mm: abstract out wake_page_match() from wake_page_function()
[linux-2.6-block.git] / mm / filemap.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/filemap.c
4 *
5 * Copyright (C) 1994-1999 Linus Torvalds
6 */
7
8/*
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
12 */
b95f1b31 13#include <linux/export.h>
1da177e4 14#include <linux/compiler.h>
f9fe48be 15#include <linux/dax.h>
1da177e4 16#include <linux/fs.h>
3f07c014 17#include <linux/sched/signal.h>
c22ce143 18#include <linux/uaccess.h>
c59ede7b 19#include <linux/capability.h>
1da177e4 20#include <linux/kernel_stat.h>
5a0e3ad6 21#include <linux/gfp.h>
1da177e4
LT
22#include <linux/mm.h>
23#include <linux/swap.h>
24#include <linux/mman.h>
25#include <linux/pagemap.h>
26#include <linux/file.h>
27#include <linux/uio.h>
cfcbfb13 28#include <linux/error-injection.h>
1da177e4
LT
29#include <linux/hash.h>
30#include <linux/writeback.h>
53253383 31#include <linux/backing-dev.h>
1da177e4
LT
32#include <linux/pagevec.h>
33#include <linux/blkdev.h>
34#include <linux/security.h>
44110fe3 35#include <linux/cpuset.h>
00501b53 36#include <linux/hugetlb.h>
8a9f3ccd 37#include <linux/memcontrol.h>
c515e1fd 38#include <linux/cleancache.h>
c7df8ad2 39#include <linux/shmem_fs.h>
f1820361 40#include <linux/rmap.h>
b1d29ba8 41#include <linux/delayacct.h>
eb414681 42#include <linux/psi.h>
d0e6a582 43#include <linux/ramfs.h>
0f8053a5
NP
44#include "internal.h"
45
fe0bfaaf
RJ
46#define CREATE_TRACE_POINTS
47#include <trace/events/filemap.h>
48
1da177e4 49/*
1da177e4
LT
50 * FIXME: remove all knowledge of the buffer layer from the core VM
51 */
148f948b 52#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 53
1da177e4
LT
54#include <asm/mman.h>
55
56/*
57 * Shared mappings implemented 30.11.1994. It's not fully working yet,
58 * though.
59 *
60 * Shared mappings now work. 15.8.1995 Bruno.
61 *
62 * finished 'unifying' the page and buffer cache and SMP-threaded the
63 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
64 *
65 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
66 */
67
68/*
69 * Lock ordering:
70 *
c8c06efa 71 * ->i_mmap_rwsem (truncate_pagecache)
1da177e4 72 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91 73 * ->swap_lock (exclusive_swap_page, others)
b93b0163 74 * ->i_pages lock
1da177e4 75 *
1b1dcc1b 76 * ->i_mutex
c8c06efa 77 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
1da177e4 78 *
c1e8d7c6 79 * ->mmap_lock
c8c06efa 80 * ->i_mmap_rwsem
b8072f09 81 * ->page_table_lock or pte_lock (various, mainly in memory.c)
b93b0163 82 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
1da177e4 83 *
c1e8d7c6 84 * ->mmap_lock
1da177e4
LT
85 * ->lock_page (access_process_vm)
86 *
ccad2365 87 * ->i_mutex (generic_perform_write)
c1e8d7c6 88 * ->mmap_lock (fault_in_pages_readable->do_page_fault)
1da177e4 89 *
f758eeab 90 * bdi->wb.list_lock
a66979ab 91 * sb_lock (fs/fs-writeback.c)
b93b0163 92 * ->i_pages lock (__sync_single_inode)
1da177e4 93 *
c8c06efa 94 * ->i_mmap_rwsem
1da177e4
LT
95 * ->anon_vma.lock (vma_adjust)
96 *
97 * ->anon_vma.lock
b8072f09 98 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 99 *
b8072f09 100 * ->page_table_lock or pte_lock
5d337b91 101 * ->swap_lock (try_to_unmap_one)
1da177e4 102 * ->private_lock (try_to_unmap_one)
b93b0163 103 * ->i_pages lock (try_to_unmap_one)
f4b7e272
AR
104 * ->pgdat->lru_lock (follow_page->mark_page_accessed)
105 * ->pgdat->lru_lock (check_pte_range->isolate_lru_page)
1da177e4 106 * ->private_lock (page_remove_rmap->set_page_dirty)
b93b0163 107 * ->i_pages lock (page_remove_rmap->set_page_dirty)
f758eeab 108 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
250df6ed 109 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
81f8c3a4 110 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
f758eeab 111 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 112 * ->inode->i_lock (zap_pte_range->set_page_dirty)
1da177e4
LT
113 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
114 *
c8c06efa 115 * ->i_mmap_rwsem
9a3c531d 116 * ->tasklist_lock (memory_failure, collect_procs_ao)
1da177e4
LT
117 */
118
5c024e6a 119static void page_cache_delete(struct address_space *mapping,
91b0abe3
JW
120 struct page *page, void *shadow)
121{
5c024e6a
MW
122 XA_STATE(xas, &mapping->i_pages, page->index);
123 unsigned int nr = 1;
c70b647d 124
5c024e6a 125 mapping_set_update(&xas, mapping);
c70b647d 126
5c024e6a
MW
127 /* hugetlb pages are represented by a single entry in the xarray */
128 if (!PageHuge(page)) {
129 xas_set_order(&xas, page->index, compound_order(page));
d8c6546b 130 nr = compound_nr(page);
5c024e6a 131 }
91b0abe3 132
83929372
KS
133 VM_BUG_ON_PAGE(!PageLocked(page), page);
134 VM_BUG_ON_PAGE(PageTail(page), page);
135 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
449dd698 136
5c024e6a
MW
137 xas_store(&xas, shadow);
138 xas_init_marks(&xas);
d3798ae8 139
2300638b
JK
140 page->mapping = NULL;
141 /* Leave page->index set: truncation lookup relies upon it */
142
d3798ae8
JW
143 if (shadow) {
144 mapping->nrexceptional += nr;
145 /*
146 * Make sure the nrexceptional update is committed before
147 * the nrpages update so that final truncate racing
148 * with reclaim does not see both counters 0 at the
149 * same time and miss a shadow entry.
150 */
151 smp_wmb();
152 }
153 mapping->nrpages -= nr;
91b0abe3
JW
154}
155
5ecc4d85
JK
156static void unaccount_page_cache_page(struct address_space *mapping,
157 struct page *page)
1da177e4 158{
5ecc4d85 159 int nr;
1da177e4 160
c515e1fd
DM
161 /*
162 * if we're uptodate, flush out into the cleancache, otherwise
163 * invalidate any existing cleancache entries. We can't leave
164 * stale data around in the cleancache once our page is gone
165 */
166 if (PageUptodate(page) && PageMappedToDisk(page))
167 cleancache_put_page(page);
168 else
3167760f 169 cleancache_invalidate_page(mapping, page);
c515e1fd 170
83929372 171 VM_BUG_ON_PAGE(PageTail(page), page);
06b241f3
HD
172 VM_BUG_ON_PAGE(page_mapped(page), page);
173 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
174 int mapcount;
175
176 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
177 current->comm, page_to_pfn(page));
178 dump_page(page, "still mapped when deleted");
179 dump_stack();
180 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
181
182 mapcount = page_mapcount(page);
183 if (mapping_exiting(mapping) &&
184 page_count(page) >= mapcount + 2) {
185 /*
186 * All vmas have already been torn down, so it's
187 * a good bet that actually the page is unmapped,
188 * and we'd prefer not to leak it: if we're wrong,
189 * some other bad page check should catch it later.
190 */
191 page_mapcount_reset(page);
6d061f9f 192 page_ref_sub(page, mapcount);
06b241f3
HD
193 }
194 }
195
4165b9b4 196 /* hugetlb pages do not participate in page cache accounting. */
5ecc4d85
JK
197 if (PageHuge(page))
198 return;
09612fa6 199
5ecc4d85
JK
200 nr = hpage_nr_pages(page);
201
0d1c2072 202 __mod_lruvec_page_state(page, NR_FILE_PAGES, -nr);
5ecc4d85 203 if (PageSwapBacked(page)) {
0d1c2072 204 __mod_lruvec_page_state(page, NR_SHMEM, -nr);
5ecc4d85
JK
205 if (PageTransHuge(page))
206 __dec_node_page_state(page, NR_SHMEM_THPS);
99cb0dbd
SL
207 } else if (PageTransHuge(page)) {
208 __dec_node_page_state(page, NR_FILE_THPS);
09d91cda 209 filemap_nr_thps_dec(mapping);
800d8c63 210 }
5ecc4d85
JK
211
212 /*
213 * At this point page must be either written or cleaned by
214 * truncate. Dirty page here signals a bug and loss of
215 * unwritten data.
216 *
217 * This fixes dirty accounting after removing the page entirely
218 * but leaves PageDirty set: it has no effect for truncated
219 * page and anyway will be cleared before returning page into
220 * buddy allocator.
221 */
222 if (WARN_ON_ONCE(PageDirty(page)))
223 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
224}
225
226/*
227 * Delete a page from the page cache and free it. Caller has to make
228 * sure the page is locked and that nobody else uses it - or that usage
b93b0163 229 * is safe. The caller must hold the i_pages lock.
5ecc4d85
JK
230 */
231void __delete_from_page_cache(struct page *page, void *shadow)
232{
233 struct address_space *mapping = page->mapping;
234
235 trace_mm_filemap_delete_from_page_cache(page);
236
237 unaccount_page_cache_page(mapping, page);
5c024e6a 238 page_cache_delete(mapping, page, shadow);
1da177e4
LT
239}
240
59c66c5f
JK
241static void page_cache_free_page(struct address_space *mapping,
242 struct page *page)
243{
244 void (*freepage)(struct page *);
245
246 freepage = mapping->a_ops->freepage;
247 if (freepage)
248 freepage(page);
249
250 if (PageTransHuge(page) && !PageHuge(page)) {
251 page_ref_sub(page, HPAGE_PMD_NR);
252 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
253 } else {
254 put_page(page);
255 }
256}
257
702cfbf9
MK
258/**
259 * delete_from_page_cache - delete page from page cache
260 * @page: the page which the kernel is trying to remove from page cache
261 *
262 * This must be called only on pages that have been verified to be in the page
263 * cache and locked. It will never put the page into the free list, the caller
264 * has a reference on the page.
265 */
266void delete_from_page_cache(struct page *page)
1da177e4 267{
83929372 268 struct address_space *mapping = page_mapping(page);
c4843a75 269 unsigned long flags;
1da177e4 270
cd7619d6 271 BUG_ON(!PageLocked(page));
b93b0163 272 xa_lock_irqsave(&mapping->i_pages, flags);
62cccb8c 273 __delete_from_page_cache(page, NULL);
b93b0163 274 xa_unlock_irqrestore(&mapping->i_pages, flags);
6072d13c 275
59c66c5f 276 page_cache_free_page(mapping, page);
97cecb5a
MK
277}
278EXPORT_SYMBOL(delete_from_page_cache);
279
aa65c29c 280/*
ef8e5717 281 * page_cache_delete_batch - delete several pages from page cache
aa65c29c
JK
282 * @mapping: the mapping to which pages belong
283 * @pvec: pagevec with pages to delete
284 *
b93b0163 285 * The function walks over mapping->i_pages and removes pages passed in @pvec
4101196b
MWO
286 * from the mapping. The function expects @pvec to be sorted by page index
287 * and is optimised for it to be dense.
b93b0163 288 * It tolerates holes in @pvec (mapping entries at those indices are not
aa65c29c 289 * modified). The function expects only THP head pages to be present in the
4101196b 290 * @pvec.
aa65c29c 291 *
b93b0163 292 * The function expects the i_pages lock to be held.
aa65c29c 293 */
ef8e5717 294static void page_cache_delete_batch(struct address_space *mapping,
aa65c29c
JK
295 struct pagevec *pvec)
296{
ef8e5717 297 XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
aa65c29c 298 int total_pages = 0;
4101196b 299 int i = 0;
aa65c29c 300 struct page *page;
aa65c29c 301
ef8e5717
MW
302 mapping_set_update(&xas, mapping);
303 xas_for_each(&xas, page, ULONG_MAX) {
4101196b 304 if (i >= pagevec_count(pvec))
aa65c29c 305 break;
4101196b
MWO
306
307 /* A swap/dax/shadow entry got inserted? Skip it. */
3159f943 308 if (xa_is_value(page))
aa65c29c 309 continue;
4101196b
MWO
310 /*
311 * A page got inserted in our range? Skip it. We have our
312 * pages locked so they are protected from being removed.
313 * If we see a page whose index is higher than ours, it
314 * means our page has been removed, which shouldn't be
315 * possible because we're holding the PageLock.
316 */
317 if (page != pvec->pages[i]) {
318 VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
319 page);
320 continue;
321 }
322
323 WARN_ON_ONCE(!PageLocked(page));
324
325 if (page->index == xas.xa_index)
aa65c29c 326 page->mapping = NULL;
4101196b
MWO
327 /* Leave page->index set: truncation lookup relies on it */
328
329 /*
330 * Move to the next page in the vector if this is a regular
331 * page or the index is of the last sub-page of this compound
332 * page.
333 */
334 if (page->index + compound_nr(page) - 1 == xas.xa_index)
aa65c29c 335 i++;
ef8e5717 336 xas_store(&xas, NULL);
aa65c29c
JK
337 total_pages++;
338 }
339 mapping->nrpages -= total_pages;
340}
341
342void delete_from_page_cache_batch(struct address_space *mapping,
343 struct pagevec *pvec)
344{
345 int i;
346 unsigned long flags;
347
348 if (!pagevec_count(pvec))
349 return;
350
b93b0163 351 xa_lock_irqsave(&mapping->i_pages, flags);
aa65c29c
JK
352 for (i = 0; i < pagevec_count(pvec); i++) {
353 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
354
355 unaccount_page_cache_page(mapping, pvec->pages[i]);
356 }
ef8e5717 357 page_cache_delete_batch(mapping, pvec);
b93b0163 358 xa_unlock_irqrestore(&mapping->i_pages, flags);
aa65c29c
JK
359
360 for (i = 0; i < pagevec_count(pvec); i++)
361 page_cache_free_page(mapping, pvec->pages[i]);
362}
363
d72d9e2a 364int filemap_check_errors(struct address_space *mapping)
865ffef3
DM
365{
366 int ret = 0;
367 /* Check for outstanding write errors */
7fcbbaf1
JA
368 if (test_bit(AS_ENOSPC, &mapping->flags) &&
369 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
865ffef3 370 ret = -ENOSPC;
7fcbbaf1
JA
371 if (test_bit(AS_EIO, &mapping->flags) &&
372 test_and_clear_bit(AS_EIO, &mapping->flags))
865ffef3
DM
373 ret = -EIO;
374 return ret;
375}
d72d9e2a 376EXPORT_SYMBOL(filemap_check_errors);
865ffef3 377
76341cab
JL
378static int filemap_check_and_keep_errors(struct address_space *mapping)
379{
380 /* Check for outstanding write errors */
381 if (test_bit(AS_EIO, &mapping->flags))
382 return -EIO;
383 if (test_bit(AS_ENOSPC, &mapping->flags))
384 return -ENOSPC;
385 return 0;
386}
387
1da177e4 388/**
485bb99b 389 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
390 * @mapping: address space structure to write
391 * @start: offset in bytes where the range starts
469eb4d0 392 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 393 * @sync_mode: enable synchronous operation
1da177e4 394 *
485bb99b
RD
395 * Start writeback against all of a mapping's dirty pages that lie
396 * within the byte offsets <start, end> inclusive.
397 *
1da177e4 398 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 399 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
400 * these two operations is that if a dirty page/buffer is encountered, it must
401 * be waited upon, and not just skipped over.
a862f68a
MR
402 *
403 * Return: %0 on success, negative error code otherwise.
1da177e4 404 */
ebcf28e1
AM
405int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
406 loff_t end, int sync_mode)
1da177e4
LT
407{
408 int ret;
409 struct writeback_control wbc = {
410 .sync_mode = sync_mode,
05fe478d 411 .nr_to_write = LONG_MAX,
111ebb6e
OH
412 .range_start = start,
413 .range_end = end,
1da177e4
LT
414 };
415
c3aab9a0
KK
416 if (!mapping_cap_writeback_dirty(mapping) ||
417 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1da177e4
LT
418 return 0;
419
b16b1deb 420 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
1da177e4 421 ret = do_writepages(mapping, &wbc);
b16b1deb 422 wbc_detach_inode(&wbc);
1da177e4
LT
423 return ret;
424}
425
426static inline int __filemap_fdatawrite(struct address_space *mapping,
427 int sync_mode)
428{
111ebb6e 429 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
430}
431
432int filemap_fdatawrite(struct address_space *mapping)
433{
434 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
435}
436EXPORT_SYMBOL(filemap_fdatawrite);
437
f4c0a0fd 438int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 439 loff_t end)
1da177e4
LT
440{
441 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
442}
f4c0a0fd 443EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 444
485bb99b
RD
445/**
446 * filemap_flush - mostly a non-blocking flush
447 * @mapping: target address_space
448 *
1da177e4
LT
449 * This is a mostly non-blocking flush. Not suitable for data-integrity
450 * purposes - I/O may not be started against all dirty pages.
a862f68a
MR
451 *
452 * Return: %0 on success, negative error code otherwise.
