Merge tag 'platform-drivers-x86-v6.9-3' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-block.git] / mm / filemap.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/filemap.c
4 *
5 * Copyright (C) 1994-1999 Linus Torvalds
6 */
7
8/*
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
12 */
b95f1b31 13#include <linux/export.h>
1da177e4 14#include <linux/compiler.h>
f9fe48be 15#include <linux/dax.h>
1da177e4 16#include <linux/fs.h>
3f07c014 17#include <linux/sched/signal.h>
c22ce143 18#include <linux/uaccess.h>
c59ede7b 19#include <linux/capability.h>
1da177e4 20#include <linux/kernel_stat.h>
5a0e3ad6 21#include <linux/gfp.h>
1da177e4
LT
22#include <linux/mm.h>
23#include <linux/swap.h>
ffa65753 24#include <linux/swapops.h>
cf264e13 25#include <linux/syscalls.h>
1da177e4
LT
26#include <linux/mman.h>
27#include <linux/pagemap.h>
28#include <linux/file.h>
29#include <linux/uio.h>
cfcbfb13 30#include <linux/error-injection.h>
1da177e4
LT
31#include <linux/hash.h>
32#include <linux/writeback.h>
53253383 33#include <linux/backing-dev.h>
1da177e4 34#include <linux/pagevec.h>
1da177e4 35#include <linux/security.h>
44110fe3 36#include <linux/cpuset.h>
00501b53 37#include <linux/hugetlb.h>
8a9f3ccd 38#include <linux/memcontrol.h>
c7df8ad2 39#include <linux/shmem_fs.h>
f1820361 40#include <linux/rmap.h>
b1d29ba8 41#include <linux/delayacct.h>
eb414681 42#include <linux/psi.h>
d0e6a582 43#include <linux/ramfs.h>
b9306a79 44#include <linux/page_idle.h>
ffa65753 45#include <linux/migrate.h>
07073eb0
DH
46#include <linux/pipe_fs_i.h>
47#include <linux/splice.h>
1e2f2d31 48#include <linux/rcupdate_wait.h>
f9ce0be7 49#include <asm/pgalloc.h>
de591a82 50#include <asm/tlbflush.h>
0f8053a5
NP
51#include "internal.h"
52
fe0bfaaf
RJ
53#define CREATE_TRACE_POINTS
54#include <trace/events/filemap.h>
55
1da177e4 56/*
1da177e4
LT
57 * FIXME: remove all knowledge of the buffer layer from the core VM
58 */
148f948b 59#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 60
1da177e4
LT
61#include <asm/mman.h>
62
cf264e13
NP
63#include "swap.h"
64
1da177e4
LT
65/*
66 * Shared mappings implemented 30.11.1994. It's not fully working yet,
67 * though.
68 *
69 * Shared mappings now work. 15.8.1995 Bruno.
70 *
71 * finished 'unifying' the page and buffer cache and SMP-threaded the
72 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
73 *
74 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
75 */
76
77/*
78 * Lock ordering:
79 *
c8c06efa 80 * ->i_mmap_rwsem (truncate_pagecache)
e621900a 81 * ->private_lock (__free_pte->block_dirty_folio)
5d337b91 82 * ->swap_lock (exclusive_swap_page, others)
b93b0163 83 * ->i_pages lock
1da177e4 84 *
9608703e 85 * ->i_rwsem
730633f0
JK
86 * ->invalidate_lock (acquired by fs in truncate path)
87 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
1da177e4 88 *
c1e8d7c6 89 * ->mmap_lock
c8c06efa 90 * ->i_mmap_rwsem
b8072f09 91 * ->page_table_lock or pte_lock (various, mainly in memory.c)
b93b0163 92 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
1da177e4 93 *
c1e8d7c6 94 * ->mmap_lock
730633f0
JK
95 * ->invalidate_lock (filemap_fault)
96 * ->lock_page (filemap_fault, access_process_vm)
1da177e4 97 *
9608703e 98 * ->i_rwsem (generic_perform_write)
bb523b40 99 * ->mmap_lock (fault_in_readable->do_page_fault)
1da177e4 100 *
f758eeab 101 * bdi->wb.list_lock
a66979ab 102 * sb_lock (fs/fs-writeback.c)
b93b0163 103 * ->i_pages lock (__sync_single_inode)
1da177e4 104 *
c8c06efa 105 * ->i_mmap_rwsem
0503ea8f 106 * ->anon_vma.lock (vma_merge)
1da177e4
LT
107 *
108 * ->anon_vma.lock
b8072f09 109 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 110 *
b8072f09 111 * ->page_table_lock or pte_lock
5d337b91 112 * ->swap_lock (try_to_unmap_one)
1da177e4 113 * ->private_lock (try_to_unmap_one)
b93b0163 114 * ->i_pages lock (try_to_unmap_one)
15b44736
HD
115 * ->lruvec->lru_lock (follow_page->mark_page_accessed)
116 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page)
4d8f7418
DH
117 * ->private_lock (folio_remove_rmap_pte->set_page_dirty)
118 * ->i_pages lock (folio_remove_rmap_pte->set_page_dirty)
119 * bdi.wb->list_lock (folio_remove_rmap_pte->set_page_dirty)
120 * ->inode->i_lock (folio_remove_rmap_pte->set_page_dirty)
121 * ->memcg->move_lock (folio_remove_rmap_pte->folio_memcg_lock)
f758eeab 122 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 123 * ->inode->i_lock (zap_pte_range->set_page_dirty)
e621900a 124 * ->private_lock (zap_pte_range->block_dirty_folio)
1da177e4
LT
125 */
126
b64e74e9
CH
127static void mapping_set_update(struct xa_state *xas,
128 struct address_space *mapping)
129{
130 if (dax_mapping(mapping) || shmem_mapping(mapping))
131 return;
132 xas_set_update(xas, workingset_update_node);
133 xas_set_lru(xas, &shadow_nodes);
134}
135
5c024e6a 136static void page_cache_delete(struct address_space *mapping,
a548b615 137 struct folio *folio, void *shadow)
91b0abe3 138{
a548b615
MWO
139 XA_STATE(xas, &mapping->i_pages, folio->index);
140 long nr = 1;
c70b647d 141
5c024e6a 142 mapping_set_update(&xas, mapping);
c70b647d 143
a08c7193
SK
144 xas_set_order(&xas, folio->index, folio_order(folio));
145 nr = folio_nr_pages(folio);
91b0abe3 146
a548b615 147 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
449dd698 148
5c024e6a
MW
149 xas_store(&xas, shadow);
150 xas_init_marks(&xas);
d3798ae8 151
a548b615 152 folio->mapping = NULL;
2300638b 153 /* Leave page->index set: truncation lookup relies upon it */
d3798ae8 154 mapping->nrpages -= nr;
91b0abe3
JW
155}
156
621db488
MWO
157static void filemap_unaccount_folio(struct address_space *mapping,
158 struct folio *folio)
1da177e4 159{
621db488 160 long nr;
1da177e4 161
621db488
MWO
162 VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
163 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
06b241f3 164 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
621db488
MWO
165 current->comm, folio_pfn(folio));
166 dump_page(&folio->page, "still mapped when deleted");
06b241f3
HD
167 dump_stack();
168 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
169
85207ad8
HD
170 if (mapping_exiting(mapping) && !folio_test_large(folio)) {
171 int mapcount = page_mapcount(&folio->page);
172
173 if (folio_ref_count(folio) >= mapcount + 2) {
174 /*
175 * All vmas have already been torn down, so it's
176 * a good bet that actually the page is unmapped
177 * and we'd rather not leak it: if we're wrong,
178 * another bad page check should catch it later.
179 */
180 page_mapcount_reset(&folio->page);
181 folio_ref_sub(folio, mapcount);
182 }
06b241f3
HD
183 }
184 }
185
621db488
MWO
186 /* hugetlb folios do not participate in page cache accounting. */
187 if (folio_test_hugetlb(folio))
5ecc4d85 188 return;
09612fa6 189
621db488 190 nr = folio_nr_pages(folio);
5ecc4d85 191
621db488
MWO
192 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
193 if (folio_test_swapbacked(folio)) {
194 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
195 if (folio_test_pmd_mappable(folio))
196 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
197 } else if (folio_test_pmd_mappable(folio)) {
198 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
09d91cda 199 filemap_nr_thps_dec(mapping);
800d8c63 200 }
5ecc4d85
JK
201
202 /*
621db488
MWO
203 * At this point folio must be either written or cleaned by
204 * truncate. Dirty folio here signals a bug and loss of
566d3362 205 * unwritten data - on ordinary filesystems.
5ecc4d85 206 *
566d3362
HD
207 * But it's harmless on in-memory filesystems like tmpfs; and can
208 * occur when a driver which did get_user_pages() sets page dirty
209 * before putting it, while the inode is being finally evicted.
210 *
211 * Below fixes dirty accounting after removing the folio entirely
621db488
MWO
212 * but leaves the dirty flag set: it has no effect for truncated
213 * folio and anyway will be cleared before returning folio to
5ecc4d85
JK
214 * buddy allocator.
215 */
566d3362
HD
216 if (WARN_ON_ONCE(folio_test_dirty(folio) &&
217 mapping_can_writeback(mapping)))
218 folio_account_cleaned(folio, inode_to_wb(mapping->host));
5ecc4d85
JK
219}
220
221/*
222 * Delete a page from the page cache and free it. Caller has to make
223 * sure the page is locked and that nobody else uses it - or that usage
b93b0163 224 * is safe. The caller must hold the i_pages lock.
5ecc4d85 225 */
452e9e69 226void __filemap_remove_folio(struct folio *folio, void *shadow)
5ecc4d85 227{
452e9e69 228 struct address_space *mapping = folio->mapping;
5ecc4d85 229
a0580c6f 230 trace_mm_filemap_delete_from_page_cache(folio);
621db488 231 filemap_unaccount_folio(mapping, folio);
a548b615 232 page_cache_delete(mapping, folio, shadow);
1da177e4
LT
233}
234
78f42660 235void filemap_free_folio(struct address_space *mapping, struct folio *folio)
59c66c5f 236{
d2329aa0 237 void (*free_folio)(struct folio *);
3abb28e2 238 int refs = 1;
59c66c5f 239
d2329aa0
MWO
240 free_folio = mapping->a_ops->free_folio;
241 if (free_folio)
242 free_folio(folio);
59c66c5f 243
a08c7193 244 if (folio_test_large(folio))
3abb28e2
MWO
245 refs = folio_nr_pages(folio);
246 folio_put_refs(folio, refs);
59c66c5f
JK
247}
248
702cfbf9 249/**
452e9e69
MWO
250 * filemap_remove_folio - Remove folio from page cache.
251 * @folio: The folio.
702cfbf9 252 *
452e9e69
MWO
253 * This must be called only on folios that are locked and have been
254 * verified to be in the page cache. It will never put the folio into
255 * the free list because the caller has a reference on the page.
702cfbf9 256 */
452e9e69 257void filemap_remove_folio(struct folio *folio)
1da177e4 258{
452e9e69 259 struct address_space *mapping = folio->mapping;
1da177e4 260
452e9e69 261 BUG_ON(!folio_test_locked(folio));
51b8c1fe 262 spin_lock(&mapping->host->i_lock);
30472509 263 xa_lock_irq(&mapping->i_pages);
452e9e69 264 __filemap_remove_folio(folio, NULL);
30472509 265 xa_unlock_irq(&mapping->i_pages);
51b8c1fe
JW
266 if (mapping_shrinkable(mapping))
267 inode_add_lru(mapping->host);
268 spin_unlock(&mapping->host->i_lock);
6072d13c 269
452e9e69 270 filemap_free_folio(mapping, folio);
97cecb5a 271}
97cecb5a 272
aa65c29c 273/*
51dcbdac
MWO
274 * page_cache_delete_batch - delete several folios from page cache
275 * @mapping: the mapping to which folios belong
276 * @fbatch: batch of folios to delete
aa65c29c 277 *
51dcbdac
MWO
278 * The function walks over mapping->i_pages and removes folios passed in
279 * @fbatch from the mapping. The function expects @fbatch to be sorted
280 * by page index and is optimised for it to be dense.
281 * It tolerates holes in @fbatch (mapping entries at those indices are not
282 * modified).
aa65c29c 283 *
b93b0163 284 * The function expects the i_pages lock to be held.
aa65c29c 285 */
ef8e5717 286static void page_cache_delete_batch(struct address_space *mapping,
51dcbdac 287 struct folio_batch *fbatch)
aa65c29c 288{
51dcbdac 289 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
6b24ca4a 290 long total_pages = 0;
4101196b 291 int i = 0;
1afd7ae5 292 struct folio *folio;
aa65c29c 293
ef8e5717 294 mapping_set_update(&xas, mapping);
1afd7ae5 295 xas_for_each(&xas, folio, ULONG_MAX) {
51dcbdac 296 if (i >= folio_batch_count(fbatch))
aa65c29c 297 break;
4101196b
MWO
298
299 /* A swap/dax/shadow entry got inserted? Skip it. */
1afd7ae5 300 if (xa_is_value(folio))
aa65c29c 301 continue;
4101196b
MWO
302 /*
303 * A page got inserted in our range? Skip it. We have our
304 * pages locked so they are protected from being removed.
305 * If we see a page whose index is higher than ours, it
306 * means our page has been removed, which shouldn't be
307 * possible because we're holding the PageLock.
308 */
51dcbdac 309 if (folio != fbatch->folios[i]) {
1afd7ae5 310 VM_BUG_ON_FOLIO(folio->index >
51dcbdac 311 fbatch->folios[i]->index, folio);
4101196b
MWO
312 continue;
313 }
314
1afd7ae5 315 WARN_ON_ONCE(!folio_test_locked(folio));
4101196b 316
6b24ca4a 317 folio->mapping = NULL;
51dcbdac 318 /* Leave folio->index set: truncation lookup relies on it */
4101196b 319
6b24ca4a 320 i++;
ef8e5717 321 xas_store(&xas, NULL);
6b24ca4a 322 total_pages += folio_nr_pages(folio);
aa65c29c
JK
323 }
324 mapping->nrpages -= total_pages;
325}
326
327void delete_from_page_cache_batch(struct address_space *mapping,
51dcbdac 328 struct folio_batch *fbatch)
aa65c29c
JK
329{
330 int i;
aa65c29c 331
51dcbdac 332 if (!folio_batch_count(fbatch))
aa65c29c
JK
333 return;
334
51b8c1fe 335 spin_lock(&mapping->host->i_lock);
30472509 336 xa_lock_irq(&mapping->i_pages);
51dcbdac
MWO
337 for (i = 0; i < folio_batch_count(fbatch); i++) {
338 struct folio *folio = fbatch->folios[i];
aa65c29c 339
a0580c6f
MWO
340 trace_mm_filemap_delete_from_page_cache(folio);
341 filemap_unaccount_folio(mapping, folio);
aa65c29c 342 }
51dcbdac 343 page_cache_delete_batch(mapping, fbatch);
30472509 344 xa_unlock_irq(&mapping->i_pages);
51b8c1fe
JW
345 if (mapping_shrinkable(mapping))
346 inode_add_lru(mapping->host);
347 spin_unlock(&mapping->host->i_lock);
aa65c29c 348
51dcbdac
MWO
349 for (i = 0; i < folio_batch_count(fbatch); i++)
350 filemap_free_folio(mapping, fbatch->folios[i]);
aa65c29c
JK
351}
352
d72d9e2a 353int filemap_check_errors(struct address_space *mapping)
865ffef3
DM
354{
355 int ret = 0;
356 /* Check for outstanding write errors */
7fcbbaf1
JA
357 if (test_bit(AS_ENOSPC, &mapping->flags) &&
358 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
865ffef3 359 ret = -ENOSPC;
7fcbbaf1
JA
360 if (test_bit(AS_EIO, &mapping->flags) &&
361 test_and_clear_bit(AS_EIO, &mapping->flags))
865ffef3
DM
362 ret = -EIO;
363 return ret;
364}
d72d9e2a 365EXPORT_SYMBOL(filemap_check_errors);
865ffef3 366
76341cab
JL
367static int filemap_check_and_keep_errors(struct address_space *mapping)
368{
369 /* Check for outstanding write errors */
370 if (test_bit(AS_EIO, &mapping->flags))
371 return -EIO;
372 if (test_bit(AS_ENOSPC, &mapping->flags))
373 return -ENOSPC;
374 return 0;
375}
376
5a798493
JB
377/**
378 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
379 * @mapping: address space structure to write
380 * @wbc: the writeback_control controlling the writeout
381 *
382 * Call writepages on the mapping using the provided wbc to control the
383 * writeout.
384 *
385 * Return: %0 on success, negative error code otherwise.
386 */
387int filemap_fdatawrite_wbc(struct address_space *mapping,
388 struct writeback_control *wbc)
389{
390 int ret;
391
392 if (!mapping_can_writeback(mapping) ||
393 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
394 return 0;
395
396 wbc_attach_fdatawrite_inode(wbc, mapping->host);
397 ret = do_writepages(mapping, wbc);
398 wbc_detach_inode(wbc);
399 return ret;
400}
401EXPORT_SYMBOL(filemap_fdatawrite_wbc);
402
1da177e4 403/**
485bb99b 404 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
405 * @mapping: address space structure to write
406 * @start: offset in bytes where the range starts
469eb4d0 407 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 408 * @sync_mode: enable synchronous operation
1da177e4 409 *
485bb99b
RD
410 * Start writeback against all of a mapping's dirty pages that lie
411 * within the byte offsets <start, end> inclusive.
412 *
1da177e4 413 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 414 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
415 * these two operations is that if a dirty page/buffer is encountered, it must
416 * be waited upon, and not just skipped over.
a862f68a
MR
417 *
418 * Return: %0 on success, negative error code otherwise.
1da177e4 419 */
ebcf28e1
AM
420int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
421 loff_t end, int sync_mode)
1da177e4 422{
1da177e4
LT
423 struct writeback_control wbc = {
424 .sync_mode = sync_mode,
05fe478d 425 .nr_to_write = LONG_MAX,
111ebb6e
OH
426 .range_start = start,
427 .range_end = end,
1da177e4
LT
428 };
429
5a798493 430 return filemap_fdatawrite_wbc(mapping, &wbc);
1da177e4
LT
431}
432
433static inline int __filemap_fdatawrite(struct address_space *mapping,
434 int sync_mode)
435{
111ebb6e 436 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
437}
438
439int filemap_fdatawrite(struct address_space *mapping)
440{
441 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
442}
443EXPORT_SYMBOL(filemap_fdatawrite);
444
f4c0a0fd 445int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 446 loff_t end)
1da177e4
LT
447{
448 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
449}
f4c0a0fd 450EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 451
485bb99b
RD
452/**
453 * filemap_flush - mostly a non-blocking flush
454 * @mapping: target address_space
455 *
1da177e4
LT
456 * This is a mostly non-blocking flush. Not suitable for data-integrity
457 * purposes - I/O may not be started against all dirty pages.
a862f68a
MR
458 *
459 * Return: %0 on success, negative error code otherwise.
1da177e4
LT
460 */
461int filemap_flush(struct address_space *mapping)
462{
463 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
464}
465EXPORT_SYMBOL(filemap_flush);
466
7fc9e472
GR
467/**
468 * filemap_range_has_page - check if a page exists in range.
469 * @mapping: address space within which to check
470 * @start_byte: offset in bytes where the range starts
471 * @end_byte: offset in bytes where the range ends (inclusive)
472 *
473 * Find at least one page in the range supplied, usually used to check if
474 * direct writing in this range will trigger a writeback.
a862f68a
MR
475 *
476 * Return: %true if at least one page exists in the specified range,
477 * %false otherwise.
7fc9e472
GR
478 */
479bool filemap_range_has_page(struct address_space *mapping,
480 loff_t start_byte, loff_t end_byte)
481{
eff3b364 482 struct folio *folio;
8fa8e538
MW
483 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
484 pgoff_t max = end_byte >> PAGE_SHIFT;
7fc9e472
GR
485
486 if (end_byte < start_byte)
487 return false;
488
8fa8e538
MW
489 rcu_read_lock();
490 for (;;) {
eff3b364
MWO
491 folio = xas_find(&xas, max);
492 if (xas_retry(&xas, folio))
8fa8e538
MW
493 continue;
494 /* Shadow entries don't count */
eff3b364 495 if (xa_is_value(folio))
8fa8e538
MW
496 continue;
497 /*
498 * We don't need to try to pin this page; we're about to
499 * release the RCU lock anyway. It is enough to know that
500 * there was a page here recently.
501 */
502 break;
503 }
504 rcu_read_unlock();
7fc9e472 505
eff3b364 506 return folio != NULL;
7fc9e472
GR
507}
508EXPORT_SYMBOL(filemap_range_has_page);
509
5e8fcc1a 510static void __filemap_fdatawait_range(struct address_space *mapping,
aa750fd7 511 loff_t start_byte, loff_t end_byte)
1da177e4 512{
09cbfeaf
KS
513 pgoff_t index = start_byte >> PAGE_SHIFT;
514 pgoff_t end = end_byte >> PAGE_SHIFT;
6817ef51
VMO
515 struct folio_batch fbatch;
516 unsigned nr_folios;
517
518 folio_batch_init(&fbatch);
1da177e4 519
312e9d2f 520 while (index <= end) {
1da177e4
LT
521 unsigned i;
522
6817ef51
VMO
523 nr_folios = filemap_get_folios_tag(mapping, &index, end,
524 PAGECACHE_TAG_WRITEBACK, &fbatch);
525
526 if (!nr_folios)
312e9d2f
JK
527 break;
528
6817ef51
VMO
529 for (i = 0; i < nr_folios; i++) {
530 struct folio *folio = fbatch.folios[i];
1da177e4 531
6817ef51
VMO
532 folio_wait_writeback(folio);
533 folio_clear_error(folio);
1da177e4 534 }
6817ef51 535 folio_batch_release(&fbatch);
1da177e4
LT
536 cond_resched();
537 }
aa750fd7
JN
538}
539
540/**
541 * filemap_fdatawait_range - wait for writeback to complete
542 * @mapping: address space structure to wait for
543 * @start_byte: offset in bytes where the range starts
544 * @end_byte: offset in bytes where the range ends (inclusive)
545 *
546 * Walk the list of under-writeback pages of the given address space
547 * in the given range and wait for all of them. Check error status of
548 * the address space and return it.
