LoongArch: enable ARCH_WANT_HUGETLB_PAGE_OPTIMIZE_VMEMMAP
[linux-block.git] / mm / filemap.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/filemap.c
4 *
5 * Copyright (C) 1994-1999 Linus Torvalds
6 */
7
8/*
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
12 */
b95f1b31 13#include <linux/export.h>
1da177e4 14#include <linux/compiler.h>
f9fe48be 15#include <linux/dax.h>
1da177e4 16#include <linux/fs.h>
3f07c014 17#include <linux/sched/signal.h>
c22ce143 18#include <linux/uaccess.h>
c59ede7b 19#include <linux/capability.h>
1da177e4 20#include <linux/kernel_stat.h>
5a0e3ad6 21#include <linux/gfp.h>
1da177e4
LT
22#include <linux/mm.h>
23#include <linux/swap.h>
ffa65753 24#include <linux/swapops.h>
1da177e4
LT
25#include <linux/mman.h>
26#include <linux/pagemap.h>
27#include <linux/file.h>
28#include <linux/uio.h>
cfcbfb13 29#include <linux/error-injection.h>
1da177e4
LT
30#include <linux/hash.h>
31#include <linux/writeback.h>
53253383 32#include <linux/backing-dev.h>
1da177e4 33#include <linux/pagevec.h>
1da177e4 34#include <linux/security.h>
44110fe3 35#include <linux/cpuset.h>
00501b53 36#include <linux/hugetlb.h>
8a9f3ccd 37#include <linux/memcontrol.h>
c7df8ad2 38#include <linux/shmem_fs.h>
f1820361 39#include <linux/rmap.h>
b1d29ba8 40#include <linux/delayacct.h>
eb414681 41#include <linux/psi.h>
d0e6a582 42#include <linux/ramfs.h>
b9306a79 43#include <linux/page_idle.h>
ffa65753 44#include <linux/migrate.h>
f9ce0be7 45#include <asm/pgalloc.h>
de591a82 46#include <asm/tlbflush.h>
0f8053a5
NP
47#include "internal.h"
48
fe0bfaaf
RJ
49#define CREATE_TRACE_POINTS
50#include <trace/events/filemap.h>
51
1da177e4 52/*
1da177e4
LT
53 * FIXME: remove all knowledge of the buffer layer from the core VM
54 */
148f948b 55#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 56
1da177e4
LT
57#include <asm/mman.h>
58
59/*
60 * Shared mappings implemented 30.11.1994. It's not fully working yet,
61 * though.
62 *
63 * Shared mappings now work. 15.8.1995 Bruno.
64 *
65 * finished 'unifying' the page and buffer cache and SMP-threaded the
66 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
67 *
68 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
69 */
70
71/*
72 * Lock ordering:
73 *
c8c06efa 74 * ->i_mmap_rwsem (truncate_pagecache)
e621900a 75 * ->private_lock (__free_pte->block_dirty_folio)
5d337b91 76 * ->swap_lock (exclusive_swap_page, others)
b93b0163 77 * ->i_pages lock
1da177e4 78 *
9608703e 79 * ->i_rwsem
730633f0
JK
80 * ->invalidate_lock (acquired by fs in truncate path)
81 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
1da177e4 82 *
c1e8d7c6 83 * ->mmap_lock
c8c06efa 84 * ->i_mmap_rwsem
b8072f09 85 * ->page_table_lock or pte_lock (various, mainly in memory.c)
b93b0163 86 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
1da177e4 87 *
c1e8d7c6 88 * ->mmap_lock
730633f0
JK
89 * ->invalidate_lock (filemap_fault)
90 * ->lock_page (filemap_fault, access_process_vm)
1da177e4 91 *
9608703e 92 * ->i_rwsem (generic_perform_write)
bb523b40 93 * ->mmap_lock (fault_in_readable->do_page_fault)
1da177e4 94 *
f758eeab 95 * bdi->wb.list_lock
a66979ab 96 * sb_lock (fs/fs-writeback.c)
b93b0163 97 * ->i_pages lock (__sync_single_inode)
1da177e4 98 *
c8c06efa 99 * ->i_mmap_rwsem
1da177e4
LT
100 * ->anon_vma.lock (vma_adjust)
101 *
102 * ->anon_vma.lock
b8072f09 103 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 104 *
b8072f09 105 * ->page_table_lock or pte_lock
5d337b91 106 * ->swap_lock (try_to_unmap_one)
1da177e4 107 * ->private_lock (try_to_unmap_one)
b93b0163 108 * ->i_pages lock (try_to_unmap_one)
15b44736
HD
109 * ->lruvec->lru_lock (follow_page->mark_page_accessed)
110 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page)
1da177e4 111 * ->private_lock (page_remove_rmap->set_page_dirty)
b93b0163 112 * ->i_pages lock (page_remove_rmap->set_page_dirty)
f758eeab 113 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
250df6ed 114 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
81f8c3a4 115 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
f758eeab 116 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 117 * ->inode->i_lock (zap_pte_range->set_page_dirty)
e621900a 118 * ->private_lock (zap_pte_range->block_dirty_folio)
1da177e4 119 *
c8c06efa 120 * ->i_mmap_rwsem
9a3c531d 121 * ->tasklist_lock (memory_failure, collect_procs_ao)
1da177e4
LT
122 */
123
5c024e6a 124static void page_cache_delete(struct address_space *mapping,
a548b615 125 struct folio *folio, void *shadow)
91b0abe3 126{
a548b615
MWO
127 XA_STATE(xas, &mapping->i_pages, folio->index);
128 long nr = 1;
c70b647d 129
5c024e6a 130 mapping_set_update(&xas, mapping);
c70b647d 131
5c024e6a 132 /* hugetlb pages are represented by a single entry in the xarray */
a548b615
MWO
133 if (!folio_test_hugetlb(folio)) {
134 xas_set_order(&xas, folio->index, folio_order(folio));
135 nr = folio_nr_pages(folio);
5c024e6a 136 }
91b0abe3 137
a548b615 138 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
449dd698 139
5c024e6a
MW
140 xas_store(&xas, shadow);
141 xas_init_marks(&xas);
d3798ae8 142
a548b615 143 folio->mapping = NULL;
2300638b 144 /* Leave page->index set: truncation lookup relies upon it */
d3798ae8 145 mapping->nrpages -= nr;
91b0abe3
JW
146}
147
621db488
MWO
148static void filemap_unaccount_folio(struct address_space *mapping,
149 struct folio *folio)
1da177e4 150{
621db488 151 long nr;
1da177e4 152
621db488
MWO
153 VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
154 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
06b241f3 155 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
621db488
MWO
156 current->comm, folio_pfn(folio));
157 dump_page(&folio->page, "still mapped when deleted");
06b241f3
HD
158 dump_stack();
159 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
160
85207ad8
HD
161 if (mapping_exiting(mapping) && !folio_test_large(folio)) {
162 int mapcount = page_mapcount(&folio->page);
163
164 if (folio_ref_count(folio) >= mapcount + 2) {
165 /*
166 * All vmas have already been torn down, so it's
167 * a good bet that actually the page is unmapped
168 * and we'd rather not leak it: if we're wrong,
169 * another bad page check should catch it later.
170 */
171 page_mapcount_reset(&folio->page);
172 folio_ref_sub(folio, mapcount);
173 }
06b241f3
HD
174 }
175 }
176
621db488
MWO
177 /* hugetlb folios do not participate in page cache accounting. */
178 if (folio_test_hugetlb(folio))
5ecc4d85 179 return;
09612fa6 180
621db488 181 nr = folio_nr_pages(folio);
5ecc4d85 182
621db488
MWO
183 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
184 if (folio_test_swapbacked(folio)) {
185 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
186 if (folio_test_pmd_mappable(folio))
187 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
188 } else if (folio_test_pmd_mappable(folio)) {
189 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
09d91cda 190 filemap_nr_thps_dec(mapping);
800d8c63 191 }
5ecc4d85
JK
192
193 /*
621db488
MWO
194 * At this point folio must be either written or cleaned by
195 * truncate. Dirty folio here signals a bug and loss of
566d3362 196 * unwritten data - on ordinary filesystems.
5ecc4d85 197 *
566d3362
HD
198 * But it's harmless on in-memory filesystems like tmpfs; and can
199 * occur when a driver which did get_user_pages() sets page dirty
200 * before putting it, while the inode is being finally evicted.
201 *
202 * Below fixes dirty accounting after removing the folio entirely
621db488
MWO
203 * but leaves the dirty flag set: it has no effect for truncated
204 * folio and anyway will be cleared before returning folio to
5ecc4d85
JK
205 * buddy allocator.
206 */
566d3362
HD
207 if (WARN_ON_ONCE(folio_test_dirty(folio) &&
208 mapping_can_writeback(mapping)))
209 folio_account_cleaned(folio, inode_to_wb(mapping->host));
5ecc4d85
JK
210}
211
212/*
213 * Delete a page from the page cache and free it. Caller has to make
214 * sure the page is locked and that nobody else uses it - or that usage
b93b0163 215 * is safe. The caller must hold the i_pages lock.
5ecc4d85 216 */
452e9e69 217void __filemap_remove_folio(struct folio *folio, void *shadow)
5ecc4d85 218{
452e9e69 219 struct address_space *mapping = folio->mapping;
5ecc4d85 220
a0580c6f 221 trace_mm_filemap_delete_from_page_cache(folio);
621db488 222 filemap_unaccount_folio(mapping, folio);
a548b615 223 page_cache_delete(mapping, folio, shadow);
1da177e4
LT
224}
225
78f42660 226void filemap_free_folio(struct address_space *mapping, struct folio *folio)
59c66c5f 227{
d2329aa0 228 void (*free_folio)(struct folio *);
3abb28e2 229 int refs = 1;
59c66c5f 230
d2329aa0
MWO
231 free_folio = mapping->a_ops->free_folio;
232 if (free_folio)
233 free_folio(folio);
59c66c5f 234
3abb28e2
MWO
235 if (folio_test_large(folio) && !folio_test_hugetlb(folio))
236 refs = folio_nr_pages(folio);
237 folio_put_refs(folio, refs);
59c66c5f
JK
238}
239
702cfbf9 240/**
452e9e69
MWO
241 * filemap_remove_folio - Remove folio from page cache.
242 * @folio: The folio.
702cfbf9 243 *
452e9e69
MWO
244 * This must be called only on folios that are locked and have been
245 * verified to be in the page cache. It will never put the folio into
246 * the free list because the caller has a reference on the page.
702cfbf9 247 */
452e9e69 248void filemap_remove_folio(struct folio *folio)
1da177e4 249{
452e9e69 250 struct address_space *mapping = folio->mapping;
1da177e4 251
452e9e69 252 BUG_ON(!folio_test_locked(folio));
51b8c1fe 253 spin_lock(&mapping->host->i_lock);
30472509 254 xa_lock_irq(&mapping->i_pages);
452e9e69 255 __filemap_remove_folio(folio, NULL);
30472509 256 xa_unlock_irq(&mapping->i_pages);
51b8c1fe
JW
257 if (mapping_shrinkable(mapping))
258 inode_add_lru(mapping->host);
259 spin_unlock(&mapping->host->i_lock);
6072d13c 260
452e9e69 261 filemap_free_folio(mapping, folio);
97cecb5a 262}
97cecb5a 263
aa65c29c 264/*
51dcbdac
MWO
265 * page_cache_delete_batch - delete several folios from page cache
266 * @mapping: the mapping to which folios belong
267 * @fbatch: batch of folios to delete
aa65c29c 268 *
51dcbdac
MWO
269 * The function walks over mapping->i_pages and removes folios passed in
270 * @fbatch from the mapping. The function expects @fbatch to be sorted
271 * by page index and is optimised for it to be dense.
272 * It tolerates holes in @fbatch (mapping entries at those indices are not
273 * modified).
aa65c29c 274 *
b93b0163 275 * The function expects the i_pages lock to be held.
aa65c29c 276 */
ef8e5717 277static void page_cache_delete_batch(struct address_space *mapping,
51dcbdac 278 struct folio_batch *fbatch)
aa65c29c 279{
51dcbdac 280 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
6b24ca4a 281 long total_pages = 0;
4101196b 282 int i = 0;
1afd7ae5 283 struct folio *folio;
aa65c29c 284
ef8e5717 285 mapping_set_update(&xas, mapping);
1afd7ae5 286 xas_for_each(&xas, folio, ULONG_MAX) {
51dcbdac 287 if (i >= folio_batch_count(fbatch))
aa65c29c 288 break;
4101196b
MWO
289
290 /* A swap/dax/shadow entry got inserted? Skip it. */
1afd7ae5 291 if (xa_is_value(folio))
aa65c29c 292 continue;
4101196b
MWO
293 /*
294 * A page got inserted in our range? Skip it. We have our
295 * pages locked so they are protected from being removed.
296 * If we see a page whose index is higher than ours, it
297 * means our page has been removed, which shouldn't be
298 * possible because we're holding the PageLock.
299 */
51dcbdac 300 if (folio != fbatch->folios[i]) {
1afd7ae5 301 VM_BUG_ON_FOLIO(folio->index >
51dcbdac 302 fbatch->folios[i]->index, folio);
4101196b
MWO
303 continue;
304 }
305
1afd7ae5 306 WARN_ON_ONCE(!folio_test_locked(folio));
4101196b 307
6b24ca4a 308 folio->mapping = NULL;
51dcbdac 309 /* Leave folio->index set: truncation lookup relies on it */
4101196b 310
6b24ca4a 311 i++;
ef8e5717 312 xas_store(&xas, NULL);
6b24ca4a 313 total_pages += folio_nr_pages(folio);
aa65c29c
JK
314 }
315 mapping->nrpages -= total_pages;
316}
317
318void delete_from_page_cache_batch(struct address_space *mapping,
51dcbdac 319 struct folio_batch *fbatch)
aa65c29c
JK
320{
321 int i;
aa65c29c 322
51dcbdac 323 if (!folio_batch_count(fbatch))
aa65c29c
JK
324 return;
325
51b8c1fe 326 spin_lock(&mapping->host->i_lock);
30472509 327 xa_lock_irq(&mapping->i_pages);
51dcbdac
MWO
328 for (i = 0; i < folio_batch_count(fbatch); i++) {
329 struct folio *folio = fbatch->folios[i];
aa65c29c 330
a0580c6f
MWO
331 trace_mm_filemap_delete_from_page_cache(folio);
332 filemap_unaccount_folio(mapping, folio);
aa65c29c 333 }
51dcbdac 334 page_cache_delete_batch(mapping, fbatch);
30472509 335 xa_unlock_irq(&mapping->i_pages);
51b8c1fe
JW
336 if (mapping_shrinkable(mapping))
337 inode_add_lru(mapping->host);
338 spin_unlock(&mapping->host->i_lock);
aa65c29c 339
51dcbdac
MWO
340 for (i = 0; i < folio_batch_count(fbatch); i++)
341 filemap_free_folio(mapping, fbatch->folios[i]);
aa65c29c
JK
342}
343
d72d9e2a 344int filemap_check_errors(struct address_space *mapping)
865ffef3
DM
345{
346 int ret = 0;
347 /* Check for outstanding write errors */
7fcbbaf1
JA
348 if (test_bit(AS_ENOSPC, &mapping->flags) &&
349 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
865ffef3 350 ret = -ENOSPC;
7fcbbaf1
JA
351 if (test_bit(AS_EIO, &mapping->flags) &&
352 test_and_clear_bit(AS_EIO, &mapping->flags))
865ffef3
DM
353 ret = -EIO;
354 return ret;
355}
d72d9e2a 356EXPORT_SYMBOL(filemap_check_errors);
865ffef3 357
76341cab
JL
358static int filemap_check_and_keep_errors(struct address_space *mapping)
359{
360 /* Check for outstanding write errors */
361 if (test_bit(AS_EIO, &mapping->flags))
362 return -EIO;
363 if (test_bit(AS_ENOSPC, &mapping->flags))
364 return -ENOSPC;
365 return 0;
366}
367
5a798493
JB
368/**
369 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
370 * @mapping: address space structure to write
371 * @wbc: the writeback_control controlling the writeout
372 *
373 * Call writepages on the mapping using the provided wbc to control the
374 * writeout.
375 *
376 * Return: %0 on success, negative error code otherwise.
377 */
378int filemap_fdatawrite_wbc(struct address_space *mapping,
379 struct writeback_control *wbc)
380{
381 int ret;
382
383 if (!mapping_can_writeback(mapping) ||
384 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
385 return 0;
386
387 wbc_attach_fdatawrite_inode(wbc, mapping->host);
388 ret = do_writepages(mapping, wbc);
389 wbc_detach_inode(wbc);
390 return ret;
391}
392EXPORT_SYMBOL(filemap_fdatawrite_wbc);
393
1da177e4 394/**
485bb99b 395 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
396 * @mapping: address space structure to write
397 * @start: offset in bytes where the range starts
469eb4d0 398 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 399 * @sync_mode: enable synchronous operation
1da177e4 400 *
485bb99b
RD
401 * Start writeback against all of a mapping's dirty pages that lie
402 * within the byte offsets <start, end> inclusive.
403 *
1da177e4 404 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 405 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
406 * these two operations is that if a dirty page/buffer is encountered, it must
407 * be waited upon, and not just skipped over.
a862f68a
MR
408 *
409 * Return: %0 on success, negative error code otherwise.
1da177e4 410 */
ebcf28e1
AM
411int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
412 loff_t end, int sync_mode)
1da177e4 413{
1da177e4
LT
414 struct writeback_control wbc = {
415 .sync_mode = sync_mode,
05fe478d 416 .nr_to_write = LONG_MAX,
111ebb6e
OH
417 .range_start = start,
418 .range_end = end,
1da177e4
LT
419 };
420
5a798493 421 return filemap_fdatawrite_wbc(mapping, &wbc);
1da177e4
LT
422}
423
424static inline int __filemap_fdatawrite(struct address_space *mapping,
425 int sync_mode)
426{
111ebb6e 427 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
428}
429
430int filemap_fdatawrite(struct address_space *mapping)
431{
432 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
433}
434EXPORT_SYMBOL(filemap_fdatawrite);
435
f4c0a0fd 436int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 437 loff_t end)
1da177e4
LT
438{
439 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
440}
f4c0a0fd 441EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 442
485bb99b
RD
443/**
444 * filemap_flush - mostly a non-blocking flush
445 * @mapping: target address_space
446 *
1da177e4
LT
447 * This is a mostly non-blocking flush. Not suitable for data-integrity
448 * purposes - I/O may not be started against all dirty pages.
a862f68a
MR
449 *
450 * Return: %0 on success, negative error code otherwise.
1da177e4
LT
451 */
452int filemap_flush(struct address_space *mapping)
453{
454 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
455}
456EXPORT_SYMBOL(filemap_flush);
457
7fc9e472
GR
458/**
459 * filemap_range_has_page - check if a page exists in range.
460 * @mapping: address space within which to check
461 * @start_byte: offset in bytes where the range starts
462 * @end_byte: offset in bytes where the range ends (inclusive)
463 *
464 * Find at least one page in the range supplied, usually used to check if
465 * direct writing in this range will trigger a writeback.
a862f68a
MR
466 *
467 * Return: %true if at least one page exists in the specified range,
468 * %false otherwise.
7fc9e472
GR
469 */
470bool filemap_range_has_page(struct address_space *mapping,
471 loff_t start_byte, loff_t end_byte)
472{
f7b68046 473 struct page *page;
8fa8e538
MW
474 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
475 pgoff_t max = end_byte >> PAGE_SHIFT;
7fc9e472
GR
476
477 if (end_byte < start_byte)
478 return false;
479
8fa8e538
MW
480 rcu_read_lock();
481 for (;;) {
482 page = xas_find(&xas, max);
483 if (xas_retry(&xas, page))
484 continue;
485 /* Shadow entries don't count */
486 if (xa_is_value(page))
487 continue;
488 /*
489 * We don't need to try to pin this page; we're about to
490 * release the RCU lock anyway. It is enough to know that
491 * there was a page here recently.