1da177e4
LT
453 */
454int filemap_flush(struct address_space *mapping)
455{
456 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
457}
458EXPORT_SYMBOL(filemap_flush);
459
7fc9e472
GR
460/**
461 * filemap_range_has_page - check if a page exists in range.
462 * @mapping: address space within which to check
463 * @start_byte: offset in bytes where the range starts
464 * @end_byte: offset in bytes where the range ends (inclusive)
465 *
466 * Find at least one page in the range supplied, usually used to check if
467 * direct writing in this range will trigger a writeback.
a862f68a
MR
468 *
469 * Return: %true if at least one page exists in the specified range,
470 * %false otherwise.
7fc9e472
GR
471 */
472bool filemap_range_has_page(struct address_space *mapping,
473 loff_t start_byte, loff_t end_byte)
474{
f7b68046 475 struct page *page;
8fa8e538
MW
476 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
477 pgoff_t max = end_byte >> PAGE_SHIFT;
7fc9e472
GR
478
479 if (end_byte < start_byte)
480 return false;
481
8fa8e538
MW
482 rcu_read_lock();
483 for (;;) {
484 page = xas_find(&xas, max);
485 if (xas_retry(&xas, page))
486 continue;
487 /* Shadow entries don't count */
488 if (xa_is_value(page))
489 continue;
490 /*
491 * We don't need to try to pin this page; we're about to
492 * release the RCU lock anyway. It is enough to know that
493 * there was a page here recently.
494 */
495 break;
496 }
497 rcu_read_unlock();
7fc9e472 498
8fa8e538 499 return page != NULL;
7fc9e472
GR
500}
501EXPORT_SYMBOL(filemap_range_has_page);
502
5e8fcc1a 503static void __filemap_fdatawait_range(struct address_space *mapping,
aa750fd7 504 loff_t start_byte, loff_t end_byte)
1da177e4 505{
09cbfeaf
KS
506 pgoff_t index = start_byte >> PAGE_SHIFT;
507 pgoff_t end = end_byte >> PAGE_SHIFT;
1da177e4
LT
508 struct pagevec pvec;
509 int nr_pages;
1da177e4 510
94004ed7 511 if (end_byte < start_byte)
5e8fcc1a 512 return;
1da177e4 513
86679820 514 pagevec_init(&pvec);
312e9d2f 515 while (index <= end) {
1da177e4
LT
516 unsigned i;
517
312e9d2f 518 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
67fd707f 519 end, PAGECACHE_TAG_WRITEBACK);
312e9d2f
JK
520 if (!nr_pages)
521 break;
522
1da177e4
LT
523 for (i = 0; i < nr_pages; i++) {
524 struct page *page = pvec.pages[i];
525
1da177e4 526 wait_on_page_writeback(page);
5e8fcc1a 527 ClearPageError(page);
1da177e4
LT
528 }
529 pagevec_release(&pvec);
530 cond_resched();
531 }
aa750fd7
JN
532}
533
534/**
535 * filemap_fdatawait_range - wait for writeback to complete
536 * @mapping: address space structure to wait for
537 * @start_byte: offset in bytes where the range starts
538 * @end_byte: offset in bytes where the range ends (inclusive)
539 *
540 * Walk the list of under-writeback pages of the given address space
541 * in the given range and wait for all of them. Check error status of
542 * the address space and return it.
543 *
544 * Since the error status of the address space is cleared by this function,
545 * callers are responsible for checking the return value and handling and/or
546 * reporting the error.
a862f68a
MR
547 *
548 * Return: error status of the address space.
aa750fd7
JN
549 */
550int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
551 loff_t end_byte)
552{
5e8fcc1a
JL
553 __filemap_fdatawait_range(mapping, start_byte, end_byte);
554 return filemap_check_errors(mapping);
1da177e4 555}
d3bccb6f
JK
556EXPORT_SYMBOL(filemap_fdatawait_range);
557
aa0bfcd9
RZ
558/**
559 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
560 * @mapping: address space structure to wait for
561 * @start_byte: offset in bytes where the range starts
562 * @end_byte: offset in bytes where the range ends (inclusive)
563 *
564 * Walk the list of under-writeback pages of the given address space in the
565 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
566 * this function does not clear error status of the address space.
567 *
568 * Use this function if callers don't handle errors themselves. Expected
569 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
570 * fsfreeze(8)
571 */
572int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
573 loff_t start_byte, loff_t end_byte)
574{
575 __filemap_fdatawait_range(mapping, start_byte, end_byte);
576 return filemap_check_and_keep_errors(mapping);
577}
578EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
579
a823e458
JL
580/**
581 * file_fdatawait_range - wait for writeback to complete
582 * @file: file pointing to address space structure to wait for
583 * @start_byte: offset in bytes where the range starts
584 * @end_byte: offset in bytes where the range ends (inclusive)
585 *
586 * Walk the list of under-writeback pages of the address space that file
587 * refers to, in the given range and wait for all of them. Check error
588 * status of the address space vs. the file->f_wb_err cursor and return it.
589 *
590 * Since the error status of the file is advanced by this function,
591 * callers are responsible for checking the return value and handling and/or
592 * reporting the error.
a862f68a
MR
593 *
594 * Return: error status of the address space vs. the file->f_wb_err cursor.
a823e458
JL
595 */
596int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
597{
598 struct address_space *mapping = file->f_mapping;
599
600 __filemap_fdatawait_range(mapping, start_byte, end_byte);
601 return file_check_and_advance_wb_err(file);
602}
603EXPORT_SYMBOL(file_fdatawait_range);
d3bccb6f 604
aa750fd7
JN
605/**
606 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
607 * @mapping: address space structure to wait for
608 *
609 * Walk the list of under-writeback pages of the given address space
610 * and wait for all of them. Unlike filemap_fdatawait(), this function
611 * does not clear error status of the address space.
612 *
613 * Use this function if callers don't handle errors themselves. Expected
614 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
615 * fsfreeze(8)
a862f68a
MR
616 *
617 * Return: error status of the address space.
aa750fd7 618 */
76341cab 619int filemap_fdatawait_keep_errors(struct address_space *mapping)
aa750fd7 620{
ffb959bb 621 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
76341cab 622 return filemap_check_and_keep_errors(mapping);
aa750fd7 623}
76341cab 624EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
aa750fd7 625
875d91b1 626/* Returns true if writeback might be needed or already in progress. */
9326c9b2 627static bool mapping_needs_writeback(struct address_space *mapping)
1da177e4 628{
875d91b1
KK
629 if (dax_mapping(mapping))
630 return mapping->nrexceptional;
631
632 return mapping->nrpages;
1da177e4 633}
1da177e4 634
485bb99b
RD
635/**
636 * filemap_write_and_wait_range - write out & wait on a file range
637 * @mapping: the address_space for the pages
638 * @lstart: offset in bytes where the range starts
639 * @lend: offset in bytes where the range ends (inclusive)
640 *
469eb4d0
AM
641 * Write out and wait upon file offsets lstart->lend, inclusive.
642 *
0e056eb5 643 * Note that @lend is inclusive (describes the last byte to be written) so
469eb4d0 644 * that this function can be used to write to the very end-of-file (end = -1).
a862f68a
MR
645 *
646 * Return: error status of the address space.
469eb4d0 647 */
1da177e4
LT
648int filemap_write_and_wait_range(struct address_space *mapping,
649 loff_t lstart, loff_t lend)
650{
28fd1298 651 int err = 0;
1da177e4 652
9326c9b2 653 if (mapping_needs_writeback(mapping)) {
28fd1298
OH
654 err = __filemap_fdatawrite_range(mapping, lstart, lend,
655 WB_SYNC_ALL);
ddf8f376
IW
656 /*
657 * Even if the above returned error, the pages may be
658 * written partially (e.g. -ENOSPC), so we wait for it.
659 * But the -EIO is special case, it may indicate the worst
660 * thing (e.g. bug) happened, so we avoid waiting for it.
661 */
28fd1298 662 if (err != -EIO) {
94004ed7
CH
663 int err2 = filemap_fdatawait_range(mapping,
664 lstart, lend);
28fd1298
OH
665 if (!err)
666 err = err2;
cbeaf951
JL
667 } else {
668 /* Clear any previously stored errors */
669 filemap_check_errors(mapping);
28fd1298 670 }
865ffef3
DM
671 } else {
672 err = filemap_check_errors(mapping);
1da177e4 673 }
28fd1298 674 return err;
1da177e4 675}
f6995585 676EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 677
5660e13d
JL
678void __filemap_set_wb_err(struct address_space *mapping, int err)
679{
3acdfd28 680 errseq_t eseq = errseq_set(&mapping->wb_err, err);
5660e13d
JL
681
682 trace_filemap_set_wb_err(mapping, eseq);
683}
684EXPORT_SYMBOL(__filemap_set_wb_err);
685
686/**
687 * file_check_and_advance_wb_err - report wb error (if any) that was previously
688 * and advance wb_err to current one
689 * @file: struct file on which the error is being reported
690 *
691 * When userland calls fsync (or something like nfsd does the equivalent), we
692 * want to report any writeback errors that occurred since the last fsync (or
693 * since the file was opened if there haven't been any).
694 *
695 * Grab the wb_err from the mapping. If it matches what we have in the file,
696 * then just quickly return 0. The file is all caught up.
697 *
698 * If it doesn't match, then take the mapping value, set the "seen" flag in
699 * it and try to swap it into place. If it works, or another task beat us
700 * to it with the new value, then update the f_wb_err and return the error
701 * portion. The error at this point must be reported via proper channels
702 * (a'la fsync, or NFS COMMIT operation, etc.).
703 *
704 * While we handle mapping->wb_err with atomic operations, the f_wb_err
705 * value is protected by the f_lock since we must ensure that it reflects
706 * the latest value swapped in for this file descriptor.
a862f68a
MR
707 *
708 * Return: %0 on success, negative error code otherwise.
5660e13d
JL
709 */
710int file_check_and_advance_wb_err(struct file *file)
711{
712 int err = 0;
713 errseq_t old = READ_ONCE(file->f_wb_err);
714 struct address_space *mapping = file->f_mapping;
715
716 /* Locklessly handle the common case where nothing has changed */
717 if (errseq_check(&mapping->wb_err, old)) {
718 /* Something changed, must use slow path */
719 spin_lock(&file->f_lock);
720 old = file->f_wb_err;
721 err = errseq_check_and_advance(&mapping->wb_err,
722 &file->f_wb_err);
723 trace_file_check_and_advance_wb_err(file, old);
724 spin_unlock(&file->f_lock);
725 }
f4e222c5
JL
726
727 /*
728 * We're mostly using this function as a drop in replacement for
729 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
730 * that the legacy code would have had on these flags.
731 */
732 clear_bit(AS_EIO, &mapping->flags);
733 clear_bit(AS_ENOSPC, &mapping->flags);
5660e13d
JL
734 return err;
735}
736EXPORT_SYMBOL(file_check_and_advance_wb_err);
737
738/**
739 * file_write_and_wait_range - write out & wait on a file range
740 * @file: file pointing to address_space with pages
741 * @lstart: offset in bytes where the range starts
742 * @lend: offset in bytes where the range ends (inclusive)
743 *
744 * Write out and wait upon file offsets lstart->lend, inclusive.
745 *
746 * Note that @lend is inclusive (describes the last byte to be written) so
747 * that this function can be used to write to the very end-of-file (end = -1).
748 *
749 * After writing out and waiting on the data, we check and advance the
750 * f_wb_err cursor to the latest value, and return any errors detected there.
a862f68a
MR
751 *
752 * Return: %0 on success, negative error code otherwise.
5660e13d
JL
753 */
754int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
755{
756 int err = 0, err2;
757 struct address_space *mapping = file->f_mapping;
758
9326c9b2 759 if (mapping_needs_writeback(mapping)) {
5660e13d
JL
760 err = __filemap_fdatawrite_range(mapping, lstart, lend,
761 WB_SYNC_ALL);
762 /* See comment of filemap_write_and_wait() */
763 if (err != -EIO)
764 __filemap_fdatawait_range(mapping, lstart, lend);
765 }
766 err2 = file_check_and_advance_wb_err(file);
767 if (!err)
768 err = err2;
769 return err;
770}
771EXPORT_SYMBOL(file_write_and_wait_range);
772
ef6a3c63
MS
773/**
774 * replace_page_cache_page - replace a pagecache page with a new one
775 * @old: page to be replaced
776 * @new: page to replace with
777 * @gfp_mask: allocation mode
778 *
779 * This function replaces a page in the pagecache with a new one. On
780 * success it acquires the pagecache reference for the new page and
781 * drops it for the old page. Both the old and new pages must be
782 * locked. This function does not add the new page to the LRU, the
783 * caller must do that.
784 *
74d60958 785 * The remove + add is atomic. This function cannot fail.
a862f68a
MR
786 *
787 * Return: %0
ef6a3c63
MS
788 */
789int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
790{
74d60958
MW
791 struct address_space *mapping = old->mapping;
792 void (*freepage)(struct page *) = mapping->a_ops->freepage;
793 pgoff_t offset = old->index;
794 XA_STATE(xas, &mapping->i_pages, offset);
795 unsigned long flags;
ef6a3c63 796
309381fe
SL
797 VM_BUG_ON_PAGE(!PageLocked(old), old);
798 VM_BUG_ON_PAGE(!PageLocked(new), new);
799 VM_BUG_ON_PAGE(new->mapping, new);
ef6a3c63 800
74d60958
MW
801 get_page(new);
802 new->mapping = mapping;
803 new->index = offset;
ef6a3c63 804
0d1c2072
JW
805 mem_cgroup_migrate(old, new);
806
74d60958
MW
807 xas_lock_irqsave(&xas, flags);
808 xas_store(&xas, new);
4165b9b4 809
74d60958
MW
810 old->mapping = NULL;
811 /* hugetlb pages do not participate in page cache accounting. */
812 if (!PageHuge(old))
0d1c2072 813 __dec_lruvec_page_state(old, NR_FILE_PAGES);
74d60958 814 if (!PageHuge(new))
0d1c2072 815 __inc_lruvec_page_state(new, NR_FILE_PAGES);
74d60958 816 if (PageSwapBacked(old))
0d1c2072 817 __dec_lruvec_page_state(old, NR_SHMEM);
74d60958 818 if (PageSwapBacked(new))
0d1c2072 819 __inc_lruvec_page_state(new, NR_SHMEM);
74d60958 820 xas_unlock_irqrestore(&xas, flags);
74d60958
MW
821 if (freepage)
822 freepage(old);
823 put_page(old);
ef6a3c63 824
74d60958 825 return 0;
ef6a3c63
MS
826}
827EXPORT_SYMBOL_GPL(replace_page_cache_page);
828
a528910e
JW
829static int __add_to_page_cache_locked(struct page *page,
830 struct address_space *mapping,
831 pgoff_t offset, gfp_t gfp_mask,
832 void **shadowp)
1da177e4 833{
74d60958 834 XA_STATE(xas, &mapping->i_pages, offset);
00501b53 835 int huge = PageHuge(page);
e286781d 836 int error;
74d60958 837 void *old;
e286781d 838
309381fe
SL
839 VM_BUG_ON_PAGE(!PageLocked(page), page);
840 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
74d60958 841 mapping_set_update(&xas, mapping);
e286781d 842
09cbfeaf 843 get_page(page);
66a0c8ee
KS
844 page->mapping = mapping;
845 page->index = offset;
846
3fea5a49 847 if (!huge) {
d9eb1ea2 848 error = mem_cgroup_charge(page, current->mm, gfp_mask);
3fea5a49
JW
849 if (error)
850 goto error;
851 }
852
74d60958
MW
853 do {
854 xas_lock_irq(&xas);
855 old = xas_load(&xas);
856 if (old && !xa_is_value(old))
857 xas_set_err(&xas, -EEXIST);
858 xas_store(&xas, page);
859 if (xas_error(&xas))
860 goto unlock;
861
862 if (xa_is_value(old)) {
863 mapping->nrexceptional--;
864 if (shadowp)
865 *shadowp = old;
866 }
867 mapping->nrpages++;
868
869 /* hugetlb pages do not participate in page cache accounting */
870 if (!huge)
0d1c2072 871 __inc_lruvec_page_state(page, NR_FILE_PAGES);
74d60958
MW
872unlock:
873 xas_unlock_irq(&xas);
874 } while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK));
875
3fea5a49
JW
876 if (xas_error(&xas)) {
877 error = xas_error(&xas);
74d60958 878 goto error;
3fea5a49 879 }
4165b9b4 880
66a0c8ee
KS
881 trace_mm_filemap_add_to_page_cache(page);
882 return 0;
74d60958 883error:
66a0c8ee
KS
884 page->mapping = NULL;
885 /* Leave page->index set: truncation relies upon it */
09cbfeaf 886 put_page(page);
3fea5a49 887 return error;
1da177e4 888}
cfcbfb13 889ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
a528910e
JW
890
891/**
892 * add_to_page_cache_locked - add a locked page to the pagecache
893 * @page: page to add
894 * @mapping: the page's address_space
895 * @offset: page index
896 * @gfp_mask: page allocation mode
897 *
898 * This function is used to add a page to the pagecache. It must be locked.
