mm: introduce FAULT_FLAG_INTERRUPTIBLE
[linux-block.git] / mm / filemap.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/filemap.c
4 *
5 * Copyright (C) 1994-1999 Linus Torvalds
6 */
7
8/*
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
12 */
b95f1b31 13#include <linux/export.h>
1da177e4 14#include <linux/compiler.h>
f9fe48be 15#include <linux/dax.h>
1da177e4 16#include <linux/fs.h>
3f07c014 17#include <linux/sched/signal.h>
c22ce143 18#include <linux/uaccess.h>
c59ede7b 19#include <linux/capability.h>
1da177e4 20#include <linux/kernel_stat.h>
5a0e3ad6 21#include <linux/gfp.h>
1da177e4
LT
22#include <linux/mm.h>
23#include <linux/swap.h>
24#include <linux/mman.h>
25#include <linux/pagemap.h>
26#include <linux/file.h>
27#include <linux/uio.h>
cfcbfb13 28#include <linux/error-injection.h>
1da177e4
LT
29#include <linux/hash.h>
30#include <linux/writeback.h>
53253383 31#include <linux/backing-dev.h>
1da177e4
LT
32#include <linux/pagevec.h>
33#include <linux/blkdev.h>
34#include <linux/security.h>
44110fe3 35#include <linux/cpuset.h>
00501b53 36#include <linux/hugetlb.h>
8a9f3ccd 37#include <linux/memcontrol.h>
c515e1fd 38#include <linux/cleancache.h>
c7df8ad2 39#include <linux/shmem_fs.h>
f1820361 40#include <linux/rmap.h>
b1d29ba8 41#include <linux/delayacct.h>
eb414681 42#include <linux/psi.h>
d0e6a582 43#include <linux/ramfs.h>
0f8053a5
NP
44#include "internal.h"
45
fe0bfaaf
RJ
46#define CREATE_TRACE_POINTS
47#include <trace/events/filemap.h>
48
1da177e4 49/*
1da177e4
LT
50 * FIXME: remove all knowledge of the buffer layer from the core VM
51 */
148f948b 52#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 53
1da177e4
LT
54#include <asm/mman.h>
55
56/*
57 * Shared mappings implemented 30.11.1994. It's not fully working yet,
58 * though.
59 *
60 * Shared mappings now work. 15.8.1995 Bruno.
61 *
62 * finished 'unifying' the page and buffer cache and SMP-threaded the
63 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
64 *
65 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
66 */
67
68/*
69 * Lock ordering:
70 *
c8c06efa 71 * ->i_mmap_rwsem (truncate_pagecache)
1da177e4 72 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91 73 * ->swap_lock (exclusive_swap_page, others)
b93b0163 74 * ->i_pages lock
1da177e4 75 *
1b1dcc1b 76 * ->i_mutex
c8c06efa 77 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
1da177e4
LT
78 *
79 * ->mmap_sem
c8c06efa 80 * ->i_mmap_rwsem
b8072f09 81 * ->page_table_lock or pte_lock (various, mainly in memory.c)
b93b0163 82 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
1da177e4
LT
83 *
84 * ->mmap_sem
85 * ->lock_page (access_process_vm)
86 *
ccad2365 87 * ->i_mutex (generic_perform_write)
82591e6e 88 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
1da177e4 89 *
f758eeab 90 * bdi->wb.list_lock
a66979ab 91 * sb_lock (fs/fs-writeback.c)
b93b0163 92 * ->i_pages lock (__sync_single_inode)
1da177e4 93 *
c8c06efa 94 * ->i_mmap_rwsem
1da177e4
LT
95 * ->anon_vma.lock (vma_adjust)
96 *
97 * ->anon_vma.lock
b8072f09 98 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 99 *
b8072f09 100 * ->page_table_lock or pte_lock
5d337b91 101 * ->swap_lock (try_to_unmap_one)
1da177e4 102 * ->private_lock (try_to_unmap_one)
b93b0163 103 * ->i_pages lock (try_to_unmap_one)
f4b7e272
AR
104 * ->pgdat->lru_lock (follow_page->mark_page_accessed)
105 * ->pgdat->lru_lock (check_pte_range->isolate_lru_page)
1da177e4 106 * ->private_lock (page_remove_rmap->set_page_dirty)
b93b0163 107 * ->i_pages lock (page_remove_rmap->set_page_dirty)
f758eeab 108 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
250df6ed 109 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
81f8c3a4 110 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
f758eeab 111 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 112 * ->inode->i_lock (zap_pte_range->set_page_dirty)
1da177e4
LT
113 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
114 *
c8c06efa 115 * ->i_mmap_rwsem
9a3c531d 116 * ->tasklist_lock (memory_failure, collect_procs_ao)
1da177e4
LT
117 */
118
5c024e6a 119static void page_cache_delete(struct address_space *mapping,
91b0abe3
JW
120 struct page *page, void *shadow)
121{
5c024e6a
MW
122 XA_STATE(xas, &mapping->i_pages, page->index);
123 unsigned int nr = 1;
c70b647d 124
5c024e6a 125 mapping_set_update(&xas, mapping);
c70b647d 126
5c024e6a
MW
127 /* hugetlb pages are represented by a single entry in the xarray */
128 if (!PageHuge(page)) {
129 xas_set_order(&xas, page->index, compound_order(page));
d8c6546b 130 nr = compound_nr(page);
5c024e6a 131 }
91b0abe3 132
83929372
KS
133 VM_BUG_ON_PAGE(!PageLocked(page), page);
134 VM_BUG_ON_PAGE(PageTail(page), page);
135 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
449dd698 136
5c024e6a
MW
137 xas_store(&xas, shadow);
138 xas_init_marks(&xas);
d3798ae8 139
2300638b
JK
140 page->mapping = NULL;
141 /* Leave page->index set: truncation lookup relies upon it */
142
d3798ae8
JW
143 if (shadow) {
144 mapping->nrexceptional += nr;
145 /*
146 * Make sure the nrexceptional update is committed before
147 * the nrpages update so that final truncate racing
148 * with reclaim does not see both counters 0 at the
149 * same time and miss a shadow entry.
150 */
151 smp_wmb();
152 }
153 mapping->nrpages -= nr;
91b0abe3
JW
154}
155
5ecc4d85
JK
156static void unaccount_page_cache_page(struct address_space *mapping,
157 struct page *page)
1da177e4 158{
5ecc4d85 159 int nr;
1da177e4 160
c515e1fd
DM
161 /*
162 * if we're uptodate, flush out into the cleancache, otherwise
163 * invalidate any existing cleancache entries. We can't leave
164 * stale data around in the cleancache once our page is gone
165 */
166 if (PageUptodate(page) && PageMappedToDisk(page))
167 cleancache_put_page(page);
168 else
3167760f 169 cleancache_invalidate_page(mapping, page);
c515e1fd 170
83929372 171 VM_BUG_ON_PAGE(PageTail(page), page);
06b241f3
HD
172 VM_BUG_ON_PAGE(page_mapped(page), page);
173 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
174 int mapcount;
175
176 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
177 current->comm, page_to_pfn(page));
178 dump_page(page, "still mapped when deleted");
179 dump_stack();
180 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
181
182 mapcount = page_mapcount(page);
183 if (mapping_exiting(mapping) &&
184 page_count(page) >= mapcount + 2) {
185 /*
186 * All vmas have already been torn down, so it's
187 * a good bet that actually the page is unmapped,
188 * and we'd prefer not to leak it: if we're wrong,
189 * some other bad page check should catch it later.
190 */
191 page_mapcount_reset(page);
6d061f9f 192 page_ref_sub(page, mapcount);
06b241f3
HD
193 }
194 }
195
4165b9b4 196 /* hugetlb pages do not participate in page cache accounting. */
5ecc4d85
JK
197 if (PageHuge(page))
198 return;
09612fa6 199
5ecc4d85
JK
200 nr = hpage_nr_pages(page);
201
202 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
203 if (PageSwapBacked(page)) {
204 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
205 if (PageTransHuge(page))
206 __dec_node_page_state(page, NR_SHMEM_THPS);
99cb0dbd
SL
207 } else if (PageTransHuge(page)) {
208 __dec_node_page_state(page, NR_FILE_THPS);
09d91cda 209 filemap_nr_thps_dec(mapping);
800d8c63 210 }
5ecc4d85
JK
211
212 /*
213 * At this point page must be either written or cleaned by
214 * truncate. Dirty page here signals a bug and loss of
215 * unwritten data.
216 *
217 * This fixes dirty accounting after removing the page entirely
218 * but leaves PageDirty set: it has no effect for truncated
219 * page and anyway will be cleared before returning page into
220 * buddy allocator.
221 */
222 if (WARN_ON_ONCE(PageDirty(page)))
223 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
224}
225
226/*
227 * Delete a page from the page cache and free it. Caller has to make
228 * sure the page is locked and that nobody else uses it - or that usage
b93b0163 229 * is safe. The caller must hold the i_pages lock.
5ecc4d85
JK
230 */
231void __delete_from_page_cache(struct page *page, void *shadow)
232{
233 struct address_space *mapping = page->mapping;
234
235 trace_mm_filemap_delete_from_page_cache(page);
236
237 unaccount_page_cache_page(mapping, page);
5c024e6a 238 page_cache_delete(mapping, page, shadow);
1da177e4
LT
239}
240
59c66c5f
JK
241static void page_cache_free_page(struct address_space *mapping,
242 struct page *page)
243{
244 void (*freepage)(struct page *);
245
246 freepage = mapping->a_ops->freepage;
247 if (freepage)
248 freepage(page);
249
250 if (PageTransHuge(page) && !PageHuge(page)) {
251 page_ref_sub(page, HPAGE_PMD_NR);
252 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
253 } else {
254 put_page(page);
255 }
256}
257
702cfbf9
MK
258/**
259 * delete_from_page_cache - delete page from page cache
260 * @page: the page which the kernel is trying to remove from page cache
261 *
262 * This must be called only on pages that have been verified to be in the page
263 * cache and locked. It will never put the page into the free list, the caller
264 * has a reference on the page.
265 */
266void delete_from_page_cache(struct page *page)
1da177e4 267{
83929372 268 struct address_space *mapping = page_mapping(page);
c4843a75 269 unsigned long flags;
1da177e4 270
cd7619d6 271 BUG_ON(!PageLocked(page));
b93b0163 272 xa_lock_irqsave(&mapping->i_pages, flags);
62cccb8c 273 __delete_from_page_cache(page, NULL);
b93b0163 274 xa_unlock_irqrestore(&mapping->i_pages, flags);
6072d13c 275
59c66c5f 276 page_cache_free_page(mapping, page);
97cecb5a
MK
277}
278EXPORT_SYMBOL(delete_from_page_cache);
279
aa65c29c 280/*
ef8e5717 281 * page_cache_delete_batch - delete several pages from page cache
aa65c29c
JK
282 * @mapping: the mapping to which pages belong
283 * @pvec: pagevec with pages to delete
284 *
b93b0163 285 * The function walks over mapping->i_pages and removes pages passed in @pvec
4101196b
MWO
286 * from the mapping. The function expects @pvec to be sorted by page index
287 * and is optimised for it to be dense.
b93b0163 288 * It tolerates holes in @pvec (mapping entries at those indices are not
aa65c29c 289 * modified). The function expects only THP head pages to be present in the
4101196b 290 * @pvec.
aa65c29c 291 *
b93b0163 292 * The function expects the i_pages lock to be held.
aa65c29c 293 */
ef8e5717 294static void page_cache_delete_batch(struct address_space *mapping,
aa65c29c
JK
295 struct pagevec *pvec)
296{
ef8e5717 297 XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
aa65c29c 298 int total_pages = 0;
4101196b 299 int i = 0;
aa65c29c 300 struct page *page;
aa65c29c 301
ef8e5717
MW
302 mapping_set_update(&xas, mapping);
303 xas_for_each(&xas, page, ULONG_MAX) {
4101196b 304 if (i >= pagevec_count(pvec))
aa65c29c 305 break;
4101196b
MWO
306
307 /* A swap/dax/shadow entry got inserted? Skip it. */
3159f943 308 if (xa_is_value(page))
aa65c29c 309 continue;
4101196b
MWO
310 /*
311 * A page got inserted in our range? Skip it. We have our
312 * pages locked so they are protected from being removed.
313 * If we see a page whose index is higher than ours, it
314 * means our page has been removed, which shouldn't be
315 * possible because we're holding the PageLock.
316 */
317 if (page != pvec->pages[i]) {
318 VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
319 page);
320 continue;
321 }
322
323 WARN_ON_ONCE(!PageLocked(page));
324
325 if (page->index == xas.xa_index)
aa65c29c 326 page->mapping = NULL;
4101196b
MWO
327 /* Leave page->index set: truncation lookup relies on it */
328
329 /*
330 * Move to the next page in the vector if this is a regular
331 * page or the index is of the last sub-page of this compound
332 * page.
