memcg: add per cgroup dirty page accounting
[linux-block.git] / mm / filemap.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
b95f1b31 12#include <linux/export.h>
1da177e4
LT
13#include <linux/compiler.h>
14#include <linux/fs.h>
c22ce143 15#include <linux/uaccess.h>
c59ede7b 16#include <linux/capability.h>
1da177e4 17#include <linux/kernel_stat.h>
5a0e3ad6 18#include <linux/gfp.h>
1da177e4
LT
19#include <linux/mm.h>
20#include <linux/swap.h>
21#include <linux/mman.h>
22#include <linux/pagemap.h>
23#include <linux/file.h>
24#include <linux/uio.h>
25#include <linux/hash.h>
26#include <linux/writeback.h>
53253383 27#include <linux/backing-dev.h>
1da177e4
LT
28#include <linux/pagevec.h>
29#include <linux/blkdev.h>
30#include <linux/security.h>
44110fe3 31#include <linux/cpuset.h>
2f718ffc 32#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
00501b53 33#include <linux/hugetlb.h>
8a9f3ccd 34#include <linux/memcontrol.h>
c515e1fd 35#include <linux/cleancache.h>
f1820361 36#include <linux/rmap.h>
0f8053a5
NP
37#include "internal.h"
38
fe0bfaaf
RJ
39#define CREATE_TRACE_POINTS
40#include <trace/events/filemap.h>
41
1da177e4 42/*
1da177e4
LT
43 * FIXME: remove all knowledge of the buffer layer from the core VM
44 */
148f948b 45#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 46
1da177e4
LT
47#include <asm/mman.h>
48
49/*
50 * Shared mappings implemented 30.11.1994. It's not fully working yet,
51 * though.
52 *
53 * Shared mappings now work. 15.8.1995 Bruno.
54 *
55 * finished 'unifying' the page and buffer cache and SMP-threaded the
56 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
57 *
58 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
59 */
60
61/*
62 * Lock ordering:
63 *
c8c06efa 64 * ->i_mmap_rwsem (truncate_pagecache)
1da177e4 65 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91
HD
66 * ->swap_lock (exclusive_swap_page, others)
67 * ->mapping->tree_lock
1da177e4 68 *
1b1dcc1b 69 * ->i_mutex
c8c06efa 70 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
1da177e4
LT
71 *
72 * ->mmap_sem
c8c06efa 73 * ->i_mmap_rwsem
b8072f09 74 * ->page_table_lock or pte_lock (various, mainly in memory.c)
1da177e4
LT
75 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
76 *
77 * ->mmap_sem
78 * ->lock_page (access_process_vm)
79 *
ccad2365 80 * ->i_mutex (generic_perform_write)
82591e6e 81 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
1da177e4 82 *
f758eeab 83 * bdi->wb.list_lock
a66979ab 84 * sb_lock (fs/fs-writeback.c)
1da177e4
LT
85 * ->mapping->tree_lock (__sync_single_inode)
86 *
c8c06efa 87 * ->i_mmap_rwsem
1da177e4
LT
88 * ->anon_vma.lock (vma_adjust)
89 *
90 * ->anon_vma.lock
b8072f09 91 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 92 *
b8072f09 93 * ->page_table_lock or pte_lock
5d337b91 94 * ->swap_lock (try_to_unmap_one)
1da177e4
LT
95 * ->private_lock (try_to_unmap_one)
96 * ->tree_lock (try_to_unmap_one)
97 * ->zone.lru_lock (follow_page->mark_page_accessed)
053837fc 98 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
1da177e4
LT
99 * ->private_lock (page_remove_rmap->set_page_dirty)
100 * ->tree_lock (page_remove_rmap->set_page_dirty)
f758eeab 101 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
250df6ed 102 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
c4843a75 103 * ->memcg->move_lock (page_remove_rmap->mem_cgroup_begin_page_stat)
f758eeab 104 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 105 * ->inode->i_lock (zap_pte_range->set_page_dirty)
1da177e4
LT
106 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
107 *
c8c06efa 108 * ->i_mmap_rwsem
9a3c531d 109 * ->tasklist_lock (memory_failure, collect_procs_ao)
1da177e4
LT
110 */
111
91b0abe3
JW
112static void page_cache_tree_delete(struct address_space *mapping,
113 struct page *page, void *shadow)
114{
449dd698
JW
115 struct radix_tree_node *node;
116 unsigned long index;
117 unsigned int offset;
118 unsigned int tag;
119 void **slot;
91b0abe3 120
449dd698
JW
121 VM_BUG_ON(!PageLocked(page));
122
123 __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
124
125 if (shadow) {
91b0abe3
JW
126 mapping->nrshadows++;
127 /*
128 * Make sure the nrshadows update is committed before
129 * the nrpages update so that final truncate racing
130 * with reclaim does not see both counters 0 at the
131 * same time and miss a shadow entry.
132 */
133 smp_wmb();
449dd698 134 }
91b0abe3 135 mapping->nrpages--;
449dd698
JW
136
137 if (!node) {
138 /* Clear direct pointer tags in root node */
139 mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
140 radix_tree_replace_slot(slot, shadow);
141 return;
142 }
143
144 /* Clear tree tags for the removed page */
145 index = page->index;
146 offset = index & RADIX_TREE_MAP_MASK;
147 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
148 if (test_bit(offset, node->tags[tag]))
149 radix_tree_tag_clear(&mapping->page_tree, index, tag);
150 }
151
152 /* Delete page, swap shadow entry */
153 radix_tree_replace_slot(slot, shadow);
154 workingset_node_pages_dec(node);
155 if (shadow)
156 workingset_node_shadows_inc(node);
157 else
158 if (__radix_tree_delete_node(&mapping->page_tree, node))
159 return;
160
161 /*
162 * Track node that only contains shadow entries.
163 *
164 * Avoid acquiring the list_lru lock if already tracked. The
165 * list_empty() test is safe as node->private_list is
166 * protected by mapping->tree_lock.
167 */
168 if (!workingset_node_pages(node) &&
169 list_empty(&node->private_list)) {
170 node->private_data = mapping;
171 list_lru_add(&workingset_shadow_nodes, &node->private_list);
172 }
91b0abe3
JW
173}
174
1da177e4 175/*
e64a782f 176 * Delete a page from the page cache and free it. Caller has to make
1da177e4 177 * sure the page is locked and that nobody else uses it - or that usage
c4843a75
GT
178 * is safe. The caller must hold the mapping's tree_lock and
179 * mem_cgroup_begin_page_stat().
1da177e4 180 */
c4843a75
GT
181void __delete_from_page_cache(struct page *page, void *shadow,
182 struct mem_cgroup *memcg)
1da177e4
LT
183{
184 struct address_space *mapping = page->mapping;
185
fe0bfaaf 186 trace_mm_filemap_delete_from_page_cache(page);
c515e1fd
DM
187 /*
188 * if we're uptodate, flush out into the cleancache, otherwise
189 * invalidate any existing cleancache entries. We can't leave
190 * stale data around in the cleancache once our page is gone
191 */
192 if (PageUptodate(page) && PageMappedToDisk(page))
193 cleancache_put_page(page);
194 else
3167760f 195 cleancache_invalidate_page(mapping, page);
c515e1fd 196
91b0abe3
JW
197 page_cache_tree_delete(mapping, page, shadow);
198
1da177e4 199 page->mapping = NULL;
b85e0eff 200 /* Leave page->index set: truncation lookup relies upon it */
91b0abe3 201
347ce434 202 __dec_zone_page_state(page, NR_FILE_PAGES);
4b02108a
KM
203 if (PageSwapBacked(page))
204 __dec_zone_page_state(page, NR_SHMEM);
45426812 205 BUG_ON(page_mapped(page));
3a692790
LT
206
207 /*
b9ea2515
KK
208 * At this point page must be either written or cleaned by truncate.
209 * Dirty page here signals a bug and loss of unwritten data.
3a692790 210 *
b9ea2515
KK
211 * This fixes dirty accounting after removing the page entirely but
212 * leaves PageDirty set: it has no effect for truncated page and
213 * anyway will be cleared before returning page into buddy allocator.
3a692790 214 */
b9ea2515 215 if (WARN_ON_ONCE(PageDirty(page)))
c4843a75 216 account_page_cleaned(page, mapping, memcg);
1da177e4
LT
217}
218
702cfbf9
MK
219/**
220 * delete_from_page_cache - delete page from page cache
221 * @page: the page which the kernel is trying to remove from page cache
222 *
223 * This must be called only on pages that have been verified to be in the page
224 * cache and locked. It will never put the page into the free list, the caller
225 * has a reference on the page.
226 */
227void delete_from_page_cache(struct page *page)
1da177e4
LT
228{
229 struct address_space *mapping = page->mapping;
c4843a75
GT
230 struct mem_cgroup *memcg;
231 unsigned long flags;
232
6072d13c 233 void (*freepage)(struct page *);
1da177e4 234
cd7619d6 235 BUG_ON(!PageLocked(page));
1da177e4 236
6072d13c 237 freepage = mapping->a_ops->freepage;
c4843a75
GT
238
239 memcg = mem_cgroup_begin_page_stat(page);
240 spin_lock_irqsave(&mapping->tree_lock, flags);
241 __delete_from_page_cache(page, NULL, memcg);
242 spin_unlock_irqrestore(&mapping->tree_lock, flags);
243 mem_cgroup_end_page_stat(memcg);
6072d13c
LT
244
245 if (freepage)
246 freepage(page);
97cecb5a
MK
247 page_cache_release(page);
248}
249EXPORT_SYMBOL(delete_from_page_cache);
250
865ffef3
DM
251static int filemap_check_errors(struct address_space *mapping)
252{
253 int ret = 0;
254 /* Check for outstanding write errors */
7fcbbaf1
JA
255 if (test_bit(AS_ENOSPC, &mapping->flags) &&
256 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
865ffef3 257 ret = -ENOSPC;
7fcbbaf1
JA
258 if (test_bit(AS_EIO, &mapping->flags) &&
259 test_and_clear_bit(AS_EIO, &mapping->flags))
865ffef3
DM
260 ret = -EIO;
261 return ret;
262}
263
1da177e4 264/**
485bb99b 265 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
266 * @mapping: address space structure to write
267 * @start: offset in bytes where the range starts
469eb4d0 268 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 269 * @sync_mode: enable synchronous operation
1da177e4 270 *
485bb99b
RD
271 * Start writeback against all of a mapping's dirty pages that lie
272 * within the byte offsets <start, end> inclusive.
273 *
1da177e4 274 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 275 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
276 * these two operations is that if a dirty page/buffer is encountered, it must
277 * be waited upon, and not just skipped over.
278 */
ebcf28e1
AM
279int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
280 loff_t end, int sync_mode)
1da177e4
LT
281{
282 int ret;
283 struct writeback_control wbc = {
284 .sync_mode = sync_mode,
05fe478d 285 .nr_to_write = LONG_MAX,
111ebb6e
OH
286 .range_start = start,
287 .range_end = end,
1da177e4
LT
288 };
289
290 if (!mapping_cap_writeback_dirty(mapping))
291 return 0;
292
293 ret = do_writepages(mapping, &wbc);
294 return ret;
295}
296
297static inline int __filemap_fdatawrite(struct address_space *mapping,
298 int sync_mode)
299{
111ebb6e 300 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
301}
302
303int filemap_fdatawrite(struct address_space *mapping)
304{
305 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
306}
307EXPORT_SYMBOL(filemap_fdatawrite);
308
f4c0a0fd 309int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 310 loff_t end)
1da177e4
LT
311{
312 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
313}
f4c0a0fd 314EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 315
485bb99b
RD
316/**
317 * filemap_flush - mostly a non-blocking flush
318 * @mapping: target address_space
319 *
1da177e4
LT
320 * This is a mostly non-blocking flush. Not suitable for data-integrity
321 * purposes - I/O may not be started against all dirty pages.
322 */
323int filemap_flush(struct address_space *mapping)
324{
325 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
326}
327EXPORT_SYMBOL(filemap_flush);
328
485bb99b 329/**
94004ed7
CH
330 * filemap_fdatawait_range - wait for writeback to complete
331 * @mapping: address space structure to wait for
332 * @start_byte: offset in bytes where the range starts
333 * @end_byte: offset in bytes where the range ends (inclusive)
485bb99b 334 *
94004ed7
CH
335 * Walk the list of under-writeback pages of the given address space
336 * in the given range and wait for all of them.
