buffer: Add folio_buffers()
[linux-block.git] / mm / filemap.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/filemap.c
4 *
5 * Copyright (C) 1994-1999 Linus Torvalds
6 */
7
8/*
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
12 */
b95f1b31 13#include <linux/export.h>
1da177e4 14#include <linux/compiler.h>
f9fe48be 15#include <linux/dax.h>
1da177e4 16#include <linux/fs.h>
3f07c014 17#include <linux/sched/signal.h>
c22ce143 18#include <linux/uaccess.h>
c59ede7b 19#include <linux/capability.h>
1da177e4 20#include <linux/kernel_stat.h>
5a0e3ad6 21#include <linux/gfp.h>
1da177e4
LT
22#include <linux/mm.h>
23#include <linux/swap.h>
ffa65753 24#include <linux/swapops.h>
1da177e4
LT
25#include <linux/mman.h>
26#include <linux/pagemap.h>
27#include <linux/file.h>
28#include <linux/uio.h>
cfcbfb13 29#include <linux/error-injection.h>
1da177e4
LT
30#include <linux/hash.h>
31#include <linux/writeback.h>
53253383 32#include <linux/backing-dev.h>
1da177e4 33#include <linux/pagevec.h>
1da177e4 34#include <linux/security.h>
44110fe3 35#include <linux/cpuset.h>
00501b53 36#include <linux/hugetlb.h>
8a9f3ccd 37#include <linux/memcontrol.h>
c7df8ad2 38#include <linux/shmem_fs.h>
f1820361 39#include <linux/rmap.h>
b1d29ba8 40#include <linux/delayacct.h>
eb414681 41#include <linux/psi.h>
d0e6a582 42#include <linux/ramfs.h>
b9306a79 43#include <linux/page_idle.h>
ffa65753 44#include <linux/migrate.h>
f9ce0be7 45#include <asm/pgalloc.h>
de591a82 46#include <asm/tlbflush.h>
0f8053a5
NP
47#include "internal.h"
48
fe0bfaaf
RJ
49#define CREATE_TRACE_POINTS
50#include <trace/events/filemap.h>
51
1da177e4 52/*
1da177e4
LT
53 * FIXME: remove all knowledge of the buffer layer from the core VM
54 */
148f948b 55#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 56
1da177e4
LT
57#include <asm/mman.h>
58
59/*
60 * Shared mappings implemented 30.11.1994. It's not fully working yet,
61 * though.
62 *
63 * Shared mappings now work. 15.8.1995 Bruno.
64 *
65 * finished 'unifying' the page and buffer cache and SMP-threaded the
66 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
67 *
68 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
69 */
70
71/*
72 * Lock ordering:
73 *
c8c06efa 74 * ->i_mmap_rwsem (truncate_pagecache)
1da177e4 75 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91 76 * ->swap_lock (exclusive_swap_page, others)
b93b0163 77 * ->i_pages lock
1da177e4 78 *
9608703e 79 * ->i_rwsem
730633f0
JK
80 * ->invalidate_lock (acquired by fs in truncate path)
81 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
1da177e4 82 *
c1e8d7c6 83 * ->mmap_lock
c8c06efa 84 * ->i_mmap_rwsem
b8072f09 85 * ->page_table_lock or pte_lock (various, mainly in memory.c)
b93b0163 86 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
1da177e4 87 *
c1e8d7c6 88 * ->mmap_lock
730633f0
JK
89 * ->invalidate_lock (filemap_fault)
90 * ->lock_page (filemap_fault, access_process_vm)
1da177e4 91 *
9608703e 92 * ->i_rwsem (generic_perform_write)
bb523b40 93 * ->mmap_lock (fault_in_readable->do_page_fault)
1da177e4 94 *
f758eeab 95 * bdi->wb.list_lock
a66979ab 96 * sb_lock (fs/fs-writeback.c)
b93b0163 97 * ->i_pages lock (__sync_single_inode)
1da177e4 98 *
c8c06efa 99 * ->i_mmap_rwsem
1da177e4
LT
100 * ->anon_vma.lock (vma_adjust)
101 *
102 * ->anon_vma.lock
b8072f09 103 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 104 *
b8072f09 105 * ->page_table_lock or pte_lock
5d337b91 106 * ->swap_lock (try_to_unmap_one)
1da177e4 107 * ->private_lock (try_to_unmap_one)
b93b0163 108 * ->i_pages lock (try_to_unmap_one)
15b44736
HD
109 * ->lruvec->lru_lock (follow_page->mark_page_accessed)
110 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page)
1da177e4 111 * ->private_lock (page_remove_rmap->set_page_dirty)
b93b0163 112 * ->i_pages lock (page_remove_rmap->set_page_dirty)
f758eeab 113 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
250df6ed 114 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
81f8c3a4 115 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
f758eeab 116 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 117 * ->inode->i_lock (zap_pte_range->set_page_dirty)
1da177e4
LT
118 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
119 *
c8c06efa 120 * ->i_mmap_rwsem
9a3c531d 121 * ->tasklist_lock (memory_failure, collect_procs_ao)
1da177e4
LT
122 */
123
5c024e6a 124static void page_cache_delete(struct address_space *mapping,
a548b615 125 struct folio *folio, void *shadow)
91b0abe3 126{
a548b615
MWO
127 XA_STATE(xas, &mapping->i_pages, folio->index);
128 long nr = 1;
c70b647d 129
5c024e6a 130 mapping_set_update(&xas, mapping);
c70b647d 131
5c024e6a 132 /* hugetlb pages are represented by a single entry in the xarray */
a548b615
MWO
133 if (!folio_test_hugetlb(folio)) {
134 xas_set_order(&xas, folio->index, folio_order(folio));
135 nr = folio_nr_pages(folio);
5c024e6a 136 }
91b0abe3 137
a548b615 138 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
449dd698 139
5c024e6a
MW
140 xas_store(&xas, shadow);
141 xas_init_marks(&xas);
d3798ae8 142
a548b615 143 folio->mapping = NULL;
2300638b 144 /* Leave page->index set: truncation lookup relies upon it */
d3798ae8 145 mapping->nrpages -= nr;
91b0abe3
JW
146}
147
621db488
MWO
148static void filemap_unaccount_folio(struct address_space *mapping,
149 struct folio *folio)
1da177e4 150{
621db488 151 long nr;
1da177e4 152
621db488
MWO
153 VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
154 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
06b241f3
HD
155 int mapcount;
156
157 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
621db488
MWO
158 current->comm, folio_pfn(folio));
159 dump_page(&folio->page, "still mapped when deleted");
06b241f3
HD
160 dump_stack();
161 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
162
621db488 163 mapcount = page_mapcount(&folio->page);
06b241f3 164 if (mapping_exiting(mapping) &&
621db488 165 folio_ref_count(folio) >= mapcount + 2) {
06b241f3
HD
166 /*
167 * All vmas have already been torn down, so it's
621db488 168 * a good bet that actually the folio is unmapped,
06b241f3
HD
169 * and we'd prefer not to leak it: if we're wrong,
170 * some other bad page check should catch it later.
171 */
621db488
MWO
172 page_mapcount_reset(&folio->page);
173 folio_ref_sub(folio, mapcount);
06b241f3
HD
174 }
175 }
176
621db488
MWO
177 /* hugetlb folios do not participate in page cache accounting. */
178 if (folio_test_hugetlb(folio))
5ecc4d85 179 return;
09612fa6 180
621db488 181 nr = folio_nr_pages(folio);
5ecc4d85 182
621db488
MWO
183 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
184 if (folio_test_swapbacked(folio)) {
185 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
186 if (folio_test_pmd_mappable(folio))
187 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
188 } else if (folio_test_pmd_mappable(folio)) {
189 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
09d91cda 190 filemap_nr_thps_dec(mapping);
800d8c63 191 }
5ecc4d85
JK
192
193 /*
621db488
MWO
194 * At this point folio must be either written or cleaned by
195 * truncate. Dirty folio here signals a bug and loss of
5ecc4d85
JK
196 * unwritten data.
197 *
621db488
MWO
198 * This fixes dirty accounting after removing the folio entirely
199 * but leaves the dirty flag set: it has no effect for truncated
200 * folio and anyway will be cleared before returning folio to
5ecc4d85
JK
201 * buddy allocator.
202 */
621db488
MWO
203 if (WARN_ON_ONCE(folio_test_dirty(folio)))
204 folio_account_cleaned(folio, mapping,
205 inode_to_wb(mapping->host));
5ecc4d85
JK
206}
207
208/*
209 * Delete a page from the page cache and free it. Caller has to make
210 * sure the page is locked and that nobody else uses it - or that usage
b93b0163 211 * is safe. The caller must hold the i_pages lock.
5ecc4d85 212 */
452e9e69 213void __filemap_remove_folio(struct folio *folio, void *shadow)
5ecc4d85 214{
452e9e69 215 struct address_space *mapping = folio->mapping;
5ecc4d85 216
a0580c6f 217 trace_mm_filemap_delete_from_page_cache(folio);
621db488 218 filemap_unaccount_folio(mapping, folio);
a548b615 219 page_cache_delete(mapping, folio, shadow);
1da177e4
LT
220}
221
78f42660 222void filemap_free_folio(struct address_space *mapping, struct folio *folio)
59c66c5f
JK
223{
224 void (*freepage)(struct page *);
3abb28e2 225 int refs = 1;
59c66c5f
JK
226
227 freepage = mapping->a_ops->freepage;
228 if (freepage)
452e9e69 229 freepage(&folio->page);
59c66c5f 230
3abb28e2
MWO
231 if (folio_test_large(folio) && !folio_test_hugetlb(folio))
232 refs = folio_nr_pages(folio);
233 folio_put_refs(folio, refs);
59c66c5f
JK
234}
235
702cfbf9 236/**
452e9e69
MWO
237 * filemap_remove_folio - Remove folio from page cache.
238 * @folio: The folio.
702cfbf9 239 *
452e9e69
MWO
240 * This must be called only on folios that are locked and have been
241 * verified to be in the page cache. It will never put the folio into
242 * the free list because the caller has a reference on the page.
702cfbf9 243 */
452e9e69 244void filemap_remove_folio(struct folio *folio)
1da177e4 245{
452e9e69 246 struct address_space *mapping = folio->mapping;
1da177e4 247
452e9e69 248 BUG_ON(!folio_test_locked(folio));
51b8c1fe 249 spin_lock(&mapping->host->i_lock);
30472509 250 xa_lock_irq(&mapping->i_pages);
452e9e69 251 __filemap_remove_folio(folio, NULL);
30472509 252 xa_unlock_irq(&mapping->i_pages);
51b8c1fe
JW
253 if (mapping_shrinkable(mapping))
254 inode_add_lru(mapping->host);
255 spin_unlock(&mapping->host->i_lock);
6072d13c 256
452e9e69 257 filemap_free_folio(mapping, folio);
97cecb5a 258}
97cecb5a 259
aa65c29c 260/*
51dcbdac
MWO
261 * page_cache_delete_batch - delete several folios from page cache
262 * @mapping: the mapping to which folios belong
263 * @fbatch: batch of folios to delete
aa65c29c 264 *
51dcbdac
MWO
265 * The function walks over mapping->i_pages and removes folios passed in
266 * @fbatch from the mapping. The function expects @fbatch to be sorted
267 * by page index and is optimised for it to be dense.
268 * It tolerates holes in @fbatch (mapping entries at those indices are not
269 * modified).
aa65c29c 270 *
b93b0163 271 * The function expects the i_pages lock to be held.
aa65c29c 272 */
ef8e5717 273static void page_cache_delete_batch(struct address_space *mapping,
51dcbdac 274 struct folio_batch *fbatch)
aa65c29c 275{
51dcbdac 276 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
6b24ca4a 277 long total_pages = 0;
4101196b 278 int i = 0;
1afd7ae5 279 struct folio *folio;
aa65c29c 280
ef8e5717 281 mapping_set_update(&xas, mapping);
1afd7ae5 282 xas_for_each(&xas, folio, ULONG_MAX) {
51dcbdac 283 if (i >= folio_batch_count(fbatch))
aa65c29c 284 break;
4101196b
MWO
285
286 /* A swap/dax/shadow entry got inserted? Skip it. */
1afd7ae5 287 if (xa_is_value(folio))
aa65c29c 288 continue;
4101196b
MWO
289 /*
290 * A page got inserted in our range? Skip it. We have our
291 * pages locked so they are protected from being removed.
292 * If we see a page whose index is higher than ours, it
293 * means our page has been removed, which shouldn't be
294 * possible because we're holding the PageLock.
295 */
51dcbdac 296 if (folio != fbatch->folios[i]) {
1afd7ae5 297 VM_BUG_ON_FOLIO(folio->index >
51dcbdac 298 fbatch->folios[i]->index, folio);
4101196b
MWO
299 continue;
300 }
301
1afd7ae5 302 WARN_ON_ONCE(!folio_test_locked(folio));
4101196b 303
6b24ca4a 304 folio->mapping = NULL;
51dcbdac 305 /* Leave folio->index set: truncation lookup relies on it */
4101196b 306
6b24ca4a 307 i++;
ef8e5717 308 xas_store(&xas, NULL);
6b24ca4a 309 total_pages += folio_nr_pages(folio);
aa65c29c
JK
310 }
311 mapping->nrpages -= total_pages;
312}
313
314void delete_from_page_cache_batch(struct address_space *mapping,
51dcbdac 315 struct folio_batch *fbatch)
aa65c29c
JK
316{
317 int i;
aa65c29c 318
51dcbdac 319 if (!folio_batch_count(fbatch))
aa65c29c
JK
320 return;
321
51b8c1fe 322 spin_lock(&mapping->host->i_lock);
30472509 323 xa_lock_irq(&mapping->i_pages);
51dcbdac
MWO
324 for (i = 0; i < folio_batch_count(fbatch); i++) {
325 struct folio *folio = fbatch->folios[i];
aa65c29c 326
a0580c6f
MWO
327 trace_mm_filemap_delete_from_page_cache(folio);
328 filemap_unaccount_folio(mapping, folio);
aa65c29c 329 }
51dcbdac 330 page_cache_delete_batch(mapping, fbatch);
30472509 331 xa_unlock_irq(&mapping->i_pages);
51b8c1fe
JW
332 if (mapping_shrinkable(mapping))
333 inode_add_lru(mapping->host);
334 spin_unlock(&mapping->host->i_lock);
aa65c29c 335
51dcbdac
MWO
336 for (i = 0; i < folio_batch_count(fbatch); i++)
337 filemap_free_folio(mapping, fbatch->folios[i]);
aa65c29c
JK
338}
339
d72d9e2a 340int filemap_check_errors(struct address_space *mapping)
865ffef3
DM
341{
342 int ret = 0;
343 /* Check for outstanding write errors */
7fcbbaf1
JA
344 if (test_bit(AS_ENOSPC, &mapping->flags) &&
345 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
865ffef3 346 ret = -ENOSPC;
7fcbbaf1
JA
347 if (test_bit(AS_EIO, &mapping->flags) &&
348 test_and_clear_bit(AS_EIO, &mapping->flags))
865ffef3
DM
349 ret = -EIO;
350 return ret;
351}
d72d9e2a 352EXPORT_SYMBOL(filemap_check_errors);
865ffef3 353
76341cab
JL
354static int filemap_check_and_keep_errors(struct address_space *mapping)
355{
356 /* Check for outstanding write errors */
357 if (test_bit(AS_EIO, &mapping->flags))
358 return -EIO;
359 if (test_bit(AS_ENOSPC, &mapping->flags))
360 return -ENOSPC;
361 return 0;
362}
363
5a798493
JB
364/**
365 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
366 * @mapping: address space structure to write
367 * @wbc: the writeback_control controlling the writeout
368 *
369 * Call writepages on the mapping using the provided wbc to control the
370 * writeout.
371 *
372 * Return: %0 on success, negative error code otherwise.
373 */
374int filemap_fdatawrite_wbc(struct address_space *mapping,
375 struct writeback_control *wbc)
376{
377 int ret;
378
379 if (!mapping_can_writeback(mapping) ||
380 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
381 return 0;
382
383 wbc_attach_fdatawrite_inode(wbc, mapping->host);
384 ret = do_writepages(mapping, wbc);
385 wbc_detach_inode(wbc);
386 return ret;
387}
388EXPORT_SYMBOL(filemap_fdatawrite_wbc);
389
1da177e4 390/**
485bb99b 391 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
392 * @mapping: address space structure to write
393 * @start: offset in bytes where the range starts
469eb4d0 394 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 395 * @sync_mode: enable synchronous operation
1da177e4 396 *
485bb99b
RD
397 * Start writeback against all of a mapping's dirty pages that lie
398 * within the byte offsets <start, end> inclusive.
399 *
1da177e4 400 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 401 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
402 * these two operations is that if a dirty page/buffer is encountered, it must
403 * be waited upon, and not just skipped over.
a862f68a
MR
404 *
405 * Return: %0 on success, negative error code otherwise.
1da177e4 406 */
ebcf28e1
AM
407int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
408 loff_t end, int sync_mode)
1da177e4 409{
1da177e4
LT
410 struct writeback_control wbc = {
411 .sync_mode = sync_mode,
05fe478d 412 .nr_to_write = LONG_MAX,
111ebb6e
OH
413 .range_start = start,
414 .range_end = end,
1da177e4
LT
415 };
416
5a798493 417 return filemap_fdatawrite_wbc(mapping, &wbc);
1da177e4
LT
418}
419
420static inline int __filemap_fdatawrite(struct address_space *mapping,
421 int sync_mode)
422{
111ebb6e 423 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
424}
425
426int filemap_fdatawrite(struct address_space *mapping)
427{
428 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
429}
430EXPORT_SYMBOL(filemap_fdatawrite);
431
f4c0a0fd 432int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 433 loff_t end)
1da177e4
LT
434{
435 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
436}
f4c0a0fd 437EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 438
485bb99b
RD
439/**
440 * filemap_flush - mostly a non-blocking flush
441 * @mapping: target address_space
442 *
1da177e4
LT
443 * This is a mostly non-blocking flush. Not suitable for data-integrity
444 * purposes - I/O may not be started against all dirty pages.
a862f68a
MR
445 *
446 * Return: %0 on success, negative error code otherwise.
1da177e4
LT
447 */
448int filemap_flush(struct address_space *mapping)
449{
450 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
451}
452EXPORT_SYMBOL(filemap_flush);
453
7fc9e472
GR
454/**
455 * filemap_range_has_page - check if a page exists in range.
456 * @mapping: address space within which to check
457 * @start_byte: offset in bytes where the range starts
458 * @end_byte: offset in bytes where the range ends (inclusive)
459 *
460 * Find at least one page in the range supplied, usually used to check if
461 * direct writing in this range will trigger a writeback.
a862f68a
MR
462 *
463 * Return: %true if at least one page exists in the specified range,
464 * %false otherwise.
7fc9e472
GR
465 */
466bool filemap_range_has_page(struct address_space *mapping,
467 loff_t start_byte, loff_t end_byte)
468{
f7b68046 469 struct page *page;
8fa8e538
MW
470 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
471 pgoff_t max = end_byte >> PAGE_SHIFT;
7fc9e472
GR
472
473 if (end_byte < start_byte)
474 return false;
475
8fa8e538
MW
476 rcu_read_lock();
477 for (;;) {
478 page = xas_find(&xas, max);
479 if (xas_retry(&xas, page))
480 continue;
481 /* Shadow entries don't count */
482 if (xa_is_value(page))
483 continue;
484 /*
485 * We don't need to try to pin this page; we're about to
486 * release the RCU lock anyway. It is enough to know that
487 * there was a page here recently.
488 */
489 break;
490 }
491 rcu_read_unlock();
7fc9e472 492
8fa8e538 493 return page != NULL;
7fc9e472
GR
494}
495EXPORT_SYMBOL(filemap_range_has_page);
496
5e8fcc1a 497static void __filemap_fdatawait_range(struct address_space *mapping,
aa750fd7 498 loff_t start_byte, loff_t end_byte)
1da177e4 499{
09cbfeaf
KS
500 pgoff_t index = start_byte >> PAGE_SHIFT;
501 pgoff_t end = end_byte >> PAGE_SHIFT;
1da177e4
LT
502 struct pagevec pvec;
503 int nr_pages;
1da177e4 504
94004ed7 505 if (end_byte < start_byte)
5e8fcc1a 506 return;
1da177e4 507
86679820 508 pagevec_init(&pvec);
312e9d2f 509 while (index <= end) {
1da177e4
LT
510 unsigned i;
511
312e9d2f 512 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
67fd707f 513 end, PAGECACHE_TAG_WRITEBACK);
312e9d2f
JK
514 if (!nr_pages)
515 break;
516
1da177e4
LT
517 for (i = 0; i < nr_pages; i++) {
518 struct page *page = pvec.pages[i];
519
1da177e4 520 wait_on_page_writeback(page);
5e8fcc1a 521 ClearPageError(page);
1da177e4
LT
522 }
523 pagevec_release(&pvec);
524 cond_resched();
525 }
aa750fd7
JN
526}
527
528/**
529 * filemap_fdatawait_range - wait for writeback to complete
530 * @mapping: address space structure to wait for
531 * @start_byte: offset in bytes where the range starts
532 * @end_byte: offset in bytes where the range ends (inclusive)
533 *
534 * Walk the list of under-writeback pages of the given address space
535 * in the given range and wait for all of them. Check error status of
536 * the address space and return it.