492 */
493 break;
494 }
495 rcu_read_unlock();
7fc9e472 496
8fa8e538 497 return page != NULL;
7fc9e472
GR
498}
499EXPORT_SYMBOL(filemap_range_has_page);
500
5e8fcc1a 501static void __filemap_fdatawait_range(struct address_space *mapping,
aa750fd7 502 loff_t start_byte, loff_t end_byte)
1da177e4 503{
09cbfeaf
KS
504 pgoff_t index = start_byte >> PAGE_SHIFT;
505 pgoff_t end = end_byte >> PAGE_SHIFT;
1da177e4
LT
506 struct pagevec pvec;
507 int nr_pages;
1da177e4 508
86679820 509 pagevec_init(&pvec);
312e9d2f 510 while (index <= end) {
1da177e4
LT
511 unsigned i;
512
312e9d2f 513 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
67fd707f 514 end, PAGECACHE_TAG_WRITEBACK);
312e9d2f
JK
515 if (!nr_pages)
516 break;
517
1da177e4
LT
518 for (i = 0; i < nr_pages; i++) {
519 struct page *page = pvec.pages[i];
520
1da177e4 521 wait_on_page_writeback(page);
5e8fcc1a 522 ClearPageError(page);
1da177e4
LT
523 }
524 pagevec_release(&pvec);
525 cond_resched();
526 }
aa750fd7
JN
527}
528
529/**
530 * filemap_fdatawait_range - wait for writeback to complete
531 * @mapping: address space structure to wait for
532 * @start_byte: offset in bytes where the range starts
533 * @end_byte: offset in bytes where the range ends (inclusive)
534 *
535 * Walk the list of under-writeback pages of the given address space
536 * in the given range and wait for all of them. Check error status of
537 * the address space and return it.
538 *
539 * Since the error status of the address space is cleared by this function,
540 * callers are responsible for checking the return value and handling and/or
541 * reporting the error.
a862f68a
MR
542 *
543 * Return: error status of the address space.
aa750fd7
JN
544 */
545int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
546 loff_t end_byte)
547{
5e8fcc1a
JL
548 __filemap_fdatawait_range(mapping, start_byte, end_byte);
549 return filemap_check_errors(mapping);
1da177e4 550}
d3bccb6f
JK
551EXPORT_SYMBOL(filemap_fdatawait_range);
552
aa0bfcd9
RZ
553/**
554 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
555 * @mapping: address space structure to wait for
556 * @start_byte: offset in bytes where the range starts
557 * @end_byte: offset in bytes where the range ends (inclusive)
558 *
559 * Walk the list of under-writeback pages of the given address space in the
560 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
561 * this function does not clear error status of the address space.
562 *
563 * Use this function if callers don't handle errors themselves. Expected
564 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
565 * fsfreeze(8)
566 */
567int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
568 loff_t start_byte, loff_t end_byte)
569{
570 __filemap_fdatawait_range(mapping, start_byte, end_byte);
571 return filemap_check_and_keep_errors(mapping);
572}
573EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
574
a823e458
JL
575/**
576 * file_fdatawait_range - wait for writeback to complete
577 * @file: file pointing to address space structure to wait for
578 * @start_byte: offset in bytes where the range starts
579 * @end_byte: offset in bytes where the range ends (inclusive)
580 *
581 * Walk the list of under-writeback pages of the address space that file
582 * refers to, in the given range and wait for all of them. Check error
583 * status of the address space vs. the file->f_wb_err cursor and return it.
584 *
585 * Since the error status of the file is advanced by this function,
586 * callers are responsible for checking the return value and handling and/or
587 * reporting the error.
a862f68a
MR
588 *
589 * Return: error status of the address space vs. the file->f_wb_err cursor.
a823e458
JL
590 */
591int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
592{
593 struct address_space *mapping = file->f_mapping;
594
595 __filemap_fdatawait_range(mapping, start_byte, end_byte);
596 return file_check_and_advance_wb_err(file);
597}
598EXPORT_SYMBOL(file_fdatawait_range);
d3bccb6f 599
aa750fd7
JN
600/**
601 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
602 * @mapping: address space structure to wait for
603 *
604 * Walk the list of under-writeback pages of the given address space
605 * and wait for all of them. Unlike filemap_fdatawait(), this function
606 * does not clear error status of the address space.
607 *
608 * Use this function if callers don't handle errors themselves. Expected
609 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
610 * fsfreeze(8)
a862f68a
MR
611 *
612 * Return: error status of the address space.
aa750fd7 613 */
76341cab 614int filemap_fdatawait_keep_errors(struct address_space *mapping)
aa750fd7 615{
ffb959bb 616 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
76341cab 617 return filemap_check_and_keep_errors(mapping);
aa750fd7 618}
76341cab 619EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
aa750fd7 620
875d91b1 621/* Returns true if writeback might be needed or already in progress. */
9326c9b2 622static bool mapping_needs_writeback(struct address_space *mapping)
1da177e4 623{
875d91b1 624 return mapping->nrpages;
1da177e4 625}
1da177e4 626
4bdcd1dd
JA
627bool filemap_range_has_writeback(struct address_space *mapping,
628 loff_t start_byte, loff_t end_byte)
f8ee8909
JA
629{
630 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
631 pgoff_t max = end_byte >> PAGE_SHIFT;
b05f41a1 632 struct folio *folio;
f8ee8909
JA
633
634 if (end_byte < start_byte)
635 return false;
636
637 rcu_read_lock();
b05f41a1
VMO
638 xas_for_each(&xas, folio, max) {
639 if (xas_retry(&xas, folio))
f8ee8909 640 continue;
b05f41a1 641 if (xa_is_value(folio))
f8ee8909 642 continue;
b05f41a1
VMO
643 if (folio_test_dirty(folio) || folio_test_locked(folio) ||
644 folio_test_writeback(folio))
f8ee8909
JA
645 break;
646 }
647 rcu_read_unlock();
b05f41a1 648 return folio != NULL;
63135aa3 649}
4bdcd1dd 650EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
63135aa3 651
485bb99b
RD
652/**
653 * filemap_write_and_wait_range - write out & wait on a file range
654 * @mapping: the address_space for the pages
655 * @lstart: offset in bytes where the range starts
656 * @lend: offset in bytes where the range ends (inclusive)
657 *
469eb4d0
AM
658 * Write out and wait upon file offsets lstart->lend, inclusive.
659 *
0e056eb5 660 * Note that @lend is inclusive (describes the last byte to be written) so
469eb4d0 661 * that this function can be used to write to the very end-of-file (end = -1).
a862f68a
MR
662 *
663 * Return: error status of the address space.
469eb4d0 664 */
1da177e4
LT
665int filemap_write_and_wait_range(struct address_space *mapping,
666 loff_t lstart, loff_t lend)
667{
ccac11da 668 int err = 0, err2;
1da177e4 669
feeb9b26
BF
670 if (lend < lstart)
671 return 0;
672
9326c9b2 673 if (mapping_needs_writeback(mapping)) {
28fd1298
OH
674 err = __filemap_fdatawrite_range(mapping, lstart, lend,
675 WB_SYNC_ALL);
ddf8f376
IW
676 /*
677 * Even if the above returned error, the pages may be
678 * written partially (e.g. -ENOSPC), so we wait for it.
679 * But the -EIO is special case, it may indicate the worst
680 * thing (e.g. bug) happened, so we avoid waiting for it.
681 */
ccac11da
ML
682 if (err != -EIO)
683 __filemap_fdatawait_range(mapping, lstart, lend);
1da177e4 684 }
ccac11da
ML
685 err2 = filemap_check_errors(mapping);
686 if (!err)
687 err = err2;
28fd1298 688 return err;
1da177e4 689}
f6995585 690EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 691
5660e13d
JL
692void __filemap_set_wb_err(struct address_space *mapping, int err)
693{
3acdfd28 694 errseq_t eseq = errseq_set(&mapping->wb_err, err);
5660e13d
JL
695
696 trace_filemap_set_wb_err(mapping, eseq);
697}
698EXPORT_SYMBOL(__filemap_set_wb_err);
699
700/**
701 * file_check_and_advance_wb_err - report wb error (if any) that was previously
702 * and advance wb_err to current one
703 * @file: struct file on which the error is being reported
704 *
705 * When userland calls fsync (or something like nfsd does the equivalent), we
706 * want to report any writeback errors that occurred since the last fsync (or
707 * since the file was opened if there haven't been any).
708 *
709 * Grab the wb_err from the mapping. If it matches what we have in the file,
710 * then just quickly return 0. The file is all caught up.
711 *
712 * If it doesn't match, then take the mapping value, set the "seen" flag in
713 * it and try to swap it into place. If it works, or another task beat us
714 * to it with the new value, then update the f_wb_err and return the error
715 * portion. The error at this point must be reported via proper channels
716 * (a'la fsync, or NFS COMMIT operation, etc.).
717 *
718 * While we handle mapping->wb_err with atomic operations, the f_wb_err
719 * value is protected by the f_lock since we must ensure that it reflects
720 * the latest value swapped in for this file descriptor.
a862f68a
MR
721 *
722 * Return: %0 on success, negative error code otherwise.
5660e13d
JL
723 */
724int file_check_and_advance_wb_err(struct file *file)
725{
726 int err = 0;
727 errseq_t old = READ_ONCE(file->f_wb_err);
728 struct address_space *mapping = file->f_mapping;
729
730 /* Locklessly handle the common case where nothing has changed */
731 if (errseq_check(&mapping->wb_err, old)) {
732 /* Something changed, must use slow path */
733 spin_lock(&file->f_lock);
734 old = file->f_wb_err;
735 err = errseq_check_and_advance(&mapping->wb_err,
736 &file->f_wb_err);
737 trace_file_check_and_advance_wb_err(file, old);
738 spin_unlock(&file->f_lock);
739 }
f4e222c5
JL
740
741 /*
742 * We're mostly using this function as a drop in replacement for
743 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
744 * that the legacy code would have had on these flags.
745 */
746 clear_bit(AS_EIO, &mapping->flags);
747 clear_bit(AS_ENOSPC, &mapping->flags);
5660e13d
JL
748 return err;
749}
750EXPORT_SYMBOL(file_check_and_advance_wb_err);
751
752/**
753 * file_write_and_wait_range - write out & wait on a file range
754 * @file: file pointing to address_space with pages
755 * @lstart: offset in bytes where the range starts
756 * @lend: offset in bytes where the range ends (inclusive)
757 *
758 * Write out and wait upon file offsets lstart->lend, inclusive.
759 *
760 * Note that @lend is inclusive (describes the last byte to be written) so
761 * that this function can be used to write to the very end-of-file (end = -1).
762 *
763 * After writing out and waiting on the data, we check and advance the
764 * f_wb_err cursor to the latest value, and return any errors detected there.
a862f68a
MR
765 *
766 * Return: %0 on success, negative error code otherwise.
5660e13d
JL
767 */
768int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
769{
770 int err = 0, err2;
771 struct address_space *mapping = file->f_mapping;
772
feeb9b26
BF
773 if (lend < lstart)
774 return 0;
775
9326c9b2 776 if (mapping_needs_writeback(mapping)) {
5660e13d
JL
777 err = __filemap_fdatawrite_range(mapping, lstart, lend,
778 WB_SYNC_ALL);
779 /* See comment of filemap_write_and_wait() */
780 if (err != -EIO)
781 __filemap_fdatawait_range(mapping, lstart, lend);
782 }
783 err2 = file_check_and_advance_wb_err(file);
784 if (!err)
785 err = err2;
786 return err;
787}
788EXPORT_SYMBOL(file_write_and_wait_range);
789
ef6a3c63
MS
790/**
791 * replace_page_cache_page - replace a pagecache page with a new one
792 * @old: page to be replaced
793 * @new: page to replace with
ef6a3c63
MS
794 *
795 * This function replaces a page in the pagecache with a new one. On
796 * success it acquires the pagecache reference for the new page and
797 * drops it for the old page. Both the old and new pages must be
798 * locked. This function does not add the new page to the LRU, the
799 * caller must do that.
800 *
74d60958 801 * The remove + add is atomic. This function cannot fail.
ef6a3c63 802 */
1f7ef657 803void replace_page_cache_page(struct page *old, struct page *new)
ef6a3c63 804{
d21bba2b
MWO
805 struct folio *fold = page_folio(old);
806 struct folio *fnew = page_folio(new);
74d60958 807 struct address_space *mapping = old->mapping;
d2329aa0 808 void (*free_folio)(struct folio *) = mapping->a_ops->free_folio;
74d60958
MW
809 pgoff_t offset = old->index;
810 XA_STATE(xas, &mapping->i_pages, offset);
ef6a3c63 811
309381fe
SL
812 VM_BUG_ON_PAGE(!PageLocked(old), old);
813 VM_BUG_ON_PAGE(!PageLocked(new), new);
814 VM_BUG_ON_PAGE(new->mapping, new);
ef6a3c63 815
74d60958
MW
816 get_page(new);
817 new->mapping = mapping;
818 new->index = offset;
ef6a3c63 819
d21bba2b 820 mem_cgroup_migrate(fold, fnew);
0d1c2072 821
30472509 822 xas_lock_irq(&xas);
74d60958 823 xas_store(&xas, new);
4165b9b4 824
74d60958
MW
825 old->mapping = NULL;
826 /* hugetlb pages do not participate in page cache accounting. */
827 if (!PageHuge(old))
0d1c2072 828 __dec_lruvec_page_state(old, NR_FILE_PAGES);
74d60958 829 if (!PageHuge(new))
0d1c2072 830 __inc_lruvec_page_state(new, NR_FILE_PAGES);
74d60958 831 if (PageSwapBacked(old))
0d1c2072 832 __dec_lruvec_page_state(old, NR_SHMEM);
74d60958 833 if (PageSwapBacked(new))
0d1c2072 834 __inc_lruvec_page_state(new, NR_SHMEM);
30472509 835 xas_unlock_irq(&xas);
d2329aa0
MWO
836 if (free_folio)
837 free_folio(fold);
d2329aa0 838 folio_put(fold);
ef6a3c63
MS
839}
840EXPORT_SYMBOL_GPL(replace_page_cache_page);
841
9dd3d069
MWO
842noinline int __filemap_add_folio(struct address_space *mapping,
843 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
1da177e4 844{
9dd3d069
MWO
845 XA_STATE(xas, &mapping->i_pages, index);
846 int huge = folio_test_hugetlb(folio);
da74240e 847 bool charged = false;
d68eccad 848 long nr = 1;
e286781d 849
9dd3d069
MWO
850 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
851 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
74d60958 852 mapping_set_update(&xas, mapping);
e286781d 853
3fea5a49 854 if (!huge) {
d68eccad 855 int error = mem_cgroup_charge(folio, NULL, gfp);
9dd3d069 856 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
3fea5a49 857 if (error)
d68eccad 858 return error;
da74240e 859 charged = true;
d68eccad
MWO
860 xas_set_order(&xas, index, folio_order(folio));
861 nr = folio_nr_pages(folio);
3fea5a49
JW
862 }
863
198b62f8 864 gfp &= GFP_RECLAIM_MASK;
d68eccad
MWO
865 folio_ref_add(folio, nr);
866 folio->mapping = mapping;
867 folio->index = xas.xa_index;
198b62f8 868
74d60958 869 do {
198b62f8
MWO
870 unsigned int order = xa_get_order(xas.xa, xas.xa_index);
871 void *entry, *old = NULL;
872
9dd3d069 873 if (order > folio_order(folio))
198b62f8
MWO
874 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
875 order, gfp);
74d60958 876 xas_lock_irq(&xas);
198b62f8
MWO
877 xas_for_each_conflict(&xas, entry) {
878 old = entry;
879 if (!xa_is_value(entry)) {
880 xas_set_err(&xas, -EEXIST);
881 goto unlock;
882 }
883 }
884
885 if (old) {
886 if (shadowp)
887 *shadowp = old;
888 /* entry may have been split before we acquired lock */
889 order = xa_get_order(xas.xa, xas.xa_index);
9dd3d069 890 if (order > folio_order(folio)) {
d68eccad
MWO
891 /* How to handle large swap entries? */
892 BUG_ON(shmem_mapping(mapping));
198b62f8
MWO
893 xas_split(&xas, old, order);
894 xas_reset(&xas);
895 }
896 }
897
9dd3d069 898 xas_store(&xas, folio);
74d60958
MW
899 if (xas_error(&xas))
900 goto unlock;
901
d68eccad 902 mapping->nrpages += nr;
74d60958
MW
903
904 /* hugetlb pages do not participate in page cache accounting */
d68eccad
MWO
905 if (!huge) {
906 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
907 if (folio_test_pmd_mappable(folio))
908 __lruvec_stat_mod_folio(folio,
909 NR_FILE_THPS, nr);
910 }
74d60958
MW
911unlock:
912 xas_unlock_irq(&xas);
198b62f8 913 } while (xas_nomem(&xas, gfp));
74d60958 914
d68eccad 915 if (xas_error(&xas))
74d60958 916 goto error;
4165b9b4 917
a0580c6f 918 trace_mm_filemap_add_to_page_cache(folio);
66a0c8ee 919 return 0;
74d60958 920error:
d68eccad
MWO
921 if (charged)
922 mem_cgroup_uncharge(folio);
9dd3d069 923 folio->mapping = NULL;
66a0c8ee 924 /* Leave page->index set: truncation relies upon it */
d68eccad
MWO
925 folio_put_refs(folio, nr);
926 return xas_error(&xas);
1da177e4 927}
9dd3d069 928ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
a528910e 929
9dd3d069
MWO
930int filemap_add_folio(struct address_space *mapping, struct folio *folio,
931 pgoff_t index, gfp_t gfp)
1da177e4 932{
a528910e 933 void *shadow = NULL;
4f98a2fe
RR
934 int ret;
935
9dd3d069
MWO
936 __folio_set_locked(folio);
937 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
a528910e 938 if (unlikely(ret))
9dd3d069 939 __folio_clear_locked(folio);
a528910e
JW
940 else {
941 /*
9dd3d069 942 * The folio might have been evicted from cache only
a528910e 943 * recently, in which case it should be activated like
9dd3d069
MWO
944 * any other repeatedly accessed folio.
945 * The exception is folios getting rewritten; evicting other
f0281a00
RR
946 * data from the working set, only to cache data that will
947 * get overwritten with something else, is a waste of memory.
a528910e 948 */
9dd3d069
MWO
949 WARN_ON_ONCE(folio_test_active(folio));
950 if (!(gfp & __GFP_WRITE) && shadow)
951 workingset_refault(folio, shadow);
952 folio_add_lru(folio);
a528910e 953 }
1da177e4
LT
954 return ret;
955}
9dd3d069 956EXPORT_SYMBOL_GPL(filemap_add_folio);
1da177e4 957
44110fe3 958#ifdef CONFIG_NUMA
bb3c579e 959struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
44110fe3 960{
c0ff7453 961 int n;
bb3c579e 962 struct folio *folio;
c0ff7453 963
44110fe3 964 if (cpuset_do_page_mem_spread()) {
cc9a6c87
MG
965 unsigned int cpuset_mems_cookie;
966 do {
d26914d1 967 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 968 n = cpuset_mem_spread_node();
bb3c579e
MWO
969 folio = __folio_alloc_node(gfp, order, n);
970 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
cc9a6c87 971
bb3c579e 972 return folio;
44110fe3 973 }
bb3c579e 974 return folio_alloc(gfp, order);
44110fe3 975}
bb3c579e 976EXPORT_SYMBOL(filemap_alloc_folio);
44110fe3
PJ
977#endif
978
7506ae6a
JK
979/*
980 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
981 *
982 * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
983 *
984 * @mapping1: the first mapping to lock
985 * @mapping2: the second mapping to lock
986 */
987void filemap_invalidate_lock_two(struct address_space *mapping1,
988 struct address_space *mapping2)
989{
990 if (mapping1 > mapping2)
991 swap(mapping1, mapping2);
992 if (mapping1)
993 down_write(&mapping1->invalidate_lock);
994 if (mapping2 && mapping1 != mapping2)
995 down_write_nested(&mapping2->invalidate_lock, 1);
996}
997EXPORT_SYMBOL(filemap_invalidate_lock_two);
998
999/*
1000 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1001 *
1002 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1003 *
1004 * @mapping1: the first mapping to unlock
1005 * @mapping2: the second mapping to unlock
1006 */
1007void filemap_invalidate_unlock_two(struct address_space *mapping1,
1008 struct address_space *mapping2)
1009{
1010 if (mapping1)
1011 up_write(&mapping1->invalidate_lock);
1012 if (mapping2 && mapping1 != mapping2)
1013 up_write(&mapping2->invalidate_lock);
1014}
1015EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1016
1da177e4
LT
1017/*
1018 * In order to wait for pages to become available there must be
1019 * waitqueues associated with pages. By using a hash table of
1020 * waitqueues where the bucket discipline is to maintain all
1021 * waiters on the same queue and wake all when any of the pages
1022 * become available, and for the woken contexts to check to be
1023 * sure the appropriate page became available, this saves space
1024 * at a cost of "thundering herd" phenomena during rare hash
1025 * collisions.
1026 */
62906027
NP
1027#define PAGE_WAIT_TABLE_BITS 8
1028#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
df4d4f12 1029static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
62906027 1030
df4d4f12 1031static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1da177e4 1032{
df4d4f12 1033 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1da177e4 1034}
1da177e4 1035
62906027 1036void __init pagecache_init(void)
1da177e4 1037{
62906027 1038 int i;
1da177e4 1039
62906027 1040 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
df4d4f12 1041 init_waitqueue_head(&folio_wait_table[i]);
62906027
NP
1042
1043 page_writeback_init();
1da177e4 1044}
1da177e4 1045
5ef64cc8
LT
1046/*
1047 * The page wait code treats the "wait->flags" somewhat unusually, because
5868ec26 1048 * we have multiple different kinds of waits, not just the usual "exclusive"
5ef64cc8
LT
1049 * one.