1da177e4 337 */
94004ed7
CH
338int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
339 loff_t end_byte)
1da177e4 340{
94004ed7
CH
341 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
342 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
1da177e4
LT
343 struct pagevec pvec;
344 int nr_pages;
865ffef3 345 int ret2, ret = 0;
1da177e4 346
94004ed7 347 if (end_byte < start_byte)
865ffef3 348 goto out;
1da177e4
LT
349
350 pagevec_init(&pvec, 0);
1da177e4
LT
351 while ((index <= end) &&
352 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
353 PAGECACHE_TAG_WRITEBACK,
354 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
355 unsigned i;
356
357 for (i = 0; i < nr_pages; i++) {
358 struct page *page = pvec.pages[i];
359
360 /* until radix tree lookup accepts end_index */
361 if (page->index > end)
362 continue;
363
364 wait_on_page_writeback(page);
212260aa 365 if (TestClearPageError(page))
1da177e4
LT
366 ret = -EIO;
367 }
368 pagevec_release(&pvec);
369 cond_resched();
370 }
865ffef3
DM
371out:
372 ret2 = filemap_check_errors(mapping);
373 if (!ret)
374 ret = ret2;
1da177e4
LT
375
376 return ret;
377}
d3bccb6f
JK
378EXPORT_SYMBOL(filemap_fdatawait_range);
379
1da177e4 380/**
485bb99b 381 * filemap_fdatawait - wait for all under-writeback pages to complete
1da177e4 382 * @mapping: address space structure to wait for
485bb99b
RD
383 *
384 * Walk the list of under-writeback pages of the given address space
385 * and wait for all of them.
1da177e4
LT
386 */
387int filemap_fdatawait(struct address_space *mapping)
388{
389 loff_t i_size = i_size_read(mapping->host);
390
391 if (i_size == 0)
392 return 0;
393
94004ed7 394 return filemap_fdatawait_range(mapping, 0, i_size - 1);
1da177e4
LT
395}
396EXPORT_SYMBOL(filemap_fdatawait);
397
398int filemap_write_and_wait(struct address_space *mapping)
399{
28fd1298 400 int err = 0;
1da177e4
LT
401
402 if (mapping->nrpages) {
28fd1298
OH
403 err = filemap_fdatawrite(mapping);
404 /*
405 * Even if the above returned error, the pages may be
406 * written partially (e.g. -ENOSPC), so we wait for it.
407 * But the -EIO is special case, it may indicate the worst
408 * thing (e.g. bug) happened, so we avoid waiting for it.
409 */
410 if (err != -EIO) {
411 int err2 = filemap_fdatawait(mapping);
412 if (!err)
413 err = err2;
414 }
865ffef3
DM
415 } else {
416 err = filemap_check_errors(mapping);
1da177e4 417 }
28fd1298 418 return err;
1da177e4 419}
28fd1298 420EXPORT_SYMBOL(filemap_write_and_wait);
1da177e4 421
485bb99b
RD
422/**
423 * filemap_write_and_wait_range - write out & wait on a file range
424 * @mapping: the address_space for the pages
425 * @lstart: offset in bytes where the range starts
426 * @lend: offset in bytes where the range ends (inclusive)
427 *
469eb4d0
AM
428 * Write out and wait upon file offsets lstart->lend, inclusive.
429 *
430 * Note that `lend' is inclusive (describes the last byte to be written) so
431 * that this function can be used to write to the very end-of-file (end = -1).
432 */
1da177e4
LT
433int filemap_write_and_wait_range(struct address_space *mapping,
434 loff_t lstart, loff_t lend)
435{
28fd1298 436 int err = 0;
1da177e4
LT
437
438 if (mapping->nrpages) {
28fd1298
OH
439 err = __filemap_fdatawrite_range(mapping, lstart, lend,
440 WB_SYNC_ALL);
441 /* See comment of filemap_write_and_wait() */
442 if (err != -EIO) {
94004ed7
CH
443 int err2 = filemap_fdatawait_range(mapping,
444 lstart, lend);
28fd1298
OH
445 if (!err)
446 err = err2;
447 }
865ffef3
DM
448 } else {
449 err = filemap_check_errors(mapping);
1da177e4 450 }
28fd1298 451 return err;
1da177e4 452}
f6995585 453EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 454
ef6a3c63
MS
455/**
456 * replace_page_cache_page - replace a pagecache page with a new one
457 * @old: page to be replaced
458 * @new: page to replace with
459 * @gfp_mask: allocation mode
460 *
461 * This function replaces a page in the pagecache with a new one. On
462 * success it acquires the pagecache reference for the new page and
463 * drops it for the old page. Both the old and new pages must be
464 * locked. This function does not add the new page to the LRU, the
465 * caller must do that.
466 *
467 * The remove + add is atomic. The only way this function can fail is
468 * memory allocation failure.
469 */
470int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
471{
472 int error;
ef6a3c63 473
309381fe
SL
474 VM_BUG_ON_PAGE(!PageLocked(old), old);
475 VM_BUG_ON_PAGE(!PageLocked(new), new);
476 VM_BUG_ON_PAGE(new->mapping, new);
ef6a3c63 477
ef6a3c63
MS
478 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
479 if (!error) {
480 struct address_space *mapping = old->mapping;
481 void (*freepage)(struct page *);
c4843a75
GT
482 struct mem_cgroup *memcg;
483 unsigned long flags;
ef6a3c63
MS
484
485 pgoff_t offset = old->index;
486 freepage = mapping->a_ops->freepage;
487
488 page_cache_get(new);
489 new->mapping = mapping;
490 new->index = offset;
491
c4843a75
GT
492 memcg = mem_cgroup_begin_page_stat(old);
493 spin_lock_irqsave(&mapping->tree_lock, flags);
494 __delete_from_page_cache(old, NULL, memcg);
ef6a3c63
MS
495 error = radix_tree_insert(&mapping->page_tree, offset, new);
496 BUG_ON(error);
497 mapping->nrpages++;
498 __inc_zone_page_state(new, NR_FILE_PAGES);
499 if (PageSwapBacked(new))
500 __inc_zone_page_state(new, NR_SHMEM);
c4843a75
GT
501 spin_unlock_irqrestore(&mapping->tree_lock, flags);
502 mem_cgroup_end_page_stat(memcg);
0a31bc97 503 mem_cgroup_migrate(old, new, true);
ef6a3c63
MS
504 radix_tree_preload_end();
505 if (freepage)
506 freepage(old);
507 page_cache_release(old);
ef6a3c63
MS
508 }
509
510 return error;
511}
512EXPORT_SYMBOL_GPL(replace_page_cache_page);
513
0cd6144a 514static int page_cache_tree_insert(struct address_space *mapping,
a528910e 515 struct page *page, void **shadowp)
0cd6144a 516{
449dd698 517 struct radix_tree_node *node;
0cd6144a
JW
518 void **slot;
519 int error;
520
449dd698
JW
521 error = __radix_tree_create(&mapping->page_tree, page->index,
522 &node, &slot);
523 if (error)
524 return error;
525 if (*slot) {
0cd6144a
JW
526 void *p;
527
528 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
529 if (!radix_tree_exceptional_entry(p))
530 return -EEXIST;
a528910e
JW
531 if (shadowp)
532 *shadowp = p;
449dd698
JW
533 mapping->nrshadows--;
534 if (node)
535 workingset_node_shadows_dec(node);
0cd6144a 536 }
449dd698
JW
537 radix_tree_replace_slot(slot, page);
538 mapping->nrpages++;
539 if (node) {
540 workingset_node_pages_inc(node);
541 /*
542 * Don't track node that contains actual pages.
543 *
544 * Avoid acquiring the list_lru lock if already
545 * untracked. The list_empty() test is safe as
546 * node->private_list is protected by
547 * mapping->tree_lock.
548 */
549 if (!list_empty(&node->private_list))
550 list_lru_del(&workingset_shadow_nodes,
551 &node->private_list);
552 }
553 return 0;
0cd6144a
JW
554}
555
a528910e
JW
556static int __add_to_page_cache_locked(struct page *page,
557 struct address_space *mapping,
558 pgoff_t offset, gfp_t gfp_mask,
559 void **shadowp)
1da177e4 560{
00501b53
JW
561 int huge = PageHuge(page);
562 struct mem_cgroup *memcg;
e286781d
NP
563 int error;
564
309381fe
SL
565 VM_BUG_ON_PAGE(!PageLocked(page), page);
566 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
e286781d 567
00501b53
JW
568 if (!huge) {
569 error = mem_cgroup_try_charge(page, current->mm,
570 gfp_mask, &memcg);
571 if (error)
572 return error;
573 }
1da177e4 574
5e4c0d97 575 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
66a0c8ee 576 if (error) {
00501b53
JW
577 if (!huge)
578 mem_cgroup_cancel_charge(page, memcg);
66a0c8ee
KS
579 return error;
580 }
581
582 page_cache_get(page);
583 page->mapping = mapping;
584 page->index = offset;
585
586 spin_lock_irq(&mapping->tree_lock);
a528910e 587 error = page_cache_tree_insert(mapping, page, shadowp);
66a0c8ee
KS
588 radix_tree_preload_end();
589 if (unlikely(error))
590 goto err_insert;
66a0c8ee
KS
591 __inc_zone_page_state(page, NR_FILE_PAGES);
592 spin_unlock_irq(&mapping->tree_lock);
00501b53
JW
593 if (!huge)
594 mem_cgroup_commit_charge(page, memcg, false);
66a0c8ee
KS
595 trace_mm_filemap_add_to_page_cache(page);
596 return 0;
597err_insert:
598 page->mapping = NULL;
599 /* Leave page->index set: truncation relies upon it */
600 spin_unlock_irq(&mapping->tree_lock);
00501b53
JW
601 if (!huge)
602 mem_cgroup_cancel_charge(page, memcg);
66a0c8ee 603 page_cache_release(page);
1da177e4
LT
604 return error;
605}
a528910e
JW
606
607/**
608 * add_to_page_cache_locked - add a locked page to the pagecache
609 * @page: page to add
610 * @mapping: the page's address_space
611 * @offset: page index
612 * @gfp_mask: page allocation mode
613 *
614 * This function is used to add a page to the pagecache. It must be locked.
615 * This function does not add the page to the LRU. The caller must do that.
616 */
617int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
618 pgoff_t offset, gfp_t gfp_mask)
619{
620 return __add_to_page_cache_locked(page, mapping, offset,
621 gfp_mask, NULL);
622}
e286781d 623EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4
LT
624
625int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 626 pgoff_t offset, gfp_t gfp_mask)
1da177e4 627{
a528910e 628 void *shadow = NULL;
4f98a2fe
RR
629 int ret;
630
a528910e
JW
631 __set_page_locked(page);
632 ret = __add_to_page_cache_locked(page, mapping, offset,
633 gfp_mask, &shadow);
634 if (unlikely(ret))
635 __clear_page_locked(page);
636 else {
637 /*
638 * The page might have been evicted from cache only
639 * recently, in which case it should be activated like
640 * any other repeatedly accessed page.
641 */
642 if (shadow && workingset_refault(shadow)) {
643 SetPageActive(page);
644 workingset_activation(page);
645 } else
646 ClearPageActive(page);
647 lru_cache_add(page);
648 }
1da177e4
LT
649 return ret;
650}
18bc0bbd 651EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1da177e4 652
44110fe3 653#ifdef CONFIG_NUMA
2ae88149 654struct page *__page_cache_alloc(gfp_t gfp)
44110fe3 655{
c0ff7453
MX
656 int n;
657 struct page *page;
658
44110fe3 659 if (cpuset_do_page_mem_spread()) {
cc9a6c87
MG
660 unsigned int cpuset_mems_cookie;
661 do {
d26914d1 662 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87
MG
663 n = cpuset_mem_spread_node();
664 page = alloc_pages_exact_node(n, gfp, 0);
d26914d1 665 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
cc9a6c87 666
c0ff7453 667 return page;
44110fe3 668 }
2ae88149 669 return alloc_pages(gfp, 0);
44110fe3 670}
2ae88149 671EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
672#endif
673
1da177e4
LT
674/*
675 * In order to wait for pages to become available there must be
676 * waitqueues associated with pages. By using a hash table of
677 * waitqueues where the bucket discipline is to maintain all
678 * waiters on the same queue and wake all when any of the pages
679 * become available, and for the woken contexts to check to be
680 * sure the appropriate page became available, this saves space
681 * at a cost of "thundering herd" phenomena during rare hash
682 * collisions.