333 */
334 if (page->index + compound_nr(page) - 1 == xas.xa_index)
aa65c29c 335 i++;
ef8e5717 336 xas_store(&xas, NULL);
aa65c29c
JK
337 total_pages++;
338 }
339 mapping->nrpages -= total_pages;
340}
341
342void delete_from_page_cache_batch(struct address_space *mapping,
343 struct pagevec *pvec)
344{
345 int i;
346 unsigned long flags;
347
348 if (!pagevec_count(pvec))
349 return;
350
b93b0163 351 xa_lock_irqsave(&mapping->i_pages, flags);
aa65c29c
JK
352 for (i = 0; i < pagevec_count(pvec); i++) {
353 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
354
355 unaccount_page_cache_page(mapping, pvec->pages[i]);
356 }
ef8e5717 357 page_cache_delete_batch(mapping, pvec);
b93b0163 358 xa_unlock_irqrestore(&mapping->i_pages, flags);
aa65c29c
JK
359
360 for (i = 0; i < pagevec_count(pvec); i++)
361 page_cache_free_page(mapping, pvec->pages[i]);
362}
363
d72d9e2a 364int filemap_check_errors(struct address_space *mapping)
865ffef3
DM
365{
366 int ret = 0;
367 /* Check for outstanding write errors */
7fcbbaf1
JA
368 if (test_bit(AS_ENOSPC, &mapping->flags) &&
369 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
865ffef3 370 ret = -ENOSPC;
7fcbbaf1
JA
371 if (test_bit(AS_EIO, &mapping->flags) &&
372 test_and_clear_bit(AS_EIO, &mapping->flags))
865ffef3
DM
373 ret = -EIO;
374 return ret;
375}
d72d9e2a 376EXPORT_SYMBOL(filemap_check_errors);
865ffef3 377
76341cab
JL
378static int filemap_check_and_keep_errors(struct address_space *mapping)
379{
380 /* Check for outstanding write errors */
381 if (test_bit(AS_EIO, &mapping->flags))
382 return -EIO;
383 if (test_bit(AS_ENOSPC, &mapping->flags))
384 return -ENOSPC;
385 return 0;
386}
387
1da177e4 388/**
485bb99b 389 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
390 * @mapping: address space structure to write
391 * @start: offset in bytes where the range starts
469eb4d0 392 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 393 * @sync_mode: enable synchronous operation
1da177e4 394 *
485bb99b
RD
395 * Start writeback against all of a mapping's dirty pages that lie
396 * within the byte offsets <start, end> inclusive.
397 *
1da177e4 398 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 399 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
400 * these two operations is that if a dirty page/buffer is encountered, it must
401 * be waited upon, and not just skipped over.
a862f68a
MR
402 *
403 * Return: %0 on success, negative error code otherwise.
1da177e4 404 */
ebcf28e1
AM
405int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
406 loff_t end, int sync_mode)
1da177e4
LT
407{
408 int ret;
409 struct writeback_control wbc = {
410 .sync_mode = sync_mode,
05fe478d 411 .nr_to_write = LONG_MAX,
111ebb6e
OH
412 .range_start = start,
413 .range_end = end,
1da177e4
LT
414 };
415
c3aab9a0
KK
416 if (!mapping_cap_writeback_dirty(mapping) ||
417 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1da177e4
LT
418 return 0;
419
b16b1deb 420 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
1da177e4 421 ret = do_writepages(mapping, &wbc);
b16b1deb 422 wbc_detach_inode(&wbc);
1da177e4
LT
423 return ret;
424}
425
426static inline int __filemap_fdatawrite(struct address_space *mapping,
427 int sync_mode)
428{
111ebb6e 429 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
430}
431
432int filemap_fdatawrite(struct address_space *mapping)
433{
434 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
435}
436EXPORT_SYMBOL(filemap_fdatawrite);
437
f4c0a0fd 438int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 439 loff_t end)
1da177e4
LT
440{
441 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
442}
f4c0a0fd 443EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 444
485bb99b
RD
445/**
446 * filemap_flush - mostly a non-blocking flush
447 * @mapping: target address_space
448 *
1da177e4
LT
449 * This is a mostly non-blocking flush. Not suitable for data-integrity
450 * purposes - I/O may not be started against all dirty pages.
a862f68a
MR
451 *
452 * Return: %0 on success, negative error code otherwise.
1da177e4
LT
453 */
454int filemap_flush(struct address_space *mapping)
455{
456 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
457}
458EXPORT_SYMBOL(filemap_flush);
459
7fc9e472
GR
460/**
461 * filemap_range_has_page - check if a page exists in range.
462 * @mapping: address space within which to check
463 * @start_byte: offset in bytes where the range starts
464 * @end_byte: offset in bytes where the range ends (inclusive)
465 *
466 * Find at least one page in the range supplied, usually used to check if
467 * direct writing in this range will trigger a writeback.
a862f68a
MR
468 *
469 * Return: %true if at least one page exists in the specified range,
470 * %false otherwise.
7fc9e472
GR
471 */
472bool filemap_range_has_page(struct address_space *mapping,
473 loff_t start_byte, loff_t end_byte)
474{
f7b68046 475 struct page *page;
8fa8e538
MW
476 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
477 pgoff_t max = end_byte >> PAGE_SHIFT;
7fc9e472
GR
478
479 if (end_byte < start_byte)
480 return false;
481
8fa8e538
MW
482 rcu_read_lock();
483 for (;;) {
484 page = xas_find(&xas, max);
485 if (xas_retry(&xas, page))
486 continue;
487 /* Shadow entries don't count */
488 if (xa_is_value(page))
489 continue;
490 /*
491 * We don't need to try to pin this page; we're about to
492 * release the RCU lock anyway. It is enough to know that
493 * there was a page here recently.
494 */
495 break;
496 }
497 rcu_read_unlock();
7fc9e472 498
8fa8e538 499 return page != NULL;
7fc9e472
GR
500}
501EXPORT_SYMBOL(filemap_range_has_page);
502
5e8fcc1a 503static void __filemap_fdatawait_range(struct address_space *mapping,
aa750fd7 504 loff_t start_byte, loff_t end_byte)
1da177e4 505{
09cbfeaf
KS
506 pgoff_t index = start_byte >> PAGE_SHIFT;
507 pgoff_t end = end_byte >> PAGE_SHIFT;
1da177e4
LT
508 struct pagevec pvec;
509 int nr_pages;
1da177e4 510
94004ed7 511 if (end_byte < start_byte)
5e8fcc1a 512 return;
1da177e4 513
86679820 514 pagevec_init(&pvec);
312e9d2f 515 while (index <= end) {
1da177e4
LT
516 unsigned i;
517
312e9d2f 518 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
67fd707f 519 end, PAGECACHE_TAG_WRITEBACK);
312e9d2f
JK
520 if (!nr_pages)
521 break;
522
1da177e4
LT
523 for (i = 0; i < nr_pages; i++) {
524 struct page *page = pvec.pages[i];
525
1da177e4 526 wait_on_page_writeback(page);
5e8fcc1a 527 ClearPageError(page);
1da177e4
LT
528 }
529 pagevec_release(&pvec);
530 cond_resched();
531 }
aa750fd7
JN
532}
533
534/**
535 * filemap_fdatawait_range - wait for writeback to complete
536 * @mapping: address space structure to wait for
537 * @start_byte: offset in bytes where the range starts
538 * @end_byte: offset in bytes where the range ends (inclusive)
539 *
540 * Walk the list of under-writeback pages of the given address space
541 * in the given range and wait for all of them. Check error status of
542 * the address space and return it.
543 *
544 * Since the error status of the address space is cleared by this function,
545 * callers are responsible for checking the return value and handling and/or
546 * reporting the error.
a862f68a
MR
547 *
548 * Return: error status of the address space.
aa750fd7
JN
549 */
550int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
551 loff_t end_byte)
552{
5e8fcc1a
JL
553 __filemap_fdatawait_range(mapping, start_byte, end_byte);
554 return filemap_check_errors(mapping);
1da177e4 555}
d3bccb6f
JK
556EXPORT_SYMBOL(filemap_fdatawait_range);
557
aa0bfcd9
RZ
558/**
559 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
560 * @mapping: address space structure to wait for
561 * @start_byte: offset in bytes where the range starts
562 * @end_byte: offset in bytes where the range ends (inclusive)
563 *
564 * Walk the list of under-writeback pages of the given address space in the
565 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
566 * this function does not clear error status of the address space.
567 *
568 * Use this function if callers don't handle errors themselves. Expected
569 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
570 * fsfreeze(8)
571 */
572int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
573 loff_t start_byte, loff_t end_byte)
574{
575 __filemap_fdatawait_range(mapping, start_byte, end_byte);
576 return filemap_check_and_keep_errors(mapping);
577}
578EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
579
a823e458
JL
580/**
581 * file_fdatawait_range - wait for writeback to complete
582 * @file: file pointing to address space structure to wait for
583 * @start_byte: offset in bytes where the range starts
584 * @end_byte: offset in bytes where the range ends (inclusive)
585 *
586 * Walk the list of under-writeback pages of the address space that file
587 * refers to, in the given range and wait for all of them. Check error
588 * status of the address space vs. the file->f_wb_err cursor and return it.
589 *
590 * Since the error status of the file is advanced by this function,
591 * callers are responsible for checking the return value and handling and/or
592 * reporting the error.
a862f68a
MR
593 *
594 * Return: error status of the address space vs. the file->f_wb_err cursor.
a823e458
JL
595 */
596int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
597{
598 struct address_space *mapping = file->f_mapping;
599
600 __filemap_fdatawait_range(mapping, start_byte, end_byte);
601 return file_check_and_advance_wb_err(file);
602}
603EXPORT_SYMBOL(file_fdatawait_range);
d3bccb6f 604
aa750fd7
JN
605/**
606 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
607 * @mapping: address space structure to wait for
608 *
609 * Walk the list of under-writeback pages of the given address space
610 * and wait for all of them. Unlike filemap_fdatawait(), this function
611 * does not clear error status of the address space.
612 *
613 * Use this function if callers don't handle errors themselves. Expected
614 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
615 * fsfreeze(8)
a862f68a
MR
616 *
617 * Return: error status of the address space.
aa750fd7 618 */
76341cab 619int filemap_fdatawait_keep_errors(struct address_space *mapping)
aa750fd7 620{
ffb959bb 621 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
76341cab 622 return filemap_check_and_keep_errors(mapping);
aa750fd7 623}
76341cab 624EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
aa750fd7 625
875d91b1 626/* Returns true if writeback might be needed or already in progress. */
9326c9b2 627static bool mapping_needs_writeback(struct address_space *mapping)
1da177e4 628{
875d91b1
KK
629 if (dax_mapping(mapping))
630 return mapping->nrexceptional;
631
632 return mapping->nrpages;
1da177e4 633}
1da177e4 634
485bb99b
RD
635/**
636 * filemap_write_and_wait_range - write out & wait on a file range
637 * @mapping: the address_space for the pages
638 * @lstart: offset in bytes where the range starts
639 * @lend: offset in bytes where the range ends (inclusive)
640 *
469eb4d0
AM
641 * Write out and wait upon file offsets lstart->lend, inclusive.
642 *
0e056eb5 643 * Note that @lend is inclusive (describes the last byte to be written) so
469eb4d0 644 * that this function can be used to write to the very end-of-file (end = -1).
a862f68a
MR
645 *
646 * Return: error status of the address space.
469eb4d0 647 */
1da177e4
LT
648int filemap_write_and_wait_range(struct address_space *mapping,
649 loff_t lstart, loff_t lend)
650{
28fd1298 651 int err = 0;
1da177e4 652
9326c9b2 653 if (mapping_needs_writeback(mapping)) {
28fd1298
OH
654 err = __filemap_fdatawrite_range(mapping, lstart, lend,
655 WB_SYNC_ALL);
ddf8f376
IW
656 /*
657 * Even if the above returned error, the pages may be
658 * written partially (e.g. -ENOSPC), so we wait for it.
659 * But the -EIO is special case, it may indicate the worst
660 * thing (e.g. bug) happened, so we avoid waiting for it.
661 */
28fd1298 662 if (err != -EIO) {
94004ed7
CH
663 int err2 = filemap_fdatawait_range(mapping,
664 lstart, lend);
28fd1298
OH
665 if (!err)
666 err = err2;
cbeaf951
JL
667 } else {
668 /* Clear any previously stored errors */
669 filemap_check_errors(mapping);
28fd1298 670 }
865ffef3
DM
671 } else {
672 err = filemap_check_errors(mapping);
1da177e4 673 }
28fd1298 674 return err;
1da177e4 675}
f6995585 676EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 677
5660e13d
JL
678void __filemap_set_wb_err(struct address_space *mapping, int err)
679{
3acdfd28 680 errseq_t eseq = errseq_set(&mapping->wb_err, err);
5660e13d
JL
681
682 trace_filemap_set_wb_err(mapping, eseq);
683}
684EXPORT_SYMBOL(__filemap_set_wb_err);
685
686/**
687 * file_check_and_advance_wb_err - report wb error (if any) that was previously
688 * and advance wb_err to current one
689 * @file: struct file on which the error is being reported
690 *
691 * When userland calls fsync (or something like nfsd does the equivalent), we
692 * want to report any writeback errors that occurred since the last fsync (or
693 * since the file was opened if there haven't been any).
694 *
695 * Grab the wb_err from the mapping. If it matches what we have in the file,
696 * then just quickly return 0. The file is all caught up.
697 *
698 * If it doesn't match, then take the mapping value, set the "seen" flag in
699 * it and try to swap it into place. If it works, or another task beat us
700 * to it with the new value, then update the f_wb_err and return the error
701 * portion. The error at this point must be reported via proper channels
702 * (a'la fsync, or NFS COMMIT operation, etc.).
703 *
704 * While we handle mapping->wb_err with atomic operations, the f_wb_err
705 * value is protected by the f_lock since we must ensure that it reflects
706 * the latest value swapped in for this file descriptor.
a862f68a
MR
707 *
708 * Return: %0 on success, negative error code otherwise.
5660e13d
JL
709 */
710int file_check_and_advance_wb_err(struct file *file)
711{
712 int err = 0;
713 errseq_t old = READ_ONCE(file->f_wb_err);
714 struct address_space *mapping = file->f_mapping;
715
716 /* Locklessly handle the common case where nothing has changed */
717 if (errseq_check(&mapping->wb_err, old)) {
718 /* Something changed, must use slow path */
719 spin_lock(&file->f_lock);
720 old = file->f_wb_err;
721 err = errseq_check_and_advance(&mapping->wb_err,
722 &file->f_wb_err);
723 trace_file_check_and_advance_wb_err(file, old);
724 spin_unlock(&file->f_lock);
725 }
f4e222c5
JL
726
727 /*
728 * We're mostly using this function as a drop in replacement for
729 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
730 * that the legacy code would have had on these flags.