537 *
538 * Since the error status of the address space is cleared by this function,
539 * callers are responsible for checking the return value and handling and/or
540 * reporting the error.
a862f68a
MR
541 *
542 * Return: error status of the address space.
aa750fd7
JN
543 */
544int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
545 loff_t end_byte)
546{
5e8fcc1a
JL
547 __filemap_fdatawait_range(mapping, start_byte, end_byte);
548 return filemap_check_errors(mapping);
1da177e4 549}
d3bccb6f
JK
550EXPORT_SYMBOL(filemap_fdatawait_range);
551
aa0bfcd9
RZ
552/**
553 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
554 * @mapping: address space structure to wait for
555 * @start_byte: offset in bytes where the range starts
556 * @end_byte: offset in bytes where the range ends (inclusive)
557 *
558 * Walk the list of under-writeback pages of the given address space in the
559 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
560 * this function does not clear error status of the address space.
561 *
562 * Use this function if callers don't handle errors themselves. Expected
563 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
564 * fsfreeze(8)
565 */
566int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
567 loff_t start_byte, loff_t end_byte)
568{
569 __filemap_fdatawait_range(mapping, start_byte, end_byte);
570 return filemap_check_and_keep_errors(mapping);
571}
572EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
573
a823e458
JL
574/**
575 * file_fdatawait_range - wait for writeback to complete
576 * @file: file pointing to address space structure to wait for
577 * @start_byte: offset in bytes where the range starts
578 * @end_byte: offset in bytes where the range ends (inclusive)
579 *
580 * Walk the list of under-writeback pages of the address space that file
581 * refers to, in the given range and wait for all of them. Check error
582 * status of the address space vs. the file->f_wb_err cursor and return it.
583 *
584 * Since the error status of the file is advanced by this function,
585 * callers are responsible for checking the return value and handling and/or
586 * reporting the error.
a862f68a
MR
587 *
588 * Return: error status of the address space vs. the file->f_wb_err cursor.
a823e458
JL
589 */
590int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
591{
592 struct address_space *mapping = file->f_mapping;
593
594 __filemap_fdatawait_range(mapping, start_byte, end_byte);
595 return file_check_and_advance_wb_err(file);
596}
597EXPORT_SYMBOL(file_fdatawait_range);
d3bccb6f 598
aa750fd7
JN
599/**
600 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
601 * @mapping: address space structure to wait for
602 *
603 * Walk the list of under-writeback pages of the given address space
604 * and wait for all of them. Unlike filemap_fdatawait(), this function
605 * does not clear error status of the address space.
606 *
607 * Use this function if callers don't handle errors themselves. Expected
608 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
609 * fsfreeze(8)
a862f68a
MR
610 *
611 * Return: error status of the address space.
aa750fd7 612 */
76341cab 613int filemap_fdatawait_keep_errors(struct address_space *mapping)
aa750fd7 614{
ffb959bb 615 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
76341cab 616 return filemap_check_and_keep_errors(mapping);
aa750fd7 617}
76341cab 618EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
aa750fd7 619
875d91b1 620/* Returns true if writeback might be needed or already in progress. */
9326c9b2 621static bool mapping_needs_writeback(struct address_space *mapping)
1da177e4 622{
875d91b1 623 return mapping->nrpages;
1da177e4 624}
1da177e4 625
4bdcd1dd
JA
626bool filemap_range_has_writeback(struct address_space *mapping,
627 loff_t start_byte, loff_t end_byte)
f8ee8909
JA
628{
629 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
630 pgoff_t max = end_byte >> PAGE_SHIFT;
631 struct page *page;
632
633 if (end_byte < start_byte)
634 return false;
635
636 rcu_read_lock();
637 xas_for_each(&xas, page, max) {
638 if (xas_retry(&xas, page))
639 continue;
640 if (xa_is_value(page))
641 continue;
642 if (PageDirty(page) || PageLocked(page) || PageWriteback(page))
643 break;
644 }
645 rcu_read_unlock();
646 return page != NULL;
63135aa3 647}
4bdcd1dd 648EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
63135aa3 649
485bb99b
RD
650/**
651 * filemap_write_and_wait_range - write out & wait on a file range
652 * @mapping: the address_space for the pages
653 * @lstart: offset in bytes where the range starts
654 * @lend: offset in bytes where the range ends (inclusive)
655 *
469eb4d0
AM
656 * Write out and wait upon file offsets lstart->lend, inclusive.
657 *
0e056eb5 658 * Note that @lend is inclusive (describes the last byte to be written) so
469eb4d0 659 * that this function can be used to write to the very end-of-file (end = -1).
a862f68a
MR
660 *
661 * Return: error status of the address space.
469eb4d0 662 */
1da177e4
LT
663int filemap_write_and_wait_range(struct address_space *mapping,
664 loff_t lstart, loff_t lend)
665{
28fd1298 666 int err = 0;
1da177e4 667
9326c9b2 668 if (mapping_needs_writeback(mapping)) {
28fd1298
OH
669 err = __filemap_fdatawrite_range(mapping, lstart, lend,
670 WB_SYNC_ALL);
ddf8f376
IW
671 /*
672 * Even if the above returned error, the pages may be
673 * written partially (e.g. -ENOSPC), so we wait for it.
674 * But the -EIO is special case, it may indicate the worst
675 * thing (e.g. bug) happened, so we avoid waiting for it.
676 */
28fd1298 677 if (err != -EIO) {
94004ed7
CH
678 int err2 = filemap_fdatawait_range(mapping,
679 lstart, lend);
28fd1298
OH
680 if (!err)
681 err = err2;
cbeaf951
JL
682 } else {
683 /* Clear any previously stored errors */
684 filemap_check_errors(mapping);
28fd1298 685 }
865ffef3
DM
686 } else {
687 err = filemap_check_errors(mapping);
1da177e4 688 }
28fd1298 689 return err;
1da177e4 690}
f6995585 691EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 692
5660e13d
JL
693void __filemap_set_wb_err(struct address_space *mapping, int err)
694{
3acdfd28 695 errseq_t eseq = errseq_set(&mapping->wb_err, err);
5660e13d
JL
696
697 trace_filemap_set_wb_err(mapping, eseq);
698}
699EXPORT_SYMBOL(__filemap_set_wb_err);
700
701/**
702 * file_check_and_advance_wb_err - report wb error (if any) that was previously
703 * and advance wb_err to current one
704 * @file: struct file on which the error is being reported
705 *
706 * When userland calls fsync (or something like nfsd does the equivalent), we
707 * want to report any writeback errors that occurred since the last fsync (or
708 * since the file was opened if there haven't been any).
709 *
710 * Grab the wb_err from the mapping. If it matches what we have in the file,
711 * then just quickly return 0. The file is all caught up.
712 *
713 * If it doesn't match, then take the mapping value, set the "seen" flag in
714 * it and try to swap it into place. If it works, or another task beat us
715 * to it with the new value, then update the f_wb_err and return the error
716 * portion. The error at this point must be reported via proper channels
717 * (a'la fsync, or NFS COMMIT operation, etc.).
718 *
719 * While we handle mapping->wb_err with atomic operations, the f_wb_err
720 * value is protected by the f_lock since we must ensure that it reflects
721 * the latest value swapped in for this file descriptor.
a862f68a
MR
722 *
723 * Return: %0 on success, negative error code otherwise.
5660e13d
JL
724 */
725int file_check_and_advance_wb_err(struct file *file)
726{
727 int err = 0;
728 errseq_t old = READ_ONCE(file->f_wb_err);
729 struct address_space *mapping = file->f_mapping;
730
731 /* Locklessly handle the common case where nothing has changed */
732 if (errseq_check(&mapping->wb_err, old)) {
733 /* Something changed, must use slow path */
734 spin_lock(&file->f_lock);
735 old = file->f_wb_err;
736 err = errseq_check_and_advance(&mapping->wb_err,
737 &file->f_wb_err);
738 trace_file_check_and_advance_wb_err(file, old);
739 spin_unlock(&file->f_lock);
740 }
f4e222c5
JL
741
742 /*
743 * We're mostly using this function as a drop in replacement for
744 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
745 * that the legacy code would have had on these flags.
746 */
747 clear_bit(AS_EIO, &mapping->flags);
748 clear_bit(AS_ENOSPC, &mapping->flags);
5660e13d
JL
749 return err;
750}
751EXPORT_SYMBOL(file_check_and_advance_wb_err);
752
753/**
754 * file_write_and_wait_range - write out & wait on a file range
755 * @file: file pointing to address_space with pages
756 * @lstart: offset in bytes where the range starts
757 * @lend: offset in bytes where the range ends (inclusive)
758 *
759 * Write out and wait upon file offsets lstart->lend, inclusive.
760 *
761 * Note that @lend is inclusive (describes the last byte to be written) so
762 * that this function can be used to write to the very end-of-file (end = -1).
763 *
764 * After writing out and waiting on the data, we check and advance the
765 * f_wb_err cursor to the latest value, and return any errors detected there.
a862f68a
MR
766 *
767 * Return: %0 on success, negative error code otherwise.
5660e13d
JL
768 */
769int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
770{
771 int err = 0, err2;
772 struct address_space *mapping = file->f_mapping;
773
9326c9b2 774 if (mapping_needs_writeback(mapping)) {
5660e13d
JL
775 err = __filemap_fdatawrite_range(mapping, lstart, lend,
776 WB_SYNC_ALL);
777 /* See comment of filemap_write_and_wait() */
778 if (err != -EIO)
779 __filemap_fdatawait_range(mapping, lstart, lend);
780 }
781 err2 = file_check_and_advance_wb_err(file);
782 if (!err)
783 err = err2;
784 return err;
785}
786EXPORT_SYMBOL(file_write_and_wait_range);
787
ef6a3c63
MS
788/**
789 * replace_page_cache_page - replace a pagecache page with a new one
790 * @old: page to be replaced
791 * @new: page to replace with
ef6a3c63
MS
792 *
793 * This function replaces a page in the pagecache with a new one. On
794 * success it acquires the pagecache reference for the new page and
795 * drops it for the old page. Both the old and new pages must be
796 * locked. This function does not add the new page to the LRU, the
797 * caller must do that.
798 *
74d60958 799 * The remove + add is atomic. This function cannot fail.
ef6a3c63 800 */
1f7ef657 801void replace_page_cache_page(struct page *old, struct page *new)
ef6a3c63 802{
d21bba2b
MWO
803 struct folio *fold = page_folio(old);
804 struct folio *fnew = page_folio(new);
74d60958
MW
805 struct address_space *mapping = old->mapping;
806 void (*freepage)(struct page *) = mapping->a_ops->freepage;
807 pgoff_t offset = old->index;
808 XA_STATE(xas, &mapping->i_pages, offset);
ef6a3c63 809
309381fe
SL
810 VM_BUG_ON_PAGE(!PageLocked(old), old);
811 VM_BUG_ON_PAGE(!PageLocked(new), new);
812 VM_BUG_ON_PAGE(new->mapping, new);
ef6a3c63 813
74d60958
MW
814 get_page(new);
815 new->mapping = mapping;
816 new->index = offset;
ef6a3c63 817
d21bba2b 818 mem_cgroup_migrate(fold, fnew);
0d1c2072 819
30472509 820 xas_lock_irq(&xas);
74d60958 821 xas_store(&xas, new);
4165b9b4 822
74d60958
MW
823 old->mapping = NULL;
824 /* hugetlb pages do not participate in page cache accounting. */
825 if (!PageHuge(old))
0d1c2072 826 __dec_lruvec_page_state(old, NR_FILE_PAGES);
74d60958 827 if (!PageHuge(new))
0d1c2072 828 __inc_lruvec_page_state(new, NR_FILE_PAGES);
74d60958 829 if (PageSwapBacked(old))
0d1c2072 830 __dec_lruvec_page_state(old, NR_SHMEM);
74d60958 831 if (PageSwapBacked(new))
0d1c2072 832 __inc_lruvec_page_state(new, NR_SHMEM);
30472509 833 xas_unlock_irq(&xas);
74d60958
MW
834 if (freepage)
835 freepage(old);
836 put_page(old);
ef6a3c63
MS
837}
838EXPORT_SYMBOL_GPL(replace_page_cache_page);
839
9dd3d069
MWO
840noinline int __filemap_add_folio(struct address_space *mapping,
841 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
1da177e4 842{
9dd3d069
MWO
843 XA_STATE(xas, &mapping->i_pages, index);
844 int huge = folio_test_hugetlb(folio);
e286781d 845 int error;
da74240e 846 bool charged = false;
e286781d 847
9dd3d069
MWO
848 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
849 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
74d60958 850 mapping_set_update(&xas, mapping);
e286781d 851
9dd3d069
MWO
852 folio_get(folio);
853 folio->mapping = mapping;
854 folio->index = index;
66a0c8ee 855
3fea5a49 856 if (!huge) {
9dd3d069
MWO
857 error = mem_cgroup_charge(folio, NULL, gfp);
858 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
3fea5a49
JW
859 if (error)
860 goto error;
da74240e 861 charged = true;
3fea5a49
JW
862 }
863
198b62f8
MWO
864 gfp &= GFP_RECLAIM_MASK;
865
74d60958 866 do {
198b62f8
MWO
867 unsigned int order = xa_get_order(xas.xa, xas.xa_index);
868 void *entry, *old = NULL;
869
9dd3d069 870 if (order > folio_order(folio))
198b62f8
MWO
871 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
872 order, gfp);
74d60958 873 xas_lock_irq(&xas);
198b62f8
MWO
874 xas_for_each_conflict(&xas, entry) {
875 old = entry;
876 if (!xa_is_value(entry)) {
877 xas_set_err(&xas, -EEXIST);
878 goto unlock;
879 }
880 }
881
882 if (old) {
883 if (shadowp)
884 *shadowp = old;
885 /* entry may have been split before we acquired lock */
886 order = xa_get_order(xas.xa, xas.xa_index);
9dd3d069 887 if (order > folio_order(folio)) {
198b62f8
MWO
888 xas_split(&xas, old, order);
889 xas_reset(&xas);
890 }
891 }
892
9dd3d069 893 xas_store(&xas, folio);
74d60958
MW
894 if (xas_error(&xas))
895 goto unlock;
896
74d60958
MW
897 mapping->nrpages++;
898
899 /* hugetlb pages do not participate in page cache accounting */
900 if (!huge)
9dd3d069 901 __lruvec_stat_add_folio(folio, NR_FILE_PAGES);
74d60958
MW
902unlock:
903 xas_unlock_irq(&xas);
198b62f8 904 } while (xas_nomem(&xas, gfp));
74d60958 905
3fea5a49
JW
906 if (xas_error(&xas)) {
907 error = xas_error(&xas);
da74240e 908 if (charged)
9dd3d069 909 mem_cgroup_uncharge(folio);
74d60958 910 goto error;
3fea5a49 911 }
4165b9b4 912
a0580c6f 913 trace_mm_filemap_add_to_page_cache(folio);
66a0c8ee 914 return 0;
74d60958 915error:
9dd3d069 916 folio->mapping = NULL;
66a0c8ee 917 /* Leave page->index set: truncation relies upon it */
9dd3d069 918 folio_put(folio);
3fea5a49 919 return error;
1da177e4 920}
9dd3d069 921ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
a528910e
JW
922
923/**
924 * add_to_page_cache_locked - add a locked page to the pagecache
925 * @page: page to add
926 * @mapping: the page's address_space
927 * @offset: page index
928 * @gfp_mask: page allocation mode
929 *
930 * This function is used to add a page to the pagecache. It must be locked.
931 * This function does not add the page to the LRU. The caller must do that.
a862f68a
MR
932 *
933 * Return: %0 on success, negative error code otherwise.
a528910e
JW
934 */
935int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
936 pgoff_t offset, gfp_t gfp_mask)
937{
9dd3d069 938 return __filemap_add_folio(mapping, page_folio(page), offset,
a528910e
JW
939 gfp_mask, NULL);
940}
e286781d 941EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4 942
9dd3d069
MWO
943int filemap_add_folio(struct address_space *mapping, struct folio *folio,
944 pgoff_t index, gfp_t gfp)
1da177e4 945{
a528910e 946 void *shadow = NULL;
4f98a2fe
RR
947 int ret;
948
9dd3d069
MWO
949 __folio_set_locked(folio);
950 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
a528910e 951 if (unlikely(ret))
9dd3d069 952 __folio_clear_locked(folio);
a528910e
JW
953 else {
954 /*
9dd3d069 955 * The folio might have been evicted from cache only
a528910e 956 * recently, in which case it should be activated like
9dd3d069
MWO
957 * any other repeatedly accessed folio.
958 * The exception is folios getting rewritten; evicting other
f0281a00
RR
959 * data from the working set, only to cache data that will
960 * get overwritten with something else, is a waste of memory.
a528910e 961 */
9dd3d069
MWO
962 WARN_ON_ONCE(folio_test_active(folio));
963 if (!(gfp & __GFP_WRITE) && shadow)
964 workingset_refault(folio, shadow);
965 folio_add_lru(folio);
a528910e 966 }
1da177e4
LT
967 return ret;
968}
9dd3d069 969EXPORT_SYMBOL_GPL(filemap_add_folio);
1da177e4 970
44110fe3 971#ifdef CONFIG_NUMA
bb3c579e 972struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
44110fe3 973{
c0ff7453 974 int n;
bb3c579e 975 struct folio *folio;
c0ff7453 976
44110fe3 977 if (cpuset_do_page_mem_spread()) {
cc9a6c87
MG
978 unsigned int cpuset_mems_cookie;
979 do {
d26914d1 980 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 981 n = cpuset_mem_spread_node();
bb3c579e
MWO
982 folio = __folio_alloc_node(gfp, order, n);
983 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
cc9a6c87 984
bb3c579e 985 return folio;
44110fe3 986 }
bb3c579e 987 return folio_alloc(gfp, order);
44110fe3 988}
bb3c579e 989EXPORT_SYMBOL(filemap_alloc_folio);
44110fe3
PJ
990#endif
991
7506ae6a
JK
992/*
993 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
994 *
995 * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
996 *
997 * @mapping1: the first mapping to lock
998 * @mapping2: the second mapping to lock
999 */
1000void filemap_invalidate_lock_two(struct address_space *mapping1,
1001 struct address_space *mapping2)
1002{
1003 if (mapping1 > mapping2)
1004 swap(mapping1, mapping2);
1005 if (mapping1)
1006 down_write(&mapping1->invalidate_lock);
1007 if (mapping2 && mapping1 != mapping2)
1008 down_write_nested(&mapping2->invalidate_lock, 1);
1009}
1010EXPORT_SYMBOL(filemap_invalidate_lock_two);
1011
1012/*
1013 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1014 *
1015 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1016 *
1017 * @mapping1: the first mapping to unlock
1018 * @mapping2: the second mapping to unlock
1019 */
1020void filemap_invalidate_unlock_two(struct address_space *mapping1,
1021 struct address_space *mapping2)
1022{
1023 if (mapping1)
1024 up_write(&mapping1->invalidate_lock);
1025 if (mapping2 && mapping1 != mapping2)
1026 up_write(&mapping2->invalidate_lock);
1027}
1028EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1029
1da177e4
LT
1030/*
1031 * In order to wait for pages to become available there must be
1032 * waitqueues associated with pages. By using a hash table of
1033 * waitqueues where the bucket discipline is to maintain all
1034 * waiters on the same queue and wake all when any of the pages
1035 * become available, and for the woken contexts to check to be
1036 * sure the appropriate page became available, this saves space
1037 * at a cost of "thundering herd" phenomena during rare hash
1038 * collisions.