1050 *
1051 * We have:
1052 *
1053 * (a) no special bits set:
1054 *
1055 * We're just waiting for the bit to be released, and when a waker
1056 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1057 * and remove it from the wait queue.
1058 *
1059 * Simple and straightforward.
1060 *
1061 * (b) WQ_FLAG_EXCLUSIVE:
1062 *
1063 * The waiter is waiting to get the lock, and only one waiter should
1064 * be woken up to avoid any thundering herd behavior. We'll set the
1065 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1066 *
1067 * This is the traditional exclusive wait.
1068 *
5868ec26 1069 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
5ef64cc8
LT
1070 *
1071 * The waiter is waiting to get the bit, and additionally wants the
1072 * lock to be transferred to it for fair lock behavior. If the lock
1073 * cannot be taken, we stop walking the wait queue without waking
1074 * the waiter.
1075 *
1076 * This is the "fair lock handoff" case, and in addition to setting
1077 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1078 * that it now has the lock.
1079 */
ac6424b9 1080static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
f62e00cc 1081{
5ef64cc8 1082 unsigned int flags;
62906027
NP
1083 struct wait_page_key *key = arg;
1084 struct wait_page_queue *wait_page
1085 = container_of(wait, struct wait_page_queue, wait);
1086
cdc8fcb4 1087 if (!wake_page_match(wait_page, key))
62906027 1088 return 0;
3510ca20 1089
9a1ea439 1090 /*
5ef64cc8
LT
1091 * If it's a lock handoff wait, we get the bit for it, and
1092 * stop walking (and do not wake it up) if we can't.
9a1ea439 1093 */
5ef64cc8
LT
1094 flags = wait->flags;
1095 if (flags & WQ_FLAG_EXCLUSIVE) {
df4d4f12 1096 if (test_bit(key->bit_nr, &key->folio->flags))
2a9127fc 1097 return -1;
5ef64cc8 1098 if (flags & WQ_FLAG_CUSTOM) {
df4d4f12 1099 if (test_and_set_bit(key->bit_nr, &key->folio->flags))
5ef64cc8
LT
1100 return -1;
1101 flags |= WQ_FLAG_DONE;
1102 }
2a9127fc 1103 }
f62e00cc 1104
5ef64cc8
LT
1105 /*
1106 * We are holding the wait-queue lock, but the waiter that
1107 * is waiting for this will be checking the flags without
1108 * any locking.
1109 *
1110 * So update the flags atomically, and wake up the waiter
1111 * afterwards to avoid any races. This store-release pairs
101c0bf6 1112 * with the load-acquire in folio_wait_bit_common().
5ef64cc8
LT
1113 */
1114 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
2a9127fc
LT
1115 wake_up_state(wait->private, mode);
1116
1117 /*
1118 * Ok, we have successfully done what we're waiting for,
1119 * and we can unconditionally remove the wait entry.
1120 *
5ef64cc8
LT
1121 * Note that this pairs with the "finish_wait()" in the
1122 * waiter, and has to be the absolute last thing we do.
1123 * After this list_del_init(&wait->entry) the wait entry
2a9127fc
LT
1124 * might be de-allocated and the process might even have
1125 * exited.
2a9127fc 1126 */
c6fe44d9 1127 list_del_init_careful(&wait->entry);
5ef64cc8 1128 return (flags & WQ_FLAG_EXCLUSIVE) != 0;
f62e00cc
KM
1129}
1130
6974d7c9 1131static void folio_wake_bit(struct folio *folio, int bit_nr)
cbbce822 1132{
df4d4f12 1133 wait_queue_head_t *q = folio_waitqueue(folio);
62906027
NP
1134 struct wait_page_key key;
1135 unsigned long flags;
11a19c7b 1136 wait_queue_entry_t bookmark;
cbbce822 1137
df4d4f12 1138 key.folio = folio;
62906027
NP
1139 key.bit_nr = bit_nr;
1140 key.page_match = 0;
1141
11a19c7b
TC
1142 bookmark.flags = 0;
1143 bookmark.private = NULL;
1144 bookmark.func = NULL;
1145 INIT_LIST_HEAD(&bookmark.entry);
1146
62906027 1147 spin_lock_irqsave(&q->lock, flags);
11a19c7b
TC
1148 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1149
1150 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1151 /*
1152 * Take a breather from holding the lock,
1153 * allow pages that finish wake up asynchronously
1154 * to acquire the lock and remove themselves
1155 * from wait queue
1156 */
1157 spin_unlock_irqrestore(&q->lock, flags);
1158 cpu_relax();
1159 spin_lock_irqsave(&q->lock, flags);
1160 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1161 }
1162
62906027 1163 /*
bb43b14b
HD
1164 * It's possible to miss clearing waiters here, when we woke our page
1165 * waiters, but the hashed waitqueue has waiters for other pages on it.
1166 * That's okay, it's a rare case. The next waker will clear it.
62906027 1167 *
bb43b14b
HD
1168 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1169 * other), the flag may be cleared in the course of freeing the page;
1170 * but that is not required for correctness.
62906027 1171 */
bb43b14b 1172 if (!waitqueue_active(q) || !key.page_match)
6974d7c9 1173 folio_clear_waiters(folio);
bb43b14b 1174
62906027
NP
1175 spin_unlock_irqrestore(&q->lock, flags);
1176}
74d81bfa 1177
4268b480 1178static void folio_wake(struct folio *folio, int bit)
74d81bfa 1179{
4268b480 1180 if (!folio_test_waiters(folio))
74d81bfa 1181 return;
6974d7c9 1182 folio_wake_bit(folio, bit);
74d81bfa 1183}
62906027 1184
9a1ea439 1185/*
101c0bf6 1186 * A choice of three behaviors for folio_wait_bit_common():
9a1ea439
HD
1187 */
1188enum behavior {
1189 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
7c23c782 1190 * __folio_lock() waiting on then setting PG_locked.
9a1ea439
HD
1191 */
1192 SHARED, /* Hold ref to page and check the bit when woken, like
9f2b04a2 1193 * folio_wait_writeback() waiting on PG_writeback.
9a1ea439
HD
1194 */
1195 DROP, /* Drop ref to page before wait, no check when woken,
9f2b04a2 1196 * like folio_put_wait_locked() on PG_locked.
9a1ea439
HD
1197 */
1198};
1199
2a9127fc 1200/*
101c0bf6 1201 * Attempt to check (or get) the folio flag, and mark us done
5ef64cc8 1202 * if successful.
2a9127fc 1203 */
101c0bf6 1204static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
2a9127fc
LT
1205 struct wait_queue_entry *wait)
1206{
1207 if (wait->flags & WQ_FLAG_EXCLUSIVE) {
101c0bf6 1208 if (test_and_set_bit(bit_nr, &folio->flags))
2a9127fc 1209 return false;
101c0bf6 1210 } else if (test_bit(bit_nr, &folio->flags))
2a9127fc
LT
1211 return false;
1212
5ef64cc8 1213 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
2a9127fc
LT
1214 return true;
1215}
1216
5ef64cc8
LT
1217/* How many times do we accept lock stealing from under a waiter? */
1218int sysctl_page_lock_unfairness = 5;
1219
101c0bf6
MWO
1220static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1221 int state, enum behavior behavior)
62906027 1222{
df4d4f12 1223 wait_queue_head_t *q = folio_waitqueue(folio);
5ef64cc8 1224 int unfairness = sysctl_page_lock_unfairness;
62906027 1225 struct wait_page_queue wait_page;
ac6424b9 1226 wait_queue_entry_t *wait = &wait_page.wait;
b1d29ba8 1227 bool thrashing = false;
eb414681 1228 unsigned long pflags;
aa1cf99b 1229 bool in_thrashing;
62906027 1230
eb414681 1231 if (bit_nr == PG_locked &&
101c0bf6 1232 !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
aa1cf99b 1233 delayacct_thrashing_start(&in_thrashing);
eb414681 1234 psi_memstall_enter(&pflags);
b1d29ba8
JW
1235 thrashing = true;
1236 }
1237
62906027
NP
1238 init_wait(wait);
1239 wait->func = wake_page_function;
df4d4f12 1240 wait_page.folio = folio;
62906027
NP
1241 wait_page.bit_nr = bit_nr;
1242
5ef64cc8
LT
1243repeat:
1244 wait->flags = 0;
1245 if (behavior == EXCLUSIVE) {
1246 wait->flags = WQ_FLAG_EXCLUSIVE;
1247 if (--unfairness < 0)
1248 wait->flags |= WQ_FLAG_CUSTOM;
1249 }
1250
2a9127fc
LT
1251 /*
1252 * Do one last check whether we can get the
1253 * page bit synchronously.
1254 *
101c0bf6 1255 * Do the folio_set_waiters() marking before that
2a9127fc
LT
1256 * to let any waker we _just_ missed know they
1257 * need to wake us up (otherwise they'll never
1258 * even go to the slow case that looks at the
1259 * page queue), and add ourselves to the wait
1260 * queue if we need to sleep.
1261 *
1262 * This part needs to be done under the queue
1263 * lock to avoid races.
1264 */
1265 spin_lock_irq(&q->lock);
101c0bf6
MWO
1266 folio_set_waiters(folio);
1267 if (!folio_trylock_flag(folio, bit_nr, wait))
2a9127fc
LT
1268 __add_wait_queue_entry_tail(q, wait);
1269 spin_unlock_irq(&q->lock);
62906027 1270
2a9127fc
LT
1271 /*
1272 * From now on, all the logic will be based on
5ef64cc8
LT
1273 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1274 * see whether the page bit testing has already
1275 * been done by the wake function.
2a9127fc 1276 *
101c0bf6 1277 * We can drop our reference to the folio.
2a9127fc
LT
1278 */
1279 if (behavior == DROP)
101c0bf6 1280 folio_put(folio);
62906027 1281
5ef64cc8
LT
1282 /*
1283 * Note that until the "finish_wait()", or until
1284 * we see the WQ_FLAG_WOKEN flag, we need to
1285 * be very careful with the 'wait->flags', because
1286 * we may race with a waker that sets them.
1287 */
2a9127fc 1288 for (;;) {
5ef64cc8
LT
1289 unsigned int flags;
1290
62906027
NP
1291 set_current_state(state);
1292
5ef64cc8
LT
1293 /* Loop until we've been woken or interrupted */
1294 flags = smp_load_acquire(&wait->flags);
1295 if (!(flags & WQ_FLAG_WOKEN)) {
1296 if (signal_pending_state(state, current))
1297 break;
1298
1299 io_schedule();
1300 continue;
1301 }
1302
1303 /* If we were non-exclusive, we're done */
1304 if (behavior != EXCLUSIVE)
a8b169af 1305 break;
9a1ea439 1306
5ef64cc8
LT
1307 /* If the waker got the lock for us, we're done */
1308 if (flags & WQ_FLAG_DONE)
9a1ea439 1309 break;
2a9127fc 1310
5ef64cc8
LT
1311 /*
1312 * Otherwise, if we're getting the lock, we need to
1313 * try to get it ourselves.
1314 *
1315 * And if that fails, we'll have to retry this all.
1316 */
101c0bf6 1317 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
5ef64cc8
LT
1318 goto repeat;
1319
1320 wait->flags |= WQ_FLAG_DONE;
1321 break;
62906027
NP
1322 }
1323
5ef64cc8
LT
1324 /*
1325 * If a signal happened, this 'finish_wait()' may remove the last
101c0bf6 1326 * waiter from the wait-queues, but the folio waiters bit will remain
5ef64cc8
LT
1327 * set. That's ok. The next wakeup will take care of it, and trying
1328 * to do it here would be difficult and prone to races.
1329 */
62906027
NP
1330 finish_wait(q, wait);
1331
eb414681 1332 if (thrashing) {
aa1cf99b 1333 delayacct_thrashing_end(&in_thrashing);
eb414681
JW
1334 psi_memstall_leave(&pflags);
1335 }
b1d29ba8 1336
62906027 1337 /*
5ef64cc8
LT
1338 * NOTE! The wait->flags weren't stable until we've done the
1339 * 'finish_wait()', and we could have exited the loop above due
1340 * to a signal, and had a wakeup event happen after the signal
1341 * test but before the 'finish_wait()'.
1342 *
1343 * So only after the finish_wait() can we reliably determine
1344 * if we got woken up or not, so we can now figure out the final
1345 * return value based on that state without races.
1346 *
1347 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1348 * waiter, but an exclusive one requires WQ_FLAG_DONE.
62906027 1349 */
5ef64cc8
LT
1350 if (behavior == EXCLUSIVE)
1351 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
62906027 1352
2a9127fc 1353 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
62906027
NP
1354}
1355
ffa65753
AP
1356#ifdef CONFIG_MIGRATION
1357/**
1358 * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1359 * @entry: migration swap entry.
1360 * @ptep: mapped pte pointer. Will return with the ptep unmapped. Only required
1361 * for pte entries, pass NULL for pmd entries.
1362 * @ptl: already locked ptl. This function will drop the lock.
1363 *
1364 * Wait for a migration entry referencing the given page to be removed. This is
1365 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except
1366 * this can be called without taking a reference on the page. Instead this
1367 * should be called while holding the ptl for the migration entry referencing
1368 * the page.
1369 *
1370 * Returns after unmapping and unlocking the pte/ptl with pte_unmap_unlock().
1371 *
1372 * This follows the same logic as folio_wait_bit_common() so see the comments
1373 * there.
1374 */
1375void migration_entry_wait_on_locked(swp_entry_t entry, pte_t *ptep,
1376 spinlock_t *ptl)
1377{
1378 struct wait_page_queue wait_page;
1379 wait_queue_entry_t *wait = &wait_page.wait;
1380 bool thrashing = false;
ffa65753 1381 unsigned long pflags;
aa1cf99b 1382 bool in_thrashing;
ffa65753
AP
1383 wait_queue_head_t *q;
1384 struct folio *folio = page_folio(pfn_swap_entry_to_page(entry));
1385
1386 q = folio_waitqueue(folio);
1387 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
aa1cf99b 1388 delayacct_thrashing_start(&in_thrashing);
ffa65753
AP
1389 psi_memstall_enter(&pflags);
1390 thrashing = true;
1391 }
1392
1393 init_wait(wait);
1394 wait->func = wake_page_function;
1395 wait_page.folio = folio;
1396 wait_page.bit_nr = PG_locked;
1397 wait->flags = 0;
1398
1399 spin_lock_irq(&q->lock);
1400 folio_set_waiters(folio);
1401 if (!folio_trylock_flag(folio, PG_locked, wait))
1402 __add_wait_queue_entry_tail(q, wait);
1403 spin_unlock_irq(&q->lock);
1404
1405 /*
1406 * If a migration entry exists for the page the migration path must hold
1407 * a valid reference to the page, and it must take the ptl to remove the
1408 * migration entry. So the page is valid until the ptl is dropped.
1409 */
1410 if (ptep)
1411 pte_unmap_unlock(ptep, ptl);
1412 else
1413 spin_unlock(ptl);
1414
1415 for (;;) {
1416 unsigned int flags;
1417
1418 set_current_state(TASK_UNINTERRUPTIBLE);
1419
1420 /* Loop until we've been woken or interrupted */
1421 flags = smp_load_acquire(&wait->flags);
1422 if (!(flags & WQ_FLAG_WOKEN)) {
1423 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1424 break;
1425
1426 io_schedule();
1427 continue;
1428 }
1429 break;
1430 }
1431
1432 finish_wait(q, wait);
1433
1434 if (thrashing) {
aa1cf99b 1435 delayacct_thrashing_end(&in_thrashing);
ffa65753
AP
1436 psi_memstall_leave(&pflags);
1437 }
1438}
1439#endif
1440
101c0bf6 1441void folio_wait_bit(struct folio *folio, int bit_nr)
62906027 1442{
101c0bf6 1443 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
62906027 1444}
101c0bf6 1445EXPORT_SYMBOL(folio_wait_bit);
62906027 1446
101c0bf6 1447int folio_wait_bit_killable(struct folio *folio, int bit_nr)
62906027 1448{
101c0bf6 1449 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
cbbce822 1450}
101c0bf6 1451EXPORT_SYMBOL(folio_wait_bit_killable);
cbbce822 1452
9a1ea439 1453/**
9f2b04a2
MWO
1454 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1455 * @folio: The folio to wait for.
48054625 1456 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
9a1ea439 1457 *
9f2b04a2 1458 * The caller should hold a reference on @folio. They expect the page to
9a1ea439 1459 * become unlocked relatively soon, but do not wish to hold up migration
9f2b04a2 1460 * (for example) by holding the reference while waiting for the folio to
9a1ea439 1461 * come unlocked. After this function returns, the caller should not
9f2b04a2 1462 * dereference @folio.
48054625 1463 *
9f2b04a2 1464 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
9a1ea439 1465 */
c195c321 1466static int folio_put_wait_locked(struct folio *folio, int state)
9a1ea439 1467{
9f2b04a2 1468 return folio_wait_bit_common(folio, PG_locked, state, DROP);
9a1ea439
HD
1469}
1470
385e1ca5 1471/**
df4d4f12
MWO
1472 * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1473 * @folio: Folio defining the wait queue of interest
697f619f 1474 * @waiter: Waiter to add to the queue
385e1ca5 1475 *
df4d4f12 1476 * Add an arbitrary @waiter to the wait queue for the nominated @folio.
385e1ca5 1477 */
df4d4f12 1478void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
385e1ca5 1479{
df4d4f12 1480 wait_queue_head_t *q = folio_waitqueue(folio);
385e1ca5
DH
1481 unsigned long flags;
1482
1483 spin_lock_irqsave(&q->lock, flags);
9c3a815f 1484 __add_wait_queue_entry_tail(q, waiter);
df4d4f12 1485 folio_set_waiters(folio);
385e1ca5
DH
1486 spin_unlock_irqrestore(&q->lock, flags);
1487}
df4d4f12 1488EXPORT_SYMBOL_GPL(folio_add_wait_queue);
385e1ca5 1489
b91e1302
LT
1490#ifndef clear_bit_unlock_is_negative_byte
1491
1492/*
1493 * PG_waiters is the high bit in the same byte as PG_lock.
1494 *
1495 * On x86 (and on many other architectures), we can clear PG_lock and
1496 * test the sign bit at the same time. But if the architecture does
1497 * not support that special operation, we just do this all by hand
1498 * instead.
1499 *
1500 * The read of PG_waiters has to be after (or concurrently with) PG_locked
ffceeb62 1501 * being cleared, but a memory barrier should be unnecessary since it is
b91e1302
LT
1502 * in the same byte as PG_locked.
1503 */
1504static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1505{
1506 clear_bit_unlock(nr, mem);
1507 /* smp_mb__after_atomic(); */
98473f9f 1508 return test_bit(PG_waiters, mem);
b91e1302
LT
1509}
1510
1511#endif
1512
1da177e4 1513/**
4e136428
MWO
1514 * folio_unlock - Unlock a locked folio.
1515 * @folio: The folio.
1516 *
1517 * Unlocks the folio and wakes up any thread sleeping on the page lock.
1518 *
1519 * Context: May be called from interrupt or process context. May not be
1520 * called from NMI context.
1da177e4 1521 */
4e136428 1522void folio_unlock(struct folio *folio)
1da177e4 1523{
4e136428 1524 /* Bit 7 allows x86 to check the byte's sign bit */
b91e1302 1525 BUILD_BUG_ON(PG_waiters != 7);
4e136428
MWO
1526 BUILD_BUG_ON(PG_locked > 7);
1527 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1528 if (clear_bit_unlock_is_negative_byte(PG_locked, folio_flags(folio, 0)))
6974d7c9 1529 folio_wake_bit(folio, PG_locked);
1da177e4 1530}
4e136428 1531EXPORT_SYMBOL(folio_unlock);
1da177e4 1532
73e10ded 1533/**
b47393f8
MWO
1534 * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1535 * @folio: The folio.
73e10ded 1536 *
b47393f8
MWO
1537 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1538 * it. The folio reference held for PG_private_2 being set is released.
73e10ded 1539 *
b47393f8
MWO
1540 * This is, for example, used when a netfs folio is being written to a local
1541 * disk cache, thereby allowing writes to the cache for the same folio to be
73e10ded
DH
1542 * serialised.
1543 */
b47393f8 1544void folio_end_private_2(struct folio *folio)
73e10ded 1545{
6974d7c9
MWO
1546 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1547 clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1548 folio_wake_bit(folio, PG_private_2);
1549 folio_put(folio);
73e10ded 1550}
b47393f8 1551EXPORT_SYMBOL(folio_end_private_2);
73e10ded
DH
1552
1553/**
b47393f8
MWO
1554 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1555 * @folio: The folio to wait on.