683 */
a4796e37 684wait_queue_head_t *page_waitqueue(struct page *page)
1da177e4
LT
685{
686 const struct zone *zone = page_zone(page);
687
688 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
689}
a4796e37 690EXPORT_SYMBOL(page_waitqueue);
1da177e4 691
920c7a5d 692void wait_on_page_bit(struct page *page, int bit_nr)
1da177e4
LT
693{
694 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
695
696 if (test_bit(bit_nr, &page->flags))
74316201 697 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
1da177e4
LT
698 TASK_UNINTERRUPTIBLE);
699}
700EXPORT_SYMBOL(wait_on_page_bit);
701
f62e00cc
KM
702int wait_on_page_bit_killable(struct page *page, int bit_nr)
703{
704 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
705
706 if (!test_bit(bit_nr, &page->flags))
707 return 0;
708
709 return __wait_on_bit(page_waitqueue(page), &wait,
74316201 710 bit_wait_io, TASK_KILLABLE);
f62e00cc
KM
711}
712
cbbce822
N
713int wait_on_page_bit_killable_timeout(struct page *page,
714 int bit_nr, unsigned long timeout)
715{
716 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
717
718 wait.key.timeout = jiffies + timeout;
719 if (!test_bit(bit_nr, &page->flags))
720 return 0;
721 return __wait_on_bit(page_waitqueue(page), &wait,
722 bit_wait_io_timeout, TASK_KILLABLE);
723}
724EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
725
385e1ca5
DH
726/**
727 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
697f619f
RD
728 * @page: Page defining the wait queue of interest
729 * @waiter: Waiter to add to the queue
385e1ca5
DH
730 *
731 * Add an arbitrary @waiter to the wait queue for the nominated @page.
732 */
733void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
734{
735 wait_queue_head_t *q = page_waitqueue(page);
736 unsigned long flags;
737
738 spin_lock_irqsave(&q->lock, flags);
739 __add_wait_queue(q, waiter);
740 spin_unlock_irqrestore(&q->lock, flags);
741}
742EXPORT_SYMBOL_GPL(add_page_wait_queue);
743
1da177e4 744/**
485bb99b 745 * unlock_page - unlock a locked page
1da177e4
LT
746 * @page: the page
747 *
748 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
749 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
da3dae54 750 * mechanism between PageLocked pages and PageWriteback pages is shared.
1da177e4
LT
751 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
752 *
8413ac9d
NP
753 * The mb is necessary to enforce ordering between the clear_bit and the read
754 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
1da177e4 755 */
920c7a5d 756void unlock_page(struct page *page)
1da177e4 757{
309381fe 758 VM_BUG_ON_PAGE(!PageLocked(page), page);
8413ac9d 759 clear_bit_unlock(PG_locked, &page->flags);
4e857c58 760 smp_mb__after_atomic();
1da177e4
LT
761 wake_up_page(page, PG_locked);
762}
763EXPORT_SYMBOL(unlock_page);
764
485bb99b
RD
765/**
766 * end_page_writeback - end writeback against a page
767 * @page: the page
1da177e4
LT
768 */
769void end_page_writeback(struct page *page)
770{
888cf2db
MG
771 /*
772 * TestClearPageReclaim could be used here but it is an atomic
773 * operation and overkill in this particular case. Failing to
774 * shuffle a page marked for immediate reclaim is too mild to
775 * justify taking an atomic operation penalty at the end of
776 * ever page writeback.
777 */
778 if (PageReclaim(page)) {
779 ClearPageReclaim(page);
ac6aadb2 780 rotate_reclaimable_page(page);
888cf2db 781 }
ac6aadb2
MS
782
783 if (!test_clear_page_writeback(page))
784 BUG();
785
4e857c58 786 smp_mb__after_atomic();
1da177e4
LT
787 wake_up_page(page, PG_writeback);
788}
789EXPORT_SYMBOL(end_page_writeback);
790
57d99845
MW
791/*
792 * After completing I/O on a page, call this routine to update the page
793 * flags appropriately
794 */
795void page_endio(struct page *page, int rw, int err)
796{
797 if (rw == READ) {
798 if (!err) {
799 SetPageUptodate(page);
800 } else {
801 ClearPageUptodate(page);
802 SetPageError(page);
803 }
804 unlock_page(page);
805 } else { /* rw == WRITE */
806 if (err) {
807 SetPageError(page);
808 if (page->mapping)
809 mapping_set_error(page->mapping, err);
810 }
811 end_page_writeback(page);
812 }
813}
814EXPORT_SYMBOL_GPL(page_endio);
815
485bb99b
RD
816/**
817 * __lock_page - get a lock on the page, assuming we need to sleep to get it
818 * @page: the page to lock
1da177e4 819 */
920c7a5d 820void __lock_page(struct page *page)
1da177e4
LT
821{
822 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
823
74316201 824 __wait_on_bit_lock(page_waitqueue(page), &wait, bit_wait_io,
1da177e4
LT
825 TASK_UNINTERRUPTIBLE);
826}
827EXPORT_SYMBOL(__lock_page);
828
b5606c2d 829int __lock_page_killable(struct page *page)
2687a356
MW
830{
831 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
832
833 return __wait_on_bit_lock(page_waitqueue(page), &wait,
74316201 834 bit_wait_io, TASK_KILLABLE);
2687a356 835}
18bc0bbd 836EXPORT_SYMBOL_GPL(__lock_page_killable);
2687a356 837
9a95f3cf
PC
838/*
839 * Return values:
840 * 1 - page is locked; mmap_sem is still held.
841 * 0 - page is not locked.
842 * mmap_sem has been released (up_read()), unless flags had both
843 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
844 * which case mmap_sem is still held.
845 *
846 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
847 * with the page locked and the mmap_sem unperturbed.
848 */
d065bd81
ML
849int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
850 unsigned int flags)
851{
37b23e05
KM
852 if (flags & FAULT_FLAG_ALLOW_RETRY) {
853 /*
854 * CAUTION! In this case, mmap_sem is not released
855 * even though return 0.
856 */
857 if (flags & FAULT_FLAG_RETRY_NOWAIT)
858 return 0;
859
860 up_read(&mm->mmap_sem);
861 if (flags & FAULT_FLAG_KILLABLE)
862 wait_on_page_locked_killable(page);
863 else
318b275f 864 wait_on_page_locked(page);
d065bd81 865 return 0;
37b23e05
KM
866 } else {
867 if (flags & FAULT_FLAG_KILLABLE) {
868 int ret;
869
870 ret = __lock_page_killable(page);
871 if (ret) {
872 up_read(&mm->mmap_sem);
873 return 0;
874 }
875 } else
876 __lock_page(page);
877 return 1;
d065bd81
ML
878 }
879}
880
e7b563bb
JW
881/**
882 * page_cache_next_hole - find the next hole (not-present entry)
883 * @mapping: mapping
884 * @index: index
885 * @max_scan: maximum range to search
886 *
887 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
888 * lowest indexed hole.
889 *
890 * Returns: the index of the hole if found, otherwise returns an index
891 * outside of the set specified (in which case 'return - index >=
892 * max_scan' will be true). In rare cases of index wrap-around, 0 will
893 * be returned.
894 *
895 * page_cache_next_hole may be called under rcu_read_lock. However,
896 * like radix_tree_gang_lookup, this will not atomically search a
897 * snapshot of the tree at a single point in time. For example, if a
898 * hole is created at index 5, then subsequently a hole is created at
899 * index 10, page_cache_next_hole covering both indexes may return 10
900 * if called under rcu_read_lock.
901 */
902pgoff_t page_cache_next_hole(struct address_space *mapping,
903 pgoff_t index, unsigned long max_scan)
904{
905 unsigned long i;
906
907 for (i = 0; i < max_scan; i++) {
0cd6144a
JW
908 struct page *page;
909
910 page = radix_tree_lookup(&mapping->page_tree, index);
911 if (!page || radix_tree_exceptional_entry(page))
e7b563bb
JW
912 break;
913 index++;
914 if (index == 0)
915 break;
916 }
917
918 return index;
919}
920EXPORT_SYMBOL(page_cache_next_hole);
921
922/**
923 * page_cache_prev_hole - find the prev hole (not-present entry)
924 * @mapping: mapping
925 * @index: index
926 * @max_scan: maximum range to search
927 *
928 * Search backwards in the range [max(index-max_scan+1, 0), index] for
929 * the first hole.
930 *
931 * Returns: the index of the hole if found, otherwise returns an index
932 * outside of the set specified (in which case 'index - return >=
933 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
934 * will be returned.
935 *
936 * page_cache_prev_hole may be called under rcu_read_lock. However,
937 * like radix_tree_gang_lookup, this will not atomically search a
938 * snapshot of the tree at a single point in time. For example, if a
939 * hole is created at index 10, then subsequently a hole is created at
940 * index 5, page_cache_prev_hole covering both indexes may return 5 if
941 * called under rcu_read_lock.
942 */
943pgoff_t page_cache_prev_hole(struct address_space *mapping,
944 pgoff_t index, unsigned long max_scan)
945{
946 unsigned long i;
947
948 for (i = 0; i < max_scan; i++) {
0cd6144a
JW
949 struct page *page;
950
951 page = radix_tree_lookup(&mapping->page_tree, index);
952 if (!page || radix_tree_exceptional_entry(page))
e7b563bb
JW
953 break;
954 index--;
955 if (index == ULONG_MAX)
956 break;
957 }
958
959 return index;
960}
961EXPORT_SYMBOL(page_cache_prev_hole);
962
485bb99b 963/**
0cd6144a 964 * find_get_entry - find and get a page cache entry
485bb99b 965 * @mapping: the address_space to search
0cd6144a
JW
966 * @offset: the page cache index
967 *
968 * Looks up the page cache slot at @mapping & @offset. If there is a
969 * page cache page, it is returned with an increased refcount.
485bb99b 970 *
139b6a6f
JW
971 * If the slot holds a shadow entry of a previously evicted page, or a
972 * swap entry from shmem/tmpfs, it is returned.
0cd6144a
JW
973 *
974 * Otherwise, %NULL is returned.
1da177e4 975 */
0cd6144a 976struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1da177e4 977{
a60637c8 978 void **pagep;
1da177e4
LT
979 struct page *page;
980
a60637c8
NP
981 rcu_read_lock();
982repeat:
983 page = NULL;
984 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
985 if (pagep) {
986 page = radix_tree_deref_slot(pagep);
27d20fdd
NP
987 if (unlikely(!page))
988 goto out;
a2c16d6c 989 if (radix_tree_exception(page)) {
8079b1c8
HD
990 if (radix_tree_deref_retry(page))
991 goto repeat;
992 /*
139b6a6f
JW
993 * A shadow entry of a recently evicted page,
994 * or a swap entry from shmem/tmpfs. Return
995 * it without attempting to raise page count.
8079b1c8
HD
996 */
997 goto out;
a2c16d6c 998 }
a60637c8
NP
999 if (!page_cache_get_speculative(page))
1000 goto repeat;
1001
1002 /*
1003 * Has the page moved?
1004 * This is part of the lockless pagecache protocol. See
1005 * include/linux/pagemap.h for details.
1006 */
1007 if (unlikely(page != *pagep)) {
1008 page_cache_release(page);
1009 goto repeat;
1010 }
1011 }
27d20fdd 1012out:
a60637c8
NP
1013 rcu_read_unlock();
1014
1da177e4
LT
1015 return page;
1016}
0cd6144a 1017EXPORT_SYMBOL(find_get_entry);
1da177e4 1018
0cd6144a
JW
1019/**
1020 * find_lock_entry - locate, pin and lock a page cache entry
1021 * @mapping: the address_space to search
1022 * @offset: the page cache index
1023 *
1024 * Looks up the page cache slot at @mapping & @offset. If there is a
1025 * page cache page, it is returned locked and with an increased
1026 * refcount.
1027 *
139b6a6f
JW
1028 * If the slot holds a shadow entry of a previously evicted page, or a
1029 * swap entry from shmem/tmpfs, it is returned.
0cd6144a
JW
1030 *
1031 * Otherwise, %NULL is returned.
1032 *
1033 * find_lock_entry() may sleep.