731 */
732 clear_bit(AS_EIO, &mapping->flags);
733 clear_bit(AS_ENOSPC, &mapping->flags);
5660e13d
JL
734 return err;
735}
736EXPORT_SYMBOL(file_check_and_advance_wb_err);
737
738/**
739 * file_write_and_wait_range - write out & wait on a file range
740 * @file: file pointing to address_space with pages
741 * @lstart: offset in bytes where the range starts
742 * @lend: offset in bytes where the range ends (inclusive)
743 *
744 * Write out and wait upon file offsets lstart->lend, inclusive.
745 *
746 * Note that @lend is inclusive (describes the last byte to be written) so
747 * that this function can be used to write to the very end-of-file (end = -1).
748 *
749 * After writing out and waiting on the data, we check and advance the
750 * f_wb_err cursor to the latest value, and return any errors detected there.
a862f68a
MR
751 *
752 * Return: %0 on success, negative error code otherwise.
5660e13d
JL
753 */
754int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
755{
756 int err = 0, err2;
757 struct address_space *mapping = file->f_mapping;
758
9326c9b2 759 if (mapping_needs_writeback(mapping)) {
5660e13d
JL
760 err = __filemap_fdatawrite_range(mapping, lstart, lend,
761 WB_SYNC_ALL);
762 /* See comment of filemap_write_and_wait() */
763 if (err != -EIO)
764 __filemap_fdatawait_range(mapping, lstart, lend);
765 }
766 err2 = file_check_and_advance_wb_err(file);
767 if (!err)
768 err = err2;
769 return err;
770}
771EXPORT_SYMBOL(file_write_and_wait_range);
772
ef6a3c63
MS
773/**
774 * replace_page_cache_page - replace a pagecache page with a new one
775 * @old: page to be replaced
776 * @new: page to replace with
777 * @gfp_mask: allocation mode
778 *
779 * This function replaces a page in the pagecache with a new one. On
780 * success it acquires the pagecache reference for the new page and
781 * drops it for the old page. Both the old and new pages must be
782 * locked. This function does not add the new page to the LRU, the
783 * caller must do that.
784 *
74d60958 785 * The remove + add is atomic. This function cannot fail.
a862f68a
MR
786 *
787 * Return: %0
ef6a3c63
MS
788 */
789int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
790{
74d60958
MW
791 struct address_space *mapping = old->mapping;
792 void (*freepage)(struct page *) = mapping->a_ops->freepage;
793 pgoff_t offset = old->index;
794 XA_STATE(xas, &mapping->i_pages, offset);
795 unsigned long flags;
ef6a3c63 796
309381fe
SL
797 VM_BUG_ON_PAGE(!PageLocked(old), old);
798 VM_BUG_ON_PAGE(!PageLocked(new), new);
799 VM_BUG_ON_PAGE(new->mapping, new);
ef6a3c63 800
74d60958
MW
801 get_page(new);
802 new->mapping = mapping;
803 new->index = offset;
ef6a3c63 804
74d60958
MW
805 xas_lock_irqsave(&xas, flags);
806 xas_store(&xas, new);
4165b9b4 807
74d60958
MW
808 old->mapping = NULL;
809 /* hugetlb pages do not participate in page cache accounting. */
810 if (!PageHuge(old))
811 __dec_node_page_state(new, NR_FILE_PAGES);
812 if (!PageHuge(new))
813 __inc_node_page_state(new, NR_FILE_PAGES);
814 if (PageSwapBacked(old))
815 __dec_node_page_state(new, NR_SHMEM);
816 if (PageSwapBacked(new))
817 __inc_node_page_state(new, NR_SHMEM);
818 xas_unlock_irqrestore(&xas, flags);
819 mem_cgroup_migrate(old, new);
820 if (freepage)
821 freepage(old);
822 put_page(old);
ef6a3c63 823
74d60958 824 return 0;
ef6a3c63
MS
825}
826EXPORT_SYMBOL_GPL(replace_page_cache_page);
827
a528910e
JW
828static int __add_to_page_cache_locked(struct page *page,
829 struct address_space *mapping,
830 pgoff_t offset, gfp_t gfp_mask,
831 void **shadowp)
1da177e4 832{
74d60958 833 XA_STATE(xas, &mapping->i_pages, offset);
00501b53
JW
834 int huge = PageHuge(page);
835 struct mem_cgroup *memcg;
e286781d 836 int error;
74d60958 837 void *old;
e286781d 838
309381fe
SL
839 VM_BUG_ON_PAGE(!PageLocked(page), page);
840 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
74d60958 841 mapping_set_update(&xas, mapping);
e286781d 842
00501b53
JW
843 if (!huge) {
844 error = mem_cgroup_try_charge(page, current->mm,
f627c2f5 845 gfp_mask, &memcg, false);
00501b53
JW
846 if (error)
847 return error;
848 }
1da177e4 849
09cbfeaf 850 get_page(page);
66a0c8ee
KS
851 page->mapping = mapping;
852 page->index = offset;
853
74d60958
MW
854 do {
855 xas_lock_irq(&xas);
856 old = xas_load(&xas);
857 if (old && !xa_is_value(old))
858 xas_set_err(&xas, -EEXIST);
859 xas_store(&xas, page);
860 if (xas_error(&xas))
861 goto unlock;
862
863 if (xa_is_value(old)) {
864 mapping->nrexceptional--;
865 if (shadowp)
866 *shadowp = old;
867 }
868 mapping->nrpages++;
869
870 /* hugetlb pages do not participate in page cache accounting */
871 if (!huge)
872 __inc_node_page_state(page, NR_FILE_PAGES);
873unlock:
874 xas_unlock_irq(&xas);
875 } while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK));
876
877 if (xas_error(&xas))
878 goto error;
4165b9b4 879
00501b53 880 if (!huge)
f627c2f5 881 mem_cgroup_commit_charge(page, memcg, false, false);
66a0c8ee
KS
882 trace_mm_filemap_add_to_page_cache(page);
883 return 0;
74d60958 884error:
66a0c8ee
KS
885 page->mapping = NULL;
886 /* Leave page->index set: truncation relies upon it */
00501b53 887 if (!huge)
f627c2f5 888 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 889 put_page(page);
74d60958 890 return xas_error(&xas);
1da177e4 891}
cfcbfb13 892ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
a528910e
JW
893
894/**
895 * add_to_page_cache_locked - add a locked page to the pagecache
896 * @page: page to add
897 * @mapping: the page's address_space
898 * @offset: page index
899 * @gfp_mask: page allocation mode
900 *
901 * This function is used to add a page to the pagecache. It must be locked.
902 * This function does not add the page to the LRU. The caller must do that.
a862f68a
MR
903 *
904 * Return: %0 on success, negative error code otherwise.
a528910e
JW
905 */
906int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
907 pgoff_t offset, gfp_t gfp_mask)
908{
909 return __add_to_page_cache_locked(page, mapping, offset,
910 gfp_mask, NULL);
911}
e286781d 912EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4
LT
913
914int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 915 pgoff_t offset, gfp_t gfp_mask)
1da177e4 916{
a528910e 917 void *shadow = NULL;
4f98a2fe
RR
918 int ret;
919
48c935ad 920 __SetPageLocked(page);
a528910e
JW
921 ret = __add_to_page_cache_locked(page, mapping, offset,
922 gfp_mask, &shadow);
923 if (unlikely(ret))
48c935ad 924 __ClearPageLocked(page);
a528910e
JW
925 else {
926 /*
927 * The page might have been evicted from cache only
928 * recently, in which case it should be activated like
929 * any other repeatedly accessed page.
f0281a00
RR
930 * The exception is pages getting rewritten; evicting other
931 * data from the working set, only to cache data that will
932 * get overwritten with something else, is a waste of memory.
a528910e 933 */
1899ad18
JW
934 WARN_ON_ONCE(PageActive(page));
935 if (!(gfp_mask & __GFP_WRITE) && shadow)
936 workingset_refault(page, shadow);
a528910e
JW
937 lru_cache_add(page);
938 }
1da177e4
LT
939 return ret;
940}
18bc0bbd 941EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1da177e4 942
44110fe3 943#ifdef CONFIG_NUMA
2ae88149 944struct page *__page_cache_alloc(gfp_t gfp)
44110fe3 945{
c0ff7453
MX
946 int n;
947 struct page *page;
948
44110fe3 949 if (cpuset_do_page_mem_spread()) {
cc9a6c87
MG
950 unsigned int cpuset_mems_cookie;
951 do {
d26914d1 952 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 953 n = cpuset_mem_spread_node();
96db800f 954 page = __alloc_pages_node(n, gfp, 0);
d26914d1 955 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
cc9a6c87 956
c0ff7453 957 return page;
44110fe3 958 }
2ae88149 959 return alloc_pages(gfp, 0);
44110fe3 960}
2ae88149 961EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
962#endif
963
1da177e4
LT
964/*
965 * In order to wait for pages to become available there must be
966 * waitqueues associated with pages. By using a hash table of
967 * waitqueues where the bucket discipline is to maintain all
968 * waiters on the same queue and wake all when any of the pages
969 * become available, and for the woken contexts to check to be
970 * sure the appropriate page became available, this saves space
971 * at a cost of "thundering herd" phenomena during rare hash
972 * collisions.
973 */
62906027
NP
974#define PAGE_WAIT_TABLE_BITS 8
975#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
976static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
977
978static wait_queue_head_t *page_waitqueue(struct page *page)
1da177e4 979{
62906027 980 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
1da177e4 981}
1da177e4 982
62906027 983void __init pagecache_init(void)
1da177e4 984{
62906027 985 int i;
1da177e4 986
62906027
NP
987 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
988 init_waitqueue_head(&page_wait_table[i]);
989
990 page_writeback_init();
1da177e4 991}
1da177e4 992
3510ca20 993/* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
62906027
NP
994struct wait_page_key {
995 struct page *page;
996 int bit_nr;
997 int page_match;
998};
999
1000struct wait_page_queue {
1001 struct page *page;
1002 int bit_nr;
ac6424b9 1003 wait_queue_entry_t wait;
62906027
NP
1004};
1005
ac6424b9 1006static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
f62e00cc 1007{
62906027
NP
1008 struct wait_page_key *key = arg;
1009 struct wait_page_queue *wait_page
1010 = container_of(wait, struct wait_page_queue, wait);
1011
1012 if (wait_page->page != key->page)
1013 return 0;
1014 key->page_match = 1;
f62e00cc 1015
62906027
NP
1016 if (wait_page->bit_nr != key->bit_nr)
1017 return 0;
3510ca20 1018
9a1ea439
HD
1019 /*
1020 * Stop walking if it's locked.
1021 * Is this safe if put_and_wait_on_page_locked() is in use?
1022 * Yes: the waker must hold a reference to this page, and if PG_locked
1023 * has now already been set by another task, that task must also hold
1024 * a reference to the *same usage* of this page; so there is no need
1025 * to walk on to wake even the put_and_wait_on_page_locked() callers.
1026 */
62906027 1027 if (test_bit(key->bit_nr, &key->page->flags))
3510ca20 1028 return -1;
f62e00cc 1029
62906027 1030 return autoremove_wake_function(wait, mode, sync, key);
f62e00cc
KM
1031}
1032
74d81bfa 1033static void wake_up_page_bit(struct page *page, int bit_nr)
cbbce822 1034{
62906027
NP
1035 wait_queue_head_t *q = page_waitqueue(page);
1036 struct wait_page_key key;
1037 unsigned long flags;
11a19c7b 1038 wait_queue_entry_t bookmark;
cbbce822 1039
62906027
NP
1040 key.page = page;
1041 key.bit_nr = bit_nr;
1042 key.page_match = 0;
1043
11a19c7b
TC
1044 bookmark.flags = 0;
1045 bookmark.private = NULL;
1046 bookmark.func = NULL;
1047 INIT_LIST_HEAD(&bookmark.entry);
1048
62906027 1049 spin_lock_irqsave(&q->lock, flags);
11a19c7b
TC
1050 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1051
1052 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1053 /*
1054 * Take a breather from holding the lock,
1055 * allow pages that finish wake up asynchronously
1056 * to acquire the lock and remove themselves
1057 * from wait queue
1058 */
1059 spin_unlock_irqrestore(&q->lock, flags);
1060 cpu_relax();
1061 spin_lock_irqsave(&q->lock, flags);
1062 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1063 }
1064
62906027
NP
1065 /*
1066 * It is possible for other pages to have collided on the waitqueue
1067 * hash, so in that case check for a page match. That prevents a long-
1068 * term waiter
1069 *
1070 * It is still possible to miss a case here, when we woke page waiters
1071 * and removed them from the waitqueue, but there are still other
1072 * page waiters.
1073 */
1074 if (!waitqueue_active(q) || !key.page_match) {
1075 ClearPageWaiters(page);
1076 /*
1077 * It's possible to miss clearing Waiters here, when we woke
1078 * our page waiters, but the hashed waitqueue has waiters for
1079 * other pages on it.
1080 *
1081 * That's okay, it's a rare case. The next waker will clear it.
1082 */
1083 }
1084 spin_unlock_irqrestore(&q->lock, flags);
1085}
74d81bfa
NP
1086
1087static void wake_up_page(struct page *page, int bit)
1088{
1089 if (!PageWaiters(page))
1090 return;
1091 wake_up_page_bit(page, bit);
1092}
62906027 1093
9a1ea439
HD
1094/*
1095 * A choice of three behaviors for wait_on_page_bit_common():
1096 */
1097enum behavior {
1098 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
1099 * __lock_page() waiting on then setting PG_locked.
1100 */
1101 SHARED, /* Hold ref to page and check the bit when woken, like
1102 * wait_on_page_writeback() waiting on PG_writeback.
1103 */
1104 DROP, /* Drop ref to page before wait, no check when woken,
1105 * like put_and_wait_on_page_locked() on PG_locked.