549 *
550 * Since the error status of the address space is cleared by this function,
551 * callers are responsible for checking the return value and handling and/or
552 * reporting the error.
a862f68a
MR
553 *
554 * Return: error status of the address space.
aa750fd7
JN
555 */
556int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
557 loff_t end_byte)
558{
5e8fcc1a
JL
559 __filemap_fdatawait_range(mapping, start_byte, end_byte);
560 return filemap_check_errors(mapping);
1da177e4 561}
d3bccb6f
JK
562EXPORT_SYMBOL(filemap_fdatawait_range);
563
aa0bfcd9
RZ
564/**
565 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
566 * @mapping: address space structure to wait for
567 * @start_byte: offset in bytes where the range starts
568 * @end_byte: offset in bytes where the range ends (inclusive)
569 *
570 * Walk the list of under-writeback pages of the given address space in the
571 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
572 * this function does not clear error status of the address space.
573 *
574 * Use this function if callers don't handle errors themselves. Expected
575 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
576 * fsfreeze(8)
577 */
578int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
579 loff_t start_byte, loff_t end_byte)
580{
581 __filemap_fdatawait_range(mapping, start_byte, end_byte);
582 return filemap_check_and_keep_errors(mapping);
583}
584EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
585
a823e458
JL
586/**
587 * file_fdatawait_range - wait for writeback to complete
588 * @file: file pointing to address space structure to wait for
589 * @start_byte: offset in bytes where the range starts
590 * @end_byte: offset in bytes where the range ends (inclusive)
591 *
592 * Walk the list of under-writeback pages of the address space that file
593 * refers to, in the given range and wait for all of them. Check error
594 * status of the address space vs. the file->f_wb_err cursor and return it.
595 *
596 * Since the error status of the file is advanced by this function,
597 * callers are responsible for checking the return value and handling and/or
598 * reporting the error.
a862f68a
MR
599 *
600 * Return: error status of the address space vs. the file->f_wb_err cursor.
a823e458
JL
601 */
602int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
603{
604 struct address_space *mapping = file->f_mapping;
605
606 __filemap_fdatawait_range(mapping, start_byte, end_byte);
607 return file_check_and_advance_wb_err(file);
608}
609EXPORT_SYMBOL(file_fdatawait_range);
d3bccb6f 610
aa750fd7
JN
611/**
612 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
613 * @mapping: address space structure to wait for
614 *
615 * Walk the list of under-writeback pages of the given address space
616 * and wait for all of them. Unlike filemap_fdatawait(), this function
617 * does not clear error status of the address space.
618 *
619 * Use this function if callers don't handle errors themselves. Expected
620 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
621 * fsfreeze(8)
a862f68a
MR
622 *
623 * Return: error status of the address space.
aa750fd7 624 */
76341cab 625int filemap_fdatawait_keep_errors(struct address_space *mapping)
aa750fd7 626{
ffb959bb 627 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
76341cab 628 return filemap_check_and_keep_errors(mapping);
aa750fd7 629}
76341cab 630EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
aa750fd7 631
875d91b1 632/* Returns true if writeback might be needed or already in progress. */
9326c9b2 633static bool mapping_needs_writeback(struct address_space *mapping)
1da177e4 634{
875d91b1 635 return mapping->nrpages;
1da177e4 636}
1da177e4 637
4bdcd1dd
JA
638bool filemap_range_has_writeback(struct address_space *mapping,
639 loff_t start_byte, loff_t end_byte)
f8ee8909
JA
640{
641 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
642 pgoff_t max = end_byte >> PAGE_SHIFT;
b05f41a1 643 struct folio *folio;
f8ee8909
JA
644
645 if (end_byte < start_byte)
646 return false;
647
648 rcu_read_lock();
b05f41a1
VMO
649 xas_for_each(&xas, folio, max) {
650 if (xas_retry(&xas, folio))
f8ee8909 651 continue;
b05f41a1 652 if (xa_is_value(folio))
f8ee8909 653 continue;
b05f41a1
VMO
654 if (folio_test_dirty(folio) || folio_test_locked(folio) ||
655 folio_test_writeback(folio))
f8ee8909
JA
656 break;
657 }
658 rcu_read_unlock();
b05f41a1 659 return folio != NULL;
63135aa3 660}
4bdcd1dd 661EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
63135aa3 662
485bb99b
RD
663/**
664 * filemap_write_and_wait_range - write out & wait on a file range
665 * @mapping: the address_space for the pages
666 * @lstart: offset in bytes where the range starts
667 * @lend: offset in bytes where the range ends (inclusive)
668 *
469eb4d0
AM
669 * Write out and wait upon file offsets lstart->lend, inclusive.
670 *
0e056eb5 671 * Note that @lend is inclusive (describes the last byte to be written) so
469eb4d0 672 * that this function can be used to write to the very end-of-file (end = -1).
a862f68a
MR
673 *
674 * Return: error status of the address space.
469eb4d0 675 */
1da177e4
LT
676int filemap_write_and_wait_range(struct address_space *mapping,
677 loff_t lstart, loff_t lend)
678{
ccac11da 679 int err = 0, err2;
1da177e4 680
feeb9b26
BF
681 if (lend < lstart)
682 return 0;
683
9326c9b2 684 if (mapping_needs_writeback(mapping)) {
28fd1298
OH
685 err = __filemap_fdatawrite_range(mapping, lstart, lend,
686 WB_SYNC_ALL);
ddf8f376
IW
687 /*
688 * Even if the above returned error, the pages may be
689 * written partially (e.g. -ENOSPC), so we wait for it.
690 * But the -EIO is special case, it may indicate the worst
691 * thing (e.g. bug) happened, so we avoid waiting for it.
692 */
ccac11da
ML
693 if (err != -EIO)
694 __filemap_fdatawait_range(mapping, lstart, lend);
1da177e4 695 }
ccac11da
ML
696 err2 = filemap_check_errors(mapping);
697 if (!err)
698 err = err2;
28fd1298 699 return err;
1da177e4 700}
f6995585 701EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 702
5660e13d
JL
703void __filemap_set_wb_err(struct address_space *mapping, int err)
704{
3acdfd28 705 errseq_t eseq = errseq_set(&mapping->wb_err, err);
5660e13d
JL
706
707 trace_filemap_set_wb_err(mapping, eseq);
708}
709EXPORT_SYMBOL(__filemap_set_wb_err);
710
711/**
712 * file_check_and_advance_wb_err - report wb error (if any) that was previously
713 * and advance wb_err to current one
714 * @file: struct file on which the error is being reported
715 *
716 * When userland calls fsync (or something like nfsd does the equivalent), we
717 * want to report any writeback errors that occurred since the last fsync (or
718 * since the file was opened if there haven't been any).
719 *
720 * Grab the wb_err from the mapping. If it matches what we have in the file,
721 * then just quickly return 0. The file is all caught up.
722 *
723 * If it doesn't match, then take the mapping value, set the "seen" flag in
724 * it and try to swap it into place. If it works, or another task beat us
725 * to it with the new value, then update the f_wb_err and return the error
726 * portion. The error at this point must be reported via proper channels
727 * (a'la fsync, or NFS COMMIT operation, etc.).
728 *
729 * While we handle mapping->wb_err with atomic operations, the f_wb_err
730 * value is protected by the f_lock since we must ensure that it reflects
731 * the latest value swapped in for this file descriptor.
a862f68a
MR
732 *
733 * Return: %0 on success, negative error code otherwise.
5660e13d
JL
734 */
735int file_check_and_advance_wb_err(struct file *file)
736{
737 int err = 0;
738 errseq_t old = READ_ONCE(file->f_wb_err);
739 struct address_space *mapping = file->f_mapping;
740
741 /* Locklessly handle the common case where nothing has changed */
742 if (errseq_check(&mapping->wb_err, old)) {
743 /* Something changed, must use slow path */
744 spin_lock(&file->f_lock);
745 old = file->f_wb_err;
746 err = errseq_check_and_advance(&mapping->wb_err,
747 &file->f_wb_err);
748 trace_file_check_and_advance_wb_err(file, old);
749 spin_unlock(&file->f_lock);
750 }
f4e222c5
JL
751
752 /*
753 * We're mostly using this function as a drop in replacement for
754 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
755 * that the legacy code would have had on these flags.
756 */
757 clear_bit(AS_EIO, &mapping->flags);
758 clear_bit(AS_ENOSPC, &mapping->flags);
5660e13d
JL
759 return err;
760}
761EXPORT_SYMBOL(file_check_and_advance_wb_err);
762
763/**
764 * file_write_and_wait_range - write out & wait on a file range
765 * @file: file pointing to address_space with pages
766 * @lstart: offset in bytes where the range starts
767 * @lend: offset in bytes where the range ends (inclusive)
768 *
769 * Write out and wait upon file offsets lstart->lend, inclusive.
770 *
771 * Note that @lend is inclusive (describes the last byte to be written) so
772 * that this function can be used to write to the very end-of-file (end = -1).
773 *
774 * After writing out and waiting on the data, we check and advance the
775 * f_wb_err cursor to the latest value, and return any errors detected there.
a862f68a
MR
776 *
777 * Return: %0 on success, negative error code otherwise.
5660e13d
JL
778 */
779int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
780{
781 int err = 0, err2;
782 struct address_space *mapping = file->f_mapping;
783
feeb9b26
BF
784 if (lend < lstart)
785 return 0;
786
9326c9b2 787 if (mapping_needs_writeback(mapping)) {
5660e13d
JL
788 err = __filemap_fdatawrite_range(mapping, lstart, lend,
789 WB_SYNC_ALL);
790 /* See comment of filemap_write_and_wait() */
791 if (err != -EIO)
792 __filemap_fdatawait_range(mapping, lstart, lend);
793 }
794 err2 = file_check_and_advance_wb_err(file);
795 if (!err)
796 err = err2;
797 return err;
798}
799EXPORT_SYMBOL(file_write_and_wait_range);
800
ef6a3c63 801/**
3720dd6d
VMO
802 * replace_page_cache_folio - replace a pagecache folio with a new one
803 * @old: folio to be replaced
804 * @new: folio to replace with
805 *
806 * This function replaces a folio in the pagecache with a new one. On
807 * success it acquires the pagecache reference for the new folio and
808 * drops it for the old folio. Both the old and new folios must be
809 * locked. This function does not add the new folio to the LRU, the
ef6a3c63
MS
810 * caller must do that.
811 *
74d60958 812 * The remove + add is atomic. This function cannot fail.
ef6a3c63 813 */
3720dd6d 814void replace_page_cache_folio(struct folio *old, struct folio *new)
ef6a3c63 815{
74d60958 816 struct address_space *mapping = old->mapping;
d2329aa0 817 void (*free_folio)(struct folio *) = mapping->a_ops->free_folio;
74d60958
MW
818 pgoff_t offset = old->index;
819 XA_STATE(xas, &mapping->i_pages, offset);
ef6a3c63 820
3720dd6d
VMO
821 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
822 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
823 VM_BUG_ON_FOLIO(new->mapping, new);
ef6a3c63 824
3720dd6d 825 folio_get(new);
74d60958
MW
826 new->mapping = mapping;
827 new->index = offset;
ef6a3c63 828
85ce2c51 829 mem_cgroup_replace_folio(old, new);
0d1c2072 830
30472509 831 xas_lock_irq(&xas);
74d60958 832 xas_store(&xas, new);
4165b9b4 833
74d60958
MW
834 old->mapping = NULL;
835 /* hugetlb pages do not participate in page cache accounting. */
3720dd6d
VMO
836 if (!folio_test_hugetlb(old))
837 __lruvec_stat_sub_folio(old, NR_FILE_PAGES);
838 if (!folio_test_hugetlb(new))
839 __lruvec_stat_add_folio(new, NR_FILE_PAGES);
840 if (folio_test_swapbacked(old))
841 __lruvec_stat_sub_folio(old, NR_SHMEM);
842 if (folio_test_swapbacked(new))
843 __lruvec_stat_add_folio(new, NR_SHMEM);
30472509 844 xas_unlock_irq(&xas);
d2329aa0 845 if (free_folio)
3720dd6d
VMO
846 free_folio(old);
847 folio_put(old);
ef6a3c63 848}
3720dd6d 849EXPORT_SYMBOL_GPL(replace_page_cache_folio);
ef6a3c63 850
9dd3d069
MWO
851noinline int __filemap_add_folio(struct address_space *mapping,
852 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
1da177e4 853{
9dd3d069 854 XA_STATE(xas, &mapping->i_pages, index);
6212eb4d 855 bool huge = folio_test_hugetlb(folio);
da74240e 856 bool charged = false;
d68eccad 857 long nr = 1;
e286781d 858
9dd3d069
MWO
859 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
860 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
74d60958 861 mapping_set_update(&xas, mapping);
e286781d 862
3fea5a49 863 if (!huge) {
d68eccad 864 int error = mem_cgroup_charge(folio, NULL, gfp);
3fea5a49 865 if (error)
d68eccad 866 return error;
da74240e 867 charged = true;
3fea5a49
JW
868 }
869
a08c7193
SK
870 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
871 xas_set_order(&xas, index, folio_order(folio));
872 nr = folio_nr_pages(folio);
873
198b62f8 874 gfp &= GFP_RECLAIM_MASK;
d68eccad
MWO
875 folio_ref_add(folio, nr);
876 folio->mapping = mapping;
877 folio->index = xas.xa_index;
198b62f8 878
74d60958 879 do {
198b62f8
MWO
880 unsigned int order = xa_get_order(xas.xa, xas.xa_index);
881 void *entry, *old = NULL;
882
9dd3d069 883 if (order > folio_order(folio))
198b62f8
MWO
884 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
885 order, gfp);
74d60958 886 xas_lock_irq(&xas);
198b62f8
MWO
887 xas_for_each_conflict(&xas, entry) {
888 old = entry;
889 if (!xa_is_value(entry)) {
890 xas_set_err(&xas, -EEXIST);
891 goto unlock;
892 }
893 }
894
895 if (old) {
896 if (shadowp)
897 *shadowp = old;
898 /* entry may have been split before we acquired lock */
899 order = xa_get_order(xas.xa, xas.xa_index);
9dd3d069 900 if (order > folio_order(folio)) {
d68eccad
MWO
901 /* How to handle large swap entries? */
902 BUG_ON(shmem_mapping(mapping));
198b62f8
MWO
903 xas_split(&xas, old, order);
904 xas_reset(&xas);
905 }
906 }
907
9dd3d069 908 xas_store(&xas, folio);
74d60958
MW
909 if (xas_error(&xas))
910 goto unlock;
911
d68eccad 912 mapping->nrpages += nr;
74d60958
MW
913
914 /* hugetlb pages do not participate in page cache accounting */
d68eccad
MWO
915 if (!huge) {
916 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
917 if (folio_test_pmd_mappable(folio))
918 __lruvec_stat_mod_folio(folio,
919 NR_FILE_THPS, nr);
920 }
74d60958
MW
921unlock:
922 xas_unlock_irq(&xas);
198b62f8 923 } while (xas_nomem(&xas, gfp));
74d60958 924
d68eccad 925 if (xas_error(&xas))
74d60958 926 goto error;
4165b9b4 927
a0580c6f 928 trace_mm_filemap_add_to_page_cache(folio);
66a0c8ee 929 return 0;
74d60958 930error:
d68eccad
MWO
931 if (charged)
932 mem_cgroup_uncharge(folio);
9dd3d069 933 folio->mapping = NULL;
66a0c8ee 934 /* Leave page->index set: truncation relies upon it */
d68eccad
MWO
935 folio_put_refs(folio, nr);
936 return xas_error(&xas);
1da177e4 937}
9dd3d069 938ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
a528910e 939
9dd3d069
MWO
940int filemap_add_folio(struct address_space *mapping, struct folio *folio,
941 pgoff_t index, gfp_t gfp)
1da177e4 942{
a528910e 943 void *shadow = NULL;
4f98a2fe
RR
944 int ret;
945
9dd3d069
MWO
946 __folio_set_locked(folio);
947 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
a528910e 948 if (unlikely(ret))
9dd3d069 949 __folio_clear_locked(folio);
a528910e
JW
950 else {
951 /*
9dd3d069 952 * The folio might have been evicted from cache only
a528910e 953 * recently, in which case it should be activated like
9dd3d069
MWO
954 * any other repeatedly accessed folio.
955 * The exception is folios getting rewritten; evicting other
f0281a00
RR
956 * data from the working set, only to cache data that will
957 * get overwritten with something else, is a waste of memory.
a528910e 958 */
9dd3d069
MWO
959 WARN_ON_ONCE(folio_test_active(folio));
960 if (!(gfp & __GFP_WRITE) && shadow)
961 workingset_refault(folio, shadow);
962 folio_add_lru(folio);
a528910e 963 }
1da177e4
LT
964 return ret;
965}
9dd3d069 966EXPORT_SYMBOL_GPL(filemap_add_folio);
1da177e4 967
44110fe3 968#ifdef CONFIG_NUMA
bb3c579e 969struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
44110fe3 970{
c0ff7453 971 int n;
bb3c579e 972 struct folio *folio;
c0ff7453 973
44110fe3 974 if (cpuset_do_page_mem_spread()) {
cc9a6c87
MG
975 unsigned int cpuset_mems_cookie;
976 do {
d26914d1 977 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 978 n = cpuset_mem_spread_node();
bb3c579e
MWO
979 folio = __folio_alloc_node(gfp, order, n);
980 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
cc9a6c87 981
bb3c579e 982 return folio;
44110fe3 983 }
bb3c579e 984 return folio_alloc(gfp, order);
44110fe3 985}
bb3c579e 986EXPORT_SYMBOL(filemap_alloc_folio);
44110fe3
PJ
987#endif
988
7506ae6a
JK
989/*
990 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
991 *
992 * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
993 *
994 * @mapping1: the first mapping to lock
995 * @mapping2: the second mapping to lock
996 */
997void filemap_invalidate_lock_two(struct address_space *mapping1,
998 struct address_space *mapping2)
999{
1000 if (mapping1 > mapping2)
1001 swap(mapping1, mapping2);
1002 if (mapping1)
1003 down_write(&mapping1->invalidate_lock);
1004 if (mapping2 && mapping1 != mapping2)
1005 down_write_nested(&mapping2->invalidate_lock, 1);
1006}
1007EXPORT_SYMBOL(filemap_invalidate_lock_two);
1008
1009/*
1010 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1011 *
1012 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1013 *
1014 * @mapping1: the first mapping to unlock
1015 * @mapping2: the second mapping to unlock
1016 */
1017void filemap_invalidate_unlock_two(struct address_space *mapping1,
1018 struct address_space *mapping2)
1019{
1020 if (mapping1)
1021 up_write(&mapping1->invalidate_lock);
1022 if (mapping2 && mapping1 != mapping2)
1023 up_write(&mapping2->invalidate_lock);
1024}
1025EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1026
1da177e4
LT
1027/*
1028 * In order to wait for pages to become available there must be
1029 * waitqueues associated with pages. By using a hash table of
1030 * waitqueues where the bucket discipline is to maintain all
1031 * waiters on the same queue and wake all when any of the pages
1032 * become available, and for the woken contexts to check to be
1033 * sure the appropriate page became available, this saves space
1034 * at a cost of "thundering herd" phenomena during rare hash
1035 * collisions.
1036 */
62906027
NP
1037#define PAGE_WAIT_TABLE_BITS 8
1038#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
df4d4f12 1039static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
62906027 1040
df4d4f12 1041static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1da177e4 1042{
df4d4f12 1043 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1da177e4 1044}
1da177e4 1045
62906027 1046void __init pagecache_init(void)
1da177e4 1047{
62906027 1048 int i;
1da177e4 1049
62906027 1050 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
df4d4f12 1051 init_waitqueue_head(&folio_wait_table[i]);
62906027
NP
1052
1053 page_writeback_init();
1da177e4 1054}
1da177e4 1055
5ef64cc8
LT
1056/*
1057 * The page wait code treats the "wait->flags" somewhat unusually, because
5868ec26 1058 * we have multiple different kinds of waits, not just the usual "exclusive"
5ef64cc8
LT
1059 * one.
1060 *
1061 * We have:
1062 *
1063 * (a) no special bits set:
1064 *
1065 * We're just waiting for the bit to be released, and when a waker
1066 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1067 * and remove it from the wait queue.
1068 *
1069 * Simple and straightforward.
1070 *
1071 * (b) WQ_FLAG_EXCLUSIVE:
1072 *
1073 * The waiter is waiting to get the lock, and only one waiter should
1074 * be woken up to avoid any thundering herd behavior. We'll set the
1075 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1076 *
1077 * This is the traditional exclusive wait.
1078 *
5868ec26 1079 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
5ef64cc8
LT
1080 *
1081 * The waiter is waiting to get the bit, and additionally wants the
1082 * lock to be transferred to it for fair lock behavior. If the lock
1083 * cannot be taken, we stop walking the wait queue without waking
1084 * the waiter.
1085 *
1086 * This is the "fair lock handoff" case, and in addition to setting
1087 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1088 * that it now has the lock.
1089 */
ac6424b9 1090static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
f62e00cc 1091{
5ef64cc8 1092 unsigned int flags;
62906027
NP
1093 struct wait_page_key *key = arg;
1094 struct wait_page_queue *wait_page
1095 = container_of(wait, struct wait_page_queue, wait);
1096
cdc8fcb4 1097 if (!wake_page_match(wait_page, key))
62906027 1098 return 0;
3510ca20 1099
9a1ea439 1100 /*
5ef64cc8
LT
1101 * If it's a lock handoff wait, we get the bit for it, and
1102 * stop walking (and do not wake it up) if we can't.
9a1ea439 1103 */
5ef64cc8
LT
1104 flags = wait->flags;
1105 if (flags & WQ_FLAG_EXCLUSIVE) {
df4d4f12 1106 if (test_bit(key->bit_nr, &key->folio->flags))
2a9127fc 1107 return -1;
5ef64cc8 1108 if (flags & WQ_FLAG_CUSTOM) {
df4d4f12 1109 if (test_and_set_bit(key->bit_nr, &key->folio->flags))
5ef64cc8
LT
1110 return -1;
1111 flags |= WQ_FLAG_DONE;
1112 }
2a9127fc 1113 }
f62e00cc 1114
5ef64cc8
LT
1115 /*
1116 * We are holding the wait-queue lock, but the waiter that
1117 * is waiting for this will be checking the flags without
1118 * any locking.
1119 *
1120 * So update the flags atomically, and wake up the waiter
1121 * afterwards to avoid any races. This store-release pairs
101c0bf6 1122 * with the load-acquire in folio_wait_bit_common().
5ef64cc8
LT
1123 */
1124 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
2a9127fc
LT
1125 wake_up_state(wait->private, mode);
1126
1127 /*
1128 * Ok, we have successfully done what we're waiting for,
1129 * and we can unconditionally remove the wait entry.