1034 */
1035struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1da177e4
LT
1036{
1037 struct page *page;
1038
1da177e4 1039repeat:
0cd6144a 1040 page = find_get_entry(mapping, offset);
a2c16d6c 1041 if (page && !radix_tree_exception(page)) {
a60637c8
NP
1042 lock_page(page);
1043 /* Has the page been truncated? */
1044 if (unlikely(page->mapping != mapping)) {
1045 unlock_page(page);
1046 page_cache_release(page);
1047 goto repeat;
1da177e4 1048 }
309381fe 1049 VM_BUG_ON_PAGE(page->index != offset, page);
1da177e4 1050 }
1da177e4
LT
1051 return page;
1052}
0cd6144a
JW
1053EXPORT_SYMBOL(find_lock_entry);
1054
1055/**
2457aec6 1056 * pagecache_get_page - find and get a page reference
0cd6144a
JW
1057 * @mapping: the address_space to search
1058 * @offset: the page index
2457aec6 1059 * @fgp_flags: PCG flags
45f87de5 1060 * @gfp_mask: gfp mask to use for the page cache data page allocation
0cd6144a 1061 *
2457aec6 1062 * Looks up the page cache slot at @mapping & @offset.
1da177e4 1063 *
75325189 1064 * PCG flags modify how the page is returned.
0cd6144a 1065 *
2457aec6
MG
1066 * FGP_ACCESSED: the page will be marked accessed
1067 * FGP_LOCK: Page is return locked
1068 * FGP_CREAT: If page is not present then a new page is allocated using
45f87de5
MH
1069 * @gfp_mask and added to the page cache and the VM's LRU
1070 * list. The page is returned locked and with an increased
1071 * refcount. Otherwise, %NULL is returned.
1da177e4 1072 *
2457aec6
MG
1073 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1074 * if the GFP flags specified for FGP_CREAT are atomic.
1da177e4 1075 *
2457aec6 1076 * If there is a page cache page, it is returned with an increased refcount.
1da177e4 1077 */
2457aec6 1078struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
45f87de5 1079 int fgp_flags, gfp_t gfp_mask)
1da177e4 1080{
eb2be189 1081 struct page *page;
2457aec6 1082
1da177e4 1083repeat:
2457aec6
MG
1084 page = find_get_entry(mapping, offset);
1085 if (radix_tree_exceptional_entry(page))
1086 page = NULL;
1087 if (!page)
1088 goto no_page;
1089
1090 if (fgp_flags & FGP_LOCK) {
1091 if (fgp_flags & FGP_NOWAIT) {
1092 if (!trylock_page(page)) {
1093 page_cache_release(page);
1094 return NULL;
1095 }
1096 } else {
1097 lock_page(page);
1098 }
1099
1100 /* Has the page been truncated? */
1101 if (unlikely(page->mapping != mapping)) {
1102 unlock_page(page);
1103 page_cache_release(page);
1104 goto repeat;
1105 }
1106 VM_BUG_ON_PAGE(page->index != offset, page);
1107 }
1108
1109 if (page && (fgp_flags & FGP_ACCESSED))
1110 mark_page_accessed(page);
1111
1112no_page:
1113 if (!page && (fgp_flags & FGP_CREAT)) {
1114 int err;
1115 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
45f87de5
MH
1116 gfp_mask |= __GFP_WRITE;
1117 if (fgp_flags & FGP_NOFS)
1118 gfp_mask &= ~__GFP_FS;
2457aec6 1119
45f87de5 1120 page = __page_cache_alloc(gfp_mask);
eb2be189
NP
1121 if (!page)
1122 return NULL;
2457aec6
MG
1123
1124 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1125 fgp_flags |= FGP_LOCK;
1126
eb39d618 1127 /* Init accessed so avoid atomic mark_page_accessed later */
2457aec6 1128 if (fgp_flags & FGP_ACCESSED)
eb39d618 1129 __SetPageReferenced(page);
2457aec6 1130
45f87de5
MH
1131 err = add_to_page_cache_lru(page, mapping, offset,
1132 gfp_mask & GFP_RECLAIM_MASK);
eb2be189
NP
1133 if (unlikely(err)) {
1134 page_cache_release(page);
1135 page = NULL;
1136 if (err == -EEXIST)
1137 goto repeat;
1da177e4 1138 }
1da177e4 1139 }
2457aec6 1140
1da177e4
LT
1141 return page;
1142}
2457aec6 1143EXPORT_SYMBOL(pagecache_get_page);
1da177e4 1144
0cd6144a
JW
1145/**
1146 * find_get_entries - gang pagecache lookup
1147 * @mapping: The address_space to search
1148 * @start: The starting page cache index
1149 * @nr_entries: The maximum number of entries
1150 * @entries: Where the resulting entries are placed
1151 * @indices: The cache indices corresponding to the entries in @entries
1152 *
1153 * find_get_entries() will search for and return a group of up to
1154 * @nr_entries entries in the mapping. The entries are placed at
1155 * @entries. find_get_entries() takes a reference against any actual
1156 * pages it returns.
1157 *
1158 * The search returns a group of mapping-contiguous page cache entries
1159 * with ascending indexes. There may be holes in the indices due to
1160 * not-present pages.
1161 *
139b6a6f
JW
1162 * Any shadow entries of evicted pages, or swap entries from
1163 * shmem/tmpfs, are included in the returned array.
0cd6144a
JW
1164 *
1165 * find_get_entries() returns the number of pages and shadow entries
1166 * which were found.
1167 */
1168unsigned find_get_entries(struct address_space *mapping,
1169 pgoff_t start, unsigned int nr_entries,
1170 struct page **entries, pgoff_t *indices)
1171{
1172 void **slot;
1173 unsigned int ret = 0;
1174 struct radix_tree_iter iter;
1175
1176 if (!nr_entries)
1177 return 0;
1178
1179 rcu_read_lock();
1180restart:
1181 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1182 struct page *page;
1183repeat:
1184 page = radix_tree_deref_slot(slot);
1185 if (unlikely(!page))
1186 continue;
1187 if (radix_tree_exception(page)) {
1188 if (radix_tree_deref_retry(page))
1189 goto restart;
1190 /*
139b6a6f
JW
1191 * A shadow entry of a recently evicted page,
1192 * or a swap entry from shmem/tmpfs. Return
1193 * it without attempting to raise page count.
0cd6144a
JW
1194 */
1195 goto export;
1196 }
1197 if (!page_cache_get_speculative(page))
1198 goto repeat;
1199
1200 /* Has the page moved? */
1201 if (unlikely(page != *slot)) {
1202 page_cache_release(page);
1203 goto repeat;
1204 }
1205export:
1206 indices[ret] = iter.index;
1207 entries[ret] = page;
1208 if (++ret == nr_entries)
1209 break;
1210 }
1211 rcu_read_unlock();
1212 return ret;
1213}
1214
1da177e4
LT
1215/**
1216 * find_get_pages - gang pagecache lookup
1217 * @mapping: The address_space to search
1218 * @start: The starting page index
1219 * @nr_pages: The maximum number of pages
1220 * @pages: Where the resulting pages are placed
1221 *
1222 * find_get_pages() will search for and return a group of up to
1223 * @nr_pages pages in the mapping. The pages are placed at @pages.
1224 * find_get_pages() takes a reference against the returned pages.
1225 *
1226 * The search returns a group of mapping-contiguous pages with ascending
1227 * indexes. There may be holes in the indices due to not-present pages.
1228 *
1229 * find_get_pages() returns the number of pages which were found.
1230 */
1231unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1232 unsigned int nr_pages, struct page **pages)
1233{
0fc9d104
KK
1234 struct radix_tree_iter iter;
1235 void **slot;
1236 unsigned ret = 0;
1237
1238 if (unlikely(!nr_pages))
1239 return 0;
a60637c8
NP
1240
1241 rcu_read_lock();
1242restart:
0fc9d104 1243 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
a60637c8
NP
1244 struct page *page;
1245repeat:
0fc9d104 1246 page = radix_tree_deref_slot(slot);
a60637c8
NP
1247 if (unlikely(!page))
1248 continue;
9d8aa4ea 1249
a2c16d6c 1250 if (radix_tree_exception(page)) {
8079b1c8
HD
1251 if (radix_tree_deref_retry(page)) {
1252 /*
1253 * Transient condition which can only trigger
1254 * when entry at index 0 moves out of or back
1255 * to root: none yet gotten, safe to restart.
1256 */
0fc9d104 1257 WARN_ON(iter.index);
8079b1c8
HD
1258 goto restart;
1259 }
a2c16d6c 1260 /*
139b6a6f
JW
1261 * A shadow entry of a recently evicted page,
1262 * or a swap entry from shmem/tmpfs. Skip
1263 * over it.
a2c16d6c 1264 */
8079b1c8 1265 continue;
27d20fdd 1266 }
a60637c8
NP
1267
1268 if (!page_cache_get_speculative(page))
1269 goto repeat;
1270
1271 /* Has the page moved? */
0fc9d104 1272 if (unlikely(page != *slot)) {
a60637c8
NP
1273 page_cache_release(page);
1274 goto repeat;
1275 }
1da177e4 1276
a60637c8 1277 pages[ret] = page;
0fc9d104
KK
1278 if (++ret == nr_pages)
1279 break;
a60637c8 1280 }
5b280c0c 1281
a60637c8 1282 rcu_read_unlock();
1da177e4
LT
1283 return ret;
1284}
1285
ebf43500
JA
1286/**
1287 * find_get_pages_contig - gang contiguous pagecache lookup
1288 * @mapping: The address_space to search
1289 * @index: The starting page index
1290 * @nr_pages: The maximum number of pages
1291 * @pages: Where the resulting pages are placed
1292 *
1293 * find_get_pages_contig() works exactly like find_get_pages(), except
1294 * that the returned number of pages are guaranteed to be contiguous.
1295 *
1296 * find_get_pages_contig() returns the number of pages which were found.
1297 */
1298unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1299 unsigned int nr_pages, struct page **pages)
1300{
0fc9d104
KK
1301 struct radix_tree_iter iter;
1302 void **slot;
1303 unsigned int ret = 0;
1304
1305 if (unlikely(!nr_pages))
1306 return 0;
a60637c8
NP
1307
1308 rcu_read_lock();
1309restart:
0fc9d104 1310 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
a60637c8
NP
1311 struct page *page;
1312repeat:
0fc9d104
KK
1313 page = radix_tree_deref_slot(slot);
1314 /* The hole, there no reason to continue */
a60637c8 1315 if (unlikely(!page))
0fc9d104 1316 break;
9d8aa4ea 1317
a2c16d6c 1318 if (radix_tree_exception(page)) {
8079b1c8
HD
1319 if (radix_tree_deref_retry(page)) {
1320 /*
1321 * Transient condition which can only trigger
1322 * when entry at index 0 moves out of or back
1323 * to root: none yet gotten, safe to restart.
1324 */
1325 goto restart;
1326 }
a2c16d6c 1327 /*
139b6a6f
JW
1328 * A shadow entry of a recently evicted page,
1329 * or a swap entry from shmem/tmpfs. Stop
1330 * looking for contiguous pages.
a2c16d6c 1331 */
8079b1c8 1332 break;
a2c16d6c 1333 }
ebf43500 1334
a60637c8
NP
1335 if (!page_cache_get_speculative(page))
1336 goto repeat;
1337
1338 /* Has the page moved? */
0fc9d104 1339 if (unlikely(page != *slot)) {
a60637c8
NP
1340 page_cache_release(page);
1341 goto repeat;
1342 }
1343
9cbb4cb2
NP
1344 /*
1345 * must check mapping and index after taking the ref.
1346 * otherwise we can get both false positives and false
1347 * negatives, which is just confusing to the caller.
1348 */
0fc9d104 1349 if (page->mapping == NULL || page->index != iter.index) {
9cbb4cb2
NP
1350 page_cache_release(page);
1351 break;
1352 }
1353
a60637c8 1354 pages[ret] = page;
0fc9d104
KK
1355 if (++ret == nr_pages)
1356 break;
ebf43500 1357 }
a60637c8
NP
1358 rcu_read_unlock();
1359 return ret;
ebf43500 1360}
ef71c15c 1361EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 1362
485bb99b
RD
1363/**
1364 * find_get_pages_tag - find and return pages that match @tag
1365 * @mapping: the address_space to search
1366 * @index: the starting page index
1367 * @tag: the tag index
1368 * @nr_pages: the maximum number of pages
1369 * @pages: where the resulting pages are placed
1370 *
1da177e4 1371 * Like find_get_pages, except we only return pages which are tagged with
485bb99b 1372 * @tag. We update @index to index the next page for the traversal.