1106 */
1107};
1108
62906027 1109static inline int wait_on_page_bit_common(wait_queue_head_t *q,
9a1ea439 1110 struct page *page, int bit_nr, int state, enum behavior behavior)
62906027
NP
1111{
1112 struct wait_page_queue wait_page;
ac6424b9 1113 wait_queue_entry_t *wait = &wait_page.wait;
9a1ea439 1114 bool bit_is_set;
b1d29ba8 1115 bool thrashing = false;
9a1ea439 1116 bool delayacct = false;
eb414681 1117 unsigned long pflags;
62906027
NP
1118 int ret = 0;
1119
eb414681 1120 if (bit_nr == PG_locked &&
b1d29ba8 1121 !PageUptodate(page) && PageWorkingset(page)) {
9a1ea439 1122 if (!PageSwapBacked(page)) {
eb414681 1123 delayacct_thrashing_start();
9a1ea439
HD
1124 delayacct = true;
1125 }
eb414681 1126 psi_memstall_enter(&pflags);
b1d29ba8
JW
1127 thrashing = true;
1128 }
1129
62906027 1130 init_wait(wait);
9a1ea439 1131 wait->flags = behavior == EXCLUSIVE ? WQ_FLAG_EXCLUSIVE : 0;
62906027
NP
1132 wait->func = wake_page_function;
1133 wait_page.page = page;
1134 wait_page.bit_nr = bit_nr;
1135
1136 for (;;) {
1137 spin_lock_irq(&q->lock);
1138
2055da97 1139 if (likely(list_empty(&wait->entry))) {
3510ca20 1140 __add_wait_queue_entry_tail(q, wait);
62906027
NP
1141 SetPageWaiters(page);
1142 }
1143
1144 set_current_state(state);
1145
1146 spin_unlock_irq(&q->lock);
1147
9a1ea439
HD
1148 bit_is_set = test_bit(bit_nr, &page->flags);
1149 if (behavior == DROP)
1150 put_page(page);
1151
1152 if (likely(bit_is_set))
62906027 1153 io_schedule();
62906027 1154
9a1ea439 1155 if (behavior == EXCLUSIVE) {
62906027
NP
1156 if (!test_and_set_bit_lock(bit_nr, &page->flags))
1157 break;
9a1ea439 1158 } else if (behavior == SHARED) {
62906027
NP
1159 if (!test_bit(bit_nr, &page->flags))
1160 break;
1161 }
a8b169af 1162
fa45f116 1163 if (signal_pending_state(state, current)) {
a8b169af
LT
1164 ret = -EINTR;
1165 break;
1166 }
9a1ea439
HD
1167
1168 if (behavior == DROP) {
1169 /*
1170 * We can no longer safely access page->flags:
1171 * even if CONFIG_MEMORY_HOTREMOVE is not enabled,
1172 * there is a risk of waiting forever on a page reused
1173 * for something that keeps it locked indefinitely.
1174 * But best check for -EINTR above before breaking.
1175 */
1176 break;
1177 }
62906027
NP
1178 }
1179
1180 finish_wait(q, wait);
1181
eb414681 1182 if (thrashing) {
9a1ea439 1183 if (delayacct)
eb414681
JW
1184 delayacct_thrashing_end();
1185 psi_memstall_leave(&pflags);
1186 }
b1d29ba8 1187
62906027
NP
1188 /*
1189 * A signal could leave PageWaiters set. Clearing it here if
1190 * !waitqueue_active would be possible (by open-coding finish_wait),
1191 * but still fail to catch it in the case of wait hash collision. We
1192 * already can fail to clear wait hash collision cases, so don't
1193 * bother with signals either.
1194 */
1195
1196 return ret;
1197}
1198
1199void wait_on_page_bit(struct page *page, int bit_nr)
1200{
1201 wait_queue_head_t *q = page_waitqueue(page);
9a1ea439 1202 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
62906027
NP
1203}
1204EXPORT_SYMBOL(wait_on_page_bit);
1205
1206int wait_on_page_bit_killable(struct page *page, int bit_nr)
1207{
1208 wait_queue_head_t *q = page_waitqueue(page);
9a1ea439 1209 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
cbbce822 1210}
4343d008 1211EXPORT_SYMBOL(wait_on_page_bit_killable);
cbbce822 1212
9a1ea439
HD
1213/**
1214 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1215 * @page: The page to wait for.
1216 *
1217 * The caller should hold a reference on @page. They expect the page to
1218 * become unlocked relatively soon, but do not wish to hold up migration
1219 * (for example) by holding the reference while waiting for the page to
1220 * come unlocked. After this function returns, the caller should not
1221 * dereference @page.
1222 */
1223void put_and_wait_on_page_locked(struct page *page)
1224{
1225 wait_queue_head_t *q;
1226
1227 page = compound_head(page);
1228 q = page_waitqueue(page);
1229 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP);
1230}
1231
385e1ca5
DH
1232/**
1233 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
697f619f
RD
1234 * @page: Page defining the wait queue of interest
1235 * @waiter: Waiter to add to the queue
385e1ca5
DH
1236 *
1237 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1238 */
ac6424b9 1239void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
385e1ca5
DH
1240{
1241 wait_queue_head_t *q = page_waitqueue(page);
1242 unsigned long flags;
1243
1244 spin_lock_irqsave(&q->lock, flags);
9c3a815f 1245 __add_wait_queue_entry_tail(q, waiter);
62906027 1246 SetPageWaiters(page);
385e1ca5
DH
1247 spin_unlock_irqrestore(&q->lock, flags);
1248}
1249EXPORT_SYMBOL_GPL(add_page_wait_queue);
1250
b91e1302
LT
1251#ifndef clear_bit_unlock_is_negative_byte
1252
1253/*
1254 * PG_waiters is the high bit in the same byte as PG_lock.
1255 *
1256 * On x86 (and on many other architectures), we can clear PG_lock and
1257 * test the sign bit at the same time. But if the architecture does
1258 * not support that special operation, we just do this all by hand
1259 * instead.
1260 *
1261 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1262 * being cleared, but a memory barrier should be unneccssary since it is
1263 * in the same byte as PG_locked.
1264 */
1265static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1266{
1267 clear_bit_unlock(nr, mem);
1268 /* smp_mb__after_atomic(); */
98473f9f 1269 return test_bit(PG_waiters, mem);
b91e1302
LT
1270}
1271
1272#endif
1273
1da177e4 1274/**
485bb99b 1275 * unlock_page - unlock a locked page
1da177e4
LT
1276 * @page: the page
1277 *
1278 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1279 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
da3dae54 1280 * mechanism between PageLocked pages and PageWriteback pages is shared.
1da177e4
LT
1281 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1282 *
b91e1302
LT
1283 * Note that this depends on PG_waiters being the sign bit in the byte
1284 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1285 * clear the PG_locked bit and test PG_waiters at the same time fairly
1286 * portably (architectures that do LL/SC can test any bit, while x86 can
1287 * test the sign bit).
1da177e4 1288 */
920c7a5d 1289void unlock_page(struct page *page)
1da177e4 1290{
b91e1302 1291 BUILD_BUG_ON(PG_waiters != 7);
48c935ad 1292 page = compound_head(page);
309381fe 1293 VM_BUG_ON_PAGE(!PageLocked(page), page);
b91e1302
LT
1294 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1295 wake_up_page_bit(page, PG_locked);
1da177e4
LT
1296}
1297EXPORT_SYMBOL(unlock_page);
1298
485bb99b
RD
1299/**
1300 * end_page_writeback - end writeback against a page
1301 * @page: the page
1da177e4
LT
1302 */
1303void end_page_writeback(struct page *page)
1304{
888cf2db
MG
1305 /*
1306 * TestClearPageReclaim could be used here but it is an atomic
1307 * operation and overkill in this particular case. Failing to
1308 * shuffle a page marked for immediate reclaim is too mild to
1309 * justify taking an atomic operation penalty at the end of
1310 * ever page writeback.
1311 */
1312 if (PageReclaim(page)) {
1313 ClearPageReclaim(page);
ac6aadb2 1314 rotate_reclaimable_page(page);
888cf2db 1315 }
ac6aadb2
MS
1316
1317 if (!test_clear_page_writeback(page))
1318 BUG();
1319
4e857c58 1320 smp_mb__after_atomic();
1da177e4
LT
1321 wake_up_page(page, PG_writeback);
1322}
1323EXPORT_SYMBOL(end_page_writeback);
1324
57d99845
MW
1325/*
1326 * After completing I/O on a page, call this routine to update the page
1327 * flags appropriately
1328 */
c11f0c0b 1329void page_endio(struct page *page, bool is_write, int err)
57d99845 1330{
c11f0c0b 1331 if (!is_write) {
57d99845
MW
1332 if (!err) {
1333 SetPageUptodate(page);
1334 } else {
1335 ClearPageUptodate(page);
1336 SetPageError(page);
1337 }
1338 unlock_page(page);
abf54548 1339 } else {
57d99845 1340 if (err) {
dd8416c4
MK
1341 struct address_space *mapping;
1342
57d99845 1343 SetPageError(page);
dd8416c4
MK
1344 mapping = page_mapping(page);
1345 if (mapping)
1346 mapping_set_error(mapping, err);
57d99845
MW
1347 }
1348 end_page_writeback(page);
1349 }
1350}
1351EXPORT_SYMBOL_GPL(page_endio);
1352
485bb99b
RD
1353/**
1354 * __lock_page - get a lock on the page, assuming we need to sleep to get it
87066755 1355 * @__page: the page to lock
1da177e4 1356 */
62906027 1357void __lock_page(struct page *__page)
1da177e4 1358{
62906027
NP
1359 struct page *page = compound_head(__page);
1360 wait_queue_head_t *q = page_waitqueue(page);
9a1ea439
HD
1361 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1362 EXCLUSIVE);
1da177e4
LT
1363}
1364EXPORT_SYMBOL(__lock_page);
1365
62906027 1366int __lock_page_killable(struct page *__page)
2687a356 1367{
62906027
NP
1368 struct page *page = compound_head(__page);
1369 wait_queue_head_t *q = page_waitqueue(page);
9a1ea439
HD
1370 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1371 EXCLUSIVE);
2687a356 1372}
18bc0bbd 1373EXPORT_SYMBOL_GPL(__lock_page_killable);
2687a356 1374
9a95f3cf
PC
1375/*
1376 * Return values:
1377 * 1 - page is locked; mmap_sem is still held.
1378 * 0 - page is not locked.
1379 * mmap_sem has been released (up_read()), unless flags had both
1380 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1381 * which case mmap_sem is still held.
1382 *
1383 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1384 * with the page locked and the mmap_sem unperturbed.
1385 */
d065bd81
ML
1386int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1387 unsigned int flags)
1388{
37b23e05
KM
1389 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1390 /*
1391 * CAUTION! In this case, mmap_sem is not released
1392 * even though return 0.
1393 */
1394 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1395 return 0;
1396
1397 up_read(&mm->mmap_sem);
1398 if (flags & FAULT_FLAG_KILLABLE)
1399 wait_on_page_locked_killable(page);
1400 else
318b275f 1401 wait_on_page_locked(page);
d065bd81 1402 return 0;
37b23e05
KM
1403 } else {
1404 if (flags & FAULT_FLAG_KILLABLE) {
1405 int ret;
1406
1407 ret = __lock_page_killable(page);
1408 if (ret) {
1409 up_read(&mm->mmap_sem);
1410 return 0;
1411 }
1412 } else
1413 __lock_page(page);
1414 return 1;
d065bd81
ML
1415 }
1416}
1417
e7b563bb 1418/**
0d3f9296
MW
1419 * page_cache_next_miss() - Find the next gap in the page cache.
1420 * @mapping: Mapping.
1421 * @index: Index.
1422 * @max_scan: Maximum range to search.
e7b563bb 1423 *
0d3f9296
MW
1424 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1425 * gap with the lowest index.
e7b563bb 1426 *
0d3f9296
MW
1427 * This function may be called under the rcu_read_lock. However, this will
1428 * not atomically search a snapshot of the cache at a single point in time.
1429 * For example, if a gap is created at index 5, then subsequently a gap is
1430 * created at index 10, page_cache_next_miss covering both indices may
1431 * return 10 if called under the rcu_read_lock.
e7b563bb 1432 *
0d3f9296
MW
1433 * Return: The index of the gap if found, otherwise an index outside the
1434 * range specified (in which case 'return - index >= max_scan' will be true).
1435 * In the rare case of index wrap-around, 0 will be returned.
e7b563bb 1436 */
0d3f9296 1437pgoff_t page_cache_next_miss(struct address_space *mapping,
e7b563bb
JW
1438 pgoff_t index, unsigned long max_scan)
1439{
0d3f9296 1440 XA_STATE(xas, &mapping->i_pages, index);
e7b563bb 1441
0d3f9296
MW
1442 while (max_scan--) {
1443 void *entry = xas_next(&xas);
1444 if (!entry || xa_is_value(entry))
e7b563bb 1445 break;
0d3f9296 1446 if (xas.xa_index == 0)
e7b563bb
JW
1447 break;
1448 }
1449
0d3f9296 1450 return xas.xa_index;
e7b563bb 1451}
0d3f9296 1452EXPORT_SYMBOL(page_cache_next_miss);
e7b563bb
JW
1453
1454/**
2346a560 1455 * page_cache_prev_miss() - Find the previous gap in the page cache.
0d3f9296
MW
1456 * @mapping: Mapping.
1457 * @index: Index.
1458 * @max_scan: Maximum range to search.
e7b563bb 1459 *
0d3f9296
MW
1460 * Search the range [max(index - max_scan + 1, 0), index] for the
1461 * gap with the highest index.
e7b563bb 1462 *
0d3f9296
MW
1463 * This function may be called under the rcu_read_lock. However, this will
1464 * not atomically search a snapshot of the cache at a single point in time.
1465 * For example, if a gap is created at index 10, then subsequently a gap is
1466 * created at index 5, page_cache_prev_miss() covering both indices may
1467 * return 5 if called under the rcu_read_lock.
e7b563bb 1468 *
0d3f9296
MW
1469 * Return: The index of the gap if found, otherwise an index outside the
1470 * range specified (in which case 'index - return >= max_scan' will be true).