1130 *
5ef64cc8
LT
1131 * Note that this pairs with the "finish_wait()" in the
1132 * waiter, and has to be the absolute last thing we do.
1133 * After this list_del_init(&wait->entry) the wait entry
2a9127fc
LT
1134 * might be de-allocated and the process might even have
1135 * exited.
2a9127fc 1136 */
c6fe44d9 1137 list_del_init_careful(&wait->entry);
5ef64cc8 1138 return (flags & WQ_FLAG_EXCLUSIVE) != 0;
f62e00cc
KM
1139}
1140
6974d7c9 1141static void folio_wake_bit(struct folio *folio, int bit_nr)
cbbce822 1142{
df4d4f12 1143 wait_queue_head_t *q = folio_waitqueue(folio);
62906027
NP
1144 struct wait_page_key key;
1145 unsigned long flags;
cbbce822 1146
df4d4f12 1147 key.folio = folio;
62906027
NP
1148 key.bit_nr = bit_nr;
1149 key.page_match = 0;
1150
1151 spin_lock_irqsave(&q->lock, flags);
b0b598ee 1152 __wake_up_locked_key(q, TASK_NORMAL, &key);
11a19c7b 1153
62906027 1154 /*
bb43b14b
HD
1155 * It's possible to miss clearing waiters here, when we woke our page
1156 * waiters, but the hashed waitqueue has waiters for other pages on it.
1157 * That's okay, it's a rare case. The next waker will clear it.
62906027 1158 *
bb43b14b
HD
1159 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1160 * other), the flag may be cleared in the course of freeing the page;
1161 * but that is not required for correctness.
62906027 1162 */
bb43b14b 1163 if (!waitqueue_active(q) || !key.page_match)
6974d7c9 1164 folio_clear_waiters(folio);
bb43b14b 1165
62906027
NP
1166 spin_unlock_irqrestore(&q->lock, flags);
1167}
74d81bfa 1168
9a1ea439 1169/*
101c0bf6 1170 * A choice of three behaviors for folio_wait_bit_common():
9a1ea439
HD
1171 */
1172enum behavior {
1173 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
7c23c782 1174 * __folio_lock() waiting on then setting PG_locked.
9a1ea439
HD
1175 */
1176 SHARED, /* Hold ref to page and check the bit when woken, like
9f2b04a2 1177 * folio_wait_writeback() waiting on PG_writeback.
9a1ea439
HD
1178 */
1179 DROP, /* Drop ref to page before wait, no check when woken,
9f2b04a2 1180 * like folio_put_wait_locked() on PG_locked.
9a1ea439
HD
1181 */
1182};
1183
2a9127fc 1184/*
101c0bf6 1185 * Attempt to check (or get) the folio flag, and mark us done
5ef64cc8 1186 * if successful.
2a9127fc 1187 */
101c0bf6 1188static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
2a9127fc
LT
1189 struct wait_queue_entry *wait)
1190{
1191 if (wait->flags & WQ_FLAG_EXCLUSIVE) {
101c0bf6 1192 if (test_and_set_bit(bit_nr, &folio->flags))
2a9127fc 1193 return false;
101c0bf6 1194 } else if (test_bit(bit_nr, &folio->flags))
2a9127fc
LT
1195 return false;
1196
5ef64cc8 1197 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
2a9127fc
LT
1198 return true;
1199}
1200
5ef64cc8
LT
1201/* How many times do we accept lock stealing from under a waiter? */
1202int sysctl_page_lock_unfairness = 5;
1203
101c0bf6
MWO
1204static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1205 int state, enum behavior behavior)
62906027 1206{
df4d4f12 1207 wait_queue_head_t *q = folio_waitqueue(folio);
5ef64cc8 1208 int unfairness = sysctl_page_lock_unfairness;
62906027 1209 struct wait_page_queue wait_page;
ac6424b9 1210 wait_queue_entry_t *wait = &wait_page.wait;
b1d29ba8 1211 bool thrashing = false;
eb414681 1212 unsigned long pflags;
aa1cf99b 1213 bool in_thrashing;
62906027 1214
eb414681 1215 if (bit_nr == PG_locked &&
101c0bf6 1216 !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
aa1cf99b 1217 delayacct_thrashing_start(&in_thrashing);
eb414681 1218 psi_memstall_enter(&pflags);
b1d29ba8
JW
1219 thrashing = true;
1220 }
1221
62906027
NP
1222 init_wait(wait);
1223 wait->func = wake_page_function;
df4d4f12 1224 wait_page.folio = folio;
62906027
NP
1225 wait_page.bit_nr = bit_nr;
1226
5ef64cc8
LT
1227repeat:
1228 wait->flags = 0;
1229 if (behavior == EXCLUSIVE) {
1230 wait->flags = WQ_FLAG_EXCLUSIVE;
1231 if (--unfairness < 0)
1232 wait->flags |= WQ_FLAG_CUSTOM;
1233 }
1234
2a9127fc
LT
1235 /*
1236 * Do one last check whether we can get the
1237 * page bit synchronously.
1238 *
101c0bf6 1239 * Do the folio_set_waiters() marking before that
2a9127fc
LT
1240 * to let any waker we _just_ missed know they
1241 * need to wake us up (otherwise they'll never
1242 * even go to the slow case that looks at the
1243 * page queue), and add ourselves to the wait
1244 * queue if we need to sleep.
1245 *
1246 * This part needs to be done under the queue
1247 * lock to avoid races.
1248 */
1249 spin_lock_irq(&q->lock);
101c0bf6
MWO
1250 folio_set_waiters(folio);
1251 if (!folio_trylock_flag(folio, bit_nr, wait))
2a9127fc
LT
1252 __add_wait_queue_entry_tail(q, wait);
1253 spin_unlock_irq(&q->lock);
62906027 1254
2a9127fc
LT
1255 /*
1256 * From now on, all the logic will be based on
5ef64cc8
LT
1257 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1258 * see whether the page bit testing has already
1259 * been done by the wake function.
2a9127fc 1260 *
101c0bf6 1261 * We can drop our reference to the folio.
2a9127fc
LT
1262 */
1263 if (behavior == DROP)
101c0bf6 1264 folio_put(folio);
62906027 1265
5ef64cc8
LT
1266 /*
1267 * Note that until the "finish_wait()", or until
1268 * we see the WQ_FLAG_WOKEN flag, we need to
1269 * be very careful with the 'wait->flags', because
1270 * we may race with a waker that sets them.
1271 */
2a9127fc 1272 for (;;) {
5ef64cc8
LT
1273 unsigned int flags;
1274
62906027
NP
1275 set_current_state(state);
1276
5ef64cc8
LT
1277 /* Loop until we've been woken or interrupted */
1278 flags = smp_load_acquire(&wait->flags);
1279 if (!(flags & WQ_FLAG_WOKEN)) {
1280 if (signal_pending_state(state, current))
1281 break;
1282
1283 io_schedule();
1284 continue;
1285 }
1286
1287 /* If we were non-exclusive, we're done */
1288 if (behavior != EXCLUSIVE)
a8b169af 1289 break;
9a1ea439 1290
5ef64cc8
LT
1291 /* If the waker got the lock for us, we're done */
1292 if (flags & WQ_FLAG_DONE)
9a1ea439 1293 break;
2a9127fc 1294
5ef64cc8
LT
1295 /*
1296 * Otherwise, if we're getting the lock, we need to
1297 * try to get it ourselves.
1298 *
1299 * And if that fails, we'll have to retry this all.
1300 */
101c0bf6 1301 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
5ef64cc8
LT
1302 goto repeat;
1303
1304 wait->flags |= WQ_FLAG_DONE;
1305 break;
62906027
NP
1306 }
1307
5ef64cc8
LT
1308 /*
1309 * If a signal happened, this 'finish_wait()' may remove the last
101c0bf6 1310 * waiter from the wait-queues, but the folio waiters bit will remain
5ef64cc8
LT
1311 * set. That's ok. The next wakeup will take care of it, and trying
1312 * to do it here would be difficult and prone to races.
1313 */
62906027
NP
1314 finish_wait(q, wait);
1315
eb414681 1316 if (thrashing) {
aa1cf99b 1317 delayacct_thrashing_end(&in_thrashing);
eb414681
JW
1318 psi_memstall_leave(&pflags);
1319 }
b1d29ba8 1320
62906027 1321 /*
5ef64cc8
LT
1322 * NOTE! The wait->flags weren't stable until we've done the
1323 * 'finish_wait()', and we could have exited the loop above due
1324 * to a signal, and had a wakeup event happen after the signal
1325 * test but before the 'finish_wait()'.
1326 *
1327 * So only after the finish_wait() can we reliably determine
1328 * if we got woken up or not, so we can now figure out the final
1329 * return value based on that state without races.
1330 *
1331 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1332 * waiter, but an exclusive one requires WQ_FLAG_DONE.
62906027 1333 */
5ef64cc8
LT
1334 if (behavior == EXCLUSIVE)
1335 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
62906027 1336
2a9127fc 1337 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
62906027
NP
1338}
1339
ffa65753
AP
1340#ifdef CONFIG_MIGRATION
1341/**
1342 * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1343 * @entry: migration swap entry.
ffa65753
AP
1344 * @ptl: already locked ptl. This function will drop the lock.
1345 *
1346 * Wait for a migration entry referencing the given page to be removed. This is
1347 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except
1348 * this can be called without taking a reference on the page. Instead this
1349 * should be called while holding the ptl for the migration entry referencing
1350 * the page.
1351 *
0cb8fd4d 1352 * Returns after unlocking the ptl.
ffa65753
AP
1353 *
1354 * This follows the same logic as folio_wait_bit_common() so see the comments
1355 * there.
1356 */
0cb8fd4d
HD
1357void migration_entry_wait_on_locked(swp_entry_t entry, spinlock_t *ptl)
1358 __releases(ptl)
ffa65753
AP
1359{
1360 struct wait_page_queue wait_page;
1361 wait_queue_entry_t *wait = &wait_page.wait;
1362 bool thrashing = false;
ffa65753 1363 unsigned long pflags;
aa1cf99b 1364 bool in_thrashing;
ffa65753 1365 wait_queue_head_t *q;
5662400a 1366 struct folio *folio = pfn_swap_entry_folio(entry);
ffa65753
AP
1367
1368 q = folio_waitqueue(folio);
1369 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
aa1cf99b 1370 delayacct_thrashing_start(&in_thrashing);
ffa65753
AP
1371 psi_memstall_enter(&pflags);
1372 thrashing = true;
1373 }
1374
1375 init_wait(wait);
1376 wait->func = wake_page_function;
1377 wait_page.folio = folio;
1378 wait_page.bit_nr = PG_locked;
1379 wait->flags = 0;
1380
1381 spin_lock_irq(&q->lock);
1382 folio_set_waiters(folio);
1383 if (!folio_trylock_flag(folio, PG_locked, wait))
1384 __add_wait_queue_entry_tail(q, wait);
1385 spin_unlock_irq(&q->lock);
1386
1387 /*
1388 * If a migration entry exists for the page the migration path must hold
1389 * a valid reference to the page, and it must take the ptl to remove the
1390 * migration entry. So the page is valid until the ptl is dropped.
1391 */
0cb8fd4d 1392 spin_unlock(ptl);
ffa65753
AP
1393
1394 for (;;) {
1395 unsigned int flags;
1396
1397 set_current_state(TASK_UNINTERRUPTIBLE);
1398
1399 /* Loop until we've been woken or interrupted */
1400 flags = smp_load_acquire(&wait->flags);
1401 if (!(flags & WQ_FLAG_WOKEN)) {
1402 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1403 break;
1404
1405 io_schedule();
1406 continue;
1407 }
1408 break;
1409 }
1410
1411 finish_wait(q, wait);
1412
1413 if (thrashing) {
aa1cf99b 1414 delayacct_thrashing_end(&in_thrashing);
ffa65753
AP
1415 psi_memstall_leave(&pflags);
1416 }
1417}
1418#endif
1419
101c0bf6 1420void folio_wait_bit(struct folio *folio, int bit_nr)
62906027 1421{
101c0bf6 1422 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
62906027 1423}
101c0bf6 1424EXPORT_SYMBOL(folio_wait_bit);
62906027 1425
101c0bf6 1426int folio_wait_bit_killable(struct folio *folio, int bit_nr)
62906027 1427{
101c0bf6 1428 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
cbbce822 1429}
101c0bf6 1430EXPORT_SYMBOL(folio_wait_bit_killable);
cbbce822 1431
9a1ea439 1432/**
9f2b04a2
MWO
1433 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1434 * @folio: The folio to wait for.
48054625 1435 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
9a1ea439 1436 *
9f2b04a2 1437 * The caller should hold a reference on @folio. They expect the page to
9a1ea439 1438 * become unlocked relatively soon, but do not wish to hold up migration
9f2b04a2 1439 * (for example) by holding the reference while waiting for the folio to
9a1ea439 1440 * come unlocked. After this function returns, the caller should not
9f2b04a2 1441 * dereference @folio.
48054625 1442 *
9f2b04a2 1443 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
9a1ea439 1444 */
c195c321 1445static int folio_put_wait_locked(struct folio *folio, int state)
9a1ea439 1446{
9f2b04a2 1447 return folio_wait_bit_common(folio, PG_locked, state, DROP);
9a1ea439
HD
1448}
1449
385e1ca5 1450/**
df4d4f12
MWO
1451 * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1452 * @folio: Folio defining the wait queue of interest
697f619f 1453 * @waiter: Waiter to add to the queue
385e1ca5 1454 *
df4d4f12 1455 * Add an arbitrary @waiter to the wait queue for the nominated @folio.
385e1ca5 1456 */
df4d4f12 1457void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
385e1ca5 1458{
df4d4f12 1459 wait_queue_head_t *q = folio_waitqueue(folio);
385e1ca5
DH
1460 unsigned long flags;
1461
1462 spin_lock_irqsave(&q->lock, flags);
9c3a815f 1463 __add_wait_queue_entry_tail(q, waiter);
df4d4f12 1464 folio_set_waiters(folio);
385e1ca5
DH
1465 spin_unlock_irqrestore(&q->lock, flags);
1466}
df4d4f12 1467EXPORT_SYMBOL_GPL(folio_add_wait_queue);
385e1ca5 1468
1da177e4 1469/**
4e136428
MWO
1470 * folio_unlock - Unlock a locked folio.
1471 * @folio: The folio.
1472 *
1473 * Unlocks the folio and wakes up any thread sleeping on the page lock.
1474 *
1475 * Context: May be called from interrupt or process context. May not be
1476 * called from NMI context.
1da177e4 1477 */
4e136428 1478void folio_unlock(struct folio *folio)
1da177e4 1479{
4e136428 1480 /* Bit 7 allows x86 to check the byte's sign bit */
b91e1302 1481 BUILD_BUG_ON(PG_waiters != 7);
4e136428
MWO
1482 BUILD_BUG_ON(PG_locked > 7);
1483 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
0410cd84 1484 if (folio_xor_flags_has_waiters(folio, 1 << PG_locked))
6974d7c9 1485 folio_wake_bit(folio, PG_locked);
1da177e4 1486}
4e136428 1487EXPORT_SYMBOL(folio_unlock);
1da177e4 1488
0b237047
MWO
1489/**
1490 * folio_end_read - End read on a folio.
1491 * @folio: The folio.
1492 * @success: True if all reads completed successfully.
1493 *
1494 * When all reads against a folio have completed, filesystems should
1495 * call this function to let the pagecache know that no more reads
1496 * are outstanding. This will unlock the folio and wake up any thread
1497 * sleeping on the lock. The folio will also be marked uptodate if all
1498 * reads succeeded.
1499 *
1500 * Context: May be called from interrupt or process context. May not be
1501 * called from NMI context.
1502 */
1503void folio_end_read(struct folio *folio, bool success)
1504{
0410cd84
MWO
1505 unsigned long mask = 1 << PG_locked;
1506
1507 /* Must be in bottom byte for x86 to work */
1508 BUILD_BUG_ON(PG_uptodate > 7);
1509 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1510 VM_BUG_ON_FOLIO(folio_test_uptodate(folio), folio);
1511
0b237047 1512 if (likely(success))
0410cd84
MWO
1513 mask |= 1 << PG_uptodate;
1514 if (folio_xor_flags_has_waiters(folio, mask))
1515 folio_wake_bit(folio, PG_locked);
0b237047
MWO
1516}
1517EXPORT_SYMBOL(folio_end_read);
1518
73e10ded 1519/**
b47393f8
MWO
1520 * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1521 * @folio: The folio.
73e10ded 1522 *
b47393f8
MWO
1523 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1524 * it. The folio reference held for PG_private_2 being set is released.
73e10ded 1525 *
b47393f8
MWO
1526 * This is, for example, used when a netfs folio is being written to a local
1527 * disk cache, thereby allowing writes to the cache for the same folio to be
73e10ded
DH
1528 * serialised.
1529 */
b47393f8 1530void folio_end_private_2(struct folio *folio)
73e10ded 1531{
6974d7c9
MWO
1532 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1533 clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1534 folio_wake_bit(folio, PG_private_2);
1535 folio_put(folio);
73e10ded 1536}
b47393f8 1537EXPORT_SYMBOL(folio_end_private_2);
73e10ded
DH
1538
1539/**
b47393f8
MWO
1540 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1541 * @folio: The folio to wait on.
73e10ded 1542 *
b47393f8 1543 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio.
73e10ded 1544 */
b47393f8 1545void folio_wait_private_2(struct folio *folio)
73e10ded 1546{
101c0bf6
MWO
1547 while (folio_test_private_2(folio))
1548 folio_wait_bit(folio, PG_private_2);
73e10ded 1549}
b47393f8 1550EXPORT_SYMBOL(folio_wait_private_2);
73e10ded
DH
1551
1552/**
b47393f8
MWO
1553 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1554 * @folio: The folio to wait on.
73e10ded 1555 *
b47393f8 1556 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a
73e10ded
DH
1557 * fatal signal is received by the calling task.
1558 *
1559 * Return:
1560 * - 0 if successful.
1561 * - -EINTR if a fatal signal was encountered.
1562 */
b47393f8 1563int folio_wait_private_2_killable(struct folio *folio)
73e10ded
DH
1564{
1565 int ret = 0;
1566
101c0bf6
MWO
1567 while (folio_test_private_2(folio)) {
1568 ret = folio_wait_bit_killable(folio, PG_private_2);
73e10ded
DH
1569 if (ret < 0)
1570 break;
1571 }
1572
1573 return ret;
1574}
b47393f8 1575EXPORT_SYMBOL(folio_wait_private_2_killable);
73e10ded 1576
485bb99b 1577/**
4268b480
MWO
1578 * folio_end_writeback - End writeback against a folio.
1579 * @folio: The folio.
7d0795d0
MWO
1580 *
1581 * The folio must actually be under writeback.
1582 *
1583 * Context: May be called from process or interrupt context.
1da177e4 1584 */
4268b480 1585void folio_end_writeback(struct folio *folio)
1da177e4 1586{
7d0795d0
MWO
1587 VM_BUG_ON_FOLIO(!folio_test_writeback(folio), folio);
1588
888cf2db 1589 /*
4268b480
MWO
1590 * folio_test_clear_reclaim() could be used here but it is an
1591 * atomic operation and overkill in this particular case. Failing
1592 * to shuffle a folio marked for immediate reclaim is too mild
1593 * a gain to justify taking an atomic operation penalty at the
1594 * end of every folio writeback.
888cf2db 1595 */
4268b480
MWO
1596 if (folio_test_reclaim(folio)) {
1597 folio_clear_reclaim(folio);
575ced1c 1598 folio_rotate_reclaimable(folio);
888cf2db 1599 }
ac6aadb2 1600
073861ed 1601 /*
4268b480 1602 * Writeback does not hold a folio reference of its own, relying
073861ed 1603 * on truncation to wait for the clearing of PG_writeback.
4268b480 1604 * But here we must make sure that the folio is not freed and
2580d554 1605 * reused before the folio_wake_bit().
073861ed 1606 */
4268b480 1607 folio_get(folio);
2580d554
MWO
1608 if (__folio_end_writeback(folio))
1609 folio_wake_bit(folio, PG_writeback);
512b7931 1610 acct_reclaim_writeback(folio);
4268b480 1611 folio_put(folio);
1da177e4 1612}
4268b480 1613EXPORT_SYMBOL(folio_end_writeback);
1da177e4 1614
485bb99b 1615/**
7c23c782
MWO
1616 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1617 * @folio: The folio to lock
1da177e4 1618 */
7c23c782 1619void __folio_lock(struct folio *folio)
1da177e4 1620{
101c0bf6 1621 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
9a1ea439 1622 EXCLUSIVE);
1da177e4 1623}
7c23c782 1624EXPORT_SYMBOL(__folio_lock);
1da177e4 1625
af7f29d9 1626int __folio_lock_killable(struct folio *folio)
2687a356 1627{
101c0bf6 1628 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
9a1ea439 1629 EXCLUSIVE);
2687a356 1630}
af7f29d9 1631EXPORT_SYMBOL_GPL(__folio_lock_killable);
2687a356 1632
ffdc8dab 1633static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
dd3e6d50 1634{
df4d4f12 1635 struct wait_queue_head *q = folio_waitqueue(folio);
a1748f85 1636 int ret;
f32b5dd7 1637
df4d4f12 1638 wait->folio = folio;
f32b5dd7
MWO
1639 wait->bit_nr = PG_locked;
1640
1641 spin_lock_irq(&q->lock);
1642 __add_wait_queue_entry_tail(q, &wait->wait);
ffdc8dab
MWO
1643 folio_set_waiters(folio);
1644 ret = !folio_trylock(folio);
f32b5dd7
MWO
1645 /*
1646 * If we were successful now, we know we're still on the
1647 * waitqueue as we're still under the lock. This means it's
1648 * safe to remove and return success, we know the callback
1649 * isn't going to trigger.
1650 */
1651 if (!ret)
1652 __remove_wait_queue(q, &wait->wait);
1653 else
1654 ret = -EIOCBQUEUED;
1655 spin_unlock_irq(&q->lock);
1656 return ret;
dd3e6d50
JA
1657}
1658
9a95f3cf
PC
1659/*
1660 * Return values:
fdc724d6
SB
1661 * 0 - folio is locked.
1662 * non-zero - folio is not locked.
1235ccd0
SB
1663 * mmap_lock or per-VMA lock has been released (mmap_read_unlock() or
1664 * vma_end_read()), unless flags had both FAULT_FLAG_ALLOW_RETRY and
1665 * FAULT_FLAG_RETRY_NOWAIT set, in which case the lock is still held.