1da177e4
LT
1373 */
1374unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1375 int tag, unsigned int nr_pages, struct page **pages)
1376{
0fc9d104
KK
1377 struct radix_tree_iter iter;
1378 void **slot;
1379 unsigned ret = 0;
1380
1381 if (unlikely(!nr_pages))
1382 return 0;
a60637c8
NP
1383
1384 rcu_read_lock();
1385restart:
0fc9d104
KK
1386 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1387 &iter, *index, tag) {
a60637c8
NP
1388 struct page *page;
1389repeat:
0fc9d104 1390 page = radix_tree_deref_slot(slot);
a60637c8
NP
1391 if (unlikely(!page))
1392 continue;
9d8aa4ea 1393
a2c16d6c 1394 if (radix_tree_exception(page)) {
8079b1c8
HD
1395 if (radix_tree_deref_retry(page)) {
1396 /*
1397 * Transient condition which can only trigger
1398 * when entry at index 0 moves out of or back
1399 * to root: none yet gotten, safe to restart.
1400 */
1401 goto restart;
1402 }
a2c16d6c 1403 /*
139b6a6f
JW
1404 * A shadow entry of a recently evicted page.
1405 *
1406 * Those entries should never be tagged, but
1407 * this tree walk is lockless and the tags are
1408 * looked up in bulk, one radix tree node at a
1409 * time, so there is a sizable window for page
1410 * reclaim to evict a page we saw tagged.
1411 *
1412 * Skip over it.
a2c16d6c 1413 */
139b6a6f 1414 continue;
a2c16d6c 1415 }
a60637c8
NP
1416
1417 if (!page_cache_get_speculative(page))
1418 goto repeat;
1419
1420 /* Has the page moved? */
0fc9d104 1421 if (unlikely(page != *slot)) {
a60637c8
NP
1422 page_cache_release(page);
1423 goto repeat;
1424 }
1425
1426 pages[ret] = page;
0fc9d104
KK
1427 if (++ret == nr_pages)
1428 break;
a60637c8 1429 }
5b280c0c 1430
a60637c8 1431 rcu_read_unlock();
1da177e4 1432
1da177e4
LT
1433 if (ret)
1434 *index = pages[ret - 1]->index + 1;
a60637c8 1435
1da177e4
LT
1436 return ret;
1437}
ef71c15c 1438EXPORT_SYMBOL(find_get_pages_tag);
1da177e4 1439
76d42bd9
WF
1440/*
1441 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1442 * a _large_ part of the i/o request. Imagine the worst scenario:
1443 *
1444 * ---R__________________________________________B__________
1445 * ^ reading here ^ bad block(assume 4k)
1446 *
1447 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1448 * => failing the whole request => read(R) => read(R+1) =>
1449 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1450 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1451 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1452 *
1453 * It is going insane. Fix it by quickly scaling down the readahead size.
1454 */
1455static void shrink_readahead_size_eio(struct file *filp,
1456 struct file_ra_state *ra)
1457{
76d42bd9 1458 ra->ra_pages /= 4;
76d42bd9
WF
1459}
1460
485bb99b 1461/**
36e78914 1462 * do_generic_file_read - generic file read routine
485bb99b
RD
1463 * @filp: the file to read
1464 * @ppos: current file position
6e58e79d
AV
1465 * @iter: data destination
1466 * @written: already copied
485bb99b 1467 *
1da177e4 1468 * This is a generic file read routine, and uses the
485bb99b 1469 * mapping->a_ops->readpage() function for the actual low-level stuff.
1da177e4
LT
1470 *
1471 * This is really ugly. But the goto's actually try to clarify some
1472 * of the logic when it comes to error handling etc.
1da177e4 1473 */
6e58e79d
AV
1474static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1475 struct iov_iter *iter, ssize_t written)
1da177e4 1476{
36e78914 1477 struct address_space *mapping = filp->f_mapping;
1da177e4 1478 struct inode *inode = mapping->host;
36e78914 1479 struct file_ra_state *ra = &filp->f_ra;
57f6b96c
FW
1480 pgoff_t index;
1481 pgoff_t last_index;
1482 pgoff_t prev_index;
1483 unsigned long offset; /* offset into pagecache page */
ec0f1637 1484 unsigned int prev_offset;
6e58e79d 1485 int error = 0;
1da177e4 1486
1da177e4 1487 index = *ppos >> PAGE_CACHE_SHIFT;
7ff81078
FW
1488 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1489 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
6e58e79d 1490 last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1da177e4
LT
1491 offset = *ppos & ~PAGE_CACHE_MASK;
1492
1da177e4
LT
1493 for (;;) {
1494 struct page *page;
57f6b96c 1495 pgoff_t end_index;
a32ea1e1 1496 loff_t isize;
1da177e4
LT
1497 unsigned long nr, ret;
1498
1da177e4 1499 cond_resched();
1da177e4
LT
1500find_page:
1501 page = find_get_page(mapping, index);
3ea89ee8 1502 if (!page) {
cf914a7d 1503 page_cache_sync_readahead(mapping,
7ff81078 1504 ra, filp,
3ea89ee8
FW
1505 index, last_index - index);
1506 page = find_get_page(mapping, index);
1507 if (unlikely(page == NULL))
1508 goto no_cached_page;
1509 }
1510 if (PageReadahead(page)) {
cf914a7d 1511 page_cache_async_readahead(mapping,
7ff81078 1512 ra, filp, page,
3ea89ee8 1513 index, last_index - index);
1da177e4 1514 }
8ab22b9a
HH
1515 if (!PageUptodate(page)) {
1516 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1517 !mapping->a_ops->is_partially_uptodate)
1518 goto page_not_up_to_date;
529ae9aa 1519 if (!trylock_page(page))
8ab22b9a 1520 goto page_not_up_to_date;
8d056cb9
DH
1521 /* Did it get truncated before we got the lock? */
1522 if (!page->mapping)
1523 goto page_not_up_to_date_locked;
8ab22b9a 1524 if (!mapping->a_ops->is_partially_uptodate(page,
6e58e79d 1525 offset, iter->count))
8ab22b9a
HH
1526 goto page_not_up_to_date_locked;
1527 unlock_page(page);
1528 }
1da177e4 1529page_ok:
a32ea1e1
N
1530 /*
1531 * i_size must be checked after we know the page is Uptodate.
1532 *
1533 * Checking i_size after the check allows us to calculate
1534 * the correct value for "nr", which means the zero-filled
1535 * part of the page is not copied back to userspace (unless
1536 * another truncate extends the file - this is desired though).
1537 */
1538
1539 isize = i_size_read(inode);
1540 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1541 if (unlikely(!isize || index > end_index)) {
1542 page_cache_release(page);
1543 goto out;
1544 }
1545
1546 /* nr is the maximum number of bytes to copy from this page */
1547 nr = PAGE_CACHE_SIZE;
1548 if (index == end_index) {
1549 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1550 if (nr <= offset) {
1551 page_cache_release(page);
1552 goto out;
1553 }
1554 }
1555 nr = nr - offset;
1da177e4
LT
1556
1557 /* If users can be writing to this page using arbitrary
1558 * virtual addresses, take care about potential aliasing
1559 * before reading the page on the kernel side.
1560 */
1561 if (mapping_writably_mapped(mapping))
1562 flush_dcache_page(page);
1563
1564 /*
ec0f1637
JK
1565 * When a sequential read accesses a page several times,
1566 * only mark it as accessed the first time.
1da177e4 1567 */
ec0f1637 1568 if (prev_index != index || offset != prev_offset)
1da177e4
LT
1569 mark_page_accessed(page);
1570 prev_index = index;
1571
1572 /*
1573 * Ok, we have the page, and it's up-to-date, so
1574 * now we can copy it to user space...
1da177e4 1575 */
6e58e79d
AV
1576
1577 ret = copy_page_to_iter(page, offset, nr, iter);
1da177e4
LT
1578 offset += ret;
1579 index += offset >> PAGE_CACHE_SHIFT;
1580 offset &= ~PAGE_CACHE_MASK;
6ce745ed 1581 prev_offset = offset;
1da177e4
LT
1582
1583 page_cache_release(page);
6e58e79d
AV
1584 written += ret;
1585 if (!iov_iter_count(iter))
1586 goto out;
1587 if (ret < nr) {
1588 error = -EFAULT;
1589 goto out;
1590 }
1591 continue;
1da177e4
LT
1592
1593page_not_up_to_date:
1594 /* Get exclusive access to the page ... */
85462323
ON
1595 error = lock_page_killable(page);
1596 if (unlikely(error))
1597 goto readpage_error;
1da177e4 1598
8ab22b9a 1599page_not_up_to_date_locked:
da6052f7 1600 /* Did it get truncated before we got the lock? */
1da177e4
LT
1601 if (!page->mapping) {
1602 unlock_page(page);
1603 page_cache_release(page);
1604 continue;
1605 }
1606
1607 /* Did somebody else fill it already? */
1608 if (PageUptodate(page)) {
1609 unlock_page(page);
1610 goto page_ok;
1611 }
1612
1613readpage:
91803b49
JM
1614 /*
1615 * A previous I/O error may have been due to temporary
1616 * failures, eg. multipath errors.
1617 * PG_error will be set again if readpage fails.
1618 */
1619 ClearPageError(page);
1da177e4
LT
1620 /* Start the actual read. The read will unlock the page. */
1621 error = mapping->a_ops->readpage(filp, page);
1622
994fc28c
ZB
1623 if (unlikely(error)) {
1624 if (error == AOP_TRUNCATED_PAGE) {
1625 page_cache_release(page);
6e58e79d 1626 error = 0;
994fc28c
ZB
1627 goto find_page;
1628 }
1da177e4 1629 goto readpage_error;
994fc28c 1630 }
1da177e4
LT
1631
1632 if (!PageUptodate(page)) {
85462323
ON
1633 error = lock_page_killable(page);
1634 if (unlikely(error))
1635 goto readpage_error;
1da177e4
LT
1636 if (!PageUptodate(page)) {
1637 if (page->mapping == NULL) {
1638 /*
2ecdc82e 1639 * invalidate_mapping_pages got it
1da177e4
LT
1640 */
1641 unlock_page(page);
1642 page_cache_release(page);
1643 goto find_page;
1644 }
1645 unlock_page(page);
7ff81078 1646 shrink_readahead_size_eio(filp, ra);
85462323
ON
1647 error = -EIO;
1648 goto readpage_error;
1da177e4
LT
1649 }
1650 unlock_page(page);
1651 }
1652
1da177e4
LT
1653 goto page_ok;
1654
1655readpage_error:
1656 /* UHHUH! A synchronous read error occurred. Report it */
1da177e4
LT
1657 page_cache_release(page);
1658 goto out;
1659
1660no_cached_page:
1661 /*
1662 * Ok, it wasn't cached, so we need to create a new
1663 * page..
1664 */
eb2be189
NP
1665 page = page_cache_alloc_cold(mapping);
1666 if (!page) {
6e58e79d 1667 error = -ENOMEM;
eb2be189 1668 goto out;
1da177e4 1669 }
eb2be189 1670 error = add_to_page_cache_lru(page, mapping,
1da177e4
LT
1671 index, GFP_KERNEL);
1672 if (error) {
eb2be189 1673 page_cache_release(page);
6e58e79d
AV
1674 if (error == -EEXIST) {
1675 error = 0;
1da177e4 1676 goto find_page;
6e58e79d 1677 }
1da177e4
LT
1678 goto out;
1679 }
1da177e4
LT
1680 goto readpage;
1681 }
1682
1683out:
7ff81078
FW
1684 ra->prev_pos = prev_index;
1685 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1686 ra->prev_pos |= prev_offset;
1da177e4 1687
f4e6b498 1688 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
0c6aa263 1689 file_accessed(filp);
6e58e79d 1690 return written ? written : error;
1da177e4
LT
1691}
1692
485bb99b 1693/**
6abd2322 1694 * generic_file_read_iter - generic filesystem read routine
485bb99b 1695 * @iocb: kernel I/O control block
6abd2322 1696 * @iter: destination for the data read
485bb99b 1697 *
6abd2322 1698 * This is the "read_iter()" routine for all filesystems
1da177e4
LT
1699 * that can use the page cache directly.