73e10ded 1556 *
b47393f8 1557 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio.
73e10ded 1558 */
b47393f8 1559void folio_wait_private_2(struct folio *folio)
73e10ded 1560{
101c0bf6
MWO
1561 while (folio_test_private_2(folio))
1562 folio_wait_bit(folio, PG_private_2);
73e10ded 1563}
b47393f8 1564EXPORT_SYMBOL(folio_wait_private_2);
73e10ded
DH
1565
1566/**
b47393f8
MWO
1567 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1568 * @folio: The folio to wait on.
73e10ded 1569 *
b47393f8 1570 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a
73e10ded
DH
1571 * fatal signal is received by the calling task.
1572 *
1573 * Return:
1574 * - 0 if successful.
1575 * - -EINTR if a fatal signal was encountered.
1576 */
b47393f8 1577int folio_wait_private_2_killable(struct folio *folio)
73e10ded
DH
1578{
1579 int ret = 0;
1580
101c0bf6
MWO
1581 while (folio_test_private_2(folio)) {
1582 ret = folio_wait_bit_killable(folio, PG_private_2);
73e10ded
DH
1583 if (ret < 0)
1584 break;
1585 }
1586
1587 return ret;
1588}
b47393f8 1589EXPORT_SYMBOL(folio_wait_private_2_killable);
73e10ded 1590
485bb99b 1591/**
4268b480
MWO
1592 * folio_end_writeback - End writeback against a folio.
1593 * @folio: The folio.
1da177e4 1594 */
4268b480 1595void folio_end_writeback(struct folio *folio)
1da177e4 1596{
888cf2db 1597 /*
4268b480
MWO
1598 * folio_test_clear_reclaim() could be used here but it is an
1599 * atomic operation and overkill in this particular case. Failing
1600 * to shuffle a folio marked for immediate reclaim is too mild
1601 * a gain to justify taking an atomic operation penalty at the
1602 * end of every folio writeback.
888cf2db 1603 */
4268b480
MWO
1604 if (folio_test_reclaim(folio)) {
1605 folio_clear_reclaim(folio);
575ced1c 1606 folio_rotate_reclaimable(folio);
888cf2db 1607 }
ac6aadb2 1608
073861ed 1609 /*
4268b480 1610 * Writeback does not hold a folio reference of its own, relying
073861ed 1611 * on truncation to wait for the clearing of PG_writeback.
4268b480
MWO
1612 * But here we must make sure that the folio is not freed and
1613 * reused before the folio_wake().
073861ed 1614 */
4268b480 1615 folio_get(folio);
269ccca3 1616 if (!__folio_end_writeback(folio))
ac6aadb2
MS
1617 BUG();
1618
4e857c58 1619 smp_mb__after_atomic();
4268b480 1620 folio_wake(folio, PG_writeback);
512b7931 1621 acct_reclaim_writeback(folio);
4268b480 1622 folio_put(folio);
1da177e4 1623}
4268b480 1624EXPORT_SYMBOL(folio_end_writeback);
1da177e4 1625
57d99845
MW
1626/*
1627 * After completing I/O on a page, call this routine to update the page
1628 * flags appropriately
1629 */
c11f0c0b 1630void page_endio(struct page *page, bool is_write, int err)
57d99845 1631{
223ce491
SH
1632 struct folio *folio = page_folio(page);
1633
c11f0c0b 1634 if (!is_write) {
57d99845 1635 if (!err) {
223ce491 1636 folio_mark_uptodate(folio);
57d99845 1637 } else {
223ce491
SH
1638 folio_clear_uptodate(folio);
1639 folio_set_error(folio);
57d99845 1640 }
223ce491 1641 folio_unlock(folio);
abf54548 1642 } else {
57d99845 1643 if (err) {
dd8416c4
MK
1644 struct address_space *mapping;
1645
223ce491
SH
1646 folio_set_error(folio);
1647 mapping = folio_mapping(folio);
dd8416c4
MK
1648 if (mapping)
1649 mapping_set_error(mapping, err);
57d99845 1650 }
223ce491 1651 folio_end_writeback(folio);
57d99845
MW
1652 }
1653}
1654EXPORT_SYMBOL_GPL(page_endio);
1655
485bb99b 1656/**
7c23c782
MWO
1657 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1658 * @folio: The folio to lock
1da177e4 1659 */
7c23c782 1660void __folio_lock(struct folio *folio)
1da177e4 1661{
101c0bf6 1662 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
9a1ea439 1663 EXCLUSIVE);
1da177e4 1664}
7c23c782 1665EXPORT_SYMBOL(__folio_lock);
1da177e4 1666
af7f29d9 1667int __folio_lock_killable(struct folio *folio)
2687a356 1668{
101c0bf6 1669 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
9a1ea439 1670 EXCLUSIVE);
2687a356 1671}
af7f29d9 1672EXPORT_SYMBOL_GPL(__folio_lock_killable);
2687a356 1673
ffdc8dab 1674static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
dd3e6d50 1675{
df4d4f12 1676 struct wait_queue_head *q = folio_waitqueue(folio);
f32b5dd7
MWO
1677 int ret = 0;
1678
df4d4f12 1679 wait->folio = folio;
f32b5dd7
MWO
1680 wait->bit_nr = PG_locked;
1681
1682 spin_lock_irq(&q->lock);
1683 __add_wait_queue_entry_tail(q, &wait->wait);
ffdc8dab
MWO
1684 folio_set_waiters(folio);
1685 ret = !folio_trylock(folio);
f32b5dd7
MWO
1686 /*
1687 * If we were successful now, we know we're still on the
1688 * waitqueue as we're still under the lock. This means it's
1689 * safe to remove and return success, we know the callback
1690 * isn't going to trigger.
1691 */
1692 if (!ret)
1693 __remove_wait_queue(q, &wait->wait);
1694 else
1695 ret = -EIOCBQUEUED;
1696 spin_unlock_irq(&q->lock);
1697 return ret;
dd3e6d50
JA
1698}
1699
9a95f3cf
PC
1700/*
1701 * Return values:
9138e47e
MWO
1702 * true - folio is locked; mmap_lock is still held.
1703 * false - folio is not locked.
3e4e28c5 1704 * mmap_lock has been released (mmap_read_unlock(), unless flags had both
9a95f3cf 1705 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
c1e8d7c6 1706 * which case mmap_lock is still held.
9a95f3cf 1707 *
9138e47e
MWO
1708 * If neither ALLOW_RETRY nor KILLABLE are set, will always return true
1709 * with the folio locked and the mmap_lock unperturbed.
9a95f3cf 1710 */
9138e47e 1711bool __folio_lock_or_retry(struct folio *folio, struct mm_struct *mm,
d065bd81
ML
1712 unsigned int flags)
1713{
4064b982 1714 if (fault_flag_allow_retry_first(flags)) {
37b23e05 1715 /*
c1e8d7c6 1716 * CAUTION! In this case, mmap_lock is not released
37b23e05
KM
1717 * even though return 0.
1718 */
1719 if (flags & FAULT_FLAG_RETRY_NOWAIT)
9138e47e 1720 return false;
37b23e05 1721
d8ed45c5 1722 mmap_read_unlock(mm);
37b23e05 1723 if (flags & FAULT_FLAG_KILLABLE)
6baa8d60 1724 folio_wait_locked_killable(folio);
37b23e05 1725 else
6baa8d60 1726 folio_wait_locked(folio);
9138e47e 1727 return false;
800bca7c
HL
1728 }
1729 if (flags & FAULT_FLAG_KILLABLE) {
9138e47e 1730 bool ret;
37b23e05 1731
af7f29d9 1732 ret = __folio_lock_killable(folio);
800bca7c
HL
1733 if (ret) {
1734 mmap_read_unlock(mm);
9138e47e 1735 return false;
800bca7c
HL
1736 }
1737 } else {
af7f29d9 1738 __folio_lock(folio);
d065bd81 1739 }
800bca7c 1740
9138e47e 1741 return true;
d065bd81
ML
1742}
1743
e7b563bb 1744/**
0d3f9296
MW
1745 * page_cache_next_miss() - Find the next gap in the page cache.
1746 * @mapping: Mapping.
1747 * @index: Index.
1748 * @max_scan: Maximum range to search.
e7b563bb 1749 *
0d3f9296
MW
1750 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1751 * gap with the lowest index.
e7b563bb 1752 *
0d3f9296
MW
1753 * This function may be called under the rcu_read_lock. However, this will
1754 * not atomically search a snapshot of the cache at a single point in time.
1755 * For example, if a gap is created at index 5, then subsequently a gap is
1756 * created at index 10, page_cache_next_miss covering both indices may
1757 * return 10 if called under the rcu_read_lock.
e7b563bb 1758 *
0d3f9296
MW
1759 * Return: The index of the gap if found, otherwise an index outside the
1760 * range specified (in which case 'return - index >= max_scan' will be true).
1761 * In the rare case of index wrap-around, 0 will be returned.
e7b563bb 1762 */
0d3f9296 1763pgoff_t page_cache_next_miss(struct address_space *mapping,
e7b563bb
JW
1764 pgoff_t index, unsigned long max_scan)
1765{
0d3f9296 1766 XA_STATE(xas, &mapping->i_pages, index);
e7b563bb 1767
0d3f9296
MW
1768 while (max_scan--) {
1769 void *entry = xas_next(&xas);
1770 if (!entry || xa_is_value(entry))
e7b563bb 1771 break;
0d3f9296 1772 if (xas.xa_index == 0)
e7b563bb
JW
1773 break;
1774 }
1775
0d3f9296 1776 return xas.xa_index;
e7b563bb 1777}
0d3f9296 1778EXPORT_SYMBOL(page_cache_next_miss);
e7b563bb
JW
1779
1780/**
2346a560 1781 * page_cache_prev_miss() - Find the previous gap in the page cache.
0d3f9296
MW
1782 * @mapping: Mapping.
1783 * @index: Index.
1784 * @max_scan: Maximum range to search.
e7b563bb 1785 *
0d3f9296
MW
1786 * Search the range [max(index - max_scan + 1, 0), index] for the
1787 * gap with the highest index.
e7b563bb 1788 *
0d3f9296
MW
1789 * This function may be called under the rcu_read_lock. However, this will
1790 * not atomically search a snapshot of the cache at a single point in time.
1791 * For example, if a gap is created at index 10, then subsequently a gap is
1792 * created at index 5, page_cache_prev_miss() covering both indices may
1793 * return 5 if called under the rcu_read_lock.
e7b563bb 1794 *
0d3f9296
MW
1795 * Return: The index of the gap if found, otherwise an index outside the
1796 * range specified (in which case 'index - return >= max_scan' will be true).
1797 * In the rare case of wrap-around, ULONG_MAX will be returned.
e7b563bb 1798 */
0d3f9296 1799pgoff_t page_cache_prev_miss(struct address_space *mapping,
e7b563bb
JW
1800 pgoff_t index, unsigned long max_scan)
1801{
0d3f9296 1802 XA_STATE(xas, &mapping->i_pages, index);
e7b563bb 1803
0d3f9296
MW
1804 while (max_scan--) {
1805 void *entry = xas_prev(&xas);
1806 if (!entry || xa_is_value(entry))
e7b563bb 1807 break;
0d3f9296 1808 if (xas.xa_index == ULONG_MAX)
e7b563bb
JW
1809 break;
1810 }
1811
0d3f9296 1812 return xas.xa_index;
e7b563bb 1813}
0d3f9296 1814EXPORT_SYMBOL(page_cache_prev_miss);
e7b563bb 1815
020853b6
MWO
1816/*
1817 * Lockless page cache protocol:
1818 * On the lookup side:
1819 * 1. Load the folio from i_pages
1820 * 2. Increment the refcount if it's not zero
1821 * 3. If the folio is not found by xas_reload(), put the refcount and retry
1822 *
1823 * On the removal side:
1824 * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1825 * B. Remove the page from i_pages
1826 * C. Return the page to the page allocator
1827 *
1828 * This means that any page may have its reference count temporarily
1829 * increased by a speculative page cache (or fast GUP) lookup as it can
1830 * be allocated by another user before the RCU grace period expires.
1831 * Because the refcount temporarily acquired here may end up being the
1832 * last refcount on the page, any page allocation must be freeable by
1833 * folio_put().
1834 */
1835
44835d20 1836/*
bc5a3011 1837 * mapping_get_entry - Get a page cache entry.
485bb99b 1838 * @mapping: the address_space to search
a6de4b48 1839 * @index: The page cache index.
0cd6144a 1840 *
bca65eea
MWO
1841 * Looks up the page cache entry at @mapping & @index. If it is a folio,
1842 * it is returned with an increased refcount. If it is a shadow entry
1843 * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1844 * it is returned without further action.
485bb99b 1845 *
bca65eea 1846 * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1da177e4 1847 */
bca65eea 1848static void *mapping_get_entry(struct address_space *mapping, pgoff_t index)
1da177e4 1849{
a6de4b48 1850 XA_STATE(xas, &mapping->i_pages, index);
bca65eea 1851 struct folio *folio;
1da177e4 1852
a60637c8
NP
1853 rcu_read_lock();
1854repeat:
4c7472c0 1855 xas_reset(&xas);
bca65eea
MWO
1856 folio = xas_load(&xas);
1857 if (xas_retry(&xas, folio))
4c7472c0
MW
1858 goto repeat;
1859 /*
1860 * A shadow entry of a recently evicted page, or a swap entry from
1861 * shmem/tmpfs. Return it without attempting to raise page count.
1862 */
bca65eea 1863 if (!folio || xa_is_value(folio))
4c7472c0 1864 goto out;
83929372 1865
bca65eea 1866 if (!folio_try_get_rcu(folio))
4c7472c0 1867 goto repeat;
83929372 1868
bca65eea
MWO
1869 if (unlikely(folio != xas_reload(&xas))) {
1870 folio_put(folio);
4c7472c0 1871 goto repeat;
a60637c8 1872 }
27d20fdd 1873out:
a60637c8
NP
1874 rcu_read_unlock();
1875
bca65eea 1876 return folio;
1da177e4 1877}
1da177e4 1878
0cd6144a 1879/**
3f0c6a07 1880 * __filemap_get_folio - Find and get a reference to a folio.
2294b32e
MWO
1881 * @mapping: The address_space to search.
1882 * @index: The page index.
3f0c6a07
MWO
1883 * @fgp_flags: %FGP flags modify how the folio is returned.
1884 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1da177e4 1885 *
2294b32e 1886 * Looks up the page cache entry at @mapping & @index.
0cd6144a 1887 *
2294b32e 1888 * @fgp_flags can be zero or more of these flags:
0e056eb5 1889 *
3f0c6a07
MWO
1890 * * %FGP_ACCESSED - The folio will be marked accessed.
1891 * * %FGP_LOCK - The folio is returned locked.
44835d20 1892 * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it
3f0c6a07 1893 * instead of allocating a new folio to replace it.
2294b32e 1894 * * %FGP_CREAT - If no page is present then a new page is allocated using
3f0c6a07 1895 * @gfp and added to the page cache and the VM's LRU list.
2294b32e
MWO
1896 * The page is returned locked and with an increased refcount.
1897 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1898 * page is already in cache. If the page was allocated, unlock it before
1899 * returning so the caller can do the same dance.
3f0c6a07
MWO
1900 * * %FGP_WRITE - The page will be written to by the caller.
1901 * * %FGP_NOFS - __GFP_FS will get cleared in gfp.
1902 * * %FGP_NOWAIT - Don't get blocked by page lock.
b27652d9 1903 * * %FGP_STABLE - Wait for the folio to be stable (finished writeback)
1da177e4 1904 *
2294b32e
MWO
1905 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1906 * if the %GFP flags specified for %FGP_CREAT are atomic.
1da177e4 1907 *
2457aec6 1908 * If there is a page cache page, it is returned with an increased refcount.
a862f68a 1909 *
3f0c6a07 1910 * Return: The found folio or %NULL otherwise.
1da177e4 1911 */
3f0c6a07
MWO
1912struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1913 int fgp_flags, gfp_t gfp)
1da177e4 1914{
3f0c6a07 1915 struct folio *folio;
2457aec6 1916
1da177e4 1917repeat:
3f0c6a07
MWO
1918 folio = mapping_get_entry(mapping, index);
1919 if (xa_is_value(folio)) {
44835d20 1920 if (fgp_flags & FGP_ENTRY)
3f0c6a07
MWO
1921 return folio;
1922 folio = NULL;
44835d20 1923 }
3f0c6a07 1924 if (!folio)
2457aec6
MG
1925 goto no_page;
1926
1927 if (fgp_flags & FGP_LOCK) {
1928 if (fgp_flags & FGP_NOWAIT) {
3f0c6a07
MWO
1929 if (!folio_trylock(folio)) {
1930 folio_put(folio);
2457aec6
MG
1931 return NULL;
1932 }
1933 } else {
3f0c6a07 1934 folio_lock(folio);
2457aec6
MG
1935 }
1936
1937 /* Has the page been truncated? */
3f0c6a07
MWO
1938 if (unlikely(folio->mapping != mapping)) {
1939 folio_unlock(folio);
1940 folio_put(folio);
2457aec6
MG
1941 goto repeat;
1942 }
3f0c6a07 1943 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
2457aec6
MG
1944 }
1945
c16eb000 1946 if (fgp_flags & FGP_ACCESSED)
3f0c6a07 1947 folio_mark_accessed(folio);
b9306a79
YS
1948 else if (fgp_flags & FGP_WRITE) {
1949 /* Clear idle flag for buffer write */
3f0c6a07
MWO
1950 if (folio_test_idle(folio))
1951 folio_clear_idle(folio);
b9306a79 1952 }
2457aec6 1953
b27652d9
MWO
1954 if (fgp_flags & FGP_STABLE)
1955 folio_wait_stable(folio);
2457aec6 1956no_page:
3f0c6a07 1957 if (!folio && (fgp_flags & FGP_CREAT)) {
2457aec6 1958 int err;
f56753ac 1959 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
3f0c6a07 1960 gfp |= __GFP_WRITE;
45f87de5 1961 if (fgp_flags & FGP_NOFS)
3f0c6a07 1962 gfp &= ~__GFP_FS;
0dd316ba
JA
1963 if (fgp_flags & FGP_NOWAIT) {
1964 gfp &= ~GFP_KERNEL;
1965 gfp |= GFP_NOWAIT | __GFP_NOWARN;
1966 }
2457aec6 1967
3f0c6a07
MWO
1968 folio = filemap_alloc_folio(gfp, 0);
1969 if (!folio)
eb2be189 1970 return NULL;
2457aec6 1971
a75d4c33 1972 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
2457aec6
MG
1973 fgp_flags |= FGP_LOCK;
1974
eb39d618 1975 /* Init accessed so avoid atomic mark_page_accessed later */
2457aec6 1976 if (fgp_flags & FGP_ACCESSED)
3f0c6a07 1977 __folio_set_referenced(folio);
2457aec6 1978
3f0c6a07 1979 err = filemap_add_folio(mapping, folio, index, gfp);
eb2be189 1980 if (unlikely(err)) {
3f0c6a07
MWO
1981 folio_put(folio);
1982 folio = NULL;
eb2be189
NP
1983 if (err == -EEXIST)
1984 goto repeat;
1da177e4 1985 }
a75d4c33
JB
1986
1987 /*
3f0c6a07
MWO
1988 * filemap_add_folio locks the page, and for mmap
1989 * we expect an unlocked page.
a75d4c33 1990 */
3f0c6a07
MWO
1991 if (folio && (fgp_flags & FGP_FOR_MMAP))
1992 folio_unlock(folio);
1da177e4 1993 }
2457aec6 1994
3f0c6a07 1995 return folio;
1da177e4 1996}
3f0c6a07 1997EXPORT_SYMBOL(__filemap_get_folio);
1da177e4 1998
f5e6429a 1999static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
c7bad633
MWO
2000 xa_mark_t mark)
2001{
f5e6429a 2002 struct folio *folio;
c7bad633
MWO
2003
2004retry:
2005 if (mark == XA_PRESENT)
f5e6429a 2006 folio = xas_find(xas, max);
c7bad633 2007 else
f5e6429a 2008 folio = xas_find_marked(xas, max, mark);
c7bad633 2009
f5e6429a 2010 if (xas_retry(xas, folio))
c7bad633
MWO
2011 goto retry;
2012 /*
2013 * A shadow entry of a recently evicted page, a swap
2014 * entry from shmem/tmpfs or a DAX entry. Return it
2015 * without attempting to raise page count.