1471 * In the rare case of wrap-around, ULONG_MAX will be returned.
e7b563bb 1472 */
0d3f9296 1473pgoff_t page_cache_prev_miss(struct address_space *mapping,
e7b563bb
JW
1474 pgoff_t index, unsigned long max_scan)
1475{
0d3f9296 1476 XA_STATE(xas, &mapping->i_pages, index);
e7b563bb 1477
0d3f9296
MW
1478 while (max_scan--) {
1479 void *entry = xas_prev(&xas);
1480 if (!entry || xa_is_value(entry))
e7b563bb 1481 break;
0d3f9296 1482 if (xas.xa_index == ULONG_MAX)
e7b563bb
JW
1483 break;
1484 }
1485
0d3f9296 1486 return xas.xa_index;
e7b563bb 1487}
0d3f9296 1488EXPORT_SYMBOL(page_cache_prev_miss);
e7b563bb 1489
485bb99b 1490/**
0cd6144a 1491 * find_get_entry - find and get a page cache entry
485bb99b 1492 * @mapping: the address_space to search
0cd6144a
JW
1493 * @offset: the page cache index
1494 *
1495 * Looks up the page cache slot at @mapping & @offset. If there is a
1496 * page cache page, it is returned with an increased refcount.
485bb99b 1497 *
139b6a6f
JW
1498 * If the slot holds a shadow entry of a previously evicted page, or a
1499 * swap entry from shmem/tmpfs, it is returned.
0cd6144a 1500 *
a862f68a 1501 * Return: the found page or shadow entry, %NULL if nothing is found.
1da177e4 1502 */
0cd6144a 1503struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1da177e4 1504{
4c7472c0 1505 XA_STATE(xas, &mapping->i_pages, offset);
4101196b 1506 struct page *page;
1da177e4 1507
a60637c8
NP
1508 rcu_read_lock();
1509repeat:
4c7472c0
MW
1510 xas_reset(&xas);
1511 page = xas_load(&xas);
1512 if (xas_retry(&xas, page))
1513 goto repeat;
1514 /*
1515 * A shadow entry of a recently evicted page, or a swap entry from
1516 * shmem/tmpfs. Return it without attempting to raise page count.
1517 */
1518 if (!page || xa_is_value(page))
1519 goto out;
83929372 1520
4101196b 1521 if (!page_cache_get_speculative(page))
4c7472c0 1522 goto repeat;
83929372 1523
4c7472c0 1524 /*
4101196b 1525 * Has the page moved or been split?
4c7472c0
MW
1526 * This is part of the lockless pagecache protocol. See
1527 * include/linux/pagemap.h for details.
1528 */
1529 if (unlikely(page != xas_reload(&xas))) {
4101196b 1530 put_page(page);
4c7472c0 1531 goto repeat;
a60637c8 1532 }
4101196b 1533 page = find_subpage(page, offset);
27d20fdd 1534out:
a60637c8
NP
1535 rcu_read_unlock();
1536
1da177e4
LT
1537 return page;
1538}
1da177e4 1539
0cd6144a
JW
1540/**
1541 * find_lock_entry - locate, pin and lock a page cache entry
1542 * @mapping: the address_space to search
1543 * @offset: the page cache index
1544 *
1545 * Looks up the page cache slot at @mapping & @offset. If there is a
1546 * page cache page, it is returned locked and with an increased
1547 * refcount.
1548 *
139b6a6f
JW
1549 * If the slot holds a shadow entry of a previously evicted page, or a
1550 * swap entry from shmem/tmpfs, it is returned.
0cd6144a 1551 *
0cd6144a 1552 * find_lock_entry() may sleep.
a862f68a
MR
1553 *
1554 * Return: the found page or shadow entry, %NULL if nothing is found.
0cd6144a
JW
1555 */
1556struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1da177e4
LT
1557{
1558 struct page *page;
1559
1da177e4 1560repeat:
0cd6144a 1561 page = find_get_entry(mapping, offset);
4c7472c0 1562 if (page && !xa_is_value(page)) {
a60637c8
NP
1563 lock_page(page);
1564 /* Has the page been truncated? */
83929372 1565 if (unlikely(page_mapping(page) != mapping)) {
a60637c8 1566 unlock_page(page);
09cbfeaf 1567 put_page(page);
a60637c8 1568 goto repeat;
1da177e4 1569 }
83929372 1570 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1da177e4 1571 }
1da177e4
LT
1572 return page;
1573}
0cd6144a
JW
1574EXPORT_SYMBOL(find_lock_entry);
1575
1576/**
2294b32e
MWO
1577 * pagecache_get_page - Find and get a reference to a page.
1578 * @mapping: The address_space to search.
1579 * @index: The page index.
1580 * @fgp_flags: %FGP flags modify how the page is returned.
1581 * @gfp_mask: Memory allocation flags to use if %FGP_CREAT is specified.
1da177e4 1582 *
2294b32e 1583 * Looks up the page cache entry at @mapping & @index.
0cd6144a 1584 *
2294b32e 1585 * @fgp_flags can be zero or more of these flags:
0e056eb5 1586 *
2294b32e
MWO
1587 * * %FGP_ACCESSED - The page will be marked accessed.
1588 * * %FGP_LOCK - The page is returned locked.
1589 * * %FGP_CREAT - If no page is present then a new page is allocated using
1590 * @gfp_mask and added to the page cache and the VM's LRU list.
1591 * The page is returned locked and with an increased refcount.
1592 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1593 * page is already in cache. If the page was allocated, unlock it before
1594 * returning so the caller can do the same dance.
1da177e4 1595 *
2294b32e
MWO
1596 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1597 * if the %GFP flags specified for %FGP_CREAT are atomic.
1da177e4 1598 *
2457aec6 1599 * If there is a page cache page, it is returned with an increased refcount.
a862f68a 1600 *
2294b32e 1601 * Return: The found page or %NULL otherwise.
1da177e4 1602 */
2294b32e
MWO
1603struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
1604 int fgp_flags, gfp_t gfp_mask)
1da177e4 1605{
eb2be189 1606 struct page *page;
2457aec6 1607
1da177e4 1608repeat:
2294b32e 1609 page = find_get_entry(mapping, index);
3159f943 1610 if (xa_is_value(page))
2457aec6
MG
1611 page = NULL;
1612 if (!page)
1613 goto no_page;
1614
1615 if (fgp_flags & FGP_LOCK) {
1616 if (fgp_flags & FGP_NOWAIT) {
1617 if (!trylock_page(page)) {
09cbfeaf 1618 put_page(page);
2457aec6
MG
1619 return NULL;
1620 }
1621 } else {
1622 lock_page(page);
1623 }
1624
1625 /* Has the page been truncated? */
31895438 1626 if (unlikely(compound_head(page)->mapping != mapping)) {
2457aec6 1627 unlock_page(page);
09cbfeaf 1628 put_page(page);
2457aec6
MG
1629 goto repeat;
1630 }
2294b32e 1631 VM_BUG_ON_PAGE(page->index != index, page);
2457aec6
MG
1632 }
1633
c16eb000 1634 if (fgp_flags & FGP_ACCESSED)
2457aec6
MG
1635 mark_page_accessed(page);
1636
1637no_page:
1638 if (!page && (fgp_flags & FGP_CREAT)) {
1639 int err;
1640 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
45f87de5
MH
1641 gfp_mask |= __GFP_WRITE;
1642 if (fgp_flags & FGP_NOFS)
1643 gfp_mask &= ~__GFP_FS;
2457aec6 1644
45f87de5 1645 page = __page_cache_alloc(gfp_mask);
eb2be189
NP
1646 if (!page)
1647 return NULL;
2457aec6 1648
a75d4c33 1649 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
2457aec6
MG
1650 fgp_flags |= FGP_LOCK;
1651
eb39d618 1652 /* Init accessed so avoid atomic mark_page_accessed later */
2457aec6 1653 if (fgp_flags & FGP_ACCESSED)
eb39d618 1654 __SetPageReferenced(page);
2457aec6 1655
2294b32e 1656 err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
eb2be189 1657 if (unlikely(err)) {
09cbfeaf 1658 put_page(page);
eb2be189
NP
1659 page = NULL;
1660 if (err == -EEXIST)
1661 goto repeat;
1da177e4 1662 }
a75d4c33
JB
1663
1664 /*
1665 * add_to_page_cache_lru locks the page, and for mmap we expect
1666 * an unlocked page.
1667 */
1668 if (page && (fgp_flags & FGP_FOR_MMAP))
1669 unlock_page(page);
1da177e4 1670 }
2457aec6 1671
1da177e4
LT
1672 return page;
1673}
2457aec6 1674EXPORT_SYMBOL(pagecache_get_page);
1da177e4 1675
0cd6144a
JW
1676/**
1677 * find_get_entries - gang pagecache lookup
1678 * @mapping: The address_space to search
1679 * @start: The starting page cache index
1680 * @nr_entries: The maximum number of entries
1681 * @entries: Where the resulting entries are placed
1682 * @indices: The cache indices corresponding to the entries in @entries
1683 *
1684 * find_get_entries() will search for and return a group of up to
1685 * @nr_entries entries in the mapping. The entries are placed at
1686 * @entries. find_get_entries() takes a reference against any actual
1687 * pages it returns.
1688 *
1689 * The search returns a group of mapping-contiguous page cache entries
1690 * with ascending indexes. There may be holes in the indices due to
1691 * not-present pages.
1692 *
139b6a6f
JW
1693 * Any shadow entries of evicted pages, or swap entries from
1694 * shmem/tmpfs, are included in the returned array.
0cd6144a 1695 *
a862f68a 1696 * Return: the number of pages and shadow entries which were found.
0cd6144a
JW
1697 */
1698unsigned find_get_entries(struct address_space *mapping,
1699 pgoff_t start, unsigned int nr_entries,
1700 struct page **entries, pgoff_t *indices)
1701{
f280bf09
MW
1702 XA_STATE(xas, &mapping->i_pages, start);
1703 struct page *page;
0cd6144a 1704 unsigned int ret = 0;
0cd6144a
JW
1705
1706 if (!nr_entries)
1707 return 0;
1708
1709 rcu_read_lock();
f280bf09 1710 xas_for_each(&xas, page, ULONG_MAX) {
f280bf09 1711 if (xas_retry(&xas, page))
0cd6144a 1712 continue;
f280bf09
MW
1713 /*
1714 * A shadow entry of a recently evicted page, a swap
1715 * entry from shmem/tmpfs or a DAX entry. Return it
1716 * without attempting to raise page count.
1717 */
1718 if (xa_is_value(page))
0cd6144a 1719 goto export;
83929372 1720
4101196b 1721 if (!page_cache_get_speculative(page))
f280bf09 1722 goto retry;
83929372 1723
4101196b 1724 /* Has the page moved or been split? */
f280bf09
MW
1725 if (unlikely(page != xas_reload(&xas)))
1726 goto put_page;
4101196b 1727 page = find_subpage(page, xas.xa_index);
f280bf09 1728
0cd6144a 1729export:
f280bf09 1730 indices[ret] = xas.xa_index;
0cd6144a
JW
1731 entries[ret] = page;
1732 if (++ret == nr_entries)
1733 break;
f280bf09
MW
1734 continue;
1735put_page:
4101196b 1736 put_page(page);
f280bf09
MW
1737retry:
1738 xas_reset(&xas);
0cd6144a
JW
1739 }
1740 rcu_read_unlock();
1741 return ret;
1742}
1743
1da177e4 1744/**
b947cee4 1745 * find_get_pages_range - gang pagecache lookup
1da177e4
LT
1746 * @mapping: The address_space to search
1747 * @start: The starting page index
b947cee4 1748 * @end: The final page index (inclusive)
1da177e4
LT
1749 * @nr_pages: The maximum number of pages
1750 * @pages: Where the resulting pages are placed
1751 *
b947cee4
JK
1752 * find_get_pages_range() will search for and return a group of up to @nr_pages
1753 * pages in the mapping starting at index @start and up to index @end
1754 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes
1755 * a reference against the returned pages.
1da177e4
LT
1756 *
1757 * The search returns a group of mapping-contiguous pages with ascending
1758 * indexes. There may be holes in the indices due to not-present pages.
d72dc8a2 1759 * We also update @start to index the next page for the traversal.
1da177e4 1760 *
a862f68a
MR
1761 * Return: the number of pages which were found. If this number is
1762 * smaller than @nr_pages, the end of specified range has been
b947cee4 1763 * reached.
1da177e4 1764 */
b947cee4
JK
1765unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1766 pgoff_t end, unsigned int nr_pages,
1767 struct page **pages)
1da177e4 1768{
fd1b3cee
MW
1769 XA_STATE(xas, &mapping->i_pages, *start);
1770 struct page *page;
0fc9d104
KK
1771 unsigned ret = 0;
1772
1773 if (unlikely(!nr_pages))
1774 return 0;
a60637c8
NP
1775
1776 rcu_read_lock();
fd1b3cee 1777 xas_for_each(&xas, page, end) {
fd1b3cee 1778 if (xas_retry(&xas, page))
a60637c8 1779 continue;
fd1b3cee
MW
1780 /* Skip over shadow, swap and DAX entries */
1781 if (xa_is_value(page))
8079b1c8 1782 continue;
a60637c8 1783
4101196b 1784 if (!page_cache_get_speculative(page))
fd1b3cee 1785 goto retry;
83929372 1786
4101196b 1787 /* Has the page moved or been split? */
fd1b3cee
MW
1788 if (unlikely(page != xas_reload(&xas)))
1789 goto put_page;
1da177e4 1790
4101196b 1791 pages[ret] = find_subpage(page, xas.xa_index);
b947cee4 1792 if (++ret == nr_pages) {
5d3ee42f 1793 *start = xas.xa_index + 1;
b947cee4
JK
1794 goto out;
1795 }
fd1b3cee
MW
1796 continue;
1797put_page:
4101196b 1798 put_page(page);
fd1b3cee
MW
1799retry:
1800 xas_reset(&xas);
a60637c8 1801 }
5b280c0c 1802
b947cee4
JK
1803 /*
1804 * We come here when there is no page beyond @end. We take care to not
1805 * overflow the index @start as it confuses some of the callers. This
fd1b3cee 1806 * breaks the iteration when there is a page at index -1 but that is
b947cee4
JK
1807 * already broken anyway.