1039 */
62906027
NP
1040#define PAGE_WAIT_TABLE_BITS 8
1041#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
df4d4f12 1042static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
62906027 1043
df4d4f12 1044static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1da177e4 1045{
df4d4f12 1046 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1da177e4 1047}
1da177e4 1048
62906027 1049void __init pagecache_init(void)
1da177e4 1050{
62906027 1051 int i;
1da177e4 1052
62906027 1053 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
df4d4f12 1054 init_waitqueue_head(&folio_wait_table[i]);
62906027
NP
1055
1056 page_writeback_init();
1da177e4 1057}
1da177e4 1058
5ef64cc8
LT
1059/*
1060 * The page wait code treats the "wait->flags" somewhat unusually, because
5868ec26 1061 * we have multiple different kinds of waits, not just the usual "exclusive"
5ef64cc8
LT
1062 * one.
1063 *
1064 * We have:
1065 *
1066 * (a) no special bits set:
1067 *
1068 * We're just waiting for the bit to be released, and when a waker
1069 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1070 * and remove it from the wait queue.
1071 *
1072 * Simple and straightforward.
1073 *
1074 * (b) WQ_FLAG_EXCLUSIVE:
1075 *
1076 * The waiter is waiting to get the lock, and only one waiter should
1077 * be woken up to avoid any thundering herd behavior. We'll set the
1078 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1079 *
1080 * This is the traditional exclusive wait.
1081 *
5868ec26 1082 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
5ef64cc8
LT
1083 *
1084 * The waiter is waiting to get the bit, and additionally wants the
1085 * lock to be transferred to it for fair lock behavior. If the lock
1086 * cannot be taken, we stop walking the wait queue without waking
1087 * the waiter.
1088 *
1089 * This is the "fair lock handoff" case, and in addition to setting
1090 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1091 * that it now has the lock.
1092 */
ac6424b9 1093static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
f62e00cc 1094{
5ef64cc8 1095 unsigned int flags;
62906027
NP
1096 struct wait_page_key *key = arg;
1097 struct wait_page_queue *wait_page
1098 = container_of(wait, struct wait_page_queue, wait);
1099
cdc8fcb4 1100 if (!wake_page_match(wait_page, key))
62906027 1101 return 0;
3510ca20 1102
9a1ea439 1103 /*
5ef64cc8
LT
1104 * If it's a lock handoff wait, we get the bit for it, and
1105 * stop walking (and do not wake it up) if we can't.
9a1ea439 1106 */
5ef64cc8
LT
1107 flags = wait->flags;
1108 if (flags & WQ_FLAG_EXCLUSIVE) {
df4d4f12 1109 if (test_bit(key->bit_nr, &key->folio->flags))
2a9127fc 1110 return -1;
5ef64cc8 1111 if (flags & WQ_FLAG_CUSTOM) {
df4d4f12 1112 if (test_and_set_bit(key->bit_nr, &key->folio->flags))
5ef64cc8
LT
1113 return -1;
1114 flags |= WQ_FLAG_DONE;
1115 }
2a9127fc 1116 }
f62e00cc 1117
5ef64cc8
LT
1118 /*
1119 * We are holding the wait-queue lock, but the waiter that
1120 * is waiting for this will be checking the flags without
1121 * any locking.
1122 *
1123 * So update the flags atomically, and wake up the waiter
1124 * afterwards to avoid any races. This store-release pairs
101c0bf6 1125 * with the load-acquire in folio_wait_bit_common().
5ef64cc8
LT
1126 */
1127 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
2a9127fc
LT
1128 wake_up_state(wait->private, mode);
1129
1130 /*
1131 * Ok, we have successfully done what we're waiting for,
1132 * and we can unconditionally remove the wait entry.
1133 *
5ef64cc8
LT
1134 * Note that this pairs with the "finish_wait()" in the
1135 * waiter, and has to be the absolute last thing we do.
1136 * After this list_del_init(&wait->entry) the wait entry
2a9127fc
LT
1137 * might be de-allocated and the process might even have
1138 * exited.
2a9127fc 1139 */
c6fe44d9 1140 list_del_init_careful(&wait->entry);
5ef64cc8 1141 return (flags & WQ_FLAG_EXCLUSIVE) != 0;
f62e00cc
KM
1142}
1143
6974d7c9 1144static void folio_wake_bit(struct folio *folio, int bit_nr)
cbbce822 1145{
df4d4f12 1146 wait_queue_head_t *q = folio_waitqueue(folio);
62906027
NP
1147 struct wait_page_key key;
1148 unsigned long flags;
11a19c7b 1149 wait_queue_entry_t bookmark;
cbbce822 1150
df4d4f12 1151 key.folio = folio;
62906027
NP
1152 key.bit_nr = bit_nr;
1153 key.page_match = 0;
1154
11a19c7b
TC
1155 bookmark.flags = 0;
1156 bookmark.private = NULL;
1157 bookmark.func = NULL;
1158 INIT_LIST_HEAD(&bookmark.entry);
1159
62906027 1160 spin_lock_irqsave(&q->lock, flags);
11a19c7b
TC
1161 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1162
1163 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1164 /*
1165 * Take a breather from holding the lock,
1166 * allow pages that finish wake up asynchronously
1167 * to acquire the lock and remove themselves
1168 * from wait queue
1169 */
1170 spin_unlock_irqrestore(&q->lock, flags);
1171 cpu_relax();
1172 spin_lock_irqsave(&q->lock, flags);
1173 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1174 }
1175
62906027
NP
1176 /*
1177 * It is possible for other pages to have collided on the waitqueue
1178 * hash, so in that case check for a page match. That prevents a long-
1179 * term waiter
1180 *
1181 * It is still possible to miss a case here, when we woke page waiters
1182 * and removed them from the waitqueue, but there are still other
1183 * page waiters.
1184 */
1185 if (!waitqueue_active(q) || !key.page_match) {
6974d7c9 1186 folio_clear_waiters(folio);
62906027
NP
1187 /*
1188 * It's possible to miss clearing Waiters here, when we woke
1189 * our page waiters, but the hashed waitqueue has waiters for
1190 * other pages on it.
1191 *
1192 * That's okay, it's a rare case. The next waker will clear it.
1193 */
1194 }
1195 spin_unlock_irqrestore(&q->lock, flags);
1196}
74d81bfa 1197
4268b480 1198static void folio_wake(struct folio *folio, int bit)
74d81bfa 1199{
4268b480 1200 if (!folio_test_waiters(folio))
74d81bfa 1201 return;
6974d7c9 1202 folio_wake_bit(folio, bit);
74d81bfa 1203}
62906027 1204
9a1ea439 1205/*
101c0bf6 1206 * A choice of three behaviors for folio_wait_bit_common():
9a1ea439
HD
1207 */
1208enum behavior {
1209 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
7c23c782 1210 * __folio_lock() waiting on then setting PG_locked.
9a1ea439
HD
1211 */
1212 SHARED, /* Hold ref to page and check the bit when woken, like
9f2b04a2 1213 * folio_wait_writeback() waiting on PG_writeback.
9a1ea439
HD
1214 */
1215 DROP, /* Drop ref to page before wait, no check when woken,
9f2b04a2 1216 * like folio_put_wait_locked() on PG_locked.
9a1ea439
HD
1217 */
1218};
1219
2a9127fc 1220/*
101c0bf6 1221 * Attempt to check (or get) the folio flag, and mark us done
5ef64cc8 1222 * if successful.
2a9127fc 1223 */
101c0bf6 1224static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
2a9127fc
LT
1225 struct wait_queue_entry *wait)
1226{
1227 if (wait->flags & WQ_FLAG_EXCLUSIVE) {
101c0bf6 1228 if (test_and_set_bit(bit_nr, &folio->flags))
2a9127fc 1229 return false;
101c0bf6 1230 } else if (test_bit(bit_nr, &folio->flags))
2a9127fc
LT
1231 return false;
1232
5ef64cc8 1233 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
2a9127fc
LT
1234 return true;
1235}
1236
5ef64cc8
LT
1237/* How many times do we accept lock stealing from under a waiter? */
1238int sysctl_page_lock_unfairness = 5;
1239
101c0bf6
MWO
1240static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1241 int state, enum behavior behavior)
62906027 1242{
df4d4f12 1243 wait_queue_head_t *q = folio_waitqueue(folio);
5ef64cc8 1244 int unfairness = sysctl_page_lock_unfairness;
62906027 1245 struct wait_page_queue wait_page;
ac6424b9 1246 wait_queue_entry_t *wait = &wait_page.wait;
b1d29ba8 1247 bool thrashing = false;
9a1ea439 1248 bool delayacct = false;
eb414681 1249 unsigned long pflags;
62906027 1250
eb414681 1251 if (bit_nr == PG_locked &&
101c0bf6
MWO
1252 !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1253 if (!folio_test_swapbacked(folio)) {
eb414681 1254 delayacct_thrashing_start();
9a1ea439
HD
1255 delayacct = true;
1256 }
eb414681 1257 psi_memstall_enter(&pflags);
b1d29ba8
JW
1258 thrashing = true;
1259 }
1260
62906027
NP
1261 init_wait(wait);
1262 wait->func = wake_page_function;
df4d4f12 1263 wait_page.folio = folio;
62906027
NP
1264 wait_page.bit_nr = bit_nr;
1265
5ef64cc8
LT
1266repeat:
1267 wait->flags = 0;
1268 if (behavior == EXCLUSIVE) {
1269 wait->flags = WQ_FLAG_EXCLUSIVE;
1270 if (--unfairness < 0)
1271 wait->flags |= WQ_FLAG_CUSTOM;
1272 }
1273
2a9127fc
LT
1274 /*
1275 * Do one last check whether we can get the
1276 * page bit synchronously.
1277 *
101c0bf6 1278 * Do the folio_set_waiters() marking before that
2a9127fc
LT
1279 * to let any waker we _just_ missed know they
1280 * need to wake us up (otherwise they'll never
1281 * even go to the slow case that looks at the
1282 * page queue), and add ourselves to the wait
1283 * queue if we need to sleep.
1284 *
1285 * This part needs to be done under the queue
1286 * lock to avoid races.
1287 */
1288 spin_lock_irq(&q->lock);
101c0bf6
MWO
1289 folio_set_waiters(folio);
1290 if (!folio_trylock_flag(folio, bit_nr, wait))
2a9127fc
LT
1291 __add_wait_queue_entry_tail(q, wait);
1292 spin_unlock_irq(&q->lock);
62906027 1293
2a9127fc
LT
1294 /*
1295 * From now on, all the logic will be based on
5ef64cc8
LT
1296 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1297 * see whether the page bit testing has already
1298 * been done by the wake function.
2a9127fc 1299 *
101c0bf6 1300 * We can drop our reference to the folio.
2a9127fc
LT
1301 */
1302 if (behavior == DROP)
101c0bf6 1303 folio_put(folio);
62906027 1304
5ef64cc8
LT
1305 /*
1306 * Note that until the "finish_wait()", or until
1307 * we see the WQ_FLAG_WOKEN flag, we need to
1308 * be very careful with the 'wait->flags', because
1309 * we may race with a waker that sets them.
1310 */
2a9127fc 1311 for (;;) {
5ef64cc8
LT
1312 unsigned int flags;
1313
62906027
NP
1314 set_current_state(state);
1315
5ef64cc8
LT
1316 /* Loop until we've been woken or interrupted */
1317 flags = smp_load_acquire(&wait->flags);
1318 if (!(flags & WQ_FLAG_WOKEN)) {
1319 if (signal_pending_state(state, current))
1320 break;
1321
1322 io_schedule();
1323 continue;
1324 }
1325
1326 /* If we were non-exclusive, we're done */
1327 if (behavior != EXCLUSIVE)
a8b169af 1328 break;
9a1ea439 1329
5ef64cc8
LT
1330 /* If the waker got the lock for us, we're done */
1331 if (flags & WQ_FLAG_DONE)
9a1ea439 1332 break;
2a9127fc 1333
5ef64cc8
LT
1334 /*
1335 * Otherwise, if we're getting the lock, we need to
1336 * try to get it ourselves.
1337 *
1338 * And if that fails, we'll have to retry this all.
1339 */
101c0bf6 1340 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
5ef64cc8
LT
1341 goto repeat;
1342
1343 wait->flags |= WQ_FLAG_DONE;
1344 break;
62906027
NP
1345 }
1346
5ef64cc8
LT
1347 /*
1348 * If a signal happened, this 'finish_wait()' may remove the last
101c0bf6 1349 * waiter from the wait-queues, but the folio waiters bit will remain
5ef64cc8
LT
1350 * set. That's ok. The next wakeup will take care of it, and trying
1351 * to do it here would be difficult and prone to races.
1352 */
62906027
NP
1353 finish_wait(q, wait);
1354
eb414681 1355 if (thrashing) {
9a1ea439 1356 if (delayacct)
eb414681
JW
1357 delayacct_thrashing_end();
1358 psi_memstall_leave(&pflags);
1359 }
b1d29ba8 1360
62906027 1361 /*
5ef64cc8
LT
1362 * NOTE! The wait->flags weren't stable until we've done the
1363 * 'finish_wait()', and we could have exited the loop above due
1364 * to a signal, and had a wakeup event happen after the signal
1365 * test but before the 'finish_wait()'.
1366 *
1367 * So only after the finish_wait() can we reliably determine
1368 * if we got woken up or not, so we can now figure out the final
1369 * return value based on that state without races.
1370 *
1371 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1372 * waiter, but an exclusive one requires WQ_FLAG_DONE.
62906027 1373 */
5ef64cc8
LT
1374 if (behavior == EXCLUSIVE)
1375 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
62906027 1376
2a9127fc 1377 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
62906027
NP
1378}
1379
ffa65753
AP
1380#ifdef CONFIG_MIGRATION
1381/**
1382 * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1383 * @entry: migration swap entry.
1384 * @ptep: mapped pte pointer. Will return with the ptep unmapped. Only required
1385 * for pte entries, pass NULL for pmd entries.
1386 * @ptl: already locked ptl. This function will drop the lock.
1387 *
1388 * Wait for a migration entry referencing the given page to be removed. This is
1389 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except
1390 * this can be called without taking a reference on the page. Instead this
1391 * should be called while holding the ptl for the migration entry referencing
1392 * the page.
1393 *
1394 * Returns after unmapping and unlocking the pte/ptl with pte_unmap_unlock().
1395 *
1396 * This follows the same logic as folio_wait_bit_common() so see the comments
1397 * there.
1398 */
1399void migration_entry_wait_on_locked(swp_entry_t entry, pte_t *ptep,
1400 spinlock_t *ptl)
1401{
1402 struct wait_page_queue wait_page;
1403 wait_queue_entry_t *wait = &wait_page.wait;
1404 bool thrashing = false;
1405 bool delayacct = false;
1406 unsigned long pflags;
1407 wait_queue_head_t *q;
1408 struct folio *folio = page_folio(pfn_swap_entry_to_page(entry));
1409
1410 q = folio_waitqueue(folio);
1411 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1412 if (!folio_test_swapbacked(folio)) {
1413 delayacct_thrashing_start();
1414 delayacct = true;
1415 }
1416 psi_memstall_enter(&pflags);
1417 thrashing = true;
1418 }
1419
1420 init_wait(wait);
1421 wait->func = wake_page_function;
1422 wait_page.folio = folio;
1423 wait_page.bit_nr = PG_locked;
1424 wait->flags = 0;
1425
1426 spin_lock_irq(&q->lock);
1427 folio_set_waiters(folio);
1428 if (!folio_trylock_flag(folio, PG_locked, wait))
1429 __add_wait_queue_entry_tail(q, wait);
1430 spin_unlock_irq(&q->lock);
1431
1432 /*
1433 * If a migration entry exists for the page the migration path must hold
1434 * a valid reference to the page, and it must take the ptl to remove the
1435 * migration entry. So the page is valid until the ptl is dropped.
1436 */
1437 if (ptep)
1438 pte_unmap_unlock(ptep, ptl);
1439 else
1440 spin_unlock(ptl);
1441
1442 for (;;) {
1443 unsigned int flags;
1444
1445 set_current_state(TASK_UNINTERRUPTIBLE);
1446
1447 /* Loop until we've been woken or interrupted */
1448 flags = smp_load_acquire(&wait->flags);
1449 if (!(flags & WQ_FLAG_WOKEN)) {
1450 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1451 break;
1452
1453 io_schedule();
1454 continue;
1455 }
1456 break;
1457 }
1458
1459 finish_wait(q, wait);
1460
1461 if (thrashing) {
1462 if (delayacct)
1463 delayacct_thrashing_end();
1464 psi_memstall_leave(&pflags);
1465 }
1466}
1467#endif
1468
101c0bf6 1469void folio_wait_bit(struct folio *folio, int bit_nr)
62906027 1470{
101c0bf6 1471 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
62906027 1472}
101c0bf6 1473EXPORT_SYMBOL(folio_wait_bit);
62906027 1474
101c0bf6 1475int folio_wait_bit_killable(struct folio *folio, int bit_nr)
62906027 1476{
101c0bf6 1477 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
cbbce822 1478}
101c0bf6 1479EXPORT_SYMBOL(folio_wait_bit_killable);
cbbce822 1480
9a1ea439 1481/**
9f2b04a2
MWO
1482 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1483 * @folio: The folio to wait for.
48054625 1484 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
9a1ea439 1485 *
9f2b04a2 1486 * The caller should hold a reference on @folio. They expect the page to
9a1ea439 1487 * become unlocked relatively soon, but do not wish to hold up migration
9f2b04a2 1488 * (for example) by holding the reference while waiting for the folio to
9a1ea439 1489 * come unlocked. After this function returns, the caller should not
9f2b04a2 1490 * dereference @folio.
48054625 1491 *
9f2b04a2 1492 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
9a1ea439 1493 */
9f2b04a2 1494int folio_put_wait_locked(struct folio *folio, int state)
9a1ea439 1495{
9f2b04a2 1496 return folio_wait_bit_common(folio, PG_locked, state, DROP);
9a1ea439
HD
1497}
1498
385e1ca5 1499/**
df4d4f12
MWO
1500 * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1501 * @folio: Folio defining the wait queue of interest
697f619f 1502 * @waiter: Waiter to add to the queue
385e1ca5 1503 *
df4d4f12 1504 * Add an arbitrary @waiter to the wait queue for the nominated @folio.
385e1ca5 1505 */
df4d4f12 1506void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
385e1ca5 1507{
df4d4f12 1508 wait_queue_head_t *q = folio_waitqueue(folio);
385e1ca5
DH
1509 unsigned long flags;
1510
1511 spin_lock_irqsave(&q->lock, flags);
9c3a815f 1512 __add_wait_queue_entry_tail(q, waiter);
df4d4f12 1513 folio_set_waiters(folio);
385e1ca5
DH
1514 spin_unlock_irqrestore(&q->lock, flags);
1515}
df4d4f12 1516EXPORT_SYMBOL_GPL(folio_add_wait_queue);
385e1ca5 1517
b91e1302
LT
1518#ifndef clear_bit_unlock_is_negative_byte
1519
1520/*
1521 * PG_waiters is the high bit in the same byte as PG_lock.
1522 *
1523 * On x86 (and on many other architectures), we can clear PG_lock and
1524 * test the sign bit at the same time. But if the architecture does
1525 * not support that special operation, we just do this all by hand
1526 * instead.
1527 *
1528 * The read of PG_waiters has to be after (or concurrently with) PG_locked
ffceeb62 1529 * being cleared, but a memory barrier should be unnecessary since it is
b91e1302
LT
1530 * in the same byte as PG_locked.
1531 */
1532static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1533{
1534 clear_bit_unlock(nr, mem);
1535 /* smp_mb__after_atomic(); */
98473f9f 1536 return test_bit(PG_waiters, mem);
b91e1302
LT
1537}
1538
1539#endif
1540
1da177e4 1541/**
4e136428
MWO
1542 * folio_unlock - Unlock a locked folio.
1543 * @folio: The folio.
1544 *
1545 * Unlocks the folio and wakes up any thread sleeping on the page lock.
1546 *
1547 * Context: May be called from interrupt or process context. May not be
1548 * called from NMI context.
1da177e4 1549 */
4e136428 1550void folio_unlock(struct folio *folio)
1da177e4 1551{
4e136428 1552 /* Bit 7 allows x86 to check the byte's sign bit */
b91e1302 1553 BUILD_BUG_ON(PG_waiters != 7);
4e136428
MWO
1554 BUILD_BUG_ON(PG_locked > 7);
1555 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1556 if (clear_bit_unlock_is_negative_byte(PG_locked, folio_flags(folio, 0)))
6974d7c9 1557 folio_wake_bit(folio, PG_locked);
1da177e4 1558}
4e136428 1559EXPORT_SYMBOL(folio_unlock);
1da177e4 1560
73e10ded 1561/**
b47393f8
MWO
1562 * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1563 * @folio: The folio.