1700 */
1701ssize_t
ed978a81 1702generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1da177e4 1703{
ed978a81 1704 struct file *file = iocb->ki_filp;
cb66a7a1 1705 ssize_t retval = 0;
543ade1f 1706 loff_t *ppos = &iocb->ki_pos;
ed978a81 1707 loff_t pos = *ppos;
1da177e4 1708
2ba48ce5 1709 if (iocb->ki_flags & IOCB_DIRECT) {
ed978a81
AV
1710 struct address_space *mapping = file->f_mapping;
1711 struct inode *inode = mapping->host;
1712 size_t count = iov_iter_count(iter);
543ade1f 1713 loff_t size;
1da177e4 1714
1da177e4
LT
1715 if (!count)
1716 goto out; /* skip atime */
1717 size = i_size_read(inode);
9fe55eea 1718 retval = filemap_write_and_wait_range(mapping, pos,
a6cbcd4a 1719 pos + count - 1);
9fe55eea 1720 if (!retval) {
ed978a81 1721 struct iov_iter data = *iter;
22c6186e 1722 retval = mapping->a_ops->direct_IO(iocb, &data, pos);
9fe55eea 1723 }
d8d3d94b 1724
9fe55eea
SW
1725 if (retval > 0) {
1726 *ppos = pos + retval;
ed978a81 1727 iov_iter_advance(iter, retval);
9fe55eea 1728 }
66f998f6 1729
9fe55eea
SW
1730 /*
1731 * Btrfs can have a short DIO read if we encounter
1732 * compressed extents, so if there was an error, or if
1733 * we've already read everything we wanted to, or if
1734 * there was a short read because we hit EOF, go ahead
1735 * and return. Otherwise fallthrough to buffered io for
fbbbad4b
MW
1736 * the rest of the read. Buffered reads will not work for
1737 * DAX files, so don't bother trying.
9fe55eea 1738 */
fbbbad4b
MW
1739 if (retval < 0 || !iov_iter_count(iter) || *ppos >= size ||
1740 IS_DAX(inode)) {
ed978a81 1741 file_accessed(file);
9fe55eea 1742 goto out;
0e0bcae3 1743 }
1da177e4
LT
1744 }
1745
ed978a81 1746 retval = do_generic_file_read(file, ppos, iter, retval);
1da177e4
LT
1747out:
1748 return retval;
1749}
ed978a81 1750EXPORT_SYMBOL(generic_file_read_iter);
1da177e4 1751
1da177e4 1752#ifdef CONFIG_MMU
485bb99b
RD
1753/**
1754 * page_cache_read - adds requested page to the page cache if not already there
1755 * @file: file to read
1756 * @offset: page index
1757 *
1da177e4
LT
1758 * This adds the requested page to the page cache if it isn't already there,
1759 * and schedules an I/O to read in its contents from disk.
1760 */
920c7a5d 1761static int page_cache_read(struct file *file, pgoff_t offset)
1da177e4
LT
1762{
1763 struct address_space *mapping = file->f_mapping;
99dadfdd 1764 struct page *page;
994fc28c 1765 int ret;
1da177e4 1766
994fc28c
ZB
1767 do {
1768 page = page_cache_alloc_cold(mapping);
1769 if (!page)
1770 return -ENOMEM;
1771
1772 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1773 if (ret == 0)
1774 ret = mapping->a_ops->readpage(file, page);
1775 else if (ret == -EEXIST)
1776 ret = 0; /* losing race to add is OK */
1da177e4 1777
1da177e4 1778 page_cache_release(page);
1da177e4 1779
994fc28c 1780 } while (ret == AOP_TRUNCATED_PAGE);
99dadfdd 1781
994fc28c 1782 return ret;
1da177e4
LT
1783}
1784
1785#define MMAP_LOTSAMISS (100)
1786
ef00e08e
LT
1787/*
1788 * Synchronous readahead happens when we don't even find
1789 * a page in the page cache at all.
1790 */
1791static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1792 struct file_ra_state *ra,
1793 struct file *file,
1794 pgoff_t offset)
1795{
1796 unsigned long ra_pages;
1797 struct address_space *mapping = file->f_mapping;
1798
1799 /* If we don't want any read-ahead, don't bother */
64363aad 1800 if (vma->vm_flags & VM_RAND_READ)
ef00e08e 1801 return;
275b12bf
WF
1802 if (!ra->ra_pages)
1803 return;
ef00e08e 1804
64363aad 1805 if (vma->vm_flags & VM_SEQ_READ) {
7ffc59b4
WF
1806 page_cache_sync_readahead(mapping, ra, file, offset,
1807 ra->ra_pages);
ef00e08e
LT
1808 return;
1809 }
1810
207d04ba
AK
1811 /* Avoid banging the cache line if not needed */
1812 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
ef00e08e
LT
1813 ra->mmap_miss++;
1814
1815 /*
1816 * Do we miss much more than hit in this file? If so,
1817 * stop bothering with read-ahead. It will only hurt.
1818 */
1819 if (ra->mmap_miss > MMAP_LOTSAMISS)
1820 return;
1821
d30a1100
WF
1822 /*
1823 * mmap read-around
1824 */
ef00e08e 1825 ra_pages = max_sane_readahead(ra->ra_pages);
275b12bf
WF
1826 ra->start = max_t(long, 0, offset - ra_pages / 2);
1827 ra->size = ra_pages;
2cbea1d3 1828 ra->async_size = ra_pages / 4;
275b12bf 1829 ra_submit(ra, mapping, file);
ef00e08e
LT
1830}
1831
1832/*
1833 * Asynchronous readahead happens when we find the page and PG_readahead,
1834 * so we want to possibly extend the readahead further..
1835 */
1836static void do_async_mmap_readahead(struct vm_area_struct *vma,
1837 struct file_ra_state *ra,
1838 struct file *file,
1839 struct page *page,
1840 pgoff_t offset)
1841{
1842 struct address_space *mapping = file->f_mapping;
1843
1844 /* If we don't want any read-ahead, don't bother */
64363aad 1845 if (vma->vm_flags & VM_RAND_READ)
ef00e08e
LT
1846 return;
1847 if (ra->mmap_miss > 0)
1848 ra->mmap_miss--;
1849 if (PageReadahead(page))
2fad6f5d
WF
1850 page_cache_async_readahead(mapping, ra, file,
1851 page, offset, ra->ra_pages);
ef00e08e
LT
1852}
1853
485bb99b 1854/**
54cb8821 1855 * filemap_fault - read in file data for page fault handling
d0217ac0
NP
1856 * @vma: vma in which the fault was taken
1857 * @vmf: struct vm_fault containing details of the fault
485bb99b 1858 *
54cb8821 1859 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
1860 * mapped memory region to read in file data during a page fault.
1861 *
1862 * The goto's are kind of ugly, but this streamlines the normal case of having
1863 * it in the page cache, and handles the special cases reasonably without
1864 * having a lot of duplicated code.
9a95f3cf
PC
1865 *
1866 * vma->vm_mm->mmap_sem must be held on entry.
1867 *
1868 * If our return value has VM_FAULT_RETRY set, it's because
1869 * lock_page_or_retry() returned 0.
1870 * The mmap_sem has usually been released in this case.
1871 * See __lock_page_or_retry() for the exception.
1872 *
1873 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
1874 * has not been released.
1875 *
1876 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
1da177e4 1877 */
d0217ac0 1878int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
1879{
1880 int error;
54cb8821 1881 struct file *file = vma->vm_file;
1da177e4
LT
1882 struct address_space *mapping = file->f_mapping;
1883 struct file_ra_state *ra = &file->f_ra;
1884 struct inode *inode = mapping->host;
ef00e08e 1885 pgoff_t offset = vmf->pgoff;
1da177e4 1886 struct page *page;
99e3e53f 1887 loff_t size;
83c54070 1888 int ret = 0;
1da177e4 1889
99e3e53f
KS
1890 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1891 if (offset >= size >> PAGE_CACHE_SHIFT)
5307cc1a 1892 return VM_FAULT_SIGBUS;
1da177e4 1893
1da177e4 1894 /*
49426420 1895 * Do we have something in the page cache already?
1da177e4 1896 */
ef00e08e 1897 page = find_get_page(mapping, offset);
45cac65b 1898 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1da177e4 1899 /*
ef00e08e
LT
1900 * We found the page, so try async readahead before
1901 * waiting for the lock.
1da177e4 1902 */
ef00e08e 1903 do_async_mmap_readahead(vma, ra, file, page, offset);
45cac65b 1904 } else if (!page) {
ef00e08e
LT
1905 /* No page in the page cache at all */
1906 do_sync_mmap_readahead(vma, ra, file, offset);
1907 count_vm_event(PGMAJFAULT);
456f998e 1908 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
ef00e08e
LT
1909 ret = VM_FAULT_MAJOR;
1910retry_find:
b522c94d 1911 page = find_get_page(mapping, offset);
1da177e4
LT
1912 if (!page)
1913 goto no_cached_page;
1914 }
1915
d88c0922
ML
1916 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1917 page_cache_release(page);
d065bd81 1918 return ret | VM_FAULT_RETRY;
d88c0922 1919 }
b522c94d
ML
1920
1921 /* Did it get truncated? */
1922 if (unlikely(page->mapping != mapping)) {
1923 unlock_page(page);
1924 put_page(page);
1925 goto retry_find;
1926 }
309381fe 1927 VM_BUG_ON_PAGE(page->index != offset, page);
b522c94d 1928
1da177e4 1929 /*
d00806b1
NP
1930 * We have a locked page in the page cache, now we need to check
1931 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 1932 */
d00806b1 1933 if (unlikely(!PageUptodate(page)))
1da177e4
LT
1934 goto page_not_uptodate;
1935
ef00e08e
LT
1936 /*
1937 * Found the page and have a reference on it.
1938 * We must recheck i_size under page lock.
1939 */
99e3e53f
KS
1940 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1941 if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
d00806b1 1942 unlock_page(page);
745ad48e 1943 page_cache_release(page);
5307cc1a 1944 return VM_FAULT_SIGBUS;
d00806b1
NP
1945 }
1946
d0217ac0 1947 vmf->page = page;
83c54070 1948 return ret | VM_FAULT_LOCKED;
1da177e4 1949
1da177e4
LT
1950no_cached_page:
1951 /*
1952 * We're only likely to ever get here if MADV_RANDOM is in
1953 * effect.
1954 */
ef00e08e 1955 error = page_cache_read(file, offset);
1da177e4
LT
1956
1957 /*
1958 * The page we want has now been added to the page cache.
1959 * In the unlikely event that someone removed it in the
1960 * meantime, we'll just come back here and read it again.
1961 */
1962 if (error >= 0)
1963 goto retry_find;
1964
1965 /*
1966 * An error return from page_cache_read can result if the
1967 * system is low on memory, or a problem occurs while trying
1968 * to schedule I/O.
1969 */
1970 if (error == -ENOMEM)
d0217ac0
NP
1971 return VM_FAULT_OOM;
1972 return VM_FAULT_SIGBUS;
1da177e4
LT
1973
1974page_not_uptodate:
1da177e4
LT
1975 /*
1976 * Umm, take care of errors if the page isn't up-to-date.
1977 * Try to re-read it _once_. We do this synchronously,
1978 * because there really aren't any performance issues here
1979 * and we need to check for errors.