1808 */
1809 if (end == (pgoff_t)-1)
1810 *start = (pgoff_t)-1;
1811 else
1812 *start = end + 1;
1813out:
a60637c8 1814 rcu_read_unlock();
d72dc8a2 1815
1da177e4
LT
1816 return ret;
1817}
1818
ebf43500
JA
1819/**
1820 * find_get_pages_contig - gang contiguous pagecache lookup
1821 * @mapping: The address_space to search
1822 * @index: The starting page index
1823 * @nr_pages: The maximum number of pages
1824 * @pages: Where the resulting pages are placed
1825 *
1826 * find_get_pages_contig() works exactly like find_get_pages(), except
1827 * that the returned number of pages are guaranteed to be contiguous.
1828 *
a862f68a 1829 * Return: the number of pages which were found.
ebf43500
JA
1830 */
1831unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1832 unsigned int nr_pages, struct page **pages)
1833{
3ece58a2
MW
1834 XA_STATE(xas, &mapping->i_pages, index);
1835 struct page *page;
0fc9d104
KK
1836 unsigned int ret = 0;
1837
1838 if (unlikely(!nr_pages))
1839 return 0;
a60637c8
NP
1840
1841 rcu_read_lock();
3ece58a2 1842 for (page = xas_load(&xas); page; page = xas_next(&xas)) {
3ece58a2
MW
1843 if (xas_retry(&xas, page))
1844 continue;
1845 /*
1846 * If the entry has been swapped out, we can stop looking.
1847 * No current caller is looking for DAX entries.
1848 */
1849 if (xa_is_value(page))
8079b1c8 1850 break;
ebf43500 1851
4101196b 1852 if (!page_cache_get_speculative(page))
3ece58a2 1853 goto retry;
83929372 1854
4101196b 1855 /* Has the page moved or been split? */
3ece58a2
MW
1856 if (unlikely(page != xas_reload(&xas)))
1857 goto put_page;
a60637c8 1858
4101196b 1859 pages[ret] = find_subpage(page, xas.xa_index);
0fc9d104
KK
1860 if (++ret == nr_pages)
1861 break;
3ece58a2
MW
1862 continue;
1863put_page:
4101196b 1864 put_page(page);
3ece58a2
MW
1865retry:
1866 xas_reset(&xas);
ebf43500 1867 }
a60637c8
NP
1868 rcu_read_unlock();
1869 return ret;
ebf43500 1870}
ef71c15c 1871EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 1872
485bb99b 1873/**
72b045ae 1874 * find_get_pages_range_tag - find and return pages in given range matching @tag
485bb99b
RD
1875 * @mapping: the address_space to search
1876 * @index: the starting page index
72b045ae 1877 * @end: The final page index (inclusive)
485bb99b
RD
1878 * @tag: the tag index
1879 * @nr_pages: the maximum number of pages
1880 * @pages: where the resulting pages are placed
1881 *
1da177e4 1882 * Like find_get_pages, except we only return pages which are tagged with
485bb99b 1883 * @tag. We update @index to index the next page for the traversal.
a862f68a
MR
1884 *
1885 * Return: the number of pages which were found.
1da177e4 1886 */
72b045ae 1887unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
a6906972 1888 pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
72b045ae 1889 struct page **pages)
1da177e4 1890{
a6906972
MW
1891 XA_STATE(xas, &mapping->i_pages, *index);
1892 struct page *page;
0fc9d104
KK
1893 unsigned ret = 0;
1894
1895 if (unlikely(!nr_pages))
1896 return 0;
a60637c8
NP
1897
1898 rcu_read_lock();
a6906972 1899 xas_for_each_marked(&xas, page, end, tag) {
a6906972 1900 if (xas_retry(&xas, page))
a60637c8 1901 continue;
a6906972
MW
1902 /*
1903 * Shadow entries should never be tagged, but this iteration
1904 * is lockless so there is a window for page reclaim to evict
1905 * a page we saw tagged. Skip over it.
1906 */
1907 if (xa_is_value(page))
139b6a6f 1908 continue;
a60637c8 1909
4101196b 1910 if (!page_cache_get_speculative(page))
a6906972 1911 goto retry;
a60637c8 1912
4101196b 1913 /* Has the page moved or been split? */
a6906972
MW
1914 if (unlikely(page != xas_reload(&xas)))
1915 goto put_page;
a60637c8 1916
4101196b 1917 pages[ret] = find_subpage(page, xas.xa_index);
72b045ae 1918 if (++ret == nr_pages) {
5d3ee42f 1919 *index = xas.xa_index + 1;
72b045ae
JK
1920 goto out;
1921 }
a6906972
MW
1922 continue;
1923put_page:
4101196b 1924 put_page(page);
a6906972
MW
1925retry:
1926 xas_reset(&xas);
a60637c8 1927 }
5b280c0c 1928
72b045ae 1929 /*
a6906972 1930 * We come here when we got to @end. We take care to not overflow the
72b045ae 1931 * index @index as it confuses some of the callers. This breaks the
a6906972
MW
1932 * iteration when there is a page at index -1 but that is already
1933 * broken anyway.
72b045ae
JK
1934 */
1935 if (end == (pgoff_t)-1)
1936 *index = (pgoff_t)-1;
1937 else
1938 *index = end + 1;
1939out:
a60637c8 1940 rcu_read_unlock();
1da177e4 1941
1da177e4
LT
1942 return ret;
1943}
72b045ae 1944EXPORT_SYMBOL(find_get_pages_range_tag);
1da177e4 1945
76d42bd9
WF
1946/*
1947 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1948 * a _large_ part of the i/o request. Imagine the worst scenario:
1949 *
1950 * ---R__________________________________________B__________
1951 * ^ reading here ^ bad block(assume 4k)
1952 *
1953 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1954 * => failing the whole request => read(R) => read(R+1) =>
1955 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1956 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1957 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1958 *
1959 * It is going insane. Fix it by quickly scaling down the readahead size.
1960 */
0f8e2db4 1961static void shrink_readahead_size_eio(struct file_ra_state *ra)
76d42bd9 1962{
76d42bd9 1963 ra->ra_pages /= 4;
76d42bd9
WF
1964}
1965
485bb99b 1966/**
47c27bc4
CH
1967 * generic_file_buffered_read - generic file read routine
1968 * @iocb: the iocb to read
6e58e79d
AV
1969 * @iter: data destination
1970 * @written: already copied
485bb99b 1971 *
1da177e4 1972 * This is a generic file read routine, and uses the
485bb99b 1973 * mapping->a_ops->readpage() function for the actual low-level stuff.
1da177e4
LT
1974 *
1975 * This is really ugly. But the goto's actually try to clarify some
1976 * of the logic when it comes to error handling etc.
a862f68a
MR
1977 *
1978 * Return:
1979 * * total number of bytes copied, including those the were already @written
1980 * * negative error code if nothing was copied
1da177e4 1981 */
47c27bc4 1982static ssize_t generic_file_buffered_read(struct kiocb *iocb,
6e58e79d 1983 struct iov_iter *iter, ssize_t written)
1da177e4 1984{
47c27bc4 1985 struct file *filp = iocb->ki_filp;
36e78914 1986 struct address_space *mapping = filp->f_mapping;
1da177e4 1987 struct inode *inode = mapping->host;
36e78914 1988 struct file_ra_state *ra = &filp->f_ra;
47c27bc4 1989 loff_t *ppos = &iocb->ki_pos;
57f6b96c
FW
1990 pgoff_t index;
1991 pgoff_t last_index;
1992 pgoff_t prev_index;
1993 unsigned long offset; /* offset into pagecache page */
ec0f1637 1994 unsigned int prev_offset;
6e58e79d 1995 int error = 0;
1da177e4 1996
c2a9737f 1997 if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
d05c5f7b 1998 return 0;
c2a9737f
WF
1999 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2000
09cbfeaf
KS
2001 index = *ppos >> PAGE_SHIFT;
2002 prev_index = ra->prev_pos >> PAGE_SHIFT;
2003 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
2004 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2005 offset = *ppos & ~PAGE_MASK;
1da177e4 2006
1da177e4
LT
2007 for (;;) {
2008 struct page *page;
57f6b96c 2009 pgoff_t end_index;
a32ea1e1 2010 loff_t isize;
1da177e4
LT
2011 unsigned long nr, ret;
2012
1da177e4 2013 cond_resched();
1da177e4 2014find_page:
5abf186a
MH
2015 if (fatal_signal_pending(current)) {
2016 error = -EINTR;
2017 goto out;
2018 }
2019
1da177e4 2020 page = find_get_page(mapping, index);
3ea89ee8 2021 if (!page) {
3239d834
MT
2022 if (iocb->ki_flags & IOCB_NOWAIT)
2023 goto would_block;
cf914a7d 2024 page_cache_sync_readahead(mapping,
7ff81078 2025 ra, filp,
3ea89ee8
FW
2026 index, last_index - index);
2027 page = find_get_page(mapping, index);
2028 if (unlikely(page == NULL))
2029 goto no_cached_page;
2030 }
2031 if (PageReadahead(page)) {
cf914a7d 2032 page_cache_async_readahead(mapping,
7ff81078 2033 ra, filp, page,
3ea89ee8 2034 index, last_index - index);
1da177e4 2035 }
8ab22b9a 2036 if (!PageUptodate(page)) {
3239d834
MT
2037 if (iocb->ki_flags & IOCB_NOWAIT) {
2038 put_page(page);
2039 goto would_block;
2040 }
2041
ebded027
MG
2042 /*
2043 * See comment in do_read_cache_page on why
2044 * wait_on_page_locked is used to avoid unnecessarily
2045 * serialisations and why it's safe.
2046 */
c4b209a4
BVA
2047 error = wait_on_page_locked_killable(page);
2048 if (unlikely(error))
2049 goto readpage_error;
ebded027
MG
2050 if (PageUptodate(page))
2051 goto page_ok;
2052
09cbfeaf 2053 if (inode->i_blkbits == PAGE_SHIFT ||
8ab22b9a
HH
2054 !mapping->a_ops->is_partially_uptodate)
2055 goto page_not_up_to_date;
6d6d36bc 2056 /* pipes can't handle partially uptodate pages */
00e23707 2057 if (unlikely(iov_iter_is_pipe(iter)))
6d6d36bc 2058 goto page_not_up_to_date;
529ae9aa 2059 if (!trylock_page(page))
8ab22b9a 2060 goto page_not_up_to_date;
8d056cb9
DH
2061 /* Did it get truncated before we got the lock? */
2062 if (!page->mapping)
2063 goto page_not_up_to_date_locked;
8ab22b9a 2064 if (!mapping->a_ops->is_partially_uptodate(page,
6e58e79d 2065 offset, iter->count))
8ab22b9a
HH
2066 goto page_not_up_to_date_locked;
2067 unlock_page(page);
2068 }
1da177e4 2069page_ok:
a32ea1e1
N
2070 /*
2071 * i_size must be checked after we know the page is Uptodate.
2072 *
2073 * Checking i_size after the check allows us to calculate
2074 * the correct value for "nr", which means the zero-filled
2075 * part of the page is not copied back to userspace (unless
2076 * another truncate extends the file - this is desired though).
2077 */
2078
2079 isize = i_size_read(inode);
09cbfeaf 2080 end_index = (isize - 1) >> PAGE_SHIFT;
a32ea1e1 2081 if (unlikely(!isize || index > end_index)) {
09cbfeaf 2082 put_page(page);
a32ea1e1
N
2083 goto out;
2084 }
2085
2086 /* nr is the maximum number of bytes to copy from this page */
09cbfeaf 2087 nr = PAGE_SIZE;
a32ea1e1 2088 if (index == end_index) {
09cbfeaf 2089 nr = ((isize - 1) & ~PAGE_MASK) + 1;
a32ea1e1 2090 if (nr <= offset) {
09cbfeaf 2091 put_page(page);
a32ea1e1
N
2092 goto out;
2093 }
2094 }
2095 nr = nr - offset;
1da177e4
LT
2096
2097 /* If users can be writing to this page using arbitrary
2098 * virtual addresses, take care about potential aliasing
2099 * before reading the page on the kernel side.
2100 */
2101 if (mapping_writably_mapped(mapping))
2102 flush_dcache_page(page);
2103
2104 /*
ec0f1637
JK
2105 * When a sequential read accesses a page several times,
2106 * only mark it as accessed the first time.
1da177e4 2107 */
ec0f1637 2108 if (prev_index != index || offset != prev_offset)
1da177e4
LT
2109 mark_page_accessed(page);
2110 prev_index = index;
2111
2112 /*
2113 * Ok, we have the page, and it's up-to-date, so
2114 * now we can copy it to user space...
1da177e4 2115 */
6e58e79d
AV
2116
2117 ret = copy_page_to_iter(page, offset, nr, iter);
1da177e4 2118 offset += ret;
09cbfeaf
KS
2119 index += offset >> PAGE_SHIFT;
2120 offset &= ~PAGE_MASK;
6ce745ed 2121 prev_offset = offset;
1da177e4 2122
09cbfeaf 2123 put_page(page);
6e58e79d
AV
2124 written += ret;
2125 if (!iov_iter_count(iter))
2126 goto out;
2127 if (ret < nr) {
2128 error = -EFAULT;
2129 goto out;
2130 }
2131 continue;
1da177e4
LT
2132
2133page_not_up_to_date:
2134 /* Get exclusive access to the page ... */
85462323
ON
2135 error = lock_page_killable(page);
2136 if (unlikely(error))
2137 goto readpage_error;
1da177e4 2138
8ab22b9a 2139page_not_up_to_date_locked:
da6052f7 2140 /* Did it get truncated before we got the lock? */
1da177e4
LT
2141 if (!page->mapping) {
2142 unlock_page(page);
09cbfeaf 2143 put_page(page);
1da177e4
LT
2144 continue;
2145 }
2146
2147 /* Did somebody else fill it already? */
2148 if (PageUptodate(page)) {
2149 unlock_page(page);
2150 goto page_ok;
2151 }
2152
2153readpage:
91803b49
JM
2154 /*
2155 * A previous I/O error may have been due to temporary
2156 * failures, eg. multipath errors.