2016 */
f5e6429a
MWO
2017 if (!folio || xa_is_value(folio))
2018 return folio;
c7bad633 2019
f5e6429a 2020 if (!folio_try_get_rcu(folio))
c7bad633
MWO
2021 goto reset;
2022
f5e6429a
MWO
2023 if (unlikely(folio != xas_reload(xas))) {
2024 folio_put(folio);
c7bad633
MWO
2025 goto reset;
2026 }
2027
f5e6429a 2028 return folio;
c7bad633
MWO
2029reset:
2030 xas_reset(xas);
2031 goto retry;
2032}
2033
0cd6144a
JW
2034/**
2035 * find_get_entries - gang pagecache lookup
2036 * @mapping: The address_space to search
2037 * @start: The starting page cache index
ca122fe4 2038 * @end: The final page index (inclusive).
0e499ed3 2039 * @fbatch: Where the resulting entries are placed.
0cd6144a
JW
2040 * @indices: The cache indices corresponding to the entries in @entries
2041 *
cf2039af 2042 * find_get_entries() will search for and return a batch of entries in
0e499ed3
MWO
2043 * the mapping. The entries are placed in @fbatch. find_get_entries()
2044 * takes a reference on any actual folios it returns.
0cd6144a 2045 *
0e499ed3
MWO
2046 * The entries have ascending indexes. The indices may not be consecutive
2047 * due to not-present entries or large folios.
0cd6144a 2048 *
0e499ed3 2049 * Any shadow entries of evicted folios, or swap entries from
139b6a6f 2050 * shmem/tmpfs, are included in the returned array.
0cd6144a 2051 *
0e499ed3 2052 * Return: The number of entries which were found.
0cd6144a 2053 */
9fb6beea 2054unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
0e499ed3 2055 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
0cd6144a 2056{
9fb6beea 2057 XA_STATE(xas, &mapping->i_pages, *start);
f5e6429a 2058 struct folio *folio;
0cd6144a
JW
2059
2060 rcu_read_lock();
f5e6429a 2061 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
0e499ed3
MWO
2062 indices[fbatch->nr] = xas.xa_index;
2063 if (!folio_batch_add(fbatch, folio))
0cd6144a
JW
2064 break;
2065 }
2066 rcu_read_unlock();
cf2039af 2067
9fb6beea
VMO
2068 if (folio_batch_count(fbatch)) {
2069 unsigned long nr = 1;
2070 int idx = folio_batch_count(fbatch) - 1;
2071
2072 folio = fbatch->folios[idx];
2073 if (!xa_is_value(folio) && !folio_test_hugetlb(folio))
2074 nr = folio_nr_pages(folio);
2075 *start = indices[idx] + nr;
2076 }
0e499ed3 2077 return folio_batch_count(fbatch);
0cd6144a
JW
2078}
2079
5c211ba2
MWO
2080/**
2081 * find_lock_entries - Find a batch of pagecache entries.
2082 * @mapping: The address_space to search.
2083 * @start: The starting page cache index.
2084 * @end: The final page index (inclusive).
51dcbdac
MWO
2085 * @fbatch: Where the resulting entries are placed.
2086 * @indices: The cache indices of the entries in @fbatch.
5c211ba2
MWO
2087 *
2088 * find_lock_entries() will return a batch of entries from @mapping.
f5e6429a
MWO
2089 * Swap, shadow and DAX entries are included. Folios are returned
2090 * locked and with an incremented refcount. Folios which are locked
2091 * by somebody else or under writeback are skipped. Folios which are
2092 * partially outside the range are not returned.
5c211ba2
MWO
2093 *
2094 * The entries have ascending indexes. The indices may not be consecutive
f5e6429a
MWO
2095 * due to not-present entries, large folios, folios which could not be
2096 * locked or folios under writeback.
5c211ba2
MWO
2097 *
2098 * Return: The number of entries which were found.
2099 */
3392ca12 2100unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
51dcbdac 2101 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
5c211ba2 2102{
3392ca12 2103 XA_STATE(xas, &mapping->i_pages, *start);
f5e6429a 2104 struct folio *folio;
5c211ba2
MWO
2105
2106 rcu_read_lock();
f5e6429a
MWO
2107 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2108 if (!xa_is_value(folio)) {
3392ca12 2109 if (folio->index < *start)
5c211ba2 2110 goto put;
f5e6429a 2111 if (folio->index + folio_nr_pages(folio) - 1 > end)
5c211ba2 2112 goto put;
f5e6429a 2113 if (!folio_trylock(folio))
5c211ba2 2114 goto put;
f5e6429a
MWO
2115 if (folio->mapping != mapping ||
2116 folio_test_writeback(folio))
5c211ba2 2117 goto unlock;
f5e6429a
MWO
2118 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2119 folio);
5c211ba2 2120 }
51dcbdac
MWO
2121 indices[fbatch->nr] = xas.xa_index;
2122 if (!folio_batch_add(fbatch, folio))
5c211ba2 2123 break;
6b24ca4a 2124 continue;
5c211ba2 2125unlock:
f5e6429a 2126 folio_unlock(folio);
5c211ba2 2127put:
f5e6429a 2128 folio_put(folio);
5c211ba2
MWO
2129 }
2130 rcu_read_unlock();
2131
3392ca12
VMO
2132 if (folio_batch_count(fbatch)) {
2133 unsigned long nr = 1;
2134 int idx = folio_batch_count(fbatch) - 1;
2135
2136 folio = fbatch->folios[idx];
2137 if (!xa_is_value(folio) && !folio_test_hugetlb(folio))
2138 nr = folio_nr_pages(folio);
2139 *start = indices[idx] + nr;
2140 }
51dcbdac 2141 return folio_batch_count(fbatch);
5c211ba2
MWO
2142}
2143
1da177e4 2144/**
be0ced5e 2145 * filemap_get_folios - Get a batch of folios
1da177e4
LT
2146 * @mapping: The address_space to search
2147 * @start: The starting page index
b947cee4 2148 * @end: The final page index (inclusive)
be0ced5e 2149 * @fbatch: The batch to fill.
1da177e4 2150 *
be0ced5e
MWO
2151 * Search for and return a batch of folios in the mapping starting at
2152 * index @start and up to index @end (inclusive). The folios are returned
2153 * in @fbatch with an elevated reference count.
1da177e4 2154 *
be0ced5e
MWO
2155 * The first folio may start before @start; if it does, it will contain
2156 * @start. The final folio may extend beyond @end; if it does, it will
2157 * contain @end. The folios have ascending indices. There may be gaps
2158 * between the folios if there are indices which have no folio in the
2159 * page cache. If folios are added to or removed from the page cache
2160 * while this is running, they may or may not be found by this call.
1da177e4 2161 *
be0ced5e
MWO
2162 * Return: The number of folios which were found.
2163 * We also update @start to index the next folio for the traversal.
1da177e4 2164 */
be0ced5e
MWO
2165unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
2166 pgoff_t end, struct folio_batch *fbatch)
1da177e4 2167{
fd1b3cee 2168 XA_STATE(xas, &mapping->i_pages, *start);
f5e6429a 2169 struct folio *folio;
a60637c8
NP
2170
2171 rcu_read_lock();
be0ced5e 2172 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
fd1b3cee 2173 /* Skip over shadow, swap and DAX entries */
f5e6429a 2174 if (xa_is_value(folio))
8079b1c8 2175 continue;
be0ced5e
MWO
2176 if (!folio_batch_add(fbatch, folio)) {
2177 unsigned long nr = folio_nr_pages(folio);
a60637c8 2178
be0ced5e
MWO
2179 if (folio_test_hugetlb(folio))
2180 nr = 1;
2181 *start = folio->index + nr;
b947cee4
JK
2182 goto out;
2183 }
a60637c8 2184 }
5b280c0c 2185
b947cee4
JK
2186 /*
2187 * We come here when there is no page beyond @end. We take care to not
2188 * overflow the index @start as it confuses some of the callers. This
fd1b3cee 2189 * breaks the iteration when there is a page at index -1 but that is
b947cee4
JK
2190 * already broken anyway.
2191 */
2192 if (end == (pgoff_t)-1)
2193 *start = (pgoff_t)-1;
2194 else
2195 *start = end + 1;
2196out:
a60637c8 2197 rcu_read_unlock();
d72dc8a2 2198
be0ced5e
MWO
2199 return folio_batch_count(fbatch);
2200}
2201EXPORT_SYMBOL(filemap_get_folios);
2202
6b24ca4a
MWO
2203static inline
2204bool folio_more_pages(struct folio *folio, pgoff_t index, pgoff_t max)
2205{
2206 if (!folio_test_large(folio) || folio_test_hugetlb(folio))
2207 return false;
2208 if (index >= max)
2209 return false;
2210 return index < folio->index + folio_nr_pages(folio) - 1;
1da177e4
LT
2211}
2212
ebf43500 2213/**
35b47146 2214 * filemap_get_folios_contig - Get a batch of contiguous folios
ebf43500 2215 * @mapping: The address_space to search
35b47146
VMO
2216 * @start: The starting page index
2217 * @end: The final page index (inclusive)
2218 * @fbatch: The batch to fill
ebf43500 2219 *
35b47146
VMO
2220 * filemap_get_folios_contig() works exactly like filemap_get_folios(),
2221 * except the returned folios are guaranteed to be contiguous. This may
2222 * not return all contiguous folios if the batch gets filled up.
ebf43500 2223 *
35b47146
VMO
2224 * Return: The number of folios found.
2225 * Also update @start to be positioned for traversal of the next folio.
ebf43500 2226 */
35b47146
VMO
2227
2228unsigned filemap_get_folios_contig(struct address_space *mapping,
2229 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch)
ebf43500 2230{
35b47146
VMO
2231 XA_STATE(xas, &mapping->i_pages, *start);
2232 unsigned long nr;
e1c37722 2233 struct folio *folio;
a60637c8
NP
2234
2235 rcu_read_lock();
35b47146
VMO
2236
2237 for (folio = xas_load(&xas); folio && xas.xa_index <= end;
2238 folio = xas_next(&xas)) {
e1c37722 2239 if (xas_retry(&xas, folio))
3ece58a2
MW
2240 continue;
2241 /*
2242 * If the entry has been swapped out, we can stop looking.
2243 * No current caller is looking for DAX entries.
2244 */
e1c37722 2245 if (xa_is_value(folio))
35b47146 2246 goto update_start;
ebf43500 2247
e1c37722 2248 if (!folio_try_get_rcu(folio))
3ece58a2 2249 goto retry;
83929372 2250
e1c37722 2251 if (unlikely(folio != xas_reload(&xas)))
35b47146 2252 goto put_folio;
a60637c8 2253
35b47146
VMO
2254 if (!folio_batch_add(fbatch, folio)) {
2255 nr = folio_nr_pages(folio);
2256
2257 if (folio_test_hugetlb(folio))
2258 nr = 1;
2259 *start = folio->index + nr;
2260 goto out;
6b24ca4a 2261 }
3ece58a2 2262 continue;
35b47146 2263put_folio:
e1c37722 2264 folio_put(folio);
35b47146 2265
3ece58a2
MW
2266retry:
2267 xas_reset(&xas);
ebf43500 2268 }
35b47146
VMO
2269
2270update_start:
2271 nr = folio_batch_count(fbatch);
2272
2273 if (nr) {
2274 folio = fbatch->folios[nr - 1];
2275 if (folio_test_hugetlb(folio))
2276 *start = folio->index + 1;
2277 else
2278 *start = folio->index + folio_nr_pages(folio);
2279 }
2280out:
a60637c8 2281 rcu_read_unlock();
35b47146 2282 return folio_batch_count(fbatch);
ebf43500 2283}
35b47146 2284EXPORT_SYMBOL(filemap_get_folios_contig);
ebf43500 2285
485bb99b 2286/**
c49f50d1 2287 * find_get_pages_range_tag - Find and return head pages matching @tag.
485bb99b
RD
2288 * @mapping: the address_space to search
2289 * @index: the starting page index
72b045ae 2290 * @end: The final page index (inclusive)
485bb99b
RD
2291 * @tag: the tag index
2292 * @nr_pages: the maximum number of pages
2293 * @pages: where the resulting pages are placed
2294 *
eb5279fb
ML
2295 * Like find_get_pages_range(), except we only return head pages which are
2296 * tagged with @tag. @index is updated to the index immediately after the
2297 * last page we return, ready for the next iteration.
a862f68a
MR
2298 *
2299 * Return: the number of pages which were found.
1da177e4 2300 */
72b045ae 2301unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
a6906972 2302 pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
72b045ae 2303 struct page **pages)
1da177e4 2304{
a6906972 2305 XA_STATE(xas, &mapping->i_pages, *index);
f5e6429a 2306 struct folio *folio;
0fc9d104
KK
2307 unsigned ret = 0;
2308
2309 if (unlikely(!nr_pages))
2310 return 0;
a60637c8
NP
2311
2312 rcu_read_lock();
f5e6429a 2313 while ((folio = find_get_entry(&xas, end, tag))) {
a6906972
MW
2314 /*
2315 * Shadow entries should never be tagged, but this iteration
2316 * is lockless so there is a window for page reclaim to evict
2317 * a page we saw tagged. Skip over it.
2318 */
f5e6429a 2319 if (xa_is_value(folio))
139b6a6f 2320 continue;
a60637c8 2321
f5e6429a 2322 pages[ret] = &folio->page;
72b045ae 2323 if (++ret == nr_pages) {
f5e6429a 2324 *index = folio->index + folio_nr_pages(folio);
72b045ae
JK
2325 goto out;
2326 }
a60637c8 2327 }
5b280c0c 2328
72b045ae 2329 /*
a6906972 2330 * We come here when we got to @end. We take care to not overflow the
72b045ae 2331 * index @index as it confuses some of the callers. This breaks the
a6906972
MW
2332 * iteration when there is a page at index -1 but that is already
2333 * broken anyway.
72b045ae
JK
2334 */
2335 if (end == (pgoff_t)-1)
2336 *index = (pgoff_t)-1;
2337 else
2338 *index = end + 1;
2339out:
a60637c8 2340 rcu_read_unlock();
1da177e4 2341
1da177e4
LT
2342 return ret;
2343}
72b045ae 2344EXPORT_SYMBOL(find_get_pages_range_tag);
1da177e4 2345
76d42bd9
WF
2346/*
2347 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2348 * a _large_ part of the i/o request. Imagine the worst scenario:
2349 *
2350 * ---R__________________________________________B__________
2351 * ^ reading here ^ bad block(assume 4k)
2352 *
2353 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2354 * => failing the whole request => read(R) => read(R+1) =>
2355 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2356 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2357 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2358 *
2359 * It is going insane. Fix it by quickly scaling down the readahead size.
2360 */
0f8e2db4 2361static void shrink_readahead_size_eio(struct file_ra_state *ra)
76d42bd9 2362{
76d42bd9 2363 ra->ra_pages /= 4;
76d42bd9
WF
2364}
2365
cbd59c48 2366/*
25d6a23e 2367 * filemap_get_read_batch - Get a batch of folios for read
cbd59c48 2368 *
25d6a23e
MWO
2369 * Get a batch of folios which represent a contiguous range of bytes in
2370 * the file. No exceptional entries will be returned. If @index is in
2371 * the middle of a folio, the entire folio will be returned. The last
2372 * folio in the batch may have the readahead flag set or the uptodate flag
2373 * clear so that the caller can take the appropriate action.
cbd59c48
MWO
2374 */
2375static void filemap_get_read_batch(struct address_space *mapping,
25d6a23e 2376 pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
cbd59c48
MWO
2377{
2378 XA_STATE(xas, &mapping->i_pages, index);
bdb72932 2379 struct folio *folio;
cbd59c48
MWO
2380
2381 rcu_read_lock();
bdb72932
MWO
2382 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2383 if (xas_retry(&xas, folio))
cbd59c48 2384 continue;
bdb72932 2385 if (xas.xa_index > max || xa_is_value(folio))
cbd59c48 2386 break;
cb995f4e
MWO
2387 if (xa_is_sibling(folio))
2388 break;
bdb72932 2389 if (!folio_try_get_rcu(folio))
cbd59c48
MWO
2390 goto retry;
2391
bdb72932 2392 if (unlikely(folio != xas_reload(&xas)))
25d6a23e 2393 goto put_folio;
cbd59c48 2394
25d6a23e 2395 if (!folio_batch_add(fbatch, folio))
cbd59c48 2396 break;
bdb72932 2397 if (!folio_test_uptodate(folio))
cbd59c48 2398 break;
bdb72932 2399 if (folio_test_readahead(folio))
cbd59c48 2400 break;
6b24ca4a 2401 xas_advance(&xas, folio->index + folio_nr_pages(folio) - 1);
cbd59c48 2402 continue;
25d6a23e 2403put_folio:
bdb72932 2404 folio_put(folio);
cbd59c48
MWO
2405retry:
2406 xas_reset(&xas);
2407 }
2408 rcu_read_unlock();
2409}
2410
290e1a32 2411static int filemap_read_folio(struct file *file, filler_t filler,
9d427b4e 2412 struct folio *folio)
723ef24b 2413{
17604240
CH
2414 bool workingset = folio_test_workingset(folio);
2415 unsigned long pflags;
723ef24b
KO
2416 int error;
2417
723ef24b 2418 /*
68430303 2419 * A previous I/O error may have been due to temporary failures,
7e0a1265 2420 * eg. multipath errors. PG_error will be set again if read_folio
68430303 2421 * fails.
723ef24b 2422 */
9d427b4e 2423 folio_clear_error(folio);
17604240 2424
723ef24b 2425 /* Start the actual read. The read will unlock the page. */
17604240
CH
2426 if (unlikely(workingset))
2427 psi_memstall_enter(&pflags);
290e1a32 2428 error = filler(file, folio);
17604240
CH
2429 if (unlikely(workingset))
2430 psi_memstall_leave(&pflags);
68430303
MWO
2431 if (error)
2432 return error;
723ef24b 2433
9d427b4e 2434 error = folio_wait_locked_killable(folio);
68430303
MWO
2435 if (error)
2436 return error;
9d427b4e 2437 if (folio_test_uptodate(folio))
aa1ec2f6 2438 return 0;
290e1a32
MWO
2439 if (file)
2440 shrink_readahead_size_eio(&file->f_ra);
aa1ec2f6 2441 return -EIO;
723ef24b
KO
2442}
2443
fce70da3 2444static bool filemap_range_uptodate(struct address_space *mapping,
2fa4eeb8 2445 loff_t pos, struct iov_iter *iter, struct folio *folio)
fce70da3
MWO
2446{
2447 int count;
2448
2fa4eeb8 2449 if (folio_test_uptodate(folio))
fce70da3
MWO
2450 return true;
2451 /* pipes can't handle partially uptodate pages */
2452 if (iov_iter_is_pipe(iter))
2453 return false;
2454 if (!mapping->a_ops->is_partially_uptodate)
2455 return false;
2fa4eeb8 2456 if (mapping->host->i_blkbits >= folio_shift(folio))
fce70da3
MWO
2457 return false;
2458
2459 count = iter->count;
2fa4eeb8
MWO
2460 if (folio_pos(folio) > pos) {
2461 count -= folio_pos(folio) - pos;
fce70da3
MWO
2462 pos = 0;
2463 } else {
2fa4eeb8 2464 pos -= folio_pos(folio);
fce70da3
MWO
2465 }
2466
2e7e80f7 2467 return mapping->a_ops->is_partially_uptodate(folio, pos, count);
fce70da3
MWO
2468}
2469
4612aeef
MWO
2470static int filemap_update_page(struct kiocb *iocb,
2471 struct address_space *mapping, struct iov_iter *iter,
65bca53b 2472 struct folio *folio)
723ef24b 2473{
723ef24b
KO
2474 int error;
2475
730633f0
JK
2476 if (iocb->ki_flags & IOCB_NOWAIT) {
2477 if (!filemap_invalidate_trylock_shared(mapping))
2478 return -EAGAIN;
2479 } else {
2480 filemap_invalidate_lock_shared(mapping);
2481 }
2482
ffdc8dab 2483 if (!folio_trylock(folio)) {
730633f0 2484 error = -EAGAIN;
87d1d7b6 2485 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
730633f0 2486 goto unlock_mapping;
87d1d7b6 2487 if (!(iocb->ki_flags & IOCB_WAITQ)) {
730633f0 2488 filemap_invalidate_unlock_shared(mapping);
9f2b04a2
MWO
2489 /*
2490 * This is where we usually end up waiting for a
2491 * previously submitted readahead to finish.