1980 */
1da177e4 1981 ClearPageError(page);
994fc28c 1982 error = mapping->a_ops->readpage(file, page);
3ef0f720
MS
1983 if (!error) {
1984 wait_on_page_locked(page);
1985 if (!PageUptodate(page))
1986 error = -EIO;
1987 }
d00806b1
NP
1988 page_cache_release(page);
1989
1990 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 1991 goto retry_find;
1da177e4 1992
d00806b1 1993 /* Things didn't work out. Return zero to tell the mm layer so. */
76d42bd9 1994 shrink_readahead_size_eio(file, ra);
d0217ac0 1995 return VM_FAULT_SIGBUS;
54cb8821
NP
1996}
1997EXPORT_SYMBOL(filemap_fault);
1998
f1820361
KS
1999void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
2000{
2001 struct radix_tree_iter iter;
2002 void **slot;
2003 struct file *file = vma->vm_file;
2004 struct address_space *mapping = file->f_mapping;
2005 loff_t size;
2006 struct page *page;
2007 unsigned long address = (unsigned long) vmf->virtual_address;
2008 unsigned long addr;
2009 pte_t *pte;
2010
2011 rcu_read_lock();
2012 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
2013 if (iter.index > vmf->max_pgoff)
2014 break;
2015repeat:
2016 page = radix_tree_deref_slot(slot);
2017 if (unlikely(!page))
2018 goto next;
2019 if (radix_tree_exception(page)) {
2020 if (radix_tree_deref_retry(page))
2021 break;
2022 else
2023 goto next;
2024 }
2025
2026 if (!page_cache_get_speculative(page))
2027 goto repeat;
2028
2029 /* Has the page moved? */
2030 if (unlikely(page != *slot)) {
2031 page_cache_release(page);
2032 goto repeat;
2033 }
2034
2035 if (!PageUptodate(page) ||
2036 PageReadahead(page) ||
2037 PageHWPoison(page))
2038 goto skip;
2039 if (!trylock_page(page))
2040 goto skip;
2041
2042 if (page->mapping != mapping || !PageUptodate(page))
2043 goto unlock;
2044
99e3e53f
KS
2045 size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
2046 if (page->index >= size >> PAGE_CACHE_SHIFT)
f1820361
KS
2047 goto unlock;
2048
2049 pte = vmf->pte + page->index - vmf->pgoff;
2050 if (!pte_none(*pte))
2051 goto unlock;
2052
2053 if (file->f_ra.mmap_miss > 0)
2054 file->f_ra.mmap_miss--;
2055 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2056 do_set_pte(vma, addr, page, pte, false, false);
2057 unlock_page(page);
2058 goto next;
2059unlock:
2060 unlock_page(page);
2061skip:
2062 page_cache_release(page);
2063next:
2064 if (iter.index == vmf->max_pgoff)
2065 break;
2066 }
2067 rcu_read_unlock();
2068}
2069EXPORT_SYMBOL(filemap_map_pages);
2070
4fcf1c62
JK
2071int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2072{
2073 struct page *page = vmf->page;
496ad9aa 2074 struct inode *inode = file_inode(vma->vm_file);
4fcf1c62
JK
2075 int ret = VM_FAULT_LOCKED;
2076
14da9200 2077 sb_start_pagefault(inode->i_sb);
4fcf1c62
JK
2078 file_update_time(vma->vm_file);
2079 lock_page(page);
2080 if (page->mapping != inode->i_mapping) {
2081 unlock_page(page);
2082 ret = VM_FAULT_NOPAGE;
2083 goto out;
2084 }
14da9200
JK
2085 /*
2086 * We mark the page dirty already here so that when freeze is in
2087 * progress, we are guaranteed that writeback during freezing will
2088 * see the dirty page and writeprotect it again.
2089 */
2090 set_page_dirty(page);
1d1d1a76 2091 wait_for_stable_page(page);
4fcf1c62 2092out:
14da9200 2093 sb_end_pagefault(inode->i_sb);
4fcf1c62
JK
2094 return ret;
2095}
2096EXPORT_SYMBOL(filemap_page_mkwrite);
2097
f0f37e2f 2098const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 2099 .fault = filemap_fault,
f1820361 2100 .map_pages = filemap_map_pages,
4fcf1c62 2101 .page_mkwrite = filemap_page_mkwrite,
1da177e4
LT
2102};
2103
2104/* This is used for a general mmap of a disk file */
2105
2106int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2107{
2108 struct address_space *mapping = file->f_mapping;
2109
2110 if (!mapping->a_ops->readpage)
2111 return -ENOEXEC;
2112 file_accessed(file);
2113 vma->vm_ops = &generic_file_vm_ops;
2114 return 0;
2115}
1da177e4
LT
2116
2117/*
2118 * This is for filesystems which do not implement ->writepage.
2119 */
2120int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2121{
2122 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2123 return -EINVAL;
2124 return generic_file_mmap(file, vma);
2125}
2126#else
2127int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2128{
2129 return -ENOSYS;
2130}
2131int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2132{
2133 return -ENOSYS;
2134}
2135#endif /* CONFIG_MMU */
2136
2137EXPORT_SYMBOL(generic_file_mmap);
2138EXPORT_SYMBOL(generic_file_readonly_mmap);
2139
67f9fd91
SL
2140static struct page *wait_on_page_read(struct page *page)
2141{
2142 if (!IS_ERR(page)) {
2143 wait_on_page_locked(page);
2144 if (!PageUptodate(page)) {
2145 page_cache_release(page);
2146 page = ERR_PTR(-EIO);
2147 }
2148 }
2149 return page;
2150}
2151
6fe6900e 2152static struct page *__read_cache_page(struct address_space *mapping,
57f6b96c 2153 pgoff_t index,
5e5358e7 2154 int (*filler)(void *, struct page *),
0531b2aa
LT
2155 void *data,
2156 gfp_t gfp)
1da177e4 2157{
eb2be189 2158 struct page *page;
1da177e4
LT
2159 int err;
2160repeat:
2161 page = find_get_page(mapping, index);
2162 if (!page) {
0531b2aa 2163 page = __page_cache_alloc(gfp | __GFP_COLD);
eb2be189
NP
2164 if (!page)
2165 return ERR_PTR(-ENOMEM);
e6f67b8c 2166 err = add_to_page_cache_lru(page, mapping, index, gfp);
eb2be189
NP
2167 if (unlikely(err)) {
2168 page_cache_release(page);
2169 if (err == -EEXIST)
2170 goto repeat;
1da177e4 2171 /* Presumably ENOMEM for radix tree node */
1da177e4
LT
2172 return ERR_PTR(err);
2173 }
1da177e4
LT
2174 err = filler(data, page);
2175 if (err < 0) {
2176 page_cache_release(page);
2177 page = ERR_PTR(err);
67f9fd91
SL
2178 } else {
2179 page = wait_on_page_read(page);
1da177e4
LT
2180 }
2181 }
1da177e4
LT
2182 return page;
2183}
2184
0531b2aa 2185static struct page *do_read_cache_page(struct address_space *mapping,
57f6b96c 2186 pgoff_t index,
5e5358e7 2187 int (*filler)(void *, struct page *),
0531b2aa
LT
2188 void *data,
2189 gfp_t gfp)
2190
1da177e4
LT
2191{
2192 struct page *page;
2193 int err;
2194
2195retry:
0531b2aa 2196 page = __read_cache_page(mapping, index, filler, data, gfp);
1da177e4 2197 if (IS_ERR(page))
c855ff37 2198 return page;
1da177e4
LT
2199 if (PageUptodate(page))
2200 goto out;
2201
2202 lock_page(page);
2203 if (!page->mapping) {
2204 unlock_page(page);
2205 page_cache_release(page);
2206 goto retry;
2207 }
2208 if (PageUptodate(page)) {
2209 unlock_page(page);
2210 goto out;
2211 }
2212 err = filler(data, page);
2213 if (err < 0) {
2214 page_cache_release(page);
c855ff37 2215 return ERR_PTR(err);
67f9fd91
SL
2216 } else {
2217 page = wait_on_page_read(page);
2218 if (IS_ERR(page))
2219 return page;
1da177e4 2220 }
c855ff37 2221out:
6fe6900e
NP
2222 mark_page_accessed(page);
2223 return page;
2224}
0531b2aa
LT
2225
2226/**
67f9fd91 2227 * read_cache_page - read into page cache, fill it if needed
0531b2aa
LT
2228 * @mapping: the page's address_space
2229 * @index: the page index
2230 * @filler: function to perform the read
5e5358e7 2231 * @data: first arg to filler(data, page) function, often left as NULL
0531b2aa 2232 *
0531b2aa 2233 * Read into the page cache. If a page already exists, and PageUptodate() is
67f9fd91 2234 * not set, try to fill the page and wait for it to become unlocked.
0531b2aa
LT
2235 *
2236 * If the page does not get brought uptodate, return -EIO.
2237 */
67f9fd91 2238struct page *read_cache_page(struct address_space *mapping,
0531b2aa 2239 pgoff_t index,
5e5358e7 2240 int (*filler)(void *, struct page *),
0531b2aa
LT
2241 void *data)
2242{
2243 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2244}
67f9fd91 2245EXPORT_SYMBOL(read_cache_page);
0531b2aa
LT
2246
2247/**
2248 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2249 * @mapping: the page's address_space
2250 * @index: the page index
2251 * @gfp: the page allocator flags to use if allocating
2252 *
2253 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
e6f67b8c 2254 * any new page allocations done using the specified allocation flags.
0531b2aa
LT
2255 *
2256 * If the page does not get brought uptodate, return -EIO.
2257 */
2258struct page *read_cache_page_gfp(struct address_space *mapping,
2259 pgoff_t index,
2260 gfp_t gfp)
2261{
2262 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2263
67f9fd91 2264 return do_read_cache_page(mapping, index, filler, NULL, gfp);
0531b2aa
LT
2265}
2266EXPORT_SYMBOL(read_cache_page_gfp);
2267
1da177e4
LT
2268/*
2269 * Performs necessary checks before doing a write
2270 *
485bb99b 2271 * Can adjust writing position or amount of bytes to write.
1da177e4
LT
2272 * Returns appropriate error code that caller should return or
2273 * zero in case that write should be allowed.
2274 */
3309dd04 2275inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
1da177e4 2276{
3309dd04 2277 struct file *file = iocb->ki_filp;
1da177e4 2278 struct inode *inode = file->f_mapping->host;
59e99e5b 2279 unsigned long limit = rlimit(RLIMIT_FSIZE);
3309dd04 2280 loff_t pos;
1da177e4 2281
3309dd04
AV
2282 if (!iov_iter_count(from))
2283 return 0;
1da177e4 2284
0fa6b005 2285 /* FIXME: this is for backwards compatibility with 2.4 */
2ba48ce5 2286 if (iocb->ki_flags & IOCB_APPEND)
3309dd04 2287 iocb->ki_pos = i_size_read(inode);
1da177e4 2288
3309dd04 2289 pos = iocb->ki_pos;
1da177e4 2290
0fa6b005 2291 if (limit != RLIM_INFINITY) {
3309dd04 2292 if (iocb->ki_pos >= limit) {
0fa6b005
AV
2293 send_sig(SIGXFSZ, current, 0);
2294 return -EFBIG;
1da177e4 2295 }
3309dd04 2296 iov_iter_truncate(from, limit - (unsigned long)pos);
1da177e4
LT
2297 }
2298
2299 /*
2300 * LFS rule
2301 */
3309dd04 2302 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
1da177e4 2303 !(file->f_flags & O_LARGEFILE))) {
3309dd04 2304 if (pos >= MAX_NON_LFS)
1da177e4 2305 return -EFBIG;
3309dd04 2306 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
1da177e4
LT
2307 }
2308
2309 /*
2310 * Are we about to exceed the fs block limit ?
2311 *
2312 * If we have written data it becomes a short write. If we have
2313 * exceeded without writing data we send a signal and return EFBIG.
2314 * Linus frestrict idea will clean these up nicely..
2315 */
3309dd04
AV
2316 if (unlikely(pos >= inode->i_sb->s_maxbytes))
2317 return -EFBIG;
1da177e4 2318
3309dd04
AV
2319 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2320 return iov_iter_count(from);
1da177e4
LT
2321}
2322EXPORT_SYMBOL(generic_write_checks);
2323
afddba49
NP
2324int pagecache_write_begin(struct file *file, struct address_space *mapping,
2325 loff_t pos, unsigned len, unsigned flags,
2326 struct page **pagep, void **fsdata)
2327{
2328 const struct address_space_operations *aops = mapping->a_ops;
2329
4e02ed4b 2330 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 2331 pagep, fsdata);
afddba49
NP
2332}
2333EXPORT_SYMBOL(pagecache_write_begin);
2334
2335int pagecache_write_end(struct file *file, struct address_space *mapping,
2336 loff_t pos, unsigned len, unsigned copied,
2337 struct page *page, void *fsdata)
2338{
2339 const struct address_space_operations *aops = mapping->a_ops;
afddba49 2340
4e02ed4b 2341 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
2342}
2343EXPORT_SYMBOL(pagecache_write_end);
2344
1da177e4 2345ssize_t
0c949334 2346generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos)
1da177e4
LT
2347{
2348 struct file *file = iocb->ki_filp;
2349 struct address_space *mapping = file->f_mapping;
2350 struct inode *inode = mapping->host;
2351 ssize_t written;
a969e903
CH
2352 size_t write_len;
2353 pgoff_t end;
26978b8b 2354 struct iov_iter data;
1da177e4 2355
0c949334 2356 write_len = iov_iter_count(from);
a969e903 2357 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
a969e903 2358
48b47c56 2359 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
a969e903
CH
2360 if (written)
2361 goto out;
2362
2363 /*
2364 * After a write we want buffered reads to be sure to go to disk to get
2365 * the new data. We invalidate clean cached page from the region we're
2366 * about to write. We do this *before* the write so that we can return
6ccfa806 2367 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903
CH
2368 */
2369 if (mapping->nrpages) {
2370 written = invalidate_inode_pages2_range(mapping,
2371 pos >> PAGE_CACHE_SHIFT, end);
6ccfa806
HH
2372 /*
2373 * If a page can not be invalidated, return 0 to fall back
2374 * to buffered write.