73e10ded 1564 *
b47393f8
MWO
1565 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1566 * it. The folio reference held for PG_private_2 being set is released.
73e10ded 1567 *
b47393f8
MWO
1568 * This is, for example, used when a netfs folio is being written to a local
1569 * disk cache, thereby allowing writes to the cache for the same folio to be
73e10ded
DH
1570 * serialised.
1571 */
b47393f8 1572void folio_end_private_2(struct folio *folio)
73e10ded 1573{
6974d7c9
MWO
1574 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1575 clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1576 folio_wake_bit(folio, PG_private_2);
1577 folio_put(folio);
73e10ded 1578}
b47393f8 1579EXPORT_SYMBOL(folio_end_private_2);
73e10ded
DH
1580
1581/**
b47393f8
MWO
1582 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1583 * @folio: The folio to wait on.
73e10ded 1584 *
b47393f8 1585 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio.
73e10ded 1586 */
b47393f8 1587void folio_wait_private_2(struct folio *folio)
73e10ded 1588{
101c0bf6
MWO
1589 while (folio_test_private_2(folio))
1590 folio_wait_bit(folio, PG_private_2);
73e10ded 1591}
b47393f8 1592EXPORT_SYMBOL(folio_wait_private_2);
73e10ded
DH
1593
1594/**
b47393f8
MWO
1595 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1596 * @folio: The folio to wait on.
73e10ded 1597 *
b47393f8 1598 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a
73e10ded
DH
1599 * fatal signal is received by the calling task.
1600 *
1601 * Return:
1602 * - 0 if successful.
1603 * - -EINTR if a fatal signal was encountered.
1604 */
b47393f8 1605int folio_wait_private_2_killable(struct folio *folio)
73e10ded
DH
1606{
1607 int ret = 0;
1608
101c0bf6
MWO
1609 while (folio_test_private_2(folio)) {
1610 ret = folio_wait_bit_killable(folio, PG_private_2);
73e10ded
DH
1611 if (ret < 0)
1612 break;
1613 }
1614
1615 return ret;
1616}
b47393f8 1617EXPORT_SYMBOL(folio_wait_private_2_killable);
73e10ded 1618
485bb99b 1619/**
4268b480
MWO
1620 * folio_end_writeback - End writeback against a folio.
1621 * @folio: The folio.
1da177e4 1622 */
4268b480 1623void folio_end_writeback(struct folio *folio)
1da177e4 1624{
888cf2db 1625 /*
4268b480
MWO
1626 * folio_test_clear_reclaim() could be used here but it is an
1627 * atomic operation and overkill in this particular case. Failing
1628 * to shuffle a folio marked for immediate reclaim is too mild
1629 * a gain to justify taking an atomic operation penalty at the
1630 * end of every folio writeback.
888cf2db 1631 */
4268b480
MWO
1632 if (folio_test_reclaim(folio)) {
1633 folio_clear_reclaim(folio);
575ced1c 1634 folio_rotate_reclaimable(folio);
888cf2db 1635 }
ac6aadb2 1636
073861ed 1637 /*
4268b480 1638 * Writeback does not hold a folio reference of its own, relying
073861ed 1639 * on truncation to wait for the clearing of PG_writeback.
4268b480
MWO
1640 * But here we must make sure that the folio is not freed and
1641 * reused before the folio_wake().
073861ed 1642 */
4268b480 1643 folio_get(folio);
269ccca3 1644 if (!__folio_end_writeback(folio))
ac6aadb2
MS
1645 BUG();
1646
4e857c58 1647 smp_mb__after_atomic();
4268b480 1648 folio_wake(folio, PG_writeback);
512b7931 1649 acct_reclaim_writeback(folio);
4268b480 1650 folio_put(folio);
1da177e4 1651}
4268b480 1652EXPORT_SYMBOL(folio_end_writeback);
1da177e4 1653
57d99845
MW
1654/*
1655 * After completing I/O on a page, call this routine to update the page
1656 * flags appropriately
1657 */
c11f0c0b 1658void page_endio(struct page *page, bool is_write, int err)
57d99845 1659{
c11f0c0b 1660 if (!is_write) {
57d99845
MW
1661 if (!err) {
1662 SetPageUptodate(page);
1663 } else {
1664 ClearPageUptodate(page);
1665 SetPageError(page);
1666 }
1667 unlock_page(page);
abf54548 1668 } else {
57d99845 1669 if (err) {
dd8416c4
MK
1670 struct address_space *mapping;
1671
57d99845 1672 SetPageError(page);
dd8416c4
MK
1673 mapping = page_mapping(page);
1674 if (mapping)
1675 mapping_set_error(mapping, err);
57d99845
MW
1676 }
1677 end_page_writeback(page);
1678 }
1679}
1680EXPORT_SYMBOL_GPL(page_endio);
1681
485bb99b 1682/**
7c23c782
MWO
1683 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1684 * @folio: The folio to lock
1da177e4 1685 */
7c23c782 1686void __folio_lock(struct folio *folio)
1da177e4 1687{
101c0bf6 1688 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
9a1ea439 1689 EXCLUSIVE);
1da177e4 1690}
7c23c782 1691EXPORT_SYMBOL(__folio_lock);
1da177e4 1692
af7f29d9 1693int __folio_lock_killable(struct folio *folio)
2687a356 1694{
101c0bf6 1695 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
9a1ea439 1696 EXCLUSIVE);
2687a356 1697}
af7f29d9 1698EXPORT_SYMBOL_GPL(__folio_lock_killable);
2687a356 1699
ffdc8dab 1700static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
dd3e6d50 1701{
df4d4f12 1702 struct wait_queue_head *q = folio_waitqueue(folio);
f32b5dd7
MWO
1703 int ret = 0;
1704
df4d4f12 1705 wait->folio = folio;
f32b5dd7
MWO
1706 wait->bit_nr = PG_locked;
1707
1708 spin_lock_irq(&q->lock);
1709 __add_wait_queue_entry_tail(q, &wait->wait);
ffdc8dab
MWO
1710 folio_set_waiters(folio);
1711 ret = !folio_trylock(folio);
f32b5dd7
MWO
1712 /*
1713 * If we were successful now, we know we're still on the
1714 * waitqueue as we're still under the lock. This means it's
1715 * safe to remove and return success, we know the callback
1716 * isn't going to trigger.
1717 */
1718 if (!ret)
1719 __remove_wait_queue(q, &wait->wait);
1720 else
1721 ret = -EIOCBQUEUED;
1722 spin_unlock_irq(&q->lock);
1723 return ret;
dd3e6d50
JA
1724}
1725
9a95f3cf
PC
1726/*
1727 * Return values:
9138e47e
MWO
1728 * true - folio is locked; mmap_lock is still held.
1729 * false - folio is not locked.
3e4e28c5 1730 * mmap_lock has been released (mmap_read_unlock(), unless flags had both
9a95f3cf 1731 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
c1e8d7c6 1732 * which case mmap_lock is still held.
9a95f3cf 1733 *
9138e47e
MWO
1734 * If neither ALLOW_RETRY nor KILLABLE are set, will always return true
1735 * with the folio locked and the mmap_lock unperturbed.
9a95f3cf 1736 */
9138e47e 1737bool __folio_lock_or_retry(struct folio *folio, struct mm_struct *mm,
d065bd81
ML
1738 unsigned int flags)
1739{
4064b982 1740 if (fault_flag_allow_retry_first(flags)) {
37b23e05 1741 /*
c1e8d7c6 1742 * CAUTION! In this case, mmap_lock is not released
37b23e05
KM
1743 * even though return 0.
1744 */
1745 if (flags & FAULT_FLAG_RETRY_NOWAIT)
9138e47e 1746 return false;
37b23e05 1747
d8ed45c5 1748 mmap_read_unlock(mm);
37b23e05 1749 if (flags & FAULT_FLAG_KILLABLE)
6baa8d60 1750 folio_wait_locked_killable(folio);
37b23e05 1751 else
6baa8d60 1752 folio_wait_locked(folio);
9138e47e 1753 return false;
800bca7c
HL
1754 }
1755 if (flags & FAULT_FLAG_KILLABLE) {
9138e47e 1756 bool ret;
37b23e05 1757
af7f29d9 1758 ret = __folio_lock_killable(folio);
800bca7c
HL
1759 if (ret) {
1760 mmap_read_unlock(mm);
9138e47e 1761 return false;
800bca7c
HL
1762 }
1763 } else {
af7f29d9 1764 __folio_lock(folio);
d065bd81 1765 }
800bca7c 1766
9138e47e 1767 return true;
d065bd81
ML
1768}
1769
e7b563bb 1770/**
0d3f9296
MW
1771 * page_cache_next_miss() - Find the next gap in the page cache.
1772 * @mapping: Mapping.
1773 * @index: Index.
1774 * @max_scan: Maximum range to search.
e7b563bb 1775 *
0d3f9296
MW
1776 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1777 * gap with the lowest index.
e7b563bb 1778 *
0d3f9296
MW
1779 * This function may be called under the rcu_read_lock. However, this will
1780 * not atomically search a snapshot of the cache at a single point in time.
1781 * For example, if a gap is created at index 5, then subsequently a gap is
1782 * created at index 10, page_cache_next_miss covering both indices may
1783 * return 10 if called under the rcu_read_lock.
e7b563bb 1784 *
0d3f9296
MW
1785 * Return: The index of the gap if found, otherwise an index outside the
1786 * range specified (in which case 'return - index >= max_scan' will be true).
1787 * In the rare case of index wrap-around, 0 will be returned.
e7b563bb 1788 */
0d3f9296 1789pgoff_t page_cache_next_miss(struct address_space *mapping,
e7b563bb
JW
1790 pgoff_t index, unsigned long max_scan)
1791{
0d3f9296 1792 XA_STATE(xas, &mapping->i_pages, index);
e7b563bb 1793
0d3f9296
MW
1794 while (max_scan--) {
1795 void *entry = xas_next(&xas);
1796 if (!entry || xa_is_value(entry))
e7b563bb 1797 break;
0d3f9296 1798 if (xas.xa_index == 0)
e7b563bb
JW
1799 break;
1800 }
1801
0d3f9296 1802 return xas.xa_index;
e7b563bb 1803}
0d3f9296 1804EXPORT_SYMBOL(page_cache_next_miss);
e7b563bb
JW
1805
1806/**
2346a560 1807 * page_cache_prev_miss() - Find the previous gap in the page cache.
0d3f9296
MW
1808 * @mapping: Mapping.
1809 * @index: Index.
1810 * @max_scan: Maximum range to search.
e7b563bb 1811 *
0d3f9296
MW
1812 * Search the range [max(index - max_scan + 1, 0), index] for the
1813 * gap with the highest index.
e7b563bb 1814 *
0d3f9296
MW
1815 * This function may be called under the rcu_read_lock. However, this will
1816 * not atomically search a snapshot of the cache at a single point in time.
1817 * For example, if a gap is created at index 10, then subsequently a gap is
1818 * created at index 5, page_cache_prev_miss() covering both indices may
1819 * return 5 if called under the rcu_read_lock.
e7b563bb 1820 *
0d3f9296
MW
1821 * Return: The index of the gap if found, otherwise an index outside the
1822 * range specified (in which case 'index - return >= max_scan' will be true).
1823 * In the rare case of wrap-around, ULONG_MAX will be returned.
e7b563bb 1824 */
0d3f9296 1825pgoff_t page_cache_prev_miss(struct address_space *mapping,
e7b563bb
JW
1826 pgoff_t index, unsigned long max_scan)
1827{
0d3f9296 1828 XA_STATE(xas, &mapping->i_pages, index);
e7b563bb 1829
0d3f9296
MW
1830 while (max_scan--) {
1831 void *entry = xas_prev(&xas);
1832 if (!entry || xa_is_value(entry))
e7b563bb 1833 break;
0d3f9296 1834 if (xas.xa_index == ULONG_MAX)
e7b563bb
JW
1835 break;
1836 }
1837
0d3f9296 1838 return xas.xa_index;
e7b563bb 1839}
0d3f9296 1840EXPORT_SYMBOL(page_cache_prev_miss);
e7b563bb 1841
020853b6
MWO
1842/*
1843 * Lockless page cache protocol:
1844 * On the lookup side:
1845 * 1. Load the folio from i_pages
1846 * 2. Increment the refcount if it's not zero
1847 * 3. If the folio is not found by xas_reload(), put the refcount and retry
1848 *
1849 * On the removal side:
1850 * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1851 * B. Remove the page from i_pages
1852 * C. Return the page to the page allocator
1853 *
1854 * This means that any page may have its reference count temporarily
1855 * increased by a speculative page cache (or fast GUP) lookup as it can
1856 * be allocated by another user before the RCU grace period expires.
1857 * Because the refcount temporarily acquired here may end up being the
1858 * last refcount on the page, any page allocation must be freeable by
1859 * folio_put().
1860 */
1861
44835d20 1862/*
bc5a3011 1863 * mapping_get_entry - Get a page cache entry.
485bb99b 1864 * @mapping: the address_space to search
a6de4b48 1865 * @index: The page cache index.
0cd6144a 1866 *
bca65eea
MWO
1867 * Looks up the page cache entry at @mapping & @index. If it is a folio,
1868 * it is returned with an increased refcount. If it is a shadow entry
1869 * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1870 * it is returned without further action.
485bb99b 1871 *
bca65eea 1872 * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1da177e4 1873 */
bca65eea 1874static void *mapping_get_entry(struct address_space *mapping, pgoff_t index)
1da177e4 1875{
a6de4b48 1876 XA_STATE(xas, &mapping->i_pages, index);
bca65eea 1877 struct folio *folio;
1da177e4 1878
a60637c8
NP
1879 rcu_read_lock();
1880repeat:
4c7472c0 1881 xas_reset(&xas);
bca65eea
MWO
1882 folio = xas_load(&xas);
1883 if (xas_retry(&xas, folio))
4c7472c0
MW
1884 goto repeat;
1885 /*
1886 * A shadow entry of a recently evicted page, or a swap entry from
1887 * shmem/tmpfs. Return it without attempting to raise page count.
1888 */
bca65eea 1889 if (!folio || xa_is_value(folio))
4c7472c0 1890 goto out;
83929372 1891
bca65eea 1892 if (!folio_try_get_rcu(folio))
4c7472c0 1893 goto repeat;
83929372 1894
bca65eea
MWO
1895 if (unlikely(folio != xas_reload(&xas))) {
1896 folio_put(folio);
4c7472c0 1897 goto repeat;
a60637c8 1898 }
27d20fdd 1899out:
a60637c8
NP
1900 rcu_read_unlock();
1901
bca65eea 1902 return folio;
1da177e4 1903}
1da177e4 1904
0cd6144a 1905/**
3f0c6a07 1906 * __filemap_get_folio - Find and get a reference to a folio.
2294b32e
MWO
1907 * @mapping: The address_space to search.
1908 * @index: The page index.
3f0c6a07
MWO
1909 * @fgp_flags: %FGP flags modify how the folio is returned.
1910 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1da177e4 1911 *
2294b32e 1912 * Looks up the page cache entry at @mapping & @index.
0cd6144a 1913 *
2294b32e 1914 * @fgp_flags can be zero or more of these flags:
0e056eb5 1915 *
3f0c6a07
MWO
1916 * * %FGP_ACCESSED - The folio will be marked accessed.
1917 * * %FGP_LOCK - The folio is returned locked.
44835d20 1918 * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it
3f0c6a07 1919 * instead of allocating a new folio to replace it.
2294b32e 1920 * * %FGP_CREAT - If no page is present then a new page is allocated using
3f0c6a07 1921 * @gfp and added to the page cache and the VM's LRU list.
2294b32e
MWO
1922 * The page is returned locked and with an increased refcount.
1923 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1924 * page is already in cache. If the page was allocated, unlock it before
1925 * returning so the caller can do the same dance.
3f0c6a07
MWO
1926 * * %FGP_WRITE - The page will be written to by the caller.
1927 * * %FGP_NOFS - __GFP_FS will get cleared in gfp.
1928 * * %FGP_NOWAIT - Don't get blocked by page lock.
b27652d9 1929 * * %FGP_STABLE - Wait for the folio to be stable (finished writeback)
1da177e4 1930 *
2294b32e
MWO
1931 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1932 * if the %GFP flags specified for %FGP_CREAT are atomic.
1da177e4 1933 *
2457aec6 1934 * If there is a page cache page, it is returned with an increased refcount.
a862f68a 1935 *
3f0c6a07 1936 * Return: The found folio or %NULL otherwise.
1da177e4 1937 */
3f0c6a07
MWO
1938struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1939 int fgp_flags, gfp_t gfp)
1da177e4 1940{
3f0c6a07 1941 struct folio *folio;
2457aec6 1942
1da177e4 1943repeat:
3f0c6a07
MWO
1944 folio = mapping_get_entry(mapping, index);
1945 if (xa_is_value(folio)) {
44835d20 1946 if (fgp_flags & FGP_ENTRY)
3f0c6a07
MWO
1947 return folio;
1948 folio = NULL;
44835d20 1949 }
3f0c6a07 1950 if (!folio)
2457aec6
MG
1951 goto no_page;
1952
1953 if (fgp_flags & FGP_LOCK) {
1954 if (fgp_flags & FGP_NOWAIT) {
3f0c6a07
MWO
1955 if (!folio_trylock(folio)) {
1956 folio_put(folio);
2457aec6
MG
1957 return NULL;
1958 }
1959 } else {
3f0c6a07 1960 folio_lock(folio);
2457aec6
MG
1961 }
1962
1963 /* Has the page been truncated? */
3f0c6a07
MWO
1964 if (unlikely(folio->mapping != mapping)) {
1965 folio_unlock(folio);
1966 folio_put(folio);
2457aec6
MG
1967 goto repeat;
1968 }
3f0c6a07 1969 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
2457aec6
MG
1970 }
1971
c16eb000 1972 if (fgp_flags & FGP_ACCESSED)
3f0c6a07 1973 folio_mark_accessed(folio);
b9306a79
YS
1974 else if (fgp_flags & FGP_WRITE) {
1975 /* Clear idle flag for buffer write */
3f0c6a07
MWO
1976 if (folio_test_idle(folio))
1977 folio_clear_idle(folio);
b9306a79 1978 }
2457aec6 1979
b27652d9
MWO
1980 if (fgp_flags & FGP_STABLE)
1981 folio_wait_stable(folio);
2457aec6 1982no_page:
3f0c6a07 1983 if (!folio && (fgp_flags & FGP_CREAT)) {
2457aec6 1984 int err;
f56753ac 1985 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
3f0c6a07 1986 gfp |= __GFP_WRITE;
45f87de5 1987 if (fgp_flags & FGP_NOFS)
3f0c6a07 1988 gfp &= ~__GFP_FS;
2457aec6 1989
3f0c6a07
MWO
1990 folio = filemap_alloc_folio(gfp, 0);
1991 if (!folio)
eb2be189 1992 return NULL;
2457aec6 1993
a75d4c33 1994 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
2457aec6
MG
1995 fgp_flags |= FGP_LOCK;
1996
eb39d618 1997 /* Init accessed so avoid atomic mark_page_accessed later */
2457aec6 1998 if (fgp_flags & FGP_ACCESSED)
3f0c6a07 1999 __folio_set_referenced(folio);
2457aec6 2000
3f0c6a07 2001 err = filemap_add_folio(mapping, folio, index, gfp);
eb2be189 2002 if (unlikely(err)) {
3f0c6a07
MWO
2003 folio_put(folio);
2004 folio = NULL;
eb2be189
NP
2005 if (err == -EEXIST)
2006 goto repeat;
1da177e4 2007 }
a75d4c33
JB
2008
2009 /*
3f0c6a07
MWO
2010 * filemap_add_folio locks the page, and for mmap
2011 * we expect an unlocked page.
a75d4c33 2012 */
3f0c6a07
MWO
2013 if (folio && (fgp_flags & FGP_FOR_MMAP))
2014 folio_unlock(folio);
1da177e4 2015 }
2457aec6 2016
3f0c6a07 2017 return folio;
1da177e4 2018}
3f0c6a07 2019EXPORT_SYMBOL(__filemap_get_folio);
1da177e4 2020
f5e6429a 2021static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
c7bad633
MWO
2022 xa_mark_t mark)
2023{
f5e6429a 2024 struct folio *folio;
c7bad633
MWO
2025
2026retry:
2027 if (mark == XA_PRESENT)
f5e6429a 2028 folio = xas_find(xas, max);
c7bad633 2029 else
f5e6429a 2030 folio = xas_find_marked(xas, max, mark);
c7bad633 2031
f5e6429a 2032 if (xas_retry(xas, folio))
c7bad633
MWO
2033 goto retry;
2034 /*
2035 * A shadow entry of a recently evicted page, a swap
2036 * entry from shmem/tmpfs or a DAX entry. Return it
2037 * without attempting to raise page count.