9a95f3cf 1666 *
fdc724d6 1667 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 0
1235ccd0 1668 * with the folio locked and the mmap_lock/per-VMA lock is left unperturbed.
9a95f3cf 1669 */
fdc724d6 1670vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf)
d065bd81 1671{
fdc724d6
SB
1672 unsigned int flags = vmf->flags;
1673
4064b982 1674 if (fault_flag_allow_retry_first(flags)) {
37b23e05 1675 /*
1235ccd0
SB
1676 * CAUTION! In this case, mmap_lock/per-VMA lock is not
1677 * released even though returning VM_FAULT_RETRY.
37b23e05
KM
1678 */
1679 if (flags & FAULT_FLAG_RETRY_NOWAIT)
fdc724d6 1680 return VM_FAULT_RETRY;
37b23e05 1681
1235ccd0 1682 release_fault_lock(vmf);
37b23e05 1683 if (flags & FAULT_FLAG_KILLABLE)
6baa8d60 1684 folio_wait_locked_killable(folio);
37b23e05 1685 else
6baa8d60 1686 folio_wait_locked(folio);
fdc724d6 1687 return VM_FAULT_RETRY;
800bca7c
HL
1688 }
1689 if (flags & FAULT_FLAG_KILLABLE) {
9138e47e 1690 bool ret;
37b23e05 1691
af7f29d9 1692 ret = __folio_lock_killable(folio);
800bca7c 1693 if (ret) {
1235ccd0 1694 release_fault_lock(vmf);
fdc724d6 1695 return VM_FAULT_RETRY;
800bca7c
HL
1696 }
1697 } else {
af7f29d9 1698 __folio_lock(folio);
d065bd81 1699 }
800bca7c 1700
fdc724d6 1701 return 0;
d065bd81
ML
1702}
1703
e7b563bb 1704/**
0d3f9296
MW
1705 * page_cache_next_miss() - Find the next gap in the page cache.
1706 * @mapping: Mapping.
1707 * @index: Index.
1708 * @max_scan: Maximum range to search.
e7b563bb 1709 *
0d3f9296
MW
1710 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1711 * gap with the lowest index.
e7b563bb 1712 *
0d3f9296
MW
1713 * This function may be called under the rcu_read_lock. However, this will
1714 * not atomically search a snapshot of the cache at a single point in time.
1715 * For example, if a gap is created at index 5, then subsequently a gap is
1716 * created at index 10, page_cache_next_miss covering both indices may
1717 * return 10 if called under the rcu_read_lock.
e7b563bb 1718 *
0d3f9296
MW
1719 * Return: The index of the gap if found, otherwise an index outside the
1720 * range specified (in which case 'return - index >= max_scan' will be true).
16f8eb3e 1721 * In the rare case of index wrap-around, 0 will be returned.
e7b563bb 1722 */
0d3f9296 1723pgoff_t page_cache_next_miss(struct address_space *mapping,
e7b563bb
JW
1724 pgoff_t index, unsigned long max_scan)
1725{
0d3f9296 1726 XA_STATE(xas, &mapping->i_pages, index);
e7b563bb 1727
0d3f9296
MW
1728 while (max_scan--) {
1729 void *entry = xas_next(&xas);
1730 if (!entry || xa_is_value(entry))
16f8eb3e
MK
1731 break;
1732 if (xas.xa_index == 0)
1733 break;
e7b563bb
JW
1734 }
1735
16f8eb3e 1736 return xas.xa_index;
e7b563bb 1737}
0d3f9296 1738EXPORT_SYMBOL(page_cache_next_miss);
e7b563bb
JW
1739
1740/**
2346a560 1741 * page_cache_prev_miss() - Find the previous gap in the page cache.
0d3f9296
MW
1742 * @mapping: Mapping.
1743 * @index: Index.
1744 * @max_scan: Maximum range to search.
e7b563bb 1745 *
0d3f9296
MW
1746 * Search the range [max(index - max_scan + 1, 0), index] for the
1747 * gap with the highest index.
e7b563bb 1748 *
0d3f9296
MW
1749 * This function may be called under the rcu_read_lock. However, this will
1750 * not atomically search a snapshot of the cache at a single point in time.
1751 * For example, if a gap is created at index 10, then subsequently a gap is
1752 * created at index 5, page_cache_prev_miss() covering both indices may
1753 * return 5 if called under the rcu_read_lock.
e7b563bb 1754 *
0d3f9296
MW
1755 * Return: The index of the gap if found, otherwise an index outside the
1756 * range specified (in which case 'index - return >= max_scan' will be true).
16f8eb3e 1757 * In the rare case of wrap-around, ULONG_MAX will be returned.
e7b563bb 1758 */
0d3f9296 1759pgoff_t page_cache_prev_miss(struct address_space *mapping,
e7b563bb
JW
1760 pgoff_t index, unsigned long max_scan)
1761{
0d3f9296 1762 XA_STATE(xas, &mapping->i_pages, index);
e7b563bb 1763
0d3f9296
MW
1764 while (max_scan--) {
1765 void *entry = xas_prev(&xas);
1766 if (!entry || xa_is_value(entry))
16f8eb3e
MK
1767 break;
1768 if (xas.xa_index == ULONG_MAX)
1769 break;
e7b563bb
JW
1770 }
1771
16f8eb3e 1772 return xas.xa_index;
e7b563bb 1773}
0d3f9296 1774EXPORT_SYMBOL(page_cache_prev_miss);
e7b563bb 1775
020853b6
MWO
1776/*
1777 * Lockless page cache protocol:
1778 * On the lookup side:
1779 * 1. Load the folio from i_pages
1780 * 2. Increment the refcount if it's not zero
1781 * 3. If the folio is not found by xas_reload(), put the refcount and retry
1782 *
1783 * On the removal side:
1784 * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1785 * B. Remove the page from i_pages
1786 * C. Return the page to the page allocator
1787 *
1788 * This means that any page may have its reference count temporarily
1789 * increased by a speculative page cache (or fast GUP) lookup as it can
1790 * be allocated by another user before the RCU grace period expires.
1791 * Because the refcount temporarily acquired here may end up being the
1792 * last refcount on the page, any page allocation must be freeable by
1793 * folio_put().
1794 */
1795
44835d20 1796/*
263e721e 1797 * filemap_get_entry - Get a page cache entry.
485bb99b 1798 * @mapping: the address_space to search
a6de4b48 1799 * @index: The page cache index.
0cd6144a 1800 *
bca65eea
MWO
1801 * Looks up the page cache entry at @mapping & @index. If it is a folio,
1802 * it is returned with an increased refcount. If it is a shadow entry
1803 * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1804 * it is returned without further action.
485bb99b 1805 *
bca65eea 1806 * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1da177e4 1807 */
263e721e 1808void *filemap_get_entry(struct address_space *mapping, pgoff_t index)
1da177e4 1809{
a6de4b48 1810 XA_STATE(xas, &mapping->i_pages, index);
bca65eea 1811 struct folio *folio;
1da177e4 1812
a60637c8
NP
1813 rcu_read_lock();
1814repeat:
4c7472c0 1815 xas_reset(&xas);
bca65eea
MWO
1816 folio = xas_load(&xas);
1817 if (xas_retry(&xas, folio))
4c7472c0
MW
1818 goto repeat;
1819 /*
1820 * A shadow entry of a recently evicted page, or a swap entry from
1821 * shmem/tmpfs. Return it without attempting to raise page count.
1822 */
bca65eea 1823 if (!folio || xa_is_value(folio))
4c7472c0 1824 goto out;
83929372 1825
bca65eea 1826 if (!folio_try_get_rcu(folio))
4c7472c0 1827 goto repeat;
83929372 1828
bca65eea
MWO
1829 if (unlikely(folio != xas_reload(&xas))) {
1830 folio_put(folio);
4c7472c0 1831 goto repeat;
a60637c8 1832 }
27d20fdd 1833out:
a60637c8
NP
1834 rcu_read_unlock();
1835
bca65eea 1836 return folio;
1da177e4 1837}
1da177e4 1838
0cd6144a 1839/**
3f0c6a07 1840 * __filemap_get_folio - Find and get a reference to a folio.
2294b32e
MWO
1841 * @mapping: The address_space to search.
1842 * @index: The page index.
3f0c6a07
MWO
1843 * @fgp_flags: %FGP flags modify how the folio is returned.
1844 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1da177e4 1845 *
2294b32e 1846 * Looks up the page cache entry at @mapping & @index.
0cd6144a 1847 *
2294b32e
MWO
1848 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1849 * if the %GFP flags specified for %FGP_CREAT are atomic.
1da177e4 1850 *
ffc143db 1851 * If this function returns a folio, it is returned with an increased refcount.
a862f68a 1852 *
66dabbb6 1853 * Return: The found folio or an ERR_PTR() otherwise.
1da177e4 1854 */
3f0c6a07 1855struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
ffc143db 1856 fgf_t fgp_flags, gfp_t gfp)
1da177e4 1857{
3f0c6a07 1858 struct folio *folio;
2457aec6 1859
1da177e4 1860repeat:
263e721e 1861 folio = filemap_get_entry(mapping, index);
48c9d113 1862 if (xa_is_value(folio))
3f0c6a07 1863 folio = NULL;
3f0c6a07 1864 if (!folio)
2457aec6
MG
1865 goto no_page;
1866
1867 if (fgp_flags & FGP_LOCK) {
1868 if (fgp_flags & FGP_NOWAIT) {
3f0c6a07
MWO
1869 if (!folio_trylock(folio)) {
1870 folio_put(folio);
66dabbb6 1871 return ERR_PTR(-EAGAIN);
2457aec6
MG
1872 }
1873 } else {
3f0c6a07 1874 folio_lock(folio);
2457aec6
MG
1875 }
1876
1877 /* Has the page been truncated? */
3f0c6a07
MWO
1878 if (unlikely(folio->mapping != mapping)) {
1879 folio_unlock(folio);
1880 folio_put(folio);
2457aec6
MG
1881 goto repeat;
1882 }
3f0c6a07 1883 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
2457aec6
MG
1884 }
1885
c16eb000 1886 if (fgp_flags & FGP_ACCESSED)
3f0c6a07 1887 folio_mark_accessed(folio);
b9306a79
YS
1888 else if (fgp_flags & FGP_WRITE) {
1889 /* Clear idle flag for buffer write */
3f0c6a07
MWO
1890 if (folio_test_idle(folio))
1891 folio_clear_idle(folio);
b9306a79 1892 }
2457aec6 1893
b27652d9
MWO
1894 if (fgp_flags & FGP_STABLE)
1895 folio_wait_stable(folio);
2457aec6 1896no_page:
3f0c6a07 1897 if (!folio && (fgp_flags & FGP_CREAT)) {
4f661701 1898 unsigned order = FGF_GET_ORDER(fgp_flags);
2457aec6 1899 int err;
4f661701 1900
f56753ac 1901 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
3f0c6a07 1902 gfp |= __GFP_WRITE;
45f87de5 1903 if (fgp_flags & FGP_NOFS)
3f0c6a07 1904 gfp &= ~__GFP_FS;
0dd316ba
JA
1905 if (fgp_flags & FGP_NOWAIT) {
1906 gfp &= ~GFP_KERNEL;
1907 gfp |= GFP_NOWAIT | __GFP_NOWARN;
1908 }
a75d4c33 1909 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
2457aec6
MG
1910 fgp_flags |= FGP_LOCK;
1911
4f661701
MWO
1912 if (!mapping_large_folio_support(mapping))
1913 order = 0;
1914 if (order > MAX_PAGECACHE_ORDER)
1915 order = MAX_PAGECACHE_ORDER;
1916 /* If we're not aligned, allocate a smaller folio */
1917 if (index & ((1UL << order) - 1))
1918 order = __ffs(index);
2457aec6 1919
4f661701
MWO
1920 do {
1921 gfp_t alloc_gfp = gfp;
1922
1923 err = -ENOMEM;
4f661701
MWO
1924 if (order > 0)
1925 alloc_gfp |= __GFP_NORETRY | __GFP_NOWARN;
1926 folio = filemap_alloc_folio(alloc_gfp, order);
1927 if (!folio)
1928 continue;
1929
1930 /* Init accessed so avoid atomic mark_page_accessed later */
1931 if (fgp_flags & FGP_ACCESSED)
1932 __folio_set_referenced(folio);
1933
1934 err = filemap_add_folio(mapping, folio, index, gfp);
1935 if (!err)
1936 break;
3f0c6a07
MWO
1937 folio_put(folio);
1938 folio = NULL;
4f661701 1939 } while (order-- > 0);
a75d4c33 1940
4f661701
MWO
1941 if (err == -EEXIST)
1942 goto repeat;
1943 if (err)
1944 return ERR_PTR(err);
a75d4c33 1945 /*
3f0c6a07
MWO
1946 * filemap_add_folio locks the page, and for mmap
1947 * we expect an unlocked page.
a75d4c33 1948 */
3f0c6a07
MWO
1949 if (folio && (fgp_flags & FGP_FOR_MMAP))
1950 folio_unlock(folio);
1da177e4 1951 }
2457aec6 1952
66dabbb6
CH
1953 if (!folio)
1954 return ERR_PTR(-ENOENT);
3f0c6a07 1955 return folio;
1da177e4 1956}
3f0c6a07 1957EXPORT_SYMBOL(__filemap_get_folio);
1da177e4 1958
f5e6429a 1959static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
c7bad633
MWO
1960 xa_mark_t mark)
1961{
f5e6429a 1962 struct folio *folio;
c7bad633
MWO
1963
1964retry:
1965 if (mark == XA_PRESENT)
f5e6429a 1966 folio = xas_find(xas, max);
c7bad633 1967 else
f5e6429a 1968 folio = xas_find_marked(xas, max, mark);
c7bad633 1969
f5e6429a 1970 if (xas_retry(xas, folio))
c7bad633
MWO
1971 goto retry;
1972 /*
1973 * A shadow entry of a recently evicted page, a swap
1974 * entry from shmem/tmpfs or a DAX entry. Return it
1975 * without attempting to raise page count.
1976 */
f5e6429a
MWO
1977 if (!folio || xa_is_value(folio))
1978 return folio;
c7bad633 1979
f5e6429a 1980 if (!folio_try_get_rcu(folio))
c7bad633
MWO
1981 goto reset;
1982
f5e6429a
MWO
1983 if (unlikely(folio != xas_reload(xas))) {
1984 folio_put(folio);
c7bad633
MWO
1985 goto reset;
1986 }
1987
f5e6429a 1988 return folio;
c7bad633
MWO
1989reset:
1990 xas_reset(xas);
1991 goto retry;
1992}
1993
0cd6144a
JW
1994/**
1995 * find_get_entries - gang pagecache lookup
1996 * @mapping: The address_space to search
1997 * @start: The starting page cache index
ca122fe4 1998 * @end: The final page index (inclusive).
0e499ed3 1999 * @fbatch: Where the resulting entries are placed.
0cd6144a
JW
2000 * @indices: The cache indices corresponding to the entries in @entries
2001 *
cf2039af 2002 * find_get_entries() will search for and return a batch of entries in
0e499ed3
MWO
2003 * the mapping. The entries are placed in @fbatch. find_get_entries()
2004 * takes a reference on any actual folios it returns.
0cd6144a 2005 *
0e499ed3
MWO
2006 * The entries have ascending indexes. The indices may not be consecutive
2007 * due to not-present entries or large folios.
0cd6144a 2008 *
0e499ed3 2009 * Any shadow entries of evicted folios, or swap entries from
139b6a6f 2010 * shmem/tmpfs, are included in the returned array.
0cd6144a 2011 *
0e499ed3 2012 * Return: The number of entries which were found.
0cd6144a 2013 */
9fb6beea 2014unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
0e499ed3 2015 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
0cd6144a 2016{
9fb6beea 2017 XA_STATE(xas, &mapping->i_pages, *start);
f5e6429a 2018 struct folio *folio;
0cd6144a
JW
2019
2020 rcu_read_lock();
f5e6429a 2021 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
0e499ed3
MWO
2022 indices[fbatch->nr] = xas.xa_index;
2023 if (!folio_batch_add(fbatch, folio))
0cd6144a
JW
2024 break;
2025 }
2026 rcu_read_unlock();
cf2039af 2027
9fb6beea
VMO
2028 if (folio_batch_count(fbatch)) {
2029 unsigned long nr = 1;
2030 int idx = folio_batch_count(fbatch) - 1;
2031
2032 folio = fbatch->folios[idx];
a08c7193 2033 if (!xa_is_value(folio))
9fb6beea
VMO
2034 nr = folio_nr_pages(folio);
2035 *start = indices[idx] + nr;
2036 }
0e499ed3 2037 return folio_batch_count(fbatch);
0cd6144a
JW
2038}
2039
5c211ba2
MWO
2040/**
2041 * find_lock_entries - Find a batch of pagecache entries.
2042 * @mapping: The address_space to search.
2043 * @start: The starting page cache index.
2044 * @end: The final page index (inclusive).
51dcbdac
MWO
2045 * @fbatch: Where the resulting entries are placed.
2046 * @indices: The cache indices of the entries in @fbatch.
5c211ba2
MWO
2047 *
2048 * find_lock_entries() will return a batch of entries from @mapping.
f5e6429a
MWO
2049 * Swap, shadow and DAX entries are included. Folios are returned
2050 * locked and with an incremented refcount. Folios which are locked
2051 * by somebody else or under writeback are skipped. Folios which are
2052 * partially outside the range are not returned.
5c211ba2
MWO
2053 *
2054 * The entries have ascending indexes. The indices may not be consecutive
f5e6429a
MWO
2055 * due to not-present entries, large folios, folios which could not be
2056 * locked or folios under writeback.
5c211ba2
MWO
2057 *
2058 * Return: The number of entries which were found.
2059 */
3392ca12 2060unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
51dcbdac 2061 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
5c211ba2 2062{
3392ca12 2063 XA_STATE(xas, &mapping->i_pages, *start);
f5e6429a 2064 struct folio *folio;
5c211ba2
MWO
2065
2066 rcu_read_lock();
f5e6429a
MWO
2067 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2068 if (!xa_is_value(folio)) {
3392ca12 2069 if (folio->index < *start)
5c211ba2 2070 goto put;
87b11f86 2071 if (folio_next_index(folio) - 1 > end)
5c211ba2 2072 goto put;
f5e6429a 2073 if (!folio_trylock(folio))
5c211ba2 2074 goto put;
f5e6429a
MWO
2075 if (folio->mapping != mapping ||
2076 folio_test_writeback(folio))
5c211ba2 2077 goto unlock;
f5e6429a
MWO
2078 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2079 folio);
5c211ba2 2080 }
51dcbdac
MWO
2081 indices[fbatch->nr] = xas.xa_index;
2082 if (!folio_batch_add(fbatch, folio))
5c211ba2 2083 break;
6b24ca4a 2084 continue;
5c211ba2 2085unlock:
f5e6429a 2086 folio_unlock(folio);
5c211ba2 2087put:
f5e6429a 2088 folio_put(folio);
5c211ba2
MWO
2089 }
2090 rcu_read_unlock();
2091
3392ca12
VMO
2092 if (folio_batch_count(fbatch)) {
2093 unsigned long nr = 1;
2094 int idx = folio_batch_count(fbatch) - 1;
2095
2096 folio = fbatch->folios[idx];
a08c7193 2097 if (!xa_is_value(folio))
3392ca12
VMO
2098 nr = folio_nr_pages(folio);
2099 *start = indices[idx] + nr;
2100 }
51dcbdac 2101 return folio_batch_count(fbatch);
5c211ba2
MWO
2102}
2103
1da177e4 2104/**
be0ced5e 2105 * filemap_get_folios - Get a batch of folios
1da177e4
LT
2106 * @mapping: The address_space to search
2107 * @start: The starting page index
b947cee4 2108 * @end: The final page index (inclusive)
be0ced5e 2109 * @fbatch: The batch to fill.
1da177e4 2110 *
be0ced5e
MWO
2111 * Search for and return a batch of folios in the mapping starting at
2112 * index @start and up to index @end (inclusive). The folios are returned
2113 * in @fbatch with an elevated reference count.
1da177e4 2114 *
be0ced5e
MWO
2115 * Return: The number of folios which were found.
2116 * We also update @start to index the next folio for the traversal.
1da177e4 2117 */
be0ced5e
MWO
2118unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
2119 pgoff_t end, struct folio_batch *fbatch)
1da177e4 2120{
bafd7e9d 2121 return filemap_get_folios_tag(mapping, start, end, XA_PRESENT, fbatch);
be0ced5e
MWO
2122}
2123EXPORT_SYMBOL(filemap_get_folios);
2124
ebf43500 2125/**
35b47146 2126 * filemap_get_folios_contig - Get a batch of contiguous folios
ebf43500 2127 * @mapping: The address_space to search
35b47146
VMO
2128 * @start: The starting page index
2129 * @end: The final page index (inclusive)
2130 * @fbatch: The batch to fill
ebf43500 2131 *
35b47146
VMO
2132 * filemap_get_folios_contig() works exactly like filemap_get_folios(),
2133 * except the returned folios are guaranteed to be contiguous. This may
2134 * not return all contiguous folios if the batch gets filled up.
ebf43500 2135 *
35b47146
VMO
2136 * Return: The number of folios found.
2137 * Also update @start to be positioned for traversal of the next folio.
ebf43500 2138 */
35b47146
VMO
2139
2140unsigned filemap_get_folios_contig(struct address_space *mapping,
2141 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch)
ebf43500 2142{
35b47146
VMO
2143 XA_STATE(xas, &mapping->i_pages, *start);
2144 unsigned long nr;
e1c37722 2145 struct folio *folio;
a60637c8
NP
2146
2147 rcu_read_lock();
35b47146
VMO
2148
2149 for (folio = xas_load(&xas); folio && xas.xa_index <= end;
2150 folio = xas_next(&xas)) {
e1c37722 2151 if (xas_retry(&xas, folio))
3ece58a2
MW
2152 continue;
2153 /*
2154 * If the entry has been swapped out, we can stop looking.
2155 * No current caller is looking for DAX entries.