2492 */
2493 folio_put_wait_locked(folio, TASK_KILLABLE);
4612aeef 2494 return AOP_TRUNCATED_PAGE;
bd8a1f36 2495 }
ffdc8dab 2496 error = __folio_lock_async(folio, iocb->ki_waitq);
87d1d7b6 2497 if (error)
730633f0 2498 goto unlock_mapping;
723ef24b 2499 }
723ef24b 2500
730633f0 2501 error = AOP_TRUNCATED_PAGE;
ffdc8dab 2502 if (!folio->mapping)
730633f0 2503 goto unlock;
723ef24b 2504
fce70da3 2505 error = 0;
2fa4eeb8 2506 if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, folio))
fce70da3
MWO
2507 goto unlock;
2508
2509 error = -EAGAIN;
2510 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2511 goto unlock;
2512
290e1a32
MWO
2513 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2514 folio);
730633f0 2515 goto unlock_mapping;
fce70da3 2516unlock:
ffdc8dab 2517 folio_unlock(folio);
730633f0
JK
2518unlock_mapping:
2519 filemap_invalidate_unlock_shared(mapping);
2520 if (error == AOP_TRUNCATED_PAGE)
ffdc8dab 2521 folio_put(folio);
fce70da3 2522 return error;
723ef24b
KO
2523}
2524
a5d4ad09 2525static int filemap_create_folio(struct file *file,
f253e185 2526 struct address_space *mapping, pgoff_t index,
25d6a23e 2527 struct folio_batch *fbatch)
723ef24b 2528{
a5d4ad09 2529 struct folio *folio;
723ef24b
KO
2530 int error;
2531
a5d4ad09
MWO
2532 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0);
2533 if (!folio)
f253e185 2534 return -ENOMEM;
723ef24b 2535
730633f0 2536 /*
a5d4ad09
MWO
2537 * Protect against truncate / hole punch. Grabbing invalidate_lock
2538 * here assures we cannot instantiate and bring uptodate new
2539 * pagecache folios after evicting page cache during truncate
2540 * and before actually freeing blocks. Note that we could
2541 * release invalidate_lock after inserting the folio into
2542 * the page cache as the locked folio would then be enough to
2543 * synchronize with hole punching. But there are code paths
2544 * such as filemap_update_page() filling in partially uptodate
704528d8 2545 * pages or ->readahead() that need to hold invalidate_lock
a5d4ad09
MWO
2546 * while mapping blocks for IO so let's hold the lock here as
2547 * well to keep locking rules simple.
730633f0
JK
2548 */
2549 filemap_invalidate_lock_shared(mapping);
a5d4ad09 2550 error = filemap_add_folio(mapping, folio, index,
f253e185
MWO
2551 mapping_gfp_constraint(mapping, GFP_KERNEL));
2552 if (error == -EEXIST)
2553 error = AOP_TRUNCATED_PAGE;
2554 if (error)
2555 goto error;
2556
290e1a32 2557 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
f253e185
MWO
2558 if (error)
2559 goto error;
2560
730633f0 2561 filemap_invalidate_unlock_shared(mapping);
25d6a23e 2562 folio_batch_add(fbatch, folio);
f253e185
MWO
2563 return 0;
2564error:
730633f0 2565 filemap_invalidate_unlock_shared(mapping);
a5d4ad09 2566 folio_put(folio);
f253e185 2567 return error;
723ef24b
KO
2568}
2569
5963fe03 2570static int filemap_readahead(struct kiocb *iocb, struct file *file,
65bca53b 2571 struct address_space *mapping, struct folio *folio,
5963fe03
MWO
2572 pgoff_t last_index)
2573{
65bca53b
MWO
2574 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2575
5963fe03
MWO
2576 if (iocb->ki_flags & IOCB_NOIO)
2577 return -EAGAIN;
65bca53b 2578 page_cache_async_ra(&ractl, folio, last_index - folio->index);
5963fe03
MWO
2579 return 0;
2580}
2581
3a6bae48 2582static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter,
25d6a23e 2583 struct folio_batch *fbatch)
06c04442
KO
2584{
2585 struct file *filp = iocb->ki_filp;
2586 struct address_space *mapping = filp->f_mapping;
2587 struct file_ra_state *ra = &filp->f_ra;
2588 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
cbd59c48 2589 pgoff_t last_index;
65bca53b 2590 struct folio *folio;
cbd59c48 2591 int err = 0;
06c04442 2592
cbd59c48 2593 last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE);
2642fca6 2594retry:
06c04442
KO
2595 if (fatal_signal_pending(current))
2596 return -EINTR;
2597
25d6a23e
MWO
2598 filemap_get_read_batch(mapping, index, last_index, fbatch);
2599 if (!folio_batch_count(fbatch)) {
2642fca6
MWO
2600 if (iocb->ki_flags & IOCB_NOIO)
2601 return -EAGAIN;
2602 page_cache_sync_readahead(mapping, ra, filp, index,
2603 last_index - index);
25d6a23e 2604 filemap_get_read_batch(mapping, index, last_index, fbatch);
2642fca6 2605 }
25d6a23e 2606 if (!folio_batch_count(fbatch)) {
f253e185
MWO
2607 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2608 return -EAGAIN;
a5d4ad09 2609 err = filemap_create_folio(filp, mapping,
25d6a23e 2610 iocb->ki_pos >> PAGE_SHIFT, fbatch);
f253e185 2611 if (err == AOP_TRUNCATED_PAGE)
2642fca6 2612 goto retry;
f253e185
MWO
2613 return err;
2614 }
06c04442 2615
25d6a23e 2616 folio = fbatch->folios[folio_batch_count(fbatch) - 1];
65bca53b
MWO
2617 if (folio_test_readahead(folio)) {
2618 err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2642fca6
MWO
2619 if (err)
2620 goto err;
2621 }
65bca53b 2622 if (!folio_test_uptodate(folio)) {
25d6a23e
MWO
2623 if ((iocb->ki_flags & IOCB_WAITQ) &&
2624 folio_batch_count(fbatch) > 1)
2642fca6 2625 iocb->ki_flags |= IOCB_NOWAIT;
65bca53b 2626 err = filemap_update_page(iocb, mapping, iter, folio);
2642fca6
MWO
2627 if (err)
2628 goto err;
06c04442
KO
2629 }
2630
2642fca6 2631 return 0;
cbd59c48 2632err:
2642fca6 2633 if (err < 0)
65bca53b 2634 folio_put(folio);
25d6a23e 2635 if (likely(--fbatch->nr))
ff993ba1 2636 return 0;
4612aeef 2637 if (err == AOP_TRUNCATED_PAGE)
2642fca6
MWO
2638 goto retry;
2639 return err;
06c04442
KO
2640}
2641
5ccc944d
MWO
2642static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio)
2643{
2644 unsigned int shift = folio_shift(folio);
2645
2646 return (pos1 >> shift == pos2 >> shift);
2647}
2648
485bb99b 2649/**
87fa0f3e
CH
2650 * filemap_read - Read data from the page cache.
2651 * @iocb: The iocb to read.
2652 * @iter: Destination for the data.
2653 * @already_read: Number of bytes already read by the caller.
485bb99b 2654 *
87fa0f3e 2655 * Copies data from the page cache. If the data is not currently present,
7e0a1265 2656 * uses the readahead and read_folio address_space operations to fetch it.
1da177e4 2657 *
87fa0f3e
CH
2658 * Return: Total number of bytes copied, including those already read by
2659 * the caller. If an error happens before any bytes are copied, returns
2660 * a negative error number.
1da177e4 2661 */
87fa0f3e
CH
2662ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2663 ssize_t already_read)
1da177e4 2664{
47c27bc4 2665 struct file *filp = iocb->ki_filp;
06c04442 2666 struct file_ra_state *ra = &filp->f_ra;
36e78914 2667 struct address_space *mapping = filp->f_mapping;
1da177e4 2668 struct inode *inode = mapping->host;
25d6a23e 2669 struct folio_batch fbatch;
ff993ba1 2670 int i, error = 0;
06c04442
KO
2671 bool writably_mapped;
2672 loff_t isize, end_offset;
1da177e4 2673
723ef24b 2674 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
d05c5f7b 2675 return 0;
3644e2d2
KO
2676 if (unlikely(!iov_iter_count(iter)))
2677 return 0;
2678
c2a9737f 2679 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
25d6a23e 2680 folio_batch_init(&fbatch);
c2a9737f 2681
06c04442 2682 do {
1da177e4 2683 cond_resched();
5abf186a 2684
723ef24b 2685 /*
06c04442
KO
2686 * If we've already successfully copied some data, then we
2687 * can no longer safely return -EIOCBQUEUED. Hence mark
2688 * an async read NOWAIT at that point.
723ef24b 2689 */
87fa0f3e 2690 if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
723ef24b
KO
2691 iocb->ki_flags |= IOCB_NOWAIT;
2692
8c8387ee
DH
2693 if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2694 break;
2695
25d6a23e 2696 error = filemap_get_pages(iocb, iter, &fbatch);
ff993ba1 2697 if (error < 0)
06c04442 2698 break;
1da177e4 2699
06c04442
KO
2700 /*
2701 * i_size must be checked after we know the pages are Uptodate.
2702 *
2703 * Checking i_size after the check allows us to calculate
2704 * the correct value for "nr", which means the zero-filled
2705 * part of the page is not copied back to userspace (unless
2706 * another truncate extends the file - this is desired though).
2707 */
2708 isize = i_size_read(inode);
2709 if (unlikely(iocb->ki_pos >= isize))
25d6a23e 2710 goto put_folios;
06c04442
KO
2711 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2712
06c04442
KO
2713 /*
2714 * Once we start copying data, we don't want to be touching any
2715 * cachelines that might be contended:
2716 */
2717 writably_mapped = mapping_writably_mapped(mapping);
2718
2719 /*
5ccc944d 2720 * When a read accesses the same folio several times, only
06c04442
KO
2721 * mark it as accessed the first time.
2722 */
5ccc944d
MWO
2723 if (!pos_same_folio(iocb->ki_pos, ra->prev_pos - 1,
2724 fbatch.folios[0]))
25d6a23e 2725 folio_mark_accessed(fbatch.folios[0]);
06c04442 2726
25d6a23e
MWO
2727 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2728 struct folio *folio = fbatch.folios[i];
d996fc7f
MWO
2729 size_t fsize = folio_size(folio);
2730 size_t offset = iocb->ki_pos & (fsize - 1);
cbd59c48 2731 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
d996fc7f 2732 fsize - offset);
cbd59c48 2733 size_t copied;
06c04442 2734
d996fc7f 2735 if (end_offset < folio_pos(folio))
cbd59c48
MWO
2736 break;
2737 if (i > 0)
d996fc7f 2738 folio_mark_accessed(folio);
06c04442 2739 /*
d996fc7f
MWO
2740 * If users can be writing to this folio using arbitrary
2741 * virtual addresses, take care of potential aliasing
2742 * before reading the folio on the kernel side.
06c04442 2743 */
d996fc7f
MWO
2744 if (writably_mapped)
2745 flush_dcache_folio(folio);
06c04442 2746
d996fc7f 2747 copied = copy_folio_to_iter(folio, offset, bytes, iter);
06c04442 2748
87fa0f3e 2749 already_read += copied;
06c04442
KO
2750 iocb->ki_pos += copied;
2751 ra->prev_pos = iocb->ki_pos;
2752
2753 if (copied < bytes) {
2754 error = -EFAULT;
2755 break;
2756 }
1da177e4 2757 }
25d6a23e
MWO
2758put_folios:
2759 for (i = 0; i < folio_batch_count(&fbatch); i++)
2760 folio_put(fbatch.folios[i]);
2761 folio_batch_init(&fbatch);
06c04442 2762 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
1da177e4 2763
0c6aa263 2764 file_accessed(filp);
06c04442 2765
87fa0f3e 2766 return already_read ? already_read : error;
1da177e4 2767}
87fa0f3e 2768EXPORT_SYMBOL_GPL(filemap_read);
1da177e4 2769
485bb99b 2770/**
6abd2322 2771 * generic_file_read_iter - generic filesystem read routine
485bb99b 2772 * @iocb: kernel I/O control block
6abd2322 2773 * @iter: destination for the data read
485bb99b 2774 *
6abd2322 2775 * This is the "read_iter()" routine for all filesystems
1da177e4 2776 * that can use the page cache directly.
41da51bc
AG
2777 *
2778 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2779 * be returned when no data can be read without waiting for I/O requests
2780 * to complete; it doesn't prevent readahead.
2781 *
2782 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2783 * requests shall be made for the read or for readahead. When no data
2784 * can be read, -EAGAIN shall be returned. When readahead would be
2785 * triggered, a partial, possibly empty read shall be returned.
2786 *
a862f68a
MR
2787 * Return:
2788 * * number of bytes copied, even for partial reads
41da51bc 2789 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
1da177e4
LT
2790 */
2791ssize_t
ed978a81 2792generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1da177e4 2793{
e7080a43 2794 size_t count = iov_iter_count(iter);
47c27bc4 2795 ssize_t retval = 0;
e7080a43
NS
2796
2797 if (!count)
826ea860 2798 return 0; /* skip atime */
1da177e4 2799
2ba48ce5 2800 if (iocb->ki_flags & IOCB_DIRECT) {
47c27bc4 2801 struct file *file = iocb->ki_filp;
ed978a81
AV
2802 struct address_space *mapping = file->f_mapping;
2803 struct inode *inode = mapping->host;
1da177e4 2804
6be96d3a 2805 if (iocb->ki_flags & IOCB_NOWAIT) {
7a60d6d7
JA
2806 if (filemap_range_needs_writeback(mapping, iocb->ki_pos,
2807 iocb->ki_pos + count - 1))
6be96d3a
GR
2808 return -EAGAIN;
2809 } else {
2810 retval = filemap_write_and_wait_range(mapping,
2811 iocb->ki_pos,
2812 iocb->ki_pos + count - 1);
2813 if (retval < 0)
826ea860 2814 return retval;
6be96d3a 2815 }
d8d3d94b 2816
0d5b0cf2
CH
2817 file_accessed(file);
2818
5ecda137 2819 retval = mapping->a_ops->direct_IO(iocb, iter);
c3a69024 2820 if (retval >= 0) {
c64fb5c7 2821 iocb->ki_pos += retval;
5ecda137 2822 count -= retval;
9fe55eea 2823 }
ab2125df
PB
2824 if (retval != -EIOCBQUEUED)
2825 iov_iter_revert(iter, count - iov_iter_count(iter));
66f998f6 2826
9fe55eea
SW
2827 /*
2828 * Btrfs can have a short DIO read if we encounter
2829 * compressed extents, so if there was an error, or if
2830 * we've already read everything we wanted to, or if
2831 * there was a short read because we hit EOF, go ahead
2832 * and return. Otherwise fallthrough to buffered io for
fbbbad4b
MW
2833 * the rest of the read. Buffered reads will not work for
2834 * DAX files, so don't bother trying.
9fe55eea 2835 */
61d0017e
JA
2836 if (retval < 0 || !count || IS_DAX(inode))
2837 return retval;
2838 if (iocb->ki_pos >= i_size_read(inode))
826ea860 2839 return retval;
1da177e4
LT
2840 }
2841
826ea860 2842 return filemap_read(iocb, iter, retval);
1da177e4 2843}
ed978a81 2844EXPORT_SYMBOL(generic_file_read_iter);
1da177e4 2845
f5e6429a
MWO
2846static inline loff_t folio_seek_hole_data(struct xa_state *xas,
2847 struct address_space *mapping, struct folio *folio,
54fa39ac 2848 loff_t start, loff_t end, bool seek_data)
41139aa4 2849{
54fa39ac
MWO
2850 const struct address_space_operations *ops = mapping->a_ops;
2851 size_t offset, bsz = i_blocksize(mapping->host);
2852
f5e6429a 2853 if (xa_is_value(folio) || folio_test_uptodate(folio))
54fa39ac
MWO
2854 return seek_data ? start : end;
2855 if (!ops->is_partially_uptodate)
2856 return seek_data ? end : start;
2857
2858 xas_pause(xas);
2859 rcu_read_unlock();
f5e6429a
MWO
2860 folio_lock(folio);
2861 if (unlikely(folio->mapping != mapping))
54fa39ac
MWO
2862 goto unlock;
2863
f5e6429a 2864 offset = offset_in_folio(folio, start) & ~(bsz - 1);
54fa39ac
MWO
2865
2866 do {
2e7e80f7 2867 if (ops->is_partially_uptodate(folio, offset, bsz) ==
f5e6429a 2868 seek_data)
54fa39ac
MWO
2869 break;
2870 start = (start + bsz) & ~(bsz - 1);
2871 offset += bsz;
f5e6429a 2872 } while (offset < folio_size(folio));
54fa39ac 2873unlock:
f5e6429a 2874 folio_unlock(folio);
54fa39ac
MWO
2875 rcu_read_lock();
2876 return start;
41139aa4
MWO
2877}
2878
f5e6429a 2879static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
41139aa4 2880{
f5e6429a 2881 if (xa_is_value(folio))
41139aa4 2882 return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
f5e6429a 2883 return folio_size(folio);
41139aa4
MWO
2884}
2885
2886/**
2887 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
2888 * @mapping: Address space to search.
2889 * @start: First byte to consider.
2890 * @end: Limit of search (exclusive).
2891 * @whence: Either SEEK_HOLE or SEEK_DATA.
2892 *
2893 * If the page cache knows which blocks contain holes and which blocks
2894 * contain data, your filesystem can use this function to implement
2895 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are
2896 * entirely memory-based such as tmpfs, and filesystems which support
2897 * unwritten extents.
2898 *
f0953a1b 2899 * Return: The requested offset on success, or -ENXIO if @whence specifies
41139aa4
MWO
2900 * SEEK_DATA and there is no data after @start. There is an implicit hole
2901 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
2902 * and @end contain data.
2903 */
2904loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
2905 loff_t end, int whence)
2906{
2907 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
ed98b015 2908 pgoff_t max = (end - 1) >> PAGE_SHIFT;
41139aa4 2909 bool seek_data = (whence == SEEK_DATA);
f5e6429a 2910 struct folio *folio;
41139aa4
MWO
2911
2912 if (end <= start)
2913 return -ENXIO;
2914
2915 rcu_read_lock();
f5e6429a 2916 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
ed98b015 2917 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
f5e6429a 2918 size_t seek_size;
41139aa4
MWO
2919
2920 if (start < pos) {
2921 if (!seek_data)
2922 goto unlock;
2923 start = pos;
2924 }
2925
f5e6429a
MWO
2926 seek_size = seek_folio_size(&xas, folio);
2927 pos = round_up((u64)pos + 1, seek_size);
2928 start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
54fa39ac
MWO
2929 seek_data);
2930 if (start < pos)
41139aa4 2931 goto unlock;
ed98b015
HD
2932 if (start >= end)
2933 break;
2934 if (seek_size > PAGE_SIZE)
2935 xas_set(&xas, pos >> PAGE_SHIFT);
f5e6429a
MWO
2936 if (!xa_is_value(folio))
2937 folio_put(folio);
41139aa4 2938 }
41139aa4 2939 if (seek_data)
ed98b015 2940 start = -ENXIO;
41139aa4
MWO
2941unlock:
2942 rcu_read_unlock();
f5e6429a
MWO
2943 if (folio && !xa_is_value(folio))
2944 folio_put(folio);
41139aa4
MWO
2945 if (start > end)
2946 return end;
2947 return start;
2948}
2949
1da177e4 2950#ifdef CONFIG_MMU
1da177e4 2951#define MMAP_LOTSAMISS (100)
6b4c9f44 2952/*
e292e6d6 2953 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
6b4c9f44 2954 * @vmf - the vm_fault for this fault.
e292e6d6 2955 * @folio - the folio to lock.
6b4c9f44
JB
2956 * @fpin - the pointer to the file we may pin (or is already pinned).
2957 *
e292e6d6
MWO
2958 * This works similar to lock_folio_or_retry in that it can drop the
2959 * mmap_lock. It differs in that it actually returns the folio locked
2960 * if it returns 1 and 0 if it couldn't lock the folio. If we did have
2961 * to drop the mmap_lock then fpin will point to the pinned file and
2962 * needs to be fput()'ed at a later point.
6b4c9f44 2963 */
e292e6d6 2964static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
6b4c9f44
JB
2965 struct file **fpin)
2966{
7c23c782 2967 if (folio_trylock(folio))
6b4c9f44
JB
2968 return 1;
2969
8b0f9fa2
LT
2970 /*
2971 * NOTE! This will make us return with VM_FAULT_RETRY, but with
c1e8d7c6 2972 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
8b0f9fa2
LT
2973 * is supposed to work. We have way too many special cases..
2974 */
6b4c9f44
JB
2975 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2976 return 0;
2977
2978 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2979 if (vmf->flags & FAULT_FLAG_KILLABLE) {
af7f29d9 2980 if (__folio_lock_killable(folio)) {
6b4c9f44 2981 /*
c1e8d7c6 2982 * We didn't have the right flags to drop the mmap_lock,
6b4c9f44
JB
2983 * but all fault_handlers only check for fatal signals
2984 * if we return VM_FAULT_RETRY, so we need to drop the
c1e8d7c6 2985 * mmap_lock here and return 0 if we don't have a fpin.