2038 */
f5e6429a
MWO
2039 if (!folio || xa_is_value(folio))
2040 return folio;
c7bad633 2041
f5e6429a 2042 if (!folio_try_get_rcu(folio))
c7bad633
MWO
2043 goto reset;
2044
f5e6429a
MWO
2045 if (unlikely(folio != xas_reload(xas))) {
2046 folio_put(folio);
c7bad633
MWO
2047 goto reset;
2048 }
2049
f5e6429a 2050 return folio;
c7bad633
MWO
2051reset:
2052 xas_reset(xas);
2053 goto retry;
2054}
2055
0cd6144a
JW
2056/**
2057 * find_get_entries - gang pagecache lookup
2058 * @mapping: The address_space to search
2059 * @start: The starting page cache index
ca122fe4 2060 * @end: The final page index (inclusive).
0e499ed3 2061 * @fbatch: Where the resulting entries are placed.
0cd6144a
JW
2062 * @indices: The cache indices corresponding to the entries in @entries
2063 *
cf2039af 2064 * find_get_entries() will search for and return a batch of entries in
0e499ed3
MWO
2065 * the mapping. The entries are placed in @fbatch. find_get_entries()
2066 * takes a reference on any actual folios it returns.
0cd6144a 2067 *
0e499ed3
MWO
2068 * The entries have ascending indexes. The indices may not be consecutive
2069 * due to not-present entries or large folios.
0cd6144a 2070 *
0e499ed3 2071 * Any shadow entries of evicted folios, or swap entries from
139b6a6f 2072 * shmem/tmpfs, are included in the returned array.
0cd6144a 2073 *
0e499ed3 2074 * Return: The number of entries which were found.
0cd6144a 2075 */
ca122fe4 2076unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
0e499ed3 2077 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
0cd6144a 2078{
f280bf09 2079 XA_STATE(xas, &mapping->i_pages, start);
f5e6429a 2080 struct folio *folio;
0cd6144a
JW
2081
2082 rcu_read_lock();
f5e6429a 2083 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
0e499ed3
MWO
2084 indices[fbatch->nr] = xas.xa_index;
2085 if (!folio_batch_add(fbatch, folio))
0cd6144a
JW
2086 break;
2087 }
2088 rcu_read_unlock();
cf2039af 2089
0e499ed3 2090 return folio_batch_count(fbatch);
0cd6144a
JW
2091}
2092
5c211ba2
MWO
2093/**
2094 * find_lock_entries - Find a batch of pagecache entries.
2095 * @mapping: The address_space to search.
2096 * @start: The starting page cache index.
2097 * @end: The final page index (inclusive).
51dcbdac
MWO
2098 * @fbatch: Where the resulting entries are placed.
2099 * @indices: The cache indices of the entries in @fbatch.
5c211ba2
MWO
2100 *
2101 * find_lock_entries() will return a batch of entries from @mapping.
f5e6429a
MWO
2102 * Swap, shadow and DAX entries are included. Folios are returned
2103 * locked and with an incremented refcount. Folios which are locked
2104 * by somebody else or under writeback are skipped. Folios which are
2105 * partially outside the range are not returned.
5c211ba2
MWO
2106 *
2107 * The entries have ascending indexes. The indices may not be consecutive
f5e6429a
MWO
2108 * due to not-present entries, large folios, folios which could not be
2109 * locked or folios under writeback.
5c211ba2
MWO
2110 *
2111 * Return: The number of entries which were found.
2112 */
2113unsigned find_lock_entries(struct address_space *mapping, pgoff_t start,
51dcbdac 2114 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
5c211ba2
MWO
2115{
2116 XA_STATE(xas, &mapping->i_pages, start);
f5e6429a 2117 struct folio *folio;
5c211ba2
MWO
2118
2119 rcu_read_lock();
f5e6429a
MWO
2120 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2121 if (!xa_is_value(folio)) {
2122 if (folio->index < start)
5c211ba2 2123 goto put;
f5e6429a 2124 if (folio->index + folio_nr_pages(folio) - 1 > end)
5c211ba2 2125 goto put;
f5e6429a 2126 if (!folio_trylock(folio))
5c211ba2 2127 goto put;
f5e6429a
MWO
2128 if (folio->mapping != mapping ||
2129 folio_test_writeback(folio))
5c211ba2 2130 goto unlock;
f5e6429a
MWO
2131 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2132 folio);
5c211ba2 2133 }
51dcbdac
MWO
2134 indices[fbatch->nr] = xas.xa_index;
2135 if (!folio_batch_add(fbatch, folio))
5c211ba2 2136 break;
6b24ca4a 2137 continue;
5c211ba2 2138unlock:
f5e6429a 2139 folio_unlock(folio);
5c211ba2 2140put:
f5e6429a 2141 folio_put(folio);
5c211ba2
MWO
2142 }
2143 rcu_read_unlock();
2144
51dcbdac 2145 return folio_batch_count(fbatch);
5c211ba2
MWO
2146}
2147
6b24ca4a
MWO
2148static inline
2149bool folio_more_pages(struct folio *folio, pgoff_t index, pgoff_t max)
2150{
2151 if (!folio_test_large(folio) || folio_test_hugetlb(folio))
2152 return false;
2153 if (index >= max)
2154 return false;
2155 return index < folio->index + folio_nr_pages(folio) - 1;
5c211ba2
MWO
2156}
2157
1da177e4 2158/**
b947cee4 2159 * find_get_pages_range - gang pagecache lookup
1da177e4
LT
2160 * @mapping: The address_space to search
2161 * @start: The starting page index
b947cee4 2162 * @end: The final page index (inclusive)
1da177e4
LT
2163 * @nr_pages: The maximum number of pages
2164 * @pages: Where the resulting pages are placed
2165 *
b947cee4
JK
2166 * find_get_pages_range() will search for and return a group of up to @nr_pages
2167 * pages in the mapping starting at index @start and up to index @end
2168 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes
2169 * a reference against the returned pages.
1da177e4
LT
2170 *
2171 * The search returns a group of mapping-contiguous pages with ascending
2172 * indexes. There may be holes in the indices due to not-present pages.
d72dc8a2 2173 * We also update @start to index the next page for the traversal.
1da177e4 2174 *
a862f68a
MR
2175 * Return: the number of pages which were found. If this number is
2176 * smaller than @nr_pages, the end of specified range has been
b947cee4 2177 * reached.
1da177e4 2178 */
b947cee4
JK
2179unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
2180 pgoff_t end, unsigned int nr_pages,
2181 struct page **pages)
1da177e4 2182{
fd1b3cee 2183 XA_STATE(xas, &mapping->i_pages, *start);
f5e6429a 2184 struct folio *folio;
0fc9d104
KK
2185 unsigned ret = 0;
2186
2187 if (unlikely(!nr_pages))
2188 return 0;
a60637c8
NP
2189
2190 rcu_read_lock();
f5e6429a 2191 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
fd1b3cee 2192 /* Skip over shadow, swap and DAX entries */
f5e6429a 2193 if (xa_is_value(folio))
8079b1c8 2194 continue;
a60637c8 2195
6b24ca4a 2196again:
f5e6429a 2197 pages[ret] = folio_file_page(folio, xas.xa_index);
b947cee4 2198 if (++ret == nr_pages) {
5d3ee42f 2199 *start = xas.xa_index + 1;
b947cee4
JK
2200 goto out;
2201 }
6b24ca4a
MWO
2202 if (folio_more_pages(folio, xas.xa_index, end)) {
2203 xas.xa_index++;
2204 folio_ref_inc(folio);
2205 goto again;
2206 }
a60637c8 2207 }
5b280c0c 2208
b947cee4
JK
2209 /*
2210 * We come here when there is no page beyond @end. We take care to not
2211 * overflow the index @start as it confuses some of the callers. This
fd1b3cee 2212 * breaks the iteration when there is a page at index -1 but that is
b947cee4
JK
2213 * already broken anyway.
2214 */
2215 if (end == (pgoff_t)-1)
2216 *start = (pgoff_t)-1;
2217 else
2218 *start = end + 1;
2219out:
a60637c8 2220 rcu_read_unlock();
d72dc8a2 2221
1da177e4
LT
2222 return ret;
2223}
2224
ebf43500
JA
2225/**
2226 * find_get_pages_contig - gang contiguous pagecache lookup
2227 * @mapping: The address_space to search
2228 * @index: The starting page index
2229 * @nr_pages: The maximum number of pages
2230 * @pages: Where the resulting pages are placed
2231 *
2232 * find_get_pages_contig() works exactly like find_get_pages(), except
2233 * that the returned number of pages are guaranteed to be contiguous.
2234 *
a862f68a 2235 * Return: the number of pages which were found.
ebf43500
JA
2236 */
2237unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
2238 unsigned int nr_pages, struct page **pages)
2239{
3ece58a2 2240 XA_STATE(xas, &mapping->i_pages, index);
e1c37722 2241 struct folio *folio;
0fc9d104
KK
2242 unsigned int ret = 0;
2243
2244 if (unlikely(!nr_pages))
2245 return 0;
a60637c8
NP
2246
2247 rcu_read_lock();
e1c37722
MWO
2248 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2249 if (xas_retry(&xas, folio))
3ece58a2
MW
2250 continue;
2251 /*
2252 * If the entry has been swapped out, we can stop looking.
2253 * No current caller is looking for DAX entries.
2254 */
e1c37722 2255 if (xa_is_value(folio))
8079b1c8 2256 break;
ebf43500 2257
e1c37722 2258 if (!folio_try_get_rcu(folio))
3ece58a2 2259 goto retry;
83929372 2260
e1c37722 2261 if (unlikely(folio != xas_reload(&xas)))
3ece58a2 2262 goto put_page;
a60637c8 2263
6b24ca4a
MWO
2264again:
2265 pages[ret] = folio_file_page(folio, xas.xa_index);
0fc9d104
KK
2266 if (++ret == nr_pages)
2267 break;
6b24ca4a
MWO
2268 if (folio_more_pages(folio, xas.xa_index, ULONG_MAX)) {
2269 xas.xa_index++;
2270 folio_ref_inc(folio);
2271 goto again;
2272 }
3ece58a2
MW
2273 continue;
2274put_page:
e1c37722 2275 folio_put(folio);
3ece58a2
MW
2276retry:
2277 xas_reset(&xas);
ebf43500 2278 }
a60637c8
NP
2279 rcu_read_unlock();
2280 return ret;
ebf43500 2281}
ef71c15c 2282EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 2283
485bb99b 2284/**
c49f50d1 2285 * find_get_pages_range_tag - Find and return head pages matching @tag.
485bb99b
RD
2286 * @mapping: the address_space to search
2287 * @index: the starting page index
72b045ae 2288 * @end: The final page index (inclusive)
485bb99b
RD
2289 * @tag: the tag index
2290 * @nr_pages: the maximum number of pages
2291 * @pages: where the resulting pages are placed
2292 *
c49f50d1
MWO
2293 * Like find_get_pages(), except we only return head pages which are tagged
2294 * with @tag. @index is updated to the index immediately after the last
2295 * page we return, ready for the next iteration.
a862f68a
MR
2296 *
2297 * Return: the number of pages which were found.
1da177e4 2298 */
72b045ae 2299unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
a6906972 2300 pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
72b045ae 2301 struct page **pages)
1da177e4 2302{
a6906972 2303 XA_STATE(xas, &mapping->i_pages, *index);
f5e6429a 2304 struct folio *folio;
0fc9d104
KK
2305 unsigned ret = 0;
2306
2307 if (unlikely(!nr_pages))
2308 return 0;
a60637c8
NP
2309
2310 rcu_read_lock();
f5e6429a 2311 while ((folio = find_get_entry(&xas, end, tag))) {
a6906972
MW
2312 /*
2313 * Shadow entries should never be tagged, but this iteration
2314 * is lockless so there is a window for page reclaim to evict
2315 * a page we saw tagged. Skip over it.
2316 */
f5e6429a 2317 if (xa_is_value(folio))
139b6a6f 2318 continue;
a60637c8 2319
f5e6429a 2320 pages[ret] = &folio->page;
72b045ae 2321 if (++ret == nr_pages) {
f5e6429a 2322 *index = folio->index + folio_nr_pages(folio);
72b045ae
JK
2323 goto out;
2324 }
a60637c8 2325 }
5b280c0c 2326
72b045ae 2327 /*
a6906972 2328 * We come here when we got to @end. We take care to not overflow the
72b045ae 2329 * index @index as it confuses some of the callers. This breaks the
a6906972
MW
2330 * iteration when there is a page at index -1 but that is already
2331 * broken anyway.
72b045ae
JK
2332 */
2333 if (end == (pgoff_t)-1)
2334 *index = (pgoff_t)-1;
2335 else
2336 *index = end + 1;
2337out:
a60637c8 2338 rcu_read_unlock();
1da177e4 2339
1da177e4
LT
2340 return ret;
2341}
72b045ae 2342EXPORT_SYMBOL(find_get_pages_range_tag);
1da177e4 2343
76d42bd9
WF
2344/*
2345 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2346 * a _large_ part of the i/o request. Imagine the worst scenario:
2347 *
2348 * ---R__________________________________________B__________
2349 * ^ reading here ^ bad block(assume 4k)
2350 *
2351 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2352 * => failing the whole request => read(R) => read(R+1) =>
2353 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2354 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2355 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2356 *
2357 * It is going insane. Fix it by quickly scaling down the readahead size.
2358 */
0f8e2db4 2359static void shrink_readahead_size_eio(struct file_ra_state *ra)
76d42bd9 2360{
76d42bd9 2361 ra->ra_pages /= 4;
76d42bd9
WF
2362}
2363
cbd59c48 2364/*
25d6a23e 2365 * filemap_get_read_batch - Get a batch of folios for read
cbd59c48 2366 *
25d6a23e
MWO
2367 * Get a batch of folios which represent a contiguous range of bytes in
2368 * the file. No exceptional entries will be returned. If @index is in
2369 * the middle of a folio, the entire folio will be returned. The last
2370 * folio in the batch may have the readahead flag set or the uptodate flag
2371 * clear so that the caller can take the appropriate action.
cbd59c48
MWO
2372 */
2373static void filemap_get_read_batch(struct address_space *mapping,
25d6a23e 2374 pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
cbd59c48
MWO
2375{
2376 XA_STATE(xas, &mapping->i_pages, index);
bdb72932 2377 struct folio *folio;
cbd59c48
MWO
2378
2379 rcu_read_lock();
bdb72932
MWO
2380 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2381 if (xas_retry(&xas, folio))
cbd59c48 2382 continue;
bdb72932 2383 if (xas.xa_index > max || xa_is_value(folio))
cbd59c48 2384 break;
bdb72932 2385 if (!folio_try_get_rcu(folio))
cbd59c48
MWO
2386 goto retry;
2387
bdb72932 2388 if (unlikely(folio != xas_reload(&xas)))
25d6a23e 2389 goto put_folio;
cbd59c48 2390
25d6a23e 2391 if (!folio_batch_add(fbatch, folio))
cbd59c48 2392 break;
bdb72932 2393 if (!folio_test_uptodate(folio))
cbd59c48 2394 break;
bdb72932 2395 if (folio_test_readahead(folio))
cbd59c48 2396 break;
6b24ca4a 2397 xas_advance(&xas, folio->index + folio_nr_pages(folio) - 1);
cbd59c48 2398 continue;
25d6a23e 2399put_folio:
bdb72932 2400 folio_put(folio);
cbd59c48
MWO
2401retry:
2402 xas_reset(&xas);
2403 }
2404 rcu_read_unlock();
2405}
2406
9d427b4e
MWO
2407static int filemap_read_folio(struct file *file, struct address_space *mapping,
2408 struct folio *folio)
723ef24b 2409{
723ef24b
KO
2410 int error;
2411
723ef24b 2412 /*
68430303
MWO
2413 * A previous I/O error may have been due to temporary failures,
2414 * eg. multipath errors. PG_error will be set again if readpage
2415 * fails.
723ef24b 2416 */
9d427b4e 2417 folio_clear_error(folio);
723ef24b 2418 /* Start the actual read. The read will unlock the page. */
9d427b4e 2419 error = mapping->a_ops->readpage(file, &folio->page);
68430303
MWO
2420 if (error)
2421 return error;
723ef24b 2422
9d427b4e 2423 error = folio_wait_locked_killable(folio);
68430303
MWO
2424 if (error)
2425 return error;
9d427b4e 2426 if (folio_test_uptodate(folio))
aa1ec2f6 2427 return 0;
aa1ec2f6
MWO
2428 shrink_readahead_size_eio(&file->f_ra);
2429 return -EIO;
723ef24b
KO
2430}
2431
fce70da3 2432static bool filemap_range_uptodate(struct address_space *mapping,
2fa4eeb8 2433 loff_t pos, struct iov_iter *iter, struct folio *folio)
fce70da3
MWO
2434{
2435 int count;
2436
2fa4eeb8 2437 if (folio_test_uptodate(folio))
fce70da3
MWO
2438 return true;
2439 /* pipes can't handle partially uptodate pages */
2440 if (iov_iter_is_pipe(iter))
2441 return false;
2442 if (!mapping->a_ops->is_partially_uptodate)
2443 return false;
2fa4eeb8 2444 if (mapping->host->i_blkbits >= folio_shift(folio))
fce70da3
MWO
2445 return false;
2446
2447 count = iter->count;
2fa4eeb8
MWO
2448 if (folio_pos(folio) > pos) {
2449 count -= folio_pos(folio) - pos;
fce70da3
MWO
2450 pos = 0;
2451 } else {
2fa4eeb8 2452 pos -= folio_pos(folio);
fce70da3
MWO
2453 }
2454
2fa4eeb8 2455 return mapping->a_ops->is_partially_uptodate(&folio->page, pos, count);
fce70da3
MWO
2456}
2457
4612aeef
MWO
2458static int filemap_update_page(struct kiocb *iocb,
2459 struct address_space *mapping, struct iov_iter *iter,
65bca53b 2460 struct folio *folio)
723ef24b 2461{
723ef24b
KO
2462 int error;
2463
730633f0
JK
2464 if (iocb->ki_flags & IOCB_NOWAIT) {
2465 if (!filemap_invalidate_trylock_shared(mapping))
2466 return -EAGAIN;
2467 } else {
2468 filemap_invalidate_lock_shared(mapping);
2469 }
2470
ffdc8dab 2471 if (!folio_trylock(folio)) {
730633f0 2472 error = -EAGAIN;
87d1d7b6 2473 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
730633f0 2474 goto unlock_mapping;
87d1d7b6 2475 if (!(iocb->ki_flags & IOCB_WAITQ)) {
730633f0 2476 filemap_invalidate_unlock_shared(mapping);
9f2b04a2
MWO
2477 /*
2478 * This is where we usually end up waiting for a
2479 * previously submitted readahead to finish.