2156 */
e1c37722 2157 if (xa_is_value(folio))
35b47146 2158 goto update_start;
ebf43500 2159
e1c37722 2160 if (!folio_try_get_rcu(folio))
3ece58a2 2161 goto retry;
83929372 2162
e1c37722 2163 if (unlikely(folio != xas_reload(&xas)))
35b47146 2164 goto put_folio;
a60637c8 2165
35b47146
VMO
2166 if (!folio_batch_add(fbatch, folio)) {
2167 nr = folio_nr_pages(folio);
35b47146
VMO
2168 *start = folio->index + nr;
2169 goto out;
6b24ca4a 2170 }
3ece58a2 2171 continue;
35b47146 2172put_folio:
e1c37722 2173 folio_put(folio);
35b47146 2174
3ece58a2
MW
2175retry:
2176 xas_reset(&xas);
ebf43500 2177 }
35b47146
VMO
2178
2179update_start:
2180 nr = folio_batch_count(fbatch);
2181
2182 if (nr) {
2183 folio = fbatch->folios[nr - 1];
8ff25266 2184 *start = folio_next_index(folio);
35b47146
VMO
2185 }
2186out:
a60637c8 2187 rcu_read_unlock();
35b47146 2188 return folio_batch_count(fbatch);
ebf43500 2189}
35b47146 2190EXPORT_SYMBOL(filemap_get_folios_contig);
ebf43500 2191
485bb99b 2192/**
247f9e1f
VMO
2193 * filemap_get_folios_tag - Get a batch of folios matching @tag
2194 * @mapping: The address_space to search
2195 * @start: The starting page index
2196 * @end: The final page index (inclusive)
2197 * @tag: The tag index
2198 * @fbatch: The batch to fill
485bb99b 2199 *
bafd7e9d
PR
2200 * The first folio may start before @start; if it does, it will contain
2201 * @start. The final folio may extend beyond @end; if it does, it will
2202 * contain @end. The folios have ascending indices. There may be gaps
2203 * between the folios if there are indices which have no folio in the
2204 * page cache. If folios are added to or removed from the page cache
2205 * while this is running, they may or may not be found by this call.
2206 * Only returns folios that are tagged with @tag.
a862f68a 2207 *
247f9e1f
VMO
2208 * Return: The number of folios found.
2209 * Also update @start to index the next folio for traversal.
1da177e4 2210 */
247f9e1f
VMO
2211unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
2212 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch)
1da177e4 2213{
247f9e1f 2214 XA_STATE(xas, &mapping->i_pages, *start);
f5e6429a 2215 struct folio *folio;
a60637c8
NP
2216
2217 rcu_read_lock();
247f9e1f 2218 while ((folio = find_get_entry(&xas, end, tag)) != NULL) {
a6906972
MW
2219 /*
2220 * Shadow entries should never be tagged, but this iteration
2221 * is lockless so there is a window for page reclaim to evict
247f9e1f 2222 * a page we saw tagged. Skip over it.
a6906972 2223 */
f5e6429a 2224 if (xa_is_value(folio))
139b6a6f 2225 continue;
247f9e1f
VMO
2226 if (!folio_batch_add(fbatch, folio)) {
2227 unsigned long nr = folio_nr_pages(folio);
247f9e1f 2228 *start = folio->index + nr;
72b045ae
JK
2229 goto out;
2230 }
a60637c8 2231 }
72b045ae 2232 /*
247f9e1f
VMO
2233 * We come here when there is no page beyond @end. We take care to not
2234 * overflow the index @start as it confuses some of the callers. This
2235 * breaks the iteration when there is a page at index -1 but that is
2236 * already broke anyway.
72b045ae
JK
2237 */
2238 if (end == (pgoff_t)-1)
247f9e1f 2239 *start = (pgoff_t)-1;
72b045ae 2240 else
247f9e1f 2241 *start = end + 1;
72b045ae 2242out:
a60637c8 2243 rcu_read_unlock();
1da177e4 2244
247f9e1f 2245 return folio_batch_count(fbatch);
1da177e4 2246}
247f9e1f 2247EXPORT_SYMBOL(filemap_get_folios_tag);
1da177e4 2248
76d42bd9
WF
2249/*
2250 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2251 * a _large_ part of the i/o request. Imagine the worst scenario:
2252 *
2253 * ---R__________________________________________B__________
2254 * ^ reading here ^ bad block(assume 4k)
2255 *
2256 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2257 * => failing the whole request => read(R) => read(R+1) =>
2258 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2259 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2260 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2261 *
2262 * It is going insane. Fix it by quickly scaling down the readahead size.
2263 */
0f8e2db4 2264static void shrink_readahead_size_eio(struct file_ra_state *ra)
76d42bd9 2265{
76d42bd9 2266 ra->ra_pages /= 4;
76d42bd9
WF
2267}
2268
cbd59c48 2269/*
25d6a23e 2270 * filemap_get_read_batch - Get a batch of folios for read
cbd59c48 2271 *
25d6a23e
MWO
2272 * Get a batch of folios which represent a contiguous range of bytes in
2273 * the file. No exceptional entries will be returned. If @index is in
2274 * the middle of a folio, the entire folio will be returned. The last
2275 * folio in the batch may have the readahead flag set or the uptodate flag
2276 * clear so that the caller can take the appropriate action.
cbd59c48
MWO
2277 */
2278static void filemap_get_read_batch(struct address_space *mapping,
25d6a23e 2279 pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
cbd59c48
MWO
2280{
2281 XA_STATE(xas, &mapping->i_pages, index);
bdb72932 2282 struct folio *folio;
cbd59c48
MWO
2283
2284 rcu_read_lock();
bdb72932
MWO
2285 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2286 if (xas_retry(&xas, folio))
cbd59c48 2287 continue;
bdb72932 2288 if (xas.xa_index > max || xa_is_value(folio))
cbd59c48 2289 break;
cb995f4e
MWO
2290 if (xa_is_sibling(folio))
2291 break;
bdb72932 2292 if (!folio_try_get_rcu(folio))
cbd59c48
MWO
2293 goto retry;
2294
bdb72932 2295 if (unlikely(folio != xas_reload(&xas)))
25d6a23e 2296 goto put_folio;
cbd59c48 2297
25d6a23e 2298 if (!folio_batch_add(fbatch, folio))
cbd59c48 2299 break;
bdb72932 2300 if (!folio_test_uptodate(folio))
cbd59c48 2301 break;
bdb72932 2302 if (folio_test_readahead(folio))
cbd59c48 2303 break;
87b11f86 2304 xas_advance(&xas, folio_next_index(folio) - 1);
cbd59c48 2305 continue;
25d6a23e 2306put_folio:
bdb72932 2307 folio_put(folio);
cbd59c48
MWO
2308retry:
2309 xas_reset(&xas);
2310 }
2311 rcu_read_unlock();
2312}
2313
290e1a32 2314static int filemap_read_folio(struct file *file, filler_t filler,
9d427b4e 2315 struct folio *folio)
723ef24b 2316{
17604240
CH
2317 bool workingset = folio_test_workingset(folio);
2318 unsigned long pflags;
723ef24b
KO
2319 int error;
2320
723ef24b 2321 /*
68430303 2322 * A previous I/O error may have been due to temporary failures,
7e0a1265 2323 * eg. multipath errors. PG_error will be set again if read_folio
68430303 2324 * fails.
723ef24b 2325 */
9d427b4e 2326 folio_clear_error(folio);
17604240 2327
723ef24b 2328 /* Start the actual read. The read will unlock the page. */
17604240
CH
2329 if (unlikely(workingset))
2330 psi_memstall_enter(&pflags);
290e1a32 2331 error = filler(file, folio);
17604240
CH
2332 if (unlikely(workingset))
2333 psi_memstall_leave(&pflags);
68430303
MWO
2334 if (error)
2335 return error;
723ef24b 2336
9d427b4e 2337 error = folio_wait_locked_killable(folio);
68430303
MWO
2338 if (error)
2339 return error;
9d427b4e 2340 if (folio_test_uptodate(folio))
aa1ec2f6 2341 return 0;
290e1a32
MWO
2342 if (file)
2343 shrink_readahead_size_eio(&file->f_ra);
aa1ec2f6 2344 return -EIO;
723ef24b
KO
2345}
2346
fce70da3 2347static bool filemap_range_uptodate(struct address_space *mapping,
dd5b9d00
DH
2348 loff_t pos, size_t count, struct folio *folio,
2349 bool need_uptodate)
fce70da3 2350{
2fa4eeb8 2351 if (folio_test_uptodate(folio))
fce70da3
MWO
2352 return true;
2353 /* pipes can't handle partially uptodate pages */
dd5b9d00 2354 if (need_uptodate)
fce70da3
MWO
2355 return false;
2356 if (!mapping->a_ops->is_partially_uptodate)
2357 return false;
2fa4eeb8 2358 if (mapping->host->i_blkbits >= folio_shift(folio))
fce70da3
MWO
2359 return false;
2360
2fa4eeb8
MWO
2361 if (folio_pos(folio) > pos) {
2362 count -= folio_pos(folio) - pos;
fce70da3
MWO
2363 pos = 0;
2364 } else {
2fa4eeb8 2365 pos -= folio_pos(folio);
fce70da3
MWO
2366 }
2367
2e7e80f7 2368 return mapping->a_ops->is_partially_uptodate(folio, pos, count);
fce70da3
MWO
2369}
2370
4612aeef 2371static int filemap_update_page(struct kiocb *iocb,
dd5b9d00
DH
2372 struct address_space *mapping, size_t count,
2373 struct folio *folio, bool need_uptodate)
723ef24b 2374{
723ef24b
KO
2375 int error;
2376
730633f0
JK
2377 if (iocb->ki_flags & IOCB_NOWAIT) {
2378 if (!filemap_invalidate_trylock_shared(mapping))
2379 return -EAGAIN;
2380 } else {
2381 filemap_invalidate_lock_shared(mapping);
2382 }
2383
ffdc8dab 2384 if (!folio_trylock(folio)) {
730633f0 2385 error = -EAGAIN;
87d1d7b6 2386 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
730633f0 2387 goto unlock_mapping;
87d1d7b6 2388 if (!(iocb->ki_flags & IOCB_WAITQ)) {
730633f0 2389 filemap_invalidate_unlock_shared(mapping);
9f2b04a2
MWO
2390 /*
2391 * This is where we usually end up waiting for a
2392 * previously submitted readahead to finish.
2393 */
2394 folio_put_wait_locked(folio, TASK_KILLABLE);
4612aeef 2395 return AOP_TRUNCATED_PAGE;
bd8a1f36 2396 }
ffdc8dab 2397 error = __folio_lock_async(folio, iocb->ki_waitq);
87d1d7b6 2398 if (error)
730633f0 2399 goto unlock_mapping;
723ef24b 2400 }
723ef24b 2401
730633f0 2402 error = AOP_TRUNCATED_PAGE;
ffdc8dab 2403 if (!folio->mapping)
730633f0 2404 goto unlock;
723ef24b 2405
fce70da3 2406 error = 0;
dd5b9d00
DH
2407 if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio,
2408 need_uptodate))
fce70da3
MWO
2409 goto unlock;
2410
2411 error = -EAGAIN;
2412 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2413 goto unlock;
2414
290e1a32
MWO
2415 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2416 folio);
730633f0 2417 goto unlock_mapping;
fce70da3 2418unlock:
ffdc8dab 2419 folio_unlock(folio);
730633f0
JK
2420unlock_mapping:
2421 filemap_invalidate_unlock_shared(mapping);
2422 if (error == AOP_TRUNCATED_PAGE)
ffdc8dab 2423 folio_put(folio);
fce70da3 2424 return error;
723ef24b
KO
2425}
2426
a5d4ad09 2427static int filemap_create_folio(struct file *file,
f253e185 2428 struct address_space *mapping, pgoff_t index,
25d6a23e 2429 struct folio_batch *fbatch)
723ef24b 2430{
a5d4ad09 2431 struct folio *folio;
723ef24b
KO
2432 int error;
2433
a5d4ad09
MWO
2434 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0);
2435 if (!folio)
f253e185 2436 return -ENOMEM;
723ef24b 2437
730633f0 2438 /*
a5d4ad09
MWO
2439 * Protect against truncate / hole punch. Grabbing invalidate_lock
2440 * here assures we cannot instantiate and bring uptodate new
2441 * pagecache folios after evicting page cache during truncate
2442 * and before actually freeing blocks. Note that we could
2443 * release invalidate_lock after inserting the folio into
2444 * the page cache as the locked folio would then be enough to
2445 * synchronize with hole punching. But there are code paths
2446 * such as filemap_update_page() filling in partially uptodate
704528d8 2447 * pages or ->readahead() that need to hold invalidate_lock
a5d4ad09
MWO
2448 * while mapping blocks for IO so let's hold the lock here as
2449 * well to keep locking rules simple.
730633f0
JK
2450 */
2451 filemap_invalidate_lock_shared(mapping);
a5d4ad09 2452 error = filemap_add_folio(mapping, folio, index,
f253e185
MWO
2453 mapping_gfp_constraint(mapping, GFP_KERNEL));
2454 if (error == -EEXIST)
2455 error = AOP_TRUNCATED_PAGE;
2456 if (error)
2457 goto error;
2458
290e1a32 2459 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
f253e185
MWO
2460 if (error)
2461 goto error;
2462
730633f0 2463 filemap_invalidate_unlock_shared(mapping);
25d6a23e 2464 folio_batch_add(fbatch, folio);
f253e185
MWO
2465 return 0;
2466error:
730633f0 2467 filemap_invalidate_unlock_shared(mapping);
a5d4ad09 2468 folio_put(folio);
f253e185 2469 return error;
723ef24b
KO
2470}
2471
5963fe03 2472static int filemap_readahead(struct kiocb *iocb, struct file *file,
65bca53b 2473 struct address_space *mapping, struct folio *folio,
5963fe03
MWO
2474 pgoff_t last_index)
2475{
65bca53b
MWO
2476 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2477
5963fe03
MWO
2478 if (iocb->ki_flags & IOCB_NOIO)
2479 return -EAGAIN;
65bca53b 2480 page_cache_async_ra(&ractl, folio, last_index - folio->index);
5963fe03
MWO
2481 return 0;
2482}
2483
dd5b9d00
DH
2484static int filemap_get_pages(struct kiocb *iocb, size_t count,
2485 struct folio_batch *fbatch, bool need_uptodate)
06c04442
KO
2486{
2487 struct file *filp = iocb->ki_filp;
2488 struct address_space *mapping = filp->f_mapping;
2489 struct file_ra_state *ra = &filp->f_ra;
2490 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
cbd59c48 2491 pgoff_t last_index;
65bca53b 2492 struct folio *folio;
cbd59c48 2493 int err = 0;
06c04442 2494
5956592c 2495 /* "last_index" is the index of the page beyond the end of the read */
dd5b9d00 2496 last_index = DIV_ROUND_UP(iocb->ki_pos + count, PAGE_SIZE);
2642fca6 2497retry:
06c04442
KO
2498 if (fatal_signal_pending(current))
2499 return -EINTR;
2500
5956592c 2501 filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
25d6a23e 2502 if (!folio_batch_count(fbatch)) {
2642fca6
MWO
2503 if (iocb->ki_flags & IOCB_NOIO)
2504 return -EAGAIN;
2505 page_cache_sync_readahead(mapping, ra, filp, index,
2506 last_index - index);
5956592c 2507 filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2642fca6 2508 }
25d6a23e 2509 if (!folio_batch_count(fbatch)) {
f253e185
MWO
2510 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2511 return -EAGAIN;
a5d4ad09 2512 err = filemap_create_folio(filp, mapping,
25d6a23e 2513 iocb->ki_pos >> PAGE_SHIFT, fbatch);
f253e185 2514 if (err == AOP_TRUNCATED_PAGE)
2642fca6 2515 goto retry;
f253e185
MWO
2516 return err;
2517 }
06c04442 2518
25d6a23e 2519 folio = fbatch->folios[folio_batch_count(fbatch) - 1];
65bca53b
MWO
2520 if (folio_test_readahead(folio)) {
2521 err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2642fca6
MWO
2522 if (err)
2523 goto err;
2524 }
65bca53b 2525 if (!folio_test_uptodate(folio)) {
25d6a23e
MWO
2526 if ((iocb->ki_flags & IOCB_WAITQ) &&
2527 folio_batch_count(fbatch) > 1)
2642fca6 2528 iocb->ki_flags |= IOCB_NOWAIT;
dd5b9d00
DH
2529 err = filemap_update_page(iocb, mapping, count, folio,
2530 need_uptodate);
2642fca6
MWO
2531 if (err)
2532 goto err;
06c04442
KO
2533 }
2534
2642fca6 2535 return 0;
cbd59c48 2536err:
2642fca6 2537 if (err < 0)
65bca53b 2538 folio_put(folio);
25d6a23e 2539 if (likely(--fbatch->nr))
ff993ba1 2540 return 0;
4612aeef 2541 if (err == AOP_TRUNCATED_PAGE)
2642fca6
MWO
2542 goto retry;
2543 return err;
06c04442
KO
2544}
2545
5ccc944d
MWO
2546static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio)
2547{
2548 unsigned int shift = folio_shift(folio);
2549
2550 return (pos1 >> shift == pos2 >> shift);
2551}
2552
485bb99b 2553/**
87fa0f3e
CH
2554 * filemap_read - Read data from the page cache.
2555 * @iocb: The iocb to read.
2556 * @iter: Destination for the data.
2557 * @already_read: Number of bytes already read by the caller.
485bb99b 2558 *
87fa0f3e 2559 * Copies data from the page cache. If the data is not currently present,
7e0a1265 2560 * uses the readahead and read_folio address_space operations to fetch it.
1da177e4 2561 *
87fa0f3e
CH
2562 * Return: Total number of bytes copied, including those already read by
2563 * the caller. If an error happens before any bytes are copied, returns
2564 * a negative error number.
1da177e4 2565 */
87fa0f3e
CH
2566ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2567 ssize_t already_read)
1da177e4 2568{
47c27bc4 2569 struct file *filp = iocb->ki_filp;
06c04442 2570 struct file_ra_state *ra = &filp->f_ra;
36e78914 2571 struct address_space *mapping = filp->f_mapping;
1da177e4 2572 struct inode *inode = mapping->host;
25d6a23e 2573 struct folio_batch fbatch;
ff993ba1 2574 int i, error = 0;
06c04442
KO
2575 bool writably_mapped;
2576 loff_t isize, end_offset;
f04d16ee 2577 loff_t last_pos = ra->prev_pos;
1da177e4 2578
723ef24b 2579 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
d05c5f7b 2580 return 0;
3644e2d2
KO
2581 if (unlikely(!iov_iter_count(iter)))
2582 return 0;
2583
c2a9737f 2584 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
25d6a23e 2585 folio_batch_init(&fbatch);
c2a9737f 2586
06c04442 2587 do {
1da177e4 2588 cond_resched();
5abf186a 2589
723ef24b 2590 /*
06c04442
KO
2591 * If we've already successfully copied some data, then we
2592 * can no longer safely return -EIOCBQUEUED. Hence mark
2593 * an async read NOWAIT at that point.
723ef24b 2594 */
87fa0f3e 2595 if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
723ef24b
KO
2596 iocb->ki_flags |= IOCB_NOWAIT;
2597
8c8387ee
DH
2598 if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2599 break;
2600
3fc40265 2601 error = filemap_get_pages(iocb, iter->count, &fbatch, false);
ff993ba1 2602 if (error < 0)
06c04442 2603 break;
1da177e4 2604
06c04442
KO
2605 /*
2606 * i_size must be checked after we know the pages are Uptodate.
2607 *
2608 * Checking i_size after the check allows us to calculate
2609 * the correct value for "nr", which means the zero-filled
2610 * part of the page is not copied back to userspace (unless
2611 * another truncate extends the file - this is desired though).
2612 */
2613 isize = i_size_read(inode);
2614 if (unlikely(iocb->ki_pos >= isize))
25d6a23e 2615 goto put_folios;
06c04442
KO
2616 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2617
06c04442
KO
2618 /*
2619 * Once we start copying data, we don't want to be touching any
2620 * cachelines that might be contended:
2621 */
2622 writably_mapped = mapping_writably_mapped(mapping);
2623
2624 /*
5ccc944d 2625 * When a read accesses the same folio several times, only
06c04442
KO
2626 * mark it as accessed the first time.
2627 */
f04d16ee
HL
2628 if (!pos_same_folio(iocb->ki_pos, last_pos - 1,
2629 fbatch.folios[0]))
25d6a23e 2630 folio_mark_accessed(fbatch.folios[0]);
06c04442 2631
25d6a23e
MWO
2632 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2633 struct folio *folio = fbatch.folios[i];
d996fc7f
MWO
2634 size_t fsize = folio_size(folio);
2635 size_t offset = iocb->ki_pos & (fsize - 1);
cbd59c48 2636 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
d996fc7f 2637 fsize - offset);
cbd59c48 2638 size_t copied;
06c04442 2639
d996fc7f 2640 if (end_offset < folio_pos(folio))
cbd59c48
MWO
2641 break;
2642 if (i > 0)
d996fc7f 2643 folio_mark_accessed(folio);
06c04442 2644 /*
d996fc7f
MWO
2645 * If users can be writing to this folio using arbitrary
2646 * virtual addresses, take care of potential aliasing
2647 * before reading the folio on the kernel side.
06c04442 2648 */
d996fc7f
MWO
2649 if (writably_mapped)
2650 flush_dcache_folio(folio);
06c04442 2651
d996fc7f 2652 copied = copy_folio_to_iter(folio, offset, bytes, iter);
06c04442 2653
87fa0f3e 2654 already_read += copied;
06c04442 2655 iocb->ki_pos += copied;
f04d16ee 2656 last_pos = iocb->ki_pos;
06c04442
KO
2657
2658 if (copied < bytes) {
2659 error = -EFAULT;
2660 break;
2661 }
1da177e4 2662 }
25d6a23e
MWO
2663put_folios:
2664 for (i = 0; i < folio_batch_count(&fbatch); i++)
2665 folio_put(fbatch.folios[i]);
2666 folio_batch_init(&fbatch);
06c04442 2667 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
1da177e4 2668
0c6aa263 2669 file_accessed(filp);
f04d16ee 2670 ra->prev_pos = last_pos;
87fa0f3e 2671 return already_read ? already_read : error;
1da177e4 2672}
87fa0f3e 2673EXPORT_SYMBOL_GPL(filemap_read);
1da177e4 2674
3c435a0f
CH
2675int kiocb_write_and_wait(struct kiocb *iocb, size_t count)
2676{
2677 struct address_space *mapping = iocb->ki_filp->f_mapping;
2678 loff_t pos = iocb->ki_pos;
2679 loff_t end = pos + count - 1;
2680
2681 if (iocb->ki_flags & IOCB_NOWAIT) {
2682 if (filemap_range_needs_writeback(mapping, pos, end))
2683 return -EAGAIN;
2684 return 0;
2685 }
2686
2687 return filemap_write_and_wait_range(mapping, pos, end);
2688}
016dc851 2689EXPORT_SYMBOL_GPL(kiocb_write_and_wait);
3c435a0f 2690
e003f74a
CH
2691int kiocb_invalidate_pages(struct kiocb *iocb, size_t count)
2692{
2693 struct address_space *mapping = iocb->ki_filp->f_mapping;
2694 loff_t pos = iocb->ki_pos;
2695 loff_t end = pos + count - 1;
2696 int ret;
2697
2698 if (iocb->ki_flags & IOCB_NOWAIT) {
2699 /* we could block if there are any pages in the range */
2700 if (filemap_range_has_page(mapping, pos, end))
2701 return -EAGAIN;
2702 } else {
2703 ret = filemap_write_and_wait_range(mapping, pos, end);
2704 if (ret)
2705 return ret;
2706 }
2707
2708 /*
2709 * After a write we want buffered reads to be sure to go to disk to get
2710 * the new data. We invalidate clean cached page from the region we're
2711 * about to write. We do this *before* the write so that we can return
2712 * without clobbering -EIOCBQUEUED from ->direct_IO().