2157 * PG_error will be set again if readpage fails.
2158 */
2159 ClearPageError(page);
1da177e4
LT
2160 /* Start the actual read. The read will unlock the page. */
2161 error = mapping->a_ops->readpage(filp, page);
2162
994fc28c
ZB
2163 if (unlikely(error)) {
2164 if (error == AOP_TRUNCATED_PAGE) {
09cbfeaf 2165 put_page(page);
6e58e79d 2166 error = 0;
994fc28c
ZB
2167 goto find_page;
2168 }
1da177e4 2169 goto readpage_error;
994fc28c 2170 }
1da177e4
LT
2171
2172 if (!PageUptodate(page)) {
85462323
ON
2173 error = lock_page_killable(page);
2174 if (unlikely(error))
2175 goto readpage_error;
1da177e4
LT
2176 if (!PageUptodate(page)) {
2177 if (page->mapping == NULL) {
2178 /*
2ecdc82e 2179 * invalidate_mapping_pages got it
1da177e4
LT
2180 */
2181 unlock_page(page);
09cbfeaf 2182 put_page(page);
1da177e4
LT
2183 goto find_page;
2184 }
2185 unlock_page(page);
0f8e2db4 2186 shrink_readahead_size_eio(ra);
85462323
ON
2187 error = -EIO;
2188 goto readpage_error;
1da177e4
LT
2189 }
2190 unlock_page(page);
2191 }
2192
1da177e4
LT
2193 goto page_ok;
2194
2195readpage_error:
2196 /* UHHUH! A synchronous read error occurred. Report it */
09cbfeaf 2197 put_page(page);
1da177e4
LT
2198 goto out;
2199
2200no_cached_page:
2201 /*
2202 * Ok, it wasn't cached, so we need to create a new
2203 * page..
2204 */
453f85d4 2205 page = page_cache_alloc(mapping);
eb2be189 2206 if (!page) {
6e58e79d 2207 error = -ENOMEM;
eb2be189 2208 goto out;
1da177e4 2209 }
6afdb859 2210 error = add_to_page_cache_lru(page, mapping, index,
c62d2555 2211 mapping_gfp_constraint(mapping, GFP_KERNEL));
1da177e4 2212 if (error) {
09cbfeaf 2213 put_page(page);
6e58e79d
AV
2214 if (error == -EEXIST) {
2215 error = 0;
1da177e4 2216 goto find_page;
6e58e79d 2217 }
1da177e4
LT
2218 goto out;
2219 }
1da177e4
LT
2220 goto readpage;
2221 }
2222
3239d834
MT
2223would_block:
2224 error = -EAGAIN;
1da177e4 2225out:
7ff81078 2226 ra->prev_pos = prev_index;
09cbfeaf 2227 ra->prev_pos <<= PAGE_SHIFT;
7ff81078 2228 ra->prev_pos |= prev_offset;
1da177e4 2229
09cbfeaf 2230 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
0c6aa263 2231 file_accessed(filp);
6e58e79d 2232 return written ? written : error;
1da177e4
LT
2233}
2234
485bb99b 2235/**
6abd2322 2236 * generic_file_read_iter - generic filesystem read routine
485bb99b 2237 * @iocb: kernel I/O control block
6abd2322 2238 * @iter: destination for the data read
485bb99b 2239 *
6abd2322 2240 * This is the "read_iter()" routine for all filesystems
1da177e4 2241 * that can use the page cache directly.
a862f68a
MR
2242 * Return:
2243 * * number of bytes copied, even for partial reads
2244 * * negative error code if nothing was read
1da177e4
LT
2245 */
2246ssize_t
ed978a81 2247generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1da177e4 2248{
e7080a43 2249 size_t count = iov_iter_count(iter);
47c27bc4 2250 ssize_t retval = 0;
e7080a43
NS
2251
2252 if (!count)
2253 goto out; /* skip atime */
1da177e4 2254
2ba48ce5 2255 if (iocb->ki_flags & IOCB_DIRECT) {
47c27bc4 2256 struct file *file = iocb->ki_filp;
ed978a81
AV
2257 struct address_space *mapping = file->f_mapping;
2258 struct inode *inode = mapping->host;
543ade1f 2259 loff_t size;
1da177e4 2260
1da177e4 2261 size = i_size_read(inode);
6be96d3a
GR
2262 if (iocb->ki_flags & IOCB_NOWAIT) {
2263 if (filemap_range_has_page(mapping, iocb->ki_pos,
2264 iocb->ki_pos + count - 1))
2265 return -EAGAIN;
2266 } else {
2267 retval = filemap_write_and_wait_range(mapping,
2268 iocb->ki_pos,
2269 iocb->ki_pos + count - 1);
2270 if (retval < 0)
2271 goto out;
2272 }
d8d3d94b 2273
0d5b0cf2
CH
2274 file_accessed(file);
2275
5ecda137 2276 retval = mapping->a_ops->direct_IO(iocb, iter);
c3a69024 2277 if (retval >= 0) {
c64fb5c7 2278 iocb->ki_pos += retval;
5ecda137 2279 count -= retval;
9fe55eea 2280 }
5b47d59a 2281 iov_iter_revert(iter, count - iov_iter_count(iter));
66f998f6 2282
9fe55eea
SW
2283 /*
2284 * Btrfs can have a short DIO read if we encounter
2285 * compressed extents, so if there was an error, or if
2286 * we've already read everything we wanted to, or if
2287 * there was a short read because we hit EOF, go ahead
2288 * and return. Otherwise fallthrough to buffered io for
fbbbad4b
MW
2289 * the rest of the read. Buffered reads will not work for
2290 * DAX files, so don't bother trying.
9fe55eea 2291 */
5ecda137 2292 if (retval < 0 || !count || iocb->ki_pos >= size ||
0d5b0cf2 2293 IS_DAX(inode))
9fe55eea 2294 goto out;
1da177e4
LT
2295 }
2296
47c27bc4 2297 retval = generic_file_buffered_read(iocb, iter, retval);
1da177e4
LT
2298out:
2299 return retval;
2300}
ed978a81 2301EXPORT_SYMBOL(generic_file_read_iter);
1da177e4 2302
1da177e4 2303#ifdef CONFIG_MMU
1da177e4 2304#define MMAP_LOTSAMISS (100)
6b4c9f44
JB
2305/*
2306 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_sem
2307 * @vmf - the vm_fault for this fault.
2308 * @page - the page to lock.
2309 * @fpin - the pointer to the file we may pin (or is already pinned).
2310 *
2311 * This works similar to lock_page_or_retry in that it can drop the mmap_sem.
2312 * It differs in that it actually returns the page locked if it returns 1 and 0
2313 * if it couldn't lock the page. If we did have to drop the mmap_sem then fpin
2314 * will point to the pinned file and needs to be fput()'ed at a later point.
2315 */
2316static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2317 struct file **fpin)
2318{
2319 if (trylock_page(page))
2320 return 1;
2321
8b0f9fa2
LT
2322 /*
2323 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2324 * the mmap_sem still held. That's how FAULT_FLAG_RETRY_NOWAIT
2325 * is supposed to work. We have way too many special cases..
2326 */
6b4c9f44
JB
2327 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2328 return 0;
2329
2330 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2331 if (vmf->flags & FAULT_FLAG_KILLABLE) {
2332 if (__lock_page_killable(page)) {
2333 /*
2334 * We didn't have the right flags to drop the mmap_sem,
2335 * but all fault_handlers only check for fatal signals
2336 * if we return VM_FAULT_RETRY, so we need to drop the
2337 * mmap_sem here and return 0 if we don't have a fpin.
2338 */
2339 if (*fpin == NULL)
2340 up_read(&vmf->vma->vm_mm->mmap_sem);
2341 return 0;
2342 }
2343 } else
2344 __lock_page(page);
2345 return 1;
2346}
2347
1da177e4 2348
ef00e08e 2349/*
6b4c9f44
JB
2350 * Synchronous readahead happens when we don't even find a page in the page
2351 * cache at all. We don't want to perform IO under the mmap sem, so if we have
2352 * to drop the mmap sem we return the file that was pinned in order for us to do
2353 * that. If we didn't pin a file then we return NULL. The file that is
2354 * returned needs to be fput()'ed when we're done with it.
ef00e08e 2355 */
6b4c9f44 2356static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
ef00e08e 2357{
2a1180f1
JB
2358 struct file *file = vmf->vma->vm_file;
2359 struct file_ra_state *ra = &file->f_ra;
ef00e08e 2360 struct address_space *mapping = file->f_mapping;
6b4c9f44 2361 struct file *fpin = NULL;
2a1180f1 2362 pgoff_t offset = vmf->pgoff;
ef00e08e
LT
2363
2364 /* If we don't want any read-ahead, don't bother */
2a1180f1 2365 if (vmf->vma->vm_flags & VM_RAND_READ)
6b4c9f44 2366 return fpin;
275b12bf 2367 if (!ra->ra_pages)
6b4c9f44 2368 return fpin;
ef00e08e 2369
2a1180f1 2370 if (vmf->vma->vm_flags & VM_SEQ_READ) {
6b4c9f44 2371 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
7ffc59b4
WF
2372 page_cache_sync_readahead(mapping, ra, file, offset,
2373 ra->ra_pages);
6b4c9f44 2374 return fpin;
ef00e08e
LT
2375 }
2376
207d04ba
AK
2377 /* Avoid banging the cache line if not needed */
2378 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
ef00e08e
LT
2379 ra->mmap_miss++;
2380
2381 /*
2382 * Do we miss much more than hit in this file? If so,
2383 * stop bothering with read-ahead. It will only hurt.
2384 */
2385 if (ra->mmap_miss > MMAP_LOTSAMISS)
6b4c9f44 2386 return fpin;
ef00e08e 2387
d30a1100
WF
2388 /*
2389 * mmap read-around
2390 */
6b4c9f44 2391 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
600e19af
RG
2392 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2393 ra->size = ra->ra_pages;
2394 ra->async_size = ra->ra_pages / 4;
275b12bf 2395 ra_submit(ra, mapping, file);
6b4c9f44 2396 return fpin;
ef00e08e
LT
2397}
2398
2399/*
2400 * Asynchronous readahead happens when we find the page and PG_readahead,
6b4c9f44
JB
2401 * so we want to possibly extend the readahead further. We return the file that
2402 * was pinned if we have to drop the mmap_sem in order to do IO.
ef00e08e 2403 */
6b4c9f44
JB
2404static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2405 struct page *page)
ef00e08e 2406{
2a1180f1
JB
2407 struct file *file = vmf->vma->vm_file;
2408 struct file_ra_state *ra = &file->f_ra;
ef00e08e 2409 struct address_space *mapping = file->f_mapping;
6b4c9f44 2410 struct file *fpin = NULL;
2a1180f1 2411 pgoff_t offset = vmf->pgoff;
ef00e08e
LT
2412
2413 /* If we don't want any read-ahead, don't bother */
5c72feee 2414 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
6b4c9f44 2415 return fpin;
ef00e08e
LT
2416 if (ra->mmap_miss > 0)
2417 ra->mmap_miss--;
6b4c9f44
JB
2418 if (PageReadahead(page)) {
2419 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2fad6f5d
WF
2420 page_cache_async_readahead(mapping, ra, file,
2421 page, offset, ra->ra_pages);
6b4c9f44
JB
2422 }
2423 return fpin;
ef00e08e
LT
2424}
2425
485bb99b 2426/**
54cb8821 2427 * filemap_fault - read in file data for page fault handling
d0217ac0 2428 * @vmf: struct vm_fault containing details of the fault
485bb99b 2429 *
54cb8821 2430 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
2431 * mapped memory region to read in file data during a page fault.
2432 *
2433 * The goto's are kind of ugly, but this streamlines the normal case of having
2434 * it in the page cache, and handles the special cases reasonably without
2435 * having a lot of duplicated code.
9a95f3cf
PC
2436 *
2437 * vma->vm_mm->mmap_sem must be held on entry.
2438 *
a4985833
YS
2439 * If our return value has VM_FAULT_RETRY set, it's because the mmap_sem
2440 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
9a95f3cf
PC
2441 *
2442 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2443 * has not been released.
2444 *
2445 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
a862f68a
MR
2446 *
2447 * Return: bitwise-OR of %VM_FAULT_ codes.
1da177e4 2448 */
2bcd6454 2449vm_fault_t filemap_fault(struct vm_fault *vmf)
1da177e4
LT
2450{
2451 int error;
11bac800 2452 struct file *file = vmf->vma->vm_file;
6b4c9f44 2453 struct file *fpin = NULL;
1da177e4
LT
2454 struct address_space *mapping = file->f_mapping;
2455 struct file_ra_state *ra = &file->f_ra;
2456 struct inode *inode = mapping->host;
ef00e08e 2457 pgoff_t offset = vmf->pgoff;
9ab2594f 2458 pgoff_t max_off;
1da177e4 2459 struct page *page;
2bcd6454 2460 vm_fault_t ret = 0;
1da177e4 2461
9ab2594f
MW
2462 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2463 if (unlikely(offset >= max_off))
5307cc1a 2464 return VM_FAULT_SIGBUS;
1da177e4 2465
1da177e4 2466 /*
49426420 2467 * Do we have something in the page cache already?
