we want buffered reads to be sure to go to disk to get
3656 * the new data. We invalidate clean cached page from the region we're
3657 * about to write. We do this *before* the write so that we can return
6ccfa806 3658 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903 3659 */
55635ba7 3660 written = invalidate_inode_pages2_range(mapping,
09cbfeaf 3661 pos >> PAGE_SHIFT, end);
55635ba7
AR
3662 /*
3663 * If a page can not be invalidated, return 0 to fall back
3664 * to buffered write.
3665 */
3666 if (written) {
3667 if (written == -EBUSY)
3668 return 0;
3669 goto out;
a969e903
CH
3670 }
3671
639a93a5 3672 written = mapping->a_ops->direct_IO(iocb, from);
a969e903
CH
3673
3674 /*
3675 * Finally, try again to invalidate clean pages which might have been
3676 * cached by non-direct readahead, or faulted in by get_user_pages()
3677 * if the source of the write was an mmap'ed region of the file
3678 * we're writing. Either one is a pretty crazy thing to do,
3679 * so we don't support it 100%. If this invalidation
3680 * fails, tough, the write still worked...
332391a9
LC
3681 *
3682 * Most of the time we do not need this since dio_complete() will do
3683 * the invalidation for us. However there are some file systems that
3684 * do not end up with dio_complete() being called, so let's not break
80c1fe90
KK
3685 * them by removing it completely.
3686 *
9266a140
KK
3687 * Noticeable example is a blkdev_direct_IO().
3688 *
80c1fe90 3689 * Skip invalidation for async writes or if mapping has no pages.
a969e903 3690 */
9266a140
KK
3691 if (written > 0 && mapping->nrpages &&
3692 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3693 dio_warn_stale_pagecache(file);
a969e903 3694
1da177e4 3695 if (written > 0) {
0116651c 3696 pos += written;
639a93a5 3697 write_len -= written;
0116651c
NK
3698 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3699 i_size_write(inode, pos);
1da177e4
LT
3700 mark_inode_dirty(inode);
3701 }
5cb6c6c7 3702 iocb->ki_pos = pos;
1da177e4 3703 }
ab2125df
PB
3704 if (written != -EIOCBQUEUED)
3705 iov_iter_revert(from, write_len - iov_iter_count(from));
a969e903 3706out:
1da177e4
LT
3707 return written;
3708}
3709EXPORT_SYMBOL(generic_file_direct_write);
3710
eb2be189
NP
3711/*
3712 * Find or create a page at the given pagecache position. Return the locked
3713 * page. This function is specifically for buffered writes.
3714 */
54566b2c
NP
3715struct page *grab_cache_page_write_begin(struct address_space *mapping,
3716 pgoff_t index, unsigned flags)
eb2be189 3717{
eb2be189 3718 struct page *page;
bbddabe2 3719 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
0faa70cb 3720
54566b2c 3721 if (flags & AOP_FLAG_NOFS)
2457aec6
MG
3722 fgp_flags |= FGP_NOFS;
3723
3724 page = pagecache_get_page(mapping, index, fgp_flags,
45f87de5 3725 mapping_gfp_mask(mapping));
c585a267 3726 if (page)
2457aec6 3727 wait_for_stable_page(page);
eb2be189 3728
eb2be189
NP
3729 return page;
3730}
54566b2c 3731EXPORT_SYMBOL(grab_cache_page_write_begin);
eb2be189 3732
3b93f911 3733ssize_t generic_perform_write(struct file *file,
afddba49
NP
3734 struct iov_iter *i, loff_t pos)
3735{
3736 struct address_space *mapping = file->f_mapping;
3737 const struct address_space_operations *a_ops = mapping->a_ops;
3738 long status = 0;
3739 ssize_t written = 0;
674b892e
NP
3740 unsigned int flags = 0;
3741
afddba49
NP
3742 do {
3743 struct page *page;
afddba49
NP
3744 unsigned long offset; /* Offset into pagecache page */
3745 unsigned long bytes; /* Bytes to write to page */
3746 size_t copied; /* Bytes copied from user */
3747 void *fsdata;
3748
09cbfeaf
KS
3749 offset = (pos & (PAGE_SIZE - 1));
3750 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
3751 iov_iter_count(i));
3752
3753again:
00a3d660
LT
3754 /*
3755 * Bring in the user page that we will copy from _first_.
3756 * Otherwise there's a nasty deadlock on copying from the
3757 * same page as we're writing to, without it being marked
3758 * up-to-date.