2713 */
2714 return invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT,
2715 end >> PAGE_SHIFT);
2716}
153a9961 2717EXPORT_SYMBOL_GPL(kiocb_invalidate_pages);
e003f74a 2718
485bb99b 2719/**
6abd2322 2720 * generic_file_read_iter - generic filesystem read routine
485bb99b 2721 * @iocb: kernel I/O control block
6abd2322 2722 * @iter: destination for the data read
485bb99b 2723 *
6abd2322 2724 * This is the "read_iter()" routine for all filesystems
1da177e4 2725 * that can use the page cache directly.
41da51bc
AG
2726 *
2727 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2728 * be returned when no data can be read without waiting for I/O requests
2729 * to complete; it doesn't prevent readahead.
2730 *
2731 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2732 * requests shall be made for the read or for readahead. When no data
2733 * can be read, -EAGAIN shall be returned. When readahead would be
2734 * triggered, a partial, possibly empty read shall be returned.
2735 *
a862f68a
MR
2736 * Return:
2737 * * number of bytes copied, even for partial reads
41da51bc 2738 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
1da177e4
LT
2739 */
2740ssize_t
ed978a81 2741generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1da177e4 2742{
e7080a43 2743 size_t count = iov_iter_count(iter);
47c27bc4 2744 ssize_t retval = 0;
e7080a43
NS
2745
2746 if (!count)
826ea860 2747 return 0; /* skip atime */
1da177e4 2748
2ba48ce5 2749 if (iocb->ki_flags & IOCB_DIRECT) {
47c27bc4 2750 struct file *file = iocb->ki_filp;
ed978a81
AV
2751 struct address_space *mapping = file->f_mapping;
2752 struct inode *inode = mapping->host;
1da177e4 2753
3c435a0f
CH
2754 retval = kiocb_write_and_wait(iocb, count);
2755 if (retval < 0)
2756 return retval;
0d5b0cf2
CH
2757 file_accessed(file);
2758
5ecda137 2759 retval = mapping->a_ops->direct_IO(iocb, iter);
c3a69024 2760 if (retval >= 0) {
c64fb5c7 2761 iocb->ki_pos += retval;
5ecda137 2762 count -= retval;
9fe55eea 2763 }
ab2125df
PB
2764 if (retval != -EIOCBQUEUED)
2765 iov_iter_revert(iter, count - iov_iter_count(iter));
66f998f6 2766
9fe55eea
SW
2767 /*
2768 * Btrfs can have a short DIO read if we encounter
2769 * compressed extents, so if there was an error, or if
2770 * we've already read everything we wanted to, or if
2771 * there was a short read because we hit EOF, go ahead
2772 * and return. Otherwise fallthrough to buffered io for
fbbbad4b
MW
2773 * the rest of the read. Buffered reads will not work for
2774 * DAX files, so don't bother trying.
9fe55eea 2775 */
61d0017e
JA
2776 if (retval < 0 || !count || IS_DAX(inode))
2777 return retval;
2778 if (iocb->ki_pos >= i_size_read(inode))
826ea860 2779 return retval;
1da177e4
LT
2780 }
2781
826ea860 2782 return filemap_read(iocb, iter, retval);
1da177e4 2783}
ed978a81 2784EXPORT_SYMBOL(generic_file_read_iter);
1da177e4 2785
07073eb0
DH
2786/*
2787 * Splice subpages from a folio into a pipe.
2788 */
2789size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
2790 struct folio *folio, loff_t fpos, size_t size)
2791{
2792 struct page *page;
2793 size_t spliced = 0, offset = offset_in_folio(folio, fpos);
2794
2795 page = folio_page(folio, offset / PAGE_SIZE);
2796 size = min(size, folio_size(folio) - offset);
2797 offset %= PAGE_SIZE;
2798
2799 while (spliced < size &&
2800 !pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
2801 struct pipe_buffer *buf = pipe_head_buf(pipe);
2802 size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced);
2803
2804 *buf = (struct pipe_buffer) {
2805 .ops = &page_cache_pipe_buf_ops,
2806 .page = page,
2807 .offset = offset,
2808 .len = part,
2809 };
2810 folio_get(folio);
2811 pipe->head++;
2812 page++;
2813 spliced += part;
2814 offset = 0;
2815 }
2816
2817 return spliced;
2818}
2819
9eee8bd8
DH
2820/**
2821 * filemap_splice_read - Splice data from a file's pagecache into a pipe
2822 * @in: The file to read from
2823 * @ppos: Pointer to the file position to read from
2824 * @pipe: The pipe to splice into
2825 * @len: The amount to splice
2826 * @flags: The SPLICE_F_* flags
2827 *
2828 * This function gets folios from a file's pagecache and splices them into the
2829 * pipe. Readahead will be called as necessary to fill more folios. This may
2830 * be used for blockdevs also.
2831 *
2832 * Return: On success, the number of bytes read will be returned and *@ppos
2833 * will be updated if appropriate; 0 will be returned if there is no more data
2834 * to be read; -EAGAIN will be returned if the pipe had no space, and some
2835 * other negative error code will be returned on error. A short read may occur
2836 * if the pipe has insufficient space, we reach the end of the data or we hit a
2837 * hole.
07073eb0
DH
2838 */
2839ssize_t filemap_splice_read(struct file *in, loff_t *ppos,
2840 struct pipe_inode_info *pipe,
2841 size_t len, unsigned int flags)
2842{
2843 struct folio_batch fbatch;
2844 struct kiocb iocb;
2845 size_t total_spliced = 0, used, npages;
2846 loff_t isize, end_offset;
2847 bool writably_mapped;
2848 int i, error = 0;
2849
83aeff88
DH
2850 if (unlikely(*ppos >= in->f_mapping->host->i_sb->s_maxbytes))
2851 return 0;
2852
07073eb0
DH
2853 init_sync_kiocb(&iocb, in);
2854 iocb.ki_pos = *ppos;
2855
2856 /* Work out how much data we can actually add into the pipe */
2857 used = pipe_occupancy(pipe->head, pipe->tail);
2858 npages = max_t(ssize_t, pipe->max_usage - used, 0);
2859 len = min_t(size_t, len, npages * PAGE_SIZE);
2860
2861 folio_batch_init(&fbatch);
2862
2863 do {
2864 cond_resched();
2865
c3722208 2866 if (*ppos >= i_size_read(in->f_mapping->host))
07073eb0
DH
2867 break;
2868
2869 iocb.ki_pos = *ppos;
2870 error = filemap_get_pages(&iocb, len, &fbatch, true);
2871 if (error < 0)
2872 break;
2873
2874 /*
2875 * i_size must be checked after we know the pages are Uptodate.
2876 *
2877 * Checking i_size after the check allows us to calculate
2878 * the correct value for "nr", which means the zero-filled
2879 * part of the page is not copied back to userspace (unless
2880 * another truncate extends the file - this is desired though).
2881 */
c3722208 2882 isize = i_size_read(in->f_mapping->host);
07073eb0
DH
2883 if (unlikely(*ppos >= isize))
2884 break;
2885 end_offset = min_t(loff_t, isize, *ppos + len);
2886
2887 /*
2888 * Once we start copying data, we don't want to be touching any
2889 * cachelines that might be contended:
2890 */
2891 writably_mapped = mapping_writably_mapped(in->f_mapping);
2892
2893 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2894 struct folio *folio = fbatch.folios[i];
2895 size_t n;
2896
2897 if (folio_pos(folio) >= end_offset)
2898 goto out;
2899 folio_mark_accessed(folio);
2900
2901 /*
2902 * If users can be writing to this folio using arbitrary
2903 * virtual addresses, take care of potential aliasing
2904 * before reading the folio on the kernel side.
2905 */
2906 if (writably_mapped)
2907 flush_dcache_folio(folio);
2908
2909 n = min_t(loff_t, len, isize - *ppos);
2910 n = splice_folio_into_pipe(pipe, folio, *ppos, n);
2911 if (!n)
2912 goto out;
2913 len -= n;
2914 total_spliced += n;
2915 *ppos += n;
2916 in->f_ra.prev_pos = *ppos;
2917 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
2918 goto out;
2919 }
2920
2921 folio_batch_release(&fbatch);
2922 } while (len);
2923
2924out:
2925 folio_batch_release(&fbatch);
2926 file_accessed(in);
2927
2928 return total_spliced ? total_spliced : error;
2929}
7c8e01eb 2930EXPORT_SYMBOL(filemap_splice_read);
07073eb0 2931
f5e6429a
MWO
2932static inline loff_t folio_seek_hole_data(struct xa_state *xas,
2933 struct address_space *mapping, struct folio *folio,
54fa39ac 2934 loff_t start, loff_t end, bool seek_data)
41139aa4 2935{
54fa39ac
MWO
2936 const struct address_space_operations *ops = mapping->a_ops;
2937 size_t offset, bsz = i_blocksize(mapping->host);
2938
f5e6429a 2939 if (xa_is_value(folio) || folio_test_uptodate(folio))
54fa39ac
MWO
2940 return seek_data ? start : end;
2941 if (!ops->is_partially_uptodate)
2942 return seek_data ? end : start;
2943
2944 xas_pause(xas);
2945 rcu_read_unlock();
f5e6429a
MWO
2946 folio_lock(folio);
2947 if (unlikely(folio->mapping != mapping))
54fa39ac
MWO
2948 goto unlock;
2949
f5e6429a 2950 offset = offset_in_folio(folio, start) & ~(bsz - 1);
54fa39ac
MWO
2951
2952 do {
2e7e80f7 2953 if (ops->is_partially_uptodate(folio, offset, bsz) ==
f5e6429a 2954 seek_data)
54fa39ac
MWO
2955 break;
2956 start = (start + bsz) & ~(bsz - 1);
2957 offset += bsz;
f5e6429a 2958 } while (offset < folio_size(folio));
54fa39ac 2959unlock:
f5e6429a 2960 folio_unlock(folio);
54fa39ac
MWO
2961 rcu_read_lock();
2962 return start;
41139aa4
MWO
2963}
2964
f5e6429a 2965static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
41139aa4 2966{
f5e6429a 2967 if (xa_is_value(folio))
41139aa4 2968 return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
f5e6429a 2969 return folio_size(folio);
41139aa4
MWO
2970}
2971
2972/**
2973 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
2974 * @mapping: Address space to search.
2975 * @start: First byte to consider.
2976 * @end: Limit of search (exclusive).
2977 * @whence: Either SEEK_HOLE or SEEK_DATA.
2978 *
2979 * If the page cache knows which blocks contain holes and which blocks
2980 * contain data, your filesystem can use this function to implement
2981 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are
2982 * entirely memory-based such as tmpfs, and filesystems which support
2983 * unwritten extents.
2984 *
f0953a1b 2985 * Return: The requested offset on success, or -ENXIO if @whence specifies
41139aa4
MWO
2986 * SEEK_DATA and there is no data after @start. There is an implicit hole
2987 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
2988 * and @end contain data.
2989 */
2990loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
2991 loff_t end, int whence)
2992{
2993 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
ed98b015 2994 pgoff_t max = (end - 1) >> PAGE_SHIFT;
41139aa4 2995 bool seek_data = (whence == SEEK_DATA);
f5e6429a 2996 struct folio *folio;
41139aa4
MWO
2997
2998 if (end <= start)
2999 return -ENXIO;
3000
3001 rcu_read_lock();
f5e6429a 3002 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
ed98b015 3003 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
f5e6429a 3004 size_t seek_size;
41139aa4
MWO
3005
3006 if (start < pos) {
3007 if (!seek_data)
3008 goto unlock;
3009 start = pos;
3010 }
3011
f5e6429a
MWO
3012 seek_size = seek_folio_size(&xas, folio);
3013 pos = round_up((u64)pos + 1, seek_size);
3014 start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
54fa39ac
MWO
3015 seek_data);
3016 if (start < pos)
41139aa4 3017 goto unlock;
ed98b015
HD
3018 if (start >= end)
3019 break;
3020 if (seek_size > PAGE_SIZE)
3021 xas_set(&xas, pos >> PAGE_SHIFT);
f5e6429a
MWO
3022 if (!xa_is_value(folio))
3023 folio_put(folio);
41139aa4 3024 }
41139aa4 3025 if (seek_data)
ed98b015 3026 start = -ENXIO;
41139aa4
MWO
3027unlock:
3028 rcu_read_unlock();
f5e6429a
MWO
3029 if (folio && !xa_is_value(folio))
3030 folio_put(folio);
41139aa4
MWO
3031 if (start > end)
3032 return end;
3033 return start;
3034}
3035
1da177e4 3036#ifdef CONFIG_MMU
1da177e4 3037#define MMAP_LOTSAMISS (100)
6b4c9f44 3038/*
e292e6d6 3039 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
6b4c9f44 3040 * @vmf - the vm_fault for this fault.
e292e6d6 3041 * @folio - the folio to lock.
6b4c9f44
JB
3042 * @fpin - the pointer to the file we may pin (or is already pinned).
3043 *
e292e6d6
MWO
3044 * This works similar to lock_folio_or_retry in that it can drop the
3045 * mmap_lock. It differs in that it actually returns the folio locked
3046 * if it returns 1 and 0 if it couldn't lock the folio. If we did have
3047 * to drop the mmap_lock then fpin will point to the pinned file and
3048 * needs to be fput()'ed at a later point.
6b4c9f44 3049 */
e292e6d6 3050static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
6b4c9f44
JB
3051 struct file **fpin)
3052{
7c23c782 3053 if (folio_trylock(folio))
6b4c9f44
JB
3054 return 1;
3055
8b0f9fa2
LT
3056 /*
3057 * NOTE! This will make us return with VM_FAULT_RETRY, but with
5d74b2ab 3058 * the fault lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
8b0f9fa2
LT
3059 * is supposed to work. We have way too many special cases..
3060 */
6b4c9f44
JB
3061 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
3062 return 0;
3063
3064 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
3065 if (vmf->flags & FAULT_FLAG_KILLABLE) {
af7f29d9 3066 if (__folio_lock_killable(folio)) {
6b4c9f44 3067 /*
5d74b2ab
MWO
3068 * We didn't have the right flags to drop the
3069 * fault lock, but all fault_handlers only check
3070 * for fatal signals if we return VM_FAULT_RETRY,
3071 * so we need to drop the fault lock here and
3072 * return 0 if we don't have a fpin.
6b4c9f44
JB
3073 */
3074 if (*fpin == NULL)
5d74b2ab 3075 release_fault_lock(vmf);
6b4c9f44
JB
3076 return 0;
3077 }
3078 } else
7c23c782
MWO
3079 __folio_lock(folio);
3080
6b4c9f44
JB
3081 return 1;
3082}
3083
ef00e08e 3084/*
6b4c9f44
JB
3085 * Synchronous readahead happens when we don't even find a page in the page
3086 * cache at all. We don't want to perform IO under the mmap sem, so if we have
3087 * to drop the mmap sem we return the file that was pinned in order for us to do
3088 * that. If we didn't pin a file then we return NULL. The file that is
3089 * returned needs to be fput()'ed when we're done with it.
ef00e08e 3090 */
6b4c9f44 3091static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
ef00e08e 3092{
2a1180f1
JB
3093 struct file *file = vmf->vma->vm_file;
3094 struct file_ra_state *ra = &file->f_ra;
ef00e08e 3095 struct address_space *mapping = file->f_mapping;
fcd9ae4f 3096 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
6b4c9f44 3097 struct file *fpin = NULL;
dcfa24ba 3098 unsigned long vm_flags = vmf->vma->vm_flags;
e630bfac 3099 unsigned int mmap_miss;
ef00e08e 3100
4687fdbb
MWO
3101#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3102 /* Use the readahead code, even if readahead is disabled */
dcfa24ba 3103 if (vm_flags & VM_HUGEPAGE) {
4687fdbb
MWO
3104 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3105 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
3106 ra->size = HPAGE_PMD_NR;
3107 /*
3108 * Fetch two PMD folios, so we get the chance to actually
3109 * readahead, unless we've been told not to.
3110 */
dcfa24ba 3111 if (!(vm_flags & VM_RAND_READ))
4687fdbb
MWO
3112 ra->size *= 2;
3113 ra->async_size = HPAGE_PMD_NR;
3114 page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER);
3115 return fpin;
3116 }
3117#endif
3118
ef00e08e 3119 /* If we don't want any read-ahead, don't bother */
dcfa24ba 3120 if (vm_flags & VM_RAND_READ)
6b4c9f44 3121 return fpin;
275b12bf 3122 if (!ra->ra_pages)
6b4c9f44 3123 return fpin;
ef00e08e 3124
dcfa24ba 3125 if (vm_flags & VM_SEQ_READ) {
6b4c9f44 3126 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
fcd9ae4f 3127 page_cache_sync_ra(&ractl, ra->ra_pages);
6b4c9f44 3128 return fpin;
ef00e08e
LT
3129 }
3130
207d04ba 3131 /* Avoid banging the cache line if not needed */
e630bfac
KS
3132 mmap_miss = READ_ONCE(ra->mmap_miss);
3133 if (mmap_miss < MMAP_LOTSAMISS * 10)
3134 WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
ef00e08e
LT
3135
3136 /*
3137 * Do we miss much more than hit in this file? If so,
3138 * stop bothering with read-ahead. It will only hurt.
3139 */
e630bfac 3140 if (mmap_miss > MMAP_LOTSAMISS)
6b4c9f44 3141 return fpin;
ef00e08e 3142
d30a1100
WF
3143 /*
3144 * mmap read-around
3145 */
6b4c9f44 3146 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
db660d46 3147 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
600e19af
RG
3148 ra->size = ra->ra_pages;
3149 ra->async_size = ra->ra_pages / 4;
db660d46 3150 ractl._index = ra->start;
56a4d67c 3151 page_cache_ra_order(&ractl, ra, 0);
6b4c9f44 3152 return fpin;
ef00e08e
LT
3153}
3154
3155/*
3156 * Asynchronous readahead happens when we find the page and PG_readahead,
6b4c9f44 3157 * so we want to possibly extend the readahead further. We return the file that
c1e8d7c6 3158 * was pinned if we have to drop the mmap_lock in order to do IO.
ef00e08e 3159 */
6b4c9f44 3160static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
79598ced 3161 struct folio *folio)
ef00e08e 3162{
2a1180f1
JB
3163 struct file *file = vmf->vma->vm_file;
3164 struct file_ra_state *ra = &file->f_ra;
79598ced 3165 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
6b4c9f44 3166 struct file *fpin = NULL;
e630bfac 3167 unsigned int mmap_miss;
ef00e08e
LT
3168
3169 /* If we don't want any read-ahead, don't bother */
5c72feee 3170 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
6b4c9f44 3171 return fpin;
79598ced 3172
e630bfac
KS
3173 mmap_miss = READ_ONCE(ra->mmap_miss);
3174 if (mmap_miss)
3175 WRITE_ONCE(ra->mmap_miss, --mmap_miss);
79598ced
MWO
3176
3177 if (folio_test_readahead(folio)) {
6b4c9f44 3178 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
79598ced 3179 page_cache_async_ra(&ractl, folio, ra->ra_pages);
6b4c9f44
JB
3180 }
3181 return fpin;
ef00e08e
LT
3182}
3183
58f327f2
Z
3184static vm_fault_t filemap_fault_recheck_pte_none(struct vm_fault *vmf)
3185{
3186 struct vm_area_struct *vma = vmf->vma;
3187 vm_fault_t ret = 0;
3188 pte_t *ptep;
3189
3190 /*
3191 * We might have COW'ed a pagecache folio and might now have an mlocked
3192 * anon folio mapped. The original pagecache folio is not mlocked and
3193 * might have been evicted. During a read+clear/modify/write update of
3194 * the PTE, such as done in do_numa_page()/change_pte_range(), we
3195 * temporarily clear the PTE under PT lock and might detect it here as
3196 * "none" when not holding the PT lock.
3197 *
3198 * Not rechecking the PTE under PT lock could result in an unexpected
3199 * major fault in an mlock'ed region. Recheck only for this special
3200 * scenario while holding the PT lock, to not degrade non-mlocked
3201 * scenarios. Recheck the PTE without PT lock firstly, thereby reducing
3202 * the number of times we hold PT lock.
3203 */
3204 if (!(vma->vm_flags & VM_LOCKED))
3205 return 0;
3206
3207 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
3208 return 0;
3209
3210 ptep = pte_offset_map(vmf->pmd, vmf->address);
3211 if (unlikely(!ptep))
3212 return VM_FAULT_NOPAGE;
3213
3214 if (unlikely(!pte_none(ptep_get_lockless(ptep)))) {
3215 ret = VM_FAULT_NOPAGE;
3216 } else {
3217 spin_lock(vmf->ptl);
3218 if (unlikely(!pte_none(ptep_get(ptep))))
3219 ret = VM_FAULT_NOPAGE;
3220 spin_unlock(vmf->ptl);
3221 }
3222 pte_unmap(ptep);
3223 return ret;
3224}
3225
485bb99b 3226/**
54cb8821 3227 * filemap_fault - read in file data for page fault handling
d0217ac0 3228 * @vmf: struct vm_fault containing details of the fault
485bb99b 3229 *
54cb8821 3230 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
3231 * mapped memory region to read in file data during a page fault.
3232 *
3233 * The goto's are kind of ugly, but this streamlines the normal case of having
3234 * it in the page cache, and handles the special cases reasonably without
3235 * having a lot of duplicated code.