2480 */
2481 folio_put_wait_locked(folio, TASK_KILLABLE);
4612aeef 2482 return AOP_TRUNCATED_PAGE;
bd8a1f36 2483 }
ffdc8dab 2484 error = __folio_lock_async(folio, iocb->ki_waitq);
87d1d7b6 2485 if (error)
730633f0 2486 goto unlock_mapping;
723ef24b 2487 }
723ef24b 2488
730633f0 2489 error = AOP_TRUNCATED_PAGE;
ffdc8dab 2490 if (!folio->mapping)
730633f0 2491 goto unlock;
723ef24b 2492
fce70da3 2493 error = 0;
2fa4eeb8 2494 if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, folio))
fce70da3
MWO
2495 goto unlock;
2496
2497 error = -EAGAIN;
2498 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2499 goto unlock;
2500
9d427b4e 2501 error = filemap_read_folio(iocb->ki_filp, mapping, folio);
730633f0 2502 goto unlock_mapping;
fce70da3 2503unlock:
ffdc8dab 2504 folio_unlock(folio);
730633f0
JK
2505unlock_mapping:
2506 filemap_invalidate_unlock_shared(mapping);
2507 if (error == AOP_TRUNCATED_PAGE)
ffdc8dab 2508 folio_put(folio);
fce70da3 2509 return error;
723ef24b
KO
2510}
2511
a5d4ad09 2512static int filemap_create_folio(struct file *file,
f253e185 2513 struct address_space *mapping, pgoff_t index,
25d6a23e 2514 struct folio_batch *fbatch)
723ef24b 2515{
a5d4ad09 2516 struct folio *folio;
723ef24b
KO
2517 int error;
2518
a5d4ad09
MWO
2519 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0);
2520 if (!folio)
f253e185 2521 return -ENOMEM;
723ef24b 2522
730633f0 2523 /*
a5d4ad09
MWO
2524 * Protect against truncate / hole punch. Grabbing invalidate_lock
2525 * here assures we cannot instantiate and bring uptodate new
2526 * pagecache folios after evicting page cache during truncate
2527 * and before actually freeing blocks. Note that we could
2528 * release invalidate_lock after inserting the folio into
2529 * the page cache as the locked folio would then be enough to
2530 * synchronize with hole punching. But there are code paths
2531 * such as filemap_update_page() filling in partially uptodate
2532 * pages or ->readpages() that need to hold invalidate_lock
2533 * while mapping blocks for IO so let's hold the lock here as
2534 * well to keep locking rules simple.
730633f0
JK
2535 */
2536 filemap_invalidate_lock_shared(mapping);
a5d4ad09 2537 error = filemap_add_folio(mapping, folio, index,
f253e185
MWO
2538 mapping_gfp_constraint(mapping, GFP_KERNEL));
2539 if (error == -EEXIST)
2540 error = AOP_TRUNCATED_PAGE;
2541 if (error)
2542 goto error;
2543
a5d4ad09 2544 error = filemap_read_folio(file, mapping, folio);
f253e185
MWO
2545 if (error)
2546 goto error;
2547
730633f0 2548 filemap_invalidate_unlock_shared(mapping);
25d6a23e 2549 folio_batch_add(fbatch, folio);
f253e185
MWO
2550 return 0;
2551error:
730633f0 2552 filemap_invalidate_unlock_shared(mapping);
a5d4ad09 2553 folio_put(folio);
f253e185 2554 return error;
723ef24b
KO
2555}
2556
5963fe03 2557static int filemap_readahead(struct kiocb *iocb, struct file *file,
65bca53b 2558 struct address_space *mapping, struct folio *folio,
5963fe03
MWO
2559 pgoff_t last_index)
2560{
65bca53b
MWO
2561 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2562
5963fe03
MWO
2563 if (iocb->ki_flags & IOCB_NOIO)
2564 return -EAGAIN;
65bca53b 2565 page_cache_async_ra(&ractl, folio, last_index - folio->index);
5963fe03
MWO
2566 return 0;
2567}
2568
3a6bae48 2569static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter,
25d6a23e 2570 struct folio_batch *fbatch)
06c04442
KO
2571{
2572 struct file *filp = iocb->ki_filp;
2573 struct address_space *mapping = filp->f_mapping;
2574 struct file_ra_state *ra = &filp->f_ra;
2575 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
cbd59c48 2576 pgoff_t last_index;
65bca53b 2577 struct folio *folio;
cbd59c48 2578 int err = 0;
06c04442 2579
cbd59c48 2580 last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE);
2642fca6 2581retry:
06c04442
KO
2582 if (fatal_signal_pending(current))
2583 return -EINTR;
2584
25d6a23e
MWO
2585 filemap_get_read_batch(mapping, index, last_index, fbatch);
2586 if (!folio_batch_count(fbatch)) {
2642fca6
MWO
2587 if (iocb->ki_flags & IOCB_NOIO)
2588 return -EAGAIN;
2589 page_cache_sync_readahead(mapping, ra, filp, index,
2590 last_index - index);
25d6a23e 2591 filemap_get_read_batch(mapping, index, last_index, fbatch);
2642fca6 2592 }
25d6a23e 2593 if (!folio_batch_count(fbatch)) {
f253e185
MWO
2594 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2595 return -EAGAIN;
a5d4ad09 2596 err = filemap_create_folio(filp, mapping,
25d6a23e 2597 iocb->ki_pos >> PAGE_SHIFT, fbatch);
f253e185 2598 if (err == AOP_TRUNCATED_PAGE)
2642fca6 2599 goto retry;
f253e185
MWO
2600 return err;
2601 }
06c04442 2602
25d6a23e 2603 folio = fbatch->folios[folio_batch_count(fbatch) - 1];
65bca53b
MWO
2604 if (folio_test_readahead(folio)) {
2605 err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2642fca6
MWO
2606 if (err)
2607 goto err;
2608 }
65bca53b 2609 if (!folio_test_uptodate(folio)) {
25d6a23e
MWO
2610 if ((iocb->ki_flags & IOCB_WAITQ) &&
2611 folio_batch_count(fbatch) > 1)
2642fca6 2612 iocb->ki_flags |= IOCB_NOWAIT;
65bca53b 2613 err = filemap_update_page(iocb, mapping, iter, folio);
2642fca6
MWO
2614 if (err)
2615 goto err;
06c04442
KO
2616 }
2617
2642fca6 2618 return 0;
cbd59c48 2619err:
2642fca6 2620 if (err < 0)
65bca53b 2621 folio_put(folio);
25d6a23e 2622 if (likely(--fbatch->nr))
ff993ba1 2623 return 0;
4612aeef 2624 if (err == AOP_TRUNCATED_PAGE)
2642fca6
MWO
2625 goto retry;
2626 return err;
06c04442
KO
2627}
2628
485bb99b 2629/**
87fa0f3e
CH
2630 * filemap_read - Read data from the page cache.
2631 * @iocb: The iocb to read.
2632 * @iter: Destination for the data.
2633 * @already_read: Number of bytes already read by the caller.
485bb99b 2634 *
87fa0f3e
CH
2635 * Copies data from the page cache. If the data is not currently present,
2636 * uses the readahead and readpage address_space operations to fetch it.
1da177e4 2637 *
87fa0f3e
CH
2638 * Return: Total number of bytes copied, including those already read by
2639 * the caller. If an error happens before any bytes are copied, returns
2640 * a negative error number.
1da177e4 2641 */
87fa0f3e
CH
2642ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2643 ssize_t already_read)
1da177e4 2644{
47c27bc4 2645 struct file *filp = iocb->ki_filp;
06c04442 2646 struct file_ra_state *ra = &filp->f_ra;
36e78914 2647 struct address_space *mapping = filp->f_mapping;
1da177e4 2648 struct inode *inode = mapping->host;
25d6a23e 2649 struct folio_batch fbatch;
ff993ba1 2650 int i, error = 0;
06c04442
KO
2651 bool writably_mapped;
2652 loff_t isize, end_offset;
1da177e4 2653
723ef24b 2654 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
d05c5f7b 2655 return 0;
3644e2d2
KO
2656 if (unlikely(!iov_iter_count(iter)))
2657 return 0;
2658
c2a9737f 2659 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
25d6a23e 2660 folio_batch_init(&fbatch);
c2a9737f 2661
06c04442 2662 do {
1da177e4 2663 cond_resched();
5abf186a 2664
723ef24b 2665 /*
06c04442
KO
2666 * If we've already successfully copied some data, then we
2667 * can no longer safely return -EIOCBQUEUED. Hence mark
2668 * an async read NOWAIT at that point.
723ef24b 2669 */
87fa0f3e 2670 if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
723ef24b
KO
2671 iocb->ki_flags |= IOCB_NOWAIT;
2672
8c8387ee
DH
2673 if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2674 break;
2675
25d6a23e 2676 error = filemap_get_pages(iocb, iter, &fbatch);
ff993ba1 2677 if (error < 0)
06c04442 2678 break;
1da177e4 2679
06c04442
KO
2680 /*
2681 * i_size must be checked after we know the pages are Uptodate.
2682 *
2683 * Checking i_size after the check allows us to calculate
2684 * the correct value for "nr", which means the zero-filled
2685 * part of the page is not copied back to userspace (unless
2686 * another truncate extends the file - this is desired though).
2687 */
2688 isize = i_size_read(inode);
2689 if (unlikely(iocb->ki_pos >= isize))
25d6a23e 2690 goto put_folios;
06c04442
KO
2691 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2692
06c04442
KO
2693 /*
2694 * Once we start copying data, we don't want to be touching any
2695 * cachelines that might be contended:
2696 */
2697 writably_mapped = mapping_writably_mapped(mapping);
2698
2699 /*
2700 * When a sequential read accesses a page several times, only
2701 * mark it as accessed the first time.
2702 */
2703 if (iocb->ki_pos >> PAGE_SHIFT !=
2704 ra->prev_pos >> PAGE_SHIFT)
25d6a23e 2705 folio_mark_accessed(fbatch.folios[0]);
06c04442 2706
25d6a23e
MWO
2707 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2708 struct folio *folio = fbatch.folios[i];
d996fc7f
MWO
2709 size_t fsize = folio_size(folio);
2710 size_t offset = iocb->ki_pos & (fsize - 1);
cbd59c48 2711 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
d996fc7f 2712 fsize - offset);
cbd59c48 2713 size_t copied;
06c04442 2714
d996fc7f 2715 if (end_offset < folio_pos(folio))
cbd59c48
MWO
2716 break;
2717 if (i > 0)
d996fc7f 2718 folio_mark_accessed(folio);
06c04442 2719 /*
d996fc7f
MWO
2720 * If users can be writing to this folio using arbitrary
2721 * virtual addresses, take care of potential aliasing
2722 * before reading the folio on the kernel side.
06c04442 2723 */
d996fc7f
MWO
2724 if (writably_mapped)
2725 flush_dcache_folio(folio);
06c04442 2726
d996fc7f 2727 copied = copy_folio_to_iter(folio, offset, bytes, iter);
06c04442 2728
87fa0f3e 2729 already_read += copied;
06c04442
KO
2730 iocb->ki_pos += copied;
2731 ra->prev_pos = iocb->ki_pos;
2732
2733 if (copied < bytes) {
2734 error = -EFAULT;
2735 break;
2736 }
1da177e4 2737 }
25d6a23e
MWO
2738put_folios:
2739 for (i = 0; i < folio_batch_count(&fbatch); i++)
2740 folio_put(fbatch.folios[i]);
2741 folio_batch_init(&fbatch);
06c04442 2742 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
1da177e4 2743
0c6aa263 2744 file_accessed(filp);
06c04442 2745
87fa0f3e 2746 return already_read ? already_read : error;
1da177e4 2747}
87fa0f3e 2748EXPORT_SYMBOL_GPL(filemap_read);
1da177e4 2749
485bb99b 2750/**
6abd2322 2751 * generic_file_read_iter - generic filesystem read routine
485bb99b 2752 * @iocb: kernel I/O control block
6abd2322 2753 * @iter: destination for the data read
485bb99b 2754 *
6abd2322 2755 * This is the "read_iter()" routine for all filesystems
1da177e4 2756 * that can use the page cache directly.
41da51bc
AG
2757 *
2758 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2759 * be returned when no data can be read without waiting for I/O requests
2760 * to complete; it doesn't prevent readahead.
2761 *
2762 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2763 * requests shall be made for the read or for readahead. When no data
2764 * can be read, -EAGAIN shall be returned. When readahead would be
2765 * triggered, a partial, possibly empty read shall be returned.
2766 *
a862f68a
MR
2767 * Return:
2768 * * number of bytes copied, even for partial reads
41da51bc 2769 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
1da177e4
LT
2770 */
2771ssize_t
ed978a81 2772generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1da177e4 2773{
e7080a43 2774 size_t count = iov_iter_count(iter);
47c27bc4 2775 ssize_t retval = 0;
e7080a43
NS
2776
2777 if (!count)
826ea860 2778 return 0; /* skip atime */
1da177e4 2779
2ba48ce5 2780 if (iocb->ki_flags & IOCB_DIRECT) {
47c27bc4 2781 struct file *file = iocb->ki_filp;
ed978a81
AV
2782 struct address_space *mapping = file->f_mapping;
2783 struct inode *inode = mapping->host;
1da177e4 2784
6be96d3a 2785 if (iocb->ki_flags & IOCB_NOWAIT) {
7a60d6d7
JA
2786 if (filemap_range_needs_writeback(mapping, iocb->ki_pos,
2787 iocb->ki_pos + count - 1))
6be96d3a
GR
2788 return -EAGAIN;
2789 } else {
2790 retval = filemap_write_and_wait_range(mapping,
2791 iocb->ki_pos,
2792 iocb->ki_pos + count - 1);
2793 if (retval < 0)
826ea860 2794 return retval;
6be96d3a 2795 }
d8d3d94b 2796
0d5b0cf2
CH
2797 file_accessed(file);
2798
5ecda137 2799 retval = mapping->a_ops->direct_IO(iocb, iter);
c3a69024 2800 if (retval >= 0) {
c64fb5c7 2801 iocb->ki_pos += retval;
5ecda137 2802 count -= retval;
9fe55eea 2803 }
ab2125df
PB
2804 if (retval != -EIOCBQUEUED)
2805 iov_iter_revert(iter, count - iov_iter_count(iter));
66f998f6 2806
9fe55eea
SW
2807 /*
2808 * Btrfs can have a short DIO read if we encounter
2809 * compressed extents, so if there was an error, or if
2810 * we've already read everything we wanted to, or if
2811 * there was a short read because we hit EOF, go ahead
2812 * and return. Otherwise fallthrough to buffered io for
fbbbad4b
MW
2813 * the rest of the read. Buffered reads will not work for
2814 * DAX files, so don't bother trying.
9fe55eea 2815 */
61d0017e
JA
2816 if (retval < 0 || !count || IS_DAX(inode))
2817 return retval;
2818 if (iocb->ki_pos >= i_size_read(inode))
826ea860 2819 return retval;
1da177e4
LT
2820 }
2821
826ea860 2822 return filemap_read(iocb, iter, retval);
1da177e4 2823}
ed978a81 2824EXPORT_SYMBOL(generic_file_read_iter);
1da177e4 2825
f5e6429a
MWO
2826static inline loff_t folio_seek_hole_data(struct xa_state *xas,
2827 struct address_space *mapping, struct folio *folio,
54fa39ac 2828 loff_t start, loff_t end, bool seek_data)
41139aa4 2829{
54fa39ac
MWO
2830 const struct address_space_operations *ops = mapping->a_ops;
2831 size_t offset, bsz = i_blocksize(mapping->host);
2832
f5e6429a 2833 if (xa_is_value(folio) || folio_test_uptodate(folio))
54fa39ac
MWO
2834 return seek_data ? start : end;
2835 if (!ops->is_partially_uptodate)
2836 return seek_data ? end : start;
2837
2838 xas_pause(xas);
2839 rcu_read_unlock();
f5e6429a
MWO
2840 folio_lock(folio);
2841 if (unlikely(folio->mapping != mapping))
54fa39ac
MWO
2842 goto unlock;
2843
f5e6429a 2844 offset = offset_in_folio(folio, start) & ~(bsz - 1);
54fa39ac
MWO
2845
2846 do {
f5e6429a
MWO
2847 if (ops->is_partially_uptodate(&folio->page, offset, bsz) ==
2848 seek_data)
54fa39ac
MWO
2849 break;
2850 start = (start + bsz) & ~(bsz - 1);
2851 offset += bsz;
f5e6429a 2852 } while (offset < folio_size(folio));
54fa39ac 2853unlock:
f5e6429a 2854 folio_unlock(folio);
54fa39ac
MWO
2855 rcu_read_lock();
2856 return start;
41139aa4
MWO
2857}
2858
f5e6429a 2859static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
41139aa4 2860{
f5e6429a 2861 if (xa_is_value(folio))
41139aa4 2862 return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
f5e6429a 2863 return folio_size(folio);
41139aa4
MWO
2864}
2865
2866/**
2867 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
2868 * @mapping: Address space to search.
2869 * @start: First byte to consider.
2870 * @end: Limit of search (exclusive).
2871 * @whence: Either SEEK_HOLE or SEEK_DATA.
2872 *
2873 * If the page cache knows which blocks contain holes and which blocks
2874 * contain data, your filesystem can use this function to implement
2875 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are
2876 * entirely memory-based such as tmpfs, and filesystems which support
2877 * unwritten extents.
2878 *
f0953a1b 2879 * Return: The requested offset on success, or -ENXIO if @whence specifies
41139aa4
MWO
2880 * SEEK_DATA and there is no data after @start. There is an implicit hole
2881 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
2882 * and @end contain data.
2883 */
2884loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
2885 loff_t end, int whence)
2886{
2887 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
ed98b015 2888 pgoff_t max = (end - 1) >> PAGE_SHIFT;
41139aa4 2889 bool seek_data = (whence == SEEK_DATA);
f5e6429a 2890 struct folio *folio;
41139aa4
MWO
2891
2892 if (end <= start)
2893 return -ENXIO;
2894
2895 rcu_read_lock();
f5e6429a 2896 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
ed98b015 2897 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
f5e6429a 2898 size_t seek_size;
41139aa4
MWO
2899
2900 if (start < pos) {
2901 if (!seek_data)
2902 goto unlock;
2903 start = pos;
2904 }
2905
f5e6429a
MWO
2906 seek_size = seek_folio_size(&xas, folio);
2907 pos = round_up((u64)pos + 1, seek_size);
2908 start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
54fa39ac
MWO
2909 seek_data);
2910 if (start < pos)
41139aa4 2911 goto unlock;
ed98b015
HD
2912 if (start >= end)
2913 break;
2914 if (seek_size > PAGE_SIZE)
2915 xas_set(&xas, pos >> PAGE_SHIFT);
f5e6429a
MWO
2916 if (!xa_is_value(folio))
2917 folio_put(folio);
41139aa4 2918 }
41139aa4 2919 if (seek_data)
ed98b015 2920 start = -ENXIO;
41139aa4
MWO
2921unlock:
2922 rcu_read_unlock();
f5e6429a
MWO
2923 if (folio && !xa_is_value(folio))
2924 folio_put(folio);
41139aa4
MWO
2925 if (start > end)
2926 return end;
2927 return start;
2928}
2929
1da177e4 2930#ifdef CONFIG_MMU
1da177e4 2931#define MMAP_LOTSAMISS (100)
6b4c9f44 2932/*
e292e6d6 2933 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
6b4c9f44 2934 * @vmf - the vm_fault for this fault.
e292e6d6 2935 * @folio - the folio to lock.
6b4c9f44
JB
2936 * @fpin - the pointer to the file we may pin (or is already pinned).
2937 *
e292e6d6
MWO
2938 * This works similar to lock_folio_or_retry in that it can drop the
2939 * mmap_lock. It differs in that it actually returns the folio locked
2940 * if it returns 1 and 0 if it couldn't lock the folio. If we did have
2941 * to drop the mmap_lock then fpin will point to the pinned file and
2942 * needs to be fput()'ed at a later point.
6b4c9f44 2943 */
e292e6d6 2944static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
6b4c9f44
JB
2945 struct file **fpin)
2946{
7c23c782 2947 if (folio_trylock(folio))
6b4c9f44
JB
2948 return 1;
2949
8b0f9fa2
LT
2950 /*
2951 * NOTE! This will make us return with VM_FAULT_RETRY, but with
c1e8d7c6 2952 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
8b0f9fa2
LT
2953 * is supposed to work. We have way too many special cases..
2954 */
6b4c9f44
JB
2955 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2956 return 0;
2957
2958 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2959 if (vmf->flags & FAULT_FLAG_KILLABLE) {
af7f29d9 2960 if (__folio_lock_killable(folio)) {
6b4c9f44 2961 /*
c1e8d7c6 2962 * We didn't have the right flags to drop the mmap_lock,
6b4c9f44
JB
2963 * but all fault_handlers only check for fatal signals
2964 * if we return VM_FAULT_RETRY, so we need to drop the
c1e8d7c6 2965 * mmap_lock here and return 0 if we don't have a fpin.