2375 */
2376 if (written) {
2377 if (written == -EBUSY)
2378 return 0;
a969e903 2379 goto out;
6ccfa806 2380 }
a969e903
CH
2381 }
2382
26978b8b 2383 data = *from;
22c6186e 2384 written = mapping->a_ops->direct_IO(iocb, &data, pos);
a969e903
CH
2385
2386 /*
2387 * Finally, try again to invalidate clean pages which might have been
2388 * cached by non-direct readahead, or faulted in by get_user_pages()
2389 * if the source of the write was an mmap'ed region of the file
2390 * we're writing. Either one is a pretty crazy thing to do,
2391 * so we don't support it 100%. If this invalidation
2392 * fails, tough, the write still worked...
2393 */
2394 if (mapping->nrpages) {
2395 invalidate_inode_pages2_range(mapping,
2396 pos >> PAGE_CACHE_SHIFT, end);
2397 }
2398
1da177e4 2399 if (written > 0) {
0116651c 2400 pos += written;
f8579f86 2401 iov_iter_advance(from, written);
0116651c
NK
2402 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2403 i_size_write(inode, pos);
1da177e4
LT
2404 mark_inode_dirty(inode);
2405 }
5cb6c6c7 2406 iocb->ki_pos = pos;
1da177e4 2407 }
a969e903 2408out:
1da177e4
LT
2409 return written;
2410}
2411EXPORT_SYMBOL(generic_file_direct_write);
2412
eb2be189
NP
2413/*
2414 * Find or create a page at the given pagecache position. Return the locked
2415 * page. This function is specifically for buffered writes.
2416 */
54566b2c
NP
2417struct page *grab_cache_page_write_begin(struct address_space *mapping,
2418 pgoff_t index, unsigned flags)
eb2be189 2419{
eb2be189 2420 struct page *page;
2457aec6 2421 int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
0faa70cb 2422
54566b2c 2423 if (flags & AOP_FLAG_NOFS)
2457aec6
MG
2424 fgp_flags |= FGP_NOFS;
2425
2426 page = pagecache_get_page(mapping, index, fgp_flags,
45f87de5 2427 mapping_gfp_mask(mapping));
c585a267 2428 if (page)
2457aec6 2429 wait_for_stable_page(page);
eb2be189 2430
eb2be189
NP
2431 return page;
2432}
54566b2c 2433EXPORT_SYMBOL(grab_cache_page_write_begin);
eb2be189 2434
3b93f911 2435ssize_t generic_perform_write(struct file *file,
afddba49
NP
2436 struct iov_iter *i, loff_t pos)
2437{
2438 struct address_space *mapping = file->f_mapping;
2439 const struct address_space_operations *a_ops = mapping->a_ops;
2440 long status = 0;
2441 ssize_t written = 0;
674b892e
NP
2442 unsigned int flags = 0;
2443
2444 /*
2445 * Copies from kernel address space cannot fail (NFSD is a big user).
2446 */
777eda2c 2447 if (!iter_is_iovec(i))
674b892e 2448 flags |= AOP_FLAG_UNINTERRUPTIBLE;
afddba49
NP
2449
2450 do {
2451 struct page *page;
afddba49
NP
2452 unsigned long offset; /* Offset into pagecache page */
2453 unsigned long bytes; /* Bytes to write to page */
2454 size_t copied; /* Bytes copied from user */
2455 void *fsdata;
2456
2457 offset = (pos & (PAGE_CACHE_SIZE - 1));
afddba49
NP
2458 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2459 iov_iter_count(i));
2460
2461again:
afddba49
NP
2462 /*
2463 * Bring in the user page that we will copy from _first_.
2464 * Otherwise there's a nasty deadlock on copying from the
2465 * same page as we're writing to, without it being marked
2466 * up-to-date.
2467 *
2468 * Not only is this an optimisation, but it is also required
2469 * to check that the address is actually valid, when atomic
2470 * usercopies are used, below.
2471 */
2472 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2473 status = -EFAULT;
2474 break;
2475 }
2476
674b892e 2477 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49 2478 &page, &fsdata);
2457aec6 2479 if (unlikely(status < 0))
afddba49
NP
2480 break;
2481
931e80e4 2482 if (mapping_writably_mapped(mapping))
2483 flush_dcache_page(page);
2484
afddba49 2485 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
afddba49
NP
2486 flush_dcache_page(page);
2487
2488 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2489 page, fsdata);
2490 if (unlikely(status < 0))
2491 break;
2492 copied = status;
2493
2494 cond_resched();
2495
124d3b70 2496 iov_iter_advance(i, copied);
afddba49
NP
2497 if (unlikely(copied == 0)) {
2498 /*
2499 * If we were unable to copy any data at all, we must
2500 * fall back to a single segment length write.
2501 *
2502 * If we didn't fallback here, we could livelock
2503 * because not all segments in the iov can be copied at
2504 * once without a pagefault.
2505 */
2506 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2507 iov_iter_single_seg_count(i));
2508 goto again;
2509 }
afddba49
NP
2510 pos += copied;
2511 written += copied;
2512
2513 balance_dirty_pages_ratelimited(mapping);
a50527b1
JK
2514 if (fatal_signal_pending(current)) {
2515 status = -EINTR;
2516 break;
2517 }
afddba49
NP
2518 } while (iov_iter_count(i));
2519
2520 return written ? written : status;
2521}
3b93f911 2522EXPORT_SYMBOL(generic_perform_write);
1da177e4 2523
e4dd9de3 2524/**
8174202b 2525 * __generic_file_write_iter - write data to a file
e4dd9de3 2526 * @iocb: IO state structure (file, offset, etc.)
8174202b 2527 * @from: iov_iter with data to write
e4dd9de3
JK
2528 *
2529 * This function does all the work needed for actually writing data to a
2530 * file. It does all basic checks, removes SUID from the file, updates
2531 * modification times and calls proper subroutines depending on whether we
2532 * do direct IO or a standard buffered write.
2533 *
2534 * It expects i_mutex to be grabbed unless we work on a block device or similar
2535 * object which does not need locking at all.
2536 *
2537 * This function does *not* take care of syncing data in case of O_SYNC write.
2538 * A caller has to handle it. This is mainly due to the fact that we want to
2539 * avoid syncing under i_mutex.
2540 */
8174202b 2541ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
2542{
2543 struct file *file = iocb->ki_filp;
fb5527e6 2544 struct address_space * mapping = file->f_mapping;
1da177e4 2545 struct inode *inode = mapping->host;
3b93f911 2546 ssize_t written = 0;
1da177e4 2547 ssize_t err;
3b93f911 2548 ssize_t status;
1da177e4 2549
1da177e4 2550 /* We can write back this queue in page reclaim */
de1414a6 2551 current->backing_dev_info = inode_to_bdi(inode);
2f1936b8 2552 err = file_remove_suid(file);
1da177e4
LT
2553 if (err)
2554 goto out;
2555
c3b2da31
JB
2556 err = file_update_time(file);
2557 if (err)
2558 goto out;
1da177e4 2559
2ba48ce5 2560 if (iocb->ki_flags & IOCB_DIRECT) {
0b8def9d 2561 loff_t pos, endbyte;
fb5527e6 2562
0b8def9d 2563 written = generic_file_direct_write(iocb, from, iocb->ki_pos);
1da177e4 2564 /*
fbbbad4b
MW
2565 * If the write stopped short of completing, fall back to
2566 * buffered writes. Some filesystems do this for writes to
2567 * holes, for example. For DAX files, a buffered write will
2568 * not succeed (even if it did, DAX does not handle dirty
2569 * page-cache pages correctly).
1da177e4 2570 */
0b8def9d 2571 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
fbbbad4b
MW
2572 goto out;
2573
0b8def9d 2574 status = generic_perform_write(file, from, pos = iocb->ki_pos);
fb5527e6 2575 /*
3b93f911 2576 * If generic_perform_write() returned a synchronous error
fb5527e6
JM
2577 * then we want to return the number of bytes which were
2578 * direct-written, or the error code if that was zero. Note
2579 * that this differs from normal direct-io semantics, which
2580 * will return -EFOO even if some bytes were written.
2581 */
60bb4529 2582 if (unlikely(status < 0)) {
3b93f911 2583 err = status;
fb5527e6
JM
2584 goto out;
2585 }
fb5527e6
JM
2586 /*
2587 * We need to ensure that the page cache pages are written to
2588 * disk and invalidated to preserve the expected O_DIRECT
2589 * semantics.
2590 */
3b93f911 2591 endbyte = pos + status - 1;
0b8def9d 2592 err = filemap_write_and_wait_range(mapping, pos, endbyte);
fb5527e6 2593 if (err == 0) {
0b8def9d 2594 iocb->ki_pos = endbyte + 1;
3b93f911 2595 written += status;
fb5527e6
JM
2596 invalidate_mapping_pages(mapping,
2597 pos >> PAGE_CACHE_SHIFT,
2598 endbyte >> PAGE_CACHE_SHIFT);
2599 } else {
2600 /*
2601 * We don't know how much we wrote, so just return
2602 * the number of bytes which were direct-written
2603 */
2604 }
2605 } else {
0b8def9d
AV
2606 written = generic_perform_write(file, from, iocb->ki_pos);
2607 if (likely(written > 0))
2608 iocb->ki_pos += written;
fb5527e6 2609 }
1da177e4
LT
2610out:
2611 current->backing_dev_info = NULL;
2612 return written ? written : err;
2613}
8174202b 2614EXPORT_SYMBOL(__generic_file_write_iter);
e4dd9de3 2615
e4dd9de3 2616/**
8174202b 2617 * generic_file_write_iter - write data to a file
e4dd9de3 2618 * @iocb: IO state structure
8174202b 2619 * @from: iov_iter with data to write
e4dd9de3 2620 *
8174202b 2621 * This is a wrapper around __generic_file_write_iter() to be used by most
e4dd9de3
JK
2622 * filesystems. It takes care of syncing the file in case of O_SYNC file
2623 * and acquires i_mutex as needed.
2624 */
8174202b 2625ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
2626{
2627 struct file *file = iocb->ki_filp;
148f948b 2628 struct inode *inode = file->f_mapping->host;
1da177e4 2629 ssize_t ret;
1da177e4 2630
1b1dcc1b 2631 mutex_lock(&inode->i_mutex);
3309dd04
AV
2632 ret = generic_write_checks(iocb, from);
2633 if (ret > 0)
5f380c7f 2634 ret = __generic_file_write_iter(iocb, from);
1b1dcc1b 2635 mutex_unlock(&inode->i_mutex);
1da177e4 2636
02afc27f 2637 if (ret > 0) {
1da177e4
LT
2638 ssize_t err;
2639
d311d79d
AV
2640 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2641 if (err < 0)
1da177e4
LT
2642 ret = err;
2643 }
2644 return ret;
2645}
8174202b 2646EXPORT_SYMBOL(generic_file_write_iter);
1da177e4 2647
cf9a2ae8
DH
2648/**
2649 * try_to_release_page() - release old fs-specific metadata on a page
2650 *
2651 * @page: the page which the kernel is trying to free
2652 * @gfp_mask: memory allocation flags (and I/O mode)
2653 *
2654 * The address_space is to try to release any data against the page
2655 * (presumably at page->private). If the release was successful, return `1'.
2656 * Otherwise return zero.
2657 *
266cf658
DH
2658 * This may also be called if PG_fscache is set on a page, indicating that the
2659 * page is known to the local caching routines.
2660 *
cf9a2ae8 2661 * The @gfp_mask argument specifies whether I/O may be performed to release
3f31fddf 2662 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
cf9a2ae8 2663 *
cf9a2ae8
DH
2664 */
2665int try_to_release_page(struct page *page, gfp_t gfp_mask)
2666{
2667 struct address_space * const mapping = page->mapping;
2668
2669 BUG_ON(!PageLocked(page));
2670 if (PageWriteback(page))
2671 return 0;
2672
2673 if (mapping && mapping->a_ops->releasepage)
2674 return mapping->a_ops->releasepage(page, gfp_mask);
2675 return try_to_free_buffers(page);
2676}
2677
2678EXPORT_SYMBOL(try_to_release_page);