899 * This function does not add the page to the LRU. The caller must do that.
a862f68a
MR
900 *
901 * Return: %0 on success, negative error code otherwise.
a528910e
JW
902 */
903int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
904 pgoff_t offset, gfp_t gfp_mask)
905{
906 return __add_to_page_cache_locked(page, mapping, offset,
907 gfp_mask, NULL);
908}
e286781d 909EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4
LT
910
911int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 912 pgoff_t offset, gfp_t gfp_mask)
1da177e4 913{
a528910e 914 void *shadow = NULL;
4f98a2fe
RR
915 int ret;
916
48c935ad 917 __SetPageLocked(page);
a528910e
JW
918 ret = __add_to_page_cache_locked(page, mapping, offset,
919 gfp_mask, &shadow);
920 if (unlikely(ret))
48c935ad 921 __ClearPageLocked(page);
a528910e
JW
922 else {
923 /*
924 * The page might have been evicted from cache only
925 * recently, in which case it should be activated like
926 * any other repeatedly accessed page.
f0281a00
RR
927 * The exception is pages getting rewritten; evicting other
928 * data from the working set, only to cache data that will
929 * get overwritten with something else, is a waste of memory.
a528910e 930 */
1899ad18
JW
931 WARN_ON_ONCE(PageActive(page));
932 if (!(gfp_mask & __GFP_WRITE) && shadow)
933 workingset_refault(page, shadow);
a528910e
JW
934 lru_cache_add(page);
935 }
1da177e4
LT
936 return ret;
937}
18bc0bbd 938EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1da177e4 939
44110fe3 940#ifdef CONFIG_NUMA
2ae88149 941struct page *__page_cache_alloc(gfp_t gfp)
44110fe3 942{
c0ff7453
MX
943 int n;
944 struct page *page;
945
44110fe3 946 if (cpuset_do_page_mem_spread()) {
cc9a6c87
MG
947 unsigned int cpuset_mems_cookie;
948 do {
d26914d1 949 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 950 n = cpuset_mem_spread_node();
96db800f 951 page = __alloc_pages_node(n, gfp, 0);
d26914d1 952 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
cc9a6c87 953
c0ff7453 954 return page;
44110fe3 955 }
2ae88149 956 return alloc_pages(gfp, 0);
44110fe3 957}
2ae88149 958EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
959#endif
960
1da177e4
LT
961/*
962 * In order to wait for pages to become available there must be
963 * waitqueues associated with pages. By using a hash table of
964 * waitqueues where the bucket discipline is to maintain all
965 * waiters on the same queue and wake all when any of the pages
966 * become available, and for the woken contexts to check to be
967 * sure the appropriate page became available, this saves space
968 * at a cost of "thundering herd" phenomena during rare hash
969 * collisions.
970 */
62906027
NP
971#define PAGE_WAIT_TABLE_BITS 8
972#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
973static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
974
975static wait_queue_head_t *page_waitqueue(struct page *page)
1da177e4 976{
62906027 977 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
1da177e4 978}
1da177e4 979
62906027 980void __init pagecache_init(void)
1da177e4 981{
62906027 982 int i;
1da177e4 983
62906027
NP
984 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
985 init_waitqueue_head(&page_wait_table[i]);
986
987 page_writeback_init();
1da177e4 988}
1da177e4 989
ac6424b9 990static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
f62e00cc 991{
62906027
NP
992 struct wait_page_key *key = arg;
993 struct wait_page_queue *wait_page
994 = container_of(wait, struct wait_page_queue, wait);
c7510ab2 995 int ret;
62906027 996
c7510ab2
JA
997 ret = wake_page_match(wait_page, key);
998 if (ret != 1)
999 return ret;
62906027 1000 return autoremove_wake_function(wait, mode, sync, key);
f62e00cc
KM
1001}
1002
74d81bfa 1003static void wake_up_page_bit(struct page *page, int bit_nr)
cbbce822 1004{
62906027
NP
1005 wait_queue_head_t *q = page_waitqueue(page);
1006 struct wait_page_key key;
1007 unsigned long flags;
11a19c7b 1008 wait_queue_entry_t bookmark;
cbbce822 1009
62906027
NP
1010 key.page = page;
1011 key.bit_nr = bit_nr;
1012 key.page_match = 0;
1013
11a19c7b
TC
1014 bookmark.flags = 0;
1015 bookmark.private = NULL;
1016 bookmark.func = NULL;
1017 INIT_LIST_HEAD(&bookmark.entry);
1018
62906027 1019 spin_lock_irqsave(&q->lock, flags);
11a19c7b
TC
1020 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1021
1022 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1023 /*
1024 * Take a breather from holding the lock,
1025 * allow pages that finish wake up asynchronously
1026 * to acquire the lock and remove themselves
1027 * from wait queue
1028 */
1029 spin_unlock_irqrestore(&q->lock, flags);
1030 cpu_relax();
1031 spin_lock_irqsave(&q->lock, flags);
1032 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1033 }
1034
62906027
NP
1035 /*
1036 * It is possible for other pages to have collided on the waitqueue
1037 * hash, so in that case check for a page match. That prevents a long-
1038 * term waiter
1039 *
1040 * It is still possible to miss a case here, when we woke page waiters
1041 * and removed them from the waitqueue, but there are still other
1042 * page waiters.
1043 */
1044 if (!waitqueue_active(q) || !key.page_match) {
1045 ClearPageWaiters(page);
1046 /*
1047 * It's possible to miss clearing Waiters here, when we woke
1048 * our page waiters, but the hashed waitqueue has waiters for
1049 * other pages on it.
1050 *
1051 * That's okay, it's a rare case. The next waker will clear it.
1052 */
1053 }
1054 spin_unlock_irqrestore(&q->lock, flags);
1055}
74d81bfa
NP
1056
1057static void wake_up_page(struct page *page, int bit)
1058{
1059 if (!PageWaiters(page))
1060 return;
1061 wake_up_page_bit(page, bit);
1062}
62906027 1063
9a1ea439
HD
1064/*
1065 * A choice of three behaviors for wait_on_page_bit_common():
1066 */
1067enum behavior {
1068 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
1069 * __lock_page() waiting on then setting PG_locked.
1070 */
1071 SHARED, /* Hold ref to page and check the bit when woken, like
1072 * wait_on_page_writeback() waiting on PG_writeback.
1073 */
1074 DROP, /* Drop ref to page before wait, no check when woken,
1075 * like put_and_wait_on_page_locked() on PG_locked.
1076 */
1077};
1078
62906027 1079static inline int wait_on_page_bit_common(wait_queue_head_t *q,
9a1ea439 1080 struct page *page, int bit_nr, int state, enum behavior behavior)
62906027
NP
1081{
1082 struct wait_page_queue wait_page;
ac6424b9 1083 wait_queue_entry_t *wait = &wait_page.wait;
9a1ea439 1084 bool bit_is_set;
b1d29ba8 1085 bool thrashing = false;
9a1ea439 1086 bool delayacct = false;
eb414681 1087 unsigned long pflags;
62906027
NP
1088 int ret = 0;
1089
eb414681 1090 if (bit_nr == PG_locked &&
b1d29ba8 1091 !PageUptodate(page) && PageWorkingset(page)) {
9a1ea439 1092 if (!PageSwapBacked(page)) {
eb414681 1093 delayacct_thrashing_start();
9a1ea439
HD
1094 delayacct = true;
1095 }
eb414681 1096 psi_memstall_enter(&pflags);
b1d29ba8
JW
1097 thrashing = true;
1098 }
1099
62906027 1100 init_wait(wait);
9a1ea439 1101 wait->flags = behavior == EXCLUSIVE ? WQ_FLAG_EXCLUSIVE : 0;
62906027
NP
1102 wait->func = wake_page_function;
1103 wait_page.page = page;
1104 wait_page.bit_nr = bit_nr;
1105
1106 for (;;) {
1107 spin_lock_irq(&q->lock);
1108
2055da97 1109 if (likely(list_empty(&wait->entry))) {
3510ca20 1110 __add_wait_queue_entry_tail(q, wait);
62906027
NP
1111 SetPageWaiters(page);
1112 }
1113
1114 set_current_state(state);
1115
1116 spin_unlock_irq(&q->lock);
1117
9a1ea439
HD
1118 bit_is_set = test_bit(bit_nr, &page->flags);
1119 if (behavior == DROP)
1120 put_page(page);
1121
1122 if (likely(bit_is_set))
62906027 1123 io_schedule();
62906027 1124
9a1ea439 1125 if (behavior == EXCLUSIVE) {
62906027
NP
1126 if (!test_and_set_bit_lock(bit_nr, &page->flags))
1127 break;
9a1ea439 1128 } else if (behavior == SHARED) {
62906027
NP
1129 if (!test_bit(bit_nr, &page->flags))
1130 break;
1131 }
a8b169af 1132
fa45f116 1133 if (signal_pending_state(state, current)) {
a8b169af
LT
1134 ret = -EINTR;
1135 break;
1136 }
9a1ea439
HD
1137
1138 if (behavior == DROP) {
1139 /*
1140 * We can no longer safely access page->flags:
1141 * even if CONFIG_MEMORY_HOTREMOVE is not enabled,
1142 * there is a risk of waiting forever on a page reused
1143 * for something that keeps it locked indefinitely.
1144 * But best check for -EINTR above before breaking.
1145 */
1146 break;
1147 }
62906027
NP
1148 }
1149
1150 finish_wait(q, wait);
1151
eb414681 1152 if (thrashing) {
9a1ea439 1153 if (delayacct)
eb414681
JW
1154 delayacct_thrashing_end();
1155 psi_memstall_leave(&pflags);
1156 }
b1d29ba8 1157
62906027
NP
1158 /*
1159 * A signal could leave PageWaiters set. Clearing it here if
1160 * !waitqueue_active would be possible (by open-coding finish_wait),
1161 * but still fail to catch it in the case of wait hash collision. We
1162 * already can fail to clear wait hash collision cases, so don't
1163 * bother with signals either.
1164 */
1165
1166 return ret;
1167}
1168
1169void wait_on_page_bit(struct page *page, int bit_nr)
1170{
1171 wait_queue_head_t *q = page_waitqueue(page);
9a1ea439 1172 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
62906027
NP
1173}
1174EXPORT_SYMBOL(wait_on_page_bit);
1175
1176int wait_on_page_bit_killable(struct page *page, int bit_nr)
1177{
1178 wait_queue_head_t *q = page_waitqueue(page);
9a1ea439 1179 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
cbbce822 1180}
4343d008 1181EXPORT_SYMBOL(wait_on_page_bit_killable);
cbbce822 1182
9a1ea439
HD
1183/**
1184 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1185 * @page: The page to wait for.
1186 *
1187 * The caller should hold a reference on @page. They expect the page to
1188 * become unlocked relatively soon, but do not wish to hold up migration
1189 * (for example) by holding the reference while waiting for the page to
1190 * come unlocked. After this function returns, the caller should not
1191 * dereference @page.
1192 */
1193void put_and_wait_on_page_locked(struct page *page)
1194{
1195 wait_queue_head_t *q;
1196
1197 page = compound_head(page);
1198 q = page_waitqueue(page);
1199 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP);
1200}
1201
385e1ca5
DH
1202/**
1203 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
697f619f
RD
1204 * @page: Page defining the wait queue of interest
1205 * @waiter: Waiter to add to the queue
385e1ca5
DH
1206 *
1207 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1208 */
ac6424b9 1209void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
385e1ca5
DH
1210{
1211 wait_queue_head_t *q = page_waitqueue(page);
1212 unsigned long flags;
1213
1214 spin_lock_irqsave(&q->lock, flags);
9c3a815f 1215 __add_wait_queue_entry_tail(q, waiter);
62906027 1216 SetPageWaiters(page);
385e1ca5
DH
1217 spin_unlock_irqrestore(&q->lock, flags);
1218}
1219EXPORT_SYMBOL_GPL(add_page_wait_queue);
1220
b91e1302
LT
1221#ifndef clear_bit_unlock_is_negative_byte
1222
1223/*
1224 * PG_waiters is the high bit in the same byte as PG_lock.
1225 *
1226 * On x86 (and on many other architectures), we can clear PG_lock and
1227 * test the sign bit at the same time. But if the architecture does
1228 * not support that special operation, we just do this all by hand
1229 * instead.
1230 *
1231 * The read of PG_waiters has to be after (or concurrently with) PG_locked
ffceeb62 1232 * being cleared, but a memory barrier should be unnecessary since it is
b91e1302
LT
1233 * in the same byte as PG_locked.
1234 */
1235static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1236{
1237 clear_bit_unlock(nr, mem);
1238 /* smp_mb__after_atomic(); */
98473f9f 1239 return test_bit(PG_waiters, mem);
b91e1302
LT
1240}
1241
1242#endif
1243
1da177e4 1244/**
485bb99b 1245 * unlock_page - unlock a locked page
1da177e4
LT
1246 * @page: the page
1247 *
1248 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1249 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
da3dae54 1250 * mechanism between PageLocked pages and PageWriteback pages is shared.
1da177e4
LT
1251 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1252 *
b91e1302
LT
1253 * Note that this depends on PG_waiters being the sign bit in the byte
1254 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1255 * clear the PG_locked bit and test PG_waiters at the same time fairly
1256 * portably (architectures that do LL/SC can test any bit, while x86 can
1257 * test the sign bit).
1da177e4 1258 */
920c7a5d 1259void unlock_page(struct page *page)
1da177e4 1260{
b91e1302 1261 BUILD_BUG_ON(PG_waiters != 7);
48c935ad 1262 page = compound_head(page);
309381fe 1263 VM_BUG_ON_PAGE(!PageLocked(page), page);
b91e1302
LT
1264 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1265 wake_up_page_bit(page, PG_locked);
1da177e4
LT
1266}
1267EXPORT_SYMBOL(unlock_page);
1268
485bb99b
RD
1269/**
1270 * end_page_writeback - end writeback against a page
1271 * @page: the page
1da177e4
LT
1272 */
1273void end_page_writeback(struct page *page)
1274{
888cf2db
MG
1275 /*
1276 * TestClearPageReclaim could be used here but it is an atomic
1277 * operation and overkill in this particular case. Failing to
1278 * shuffle a page marked for immediate reclaim is too mild to
1279 * justify taking an atomic operation penalty at the end of
1280 * ever page writeback.
1281 */
1282 if (PageReclaim(page)) {
1283 ClearPageReclaim(page);
ac6aadb2 1284 rotate_reclaimable_page(page);
888cf2db 1285 }
ac6aadb2
MS
1286
1287 if (!test_clear_page_writeback(page))
1288 BUG();
1289
4e857c58 1290 smp_mb__after_atomic();
1da177e4
LT
1291 wake_up_page(page, PG_writeback);
1292}
1293EXPORT_SYMBOL(end_page_writeback);
1294
57d99845
MW
1295/*
1296 * After completing I/O on a page, call this routine to update the page
1297 * flags appropriately
1298 */
c11f0c0b 1299void page_endio(struct page *page, bool is_write, int err)
57d99845 1300{
c11f0c0b 1301 if (!is_write) {
57d99845
MW
1302 if (!err) {
1303 SetPageUptodate(page);
1304 } else {
1305 ClearPageUptodate(page);
1306 SetPageError(page);
1307 }
1308 unlock_page(page);
abf54548 1309 } else {
57d99845 1310 if (err) {
dd8416c4
MK
1311 struct address_space *mapping;
1312
57d99845 1313 SetPageError(page);
dd8416c4
MK
1314 mapping = page_mapping(page);
1315 if (mapping)
1316 mapping_set_error(mapping, err);
57d99845
MW
1317 }
1318 end_page_writeback(page);
1319 }
1320}
1321EXPORT_SYMBOL_GPL(page_endio);
1322
485bb99b
RD
1323/**
1324 * __lock_page - get a lock on the page, assuming we need to sleep to get it
87066755 1325 * @__page: the page to lock
1da177e4 1326 */
62906027 1327void __lock_page(struct page *__page)
1da177e4 1328{
62906027
NP
1329 struct page *page = compound_head(__page);
1330 wait_queue_head_t *q = page_waitqueue(page);
9a1ea439
HD
1331 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1332 EXCLUSIVE);
1da177e4
LT
1333}
1334EXPORT_SYMBOL(__lock_page);
1335
62906027 1336int __lock_page_killable(struct page *__page)
2687a356 1337{
62906027
NP
1338 struct page *page = compound_head(__page);
1339 wait_queue_head_t *q = page_waitqueue(page);
9a1ea439
HD
1340 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1341 EXCLUSIVE);
2687a356 1342}
18bc0bbd 1343EXPORT_SYMBOL_GPL(__lock_page_killable);
2687a356 1344
9a95f3cf
PC
1345/*
1346 * Return values:
c1e8d7c6 1347 * 1 - page is locked; mmap_lock is still held.
9a95f3cf 1348 * 0 - page is not locked.
3e4e28c5 1349 * mmap_lock has been released (mmap_read_unlock(), unless flags had both
9a95f3cf 1350 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
c1e8d7c6 1351 * which case mmap_lock is still held.
9a95f3cf
PC
1352 *
1353 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
c1e8d7c6 1354 * with the page locked and the mmap_lock unperturbed.
9a95f3cf 1355 */
d065bd81
ML
1356int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1357 unsigned int flags)
1358{
4064b982 1359 if (fault_flag_allow_retry_first(flags)) {
37b23e05 1360 /*
c1e8d7c6 1361 * CAUTION! In this case, mmap_lock is not released
37b23e05
KM
1362 * even though return 0.