6b4c9f44
JB
2966 */
2967 if (*fpin == NULL)
d8ed45c5 2968 mmap_read_unlock(vmf->vma->vm_mm);
6b4c9f44
JB
2969 return 0;
2970 }
2971 } else
7c23c782
MWO
2972 __folio_lock(folio);
2973
6b4c9f44
JB
2974 return 1;
2975}
2976
ef00e08e 2977/*
6b4c9f44
JB
2978 * Synchronous readahead happens when we don't even find a page in the page
2979 * cache at all. We don't want to perform IO under the mmap sem, so if we have
2980 * to drop the mmap sem we return the file that was pinned in order for us to do
2981 * that. If we didn't pin a file then we return NULL. The file that is
2982 * returned needs to be fput()'ed when we're done with it.
ef00e08e 2983 */
6b4c9f44 2984static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
ef00e08e 2985{
2a1180f1
JB
2986 struct file *file = vmf->vma->vm_file;
2987 struct file_ra_state *ra = &file->f_ra;
ef00e08e 2988 struct address_space *mapping = file->f_mapping;
fcd9ae4f 2989 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
6b4c9f44 2990 struct file *fpin = NULL;
e630bfac 2991 unsigned int mmap_miss;
ef00e08e
LT
2992
2993 /* If we don't want any read-ahead, don't bother */
2a1180f1 2994 if (vmf->vma->vm_flags & VM_RAND_READ)
6b4c9f44 2995 return fpin;
275b12bf 2996 if (!ra->ra_pages)
6b4c9f44 2997 return fpin;
ef00e08e 2998
2a1180f1 2999 if (vmf->vma->vm_flags & VM_SEQ_READ) {
6b4c9f44 3000 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
fcd9ae4f 3001 page_cache_sync_ra(&ractl, ra->ra_pages);
6b4c9f44 3002 return fpin;
ef00e08e
LT
3003 }
3004
207d04ba 3005 /* Avoid banging the cache line if not needed */
e630bfac
KS
3006 mmap_miss = READ_ONCE(ra->mmap_miss);
3007 if (mmap_miss < MMAP_LOTSAMISS * 10)
3008 WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
ef00e08e
LT
3009
3010 /*
3011 * Do we miss much more than hit in this file? If so,
3012 * stop bothering with read-ahead. It will only hurt.
3013 */
e630bfac 3014 if (mmap_miss > MMAP_LOTSAMISS)
6b4c9f44 3015 return fpin;
ef00e08e 3016
d30a1100
WF
3017 /*
3018 * mmap read-around
3019 */
6b4c9f44 3020 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
db660d46 3021 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
600e19af
RG
3022 ra->size = ra->ra_pages;
3023 ra->async_size = ra->ra_pages / 4;
db660d46
DH
3024 ractl._index = ra->start;
3025 do_page_cache_ra(&ractl, ra->size, ra->async_size);
6b4c9f44 3026 return fpin;
ef00e08e
LT
3027}
3028
3029/*
3030 * Asynchronous readahead happens when we find the page and PG_readahead,
6b4c9f44 3031 * so we want to possibly extend the readahead further. We return the file that
c1e8d7c6 3032 * was pinned if we have to drop the mmap_lock in order to do IO.
ef00e08e 3033 */
6b4c9f44 3034static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
79598ced 3035 struct folio *folio)
ef00e08e 3036{
2a1180f1
JB
3037 struct file *file = vmf->vma->vm_file;
3038 struct file_ra_state *ra = &file->f_ra;
79598ced 3039 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
6b4c9f44 3040 struct file *fpin = NULL;
e630bfac 3041 unsigned int mmap_miss;
ef00e08e
LT
3042
3043 /* If we don't want any read-ahead, don't bother */
5c72feee 3044 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
6b4c9f44 3045 return fpin;
79598ced 3046
e630bfac
KS
3047 mmap_miss = READ_ONCE(ra->mmap_miss);
3048 if (mmap_miss)
3049 WRITE_ONCE(ra->mmap_miss, --mmap_miss);
79598ced
MWO
3050
3051 if (folio_test_readahead(folio)) {
6b4c9f44 3052 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
79598ced 3053 page_cache_async_ra(&ractl, folio, ra->ra_pages);
6b4c9f44
JB
3054 }
3055 return fpin;
ef00e08e
LT
3056}
3057
485bb99b 3058/**
54cb8821 3059 * filemap_fault - read in file data for page fault handling
d0217ac0 3060 * @vmf: struct vm_fault containing details of the fault
485bb99b 3061 *
54cb8821 3062 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
3063 * mapped memory region to read in file data during a page fault.
3064 *
3065 * The goto's are kind of ugly, but this streamlines the normal case of having
3066 * it in the page cache, and handles the special cases reasonably without
3067 * having a lot of duplicated code.
9a95f3cf 3068 *
c1e8d7c6 3069 * vma->vm_mm->mmap_lock must be held on entry.
9a95f3cf 3070 *
c1e8d7c6 3071 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
e292e6d6 3072 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
9a95f3cf 3073 *
c1e8d7c6 3074 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
9a95f3cf
PC
3075 * has not been released.
3076 *
3077 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
a862f68a
MR
3078 *
3079 * Return: bitwise-OR of %VM_FAULT_ codes.
1da177e4 3080 */
2bcd6454 3081vm_fault_t filemap_fault(struct vm_fault *vmf)
1da177e4
LT
3082{
3083 int error;
11bac800 3084 struct file *file = vmf->vma->vm_file;
6b4c9f44 3085 struct file *fpin = NULL;
1da177e4 3086 struct address_space *mapping = file->f_mapping;
1da177e4 3087 struct inode *inode = mapping->host;
e292e6d6
MWO
3088 pgoff_t max_idx, index = vmf->pgoff;
3089 struct folio *folio;
2bcd6454 3090 vm_fault_t ret = 0;
730633f0 3091 bool mapping_locked = false;
1da177e4 3092
e292e6d6
MWO
3093 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3094 if (unlikely(index >= max_idx))
5307cc1a 3095 return VM_FAULT_SIGBUS;
1da177e4 3096
1da177e4 3097 /*
49426420 3098 * Do we have something in the page cache already?
1da177e4 3099 */
e292e6d6
MWO
3100 folio = filemap_get_folio(mapping, index);
3101 if (likely(folio)) {
1da177e4 3102 /*
730633f0
JK
3103 * We found the page, so try async readahead before waiting for
3104 * the lock.
1da177e4 3105 */
730633f0 3106 if (!(vmf->flags & FAULT_FLAG_TRIED))
79598ced 3107 fpin = do_async_mmap_readahead(vmf, folio);
e292e6d6 3108 if (unlikely(!folio_test_uptodate(folio))) {
730633f0
JK
3109 filemap_invalidate_lock_shared(mapping);
3110 mapping_locked = true;
3111 }
3112 } else {
ef00e08e 3113 /* No page in the page cache at all */
ef00e08e 3114 count_vm_event(PGMAJFAULT);
2262185c 3115 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
ef00e08e 3116 ret = VM_FAULT_MAJOR;
6b4c9f44 3117 fpin = do_sync_mmap_readahead(vmf);
ef00e08e 3118retry_find:
730633f0 3119 /*
e292e6d6 3120 * See comment in filemap_create_folio() why we need
730633f0
JK
3121 * invalidate_lock
3122 */
3123 if (!mapping_locked) {
3124 filemap_invalidate_lock_shared(mapping);
3125 mapping_locked = true;
3126 }
e292e6d6 3127 folio = __filemap_get_folio(mapping, index,
a75d4c33
JB
3128 FGP_CREAT|FGP_FOR_MMAP,
3129 vmf->gfp_mask);
e292e6d6 3130 if (!folio) {
6b4c9f44
JB
3131 if (fpin)
3132 goto out_retry;
730633f0 3133 filemap_invalidate_unlock_shared(mapping);
e520e932 3134 return VM_FAULT_OOM;
6b4c9f44 3135 }
1da177e4
LT
3136 }
3137
e292e6d6 3138 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
6b4c9f44 3139 goto out_retry;
b522c94d
ML
3140
3141 /* Did it get truncated? */
e292e6d6
MWO
3142 if (unlikely(folio->mapping != mapping)) {
3143 folio_unlock(folio);
3144 folio_put(folio);
b522c94d
ML
3145 goto retry_find;
3146 }
e292e6d6 3147 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
b522c94d 3148
1da177e4 3149 /*
d00806b1
NP
3150 * We have a locked page in the page cache, now we need to check
3151 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 3152 */
e292e6d6 3153 if (unlikely(!folio_test_uptodate(folio))) {
730633f0
JK
3154 /*
3155 * The page was in cache and uptodate and now it is not.
3156 * Strange but possible since we didn't hold the page lock all
3157 * the time. Let's drop everything get the invalidate lock and
3158 * try again.
3159 */
3160 if (!mapping_locked) {
e292e6d6
MWO
3161 folio_unlock(folio);
3162 folio_put(folio);
730633f0
JK
3163 goto retry_find;
3164 }
1da177e4 3165 goto page_not_uptodate;
730633f0 3166 }
1da177e4 3167
6b4c9f44 3168 /*
c1e8d7c6 3169 * We've made it this far and we had to drop our mmap_lock, now is the
6b4c9f44
JB
3170 * time to return to the upper layer and have it re-find the vma and
3171 * redo the fault.
3172 */
3173 if (fpin) {
e292e6d6 3174 folio_unlock(folio);
6b4c9f44
JB
3175 goto out_retry;
3176 }
730633f0
JK
3177 if (mapping_locked)
3178 filemap_invalidate_unlock_shared(mapping);
6b4c9f44 3179
ef00e08e
LT
3180 /*
3181 * Found the page and have a reference on it.
3182 * We must recheck i_size under page lock.
3183 */
e292e6d6
MWO
3184 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3185 if (unlikely(index >= max_idx)) {
3186 folio_unlock(folio);
3187 folio_put(folio);
5307cc1a 3188 return VM_FAULT_SIGBUS;
d00806b1
NP
3189 }
3190
e292e6d6 3191 vmf->page = folio_file_page(folio, index);
83c54070 3192 return ret | VM_FAULT_LOCKED;
1da177e4 3193
1da177e4 3194page_not_uptodate:
1da177e4
LT
3195 /*
3196 * Umm, take care of errors if the page isn't up-to-date.
3197 * Try to re-read it _once_. We do this synchronously,
3198 * because there really aren't any performance issues here
3199 * and we need to check for errors.
3200 */
6b4c9f44 3201 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
e292e6d6 3202 error = filemap_read_folio(file, mapping, folio);
6b4c9f44
JB
3203 if (fpin)
3204 goto out_retry;
e292e6d6 3205 folio_put(folio);
d00806b1
NP
3206
3207 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 3208 goto retry_find;
730633f0 3209 filemap_invalidate_unlock_shared(mapping);
1da177e4 3210
d0217ac0 3211 return VM_FAULT_SIGBUS;
6b4c9f44
JB
3212
3213out_retry:
3214 /*
c1e8d7c6 3215 * We dropped the mmap_lock, we need to return to the fault handler to
6b4c9f44
JB
3216 * re-find the vma and come back and find our hopefully still populated
3217 * page.
3218 */
e292e6d6
MWO
3219 if (folio)
3220 folio_put(folio);
730633f0
JK
3221 if (mapping_locked)
3222 filemap_invalidate_unlock_shared(mapping);
6b4c9f44
JB
3223 if (fpin)
3224 fput(fpin);
3225 return ret | VM_FAULT_RETRY;
54cb8821
NP
3226}
3227EXPORT_SYMBOL(filemap_fault);
3228
f9ce0be7 3229static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page)
f1820361 3230{
f9ce0be7
KS
3231 struct mm_struct *mm = vmf->vma->vm_mm;
3232
3233 /* Huge page is mapped? No need to proceed. */
3234 if (pmd_trans_huge(*vmf->pmd)) {
3235 unlock_page(page);
3236 put_page(page);
3237 return true;
3238 }
3239
3240 if (pmd_none(*vmf->pmd) && PageTransHuge(page)) {
e0f43fa5
YS
3241 vm_fault_t ret = do_set_pmd(vmf, page);
3242 if (!ret) {
3243 /* The page is mapped successfully, reference consumed. */
3244 unlock_page(page);
3245 return true;
f9ce0be7 3246 }
f9ce0be7
KS
3247 }
3248
03c4f204
QZ
3249 if (pmd_none(*vmf->pmd))
3250 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
f9ce0be7
KS
3251
3252 /* See comment in handle_pte_fault() */
3253 if (pmd_devmap_trans_unstable(vmf->pmd)) {
3254 unlock_page(page);
3255 put_page(page);
3256 return true;
3257 }
3258
3259 return false;
3260}
3261
820b05e9 3262static struct folio *next_uptodate_page(struct folio *folio,
f9ce0be7
KS
3263 struct address_space *mapping,
3264 struct xa_state *xas, pgoff_t end_pgoff)
3265{
3266 unsigned long max_idx;
3267
3268 do {
9184a307 3269 if (!folio)
f9ce0be7 3270 return NULL;
9184a307 3271 if (xas_retry(xas, folio))
f9ce0be7 3272 continue;
9184a307 3273 if (xa_is_value(folio))
f9ce0be7 3274 continue;
9184a307 3275 if (folio_test_locked(folio))
f9ce0be7 3276 continue;
9184a307 3277 if (!folio_try_get_rcu(folio))
f9ce0be7
KS
3278 continue;
3279 /* Has the page moved or been split? */
9184a307 3280 if (unlikely(folio != xas_reload(xas)))
f9ce0be7 3281 goto skip;
9184a307 3282 if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
f9ce0be7 3283 goto skip;
9184a307 3284 if (!folio_trylock(folio))
f9ce0be7 3285 goto skip;
9184a307 3286 if (folio->mapping != mapping)
f9ce0be7 3287 goto unlock;
9184a307 3288 if (!folio_test_uptodate(folio))
f9ce0be7
KS
3289 goto unlock;
3290 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3291 if (xas->xa_index >= max_idx)
3292 goto unlock;
820b05e9 3293 return folio;
f9ce0be7 3294unlock:
9184a307 3295 folio_unlock(folio);
f9ce0be7 3296skip:
9184a307
MWO
3297 folio_put(folio);
3298 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
f9ce0be7
KS
3299
3300 return NULL;
3301}
3302
820b05e9 3303static inline struct folio *first_map_page(struct address_space *mapping,
f9ce0be7
KS
3304 struct xa_state *xas,
3305 pgoff_t end_pgoff)
3306{
3307 return next_uptodate_page(xas_find(xas, end_pgoff),
3308 mapping, xas, end_pgoff);
3309}
3310
820b05e9 3311static inline struct folio *next_map_page(struct address_space *mapping,
f9ce0be7
KS
3312 struct xa_state *xas,
3313 pgoff_t end_pgoff)
3314{
3315 return next_uptodate_page(xas_next_entry(xas, end_pgoff),
3316 mapping, xas, end_pgoff);
3317}
3318
3319vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3320 pgoff_t start_pgoff, pgoff_t end_pgoff)
3321{
3322 struct vm_area_struct *vma = vmf->vma;
3323 struct file *file = vma->vm_file;
f1820361 3324 struct address_space *mapping = file->f_mapping;
bae473a4 3325 pgoff_t last_pgoff = start_pgoff;
9d3af4b4 3326 unsigned long addr;
070e807c 3327 XA_STATE(xas, &mapping->i_pages, start_pgoff);
820b05e9
MWO
3328 struct folio *folio;
3329 struct page *page;
e630bfac 3330 unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
f9ce0be7 3331 vm_fault_t ret = 0;
f1820361
KS
3332
3333 rcu_read_lock();
820b05e9
MWO
3334 folio = first_map_page(mapping, &xas, end_pgoff);
3335 if (!folio)
f9ce0be7 3336 goto out;
f1820361 3337
820b05e9 3338 if (filemap_map_pmd(vmf, &folio->page)) {
f9ce0be7
KS
3339 ret = VM_FAULT_NOPAGE;
3340 goto out;
3341 }
f1820361 3342
9d3af4b4
WD
3343 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3344 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
f9ce0be7 3345 do {
6b24ca4a 3346again:
820b05e9 3347 page = folio_file_page(folio, xas.xa_index);
f9ce0be7 3348 if (PageHWPoison(page))
f1820361
KS
3349 goto unlock;
3350
e630bfac
KS
3351 if (mmap_miss > 0)
3352 mmap_miss--;
7267ec00 3353
9d3af4b4 3354 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
f9ce0be7 3355 vmf->pte += xas.xa_index - last_pgoff;
070e807c 3356 last_pgoff = xas.xa_index;
f9ce0be7
KS
3357
3358 if (!pte_none(*vmf->pte))
7267ec00 3359 goto unlock;
f9ce0be7 3360
46bdb427 3361 /* We're about to handle the fault */
9d3af4b4 3362 if (vmf->address == addr)
46bdb427 3363 ret = VM_FAULT_NOPAGE;
46bdb427 3364
9d3af4b4 3365 do_set_pte(vmf, page, addr);
f9ce0be7 3366 /* no need to invalidate: a not-present page won't be cached */
9d3af4b4 3367 update_mmu_cache(vma, addr, vmf->pte);
6b24ca4a
MWO
3368 if (folio_more_pages(folio, xas.xa_index, end_pgoff)) {
3369 xas.xa_index++;
3370 folio_ref_inc(folio);
3371 goto again;
3372 }
820b05e9 3373 folio_unlock(folio);
f9ce0be7 3374 continue;
f1820361 3375unlock:
6b24ca4a
MWO
3376 if (folio_more_pages(folio, xas.xa_index, end_pgoff)) {
3377 xas.xa_index++;
3378 goto again;
3379 }
820b05e9
MWO
3380 folio_unlock(folio);
3381 folio_put(folio);
3382 } while ((folio = next_map_page(mapping, &xas, end_pgoff)) != NULL);
f9ce0be7
KS
3383 pte_unmap_unlock(vmf->pte, vmf->ptl);
3384out:
f1820361 3385 rcu_read_unlock();
e630bfac 3386 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
f9ce0be7 3387 return ret;
f1820361
KS
3388}
3389EXPORT_SYMBOL(filemap_map_pages);
3390
2bcd6454 3391vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
4fcf1c62 3392{
5df1a672 3393 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
960ea971 3394 struct folio *folio = page_folio(vmf->page);
2bcd6454 3395 vm_fault_t ret = VM_FAULT_LOCKED;
4fcf1c62 3396
5df1a672 3397 sb_start_pagefault(mapping->host->i_sb);
11bac800 3398 file_update_time(vmf->vma->vm_file);
960ea971
MWO
3399 folio_lock(folio);
3400 if (folio->mapping != mapping) {
3401 folio_unlock(folio);
4fcf1c62
JK
3402 ret = VM_FAULT_NOPAGE;
3403 goto out;
3404 }
14da9200 3405 /*
960ea971 3406 * We mark the folio dirty already here so that when freeze is in
14da9200 3407 * progress, we are guaranteed that writeback during freezing will
960ea971 3408 * see the dirty folio and writeprotect it again.
14da9200 3409 */
960ea971
MWO
3410 folio_mark_dirty(folio);
3411 folio_wait_stable(folio);
4fcf1c62 3412out:
5df1a672 3413 sb_end_pagefault(mapping->host->i_sb);
4fcf1c62
JK
3414 return ret;
3415}
4fcf1c62 3416
f0f37e2f 3417const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 3418 .fault = filemap_fault,
f1820361 3419 .map_pages = filemap_map_pages,
4fcf1c62 3420 .page_mkwrite = filemap_page_mkwrite,
1da177e4
LT
3421};
3422
3423/* This is used for a general mmap of a disk file */
3424
68d68ff6 3425int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
3426{
3427 struct address_space *mapping = file->f_mapping;
3428
3429 if (!mapping->a_ops->readpage)
3430 return -ENOEXEC;
3431 file_accessed(file);
3432 vma->vm_ops = &generic_file_vm_ops;
3433 return 0;
3434}
1da177e4
LT
3435
3436/*
3437 * This is for filesystems which do not implement ->writepage.