6b4c9f44
JB
2986 */
2987 if (*fpin == NULL)
d8ed45c5 2988 mmap_read_unlock(vmf->vma->vm_mm);
6b4c9f44
JB
2989 return 0;
2990 }
2991 } else
7c23c782
MWO
2992 __folio_lock(folio);
2993
6b4c9f44
JB
2994 return 1;
2995}
2996
ef00e08e 2997/*
6b4c9f44
JB
2998 * Synchronous readahead happens when we don't even find a page in the page
2999 * cache at all. We don't want to perform IO under the mmap sem, so if we have
3000 * to drop the mmap sem we return the file that was pinned in order for us to do
3001 * that. If we didn't pin a file then we return NULL. The file that is
3002 * returned needs to be fput()'ed when we're done with it.
ef00e08e 3003 */
6b4c9f44 3004static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
ef00e08e 3005{
2a1180f1
JB
3006 struct file *file = vmf->vma->vm_file;
3007 struct file_ra_state *ra = &file->f_ra;
ef00e08e 3008 struct address_space *mapping = file->f_mapping;
fcd9ae4f 3009 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
6b4c9f44 3010 struct file *fpin = NULL;
dcfa24ba 3011 unsigned long vm_flags = vmf->vma->vm_flags;
e630bfac 3012 unsigned int mmap_miss;
ef00e08e 3013
4687fdbb
MWO
3014#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3015 /* Use the readahead code, even if readahead is disabled */
dcfa24ba 3016 if (vm_flags & VM_HUGEPAGE) {
4687fdbb
MWO
3017 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3018 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
3019 ra->size = HPAGE_PMD_NR;
3020 /*
3021 * Fetch two PMD folios, so we get the chance to actually
3022 * readahead, unless we've been told not to.
3023 */
dcfa24ba 3024 if (!(vm_flags & VM_RAND_READ))
4687fdbb
MWO
3025 ra->size *= 2;
3026 ra->async_size = HPAGE_PMD_NR;
3027 page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER);
3028 return fpin;
3029 }
3030#endif
3031
ef00e08e 3032 /* If we don't want any read-ahead, don't bother */
dcfa24ba 3033 if (vm_flags & VM_RAND_READ)
6b4c9f44 3034 return fpin;
275b12bf 3035 if (!ra->ra_pages)
6b4c9f44 3036 return fpin;
ef00e08e 3037
dcfa24ba 3038 if (vm_flags & VM_SEQ_READ) {
6b4c9f44 3039 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
fcd9ae4f 3040 page_cache_sync_ra(&ractl, ra->ra_pages);
6b4c9f44 3041 return fpin;
ef00e08e
LT
3042 }
3043
207d04ba 3044 /* Avoid banging the cache line if not needed */
e630bfac
KS
3045 mmap_miss = READ_ONCE(ra->mmap_miss);
3046 if (mmap_miss < MMAP_LOTSAMISS * 10)
3047 WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
ef00e08e
LT
3048
3049 /*
3050 * Do we miss much more than hit in this file? If so,
3051 * stop bothering with read-ahead. It will only hurt.
3052 */
e630bfac 3053 if (mmap_miss > MMAP_LOTSAMISS)
6b4c9f44 3054 return fpin;
ef00e08e 3055
d30a1100
WF
3056 /*
3057 * mmap read-around
3058 */
6b4c9f44 3059 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
db660d46 3060 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
600e19af
RG
3061 ra->size = ra->ra_pages;
3062 ra->async_size = ra->ra_pages / 4;
db660d46 3063 ractl._index = ra->start;
56a4d67c 3064 page_cache_ra_order(&ractl, ra, 0);
6b4c9f44 3065 return fpin;
ef00e08e
LT
3066}
3067
3068/*
3069 * Asynchronous readahead happens when we find the page and PG_readahead,
6b4c9f44 3070 * so we want to possibly extend the readahead further. We return the file that
c1e8d7c6 3071 * was pinned if we have to drop the mmap_lock in order to do IO.
ef00e08e 3072 */
6b4c9f44 3073static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
79598ced 3074 struct folio *folio)
ef00e08e 3075{
2a1180f1
JB
3076 struct file *file = vmf->vma->vm_file;
3077 struct file_ra_state *ra = &file->f_ra;
79598ced 3078 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
6b4c9f44 3079 struct file *fpin = NULL;
e630bfac 3080 unsigned int mmap_miss;
ef00e08e
LT
3081
3082 /* If we don't want any read-ahead, don't bother */
5c72feee 3083 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
6b4c9f44 3084 return fpin;
79598ced 3085
e630bfac
KS
3086 mmap_miss = READ_ONCE(ra->mmap_miss);
3087 if (mmap_miss)
3088 WRITE_ONCE(ra->mmap_miss, --mmap_miss);
79598ced
MWO
3089
3090 if (folio_test_readahead(folio)) {
6b4c9f44 3091 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
79598ced 3092 page_cache_async_ra(&ractl, folio, ra->ra_pages);
6b4c9f44
JB
3093 }
3094 return fpin;
ef00e08e
LT
3095}
3096
485bb99b 3097/**
54cb8821 3098 * filemap_fault - read in file data for page fault handling
d0217ac0 3099 * @vmf: struct vm_fault containing details of the fault
485bb99b 3100 *
54cb8821 3101 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
3102 * mapped memory region to read in file data during a page fault.
3103 *
3104 * The goto's are kind of ugly, but this streamlines the normal case of having
3105 * it in the page cache, and handles the special cases reasonably without
3106 * having a lot of duplicated code.
9a95f3cf 3107 *
c1e8d7c6 3108 * vma->vm_mm->mmap_lock must be held on entry.
9a95f3cf 3109 *
c1e8d7c6 3110 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
e292e6d6 3111 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
9a95f3cf 3112 *
c1e8d7c6 3113 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
9a95f3cf
PC
3114 * has not been released.
3115 *
3116 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
a862f68a
MR
3117 *
3118 * Return: bitwise-OR of %VM_FAULT_ codes.
1da177e4 3119 */
2bcd6454 3120vm_fault_t filemap_fault(struct vm_fault *vmf)
1da177e4
LT
3121{
3122 int error;
11bac800 3123 struct file *file = vmf->vma->vm_file;
6b4c9f44 3124 struct file *fpin = NULL;
1da177e4 3125 struct address_space *mapping = file->f_mapping;
1da177e4 3126 struct inode *inode = mapping->host;
e292e6d6
MWO
3127 pgoff_t max_idx, index = vmf->pgoff;
3128 struct folio *folio;
2bcd6454 3129 vm_fault_t ret = 0;
730633f0 3130 bool mapping_locked = false;
1da177e4 3131
e292e6d6
MWO
3132 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3133 if (unlikely(index >= max_idx))
5307cc1a 3134 return VM_FAULT_SIGBUS;
1da177e4 3135
1da177e4 3136 /*
49426420 3137 * Do we have something in the page cache already?
1da177e4 3138 */
e292e6d6
MWO
3139 folio = filemap_get_folio(mapping, index);
3140 if (likely(folio)) {
1da177e4 3141 /*
730633f0
JK
3142 * We found the page, so try async readahead before waiting for
3143 * the lock.
1da177e4 3144 */
730633f0 3145 if (!(vmf->flags & FAULT_FLAG_TRIED))
79598ced 3146 fpin = do_async_mmap_readahead(vmf, folio);
e292e6d6 3147 if (unlikely(!folio_test_uptodate(folio))) {
730633f0
JK
3148 filemap_invalidate_lock_shared(mapping);
3149 mapping_locked = true;
3150 }
3151 } else {
ef00e08e 3152 /* No page in the page cache at all */
ef00e08e 3153 count_vm_event(PGMAJFAULT);
2262185c 3154 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
ef00e08e 3155 ret = VM_FAULT_MAJOR;
6b4c9f44 3156 fpin = do_sync_mmap_readahead(vmf);
ef00e08e 3157retry_find:
730633f0 3158 /*
e292e6d6 3159 * See comment in filemap_create_folio() why we need
730633f0
JK
3160 * invalidate_lock
3161 */
3162 if (!mapping_locked) {
3163 filemap_invalidate_lock_shared(mapping);
3164 mapping_locked = true;
3165 }
e292e6d6 3166 folio = __filemap_get_folio(mapping, index,
a75d4c33
JB
3167 FGP_CREAT|FGP_FOR_MMAP,
3168 vmf->gfp_mask);
e292e6d6 3169 if (!folio) {
6b4c9f44
JB
3170 if (fpin)
3171 goto out_retry;
730633f0 3172 filemap_invalidate_unlock_shared(mapping);
e520e932 3173 return VM_FAULT_OOM;
6b4c9f44 3174 }
1da177e4
LT
3175 }
3176
e292e6d6 3177 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
6b4c9f44 3178 goto out_retry;
b522c94d
ML
3179
3180 /* Did it get truncated? */
e292e6d6
MWO
3181 if (unlikely(folio->mapping != mapping)) {
3182 folio_unlock(folio);
3183 folio_put(folio);
b522c94d
ML
3184 goto retry_find;
3185 }
e292e6d6 3186 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
b522c94d 3187
1da177e4 3188 /*
d00806b1
NP
3189 * We have a locked page in the page cache, now we need to check
3190 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 3191 */
e292e6d6 3192 if (unlikely(!folio_test_uptodate(folio))) {
730633f0
JK
3193 /*
3194 * The page was in cache and uptodate and now it is not.
3195 * Strange but possible since we didn't hold the page lock all
3196 * the time. Let's drop everything get the invalidate lock and
3197 * try again.
3198 */
3199 if (!mapping_locked) {
e292e6d6
MWO
3200 folio_unlock(folio);
3201 folio_put(folio);
730633f0
JK
3202 goto retry_find;
3203 }
1da177e4 3204 goto page_not_uptodate;
730633f0 3205 }
1da177e4 3206
6b4c9f44 3207 /*
c1e8d7c6 3208 * We've made it this far and we had to drop our mmap_lock, now is the
6b4c9f44
JB
3209 * time to return to the upper layer and have it re-find the vma and
3210 * redo the fault.
3211 */
3212 if (fpin) {
e292e6d6 3213 folio_unlock(folio);
6b4c9f44
JB
3214 goto out_retry;
3215 }
730633f0
JK
3216 if (mapping_locked)
3217 filemap_invalidate_unlock_shared(mapping);
6b4c9f44 3218
ef00e08e
LT
3219 /*
3220 * Found the page and have a reference on it.
3221 * We must recheck i_size under page lock.
3222 */
e292e6d6
MWO
3223 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3224 if (unlikely(index >= max_idx)) {
3225 folio_unlock(folio);
3226 folio_put(folio);
5307cc1a 3227 return VM_FAULT_SIGBUS;
d00806b1
NP
3228 }
3229
e292e6d6 3230 vmf->page = folio_file_page(folio, index);
83c54070 3231 return ret | VM_FAULT_LOCKED;
1da177e4 3232
1da177e4 3233page_not_uptodate:
1da177e4
LT
3234 /*
3235 * Umm, take care of errors if the page isn't up-to-date.
3236 * Try to re-read it _once_. We do this synchronously,
3237 * because there really aren't any performance issues here
3238 * and we need to check for errors.
3239 */
6b4c9f44 3240 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
290e1a32 3241 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
6b4c9f44
JB
3242 if (fpin)
3243 goto out_retry;
e292e6d6 3244 folio_put(folio);
d00806b1
NP
3245
3246 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 3247 goto retry_find;
730633f0 3248 filemap_invalidate_unlock_shared(mapping);
1da177e4 3249
d0217ac0 3250 return VM_FAULT_SIGBUS;
6b4c9f44
JB
3251
3252out_retry:
3253 /*
c1e8d7c6 3254 * We dropped the mmap_lock, we need to return to the fault handler to
6b4c9f44
JB
3255 * re-find the vma and come back and find our hopefully still populated
3256 * page.
3257 */
e292e6d6
MWO
3258 if (folio)
3259 folio_put(folio);
730633f0
JK
3260 if (mapping_locked)
3261 filemap_invalidate_unlock_shared(mapping);
6b4c9f44
JB
3262 if (fpin)
3263 fput(fpin);
3264 return ret | VM_FAULT_RETRY;
54cb8821
NP
3265}
3266EXPORT_SYMBOL(filemap_fault);
3267
f9ce0be7 3268static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page)
f1820361 3269{
f9ce0be7
KS
3270 struct mm_struct *mm = vmf->vma->vm_mm;
3271
3272 /* Huge page is mapped? No need to proceed. */
3273 if (pmd_trans_huge(*vmf->pmd)) {
3274 unlock_page(page);
3275 put_page(page);
3276 return true;
3277 }
3278
3279 if (pmd_none(*vmf->pmd) && PageTransHuge(page)) {
e0f43fa5
YS
3280 vm_fault_t ret = do_set_pmd(vmf, page);
3281 if (!ret) {
3282 /* The page is mapped successfully, reference consumed. */
3283 unlock_page(page);
3284 return true;
f9ce0be7 3285 }
f9ce0be7
KS
3286 }
3287
03c4f204
QZ
3288 if (pmd_none(*vmf->pmd))
3289 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
f9ce0be7
KS
3290
3291 /* See comment in handle_pte_fault() */
3292 if (pmd_devmap_trans_unstable(vmf->pmd)) {
3293 unlock_page(page);
3294 put_page(page);
3295 return true;
3296 }
3297
3298 return false;
3299}
3300
820b05e9 3301static struct folio *next_uptodate_page(struct folio *folio,
f9ce0be7
KS
3302 struct address_space *mapping,
3303 struct xa_state *xas, pgoff_t end_pgoff)
3304{
3305 unsigned long max_idx;
3306
3307 do {
9184a307 3308 if (!folio)
f9ce0be7 3309 return NULL;
9184a307 3310 if (xas_retry(xas, folio))
f9ce0be7 3311 continue;
9184a307 3312 if (xa_is_value(folio))
f9ce0be7 3313 continue;
9184a307 3314 if (folio_test_locked(folio))
f9ce0be7 3315 continue;
9184a307 3316 if (!folio_try_get_rcu(folio))
f9ce0be7
KS
3317 continue;
3318 /* Has the page moved or been split? */
9184a307 3319 if (unlikely(folio != xas_reload(xas)))
f9ce0be7 3320 goto skip;
9184a307 3321 if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
f9ce0be7 3322 goto skip;
9184a307 3323 if (!folio_trylock(folio))
f9ce0be7 3324 goto skip;
9184a307 3325 if (folio->mapping != mapping)
f9ce0be7 3326 goto unlock;
9184a307 3327 if (!folio_test_uptodate(folio))
f9ce0be7
KS
3328 goto unlock;
3329 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3330 if (xas->xa_index >= max_idx)
3331 goto unlock;
820b05e9 3332 return folio;
f9ce0be7 3333unlock:
9184a307 3334 folio_unlock(folio);
f9ce0be7 3335skip:
9184a307
MWO
3336 folio_put(folio);
3337 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
f9ce0be7
KS
3338
3339 return NULL;
3340}
3341
820b05e9 3342static inline struct folio *first_map_page(struct address_space *mapping,
f9ce0be7
KS
3343 struct xa_state *xas,
3344 pgoff_t end_pgoff)
3345{
3346 return next_uptodate_page(xas_find(xas, end_pgoff),
3347 mapping, xas, end_pgoff);
3348}
3349
820b05e9 3350static inline struct folio *next_map_page(struct address_space *mapping,
f9ce0be7
KS
3351 struct xa_state *xas,
3352 pgoff_t end_pgoff)
3353{
3354 return next_uptodate_page(xas_next_entry(xas, end_pgoff),
3355 mapping, xas, end_pgoff);
3356}
3357
3358vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3359 pgoff_t start_pgoff, pgoff_t end_pgoff)
3360{
3361 struct vm_area_struct *vma = vmf->vma;
3362 struct file *file = vma->vm_file;
f1820361 3363 struct address_space *mapping = file->f_mapping;
bae473a4 3364 pgoff_t last_pgoff = start_pgoff;
9d3af4b4 3365 unsigned long addr;
070e807c 3366 XA_STATE(xas, &mapping->i_pages, start_pgoff);
820b05e9
MWO
3367 struct folio *folio;
3368 struct page *page;
e630bfac 3369 unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
f9ce0be7 3370 vm_fault_t ret = 0;
f1820361
KS
3371
3372 rcu_read_lock();
820b05e9
MWO
3373 folio = first_map_page(mapping, &xas, end_pgoff);
3374 if (!folio)
f9ce0be7 3375 goto out;
f1820361 3376
820b05e9 3377 if (filemap_map_pmd(vmf, &folio->page)) {
f9ce0be7
KS
3378 ret = VM_FAULT_NOPAGE;
3379 goto out;
3380 }
f1820361 3381
9d3af4b4
WD
3382 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3383 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
f9ce0be7 3384 do {
6b24ca4a 3385again:
820b05e9 3386 page = folio_file_page(folio, xas.xa_index);
f9ce0be7 3387 if (PageHWPoison(page))
f1820361
KS
3388 goto unlock;
3389
e630bfac
KS
3390 if (mmap_miss > 0)
3391 mmap_miss--;
7267ec00 3392
9d3af4b4 3393 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
f9ce0be7 3394 vmf->pte += xas.xa_index - last_pgoff;
070e807c 3395 last_pgoff = xas.xa_index;
f9ce0be7 3396
5c041f5d
PX
3397 /*
3398 * NOTE: If there're PTE markers, we'll leave them to be
3399 * handled in the specific fault path, and it'll prohibit the
3400 * fault-around logic.
3401 */
f9ce0be7 3402 if (!pte_none(*vmf->pte))
7267ec00 3403 goto unlock;
f9ce0be7 3404
46bdb427 3405 /* We're about to handle the fault */
9d3af4b4 3406 if (vmf->address == addr)
46bdb427 3407 ret = VM_FAULT_NOPAGE;
46bdb427 3408
9d3af4b4 3409 do_set_pte(vmf, page, addr);
f9ce0be7 3410 /* no need to invalidate: a not-present page won't be cached */
9d3af4b4 3411 update_mmu_cache(vma, addr, vmf->pte);
6b24ca4a
MWO
3412 if (folio_more_pages(folio, xas.xa_index, end_pgoff)) {
3413 xas.xa_index++;
3414 folio_ref_inc(folio);
3415 goto again;
3416 }
820b05e9 3417 folio_unlock(folio);
f9ce0be7 3418 continue;
f1820361 3419unlock:
6b24ca4a
MWO
3420 if (folio_more_pages(folio, xas.xa_index, end_pgoff)) {
3421 xas.xa_index++;
3422 goto again;
3423 }
820b05e9
MWO
3424 folio_unlock(folio);
3425 folio_put(folio);
3426 } while ((folio = next_map_page(mapping, &xas, end_pgoff)) != NULL);
f9ce0be7
KS
3427 pte_unmap_unlock(vmf->pte, vmf->ptl);
3428out:
f1820361 3429 rcu_read_unlock();
e630bfac 3430 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
f9ce0be7 3431 return ret;
f1820361
KS
3432}
3433EXPORT_SYMBOL(filemap_map_pages);
3434
2bcd6454 3435vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
4fcf1c62 3436{
5df1a672 3437 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
960ea971 3438 struct folio *folio = page_folio(vmf->page);
2bcd6454 3439 vm_fault_t ret = VM_FAULT_LOCKED;
4fcf1c62 3440
5df1a672 3441 sb_start_pagefault(mapping->host->i_sb);
11bac800 3442 file_update_time(vmf->vma->vm_file);
960ea971
MWO
3443 folio_lock(folio);
3444 if (folio->mapping != mapping) {
3445 folio_unlock(folio);
4fcf1c62
JK
3446 ret = VM_FAULT_NOPAGE;
3447 goto out;
3448 }
14da9200 3449 /*
960ea971 3450 * We mark the folio dirty already here so that when freeze is in
14da9200 3451 * progress, we are guaranteed that writeback during freezing will
960ea971 3452 * see the dirty folio and writeprotect it again.
14da9200 3453 */
960ea971
MWO
3454 folio_mark_dirty(folio);
3455 folio_wait_stable(folio);
4fcf1c62 3456out:
5df1a672 3457 sb_end_pagefault(mapping->host->i_sb);
4fcf1c62
JK
3458 return ret;
3459}
4fcf1c62 3460
f0f37e2f 3461const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 3462 .fault = filemap_fault,
f1820361 3463 .map_pages = filemap_map_pages,
4fcf1c62 3464 .page_mkwrite = filemap_page_mkwrite,
1da177e4
LT
3465};
3466
3467/* This is used for a general mmap of a disk file */
3468
68d68ff6 3469int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
3470{
3471 struct address_space *mapping = file->f_mapping;
3472
7e0a1265 3473 if (!mapping->a_ops->read_folio)
1da177e4
LT
3474 return -ENOEXEC;
3475 file_accessed(file);
3476 vma->vm_ops = &generic_file_vm_ops;
3477 return 0;
3478}
1da177e4
LT
3479
3480/*
3481 * This is for filesystems which do not implement ->writepage.