00a3d660
LT
3759 */
3760 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3761 status = -EFAULT;
3762 break;
3763 }
3764
296291cd
JK
3765 if (fatal_signal_pending(current)) {
3766 status = -EINTR;
3767 break;
3768 }
3769
674b892e 3770 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49 3771 &page, &fsdata);
2457aec6 3772 if (unlikely(status < 0))
afddba49
NP
3773 break;
3774
931e80e4 3775 if (mapping_writably_mapped(mapping))
3776 flush_dcache_page(page);
00a3d660 3777
f0b65f39 3778 copied = copy_page_from_iter_atomic(page, offset, bytes, i);
afddba49
NP
3779 flush_dcache_page(page);
3780
3781 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3782 page, fsdata);
f0b65f39
AV
3783 if (unlikely(status != copied)) {
3784 iov_iter_revert(i, copied - max(status, 0L));
3785 if (unlikely(status < 0))
3786 break;
3787 }
afddba49
NP
3788 cond_resched();
3789
bc1bb416 3790 if (unlikely(status == 0)) {
afddba49 3791 /*
bc1bb416
AV
3792 * A short copy made ->write_end() reject the
3793 * thing entirely. Might be memory poisoning
3794 * halfway through, might be a race with munmap,
3795 * might be severe memory pressure.
afddba49 3796 */
bc1bb416
AV
3797 if (copied)
3798 bytes = copied;
afddba49
NP
3799 goto again;
3800 }
f0b65f39
AV
3801 pos += status;
3802 written += status;
afddba49
NP
3803
3804 balance_dirty_pages_ratelimited(mapping);
afddba49
NP
3805 } while (iov_iter_count(i));
3806
3807 return written ? written : status;
3808}
3b93f911 3809EXPORT_SYMBOL(generic_perform_write);
1da177e4 3810
e4dd9de3 3811/**
8174202b 3812 * __generic_file_write_iter - write data to a file
e4dd9de3 3813 * @iocb: IO state structure (file, offset, etc.)
8174202b 3814 * @from: iov_iter with data to write
e4dd9de3
JK
3815 *
3816 * This function does all the work needed for actually writing data to a
3817 * file. It does all basic checks, removes SUID from the file, updates
3818 * modification times and calls proper subroutines depending on whether we
3819 * do direct IO or a standard buffered write.
3820 *
9608703e 3821 * It expects i_rwsem to be grabbed unless we work on a block device or similar
e4dd9de3
JK
3822 * object which does not need locking at all.
3823 *
3824 * This function does *not* take care of syncing data in case of O_SYNC write.
3825 * A caller has to handle it. This is mainly due to the fact that we want to
9608703e 3826 * avoid syncing under i_rwsem.
a862f68a
MR
3827 *
3828 * Return:
3829 * * number of bytes written, even for truncated writes
3830 * * negative error code if no data has been written at all
e4dd9de3 3831 */
8174202b 3832ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3833{
3834 struct file *file = iocb->ki_filp;
68d68ff6 3835 struct address_space *mapping = file->f_mapping;
1da177e4 3836 struct inode *inode = mapping->host;
3b93f911 3837 ssize_t written = 0;
1da177e4 3838 ssize_t err;
3b93f911 3839 ssize_t status;
1da177e4 3840
1da177e4 3841 /* We can write back this queue in page reclaim */
de1414a6 3842 current->backing_dev_info = inode_to_bdi(inode);
5fa8e0a1 3843 err = file_remove_privs(file);
1da177e4
LT
3844 if (err)
3845 goto out;
3846
c3b2da31
JB
3847 err = file_update_time(file);
3848 if (err)
3849 goto out;
1da177e4 3850
2ba48ce5 3851 if (iocb->ki_flags & IOCB_DIRECT) {
0b8def9d 3852 loff_t pos, endbyte;
fb5527e6 3853
1af5bb49 3854 written = generic_file_direct_write(iocb, from);
1da177e4 3855 /*
fbbbad4b
MW
3856 * If the write stopped short of completing, fall back to
3857 * buffered writes. Some filesystems do this for writes to
3858 * holes, for example. For DAX files, a buffered write will
3859 * not succeed (even if it did, DAX does not handle dirty
3860 * page-cache pages correctly).
1da177e4 3861 */
0b8def9d 3862 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
fbbbad4b
MW
3863 goto out;
3864
0b8def9d 3865 status = generic_perform_write(file, from, pos = iocb->ki_pos);
fb5527e6 3866 /*
3b93f911 3867 * If generic_perform_write() returned a synchronous error
fb5527e6
JM
3868 * then we want to return the number of bytes which were
3869 * direct-written, or the error code if that was zero. Note
3870 * that this differs from normal direct-io semantics, which
3871 * will return -EFOO even if some bytes were written.