9a95f3cf 3236 *
c1e8d7c6 3237 * vma->vm_mm->mmap_lock must be held on entry.
9a95f3cf 3238 *
c1e8d7c6 3239 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
e292e6d6 3240 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
9a95f3cf 3241 *
c1e8d7c6 3242 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
9a95f3cf
PC
3243 * has not been released.
3244 *
3245 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
a862f68a
MR
3246 *
3247 * Return: bitwise-OR of %VM_FAULT_ codes.
1da177e4 3248 */
2bcd6454 3249vm_fault_t filemap_fault(struct vm_fault *vmf)
1da177e4
LT
3250{
3251 int error;
11bac800 3252 struct file *file = vmf->vma->vm_file;
6b4c9f44 3253 struct file *fpin = NULL;
1da177e4 3254 struct address_space *mapping = file->f_mapping;
1da177e4 3255 struct inode *inode = mapping->host;
e292e6d6
MWO
3256 pgoff_t max_idx, index = vmf->pgoff;
3257 struct folio *folio;
2bcd6454 3258 vm_fault_t ret = 0;
730633f0 3259 bool mapping_locked = false;
1da177e4 3260
e292e6d6
MWO
3261 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3262 if (unlikely(index >= max_idx))
5307cc1a 3263 return VM_FAULT_SIGBUS;
1da177e4 3264
1da177e4 3265 /*
49426420 3266 * Do we have something in the page cache already?
1da177e4 3267 */
e292e6d6 3268 folio = filemap_get_folio(mapping, index);
66dabbb6 3269 if (likely(!IS_ERR(folio))) {
1da177e4 3270 /*
730633f0
JK
3271 * We found the page, so try async readahead before waiting for
3272 * the lock.
1da177e4 3273 */
730633f0 3274 if (!(vmf->flags & FAULT_FLAG_TRIED))
79598ced 3275 fpin = do_async_mmap_readahead(vmf, folio);
e292e6d6 3276 if (unlikely(!folio_test_uptodate(folio))) {
730633f0
JK
3277 filemap_invalidate_lock_shared(mapping);
3278 mapping_locked = true;
3279 }
3280 } else {
58f327f2
Z
3281 ret = filemap_fault_recheck_pte_none(vmf);
3282 if (unlikely(ret))
3283 return ret;
3284
ef00e08e 3285 /* No page in the page cache at all */
ef00e08e 3286 count_vm_event(PGMAJFAULT);
2262185c 3287 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
ef00e08e 3288 ret = VM_FAULT_MAJOR;
6b4c9f44 3289 fpin = do_sync_mmap_readahead(vmf);
ef00e08e 3290retry_find:
730633f0 3291 /*
e292e6d6 3292 * See comment in filemap_create_folio() why we need
730633f0
JK
3293 * invalidate_lock
3294 */
3295 if (!mapping_locked) {
3296 filemap_invalidate_lock_shared(mapping);
3297 mapping_locked = true;
3298 }
e292e6d6 3299 folio = __filemap_get_folio(mapping, index,
a75d4c33
JB
3300 FGP_CREAT|FGP_FOR_MMAP,
3301 vmf->gfp_mask);
66dabbb6 3302 if (IS_ERR(folio)) {
6b4c9f44
JB
3303 if (fpin)
3304 goto out_retry;
730633f0 3305 filemap_invalidate_unlock_shared(mapping);
e520e932 3306 return VM_FAULT_OOM;
6b4c9f44 3307 }
1da177e4
LT
3308 }
3309
e292e6d6 3310 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
6b4c9f44 3311 goto out_retry;
b522c94d
ML
3312
3313 /* Did it get truncated? */
e292e6d6
MWO
3314 if (unlikely(folio->mapping != mapping)) {
3315 folio_unlock(folio);
3316 folio_put(folio);
b522c94d
ML
3317 goto retry_find;
3318 }
e292e6d6 3319 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
b522c94d 3320
1da177e4 3321 /*
6facf36e
LS
3322 * We have a locked folio in the page cache, now we need to check
3323 * that it's up-to-date. If not, it is going to be due to an error,
3324 * or because readahead was otherwise unable to retrieve it.
1da177e4 3325 */
e292e6d6 3326 if (unlikely(!folio_test_uptodate(folio))) {
730633f0 3327 /*
6facf36e
LS
3328 * If the invalidate lock is not held, the folio was in cache
3329 * and uptodate and now it is not. Strange but possible since we
3330 * didn't hold the page lock all the time. Let's drop
3331 * everything, get the invalidate lock and try again.
730633f0
JK
3332 */
3333 if (!mapping_locked) {
e292e6d6
MWO
3334 folio_unlock(folio);
3335 folio_put(folio);
730633f0
JK
3336 goto retry_find;
3337 }
6facf36e
LS
3338
3339 /*
3340 * OK, the folio is really not uptodate. This can be because the
3341 * VMA has the VM_RAND_READ flag set, or because an error
3342 * arose. Let's read it in directly.
3343 */
1da177e4 3344 goto page_not_uptodate;
730633f0 3345 }
1da177e4 3346
6b4c9f44 3347 /*
c1e8d7c6 3348 * We've made it this far and we had to drop our mmap_lock, now is the
6b4c9f44
JB
3349 * time to return to the upper layer and have it re-find the vma and
3350 * redo the fault.
3351 */
3352 if (fpin) {
e292e6d6 3353 folio_unlock(folio);
6b4c9f44
JB
3354 goto out_retry;
3355 }
730633f0
JK
3356 if (mapping_locked)
3357 filemap_invalidate_unlock_shared(mapping);
6b4c9f44 3358
ef00e08e
LT
3359 /*
3360 * Found the page and have a reference on it.
3361 * We must recheck i_size under page lock.
3362 */
e292e6d6
MWO
3363 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3364 if (unlikely(index >= max_idx)) {
3365 folio_unlock(folio);
3366 folio_put(folio);
5307cc1a 3367 return VM_FAULT_SIGBUS;
d00806b1
NP
3368 }
3369
e292e6d6 3370 vmf->page = folio_file_page(folio, index);
83c54070 3371 return ret | VM_FAULT_LOCKED;
1da177e4 3372
1da177e4 3373page_not_uptodate:
1da177e4
LT
3374 /*
3375 * Umm, take care of errors if the page isn't up-to-date.
3376 * Try to re-read it _once_. We do this synchronously,
3377 * because there really aren't any performance issues here
3378 * and we need to check for errors.
3379 */
6b4c9f44 3380 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
290e1a32 3381 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
6b4c9f44
JB
3382 if (fpin)
3383 goto out_retry;
e292e6d6 3384 folio_put(folio);
d00806b1
NP
3385
3386 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 3387 goto retry_find;
730633f0 3388 filemap_invalidate_unlock_shared(mapping);
1da177e4 3389
d0217ac0 3390 return VM_FAULT_SIGBUS;
6b4c9f44
JB
3391
3392out_retry:
3393 /*
c1e8d7c6 3394 * We dropped the mmap_lock, we need to return to the fault handler to
6b4c9f44
JB
3395 * re-find the vma and come back and find our hopefully still populated
3396 * page.
3397 */
38a55db9 3398 if (!IS_ERR(folio))
e292e6d6 3399 folio_put(folio);
730633f0
JK
3400 if (mapping_locked)
3401 filemap_invalidate_unlock_shared(mapping);
6b4c9f44
JB
3402 if (fpin)
3403 fput(fpin);
3404 return ret | VM_FAULT_RETRY;
54cb8821
NP
3405}
3406EXPORT_SYMBOL(filemap_fault);
3407
8808ecab
MWO
3408static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio,
3409 pgoff_t start)
f1820361 3410{
f9ce0be7
KS
3411 struct mm_struct *mm = vmf->vma->vm_mm;
3412
3413 /* Huge page is mapped? No need to proceed. */
3414 if (pmd_trans_huge(*vmf->pmd)) {
8808ecab
MWO
3415 folio_unlock(folio);
3416 folio_put(folio);
f9ce0be7
KS
3417 return true;
3418 }
3419
8808ecab
MWO
3420 if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) {
3421 struct page *page = folio_file_page(folio, start);
e0f43fa5
YS
3422 vm_fault_t ret = do_set_pmd(vmf, page);
3423 if (!ret) {
3424 /* The page is mapped successfully, reference consumed. */
8808ecab 3425 folio_unlock(folio);
e0f43fa5 3426 return true;
f9ce0be7 3427 }
f9ce0be7
KS
3428 }
3429
9aa1345d 3430 if (pmd_none(*vmf->pmd) && vmf->prealloc_pte)
03c4f204 3431 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
f9ce0be7 3432
f9ce0be7
KS
3433 return false;
3434}
3435
de74976e
YF
3436static struct folio *next_uptodate_folio(struct xa_state *xas,
3437 struct address_space *mapping, pgoff_t end_pgoff)
f9ce0be7 3438{
de74976e 3439 struct folio *folio = xas_next_entry(xas, end_pgoff);
f9ce0be7
KS
3440 unsigned long max_idx;
3441
3442 do {
9184a307 3443 if (!folio)
f9ce0be7 3444 return NULL;
9184a307 3445 if (xas_retry(xas, folio))
f9ce0be7 3446 continue;
9184a307 3447 if (xa_is_value(folio))
f9ce0be7 3448 continue;
9184a307 3449 if (folio_test_locked(folio))
f9ce0be7 3450 continue;
9184a307 3451 if (!folio_try_get_rcu(folio))
f9ce0be7
KS
3452 continue;
3453 /* Has the page moved or been split? */
9184a307 3454 if (unlikely(folio != xas_reload(xas)))
f9ce0be7 3455 goto skip;
9184a307 3456 if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
f9ce0be7 3457 goto skip;
9184a307 3458 if (!folio_trylock(folio))
f9ce0be7 3459 goto skip;
9184a307 3460 if (folio->mapping != mapping)
f9ce0be7 3461 goto unlock;
9184a307 3462 if (!folio_test_uptodate(folio))
f9ce0be7
KS
3463 goto unlock;
3464 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3465 if (xas->xa_index >= max_idx)
3466 goto unlock;
820b05e9 3467 return folio;
f9ce0be7 3468unlock:
9184a307 3469 folio_unlock(folio);
f9ce0be7 3470skip:
9184a307
MWO
3471 folio_put(folio);
3472 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
f9ce0be7
KS
3473
3474 return NULL;
3475}
3476
de74976e
YF
3477/*
3478 * Map page range [start_page, start_page + nr_pages) of folio.
3479 * start_page is gotten from start by folio_page(folio, start)
3480 */
3481static vm_fault_t filemap_map_folio_range(struct vm_fault *vmf,
3482 struct folio *folio, unsigned long start,
c8be0380
YF
3483 unsigned long addr, unsigned int nr_pages,
3484 unsigned int *mmap_miss)
f9ce0be7 3485{
de74976e 3486 vm_fault_t ret = 0;
de74976e 3487 struct page *page = folio_page(folio, start);
617c28ec
YF
3488 unsigned int count = 0;
3489 pte_t *old_ptep = vmf->pte;
f9ce0be7 3490
de74976e 3491 do {
617c28ec
YF
3492 if (PageHWPoison(page + count))
3493 goto skip;
de74976e 3494
c8be0380 3495 (*mmap_miss)++;
de74976e
YF
3496
3497 /*
3498 * NOTE: If there're PTE markers, we'll leave them to be
3499 * handled in the specific fault path, and it'll prohibit the
3500 * fault-around logic.
3501 */
afccb080 3502 if (!pte_none(ptep_get(&vmf->pte[count])))
617c28ec 3503 goto skip;
de74976e 3504
617c28ec
YF
3505 count++;
3506 continue;
3507skip:
3508 if (count) {
3509 set_pte_range(vmf, folio, page, count, addr);
3510 folio_ref_add(folio, count);
a501a070 3511 if (in_range(vmf->address, addr, count * PAGE_SIZE))
617c28ec
YF
3512 ret = VM_FAULT_NOPAGE;
3513 }
de74976e 3514
617c28ec
YF
3515 count++;
3516 page += count;
3517 vmf->pte += count;
3518 addr += count * PAGE_SIZE;
3519 count = 0;
3520 } while (--nr_pages > 0);
3521
3522 if (count) {
3523 set_pte_range(vmf, folio, page, count, addr);
3524 folio_ref_add(folio, count);
a501a070 3525 if (in_range(vmf->address, addr, count * PAGE_SIZE))
617c28ec
YF
3526 ret = VM_FAULT_NOPAGE;
3527 }
de74976e 3528
617c28ec 3529 vmf->pte = old_ptep;
c8be0380
YF
3530
3531 return ret;
3532}
3533
3534static vm_fault_t filemap_map_order0_folio(struct vm_fault *vmf,
3535 struct folio *folio, unsigned long addr,
3536 unsigned int *mmap_miss)
3537{
3538 vm_fault_t ret = 0;
3539 struct page *page = &folio->page;
3540
3541 if (PageHWPoison(page))
3542 return ret;
3543
3544 (*mmap_miss)++;
3545
3546 /*
3547 * NOTE: If there're PTE markers, we'll leave them to be
3548 * handled in the specific fault path, and it'll prohibit
3549 * the fault-around logic.
3550 */
3551 if (!pte_none(ptep_get(vmf->pte)))
3552 return ret;
3553
3554 if (vmf->address == addr)
3555 ret = VM_FAULT_NOPAGE;
3556
3557 set_pte_range(vmf, folio, page, 1, addr);
3558 folio_ref_inc(folio);
de74976e
YF
3559
3560 return ret;
f9ce0be7
KS
3561}
3562
3563vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3564 pgoff_t start_pgoff, pgoff_t end_pgoff)
3565{
3566 struct vm_area_struct *vma = vmf->vma;
3567 struct file *file = vma->vm_file;
f1820361 3568 struct address_space *mapping = file->f_mapping;
bae473a4 3569 pgoff_t last_pgoff = start_pgoff;
9d3af4b4 3570 unsigned long addr;
070e807c 3571 XA_STATE(xas, &mapping->i_pages, start_pgoff);
820b05e9 3572 struct folio *folio;
f9ce0be7 3573 vm_fault_t ret = 0;
c8be0380 3574 unsigned int nr_pages = 0, mmap_miss = 0, mmap_miss_saved;
f1820361
KS
3575
3576 rcu_read_lock();
de74976e 3577 folio = next_uptodate_folio(&xas, mapping, end_pgoff);
820b05e9 3578 if (!folio)
f9ce0be7 3579 goto out;
f1820361 3580
8808ecab 3581 if (filemap_map_pmd(vmf, folio, start_pgoff)) {
f9ce0be7
KS
3582 ret = VM_FAULT_NOPAGE;
3583 goto out;
3584 }
f1820361 3585
9d3af4b4
WD
3586 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3587 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
65747aaf
HD
3588 if (!vmf->pte) {
3589 folio_unlock(folio);
3590 folio_put(folio);
3591 goto out;
3592 }
f9ce0be7 3593 do {
de74976e 3594 unsigned long end;
7267ec00 3595
9d3af4b4 3596 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
f9ce0be7 3597 vmf->pte += xas.xa_index - last_pgoff;
070e807c 3598 last_pgoff = xas.xa_index;
d98388ce 3599 end = folio_next_index(folio) - 1;
de74976e 3600 nr_pages = min(end, end_pgoff) - xas.xa_index + 1;
f9ce0be7 3601
c8be0380
YF
3602 if (!folio_test_large(folio))
3603 ret |= filemap_map_order0_folio(vmf,
3604 folio, addr, &mmap_miss);
3605 else
3606 ret |= filemap_map_folio_range(vmf, folio,
3607 xas.xa_index - folio->index, addr,
3608 nr_pages, &mmap_miss);
46bdb427 3609
820b05e9
MWO
3610 folio_unlock(folio);
3611 folio_put(folio);
c8be0380 3612 } while ((folio = next_uptodate_folio(&xas, mapping, end_pgoff)) != NULL);
f9ce0be7
KS
3613 pte_unmap_unlock(vmf->pte, vmf->ptl);
3614out:
f1820361 3615 rcu_read_unlock();
c8be0380
YF
3616
3617 mmap_miss_saved = READ_ONCE(file->f_ra.mmap_miss);
3618 if (mmap_miss >= mmap_miss_saved)
3619 WRITE_ONCE(file->f_ra.mmap_miss, 0);
3620 else
3621 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss_saved - mmap_miss);
3622
f9ce0be7 3623 return ret;
f1820361
KS
3624}
3625EXPORT_SYMBOL(filemap_map_pages);
3626
2bcd6454 3627vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
4fcf1c62 3628{
5df1a672 3629 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
960ea971 3630 struct folio *folio = page_folio(vmf->page);
2bcd6454 3631 vm_fault_t ret = VM_FAULT_LOCKED;
4fcf1c62 3632
5df1a672 3633 sb_start_pagefault(mapping->host->i_sb);
11bac800 3634 file_update_time(vmf->vma->vm_file);
960ea971
MWO
3635 folio_lock(folio);
3636 if (folio->mapping != mapping) {
3637 folio_unlock(folio);
4fcf1c62
JK
3638 ret = VM_FAULT_NOPAGE;
3639 goto out;
3640 }
14da9200 3641 /*
960ea971 3642 * We mark the folio dirty already here so that when freeze is in
14da9200 3643 * progress, we are guaranteed that writeback during freezing will
960ea971 3644 * see the dirty folio and writeprotect it again.
14da9200 3645 */
960ea971
MWO
3646 folio_mark_dirty(folio);
3647 folio_wait_stable(folio);
4fcf1c62 3648out:
5df1a672 3649 sb_end_pagefault(mapping->host->i_sb);
4fcf1c62
JK
3650 return ret;
3651}
4fcf1c62 3652
f0f37e2f 3653const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 3654 .fault = filemap_fault,
f1820361 3655 .map_pages = filemap_map_pages,
4fcf1c62 3656 .page_mkwrite = filemap_page_mkwrite,
1da177e4
LT
3657};
3658
3659/* This is used for a general mmap of a disk file */
3660
68d68ff6 3661int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
3662{
3663 struct address_space *mapping = file->f_mapping;
3664
7e0a1265 3665 if (!mapping->a_ops->read_folio)
1da177e4
LT
3666 return -ENOEXEC;
3667 file_accessed(file);
3668 vma->vm_ops = &generic_file_vm_ops;
3669 return 0;
3670}
1da177e4
LT
3671
3672/*
3673 * This is for filesystems which do not implement ->writepage.
3674 */
3675int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3676{
e8e17ee9 3677 if (vma_is_shared_maywrite(vma))
1da177e4
LT
3678 return -EINVAL;
3679 return generic_file_mmap(file, vma);
3680}
3681#else
4b96a37d 3682vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
45397228 3683{
4b96a37d 3684 return VM_FAULT_SIGBUS;
45397228 3685}
68d68ff6 3686int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
3687{
3688 return -ENOSYS;
3689}
68d68ff6 3690int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
3691{
3692 return -ENOSYS;
3693}
3694#endif /* CONFIG_MMU */
3695
45397228 3696EXPORT_SYMBOL(filemap_page_mkwrite);
1da177e4
LT
3697EXPORT_SYMBOL(generic_file_mmap);
3698EXPORT_SYMBOL(generic_file_readonly_mmap);
3699
539a3322 3700static struct folio *do_read_cache_folio(struct address_space *mapping,
e9b5b23e 3701 pgoff_t index, filler_t filler, struct file *file, gfp_t gfp)
67f9fd91 3702{
539a3322 3703 struct folio *folio;
1da177e4 3704 int err;
07950008
MWO
3705
3706 if (!filler)
3707 filler = mapping->a_ops->read_folio;
1da177e4 3708repeat:
539a3322 3709 folio = filemap_get_folio(mapping, index);
66dabbb6 3710 if (IS_ERR(folio)) {
539a3322
MWO
3711 folio = filemap_alloc_folio(gfp, 0);
3712 if (!folio)
eb2be189 3713 return ERR_PTR(-ENOMEM);
539a3322 3714 err = filemap_add_folio(mapping, folio, index, gfp);
eb2be189 3715 if (unlikely(err)) {
539a3322 3716 folio_put(folio);
eb2be189
NP
3717 if (err == -EEXIST)
3718 goto repeat;
22ecdb4f 3719 /* Presumably ENOMEM for xarray node */
1da177e4
LT
3720 return ERR_PTR(err);
3721 }
32b63529 3722
9bc3e869 3723 goto filler;
32b63529 3724 }
539a3322 3725 if (folio_test_uptodate(folio))
1da177e4
LT
3726 goto out;
3727
81f4c03b
MWO
3728 if (!folio_trylock(folio)) {
3729 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3730 goto repeat;
3731 }
ebded027 3732
81f4c03b 3733 /* Folio was truncated from mapping */
539a3322
MWO
3734 if (!folio->mapping) {
3735 folio_unlock(folio);
3736 folio_put(folio);
32b63529 3737 goto repeat;
1da177e4 3738 }
ebded027
MG
3739
3740 /* Someone else locked and filled the page in a very small window */
539a3322
MWO
3741 if (folio_test_uptodate(folio)) {
3742 folio_unlock(folio);
1da177e4
LT
3743 goto out;
3744 }
faffdfa0 3745
9bc3e869 3746filler:
290e1a32 3747 err = filemap_read_folio(file, filler, folio);
1dfa24a4 3748 if (err) {
9bc3e869 3749 folio_put(folio);
1dfa24a4
MWO
3750 if (err == AOP_TRUNCATED_PAGE)
3751 goto repeat;
9bc3e869
MWO
3752 return ERR_PTR(err);
3753 }
32b63529 3754
c855ff37 3755out:
539a3322
MWO
3756 folio_mark_accessed(folio);
3757 return folio;
6fe6900e 3758}
0531b2aa
LT
3759
3760/**
e9b5b23e
MWO
3761 * read_cache_folio - Read into page cache, fill it if needed.
3762 * @mapping: The address_space to read from.
3763 * @index: The index to read.
3764 * @filler: Function to perform the read, or NULL to use aops->read_folio().
3765 * @file: Passed to filler function, may be NULL if not required.
0531b2aa 3766 *
e9b5b23e
MWO
3767 * Read one page into the page cache. If it succeeds, the folio returned
3768 * will contain @index, but it may not be the first page of the folio.
a862f68a 3769 *
e9b5b23e
MWO
3770 * If the filler function returns an error, it will be returned to the
3771 * caller.
730633f0 3772 *
e9b5b23e
MWO
3773 * Context: May sleep. Expects mapping->invalidate_lock to be held.