3482 */
3483int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3484{
3485 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3486 return -EINVAL;
3487 return generic_file_mmap(file, vma);
3488}
3489#else
4b96a37d 3490vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
45397228 3491{
4b96a37d 3492 return VM_FAULT_SIGBUS;
45397228 3493}
68d68ff6 3494int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
3495{
3496 return -ENOSYS;
3497}
68d68ff6 3498int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
3499{
3500 return -ENOSYS;
3501}
3502#endif /* CONFIG_MMU */
3503
45397228 3504EXPORT_SYMBOL(filemap_page_mkwrite);
1da177e4
LT
3505EXPORT_SYMBOL(generic_file_mmap);
3506EXPORT_SYMBOL(generic_file_readonly_mmap);
3507
539a3322 3508static struct folio *do_read_cache_folio(struct address_space *mapping,
e9b5b23e 3509 pgoff_t index, filler_t filler, struct file *file, gfp_t gfp)
67f9fd91 3510{
539a3322 3511 struct folio *folio;
1da177e4 3512 int err;
07950008
MWO
3513
3514 if (!filler)
3515 filler = mapping->a_ops->read_folio;
1da177e4 3516repeat:
539a3322
MWO
3517 folio = filemap_get_folio(mapping, index);
3518 if (!folio) {
3519 folio = filemap_alloc_folio(gfp, 0);
3520 if (!folio)
eb2be189 3521 return ERR_PTR(-ENOMEM);
539a3322 3522 err = filemap_add_folio(mapping, folio, index, gfp);
eb2be189 3523 if (unlikely(err)) {
539a3322 3524 folio_put(folio);
eb2be189
NP
3525 if (err == -EEXIST)
3526 goto repeat;
22ecdb4f 3527 /* Presumably ENOMEM for xarray node */
1da177e4
LT
3528 return ERR_PTR(err);
3529 }
32b63529 3530
9bc3e869 3531 goto filler;
32b63529 3532 }
539a3322 3533 if (folio_test_uptodate(folio))
1da177e4
LT
3534 goto out;
3535
81f4c03b
MWO
3536 if (!folio_trylock(folio)) {
3537 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3538 goto repeat;
3539 }
ebded027 3540
81f4c03b 3541 /* Folio was truncated from mapping */
539a3322
MWO
3542 if (!folio->mapping) {
3543 folio_unlock(folio);
3544 folio_put(folio);
32b63529 3545 goto repeat;
1da177e4 3546 }
ebded027
MG
3547
3548 /* Someone else locked and filled the page in a very small window */
539a3322
MWO
3549 if (folio_test_uptodate(folio)) {
3550 folio_unlock(folio);
1da177e4
LT
3551 goto out;
3552 }
faffdfa0 3553
9bc3e869 3554filler:
290e1a32 3555 err = filemap_read_folio(file, filler, folio);
1dfa24a4 3556 if (err) {
9bc3e869 3557 folio_put(folio);
1dfa24a4
MWO
3558 if (err == AOP_TRUNCATED_PAGE)
3559 goto repeat;
9bc3e869
MWO
3560 return ERR_PTR(err);
3561 }
32b63529 3562
c855ff37 3563out:
539a3322
MWO
3564 folio_mark_accessed(folio);
3565 return folio;
6fe6900e 3566}
0531b2aa
LT
3567
3568/**
e9b5b23e
MWO
3569 * read_cache_folio - Read into page cache, fill it if needed.
3570 * @mapping: The address_space to read from.
3571 * @index: The index to read.
3572 * @filler: Function to perform the read, or NULL to use aops->read_folio().
3573 * @file: Passed to filler function, may be NULL if not required.
0531b2aa 3574 *
e9b5b23e
MWO
3575 * Read one page into the page cache. If it succeeds, the folio returned
3576 * will contain @index, but it may not be the first page of the folio.
a862f68a 3577 *
e9b5b23e
MWO
3578 * If the filler function returns an error, it will be returned to the
3579 * caller.
730633f0 3580 *
e9b5b23e
MWO
3581 * Context: May sleep. Expects mapping->invalidate_lock to be held.
3582 * Return: An uptodate folio on success, ERR_PTR() on failure.
0531b2aa 3583 */
539a3322 3584struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
e9b5b23e 3585 filler_t filler, struct file *file)
539a3322 3586{
e9b5b23e 3587 return do_read_cache_folio(mapping, index, filler, file,
539a3322
MWO
3588 mapping_gfp_mask(mapping));
3589}
3590EXPORT_SYMBOL(read_cache_folio);
3591
3592static struct page *do_read_cache_page(struct address_space *mapping,
e9b5b23e 3593 pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp)
539a3322
MWO
3594{
3595 struct folio *folio;
3596
e9b5b23e 3597 folio = do_read_cache_folio(mapping, index, filler, file, gfp);
539a3322
MWO
3598 if (IS_ERR(folio))
3599 return &folio->page;
3600 return folio_file_page(folio, index);
3601}
3602
67f9fd91 3603struct page *read_cache_page(struct address_space *mapping,
e9b5b23e 3604 pgoff_t index, filler_t *filler, struct file *file)
0531b2aa 3605{
e9b5b23e 3606 return do_read_cache_page(mapping, index, filler, file,
d322a8e5 3607 mapping_gfp_mask(mapping));
0531b2aa 3608}
67f9fd91 3609EXPORT_SYMBOL(read_cache_page);
0531b2aa
LT
3610
3611/**
3612 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3613 * @mapping: the page's address_space
3614 * @index: the page index
3615 * @gfp: the page allocator flags to use if allocating
3616 *
3617 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
e6f67b8c 3618 * any new page allocations done using the specified allocation flags.
0531b2aa
LT
3619 *
3620 * If the page does not get brought uptodate, return -EIO.
a862f68a 3621 *
730633f0
JK
3622 * The function expects mapping->invalidate_lock to be already held.
3623 *
a862f68a 3624 * Return: up to date page on success, ERR_PTR() on failure.
0531b2aa
LT
3625 */
3626struct page *read_cache_page_gfp(struct address_space *mapping,
3627 pgoff_t index,
3628 gfp_t gfp)
3629{
6c45b454 3630 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
0531b2aa
LT
3631}
3632EXPORT_SYMBOL(read_cache_page_gfp);
3633
a92853b6
KK
3634/*
3635 * Warn about a page cache invalidation failure during a direct I/O write.
3636 */
3637void dio_warn_stale_pagecache(struct file *filp)
3638{
3639 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3640 char pathname[128];
a92853b6
KK
3641 char *path;
3642
5df1a672 3643 errseq_set(&filp->f_mapping->wb_err, -EIO);
a92853b6
KK
3644 if (__ratelimit(&_rs)) {
3645 path = file_path(filp, pathname, sizeof(pathname));
3646 if (IS_ERR(path))
3647 path = "(unknown)";
3648 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
3649 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3650 current->comm);
3651 }
3652}
3653
1da177e4 3654ssize_t
1af5bb49 3655generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3656{
3657 struct file *file = iocb->ki_filp;
3658 struct address_space *mapping = file->f_mapping;
3659 struct inode *inode = mapping->host;
1af5bb49 3660 loff_t pos = iocb->ki_pos;
1da177e4 3661 ssize_t written;
a969e903
CH
3662 size_t write_len;
3663 pgoff_t end;
1da177e4 3664
0c949334 3665 write_len = iov_iter_count(from);
09cbfeaf 3666 end = (pos + write_len - 1) >> PAGE_SHIFT;
a969e903 3667
6be96d3a
GR
3668 if (iocb->ki_flags & IOCB_NOWAIT) {
3669 /* If there are pages to writeback, return */
5df1a672 3670 if (filemap_range_has_page(file->f_mapping, pos,
35f12f0f 3671 pos + write_len - 1))
6be96d3a
GR
3672 return -EAGAIN;
3673 } else {
3674 written = filemap_write_and_wait_range(mapping, pos,
3675 pos + write_len - 1);
3676 if (written)
3677 goto out;
3678 }
a969e903
CH
3679
3680 /*
3681 * After a write we want buffered reads to be sure to go to disk to get
3682 * the new data. We invalidate clean cached page from the region we're
3683 * about to write. We do this *before* the write so that we can return
6ccfa806 3684 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903 3685 */
55635ba7 3686 written = invalidate_inode_pages2_range(mapping,
09cbfeaf 3687 pos >> PAGE_SHIFT, end);
55635ba7
AR
3688 /*
3689 * If a page can not be invalidated, return 0 to fall back
3690 * to buffered write.
3691 */
3692 if (written) {
3693 if (written == -EBUSY)
3694 return 0;
3695 goto out;
a969e903
CH
3696 }
3697
639a93a5 3698 written = mapping->a_ops->direct_IO(iocb, from);
a969e903
CH
3699
3700 /*
3701 * Finally, try again to invalidate clean pages which might have been
3702 * cached by non-direct readahead, or faulted in by get_user_pages()
3703 * if the source of the write was an mmap'ed region of the file
3704 * we're writing. Either one is a pretty crazy thing to do,
3705 * so we don't support it 100%. If this invalidation
3706 * fails, tough, the write still worked...
332391a9
LC
3707 *
3708 * Most of the time we do not need this since dio_complete() will do
3709 * the invalidation for us. However there are some file systems that
3710 * do not end up with dio_complete() being called, so let's not break
80c1fe90
KK
3711 * them by removing it completely.
3712 *
9266a140
KK
3713 * Noticeable example is a blkdev_direct_IO().
3714 *
80c1fe90 3715 * Skip invalidation for async writes or if mapping has no pages.
a969e903 3716 */
9266a140
KK
3717 if (written > 0 && mapping->nrpages &&
3718 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3719 dio_warn_stale_pagecache(file);
a969e903 3720
1da177e4 3721 if (written > 0) {
0116651c 3722 pos += written;
639a93a5 3723 write_len -= written;
0116651c
NK
3724 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3725 i_size_write(inode, pos);
1da177e4
LT
3726 mark_inode_dirty(inode);
3727 }
5cb6c6c7 3728 iocb->ki_pos = pos;
1da177e4 3729 }
ab2125df
PB
3730 if (written != -EIOCBQUEUED)
3731 iov_iter_revert(from, write_len - iov_iter_count(from));
a969e903 3732out:
1da177e4
LT
3733 return written;
3734}
3735EXPORT_SYMBOL(generic_file_direct_write);
3736
800ba295 3737ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
afddba49 3738{
800ba295
MWO
3739 struct file *file = iocb->ki_filp;
3740 loff_t pos = iocb->ki_pos;
afddba49
NP
3741 struct address_space *mapping = file->f_mapping;
3742 const struct address_space_operations *a_ops = mapping->a_ops;
3743 long status = 0;
3744 ssize_t written = 0;
674b892e 3745
afddba49
NP
3746 do {
3747 struct page *page;
afddba49
NP
3748 unsigned long offset; /* Offset into pagecache page */
3749 unsigned long bytes; /* Bytes to write to page */
3750 size_t copied; /* Bytes copied from user */
1468c6f4 3751 void *fsdata = NULL;
afddba49 3752
09cbfeaf
KS
3753 offset = (pos & (PAGE_SIZE - 1));
3754 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
3755 iov_iter_count(i));
3756
3757again:
00a3d660
LT
3758 /*
3759 * Bring in the user page that we will copy from _first_.
3760 * Otherwise there's a nasty deadlock on copying from the
3761 * same page as we're writing to, without it being marked
3762 * up-to-date.
00a3d660 3763 */
631f871f 3764 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
00a3d660
LT
3765 status = -EFAULT;
3766 break;
3767 }
3768
296291cd
JK
3769 if (fatal_signal_pending(current)) {
3770 status = -EINTR;
3771 break;
3772 }
3773
9d6b0cd7 3774 status = a_ops->write_begin(file, mapping, pos, bytes,
afddba49 3775 &page, &fsdata);
2457aec6 3776 if (unlikely(status < 0))
afddba49
NP
3777 break;
3778
931e80e4 3779 if (mapping_writably_mapped(mapping))
3780 flush_dcache_page(page);
00a3d660 3781
f0b65f39 3782 copied = copy_page_from_iter_atomic(page, offset, bytes, i);
afddba49
NP
3783 flush_dcache_page(page);
3784
3785 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3786 page, fsdata);
f0b65f39
AV
3787 if (unlikely(status != copied)) {
3788 iov_iter_revert(i, copied - max(status, 0L));
3789 if (unlikely(status < 0))
3790 break;
3791 }
afddba49
NP
3792 cond_resched();
3793
bc1bb416 3794 if (unlikely(status == 0)) {
afddba49 3795 /*
bc1bb416
AV
3796 * A short copy made ->write_end() reject the
3797 * thing entirely. Might be memory poisoning
3798 * halfway through, might be a race with munmap,
3799 * might be severe memory pressure.
afddba49 3800 */
bc1bb416
AV
3801 if (copied)
3802 bytes = copied;
afddba49
NP
3803 goto again;
3804 }
f0b65f39
AV
3805 pos += status;
3806 written += status;
afddba49
NP
3807
3808 balance_dirty_pages_ratelimited(mapping);
afddba49
NP
3809 } while (iov_iter_count(i));
3810
3811 return written ? written : status;
3812}
3b93f911 3813EXPORT_SYMBOL(generic_perform_write);
1da177e4 3814
e4dd9de3 3815/**
8174202b 3816 * __generic_file_write_iter - write data to a file
e4dd9de3 3817 * @iocb: IO state structure (file, offset, etc.)
8174202b 3818 * @from: iov_iter with data to write
e4dd9de3
JK
3819 *
3820 * This function does all the work needed for actually writing data to a
3821 * file. It does all basic checks, removes SUID from the file, updates
3822 * modification times and calls proper subroutines depending on whether we
3823 * do direct IO or a standard buffered write.
3824 *
9608703e 3825 * It expects i_rwsem to be grabbed unless we work on a block device or similar
e4dd9de3
JK
3826 * object which does not need locking at all.
3827 *
3828 * This function does *not* take care of syncing data in case of O_SYNC write.
3829 * A caller has to handle it. This is mainly due to the fact that we want to
9608703e 3830 * avoid syncing under i_rwsem.
a862f68a
MR
3831 *
3832 * Return:
3833 * * number of bytes written, even for truncated writes
3834 * * negative error code if no data has been written at all
e4dd9de3 3835 */
8174202b 3836ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3837{
3838 struct file *file = iocb->ki_filp;
68d68ff6 3839 struct address_space *mapping = file->f_mapping;
1da177e4 3840 struct inode *inode = mapping->host;
3b93f911 3841 ssize_t written = 0;
1da177e4 3842 ssize_t err;
3b93f911 3843 ssize_t status;
1da177e4 3844
1da177e4 3845 /* We can write back this queue in page reclaim */
de1414a6 3846 current->backing_dev_info = inode_to_bdi(inode);
5fa8e0a1 3847 err = file_remove_privs(file);
1da177e4
LT
3848 if (err)
3849 goto out;
3850
c3b2da31
JB
3851 err = file_update_time(file);
3852 if (err)
3853 goto out;
1da177e4 3854
2ba48ce5 3855 if (iocb->ki_flags & IOCB_DIRECT) {
0b8def9d 3856 loff_t pos, endbyte;
fb5527e6 3857
1af5bb49 3858 written = generic_file_direct_write(iocb, from);
1da177e4 3859 /*
fbbbad4b
MW
3860 * If the write stopped short of completing, fall back to
3861 * buffered writes. Some filesystems do this for writes to
3862 * holes, for example. For DAX files, a buffered write will
3863 * not succeed (even if it did, DAX does not handle dirty
3864 * page-cache pages correctly).
1da177e4 3865 */
0b8def9d 3866 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
fbbbad4b
MW
3867 goto out;
3868
800ba295
MWO
3869 pos = iocb->ki_pos;
3870 status = generic_perform_write(iocb, from);
fb5527e6 3871 /*
3b93f911 3872 * If generic_perform_write() returned a synchronous error
fb5527e6
JM
3873 * then we want to return the number of bytes which were
3874 * direct-written, or the error code if that was zero. Note
3875 * that this differs from normal direct-io semantics, which
3876 * will return -EFOO even if some bytes were written.
3877 */
60bb4529 3878 if (unlikely(status < 0)) {
3b93f911 3879 err = status;
fb5527e6
JM
3880 goto out;
3881 }
fb5527e6
JM
3882 /*
3883 * We need to ensure that the page cache pages are written to
3884 * disk and invalidated to preserve the expected O_DIRECT
3885 * semantics.
3886 */
3b93f911 3887 endbyte = pos + status - 1;
0b8def9d 3888 err = filemap_write_and_wait_range(mapping, pos, endbyte);
fb5527e6 3889 if (err == 0) {
0b8def9d 3890 iocb->ki_pos = endbyte + 1;
3b93f911 3891 written += status;
fb5527e6 3892 invalidate_mapping_pages(mapping,
09cbfeaf
KS
3893 pos >> PAGE_SHIFT,
3894 endbyte >> PAGE_SHIFT);
fb5527e6
JM
3895 } else {
3896 /*
3897 * We don't know how much we wrote, so just return
3898 * the number of bytes which were direct-written
3899 */
3900 }
3901 } else {
800ba295 3902 written = generic_perform_write(iocb, from);
0b8def9d
AV
3903 if (likely(written > 0))
3904 iocb->ki_pos += written;
fb5527e6 3905 }
1da177e4
LT
3906out:
3907 current->backing_dev_info = NULL;
3908 return written ? written : err;
3909}
8174202b 3910EXPORT_SYMBOL(__generic_file_write_iter);
e4dd9de3 3911
e4dd9de3 3912/**
8174202b 3913 * generic_file_write_iter - write data to a file
e4dd9de3 3914 * @iocb: IO state structure
8174202b 3915 * @from: iov_iter with data to write
e4dd9de3 3916 *
8174202b 3917 * This is a wrapper around __generic_file_write_iter() to be used by most
e4dd9de3 3918 * filesystems. It takes care of syncing the file in case of O_SYNC file
9608703e 3919 * and acquires i_rwsem as needed.
a862f68a
MR
3920 * Return:
3921 * * negative error code if no data has been written at all of
3922 * vfs_fsync_range() failed for a synchronous write
3923 * * number of bytes written, even for truncated writes
e4dd9de3 3924 */
8174202b 3925ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3926{
3927 struct file *file = iocb->ki_filp;
148f948b 3928 struct inode *inode = file->f_mapping->host;
1da177e4 3929 ssize_t ret;
1da177e4 3930
5955102c 3931 inode_lock(inode);
3309dd04
AV
3932 ret = generic_write_checks(iocb, from);
3933 if (ret > 0)
5f380c7f 3934 ret = __generic_file_write_iter(iocb, from);
5955102c 3935 inode_unlock(inode);
1da177e4 3936
e2592217
CH
3937 if (ret > 0)
3938 ret = generic_write_sync(iocb, ret);
1da177e4
LT
3939 return ret;
3940}
8174202b 3941EXPORT_SYMBOL(generic_file_write_iter);
1da177e4 3942
cf9a2ae8 3943/**
82c50f8b
MWO
3944 * filemap_release_folio() - Release fs-specific metadata on a folio.
3945 * @folio: The folio which the kernel is trying to free.
3946 * @gfp: Memory allocation flags (and I/O mode).
cf9a2ae8 3947 *
82c50f8b
MWO
3948 * The address_space is trying to release any data attached to a folio
3949 * (presumably at folio->private).
cf9a2ae8 3950 *
82c50f8b
MWO
3951 * This will also be called if the private_2 flag is set on a page,
3952 * indicating that the folio has other metadata associated with it.
266cf658 3953 *
82c50f8b
MWO
3954 * The @gfp argument specifies whether I/O may be performed to release
3955 * this page (__GFP_IO), and whether the call may block
3956 * (__GFP_RECLAIM & __GFP_FS).
cf9a2ae8 3957 *
82c50f8b 3958 * Return: %true if the release was successful, otherwise %false.
cf9a2ae8 3959 */
82c50f8b 3960bool filemap_release_folio(struct folio *folio, gfp_t gfp)
cf9a2ae8 3961{
82c50f8b 3962 struct address_space * const mapping = folio->mapping;
cf9a2ae8 3963
82c50f8b
MWO
3964 BUG_ON(!folio_test_locked(folio));
3965 if (folio_test_writeback(folio))
3966 return false;
cf9a2ae8 3967
fa29000b
MWO
3968 if (mapping && mapping->a_ops->release_folio)
3969 return mapping->a_ops->release_folio(folio, gfp);
68189fef 3970 return try_to_free_buffers(folio);
cf9a2ae8 3971}
82c50f8b 3972EXPORT_SYMBOL(filemap_release_folio);