1363 */
1364 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1365 return 0;
1366
d8ed45c5 1367 mmap_read_unlock(mm);
37b23e05
KM
1368 if (flags & FAULT_FLAG_KILLABLE)
1369 wait_on_page_locked_killable(page);
1370 else
318b275f 1371 wait_on_page_locked(page);
d065bd81 1372 return 0;
37b23e05
KM
1373 } else {
1374 if (flags & FAULT_FLAG_KILLABLE) {
1375 int ret;
1376
1377 ret = __lock_page_killable(page);
1378 if (ret) {
d8ed45c5 1379 mmap_read_unlock(mm);
37b23e05
KM
1380 return 0;
1381 }
1382 } else
1383 __lock_page(page);
1384 return 1;
d065bd81
ML
1385 }
1386}
1387
e7b563bb 1388/**
0d3f9296
MW
1389 * page_cache_next_miss() - Find the next gap in the page cache.
1390 * @mapping: Mapping.
1391 * @index: Index.
1392 * @max_scan: Maximum range to search.
e7b563bb 1393 *
0d3f9296
MW
1394 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1395 * gap with the lowest index.
e7b563bb 1396 *
0d3f9296
MW
1397 * This function may be called under the rcu_read_lock. However, this will
1398 * not atomically search a snapshot of the cache at a single point in time.
1399 * For example, if a gap is created at index 5, then subsequently a gap is
1400 * created at index 10, page_cache_next_miss covering both indices may
1401 * return 10 if called under the rcu_read_lock.
e7b563bb 1402 *
0d3f9296
MW
1403 * Return: The index of the gap if found, otherwise an index outside the
1404 * range specified (in which case 'return - index >= max_scan' will be true).
1405 * In the rare case of index wrap-around, 0 will be returned.
e7b563bb 1406 */
0d3f9296 1407pgoff_t page_cache_next_miss(struct address_space *mapping,
e7b563bb
JW
1408 pgoff_t index, unsigned long max_scan)
1409{
0d3f9296 1410 XA_STATE(xas, &mapping->i_pages, index);
e7b563bb 1411
0d3f9296
MW
1412 while (max_scan--) {
1413 void *entry = xas_next(&xas);
1414 if (!entry || xa_is_value(entry))
e7b563bb 1415 break;
0d3f9296 1416 if (xas.xa_index == 0)
e7b563bb
JW
1417 break;
1418 }
1419
0d3f9296 1420 return xas.xa_index;
e7b563bb 1421}
0d3f9296 1422EXPORT_SYMBOL(page_cache_next_miss);
e7b563bb
JW
1423
1424/**
2346a560 1425 * page_cache_prev_miss() - Find the previous gap in the page cache.
0d3f9296
MW
1426 * @mapping: Mapping.
1427 * @index: Index.
1428 * @max_scan: Maximum range to search.
e7b563bb 1429 *
0d3f9296
MW
1430 * Search the range [max(index - max_scan + 1, 0), index] for the
1431 * gap with the highest index.
e7b563bb 1432 *
0d3f9296
MW
1433 * This function may be called under the rcu_read_lock. However, this will
1434 * not atomically search a snapshot of the cache at a single point in time.
1435 * For example, if a gap is created at index 10, then subsequently a gap is
1436 * created at index 5, page_cache_prev_miss() covering both indices may
1437 * return 5 if called under the rcu_read_lock.
e7b563bb 1438 *
0d3f9296
MW
1439 * Return: The index of the gap if found, otherwise an index outside the
1440 * range specified (in which case 'index - return >= max_scan' will be true).
1441 * In the rare case of wrap-around, ULONG_MAX will be returned.
e7b563bb 1442 */
0d3f9296 1443pgoff_t page_cache_prev_miss(struct address_space *mapping,
e7b563bb
JW
1444 pgoff_t index, unsigned long max_scan)
1445{
0d3f9296 1446 XA_STATE(xas, &mapping->i_pages, index);
e7b563bb 1447
0d3f9296
MW
1448 while (max_scan--) {
1449 void *entry = xas_prev(&xas);
1450 if (!entry || xa_is_value(entry))
e7b563bb 1451 break;
0d3f9296 1452 if (xas.xa_index == ULONG_MAX)
e7b563bb
JW
1453 break;
1454 }
1455
0d3f9296 1456 return xas.xa_index;
e7b563bb 1457}
0d3f9296 1458EXPORT_SYMBOL(page_cache_prev_miss);
e7b563bb 1459
485bb99b 1460/**
0cd6144a 1461 * find_get_entry - find and get a page cache entry
485bb99b 1462 * @mapping: the address_space to search
0cd6144a
JW
1463 * @offset: the page cache index
1464 *
1465 * Looks up the page cache slot at @mapping & @offset. If there is a
1466 * page cache page, it is returned with an increased refcount.
485bb99b 1467 *
139b6a6f
JW
1468 * If the slot holds a shadow entry of a previously evicted page, or a
1469 * swap entry from shmem/tmpfs, it is returned.
0cd6144a 1470 *
a862f68a 1471 * Return: the found page or shadow entry, %NULL if nothing is found.
1da177e4 1472 */
0cd6144a 1473struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1da177e4 1474{
4c7472c0 1475 XA_STATE(xas, &mapping->i_pages, offset);
4101196b 1476 struct page *page;
1da177e4 1477
a60637c8
NP
1478 rcu_read_lock();
1479repeat:
4c7472c0
MW
1480 xas_reset(&xas);
1481 page = xas_load(&xas);
1482 if (xas_retry(&xas, page))
1483 goto repeat;
1484 /*
1485 * A shadow entry of a recently evicted page, or a swap entry from
1486 * shmem/tmpfs. Return it without attempting to raise page count.
1487 */
1488 if (!page || xa_is_value(page))
1489 goto out;
83929372 1490
4101196b 1491 if (!page_cache_get_speculative(page))
4c7472c0 1492 goto repeat;
83929372 1493
4c7472c0 1494 /*
4101196b 1495 * Has the page moved or been split?
4c7472c0
MW
1496 * This is part of the lockless pagecache protocol. See
1497 * include/linux/pagemap.h for details.
1498 */
1499 if (unlikely(page != xas_reload(&xas))) {
4101196b 1500 put_page(page);
4c7472c0 1501 goto repeat;
a60637c8 1502 }
4101196b 1503 page = find_subpage(page, offset);
27d20fdd 1504out:
a60637c8
NP
1505 rcu_read_unlock();
1506
1da177e4
LT
1507 return page;
1508}
1da177e4 1509
0cd6144a
JW
1510/**
1511 * find_lock_entry - locate, pin and lock a page cache entry
1512 * @mapping: the address_space to search
1513 * @offset: the page cache index
1514 *
1515 * Looks up the page cache slot at @mapping & @offset. If there is a
1516 * page cache page, it is returned locked and with an increased
1517 * refcount.
1518 *
139b6a6f
JW
1519 * If the slot holds a shadow entry of a previously evicted page, or a
1520 * swap entry from shmem/tmpfs, it is returned.
0cd6144a 1521 *
0cd6144a 1522 * find_lock_entry() may sleep.
a862f68a
MR
1523 *
1524 * Return: the found page or shadow entry, %NULL if nothing is found.
0cd6144a
JW
1525 */
1526struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1da177e4
LT
1527{
1528 struct page *page;
1529
1da177e4 1530repeat:
0cd6144a 1531 page = find_get_entry(mapping, offset);
4c7472c0 1532 if (page && !xa_is_value(page)) {
a60637c8
NP
1533 lock_page(page);
1534 /* Has the page been truncated? */
83929372 1535 if (unlikely(page_mapping(page) != mapping)) {
a60637c8 1536 unlock_page(page);
09cbfeaf 1537 put_page(page);
a60637c8 1538 goto repeat;
1da177e4 1539 }
83929372 1540 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1da177e4 1541 }
1da177e4
LT
1542 return page;
1543}
0cd6144a
JW
1544EXPORT_SYMBOL(find_lock_entry);
1545
1546/**
2294b32e
MWO
1547 * pagecache_get_page - Find and get a reference to a page.
1548 * @mapping: The address_space to search.
1549 * @index: The page index.
1550 * @fgp_flags: %FGP flags modify how the page is returned.
1551 * @gfp_mask: Memory allocation flags to use if %FGP_CREAT is specified.
1da177e4 1552 *
2294b32e 1553 * Looks up the page cache entry at @mapping & @index.
0cd6144a 1554 *
2294b32e 1555 * @fgp_flags can be zero or more of these flags:
0e056eb5 1556 *
2294b32e
MWO
1557 * * %FGP_ACCESSED - The page will be marked accessed.
1558 * * %FGP_LOCK - The page is returned locked.
1559 * * %FGP_CREAT - If no page is present then a new page is allocated using
1560 * @gfp_mask and added to the page cache and the VM's LRU list.
1561 * The page is returned locked and with an increased refcount.
1562 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1563 * page is already in cache. If the page was allocated, unlock it before
1564 * returning so the caller can do the same dance.
1da177e4 1565 *
2294b32e
MWO
1566 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1567 * if the %GFP flags specified for %FGP_CREAT are atomic.
1da177e4 1568 *
2457aec6 1569 * If there is a page cache page, it is returned with an increased refcount.
a862f68a 1570 *
2294b32e 1571 * Return: The found page or %NULL otherwise.
1da177e4 1572 */
2294b32e
MWO
1573struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
1574 int fgp_flags, gfp_t gfp_mask)
1da177e4 1575{
eb2be189 1576 struct page *page;
2457aec6 1577
1da177e4 1578repeat:
2294b32e 1579 page = find_get_entry(mapping, index);
3159f943 1580 if (xa_is_value(page))
2457aec6
MG
1581 page = NULL;
1582 if (!page)
1583 goto no_page;
1584
1585 if (fgp_flags & FGP_LOCK) {
1586 if (fgp_flags & FGP_NOWAIT) {
1587 if (!trylock_page(page)) {
09cbfeaf 1588 put_page(page);
2457aec6
MG
1589 return NULL;
1590 }
1591 } else {
1592 lock_page(page);
1593 }
1594
1595 /* Has the page been truncated? */
31895438 1596 if (unlikely(compound_head(page)->mapping != mapping)) {
2457aec6 1597 unlock_page(page);
09cbfeaf 1598 put_page(page);
2457aec6
MG
1599 goto repeat;
1600 }
2294b32e 1601 VM_BUG_ON_PAGE(page->index != index, page);
2457aec6
MG
1602 }
1603
c16eb000 1604 if (fgp_flags & FGP_ACCESSED)
2457aec6
MG
1605 mark_page_accessed(page);
1606
1607no_page:
1608 if (!page && (fgp_flags & FGP_CREAT)) {
1609 int err;
1610 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
45f87de5
MH
1611 gfp_mask |= __GFP_WRITE;
1612 if (fgp_flags & FGP_NOFS)
1613 gfp_mask &= ~__GFP_FS;
2457aec6 1614
45f87de5 1615 page = __page_cache_alloc(gfp_mask);
eb2be189
NP
1616 if (!page)
1617 return NULL;
2457aec6 1618
a75d4c33 1619 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
2457aec6
MG
1620 fgp_flags |= FGP_LOCK;
1621
eb39d618 1622 /* Init accessed so avoid atomic mark_page_accessed later */
2457aec6 1623 if (fgp_flags & FGP_ACCESSED)
eb39d618 1624 __SetPageReferenced(page);
2457aec6 1625
2294b32e 1626 err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
eb2be189 1627 if (unlikely(err)) {
09cbfeaf 1628 put_page(page);
eb2be189
NP
1629 page = NULL;
1630 if (err == -EEXIST)
1631 goto repeat;
1da177e4 1632 }
a75d4c33
JB
1633
1634 /*
1635 * add_to_page_cache_lru locks the page, and for mmap we expect
1636 * an unlocked page.
1637 */
1638 if (page && (fgp_flags & FGP_FOR_MMAP))
1639 unlock_page(page);
1da177e4 1640 }
2457aec6 1641
1da177e4
LT
1642 return page;
1643}
2457aec6 1644EXPORT_SYMBOL(pagecache_get_page);
1da177e4 1645
0cd6144a
JW
1646/**
1647 * find_get_entries - gang pagecache lookup
1648 * @mapping: The address_space to search
1649 * @start: The starting page cache index
1650 * @nr_entries: The maximum number of entries
1651 * @entries: Where the resulting entries are placed
1652 * @indices: The cache indices corresponding to the entries in @entries
1653 *
1654 * find_get_entries() will search for and return a group of up to
1655 * @nr_entries entries in the mapping. The entries are placed at
1656 * @entries. find_get_entries() takes a reference against any actual
1657 * pages it returns.
1658 *
1659 * The search returns a group of mapping-contiguous page cache entries
1660 * with ascending indexes. There may be holes in the indices due to
1661 * not-present pages.
1662 *
139b6a6f
JW
1663 * Any shadow entries of evicted pages, or swap entries from
1664 * shmem/tmpfs, are included in the returned array.
0cd6144a 1665 *
71725ed1
HD
1666 * If it finds a Transparent Huge Page, head or tail, find_get_entries()
1667 * stops at that page: the caller is likely to have a better way to handle
1668 * the compound page as a whole, and then skip its extent, than repeatedly
1669 * calling find_get_entries() to return all its tails.
1670 *
a862f68a 1671 * Return: the number of pages and shadow entries which were found.
0cd6144a
JW
1672 */
1673unsigned find_get_entries(struct address_space *mapping,
1674 pgoff_t start, unsigned int nr_entries,
1675 struct page **entries, pgoff_t *indices)
1676{
f280bf09
MW
1677 XA_STATE(xas, &mapping->i_pages, start);
1678 struct page *page;
0cd6144a 1679 unsigned int ret = 0;
0cd6144a
JW
1680
1681 if (!nr_entries)
1682 return 0;
1683
1684 rcu_read_lock();
f280bf09 1685 xas_for_each(&xas, page, ULONG_MAX) {
f280bf09 1686 if (xas_retry(&xas, page))
0cd6144a 1687 continue;
f280bf09
MW
1688 /*
1689 * A shadow entry of a recently evicted page, a swap
1690 * entry from shmem/tmpfs or a DAX entry. Return it
1691 * without attempting to raise page count.
1692 */
1693 if (xa_is_value(page))
0cd6144a 1694 goto export;
83929372 1695
4101196b 1696 if (!page_cache_get_speculative(page))
f280bf09 1697 goto retry;
83929372 1698
4101196b 1699 /* Has the page moved or been split? */
f280bf09
MW
1700 if (unlikely(page != xas_reload(&xas)))
1701 goto put_page;
1702
71725ed1
HD
1703 /*
1704 * Terminate early on finding a THP, to allow the caller to
1705 * handle it all at once; but continue if this is hugetlbfs.
1706 */
1707 if (PageTransHuge(page) && !PageHuge(page)) {
1708 page = find_subpage(page, xas.xa_index);
1709 nr_entries = ret + 1;
1710 }
0cd6144a 1711export:
f280bf09 1712 indices[ret] = xas.xa_index;
0cd6144a
JW
1713 entries[ret] = page;
1714 if (++ret == nr_entries)
1715 break;
f280bf09
MW
1716 continue;
1717put_page:
4101196b 1718 put_page(page);
f280bf09
MW
1719retry:
1720 xas_reset(&xas);
0cd6144a
JW
1721 }
1722 rcu_read_unlock();
1723 return ret;
1724}
1725
1da177e4 1726/**
b947cee4 1727 * find_get_pages_range - gang pagecache lookup
1da177e4
LT
1728 * @mapping: The address_space to search
1729 * @start: The starting page index
b947cee4 1730 * @end: The final page index (inclusive)
1da177e4
LT
1731 * @nr_pages: The maximum number of pages
1732 * @pages: Where the resulting pages are placed
1733 *
b947cee4
JK
1734 * find_get_pages_range() will search for and return a group of up to @nr_pages
1735 * pages in the mapping starting at index @start and up to index @end
1736 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes
1737 * a reference against the returned pages.
1da177e4
LT
1738 *
1739 * The search returns a group of mapping-contiguous pages with ascending
1740 * indexes. There may be holes in the indices due to not-present pages.
d72dc8a2 1741 * We also update @start to index the next page for the traversal.
1da177e4 1742 *
a862f68a
MR
1743 * Return: the number of pages which were found. If this number is
1744 * smaller than @nr_pages, the end of specified range has been
b947cee4 1745 * reached.