3774 * Return: An uptodate folio on success, ERR_PTR() on failure.
0531b2aa 3775 */
539a3322 3776struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
e9b5b23e 3777 filler_t filler, struct file *file)
539a3322 3778{
e9b5b23e 3779 return do_read_cache_folio(mapping, index, filler, file,
539a3322
MWO
3780 mapping_gfp_mask(mapping));
3781}
3782EXPORT_SYMBOL(read_cache_folio);
3783
3e629597
MWO
3784/**
3785 * mapping_read_folio_gfp - Read into page cache, using specified allocation flags.
3786 * @mapping: The address_space for the folio.
3787 * @index: The index that the allocated folio will contain.
3788 * @gfp: The page allocator flags to use if allocating.
3789 *
3790 * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with
3791 * any new memory allocations done using the specified allocation flags.
3792 *
3793 * The most likely error from this function is EIO, but ENOMEM is
3794 * possible and so is EINTR. If ->read_folio returns another error,
3795 * that will be returned to the caller.
3796 *
3797 * The function expects mapping->invalidate_lock to be already held.
3798 *
3799 * Return: Uptodate folio on success, ERR_PTR() on failure.
3800 */
3801struct folio *mapping_read_folio_gfp(struct address_space *mapping,
3802 pgoff_t index, gfp_t gfp)
3803{
3804 return do_read_cache_folio(mapping, index, NULL, NULL, gfp);
3805}
3806EXPORT_SYMBOL(mapping_read_folio_gfp);
3807
539a3322 3808static struct page *do_read_cache_page(struct address_space *mapping,
e9b5b23e 3809 pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp)
539a3322
MWO
3810{
3811 struct folio *folio;
3812
e9b5b23e 3813 folio = do_read_cache_folio(mapping, index, filler, file, gfp);
539a3322
MWO
3814 if (IS_ERR(folio))
3815 return &folio->page;
3816 return folio_file_page(folio, index);
3817}
3818
67f9fd91 3819struct page *read_cache_page(struct address_space *mapping,
e9b5b23e 3820 pgoff_t index, filler_t *filler, struct file *file)
0531b2aa 3821{
e9b5b23e 3822 return do_read_cache_page(mapping, index, filler, file,
d322a8e5 3823 mapping_gfp_mask(mapping));
0531b2aa 3824}
67f9fd91 3825EXPORT_SYMBOL(read_cache_page);
0531b2aa
LT
3826
3827/**
3828 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3829 * @mapping: the page's address_space
3830 * @index: the page index
3831 * @gfp: the page allocator flags to use if allocating
3832 *
3833 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
e6f67b8c 3834 * any new page allocations done using the specified allocation flags.
0531b2aa
LT
3835 *
3836 * If the page does not get brought uptodate, return -EIO.
a862f68a 3837 *
730633f0
JK
3838 * The function expects mapping->invalidate_lock to be already held.
3839 *
a862f68a 3840 * Return: up to date page on success, ERR_PTR() on failure.
0531b2aa
LT
3841 */
3842struct page *read_cache_page_gfp(struct address_space *mapping,
3843 pgoff_t index,
3844 gfp_t gfp)
3845{
6c45b454 3846 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
0531b2aa
LT
3847}
3848EXPORT_SYMBOL(read_cache_page_gfp);
3849
a92853b6
KK
3850/*
3851 * Warn about a page cache invalidation failure during a direct I/O write.
3852 */
c402a9a9 3853static void dio_warn_stale_pagecache(struct file *filp)
a92853b6
KK
3854{
3855 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3856 char pathname[128];
a92853b6
KK
3857 char *path;
3858
5df1a672 3859 errseq_set(&filp->f_mapping->wb_err, -EIO);
a92853b6
KK
3860 if (__ratelimit(&_rs)) {
3861 path = file_path(filp, pathname, sizeof(pathname));
3862 if (IS_ERR(path))
3863 path = "(unknown)";
3864 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
3865 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3866 current->comm);
3867 }
3868}
3869
c402a9a9 3870void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count)
1da177e4 3871{
c402a9a9 3872 struct address_space *mapping = iocb->ki_filp->f_mapping;
1da177e4 3873
c402a9a9
CH
3874 if (mapping->nrpages &&
3875 invalidate_inode_pages2_range(mapping,
3876 iocb->ki_pos >> PAGE_SHIFT,
3877 (iocb->ki_pos + count - 1) >> PAGE_SHIFT))
3878 dio_warn_stale_pagecache(iocb->ki_filp);
3879}
a969e903 3880
1da177e4 3881ssize_t
1af5bb49 3882generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
1da177e4 3883{
c402a9a9
CH
3884 struct address_space *mapping = iocb->ki_filp->f_mapping;
3885 size_t write_len = iov_iter_count(from);
3886 ssize_t written;
a969e903 3887
55635ba7
AR
3888 /*
3889 * If a page can not be invalidated, return 0 to fall back
3890 * to buffered write.
3891 */
e003f74a 3892 written = kiocb_invalidate_pages(iocb, write_len);
55635ba7
AR
3893 if (written) {
3894 if (written == -EBUSY)
3895 return 0;
c402a9a9 3896 return written;
a969e903
CH
3897 }
3898
639a93a5 3899 written = mapping->a_ops->direct_IO(iocb, from);
a969e903
CH
3900
3901 /*
3902 * Finally, try again to invalidate clean pages which might have been
3903 * cached by non-direct readahead, or faulted in by get_user_pages()
3904 * if the source of the write was an mmap'ed region of the file
3905 * we're writing. Either one is a pretty crazy thing to do,
3906 * so we don't support it 100%. If this invalidation
3907 * fails, tough, the write still worked...
332391a9
LC
3908 *
3909 * Most of the time we do not need this since dio_complete() will do
3910 * the invalidation for us. However there are some file systems that
3911 * do not end up with dio_complete() being called, so let's not break
80c1fe90
KK
3912 * them by removing it completely.
3913 *
9266a140
KK
3914 * Noticeable example is a blkdev_direct_IO().
3915 *
80c1fe90 3916 * Skip invalidation for async writes or if mapping has no pages.
a969e903 3917 */
1da177e4 3918 if (written > 0) {
c402a9a9
CH
3919 struct inode *inode = mapping->host;
3920 loff_t pos = iocb->ki_pos;
3921
3922 kiocb_invalidate_post_direct_write(iocb, written);
0116651c 3923 pos += written;
639a93a5 3924 write_len -= written;
0116651c
NK
3925 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3926 i_size_write(inode, pos);
1da177e4
LT
3927 mark_inode_dirty(inode);
3928 }
5cb6c6c7 3929 iocb->ki_pos = pos;
1da177e4 3930 }
ab2125df
PB
3931 if (written != -EIOCBQUEUED)
3932 iov_iter_revert(from, write_len - iov_iter_count(from));
1da177e4
LT
3933 return written;
3934}
3935EXPORT_SYMBOL(generic_file_direct_write);
3936
800ba295 3937ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
afddba49 3938{
800ba295
MWO
3939 struct file *file = iocb->ki_filp;
3940 loff_t pos = iocb->ki_pos;
afddba49
NP
3941 struct address_space *mapping = file->f_mapping;
3942 const struct address_space_operations *a_ops = mapping->a_ops;
3943 long status = 0;
3944 ssize_t written = 0;
674b892e 3945
afddba49
NP
3946 do {
3947 struct page *page;
afddba49
NP
3948 unsigned long offset; /* Offset into pagecache page */
3949 unsigned long bytes; /* Bytes to write to page */
3950 size_t copied; /* Bytes copied from user */
1468c6f4 3951 void *fsdata = NULL;
afddba49 3952
09cbfeaf
KS
3953 offset = (pos & (PAGE_SIZE - 1));
3954 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
3955 iov_iter_count(i));
3956
3957again:
00a3d660
LT
3958 /*
3959 * Bring in the user page that we will copy from _first_.
3960 * Otherwise there's a nasty deadlock on copying from the
3961 * same page as we're writing to, without it being marked
3962 * up-to-date.
00a3d660 3963 */
631f871f 3964 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
00a3d660
LT
3965 status = -EFAULT;
3966 break;
3967 }
3968
296291cd
JK
3969 if (fatal_signal_pending(current)) {
3970 status = -EINTR;
3971 break;
3972 }
3973
9d6b0cd7 3974 status = a_ops->write_begin(file, mapping, pos, bytes,
afddba49 3975 &page, &fsdata);
2457aec6 3976 if (unlikely(status < 0))
afddba49
NP
3977 break;
3978
931e80e4 3979 if (mapping_writably_mapped(mapping))
3980 flush_dcache_page(page);
00a3d660 3981
f0b65f39 3982 copied = copy_page_from_iter_atomic(page, offset, bytes, i);
afddba49
NP
3983 flush_dcache_page(page);
3984
3985 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3986 page, fsdata);
f0b65f39
AV
3987 if (unlikely(status != copied)) {
3988 iov_iter_revert(i, copied - max(status, 0L));
3989 if (unlikely(status < 0))
3990 break;
3991 }
afddba49
NP
3992 cond_resched();
3993
bc1bb416 3994 if (unlikely(status == 0)) {
afddba49 3995 /*
bc1bb416
AV
3996 * A short copy made ->write_end() reject the
3997 * thing entirely. Might be memory poisoning
3998 * halfway through, might be a race with munmap,
3999 * might be severe memory pressure.
afddba49 4000 */
bc1bb416
AV
4001 if (copied)
4002 bytes = copied;
afddba49
NP
4003 goto again;
4004 }
f0b65f39
AV
4005 pos += status;
4006 written += status;
afddba49
NP
4007
4008 balance_dirty_pages_ratelimited(mapping);
afddba49
NP
4009 } while (iov_iter_count(i));
4010
182c25e9
CH
4011 if (!written)
4012 return status;
4013 iocb->ki_pos += written;
4014 return written;
afddba49 4015}
3b93f911 4016EXPORT_SYMBOL(generic_perform_write);
1da177e4 4017
e4dd9de3 4018/**
8174202b 4019 * __generic_file_write_iter - write data to a file
e4dd9de3 4020 * @iocb: IO state structure (file, offset, etc.)
8174202b 4021 * @from: iov_iter with data to write
e4dd9de3
JK
4022 *
4023 * This function does all the work needed for actually writing data to a
4024 * file. It does all basic checks, removes SUID from the file, updates
4025 * modification times and calls proper subroutines depending on whether we
4026 * do direct IO or a standard buffered write.
4027 *
9608703e 4028 * It expects i_rwsem to be grabbed unless we work on a block device or similar
e4dd9de3
JK
4029 * object which does not need locking at all.
4030 *
4031 * This function does *not* take care of syncing data in case of O_SYNC write.
4032 * A caller has to handle it. This is mainly due to the fact that we want to
9608703e 4033 * avoid syncing under i_rwsem.
a862f68a
MR
4034 *
4035 * Return:
4036 * * number of bytes written, even for truncated writes
4037 * * negative error code if no data has been written at all
e4dd9de3 4038 */
8174202b 4039ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
4040{
4041 struct file *file = iocb->ki_filp;
68d68ff6 4042 struct address_space *mapping = file->f_mapping;
44fff0fa
CH
4043 struct inode *inode = mapping->host;
4044 ssize_t ret;
1da177e4 4045
44fff0fa
CH
4046 ret = file_remove_privs(file);
4047 if (ret)
4048 return ret;
1da177e4 4049
44fff0fa
CH
4050 ret = file_update_time(file);
4051 if (ret)
4052 return ret;
fb5527e6 4053
2ba48ce5 4054 if (iocb->ki_flags & IOCB_DIRECT) {
44fff0fa 4055 ret = generic_file_direct_write(iocb, from);
1da177e4 4056 /*
fbbbad4b
MW
4057 * If the write stopped short of completing, fall back to
4058 * buffered writes. Some filesystems do this for writes to
4059 * holes, for example. For DAX files, a buffered write will
4060 * not succeed (even if it did, DAX does not handle dirty
4061 * page-cache pages correctly).
1da177e4 4062 */
44fff0fa
CH
4063 if (ret < 0 || !iov_iter_count(from) || IS_DAX(inode))
4064 return ret;
4065 return direct_write_fallback(iocb, from, ret,
4066 generic_perform_write(iocb, from));
fb5527e6 4067 }
44fff0fa
CH
4068
4069 return generic_perform_write(iocb, from);
1da177e4 4070}
8174202b 4071EXPORT_SYMBOL(__generic_file_write_iter);
e4dd9de3 4072
e4dd9de3 4073/**
8174202b 4074 * generic_file_write_iter - write data to a file
e4dd9de3 4075 * @iocb: IO state structure
8174202b 4076 * @from: iov_iter with data to write
e4dd9de3 4077 *
8174202b 4078 * This is a wrapper around __generic_file_write_iter() to be used by most
e4dd9de3 4079 * filesystems. It takes care of syncing the file in case of O_SYNC file
9608703e 4080 * and acquires i_rwsem as needed.
a862f68a
MR
4081 * Return:
4082 * * negative error code if no data has been written at all of
4083 * vfs_fsync_range() failed for a synchronous write
4084 * * number of bytes written, even for truncated writes
e4dd9de3 4085 */
8174202b 4086ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
4087{
4088 struct file *file = iocb->ki_filp;
148f948b 4089 struct inode *inode = file->f_mapping->host;
1da177e4 4090 ssize_t ret;
1da177e4 4091
5955102c 4092 inode_lock(inode);
3309dd04
AV
4093 ret = generic_write_checks(iocb, from);
4094 if (ret > 0)
5f380c7f 4095 ret = __generic_file_write_iter(iocb, from);
5955102c 4096 inode_unlock(inode);
1da177e4 4097
e2592217
CH
4098 if (ret > 0)
4099 ret = generic_write_sync(iocb, ret);
1da177e4
LT
4100 return ret;
4101}
8174202b 4102EXPORT_SYMBOL(generic_file_write_iter);
1da177e4 4103
cf9a2ae8 4104/**
82c50f8b
MWO
4105 * filemap_release_folio() - Release fs-specific metadata on a folio.
4106 * @folio: The folio which the kernel is trying to free.
4107 * @gfp: Memory allocation flags (and I/O mode).
cf9a2ae8 4108 *
82c50f8b
MWO
4109 * The address_space is trying to release any data attached to a folio
4110 * (presumably at folio->private).
cf9a2ae8 4111 *
82c50f8b
MWO
4112 * This will also be called if the private_2 flag is set on a page,
4113 * indicating that the folio has other metadata associated with it.
266cf658 4114 *
82c50f8b
MWO
4115 * The @gfp argument specifies whether I/O may be performed to release
4116 * this page (__GFP_IO), and whether the call may block
4117 * (__GFP_RECLAIM & __GFP_FS).
cf9a2ae8 4118 *
82c50f8b 4119 * Return: %true if the release was successful, otherwise %false.
cf9a2ae8 4120 */
82c50f8b 4121bool filemap_release_folio(struct folio *folio, gfp_t gfp)
cf9a2ae8 4122{
82c50f8b 4123 struct address_space * const mapping = folio->mapping;
cf9a2ae8 4124
82c50f8b 4125 BUG_ON(!folio_test_locked(folio));
0201ebf2
DH
4126 if (!folio_needs_release(folio))
4127 return true;
82c50f8b
MWO
4128 if (folio_test_writeback(folio))
4129 return false;
cf9a2ae8 4130
fa29000b
MWO
4131 if (mapping && mapping->a_ops->release_folio)
4132 return mapping->a_ops->release_folio(folio, gfp);
68189fef 4133 return try_to_free_buffers(folio);
cf9a2ae8 4134}
82c50f8b 4135EXPORT_SYMBOL(filemap_release_folio);
cf264e13
NP
4136
4137#ifdef CONFIG_CACHESTAT_SYSCALL
4138/**
4139 * filemap_cachestat() - compute the page cache statistics of a mapping
4140 * @mapping: The mapping to compute the statistics for.
4141 * @first_index: The starting page cache index.
4142 * @last_index: The final page index (inclusive).
4143 * @cs: the cachestat struct to write the result to.
4144 *
4145 * This will query the page cache statistics of a mapping in the
4146 * page range of [first_index, last_index] (inclusive). The statistics
4147 * queried include: number of dirty pages, number of pages marked for
4148 * writeback, and the number of (recently) evicted pages.
4149 */
4150static void filemap_cachestat(struct address_space *mapping,
4151 pgoff_t first_index, pgoff_t last_index, struct cachestat *cs)
4152{
4153 XA_STATE(xas, &mapping->i_pages, first_index);
4154 struct folio *folio;
4155
4156 rcu_read_lock();
4157 xas_for_each(&xas, folio, last_index) {
3a75cb05 4158 int order;
cf264e13
NP
4159 unsigned long nr_pages;
4160 pgoff_t folio_first_index, folio_last_index;
4161
3a75cb05
NP
4162 /*
4163 * Don't deref the folio. It is not pinned, and might
4164 * get freed (and reused) underneath us.
4165 *
4166 * We *could* pin it, but that would be expensive for
4167 * what should be a fast and lightweight syscall.
4168 *
4169 * Instead, derive all information of interest from
4170 * the rcu-protected xarray.
4171 */
4172
cf264e13
NP
4173 if (xas_retry(&xas, folio))
4174 continue;
4175
3a75cb05
NP
4176 order = xa_get_order(xas.xa, xas.xa_index);
4177 nr_pages = 1 << order;
4178 folio_first_index = round_down(xas.xa_index, 1 << order);
4179 folio_last_index = folio_first_index + nr_pages - 1;
4180
4181 /* Folios might straddle the range boundaries, only count covered pages */
4182 if (folio_first_index < first_index)
4183 nr_pages -= first_index - folio_first_index;
4184
4185 if (folio_last_index > last_index)
4186 nr_pages -= folio_last_index - last_index;
4187
cf264e13
NP
4188 if (xa_is_value(folio)) {
4189 /* page is evicted */
4190 void *shadow = (void *)folio;
4191 bool workingset; /* not used */
cf264e13
NP
4192
4193 cs->nr_evicted += nr_pages;
4194
4195#ifdef CONFIG_SWAP /* implies CONFIG_MMU */
4196 if (shmem_mapping(mapping)) {
4197 /* shmem file - in swap cache */
4198 swp_entry_t swp = radix_to_swp_entry(folio);
4199
d5d39c70
JW
4200 /* swapin error results in poisoned entry */
4201 if (non_swap_entry(swp))
4202 goto resched;
4203
4204 /*
4205 * Getting a swap entry from the shmem
4206 * inode means we beat
4207 * shmem_unuse(). rcu_read_lock()
4208 * ensures swapoff waits for us before
4209 * freeing the swapper space. However,
4210 * we can race with swapping and
4211 * invalidation, so there might not be
4212 * a shadow in the swapcache (yet).
4213 */
cf264e13 4214 shadow = get_shadow_from_swap_cache(swp);
d5d39c70
JW
4215 if (!shadow)
4216 goto resched;
cf264e13
NP
4217 }
4218#endif
4219 if (workingset_test_recent(shadow, true, &workingset))
4220 cs->nr_recently_evicted += nr_pages;
4221
4222 goto resched;
4223 }
4224
cf264e13
NP
4225 /* page is in cache */
4226 cs->nr_cache += nr_pages;
4227
3a75cb05 4228 if (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY))
cf264e13
NP
4229 cs->nr_dirty += nr_pages;
4230
3a75cb05 4231 if (xas_get_mark(&xas, PAGECACHE_TAG_WRITEBACK))
cf264e13
NP
4232 cs->nr_writeback += nr_pages;
4233
4234resched:
4235 if (need_resched()) {
4236 xas_pause(&xas);
4237 cond_resched_rcu();
4238 }
4239 }
4240 rcu_read_unlock();
4241}
4242
4243/*
4244 * The cachestat(2) system call.
4245 *
4246 * cachestat() returns the page cache statistics of a file in the
4247 * bytes range specified by `off` and `len`: number of cached pages,
4248 * number of dirty pages, number of pages marked for writeback,
4249 * number of evicted pages, and number of recently evicted pages.
4250 *
4251 * An evicted page is a page that is previously in the page cache
4252 * but has been evicted since. A page is recently evicted if its last
4253 * eviction was recent enough that its reentry to the cache would
4254 * indicate that it is actively being used by the system, and that
4255 * there is memory pressure on the system.
4256 *
4257 * `off` and `len` must be non-negative integers. If `len` > 0,
4258 * the queried range is [`off`, `off` + `len`]. If `len` == 0,
4259 * we will query in the range from `off` to the end of the file.
4260 *
4261 * The `flags` argument is unused for now, but is included for future
4262 * extensibility. User should pass 0 (i.e no flag specified).
4263 *
4264 * Currently, hugetlbfs is not supported.
4265 *
4266 * Because the status of a page can change after cachestat() checks it
4267 * but before it returns to the application, the returned values may
4268 * contain stale information.
4269 *
4270 * return values:
4271 * zero - success
4272 * -EFAULT - cstat or cstat_range points to an illegal address
4273 * -EINVAL - invalid flags
4274 * -EBADF - invalid file descriptor
4275 * -EOPNOTSUPP - file descriptor is of a hugetlbfs file
4276 */
4277SYSCALL_DEFINE4(cachestat, unsigned int, fd,
4278 struct cachestat_range __user *, cstat_range,
4279 struct cachestat __user *, cstat, unsigned int, flags)
4280{
4281 struct fd f = fdget(fd);
4282 struct address_space *mapping;
4283 struct cachestat_range csr;
4284 struct cachestat cs;
4285 pgoff_t first_index, last_index;
4286
4287 if (!f.file)
4288 return -EBADF;
4289
4290 if (copy_from_user(&csr, cstat_range,
4291 sizeof(struct cachestat_range))) {
4292 fdput(f);
4293 return -EFAULT;
4294 }
4295
4296 /* hugetlbfs is not supported */
4297 if (is_file_hugepages(f.file)) {
4298 fdput(f);
4299 return -EOPNOTSUPP;
4300 }
4301
4302 if (flags != 0) {
4303 fdput(f);
4304 return -EINVAL;
4305 }
4306
4307 first_index = csr.off >> PAGE_SHIFT;
4308 last_index =
4309 csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT;
4310 memset(&cs, 0, sizeof(struct cachestat));
4311 mapping = f.file->f_mapping;
4312 filemap_cachestat(mapping, first_index, last_index, &cs);
4313 fdput(f);
4314
4315 if (copy_to_user(cstat, &cs, sizeof(struct cachestat)))
4316 return -EFAULT;
4317
4318 return 0;
4319}
4320#endif /* CONFIG_CACHESTAT_SYSCALL */