3438 */
3439int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3440{
3441 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3442 return -EINVAL;
3443 return generic_file_mmap(file, vma);
3444}
3445#else
4b96a37d 3446vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
45397228 3447{
4b96a37d 3448 return VM_FAULT_SIGBUS;
45397228 3449}
68d68ff6 3450int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
3451{
3452 return -ENOSYS;
3453}
68d68ff6 3454int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
3455{
3456 return -ENOSYS;
3457}
3458#endif /* CONFIG_MMU */
3459
45397228 3460EXPORT_SYMBOL(filemap_page_mkwrite);
1da177e4
LT
3461EXPORT_SYMBOL(generic_file_mmap);
3462EXPORT_SYMBOL(generic_file_readonly_mmap);
3463
539a3322
MWO
3464static struct folio *do_read_cache_folio(struct address_space *mapping,
3465 pgoff_t index, filler_t filler, void *data, gfp_t gfp)
67f9fd91 3466{
539a3322 3467 struct folio *folio;
1da177e4
LT
3468 int err;
3469repeat:
539a3322
MWO
3470 folio = filemap_get_folio(mapping, index);
3471 if (!folio) {
3472 folio = filemap_alloc_folio(gfp, 0);
3473 if (!folio)
eb2be189 3474 return ERR_PTR(-ENOMEM);
539a3322 3475 err = filemap_add_folio(mapping, folio, index, gfp);
eb2be189 3476 if (unlikely(err)) {
539a3322 3477 folio_put(folio);
eb2be189
NP
3478 if (err == -EEXIST)
3479 goto repeat;
22ecdb4f 3480 /* Presumably ENOMEM for xarray node */
1da177e4
LT
3481 return ERR_PTR(err);
3482 }
32b63529
MG
3483
3484filler:
6c45b454 3485 if (filler)
539a3322 3486 err = filler(data, &folio->page);
6c45b454 3487 else
539a3322 3488 err = mapping->a_ops->readpage(data, &folio->page);
6c45b454 3489
1da177e4 3490 if (err < 0) {
539a3322 3491 folio_put(folio);
32b63529 3492 return ERR_PTR(err);
1da177e4 3493 }
1da177e4 3494
539a3322
MWO
3495 folio_wait_locked(folio);
3496 if (!folio_test_uptodate(folio)) {
3497 folio_put(folio);
3498 return ERR_PTR(-EIO);
3499 }
3500
32b63529
MG
3501 goto out;
3502 }
539a3322 3503 if (folio_test_uptodate(folio))
1da177e4
LT
3504 goto out;
3505
81f4c03b
MWO
3506 if (!folio_trylock(folio)) {
3507 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3508 goto repeat;
3509 }
ebded027 3510
81f4c03b 3511 /* Folio was truncated from mapping */
539a3322
MWO
3512 if (!folio->mapping) {
3513 folio_unlock(folio);
3514 folio_put(folio);
32b63529 3515 goto repeat;
1da177e4 3516 }
ebded027
MG
3517
3518 /* Someone else locked and filled the page in a very small window */
539a3322
MWO
3519 if (folio_test_uptodate(folio)) {
3520 folio_unlock(folio);
1da177e4
LT
3521 goto out;
3522 }
faffdfa0
XT
3523
3524 /*
3525 * A previous I/O error may have been due to temporary
3526 * failures.
3527 * Clear page error before actual read, PG_error will be
3528 * set again if read page fails.
3529 */
539a3322 3530 folio_clear_error(folio);
32b63529
MG
3531 goto filler;
3532
c855ff37 3533out:
539a3322
MWO
3534 folio_mark_accessed(folio);
3535 return folio;
6fe6900e 3536}
0531b2aa
LT
3537
3538/**
539a3322 3539 * read_cache_folio - read into page cache, fill it if needed
0531b2aa
LT
3540 * @mapping: the page's address_space
3541 * @index: the page index
3542 * @filler: function to perform the read
5e5358e7 3543 * @data: first arg to filler(data, page) function, often left as NULL
0531b2aa 3544 *
0531b2aa 3545 * Read into the page cache. If a page already exists, and PageUptodate() is
67f9fd91 3546 * not set, try to fill the page and wait for it to become unlocked.
0531b2aa
LT
3547 *
3548 * If the page does not get brought uptodate, return -EIO.
a862f68a 3549 *
730633f0
JK
3550 * The function expects mapping->invalidate_lock to be already held.
3551 *
a862f68a 3552 * Return: up to date page on success, ERR_PTR() on failure.
0531b2aa 3553 */
539a3322
MWO
3554struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
3555 filler_t filler, void *data)
3556{
3557 return do_read_cache_folio(mapping, index, filler, data,
3558 mapping_gfp_mask(mapping));
3559}
3560EXPORT_SYMBOL(read_cache_folio);
3561
3562static struct page *do_read_cache_page(struct address_space *mapping,
3563 pgoff_t index, filler_t *filler, void *data, gfp_t gfp)
3564{
3565 struct folio *folio;
3566
3567 folio = do_read_cache_folio(mapping, index, filler, data, gfp);
3568 if (IS_ERR(folio))
3569 return &folio->page;
3570 return folio_file_page(folio, index);
3571}
3572
67f9fd91 3573struct page *read_cache_page(struct address_space *mapping,
539a3322 3574 pgoff_t index, filler_t *filler, void *data)
0531b2aa 3575{
d322a8e5
CH
3576 return do_read_cache_page(mapping, index, filler, data,
3577 mapping_gfp_mask(mapping));
0531b2aa 3578}
67f9fd91 3579EXPORT_SYMBOL(read_cache_page);
0531b2aa
LT
3580
3581/**
3582 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3583 * @mapping: the page's address_space
3584 * @index: the page index
3585 * @gfp: the page allocator flags to use if allocating
3586 *
3587 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
e6f67b8c 3588 * any new page allocations done using the specified allocation flags.
0531b2aa
LT
3589 *
3590 * If the page does not get brought uptodate, return -EIO.
a862f68a 3591 *
730633f0
JK
3592 * The function expects mapping->invalidate_lock to be already held.
3593 *
a862f68a 3594 * Return: up to date page on success, ERR_PTR() on failure.
0531b2aa
LT
3595 */
3596struct page *read_cache_page_gfp(struct address_space *mapping,
3597 pgoff_t index,
3598 gfp_t gfp)
3599{
6c45b454 3600 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
0531b2aa
LT
3601}
3602EXPORT_SYMBOL(read_cache_page_gfp);
3603
afddba49
NP
3604int pagecache_write_begin(struct file *file, struct address_space *mapping,
3605 loff_t pos, unsigned len, unsigned flags,
3606 struct page **pagep, void **fsdata)
3607{
3608 const struct address_space_operations *aops = mapping->a_ops;
3609
4e02ed4b 3610 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 3611 pagep, fsdata);
afddba49
NP
3612}
3613EXPORT_SYMBOL(pagecache_write_begin);
3614
3615int pagecache_write_end(struct file *file, struct address_space *mapping,
3616 loff_t pos, unsigned len, unsigned copied,
3617 struct page *page, void *fsdata)
3618{
3619 const struct address_space_operations *aops = mapping->a_ops;
afddba49 3620
4e02ed4b 3621 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
3622}
3623EXPORT_SYMBOL(pagecache_write_end);
3624
a92853b6
KK
3625/*
3626 * Warn about a page cache invalidation failure during a direct I/O write.
3627 */
3628void dio_warn_stale_pagecache(struct file *filp)
3629{
3630 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3631 char pathname[128];
a92853b6
KK
3632 char *path;
3633
5df1a672 3634 errseq_set(&filp->f_mapping->wb_err, -EIO);
a92853b6
KK
3635 if (__ratelimit(&_rs)) {
3636 path = file_path(filp, pathname, sizeof(pathname));
3637 if (IS_ERR(path))
3638 path = "(unknown)";
3639 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
3640 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3641 current->comm);
3642 }
3643}
3644
1da177e4 3645ssize_t
1af5bb49 3646generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3647{
3648 struct file *file = iocb->ki_filp;
3649 struct address_space *mapping = file->f_mapping;
3650 struct inode *inode = mapping->host;
1af5bb49 3651 loff_t pos = iocb->ki_pos;
1da177e4 3652 ssize_t written;
a969e903
CH
3653 size_t write_len;
3654 pgoff_t end;
1da177e4 3655
0c949334 3656 write_len = iov_iter_count(from);
09cbfeaf 3657 end = (pos + write_len - 1) >> PAGE_SHIFT;
a969e903 3658
6be96d3a
GR
3659 if (iocb->ki_flags & IOCB_NOWAIT) {
3660 /* If there are pages to writeback, return */
5df1a672 3661 if (filemap_range_has_page(file->f_mapping, pos,
35f12f0f 3662 pos + write_len - 1))
6be96d3a
GR
3663 return -EAGAIN;
3664 } else {
3665 written = filemap_write_and_wait_range(mapping, pos,
3666 pos + write_len - 1);
3667 if (written)
3668 goto out;
3669 }
a969e903
CH
3670
3671 /*
3672 * After a write we want buffered reads to be sure to go to disk to get
3673 * the new data. We invalidate clean cached page from the region we're
3674 * about to write. We do this *before* the write so that we can return
6ccfa806 3675 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903 3676 */
55635ba7 3677 written = invalidate_inode_pages2_range(mapping,
09cbfeaf 3678 pos >> PAGE_SHIFT, end);
55635ba7
AR
3679 /*
3680 * If a page can not be invalidated, return 0 to fall back
3681 * to buffered write.
3682 */
3683 if (written) {
3684 if (written == -EBUSY)
3685 return 0;
3686 goto out;
a969e903
CH
3687 }
3688
639a93a5 3689 written = mapping->a_ops->direct_IO(iocb, from);
a969e903
CH
3690
3691 /*
3692 * Finally, try again to invalidate clean pages which might have been
3693 * cached by non-direct readahead, or faulted in by get_user_pages()
3694 * if the source of the write was an mmap'ed region of the file
3695 * we're writing. Either one is a pretty crazy thing to do,
3696 * so we don't support it 100%. If this invalidation
3697 * fails, tough, the write still worked...
332391a9
LC
3698 *
3699 * Most of the time we do not need this since dio_complete() will do
3700 * the invalidation for us. However there are some file systems that
3701 * do not end up with dio_complete() being called, so let's not break
80c1fe90
KK
3702 * them by removing it completely.
3703 *
9266a140
KK
3704 * Noticeable example is a blkdev_direct_IO().
3705 *
80c1fe90 3706 * Skip invalidation for async writes or if mapping has no pages.
a969e903 3707 */
9266a140
KK
3708 if (written > 0 && mapping->nrpages &&
3709 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3710 dio_warn_stale_pagecache(file);
a969e903 3711
1da177e4 3712 if (written > 0) {
0116651c 3713 pos += written;
639a93a5 3714 write_len -= written;
0116651c
NK
3715 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3716 i_size_write(inode, pos);
1da177e4
LT
3717 mark_inode_dirty(inode);
3718 }
5cb6c6c7 3719 iocb->ki_pos = pos;
1da177e4 3720 }
ab2125df
PB
3721 if (written != -EIOCBQUEUED)
3722 iov_iter_revert(from, write_len - iov_iter_count(from));
a969e903 3723out:
1da177e4
LT
3724 return written;
3725}
3726EXPORT_SYMBOL(generic_file_direct_write);
3727
3b93f911 3728ssize_t generic_perform_write(struct file *file,
afddba49
NP
3729 struct iov_iter *i, loff_t pos)
3730{
3731 struct address_space *mapping = file->f_mapping;
3732 const struct address_space_operations *a_ops = mapping->a_ops;
3733 long status = 0;
3734 ssize_t written = 0;
674b892e
NP
3735 unsigned int flags = 0;
3736
afddba49
NP
3737 do {
3738 struct page *page;
afddba49
NP
3739 unsigned long offset; /* Offset into pagecache page */
3740 unsigned long bytes; /* Bytes to write to page */
3741 size_t copied; /* Bytes copied from user */
3742 void *fsdata;
3743
09cbfeaf
KS
3744 offset = (pos & (PAGE_SIZE - 1));
3745 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
3746 iov_iter_count(i));
3747
3748again:
00a3d660
LT
3749 /*
3750 * Bring in the user page that we will copy from _first_.
3751 * Otherwise there's a nasty deadlock on copying from the
3752 * same page as we're writing to, without it being marked
3753 * up-to-date.
00a3d660 3754 */
a6294593 3755 if (unlikely(fault_in_iov_iter_readable(i, bytes))) {
00a3d660
LT
3756 status = -EFAULT;
3757 break;
3758 }
3759
296291cd
JK
3760 if (fatal_signal_pending(current)) {
3761 status = -EINTR;
3762 break;
3763 }
3764
674b892e 3765 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49 3766 &page, &fsdata);
2457aec6 3767 if (unlikely(status < 0))
afddba49
NP
3768 break;
3769
931e80e4 3770 if (mapping_writably_mapped(mapping))
3771 flush_dcache_page(page);
00a3d660 3772
f0b65f39 3773 copied = copy_page_from_iter_atomic(page, offset, bytes, i);
afddba49
NP
3774 flush_dcache_page(page);
3775
3776 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3777 page, fsdata);
f0b65f39
AV
3778 if (unlikely(status != copied)) {
3779 iov_iter_revert(i, copied - max(status, 0L));
3780 if (unlikely(status < 0))
3781 break;
3782 }
afddba49
NP
3783 cond_resched();
3784
bc1bb416 3785 if (unlikely(status == 0)) {
afddba49 3786 /*
bc1bb416
AV
3787 * A short copy made ->write_end() reject the
3788 * thing entirely. Might be memory poisoning
3789 * halfway through, might be a race with munmap,
3790 * might be severe memory pressure.
afddba49 3791 */
bc1bb416
AV
3792 if (copied)
3793 bytes = copied;
afddba49
NP
3794 goto again;
3795 }
f0b65f39
AV
3796 pos += status;
3797 written += status;
afddba49
NP
3798
3799 balance_dirty_pages_ratelimited(mapping);
afddba49
NP
3800 } while (iov_iter_count(i));
3801
3802 return written ? written : status;
3803}
3b93f911 3804EXPORT_SYMBOL(generic_perform_write);
1da177e4 3805
e4dd9de3 3806/**
8174202b 3807 * __generic_file_write_iter - write data to a file
e4dd9de3 3808 * @iocb: IO state structure (file, offset, etc.)
8174202b 3809 * @from: iov_iter with data to write
e4dd9de3
JK
3810 *
3811 * This function does all the work needed for actually writing data to a
3812 * file. It does all basic checks, removes SUID from the file, updates
3813 * modification times and calls proper subroutines depending on whether we
3814 * do direct IO or a standard buffered write.
3815 *
9608703e 3816 * It expects i_rwsem to be grabbed unless we work on a block device or similar
e4dd9de3
JK
3817 * object which does not need locking at all.
3818 *
3819 * This function does *not* take care of syncing data in case of O_SYNC write.
3820 * A caller has to handle it. This is mainly due to the fact that we want to
9608703e 3821 * avoid syncing under i_rwsem.
a862f68a
MR
3822 *
3823 * Return:
3824 * * number of bytes written, even for truncated writes
3825 * * negative error code if no data has been written at all
e4dd9de3 3826 */
8174202b 3827ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3828{
3829 struct file *file = iocb->ki_filp;
68d68ff6 3830 struct address_space *mapping = file->f_mapping;
1da177e4 3831 struct inode *inode = mapping->host;
3b93f911 3832 ssize_t written = 0;
1da177e4 3833 ssize_t err;
3b93f911 3834 ssize_t status;
1da177e4 3835
1da177e4 3836 /* We can write back this queue in page reclaim */
de1414a6 3837 current->backing_dev_info = inode_to_bdi(inode);
5fa8e0a1 3838 err = file_remove_privs(file);
1da177e4
LT
3839 if (err)
3840 goto out;
3841
c3b2da31
JB
3842 err = file_update_time(file);
3843 if (err)
3844 goto out;
1da177e4 3845
2ba48ce5 3846 if (iocb->ki_flags & IOCB_DIRECT) {
0b8def9d 3847 loff_t pos, endbyte;
fb5527e6 3848
1af5bb49 3849 written = generic_file_direct_write(iocb, from);
1da177e4 3850 /*
fbbbad4b
MW
3851 * If the write stopped short of completing, fall back to
3852 * buffered writes. Some filesystems do this for writes to
3853 * holes, for example. For DAX files, a buffered write will
3854 * not succeed (even if it did, DAX does not handle dirty
3855 * page-cache pages correctly).
1da177e4 3856 */
0b8def9d 3857 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
fbbbad4b
MW
3858 goto out;
3859
0b8def9d 3860 status = generic_perform_write(file, from, pos = iocb->ki_pos);
fb5527e6 3861 /*
3b93f911 3862 * If generic_perform_write() returned a synchronous error
fb5527e6
JM
3863 * then we want to return the number of bytes which were
3864 * direct-written, or the error code if that was zero. Note
3865 * that this differs from normal direct-io semantics, which
3866 * will return -EFOO even if some bytes were written.
3867 */
60bb4529 3868 if (unlikely(status < 0)) {
3b93f911 3869 err = status;
fb5527e6
JM
3870 goto out;
3871 }
fb5527e6
JM
3872 /*
3873 * We need to ensure that the page cache pages are written to
3874 * disk and invalidated to preserve the expected O_DIRECT
3875 * semantics.
3876 */
3b93f911 3877 endbyte = pos + status - 1;
0b8def9d 3878 err = filemap_write_and_wait_range(mapping, pos, endbyte);
fb5527e6 3879 if (err == 0) {
0b8def9d 3880 iocb->ki_pos = endbyte + 1;
3b93f911 3881 written += status;
fb5527e6 3882 invalidate_mapping_pages(mapping,
09cbfeaf
KS
3883 pos >> PAGE_SHIFT,
3884 endbyte >> PAGE_SHIFT);
fb5527e6
JM
3885 } else {
3886 /*
3887 * We don't know how much we wrote, so just return
3888 * the number of bytes which were direct-written
3889 */
3890 }
3891 } else {
0b8def9d
AV
3892 written = generic_perform_write(file, from, iocb->ki_pos);
3893 if (likely(written > 0))
3894 iocb->ki_pos += written;
fb5527e6 3895 }
1da177e4
LT
3896out:
3897 current->backing_dev_info = NULL;
3898 return written ? written : err;
3899}
8174202b 3900EXPORT_SYMBOL(__generic_file_write_iter);
e4dd9de3 3901
e4dd9de3 3902/**
8174202b 3903 * generic_file_write_iter - write data to a file
e4dd9de3 3904 * @iocb: IO state structure
8174202b 3905 * @from: iov_iter with data to write
e4dd9de3 3906 *
8174202b 3907 * This is a wrapper around __generic_file_write_iter() to be used by most
e4dd9de3 3908 * filesystems. It takes care of syncing the file in case of O_SYNC file
9608703e 3909 * and acquires i_rwsem as needed.
a862f68a
MR
3910 * Return:
3911 * * negative error code if no data has been written at all of
3912 * vfs_fsync_range() failed for a synchronous write
3913 * * number of bytes written, even for truncated writes
e4dd9de3 3914 */
8174202b 3915ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3916{
3917 struct file *file = iocb->ki_filp;
148f948b 3918 struct inode *inode = file->f_mapping->host;
1da177e4 3919 ssize_t ret;
1da177e4 3920
5955102c 3921 inode_lock(inode);
3309dd04
AV
3922 ret = generic_write_checks(iocb, from);
3923 if (ret > 0)
5f380c7f 3924 ret = __generic_file_write_iter(iocb, from);
5955102c 3925 inode_unlock(inode);
1da177e4 3926
e2592217
CH
3927 if (ret > 0)
3928 ret = generic_write_sync(iocb, ret);
1da177e4
LT
3929 return ret;
3930}
8174202b 3931EXPORT_SYMBOL(generic_file_write_iter);
1da177e4 3932
cf9a2ae8 3933/**
82c50f8b
MWO
3934 * filemap_release_folio() - Release fs-specific metadata on a folio.
3935 * @folio: The folio which the kernel is trying to free.
3936 * @gfp: Memory allocation flags (and I/O mode).
cf9a2ae8 3937 *
82c50f8b
MWO
3938 * The address_space is trying to release any data attached to a folio
3939 * (presumably at folio->private).
cf9a2ae8 3940 *
82c50f8b
MWO
3941 * This will also be called if the private_2 flag is set on a page,
3942 * indicating that the folio has other metadata associated with it.
266cf658 3943 *
82c50f8b
MWO
3944 * The @gfp argument specifies whether I/O may be performed to release
3945 * this page (__GFP_IO), and whether the call may block
3946 * (__GFP_RECLAIM & __GFP_FS).
cf9a2ae8 3947 *
82c50f8b 3948 * Return: %true if the release was successful, otherwise %false.
cf9a2ae8 3949 */
82c50f8b 3950bool filemap_release_folio(struct folio *folio, gfp_t gfp)
cf9a2ae8 3951{
82c50f8b 3952 struct address_space * const mapping = folio->mapping;
cf9a2ae8 3953
82c50f8b
MWO
3954 BUG_ON(!folio_test_locked(folio));
3955 if (folio_test_writeback(folio))
3956 return false;
cf9a2ae8
DH
3957
3958 if (mapping && mapping->a_ops->releasepage)
82c50f8b
MWO
3959 return mapping->a_ops->releasepage(&folio->page, gfp);
3960 return try_to_free_buffers(&folio->page);
cf9a2ae8 3961}
82c50f8b 3962EXPORT_SYMBOL(filemap_release_folio);