1da177e4 1746 */
b947cee4
JK
1747unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1748 pgoff_t end, unsigned int nr_pages,
1749 struct page **pages)
1da177e4 1750{
fd1b3cee
MW
1751 XA_STATE(xas, &mapping->i_pages, *start);
1752 struct page *page;
0fc9d104
KK
1753 unsigned ret = 0;
1754
1755 if (unlikely(!nr_pages))
1756 return 0;
a60637c8
NP
1757
1758 rcu_read_lock();
fd1b3cee 1759 xas_for_each(&xas, page, end) {
fd1b3cee 1760 if (xas_retry(&xas, page))
a60637c8 1761 continue;
fd1b3cee
MW
1762 /* Skip over shadow, swap and DAX entries */
1763 if (xa_is_value(page))
8079b1c8 1764 continue;
a60637c8 1765
4101196b 1766 if (!page_cache_get_speculative(page))
fd1b3cee 1767 goto retry;
83929372 1768
4101196b 1769 /* Has the page moved or been split? */
fd1b3cee
MW
1770 if (unlikely(page != xas_reload(&xas)))
1771 goto put_page;
1da177e4 1772
4101196b 1773 pages[ret] = find_subpage(page, xas.xa_index);
b947cee4 1774 if (++ret == nr_pages) {
5d3ee42f 1775 *start = xas.xa_index + 1;
b947cee4
JK
1776 goto out;
1777 }
fd1b3cee
MW
1778 continue;
1779put_page:
4101196b 1780 put_page(page);
fd1b3cee
MW
1781retry:
1782 xas_reset(&xas);
a60637c8 1783 }
5b280c0c 1784
b947cee4
JK
1785 /*
1786 * We come here when there is no page beyond @end. We take care to not
1787 * overflow the index @start as it confuses some of the callers. This
fd1b3cee 1788 * breaks the iteration when there is a page at index -1 but that is
b947cee4
JK
1789 * already broken anyway.
1790 */
1791 if (end == (pgoff_t)-1)
1792 *start = (pgoff_t)-1;
1793 else
1794 *start = end + 1;
1795out:
a60637c8 1796 rcu_read_unlock();
d72dc8a2 1797
1da177e4
LT
1798 return ret;
1799}
1800
ebf43500
JA
1801/**
1802 * find_get_pages_contig - gang contiguous pagecache lookup
1803 * @mapping: The address_space to search
1804 * @index: The starting page index
1805 * @nr_pages: The maximum number of pages
1806 * @pages: Where the resulting pages are placed
1807 *
1808 * find_get_pages_contig() works exactly like find_get_pages(), except
1809 * that the returned number of pages are guaranteed to be contiguous.
1810 *
a862f68a 1811 * Return: the number of pages which were found.
ebf43500
JA
1812 */
1813unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1814 unsigned int nr_pages, struct page **pages)
1815{
3ece58a2
MW
1816 XA_STATE(xas, &mapping->i_pages, index);
1817 struct page *page;
0fc9d104
KK
1818 unsigned int ret = 0;
1819
1820 if (unlikely(!nr_pages))
1821 return 0;
a60637c8
NP
1822
1823 rcu_read_lock();
3ece58a2 1824 for (page = xas_load(&xas); page; page = xas_next(&xas)) {
3ece58a2
MW
1825 if (xas_retry(&xas, page))
1826 continue;
1827 /*
1828 * If the entry has been swapped out, we can stop looking.
1829 * No current caller is looking for DAX entries.
1830 */
1831 if (xa_is_value(page))
8079b1c8 1832 break;
ebf43500 1833
4101196b 1834 if (!page_cache_get_speculative(page))
3ece58a2 1835 goto retry;
83929372 1836
4101196b 1837 /* Has the page moved or been split? */
3ece58a2
MW
1838 if (unlikely(page != xas_reload(&xas)))
1839 goto put_page;
a60637c8 1840
4101196b 1841 pages[ret] = find_subpage(page, xas.xa_index);
0fc9d104
KK
1842 if (++ret == nr_pages)
1843 break;
3ece58a2
MW
1844 continue;
1845put_page:
4101196b 1846 put_page(page);
3ece58a2
MW
1847retry:
1848 xas_reset(&xas);
ebf43500 1849 }
a60637c8
NP
1850 rcu_read_unlock();
1851 return ret;
ebf43500 1852}
ef71c15c 1853EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 1854
485bb99b 1855/**
72b045ae 1856 * find_get_pages_range_tag - find and return pages in given range matching @tag
485bb99b
RD
1857 * @mapping: the address_space to search
1858 * @index: the starting page index
72b045ae 1859 * @end: The final page index (inclusive)
485bb99b
RD
1860 * @tag: the tag index
1861 * @nr_pages: the maximum number of pages
1862 * @pages: where the resulting pages are placed
1863 *
1da177e4 1864 * Like find_get_pages, except we only return pages which are tagged with
485bb99b 1865 * @tag. We update @index to index the next page for the traversal.
a862f68a
MR
1866 *
1867 * Return: the number of pages which were found.
1da177e4 1868 */
72b045ae 1869unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
a6906972 1870 pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
72b045ae 1871 struct page **pages)
1da177e4 1872{
a6906972
MW
1873 XA_STATE(xas, &mapping->i_pages, *index);
1874 struct page *page;
0fc9d104
KK
1875 unsigned ret = 0;
1876
1877 if (unlikely(!nr_pages))
1878 return 0;
a60637c8
NP
1879
1880 rcu_read_lock();
a6906972 1881 xas_for_each_marked(&xas, page, end, tag) {
a6906972 1882 if (xas_retry(&xas, page))
a60637c8 1883 continue;
a6906972
MW
1884 /*
1885 * Shadow entries should never be tagged, but this iteration
1886 * is lockless so there is a window for page reclaim to evict
1887 * a page we saw tagged. Skip over it.
1888 */
1889 if (xa_is_value(page))
139b6a6f 1890 continue;
a60637c8 1891
4101196b 1892 if (!page_cache_get_speculative(page))
a6906972 1893 goto retry;
a60637c8 1894
4101196b 1895 /* Has the page moved or been split? */
a6906972
MW
1896 if (unlikely(page != xas_reload(&xas)))
1897 goto put_page;
a60637c8 1898
4101196b 1899 pages[ret] = find_subpage(page, xas.xa_index);
72b045ae 1900 if (++ret == nr_pages) {
5d3ee42f 1901 *index = xas.xa_index + 1;
72b045ae
JK
1902 goto out;
1903 }
a6906972
MW
1904 continue;
1905put_page:
4101196b 1906 put_page(page);
a6906972
MW
1907retry:
1908 xas_reset(&xas);
a60637c8 1909 }
5b280c0c 1910
72b045ae 1911 /*
a6906972 1912 * We come here when we got to @end. We take care to not overflow the
72b045ae 1913 * index @index as it confuses some of the callers. This breaks the
a6906972
MW
1914 * iteration when there is a page at index -1 but that is already
1915 * broken anyway.
72b045ae
JK
1916 */
1917 if (end == (pgoff_t)-1)
1918 *index = (pgoff_t)-1;
1919 else
1920 *index = end + 1;
1921out:
a60637c8 1922 rcu_read_unlock();
1da177e4 1923
1da177e4
LT
1924 return ret;
1925}
72b045ae 1926EXPORT_SYMBOL(find_get_pages_range_tag);
1da177e4 1927
76d42bd9
WF
1928/*
1929 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1930 * a _large_ part of the i/o request. Imagine the worst scenario:
1931 *
1932 * ---R__________________________________________B__________
1933 * ^ reading here ^ bad block(assume 4k)
1934 *
1935 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1936 * => failing the whole request => read(R) => read(R+1) =>
1937 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1938 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1939 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1940 *
1941 * It is going insane. Fix it by quickly scaling down the readahead size.
1942 */
0f8e2db4 1943static void shrink_readahead_size_eio(struct file_ra_state *ra)
76d42bd9 1944{
76d42bd9 1945 ra->ra_pages /= 4;
76d42bd9
WF
1946}
1947
485bb99b 1948/**
47c27bc4
CH
1949 * generic_file_buffered_read - generic file read routine
1950 * @iocb: the iocb to read
6e58e79d
AV
1951 * @iter: data destination
1952 * @written: already copied
485bb99b 1953 *
1da177e4 1954 * This is a generic file read routine, and uses the
485bb99b 1955 * mapping->a_ops->readpage() function for the actual low-level stuff.
1da177e4
LT
1956 *
1957 * This is really ugly. But the goto's actually try to clarify some
1958 * of the logic when it comes to error handling etc.
a862f68a
MR
1959 *
1960 * Return:
1961 * * total number of bytes copied, including those the were already @written
1962 * * negative error code if nothing was copied
1da177e4 1963 */
d85dc2e1 1964ssize_t generic_file_buffered_read(struct kiocb *iocb,
6e58e79d 1965 struct iov_iter *iter, ssize_t written)
1da177e4 1966{
47c27bc4 1967 struct file *filp = iocb->ki_filp;
36e78914 1968 struct address_space *mapping = filp->f_mapping;
1da177e4 1969 struct inode *inode = mapping->host;
36e78914 1970 struct file_ra_state *ra = &filp->f_ra;
47c27bc4 1971 loff_t *ppos = &iocb->ki_pos;
57f6b96c
FW
1972 pgoff_t index;
1973 pgoff_t last_index;
1974 pgoff_t prev_index;
1975 unsigned long offset; /* offset into pagecache page */
ec0f1637 1976 unsigned int prev_offset;
6e58e79d 1977 int error = 0;
1da177e4 1978
c2a9737f 1979 if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
d05c5f7b 1980 return 0;
c2a9737f
WF
1981 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
1982
09cbfeaf
KS
1983 index = *ppos >> PAGE_SHIFT;
1984 prev_index = ra->prev_pos >> PAGE_SHIFT;
1985 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1986 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1987 offset = *ppos & ~PAGE_MASK;
1da177e4 1988
1da177e4
LT
1989 for (;;) {
1990 struct page *page;
57f6b96c 1991 pgoff_t end_index;
a32ea1e1 1992 loff_t isize;
1da177e4
LT
1993 unsigned long nr, ret;
1994
1da177e4 1995 cond_resched();
1da177e4 1996find_page:
5abf186a
MH
1997 if (fatal_signal_pending(current)) {
1998 error = -EINTR;
1999 goto out;
2000 }
2001
1da177e4 2002 page = find_get_page(mapping, index);
3ea89ee8 2003 if (!page) {
cf914a7d 2004 page_cache_sync_readahead(mapping,
7ff81078 2005 ra, filp,
3ea89ee8
FW
2006 index, last_index - index);
2007 page = find_get_page(mapping, index);
2008 if (unlikely(page == NULL))
2009 goto no_cached_page;
2010 }
2011 if (PageReadahead(page)) {
cf914a7d 2012 page_cache_async_readahead(mapping,
7ff81078 2013 ra, filp, page,
3ea89ee8 2014 index, last_index - index);
1da177e4 2015 }
8ab22b9a 2016 if (!PageUptodate(page)) {
3239d834
MT
2017 if (iocb->ki_flags & IOCB_NOWAIT) {
2018 put_page(page);
2019 goto would_block;
2020 }
2021
ebded027
MG
2022 /*
2023 * See comment in do_read_cache_page on why
2024 * wait_on_page_locked is used to avoid unnecessarily
2025 * serialisations and why it's safe.
2026 */
c4b209a4
BVA
2027 error = wait_on_page_locked_killable(page);
2028 if (unlikely(error))
2029 goto readpage_error;
ebded027
MG
2030 if (PageUptodate(page))
2031 goto page_ok;
2032
09cbfeaf 2033 if (inode->i_blkbits == PAGE_SHIFT ||
8ab22b9a
HH
2034 !mapping->a_ops->is_partially_uptodate)
2035 goto page_not_up_to_date;
6d6d36bc 2036 /* pipes can't handle partially uptodate pages */
00e23707 2037 if (unlikely(iov_iter_is_pipe(iter)))
6d6d36bc 2038 goto page_not_up_to_date;
529ae9aa 2039 if (!trylock_page(page))
8ab22b9a 2040 goto page_not_up_to_date;
8d056cb9
DH
2041 /* Did it get truncated before we got the lock? */
2042 if (!page->mapping)
2043 goto page_not_up_to_date_locked;
8ab22b9a 2044 if (!mapping->a_ops->is_partially_uptodate(page,
6e58e79d 2045 offset, iter->count))
8ab22b9a
HH
2046 goto page_not_up_to_date_locked;
2047 unlock_page(page);
2048 }
1da177e4 2049page_ok:
a32ea1e1
N
2050 /*
2051 * i_size must be checked after we know the page is Uptodate.
2052 *
2053 * Checking i_size after the check allows us to calculate
2054 * the correct value for "nr", which means the zero-filled
2055 * part of the page is not copied back to userspace (unless
2056 * another truncate extends the file - this is desired though).
2057 */
2058
2059 isize = i_size_read(inode);
09cbfeaf 2060 end_index = (isize - 1) >> PAGE_SHIFT;
a32ea1e1 2061 if (unlikely(!isize || index > end_index)) {
09cbfeaf 2062 put_page(page);
a32ea1e1
N
2063 goto out;
2064 }
2065
2066 /* nr is the maximum number of bytes to copy from this page */
09cbfeaf 2067 nr = PAGE_SIZE;
a32ea1e1 2068 if (index == end_index) {
09cbfeaf 2069 nr = ((isize - 1) & ~PAGE_MASK) + 1;
a32ea1e1 2070 if (nr <= offset) {
09cbfeaf 2071 put_page(page);
a32ea1e1
N
2072 goto out;
2073 }
2074 }
2075 nr = nr - offset;
1da177e4
LT
2076
2077 /* If users can be writing to this page using arbitrary
2078 * virtual addresses, take care about potential aliasing
2079 * before reading the page on the kernel side.
2080 */
2081 if (mapping_writably_mapped(mapping))
2082 flush_dcache_page(page);
2083
2084 /*
ec0f1637
JK
2085 * When a sequential read accesses a page several times,
2086 * only mark it as accessed the first time.
1da177e4 2087 */
ec0f1637 2088 if (prev_index != index || offset != prev_offset)
1da177e4
LT
2089 mark_page_accessed(page);
2090 prev_index = index;
2091
2092 /*
2093 * Ok, we have the page, and it's up-to-date, so
2094 * now we can copy it to user space...
1da177e4 2095 */
6e58e79d
AV
2096
2097 ret = copy_page_to_iter(page, offset, nr, iter);
1da177e4 2098 offset += ret;
09cbfeaf
KS
2099 index += offset >> PAGE_SHIFT;
2100 offset &= ~PAGE_MASK;
6ce745ed 2101 prev_offset = offset;
1da177e4 2102
09cbfeaf 2103 put_page(page);
6e58e79d
AV
2104 written += ret;
2105 if (!iov_iter_count(iter))
2106 goto out;
2107 if (ret < nr) {
2108 error = -EFAULT;
2109 goto out;
2110 }
2111 continue;
1da177e4
LT
2112
2113page_not_up_to_date:
2114 /* Get exclusive access to the page ... */
85462323
ON
2115 error = lock_page_killable(page);
2116 if (unlikely(error))
2117 goto readpage_error;
1da177e4 2118
8ab22b9a 2119page_not_up_to_date_locked:
da6052f7 2120 /* Did it get truncated before we got the lock? */
1da177e4
LT
2121 if (!page->mapping) {
2122 unlock_page(page);
09cbfeaf 2123 put_page(page);
1da177e4
LT
2124 continue;
2125 }
2126
2127 /* Did somebody else fill it already? */
2128 if (PageUptodate(page)) {
2129 unlock_page(page);
2130 goto page_ok;
2131 }
2132
2133readpage:
91803b49
JM
2134 /*
2135 * A previous I/O error may have been due to temporary
2136 * failures, eg. multipath errors.
2137 * PG_error will be set again if readpage fails.
2138 */
2139 ClearPageError(page);
1da177e4
LT
2140 /* Start the actual read. The read will unlock the page. */
2141 error = mapping->a_ops->readpage(filp, page);
2142
994fc28c
ZB
2143 if (unlikely(error)) {
2144 if (error == AOP_TRUNCATED_PAGE) {
09cbfeaf 2145 put_page(page);
6e58e79d 2146 error = 0;
994fc28c
ZB
2147 goto find_page;
2148 }
1da177e4 2149 goto readpage_error;
994fc28c 2150 }
1da177e4
LT
2151
2152 if (!PageUptodate(page)) {
85462323
ON
2153 error = lock_page_killable(page);
2154 if (unlikely(error))
2155 goto readpage_error;
1da177e4
LT
2156 if (!PageUptodate(page)) {
2157 if (page->mapping == NULL) {
2158 /*
2ecdc82e 2159 * invalidate_mapping_pages got it
1da177e4
LT
2160 */
2161 unlock_page(page);
09cbfeaf 2162 put_page(page);
1da177e4
LT
2163 goto find_page;
2164 }
2165 unlock_page(page);
0f8e2db4 2166 shrink_readahead_size_eio(ra);
85462323
ON
2167 error = -EIO;
2168 goto readpage_error;
1da177e4
LT
2169 }
2170 unlock_page(page);
2171 }
2172
1da177e4
LT
2173 goto page_ok;
2174
2175readpage_error:
2176 /* UHHUH! A synchronous read error occurred. Report it */
09cbfeaf 2177 put_page(page);
1da177e4
LT
2178 goto out;
2179
2180no_cached_page:
2181 /*
2182 * Ok, it wasn't cached, so we need to create a new
2183 * page..