3872 */
60bb4529 3873 if (unlikely(status < 0)) {
3b93f911 3874 err = status;
fb5527e6
JM
3875 goto out;
3876 }
fb5527e6
JM
3877 /*
3878 * We need to ensure that the page cache pages are written to
3879 * disk and invalidated to preserve the expected O_DIRECT
3880 * semantics.
3881 */
3b93f911 3882 endbyte = pos + status - 1;
0b8def9d 3883 err = filemap_write_and_wait_range(mapping, pos, endbyte);
fb5527e6 3884 if (err == 0) {
0b8def9d 3885 iocb->ki_pos = endbyte + 1;
3b93f911 3886 written += status;
fb5527e6 3887 invalidate_mapping_pages(mapping,
09cbfeaf
KS
3888 pos >> PAGE_SHIFT,
3889 endbyte >> PAGE_SHIFT);
fb5527e6
JM
3890 } else {
3891 /*
3892 * We don't know how much we wrote, so just return
3893 * the number of bytes which were direct-written
3894 */
3895 }
3896 } else {
0b8def9d
AV
3897 written = generic_perform_write(file, from, iocb->ki_pos);
3898 if (likely(written > 0))
3899 iocb->ki_pos += written;
fb5527e6 3900 }
1da177e4
LT
3901out:
3902 current->backing_dev_info = NULL;
3903 return written ? written : err;
3904}
8174202b 3905EXPORT_SYMBOL(__generic_file_write_iter);
e4dd9de3 3906
e4dd9de3 3907/**
8174202b 3908 * generic_file_write_iter - write data to a file
e4dd9de3 3909 * @iocb: IO state structure
8174202b 3910 * @from: iov_iter with data to write
e4dd9de3 3911 *
8174202b 3912 * This is a wrapper around __generic_file_write_iter() to be used by most
e4dd9de3 3913 * filesystems. It takes care of syncing the file in case of O_SYNC file
9608703e 3914 * and acquires i_rwsem as needed.
a862f68a
MR
3915 * Return:
3916 * * negative error code if no data has been written at all of
3917 * vfs_fsync_range() failed for a synchronous write
3918 * * number of bytes written, even for truncated writes
e4dd9de3 3919 */
8174202b 3920ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3921{
3922 struct file *file = iocb->ki_filp;
148f948b 3923 struct inode *inode = file->f_mapping->host;
1da177e4 3924 ssize_t ret;
1da177e4 3925
5955102c 3926 inode_lock(inode);
3309dd04
AV
3927 ret = generic_write_checks(iocb, from);
3928 if (ret > 0)
5f380c7f 3929 ret = __generic_file_write_iter(iocb, from);
5955102c 3930 inode_unlock(inode);
1da177e4 3931
e2592217
CH
3932 if (ret > 0)
3933 ret = generic_write_sync(iocb, ret);
1da177e4
LT
3934 return ret;
3935}
8174202b 3936EXPORT_SYMBOL(generic_file_write_iter);
1da177e4 3937
cf9a2ae8
DH
3938/**
3939 * try_to_release_page() - release old fs-specific metadata on a page
3940 *
3941 * @page: the page which the kernel is trying to free
3942 * @gfp_mask: memory allocation flags (and I/O mode)
3943 *
3944 * The address_space is to try to release any data against the page
a862f68a 3945 * (presumably at page->private).
cf9a2ae8 3946 *
266cf658
DH
3947 * This may also be called if PG_fscache is set on a page, indicating that the
3948 * page is known to the local caching routines.
3949 *
cf9a2ae8 3950 * The @gfp_mask argument specifies whether I/O may be performed to release
71baba4b 3951 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
cf9a2ae8 3952 *
a862f68a 3953 * Return: %1 if the release was successful, otherwise return zero.
cf9a2ae8
DH
3954 */
3955int try_to_release_page(struct page *page, gfp_t gfp_mask)
3956{
3957 struct address_space * const mapping = page->mapping;
3958
3959 BUG_ON(!PageLocked(page));
3960 if (PageWriteback(page))
3961 return 0;
3962
3963 if (mapping && mapping->a_ops->releasepage)
3964 return mapping->a_ops->releasepage(page, gfp_mask);
3965 return try_to_free_buffers(page);
3966}
3967
3968EXPORT_SYMBOL(try_to_release_page);