2184 */
453f85d4 2185 page = page_cache_alloc(mapping);
eb2be189 2186 if (!page) {
6e58e79d 2187 error = -ENOMEM;
eb2be189 2188 goto out;
1da177e4 2189 }
6afdb859 2190 error = add_to_page_cache_lru(page, mapping, index,
c62d2555 2191 mapping_gfp_constraint(mapping, GFP_KERNEL));
1da177e4 2192 if (error) {
09cbfeaf 2193 put_page(page);
6e58e79d
AV
2194 if (error == -EEXIST) {
2195 error = 0;
1da177e4 2196 goto find_page;
6e58e79d 2197 }
1da177e4
LT
2198 goto out;
2199 }
1da177e4
LT
2200 goto readpage;
2201 }
2202
3239d834
MT
2203would_block:
2204 error = -EAGAIN;
1da177e4 2205out:
7ff81078 2206 ra->prev_pos = prev_index;
09cbfeaf 2207 ra->prev_pos <<= PAGE_SHIFT;
7ff81078 2208 ra->prev_pos |= prev_offset;
1da177e4 2209
09cbfeaf 2210 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
0c6aa263 2211 file_accessed(filp);
6e58e79d 2212 return written ? written : error;
1da177e4 2213}
d85dc2e1 2214EXPORT_SYMBOL_GPL(generic_file_buffered_read);
1da177e4 2215
485bb99b 2216/**
6abd2322 2217 * generic_file_read_iter - generic filesystem read routine
485bb99b 2218 * @iocb: kernel I/O control block
6abd2322 2219 * @iter: destination for the data read
485bb99b 2220 *
6abd2322 2221 * This is the "read_iter()" routine for all filesystems
1da177e4 2222 * that can use the page cache directly.
a862f68a
MR
2223 * Return:
2224 * * number of bytes copied, even for partial reads
2225 * * negative error code if nothing was read
1da177e4
LT
2226 */
2227ssize_t
ed978a81 2228generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1da177e4 2229{
e7080a43 2230 size_t count = iov_iter_count(iter);
47c27bc4 2231 ssize_t retval = 0;
e7080a43
NS
2232
2233 if (!count)
2234 goto out; /* skip atime */
1da177e4 2235
2ba48ce5 2236 if (iocb->ki_flags & IOCB_DIRECT) {
47c27bc4 2237 struct file *file = iocb->ki_filp;
ed978a81
AV
2238 struct address_space *mapping = file->f_mapping;
2239 struct inode *inode = mapping->host;
543ade1f 2240 loff_t size;
1da177e4 2241
1da177e4 2242 size = i_size_read(inode);
6be96d3a
GR
2243 if (iocb->ki_flags & IOCB_NOWAIT) {
2244 if (filemap_range_has_page(mapping, iocb->ki_pos,
2245 iocb->ki_pos + count - 1))
2246 return -EAGAIN;
2247 } else {
2248 retval = filemap_write_and_wait_range(mapping,
2249 iocb->ki_pos,
2250 iocb->ki_pos + count - 1);
2251 if (retval < 0)
2252 goto out;
2253 }
d8d3d94b 2254
0d5b0cf2
CH
2255 file_accessed(file);
2256
5ecda137 2257 retval = mapping->a_ops->direct_IO(iocb, iter);
c3a69024 2258 if (retval >= 0) {
c64fb5c7 2259 iocb->ki_pos += retval;
5ecda137 2260 count -= retval;
9fe55eea 2261 }
5b47d59a 2262 iov_iter_revert(iter, count - iov_iter_count(iter));
66f998f6 2263
9fe55eea
SW
2264 /*
2265 * Btrfs can have a short DIO read if we encounter
2266 * compressed extents, so if there was an error, or if
2267 * we've already read everything we wanted to, or if
2268 * there was a short read because we hit EOF, go ahead
2269 * and return. Otherwise fallthrough to buffered io for
fbbbad4b
MW
2270 * the rest of the read. Buffered reads will not work for
2271 * DAX files, so don't bother trying.
9fe55eea 2272 */
5ecda137 2273 if (retval < 0 || !count || iocb->ki_pos >= size ||
0d5b0cf2 2274 IS_DAX(inode))
9fe55eea 2275 goto out;
1da177e4
LT
2276 }
2277
47c27bc4 2278 retval = generic_file_buffered_read(iocb, iter, retval);
1da177e4
LT
2279out:
2280 return retval;
2281}
ed978a81 2282EXPORT_SYMBOL(generic_file_read_iter);
1da177e4 2283
1da177e4 2284#ifdef CONFIG_MMU
1da177e4 2285#define MMAP_LOTSAMISS (100)
6b4c9f44 2286/*
c1e8d7c6 2287 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
6b4c9f44
JB
2288 * @vmf - the vm_fault for this fault.
2289 * @page - the page to lock.
2290 * @fpin - the pointer to the file we may pin (or is already pinned).
2291 *
c1e8d7c6 2292 * This works similar to lock_page_or_retry in that it can drop the mmap_lock.
6b4c9f44 2293 * It differs in that it actually returns the page locked if it returns 1 and 0
c1e8d7c6 2294 * if it couldn't lock the page. If we did have to drop the mmap_lock then fpin
6b4c9f44
JB
2295 * will point to the pinned file and needs to be fput()'ed at a later point.
2296 */
2297static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2298 struct file **fpin)
2299{
2300 if (trylock_page(page))
2301 return 1;
2302
8b0f9fa2
LT
2303 /*
2304 * NOTE! This will make us return with VM_FAULT_RETRY, but with
c1e8d7c6 2305 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
8b0f9fa2
LT
2306 * is supposed to work. We have way too many special cases..
2307 */
6b4c9f44
JB
2308 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2309 return 0;
2310
2311 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2312 if (vmf->flags & FAULT_FLAG_KILLABLE) {
2313 if (__lock_page_killable(page)) {
2314 /*
c1e8d7c6 2315 * We didn't have the right flags to drop the mmap_lock,
6b4c9f44
JB
2316 * but all fault_handlers only check for fatal signals
2317 * if we return VM_FAULT_RETRY, so we need to drop the
c1e8d7c6 2318 * mmap_lock here and return 0 if we don't have a fpin.
6b4c9f44
JB
2319 */
2320 if (*fpin == NULL)
d8ed45c5 2321 mmap_read_unlock(vmf->vma->vm_mm);
6b4c9f44
JB
2322 return 0;
2323 }
2324 } else
2325 __lock_page(page);
2326 return 1;
2327}
2328
1da177e4 2329
ef00e08e 2330/*
6b4c9f44
JB
2331 * Synchronous readahead happens when we don't even find a page in the page
2332 * cache at all. We don't want to perform IO under the mmap sem, so if we have
2333 * to drop the mmap sem we return the file that was pinned in order for us to do
2334 * that. If we didn't pin a file then we return NULL. The file that is
2335 * returned needs to be fput()'ed when we're done with it.
ef00e08e 2336 */
6b4c9f44 2337static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
ef00e08e 2338{
2a1180f1
JB
2339 struct file *file = vmf->vma->vm_file;
2340 struct file_ra_state *ra = &file->f_ra;
ef00e08e 2341 struct address_space *mapping = file->f_mapping;
6b4c9f44 2342 struct file *fpin = NULL;
2a1180f1 2343 pgoff_t offset = vmf->pgoff;
ef00e08e
LT
2344
2345 /* If we don't want any read-ahead, don't bother */
2a1180f1 2346 if (vmf->vma->vm_flags & VM_RAND_READ)
6b4c9f44 2347 return fpin;
275b12bf 2348 if (!ra->ra_pages)
6b4c9f44 2349 return fpin;
ef00e08e 2350
2a1180f1 2351 if (vmf->vma->vm_flags & VM_SEQ_READ) {
6b4c9f44 2352 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
7ffc59b4
WF
2353 page_cache_sync_readahead(mapping, ra, file, offset,
2354 ra->ra_pages);
6b4c9f44 2355 return fpin;
ef00e08e
LT
2356 }
2357
207d04ba
AK
2358 /* Avoid banging the cache line if not needed */
2359 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
ef00e08e
LT
2360 ra->mmap_miss++;
2361
2362 /*
2363 * Do we miss much more than hit in this file? If so,
2364 * stop bothering with read-ahead. It will only hurt.
2365 */
2366 if (ra->mmap_miss > MMAP_LOTSAMISS)
6b4c9f44 2367 return fpin;
ef00e08e 2368
d30a1100
WF
2369 /*
2370 * mmap read-around
2371 */
6b4c9f44 2372 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
600e19af
RG
2373 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2374 ra->size = ra->ra_pages;
2375 ra->async_size = ra->ra_pages / 4;
275b12bf 2376 ra_submit(ra, mapping, file);
6b4c9f44 2377 return fpin;
ef00e08e
LT
2378}
2379
2380/*
2381 * Asynchronous readahead happens when we find the page and PG_readahead,
6b4c9f44 2382 * so we want to possibly extend the readahead further. We return the file that
c1e8d7c6 2383 * was pinned if we have to drop the mmap_lock in order to do IO.
ef00e08e 2384 */
6b4c9f44
JB
2385static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2386 struct page *page)
ef00e08e 2387{
2a1180f1
JB
2388 struct file *file = vmf->vma->vm_file;
2389 struct file_ra_state *ra = &file->f_ra;
ef00e08e 2390 struct address_space *mapping = file->f_mapping;
6b4c9f44 2391 struct file *fpin = NULL;
2a1180f1 2392 pgoff_t offset = vmf->pgoff;
ef00e08e
LT
2393
2394 /* If we don't want any read-ahead, don't bother */
5c72feee 2395 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
6b4c9f44 2396 return fpin;
ef00e08e
LT
2397 if (ra->mmap_miss > 0)
2398 ra->mmap_miss--;
6b4c9f44
JB
2399 if (PageReadahead(page)) {
2400 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2fad6f5d
WF
2401 page_cache_async_readahead(mapping, ra, file,
2402 page, offset, ra->ra_pages);
6b4c9f44
JB
2403 }
2404 return fpin;
ef00e08e
LT
2405}
2406
485bb99b 2407/**
54cb8821 2408 * filemap_fault - read in file data for page fault handling
d0217ac0 2409 * @vmf: struct vm_fault containing details of the fault
485bb99b 2410 *
54cb8821 2411 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
2412 * mapped memory region to read in file data during a page fault.
2413 *
2414 * The goto's are kind of ugly, but this streamlines the normal case of having
2415 * it in the page cache, and handles the special cases reasonably without
2416 * having a lot of duplicated code.
9a95f3cf 2417 *
c1e8d7c6 2418 * vma->vm_mm->mmap_lock must be held on entry.
9a95f3cf 2419 *
c1e8d7c6 2420 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
a4985833 2421 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
9a95f3cf 2422 *
c1e8d7c6 2423 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
9a95f3cf
PC
2424 * has not been released.
2425 *
2426 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
a862f68a
MR
2427 *
2428 * Return: bitwise-OR of %VM_FAULT_ codes.
1da177e4 2429 */
2bcd6454 2430vm_fault_t filemap_fault(struct vm_fault *vmf)
1da177e4
LT
2431{
2432 int error;
11bac800 2433 struct file *file = vmf->vma->vm_file;
6b4c9f44 2434 struct file *fpin = NULL;
1da177e4
LT
2435 struct address_space *mapping = file->f_mapping;
2436 struct file_ra_state *ra = &file->f_ra;
2437 struct inode *inode = mapping->host;
ef00e08e 2438 pgoff_t offset = vmf->pgoff;
9ab2594f 2439 pgoff_t max_off;
1da177e4 2440 struct page *page;
2bcd6454 2441 vm_fault_t ret = 0;
1da177e4 2442
9ab2594f
MW
2443 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2444 if (unlikely(offset >= max_off))
5307cc1a 2445 return VM_FAULT_SIGBUS;
1da177e4 2446
1da177e4 2447 /*
49426420 2448 * Do we have something in the page cache already?
1da177e4 2449 */
ef00e08e 2450 page = find_get_page(mapping, offset);
45cac65b 2451 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1da177e4 2452 /*
ef00e08e
LT
2453 * We found the page, so try async readahead before
2454 * waiting for the lock.
1da177e4 2455 */
6b4c9f44 2456 fpin = do_async_mmap_readahead(vmf, page);
45cac65b 2457 } else if (!page) {
ef00e08e 2458 /* No page in the page cache at all */
ef00e08e 2459 count_vm_event(PGMAJFAULT);
2262185c 2460 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
ef00e08e 2461 ret = VM_FAULT_MAJOR;
6b4c9f44 2462 fpin = do_sync_mmap_readahead(vmf);
ef00e08e 2463retry_find:
a75d4c33
JB
2464 page = pagecache_get_page(mapping, offset,
2465 FGP_CREAT|FGP_FOR_MMAP,
2466 vmf->gfp_mask);
6b4c9f44
JB
2467 if (!page) {
2468 if (fpin)
2469 goto out_retry;
e520e932 2470 return VM_FAULT_OOM;
6b4c9f44 2471 }
1da177e4
LT
2472 }
2473
6b4c9f44
JB
2474 if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
2475 goto out_retry;
b522c94d
ML
2476
2477 /* Did it get truncated? */
585e5a7b 2478 if (unlikely(compound_head(page)->mapping != mapping)) {
b522c94d
ML
2479 unlock_page(page);
2480 put_page(page);
2481 goto retry_find;
2482 }
520e5ba4 2483 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
b522c94d 2484
1da177e4 2485 /*
d00806b1
NP
2486 * We have a locked page in the page cache, now we need to check
2487 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 2488 */
d00806b1 2489 if (unlikely(!PageUptodate(page)))
1da177e4
LT
2490 goto page_not_uptodate;
2491
6b4c9f44 2492 /*
c1e8d7c6 2493 * We've made it this far and we had to drop our mmap_lock, now is the
6b4c9f44
JB
2494 * time to return to the upper layer and have it re-find the vma and
2495 * redo the fault.
2496 */
2497 if (fpin) {
2498 unlock_page(page);
2499 goto out_retry;
2500 }
2501
ef00e08e
LT
2502 /*
2503 * Found the page and have a reference on it.
2504 * We must recheck i_size under page lock.
2505 */
9ab2594f
MW
2506 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2507 if (unlikely(offset >= max_off)) {
d00806b1 2508 unlock_page(page);
09cbfeaf 2509 put_page(page);
5307cc1a 2510 return VM_FAULT_SIGBUS;
d00806b1
NP
2511 }
2512
d0217ac0 2513 vmf->page = page;
83c54070 2514 return ret | VM_FAULT_LOCKED;
1da177e4 2515
1da177e4 2516page_not_uptodate:
1da177e4
LT
2517 /*
2518 * Umm, take care of errors if the page isn't up-to-date.
2519 * Try to re-read it _once_. We do this synchronously,
2520 * because there really aren't any performance issues here
2521 * and we need to check for errors.
2522 */
1da177e4 2523 ClearPageError(page);
6b4c9f44 2524 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
994fc28c 2525 error = mapping->a_ops->readpage(file, page);
3ef0f720
MS
2526 if (!error) {
2527 wait_on_page_locked(page);
2528 if (!PageUptodate(page))
2529 error = -EIO;
2530 }
6b4c9f44
JB
2531 if (fpin)
2532 goto out_retry;
09cbfeaf 2533 put_page(page);
d00806b1
NP
2534
2535 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 2536 goto retry_find;
1da177e4 2537
0f8e2db4 2538 shrink_readahead_size_eio(ra);
d0217ac0 2539 return VM_FAULT_SIGBUS;
6b4c9f44
JB
2540
2541out_retry:
2542 /*
c1e8d7c6 2543 * We dropped the mmap_lock, we need to return to the fault handler to
6b4c9f44
JB
2544 * re-find the vma and come back and find our hopefully still populated
2545 * page.
2546 */
2547 if (page)
2548 put_page(page);
2549 if (fpin)
2550 fput(fpin);
2551 return ret | VM_FAULT_RETRY;
54cb8821
NP
2552}
2553EXPORT_SYMBOL(filemap_fault);
2554
82b0f8c3 2555void filemap_map_pages(struct vm_fault *vmf,
bae473a4 2556 pgoff_t start_pgoff, pgoff_t end_pgoff)
f1820361 2557{
82b0f8c3 2558 struct file *file = vmf->vma->vm_file;
f1820361 2559 struct address_space *mapping = file->f_mapping;
bae473a4 2560 pgoff_t last_pgoff = start_pgoff;
9ab2594f 2561 unsigned long max_idx;
070e807c 2562 XA_STATE(xas, &mapping->i_pages, start_pgoff);
4101196b 2563 struct page *page;
f1820361
KS
2564
2565 rcu_read_lock();
070e807c
MW
2566 xas_for_each(&xas, page, end_pgoff) {
2567 if (xas_retry(&xas, page))
2568 continue;
2569 if (xa_is_value(page))
2cf938aa 2570 goto next;
f1820361 2571
e0975b2a
MH
2572 /*
2573 * Check for a locked page first, as a speculative
2574 * reference may adversely influence page migration.
2575 */
4101196b 2576 if (PageLocked(page))
e0975b2a 2577 goto next;
4101196b 2578 if (!page_cache_get_speculative(page))
070e807c 2579 goto next;
f1820361 2580
4101196b 2581 /* Has the page moved or been split? */
070e807c
MW
2582 if (unlikely(page != xas_reload(&xas)))
2583 goto skip;
4101196b 2584 page = find_subpage(page, xas.xa_index);
f1820361
KS
2585
2586 if (!PageUptodate(page) ||
2587 PageReadahead(page) ||
2588 PageHWPoison(page))
2589 goto skip;
2590 if (!trylock_page(page))
2591 goto skip;
2592
2593 if (page->mapping != mapping || !PageUptodate(page))
2594 goto unlock;
2595
9ab2594f
MW
2596 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2597 if (page->index >= max_idx)
f1820361
KS
2598 goto unlock;
2599
f1820361
KS
2600 if (file->f_ra.mmap_miss > 0)
2601 file->f_ra.mmap_miss--;
7267ec00 2602
070e807c 2603 vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
82b0f8c3 2604 if (vmf->pte)
070e807c
MW
2605 vmf->pte += xas.xa_index - last_pgoff;
2606 last_pgoff = xas.xa_index;
9d82c694 2607 if (alloc_set_pte(vmf, page))
7267ec00 2608 goto unlock;
f1820361
KS
2609 unlock_page(page);
2610 goto next;
2611unlock:
2612 unlock_page(page);
2613skip:
09cbfeaf 2614 put_page(page);
f1820361 2615next:
7267ec00 2616 /* Huge page is mapped? No need to proceed. */
82b0f8c3 2617 if (pmd_trans_huge(*vmf->pmd))
7267ec00 2618 break;
f1820361
KS
2619 }
2620 rcu_read_unlock();
2621}
2622EXPORT_SYMBOL(filemap_map_pages);
2623
2bcd6454 2624vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
4fcf1c62
JK
2625{
2626 struct page *page = vmf->page;
11bac800 2627 struct inode *inode = file_inode(vmf->vma->vm_file);
2bcd6454 2628 vm_fault_t ret = VM_FAULT_LOCKED;
4fcf1c62 2629
14da9200 2630 sb_start_pagefault(inode->i_sb);
11bac800 2631 file_update_time(vmf->vma->vm_file);
4fcf1c62
JK
2632 lock_page(page);
2633 if (page->mapping != inode->i_mapping) {
2634 unlock_page(page);
2635 ret = VM_FAULT_NOPAGE;
2636 goto out;
2637 }
14da9200
JK
2638 /*
2639 * We mark the page dirty already here so that when freeze is in
2640 * progress, we are guaranteed that writeback during freezing will
2641 * see the dirty page and writeprotect it again.
2642 */
2643 set_page_dirty(page);
1d1d1a76 2644 wait_for_stable_page(page);
4fcf1c62 2645out:
14da9200 2646 sb_end_pagefault(inode->i_sb);
4fcf1c62
JK
2647 return ret;
2648}
4fcf1c62 2649
f0f37e2f 2650const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 2651 .fault = filemap_fault,
f1820361 2652 .map_pages = filemap_map_pages,
4fcf1c62 2653 .page_mkwrite = filemap_page_mkwrite,
1da177e4
LT
2654};
2655
2656/* This is used for a general mmap of a disk file */
2657
2658int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2659{
2660 struct address_space *mapping = file->f_mapping;
2661
2662 if (!mapping->a_ops->readpage)
2663 return -ENOEXEC;
2664 file_accessed(file);
2665 vma->vm_ops = &generic_file_vm_ops;
2666 return 0;
2667}
1da177e4
LT
2668
2669/*
2670 * This is for filesystems which do not implement ->writepage.
2671 */
2672int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2673{
2674 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2675 return -EINVAL;
2676 return generic_file_mmap(file, vma);
2677}
2678#else
4b96a37d 2679vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
45397228 2680{
4b96a37d 2681 return VM_FAULT_SIGBUS;
45397228 2682}
1da177e4
LT
2683int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2684{
2685 return -ENOSYS;
2686}
2687int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2688{
2689 return -ENOSYS;
2690}
2691#endif /* CONFIG_MMU */
2692
45397228 2693EXPORT_SYMBOL(filemap_page_mkwrite);
1da177e4
LT
2694EXPORT_SYMBOL(generic_file_mmap);
2695EXPORT_SYMBOL(generic_file_readonly_mmap);
2696
67f9fd91
SL
2697static struct page *wait_on_page_read(struct page *page)
2698{
2699 if (!IS_ERR(page)) {
2700 wait_on_page_locked(page);
2701 if (!PageUptodate(page)) {
09cbfeaf 2702 put_page(page);
67f9fd91
SL
2703 page = ERR_PTR(-EIO);
2704 }
2705 }
2706 return page;
2707}
2708
32b63529 2709static struct page *do_read_cache_page(struct address_space *mapping,
57f6b96c 2710 pgoff_t index,
5e5358e7 2711 int (*filler)(void *, struct page *),
0531b2aa
LT
2712 void *data,
2713 gfp_t gfp)
1da177e4 2714{
eb2be189 2715 struct page *page;
1da177e4
LT
2716 int err;
2717repeat:
2718 page = find_get_page(mapping, index);
2719 if (!page) {
453f85d4 2720 page = __page_cache_alloc(gfp);
eb2be189
NP
2721 if (!page)
2722 return ERR_PTR(-ENOMEM);
e6f67b8c 2723 err = add_to_page_cache_lru(page, mapping, index, gfp);
eb2be189 2724 if (unlikely(err)) {
09cbfeaf 2725 put_page(page);
eb2be189
NP
2726 if (err == -EEXIST)
2727 goto repeat;
22ecdb4f 2728 /* Presumably ENOMEM for xarray node */
1da177e4
LT
2729 return ERR_PTR(err);
2730 }
32b63529
MG
2731
2732filler:
6c45b454
CH
2733 if (filler)
2734 err = filler(data, page);
2735 else
2736 err = mapping->a_ops->readpage(data, page);
2737
1da177e4 2738 if (err < 0) {
09cbfeaf 2739 put_page(page);
32b63529 2740 return ERR_PTR(err);
1da177e4 2741 }
1da177e4 2742
32b63529
MG
2743 page = wait_on_page_read(page);
2744 if (IS_ERR(page))
2745 return page;
2746 goto out;
2747 }
1da177e4
LT
2748 if (PageUptodate(page))
2749 goto out;
2750
ebded027
MG
2751 /*
2752 * Page is not up to date and may be locked due one of the following
2753 * case a: Page is being filled and the page lock is held
2754 * case b: Read/write error clearing the page uptodate status
2755 * case c: Truncation in progress (page locked)
2756 * case d: Reclaim in progress
2757 *
2758 * Case a, the page will be up to date when the page is unlocked.
2759 * There is no need to serialise on the page lock here as the page
2760 * is pinned so the lock gives no additional protection. Even if the
2761 * the page is truncated, the data is still valid if PageUptodate as
2762 * it's a race vs truncate race.
2763 * Case b, the page will not be up to date
2764 * Case c, the page may be truncated but in itself, the data may still
2765 * be valid after IO completes as it's a read vs truncate race. The
2766 * operation must restart if the page is not uptodate on unlock but
2767 * otherwise serialising on page lock to stabilise the mapping gives
2768 * no additional guarantees to the caller as the page lock is
2769 * released before return.
2770 * Case d, similar to truncation. If reclaim holds the page lock, it
2771 * will be a race with remove_mapping that determines if the mapping
2772 * is valid on unlock but otherwise the data is valid and there is
2773 * no need to serialise with page lock.
2774 *
2775 * As the page lock gives no additional guarantee, we optimistically
2776 * wait on the page to be unlocked and check if it's up to date and
2777 * use the page if it is. Otherwise, the page lock is required to
2778 * distinguish between the different cases. The motivation is that we
2779 * avoid spurious serialisations and wakeups when multiple processes
2780 * wait on the same page for IO to complete.
2781 */
2782 wait_on_page_locked(page);
2783 if (PageUptodate(page))
2784 goto out;
2785
2786 /* Distinguish between all the cases under the safety of the lock */
1da177e4 2787 lock_page(page);
ebded027
MG
2788
2789 /* Case c or d, restart the operation */
1da177e4
LT
2790 if (!page->mapping) {
2791 unlock_page(page);
09cbfeaf 2792 put_page(page);
32b63529 2793 goto repeat;
1da177e4 2794 }
ebded027
MG
2795
2796 /* Someone else locked and filled the page in a very small window */
1da177e4
LT
2797 if (PageUptodate(page)) {
2798 unlock_page(page);
2799 goto out;
2800 }
faffdfa0
XT
2801
2802 /*
2803 * A previous I/O error may have been due to temporary
2804 * failures.
2805 * Clear page error before actual read, PG_error will be
2806 * set again if read page fails.
2807 */
2808 ClearPageError(page);
32b63529
MG
2809 goto filler;
2810
c855ff37 2811out:
6fe6900e
NP
2812 mark_page_accessed(page);
2813 return page;
2814}
0531b2aa
LT
2815
2816/**
67f9fd91 2817 * read_cache_page - read into page cache, fill it if needed
0531b2aa
LT
2818 * @mapping: the page's address_space
2819 * @index: the page index
2820 * @filler: function to perform the read
5e5358e7 2821 * @data: first arg to filler(data, page) function, often left as NULL
0531b2aa 2822 *
0531b2aa 2823 * Read into the page cache. If a page already exists, and PageUptodate() is
67f9fd91 2824 * not set, try to fill the page and wait for it to become unlocked.
0531b2aa
LT
2825 *
2826 * If the page does not get brought uptodate, return -EIO.
a862f68a
MR
2827 *
2828 * Return: up to date page on success, ERR_PTR() on failure.
0531b2aa 2829 */
67f9fd91 2830struct page *read_cache_page(struct address_space *mapping,
0531b2aa 2831 pgoff_t index,
5e5358e7 2832 int (*filler)(void *, struct page *),
0531b2aa
LT
2833 void *data)
2834{
d322a8e5
CH
2835 return do_read_cache_page(mapping, index, filler, data,
2836 mapping_gfp_mask(mapping));
0531b2aa 2837}
67f9fd91 2838EXPORT_SYMBOL(read_cache_page);
0531b2aa
LT
2839
2840/**
2841 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2842 * @mapping: the page's address_space
2843 * @index: the page index
2844 * @gfp: the page allocator flags to use if allocating
2845 *
2846 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
e6f67b8c 2847 * any new page allocations done using the specified allocation flags.
0531b2aa
LT
2848 *
2849 * If the page does not get brought uptodate, return -EIO.
a862f68a
MR
2850 *
2851 * Return: up to date page on success, ERR_PTR() on failure.
0531b2aa
LT
2852 */
2853struct page *read_cache_page_gfp(struct address_space *mapping,
2854 pgoff_t index,
2855 gfp_t gfp)
2856{
6c45b454 2857 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
0531b2aa
LT
2858}
2859EXPORT_SYMBOL(read_cache_page_gfp);
2860
9fd91a90
DW
2861/*
2862 * Don't operate on ranges the page cache doesn't support, and don't exceed the
2863 * LFS limits. If pos is under the limit it becomes a short access. If it
2864 * exceeds the limit we return -EFBIG.
2865 */
9fd91a90
DW
2866static int generic_write_check_limits(struct file *file, loff_t pos,
2867 loff_t *count)
2868{
646955cd
AG
2869 struct inode *inode = file->f_mapping->host;
2870 loff_t max_size = inode->i_sb->s_maxbytes;
9fd91a90
DW
2871 loff_t limit = rlimit(RLIMIT_FSIZE);
2872
2873 if (limit != RLIM_INFINITY) {
2874 if (pos >= limit) {
2875 send_sig(SIGXFSZ, current, 0);
2876 return -EFBIG;
2877 }
2878 *count = min(*count, limit - pos);
2879 }
2880
646955cd
AG
2881 if (!(file->f_flags & O_LARGEFILE))
2882 max_size = MAX_NON_LFS;
2883
2884 if (unlikely(pos >= max_size))
2885 return -EFBIG;
2886
2887 *count = min(*count, max_size - pos);
2888
2889 return 0;
9fd91a90
DW
2890}
2891
1da177e4
LT
2892/*
2893 * Performs necessary checks before doing a write
2894 *
485bb99b 2895 * Can adjust writing position or amount of bytes to write.
1da177e4
LT
2896 * Returns appropriate error code that caller should return or
2897 * zero in case that write should be allowed.
2898 */
3309dd04 2899inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
1da177e4 2900{
3309dd04 2901 struct file *file = iocb->ki_filp;
1da177e4 2902 struct inode *inode = file->f_mapping->host;
9fd91a90
DW
2903 loff_t count;
2904 int ret;
1da177e4 2905
dc617f29
DW
2906 if (IS_SWAPFILE(inode))
2907 return -ETXTBSY;
2908
3309dd04
AV
2909 if (!iov_iter_count(from))
2910 return 0;
1da177e4 2911
0fa6b005 2912 /* FIXME: this is for backwards compatibility with 2.4 */
2ba48ce5 2913 if (iocb->ki_flags & IOCB_APPEND)
3309dd04 2914 iocb->ki_pos = i_size_read(inode);
1da177e4 2915
6be96d3a
GR
2916 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2917 return -EINVAL;
2918
9fd91a90
DW
2919 count = iov_iter_count(from);
2920 ret = generic_write_check_limits(file, iocb->ki_pos, &count);
2921 if (ret)
2922 return ret;
1da177e4 2923
9fd91a90 2924 iov_iter_truncate(from, count);
3309dd04 2925 return iov_iter_count(from);
1da177e4
LT
2926}
2927EXPORT_SYMBOL(generic_write_checks);
2928
1383a7ed
DW
2929/*
2930 * Performs necessary checks before doing a clone.
2931 *
646955cd 2932 * Can adjust amount of bytes to clone via @req_count argument.
1383a7ed
DW
2933 * Returns appropriate error code that caller should return or
2934 * zero in case the clone should be allowed.
2935 */
2936int generic_remap_checks(struct file *file_in, loff_t pos_in,
2937 struct file *file_out, loff_t pos_out,
42ec3d4c 2938 loff_t *req_count, unsigned int remap_flags)
1383a7ed
DW
2939{
2940 struct inode *inode_in = file_in->f_mapping->host;
2941 struct inode *inode_out = file_out->f_mapping->host;
2942 uint64_t count = *req_count;
2943 uint64_t bcount;
2944 loff_t size_in, size_out;
2945 loff_t bs = inode_out->i_sb->s_blocksize;
9fd91a90 2946 int ret;
1383a7ed
DW
2947
2948 /* The start of both ranges must be aligned to an fs block. */
2949 if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs))
2950 return -EINVAL;
2951
2952 /* Ensure offsets don't wrap. */
2953 if (pos_in + count < pos_in || pos_out + count < pos_out)
2954 return -EINVAL;
2955
2956 size_in = i_size_read(inode_in);
2957 size_out = i_size_read(inode_out);
2958
2959 /* Dedupe requires both ranges to be within EOF. */
3d28193e 2960 if ((remap_flags & REMAP_FILE_DEDUP) &&
1383a7ed
DW
2961 (pos_in >= size_in || pos_in + count > size_in ||
2962 pos_out >= size_out || pos_out + count > size_out))
2963 return -EINVAL;
2964
2965 /* Ensure the infile range is within the infile. */
2966 if (pos_in >= size_in)
2967 return -EINVAL;
2968 count = min(count, size_in - (uint64_t)pos_in);
2969
9fd91a90
DW
2970 ret = generic_write_check_limits(file_out, pos_out, &count);
2971 if (ret)
2972 return ret;
1da177e4
LT
2973
2974 /*
1383a7ed
DW
2975 * If the user wanted us to link to the infile's EOF, round up to the
2976 * next block boundary for this check.
2977 *
2978 * Otherwise, make sure the count is also block-aligned, having
2979 * already confirmed the starting offsets' block alignment.
1da177e4 2980 */
1383a7ed
DW
2981 if (pos_in + count == size_in) {
2982 bcount = ALIGN(size_in, bs) - pos_in;
2983 } else {
2984 if (!IS_ALIGNED(count, bs))
eca3654e 2985 count = ALIGN_DOWN(count, bs);
1383a7ed 2986 bcount = count;
1da177e4
LT
2987 }
2988
1383a7ed
DW
2989 /* Don't allow overlapped cloning within the same file. */
2990 if (inode_in == inode_out &&
2991 pos_out + bcount > pos_in &&
2992 pos_out < pos_in + bcount)
2993 return -EINVAL;
2994
1da177e4 2995 /*
eca3654e
DW
2996 * We shortened the request but the caller can't deal with that, so
2997 * bounce the request back to userspace.
1da177e4 2998 */
eca3654e 2999 if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN))
1383a7ed 3000 return -EINVAL;
1da177e4 3001
eca3654e 3002 *req_count = count;
1383a7ed 3003 return 0;
1da177e4 3004}
1da177e4 3005
a3171351
AG
3006
3007/*
3008 * Performs common checks before doing a file copy/clone
3009 * from @file_in to @file_out.
3010 */
3011int generic_file_rw_checks(struct file *file_in, struct file *file_out)
3012{
3013 struct inode *inode_in = file_inode(file_in);
3014 struct inode *inode_out = file_inode(file_out);
3015
3016 /* Don't copy dirs, pipes, sockets... */
3017 if (S_ISDIR(inode_in->i_mode) || S_ISDIR(inode_out->i_mode))
3018 return -EISDIR;
3019 if (!S_ISREG(inode_in->i_mode) || !S_ISREG(inode_out->i_mode))
3020 return -EINVAL;
3021
3022 if (!(file_in->f_mode & FMODE_READ) ||
3023 !(file_out->f_mode & FMODE_WRITE) ||
3024 (file_out->f_flags & O_APPEND))
3025 return -EBADF;
3026
3027 return 0;
3028}
3029
96e6e8f4
AG
3030/*
3031 * Performs necessary checks before doing a file copy
3032 *
3033 * Can adjust amount of bytes to copy via @req_count argument.
3034 * Returns appropriate error code that caller should return or
3035 * zero in case the copy should be allowed.
3036 */
3037int generic_copy_file_checks(struct file *file_in, loff_t pos_in,
3038 struct file *file_out, loff_t pos_out,
3039 size_t *req_count, unsigned int flags)
3040{
3041 struct inode *inode_in = file_inode(file_in);
3042 struct inode *inode_out = file_inode(file_out);
3043 uint64_t count = *req_count;
3044 loff_t size_in;
3045 int ret;
3046
3047 ret = generic_file_rw_checks(file_in, file_out);
3048 if (ret)
3049 return ret;
3050
3051 /* Don't touch certain kinds of inodes */
3052 if (IS_IMMUTABLE(inode_out))
3053 return -EPERM;
3054
3055 if (IS_SWAPFILE(inode_in) || IS_SWAPFILE(inode_out))
3056 return -ETXTBSY;
3057
3058 /* Ensure offsets don't wrap. */
3059 if (pos_in + count < pos_in || pos_out + count < pos_out)
3060 return -EOVERFLOW;
3061
3062 /* Shorten the copy to EOF */
3063 size_in = i_size_read(inode_in);
3064 if (pos_in >= size_in)
3065 count = 0;
3066 else
3067 count = min(count, size_in - (uint64_t)pos_in);
3068
3069 ret = generic_write_check_limits(file_out, pos_out, &count);
3070 if (ret)
3071 return ret;
3072
3073 /* Don't allow overlapped copying within the same file. */
3074 if (inode_in == inode_out &&
3075 pos_out + count > pos_in &&
3076 pos_out < pos_in + count)
3077 return -EINVAL;
3078
3079 *req_count = count;
3080 return 0;
3081}
3082
afddba49
NP
3083int pagecache_write_begin(struct file *file, struct address_space *mapping,
3084 loff_t pos, unsigned len, unsigned flags,
3085 struct page **pagep, void **fsdata)
3086{
3087 const struct address_space_operations *aops = mapping->a_ops;
3088
4e02ed4b 3089 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 3090 pagep, fsdata);
afddba49
NP
3091}
3092EXPORT_SYMBOL(pagecache_write_begin);
3093
3094int pagecache_write_end(struct file *file, struct address_space *mapping,
3095 loff_t pos, unsigned len, unsigned copied,
3096 struct page *page, void *fsdata)
3097{
3098 const struct address_space_operations *aops = mapping->a_ops;
afddba49 3099
4e02ed4b 3100 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
3101}
3102EXPORT_SYMBOL(pagecache_write_end);
3103
a92853b6
KK
3104/*
3105 * Warn about a page cache invalidation failure during a direct I/O write.
3106 */
3107void dio_warn_stale_pagecache(struct file *filp)
3108{
3109 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3110 char pathname[128];
3111 struct inode *inode = file_inode(filp);
3112 char *path;
3113
3114 errseq_set(&inode->i_mapping->wb_err, -EIO);
3115 if (__ratelimit(&_rs)) {
3116 path = file_path(filp, pathname, sizeof(pathname));
3117 if (IS_ERR(path))
3118 path = "(unknown)";
3119 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
3120 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3121 current->comm);
3122 }
3123}
3124
1da177e4 3125ssize_t
1af5bb49 3126generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3127{
3128 struct file *file = iocb->ki_filp;
3129 struct address_space *mapping = file->f_mapping;
3130 struct inode *inode = mapping->host;
1af5bb49 3131 loff_t pos = iocb->ki_pos;
1da177e4 3132 ssize_t written;
a969e903
CH
3133 size_t write_len;
3134 pgoff_t end;
1da177e4 3135
0c949334 3136 write_len = iov_iter_count(from);
09cbfeaf 3137 end = (pos + write_len - 1) >> PAGE_SHIFT;
a969e903 3138
6be96d3a
GR
3139 if (iocb->ki_flags & IOCB_NOWAIT) {
3140 /* If there are pages to writeback, return */
3141 if (filemap_range_has_page(inode->i_mapping, pos,
35f12f0f 3142 pos + write_len - 1))
6be96d3a
GR
3143 return -EAGAIN;
3144 } else {
3145 written = filemap_write_and_wait_range(mapping, pos,
3146 pos + write_len - 1);
3147 if (written)
3148 goto out;
3149 }
a969e903
CH
3150
3151 /*
3152 * After a write we want buffered reads to be sure to go to disk to get
3153 * the new data. We invalidate clean cached page from the region we're
3154 * about to write. We do this *before* the write so that we can return
6ccfa806 3155 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903 3156 */
55635ba7 3157 written = invalidate_inode_pages2_range(mapping,
09cbfeaf 3158 pos >> PAGE_SHIFT, end);
55635ba7
AR
3159 /*
3160 * If a page can not be invalidated, return 0 to fall back
3161 * to buffered write.
3162 */
3163 if (written) {
3164 if (written == -EBUSY)
3165 return 0;
3166 goto out;
a969e903
CH
3167 }
3168
639a93a5 3169 written = mapping->a_ops->direct_IO(iocb, from);
a969e903
CH
3170
3171 /*
3172 * Finally, try again to invalidate clean pages which might have been
3173 * cached by non-direct readahead, or faulted in by get_user_pages()
3174 * if the source of the write was an mmap'ed region of the file
3175 * we're writing. Either one is a pretty crazy thing to do,
3176 * so we don't support it 100%. If this invalidation
3177 * fails, tough, the write still worked...
332391a9
LC
3178 *
3179 * Most of the time we do not need this since dio_complete() will do
3180 * the invalidation for us. However there are some file systems that
3181 * do not end up with dio_complete() being called, so let's not break
80c1fe90
KK
3182 * them by removing it completely.
3183 *
9266a140
KK
3184 * Noticeable example is a blkdev_direct_IO().
3185 *
80c1fe90 3186 * Skip invalidation for async writes or if mapping has no pages.
a969e903 3187 */
9266a140
KK
3188 if (written > 0 && mapping->nrpages &&
3189 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3190 dio_warn_stale_pagecache(file);
a969e903 3191
1da177e4 3192 if (written > 0) {
0116651c 3193 pos += written;
639a93a5 3194 write_len -= written;
0116651c
NK
3195 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3196 i_size_write(inode, pos);
1da177e4
LT
3197 mark_inode_dirty(inode);
3198 }
5cb6c6c7 3199 iocb->ki_pos = pos;
1da177e4 3200 }
639a93a5 3201 iov_iter_revert(from, write_len - iov_iter_count(from));
a969e903 3202out:
1da177e4
LT
3203 return written;
3204}
3205EXPORT_SYMBOL(generic_file_direct_write);
3206
eb2be189
NP
3207/*
3208 * Find or create a page at the given pagecache position. Return the locked
3209 * page. This function is specifically for buffered writes.
3210 */
54566b2c
NP
3211struct page *grab_cache_page_write_begin(struct address_space *mapping,
3212 pgoff_t index, unsigned flags)
eb2be189 3213{
eb2be189 3214 struct page *page;
bbddabe2 3215 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
0faa70cb 3216
54566b2c 3217 if (flags & AOP_FLAG_NOFS)
2457aec6
MG
3218 fgp_flags |= FGP_NOFS;
3219
3220 page = pagecache_get_page(mapping, index, fgp_flags,
45f87de5 3221 mapping_gfp_mask(mapping));
c585a267 3222 if (page)
2457aec6 3223 wait_for_stable_page(page);
eb2be189 3224
eb2be189
NP
3225 return page;
3226}
54566b2c 3227EXPORT_SYMBOL(grab_cache_page_write_begin);
eb2be189 3228
3b93f911 3229ssize_t generic_perform_write(struct file *file,
afddba49
NP
3230 struct iov_iter *i, loff_t pos)
3231{
3232 struct address_space *mapping = file->f_mapping;
3233 const struct address_space_operations *a_ops = mapping->a_ops;
3234 long status = 0;
3235 ssize_t written = 0;
674b892e
NP
3236 unsigned int flags = 0;
3237
afddba49
NP
3238 do {
3239 struct page *page;
afddba49
NP
3240 unsigned long offset; /* Offset into pagecache page */
3241 unsigned long bytes; /* Bytes to write to page */
3242 size_t copied; /* Bytes copied from user */
3243 void *fsdata;
3244
09cbfeaf
KS
3245 offset = (pos & (PAGE_SIZE - 1));
3246 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
3247 iov_iter_count(i));
3248
3249again:
00a3d660
LT
3250 /*
3251 * Bring in the user page that we will copy from _first_.
3252 * Otherwise there's a nasty deadlock on copying from the
3253 * same page as we're writing to, without it being marked
3254 * up-to-date.
3255 *
3256 * Not only is this an optimisation, but it is also required
3257 * to check that the address is actually valid, when atomic
3258 * usercopies are used, below.
3259 */
3260 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3261 status = -EFAULT;
3262 break;
3263 }
3264
296291cd
JK
3265 if (fatal_signal_pending(current)) {
3266 status = -EINTR;
3267 break;
3268 }
3269
674b892e 3270 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49 3271 &page, &fsdata);
2457aec6 3272 if (unlikely(status < 0))
afddba49
NP
3273 break;
3274
931e80e4 3275 if (mapping_writably_mapped(mapping))
3276 flush_dcache_page(page);
00a3d660 3277
afddba49 3278 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
afddba49
NP
3279 flush_dcache_page(page);
3280
3281 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3282 page, fsdata);
3283 if (unlikely(status < 0))
3284 break;
3285 copied = status;
3286
3287 cond_resched();
3288
124d3b70 3289 iov_iter_advance(i, copied);
afddba49
NP
3290 if (unlikely(copied == 0)) {
3291 /*
3292 * If we were unable to copy any data at all, we must
3293 * fall back to a single segment length write.
3294 *
3295 * If we didn't fallback here, we could livelock
3296 * because not all segments in the iov can be copied at
3297 * once without a pagefault.
3298 */
09cbfeaf 3299 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
3300 iov_iter_single_seg_count(i));
3301 goto again;
3302 }
afddba49
NP
3303 pos += copied;
3304 written += copied;
3305
3306 balance_dirty_pages_ratelimited(mapping);
afddba49
NP
3307 } while (iov_iter_count(i));
3308
3309 return written ? written : status;
3310}
3b93f911 3311EXPORT_SYMBOL(generic_perform_write);
1da177e4 3312
e4dd9de3 3313/**
8174202b 3314 * __generic_file_write_iter - write data to a file
e4dd9de3 3315 * @iocb: IO state structure (file, offset, etc.)
8174202b 3316 * @from: iov_iter with data to write
e4dd9de3
JK
3317 *
3318 * This function does all the work needed for actually writing data to a
3319 * file. It does all basic checks, removes SUID from the file, updates
3320 * modification times and calls proper subroutines depending on whether we
3321 * do direct IO or a standard buffered write.
3322 *
3323 * It expects i_mutex to be grabbed unless we work on a block device or similar
3324 * object which does not need locking at all.
3325 *
3326 * This function does *not* take care of syncing data in case of O_SYNC write.
3327 * A caller has to handle it. This is mainly due to the fact that we want to
3328 * avoid syncing under i_mutex.
a862f68a
MR
3329 *
3330 * Return:
3331 * * number of bytes written, even for truncated writes
3332 * * negative error code if no data has been written at all
e4dd9de3 3333 */
8174202b 3334ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3335{
3336 struct file *file = iocb->ki_filp;
fb5527e6 3337 struct address_space * mapping = file->f_mapping;
1da177e4 3338 struct inode *inode = mapping->host;
3b93f911 3339 ssize_t written = 0;
1da177e4 3340 ssize_t err;
3b93f911 3341 ssize_t status;
1da177e4 3342
1da177e4 3343 /* We can write back this queue in page reclaim */
de1414a6 3344 current->backing_dev_info = inode_to_bdi(inode);
5fa8e0a1 3345 err = file_remove_privs(file);
1da177e4
LT
3346 if (err)
3347 goto out;
3348
c3b2da31
JB
3349 err = file_update_time(file);
3350 if (err)
3351 goto out;
1da177e4 3352
2ba48ce5 3353 if (iocb->ki_flags & IOCB_DIRECT) {
0b8def9d 3354 loff_t pos, endbyte;
fb5527e6 3355
1af5bb49 3356 written = generic_file_direct_write(iocb, from);
1da177e4 3357 /*
fbbbad4b
MW
3358 * If the write stopped short of completing, fall back to
3359 * buffered writes. Some filesystems do this for writes to
3360 * holes, for example. For DAX files, a buffered write will
3361 * not succeed (even if it did, DAX does not handle dirty
3362 * page-cache pages correctly).
1da177e4 3363 */
0b8def9d 3364 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
fbbbad4b
MW
3365 goto out;
3366
0b8def9d 3367 status = generic_perform_write(file, from, pos = iocb->ki_pos);
fb5527e6 3368 /*
3b93f911 3369 * If generic_perform_write() returned a synchronous error
fb5527e6
JM
3370 * then we want to return the number of bytes which were
3371 * direct-written, or the error code if that was zero. Note
3372 * that this differs from normal direct-io semantics, which
3373 * will return -EFOO even if some bytes were written.
3374 */
60bb4529 3375 if (unlikely(status < 0)) {
3b93f911 3376 err = status;
fb5527e6
JM
3377 goto out;
3378 }
fb5527e6
JM
3379 /*
3380 * We need to ensure that the page cache pages are written to
3381 * disk and invalidated to preserve the expected O_DIRECT
3382 * semantics.
3383 */
3b93f911 3384 endbyte = pos + status - 1;
0b8def9d 3385 err = filemap_write_and_wait_range(mapping, pos, endbyte);
fb5527e6 3386 if (err == 0) {
0b8def9d 3387 iocb->ki_pos = endbyte + 1;
3b93f911 3388 written += status;
fb5527e6 3389 invalidate_mapping_pages(mapping,
09cbfeaf
KS
3390 pos >> PAGE_SHIFT,
3391 endbyte >> PAGE_SHIFT);
fb5527e6
JM
3392 } else {
3393 /*
3394 * We don't know how much we wrote, so just return
3395 * the number of bytes which were direct-written
3396 */
3397 }
3398 } else {
0b8def9d
AV
3399 written = generic_perform_write(file, from, iocb->ki_pos);
3400 if (likely(written > 0))
3401 iocb->ki_pos += written;
fb5527e6 3402 }
1da177e4
LT
3403out:
3404 current->backing_dev_info = NULL;
3405 return written ? written : err;
3406}
8174202b 3407EXPORT_SYMBOL(__generic_file_write_iter);
e4dd9de3 3408
e4dd9de3 3409/**
8174202b 3410 * generic_file_write_iter - write data to a file
e4dd9de3 3411 * @iocb: IO state structure
8174202b 3412 * @from: iov_iter with data to write
e4dd9de3 3413 *
8174202b 3414 * This is a wrapper around __generic_file_write_iter() to be used by most
e4dd9de3
JK
3415 * filesystems. It takes care of syncing the file in case of O_SYNC file
3416 * and acquires i_mutex as needed.
a862f68a
MR
3417 * Return:
3418 * * negative error code if no data has been written at all of
3419 * vfs_fsync_range() failed for a synchronous write
3420 * * number of bytes written, even for truncated writes
e4dd9de3 3421 */
8174202b 3422ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3423{
3424 struct file *file = iocb->ki_filp;
148f948b 3425 struct inode *inode = file->f_mapping->host;
1da177e4 3426 ssize_t ret;
1da177e4 3427
5955102c 3428 inode_lock(inode);
3309dd04
AV
3429 ret = generic_write_checks(iocb, from);
3430 if (ret > 0)
5f380c7f 3431 ret = __generic_file_write_iter(iocb, from);
5955102c 3432 inode_unlock(inode);
1da177e4 3433
e2592217
CH
3434 if (ret > 0)
3435 ret = generic_write_sync(iocb, ret);
1da177e4
LT
3436 return ret;
3437}
8174202b 3438EXPORT_SYMBOL(generic_file_write_iter);
1da177e4 3439
cf9a2ae8
DH
3440/**
3441 * try_to_release_page() - release old fs-specific metadata on a page
3442 *
3443 * @page: the page which the kernel is trying to free
3444 * @gfp_mask: memory allocation flags (and I/O mode)
3445 *
3446 * The address_space is to try to release any data against the page
a862f68a 3447 * (presumably at page->private).
cf9a2ae8 3448 *
266cf658
DH
3449 * This may also be called if PG_fscache is set on a page, indicating that the
3450 * page is known to the local caching routines.
3451 *
cf9a2ae8 3452 * The @gfp_mask argument specifies whether I/O may be performed to release
71baba4b 3453 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
cf9a2ae8 3454 *
a862f68a 3455 * Return: %1 if the release was successful, otherwise return zero.
cf9a2ae8
DH
3456 */
3457int try_to_release_page(struct page *page, gfp_t gfp_mask)
3458{
3459 struct address_space * const mapping = page->mapping;
3460
3461 BUG_ON(!PageLocked(page));
3462 if (PageWriteback(page))
3463 return 0;
3464
3465 if (mapping && mapping->a_ops->releasepage)
3466 return mapping->a_ops->releasepage(page, gfp_mask);
3467 return try_to_free_buffers(page);
3468}
3469
3470EXPORT_SYMBOL(try_to_release_page);