1da177e4 2468 */
ef00e08e 2469 page = find_get_page(mapping, offset);
45cac65b 2470 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1da177e4 2471 /*
ef00e08e
LT
2472 * We found the page, so try async readahead before
2473 * waiting for the lock.
1da177e4 2474 */
6b4c9f44 2475 fpin = do_async_mmap_readahead(vmf, page);
45cac65b 2476 } else if (!page) {
ef00e08e 2477 /* No page in the page cache at all */
ef00e08e 2478 count_vm_event(PGMAJFAULT);
2262185c 2479 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
ef00e08e 2480 ret = VM_FAULT_MAJOR;
6b4c9f44 2481 fpin = do_sync_mmap_readahead(vmf);
ef00e08e 2482retry_find:
a75d4c33
JB
2483 page = pagecache_get_page(mapping, offset,
2484 FGP_CREAT|FGP_FOR_MMAP,
2485 vmf->gfp_mask);
6b4c9f44
JB
2486 if (!page) {
2487 if (fpin)
2488 goto out_retry;
e520e932 2489 return VM_FAULT_OOM;
6b4c9f44 2490 }
1da177e4
LT
2491 }
2492
6b4c9f44
JB
2493 if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
2494 goto out_retry;
b522c94d
ML
2495
2496 /* Did it get truncated? */
585e5a7b 2497 if (unlikely(compound_head(page)->mapping != mapping)) {
b522c94d
ML
2498 unlock_page(page);
2499 put_page(page);
2500 goto retry_find;
2501 }
520e5ba4 2502 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
b522c94d 2503
1da177e4 2504 /*
d00806b1
NP
2505 * We have a locked page in the page cache, now we need to check
2506 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 2507 */
d00806b1 2508 if (unlikely(!PageUptodate(page)))
1da177e4
LT
2509 goto page_not_uptodate;
2510
6b4c9f44
JB
2511 /*
2512 * We've made it this far and we had to drop our mmap_sem, now is the
2513 * time to return to the upper layer and have it re-find the vma and
2514 * redo the fault.
2515 */
2516 if (fpin) {
2517 unlock_page(page);
2518 goto out_retry;
2519 }
2520
ef00e08e
LT
2521 /*
2522 * Found the page and have a reference on it.
2523 * We must recheck i_size under page lock.
2524 */
9ab2594f
MW
2525 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2526 if (unlikely(offset >= max_off)) {
d00806b1 2527 unlock_page(page);
09cbfeaf 2528 put_page(page);
5307cc1a 2529 return VM_FAULT_SIGBUS;
d00806b1
NP
2530 }
2531
d0217ac0 2532 vmf->page = page;
83c54070 2533 return ret | VM_FAULT_LOCKED;
1da177e4 2534
1da177e4 2535page_not_uptodate:
1da177e4
LT
2536 /*
2537 * Umm, take care of errors if the page isn't up-to-date.
2538 * Try to re-read it _once_. We do this synchronously,
2539 * because there really aren't any performance issues here
2540 * and we need to check for errors.
2541 */
1da177e4 2542 ClearPageError(page);
6b4c9f44 2543 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
994fc28c 2544 error = mapping->a_ops->readpage(file, page);
3ef0f720
MS
2545 if (!error) {
2546 wait_on_page_locked(page);
2547 if (!PageUptodate(page))
2548 error = -EIO;
2549 }
6b4c9f44
JB
2550 if (fpin)
2551 goto out_retry;
09cbfeaf 2552 put_page(page);
d00806b1
NP
2553
2554 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 2555 goto retry_find;
1da177e4 2556
d00806b1 2557 /* Things didn't work out. Return zero to tell the mm layer so. */
0f8e2db4 2558 shrink_readahead_size_eio(ra);
d0217ac0 2559 return VM_FAULT_SIGBUS;
6b4c9f44
JB
2560
2561out_retry:
2562 /*
2563 * We dropped the mmap_sem, we need to return to the fault handler to
2564 * re-find the vma and come back and find our hopefully still populated
2565 * page.
2566 */
2567 if (page)
2568 put_page(page);
2569 if (fpin)
2570 fput(fpin);
2571 return ret | VM_FAULT_RETRY;
54cb8821
NP
2572}
2573EXPORT_SYMBOL(filemap_fault);
2574
82b0f8c3 2575void filemap_map_pages(struct vm_fault *vmf,
bae473a4 2576 pgoff_t start_pgoff, pgoff_t end_pgoff)
f1820361 2577{
82b0f8c3 2578 struct file *file = vmf->vma->vm_file;
f1820361 2579 struct address_space *mapping = file->f_mapping;
bae473a4 2580 pgoff_t last_pgoff = start_pgoff;
9ab2594f 2581 unsigned long max_idx;
070e807c 2582 XA_STATE(xas, &mapping->i_pages, start_pgoff);
4101196b 2583 struct page *page;
f1820361
KS
2584
2585 rcu_read_lock();
070e807c
MW
2586 xas_for_each(&xas, page, end_pgoff) {
2587 if (xas_retry(&xas, page))
2588 continue;
2589 if (xa_is_value(page))
2cf938aa 2590 goto next;
f1820361 2591
e0975b2a
MH
2592 /*
2593 * Check for a locked page first, as a speculative
2594 * reference may adversely influence page migration.
2595 */
4101196b 2596 if (PageLocked(page))
e0975b2a 2597 goto next;
4101196b 2598 if (!page_cache_get_speculative(page))
070e807c 2599 goto next;
f1820361 2600
4101196b 2601 /* Has the page moved or been split? */
070e807c
MW
2602 if (unlikely(page != xas_reload(&xas)))
2603 goto skip;
4101196b 2604 page = find_subpage(page, xas.xa_index);
f1820361
KS
2605
2606 if (!PageUptodate(page) ||
2607 PageReadahead(page) ||
2608 PageHWPoison(page))
2609 goto skip;
2610 if (!trylock_page(page))
2611 goto skip;
2612
2613 if (page->mapping != mapping || !PageUptodate(page))
2614 goto unlock;
2615
9ab2594f
MW
2616 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2617 if (page->index >= max_idx)
f1820361
KS
2618 goto unlock;
2619
f1820361
KS
2620 if (file->f_ra.mmap_miss > 0)
2621 file->f_ra.mmap_miss--;
7267ec00 2622
070e807c 2623 vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
82b0f8c3 2624 if (vmf->pte)
070e807c
MW
2625 vmf->pte += xas.xa_index - last_pgoff;
2626 last_pgoff = xas.xa_index;
82b0f8c3 2627 if (alloc_set_pte(vmf, NULL, page))
7267ec00 2628 goto unlock;
f1820361
KS
2629 unlock_page(page);
2630 goto next;
2631unlock:
2632 unlock_page(page);
2633skip:
09cbfeaf 2634 put_page(page);
f1820361 2635next:
7267ec00 2636 /* Huge page is mapped? No need to proceed. */
82b0f8c3 2637 if (pmd_trans_huge(*vmf->pmd))
7267ec00 2638 break;
f1820361
KS
2639 }
2640 rcu_read_unlock();
2641}
2642EXPORT_SYMBOL(filemap_map_pages);
2643
2bcd6454 2644vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
4fcf1c62
JK
2645{
2646 struct page *page = vmf->page;
11bac800 2647 struct inode *inode = file_inode(vmf->vma->vm_file);
2bcd6454 2648 vm_fault_t ret = VM_FAULT_LOCKED;
4fcf1c62 2649
14da9200 2650 sb_start_pagefault(inode->i_sb);
11bac800 2651 file_update_time(vmf->vma->vm_file);
4fcf1c62
JK
2652 lock_page(page);
2653 if (page->mapping != inode->i_mapping) {
2654 unlock_page(page);
2655 ret = VM_FAULT_NOPAGE;
2656 goto out;
2657 }
14da9200
JK
2658 /*
2659 * We mark the page dirty already here so that when freeze is in
2660 * progress, we are guaranteed that writeback during freezing will
2661 * see the dirty page and writeprotect it again.
2662 */
2663 set_page_dirty(page);
1d1d1a76 2664 wait_for_stable_page(page);
4fcf1c62 2665out:
14da9200 2666 sb_end_pagefault(inode->i_sb);
4fcf1c62
JK
2667 return ret;
2668}
4fcf1c62 2669
f0f37e2f 2670const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 2671 .fault = filemap_fault,
f1820361 2672 .map_pages = filemap_map_pages,
4fcf1c62 2673 .page_mkwrite = filemap_page_mkwrite,
1da177e4
LT
2674};
2675
2676/* This is used for a general mmap of a disk file */
2677
2678int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2679{
2680 struct address_space *mapping = file->f_mapping;
2681
2682 if (!mapping->a_ops->readpage)
2683 return -ENOEXEC;
2684 file_accessed(file);
2685 vma->vm_ops = &generic_file_vm_ops;
2686 return 0;
2687}
1da177e4
LT
2688
2689/*
2690 * This is for filesystems which do not implement ->writepage.
2691 */
2692int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2693{
2694 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2695 return -EINVAL;
2696 return generic_file_mmap(file, vma);
2697}
2698#else
4b96a37d 2699vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
45397228 2700{
4b96a37d 2701 return VM_FAULT_SIGBUS;
45397228 2702}
1da177e4
LT
2703int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2704{
2705 return -ENOSYS;
2706}
2707int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2708{
2709 return -ENOSYS;
2710}
2711#endif /* CONFIG_MMU */
2712
45397228 2713EXPORT_SYMBOL(filemap_page_mkwrite);
1da177e4
LT
2714EXPORT_SYMBOL(generic_file_mmap);
2715EXPORT_SYMBOL(generic_file_readonly_mmap);
2716
67f9fd91
SL
2717static struct page *wait_on_page_read(struct page *page)
2718{
2719 if (!IS_ERR(page)) {
2720 wait_on_page_locked(page);
2721 if (!PageUptodate(page)) {
09cbfeaf 2722 put_page(page);
67f9fd91
SL
2723 page = ERR_PTR(-EIO);
2724 }
2725 }
2726 return page;
2727}
2728
32b63529 2729static struct page *do_read_cache_page(struct address_space *mapping,
57f6b96c 2730 pgoff_t index,
5e5358e7 2731 int (*filler)(void *, struct page *),
0531b2aa
LT
2732 void *data,
2733 gfp_t gfp)
1da177e4 2734{
eb2be189 2735 struct page *page;
1da177e4
LT
2736 int err;
2737repeat:
2738 page = find_get_page(mapping, index);
2739 if (!page) {
453f85d4 2740 page = __page_cache_alloc(gfp);
eb2be189
NP
2741 if (!page)
2742 return ERR_PTR(-ENOMEM);
e6f67b8c 2743 err = add_to_page_cache_lru(page, mapping, index, gfp);
eb2be189 2744 if (unlikely(err)) {
09cbfeaf 2745 put_page(page);
eb2be189
NP
2746 if (err == -EEXIST)
2747 goto repeat;
22ecdb4f 2748 /* Presumably ENOMEM for xarray node */
1da177e4
LT
2749 return ERR_PTR(err);
2750 }
32b63529
MG
2751
2752filler:
6c45b454
CH
2753 if (filler)
2754 err = filler(data, page);
2755 else
2756 err = mapping->a_ops->readpage(data, page);
2757
1da177e4 2758 if (err < 0) {
09cbfeaf 2759 put_page(page);
32b63529 2760 return ERR_PTR(err);
1da177e4 2761 }
1da177e4 2762
32b63529
MG
2763 page = wait_on_page_read(page);
2764 if (IS_ERR(page))
2765 return page;
2766 goto out;
2767 }
1da177e4
LT
2768 if (PageUptodate(page))
2769 goto out;
2770
ebded027
MG
2771 /*
2772 * Page is not up to date and may be locked due one of the following
2773 * case a: Page is being filled and the page lock is held
2774 * case b: Read/write error clearing the page uptodate status
2775 * case c: Truncation in progress (page locked)
2776 * case d: Reclaim in progress
2777 *
2778 * Case a, the page will be up to date when the page is unlocked.
2779 * There is no need to serialise on the page lock here as the page
2780 * is pinned so the lock gives no additional protection. Even if the
2781 * the page is truncated, the data is still valid if PageUptodate as
2782 * it's a race vs truncate race.
2783 * Case b, the page will not be up to date
2784 * Case c, the page may be truncated but in itself, the data may still
2785 * be valid after IO completes as it's a read vs truncate race. The
2786 * operation must restart if the page is not uptodate on unlock but
2787 * otherwise serialising on page lock to stabilise the mapping gives
2788 * no additional guarantees to the caller as the page lock is
2789 * released before return.
2790 * Case d, similar to truncation. If reclaim holds the page lock, it
2791 * will be a race with remove_mapping that determines if the mapping
2792 * is valid on unlock but otherwise the data is valid and there is
2793 * no need to serialise with page lock.
2794 *
2795 * As the page lock gives no additional guarantee, we optimistically
2796 * wait on the page to be unlocked and check if it's up to date and
2797 * use the page if it is. Otherwise, the page lock is required to
2798 * distinguish between the different cases. The motivation is that we
2799 * avoid spurious serialisations and wakeups when multiple processes
2800 * wait on the same page for IO to complete.
2801 */
2802 wait_on_page_locked(page);
2803 if (PageUptodate(page))
2804 goto out;
2805
2806 /* Distinguish between all the cases under the safety of the lock */
1da177e4 2807 lock_page(page);
ebded027
MG
2808
2809 /* Case c or d, restart the operation */
1da177e4
LT
2810 if (!page->mapping) {
2811 unlock_page(page);
09cbfeaf 2812 put_page(page);
32b63529 2813 goto repeat;
1da177e4 2814 }
ebded027
MG
2815
2816 /* Someone else locked and filled the page in a very small window */
1da177e4
LT
2817 if (PageUptodate(page)) {
2818 unlock_page(page);
2819 goto out;
2820 }
faffdfa0
XT
2821
2822 /*
2823 * A previous I/O error may have been due to temporary
2824 * failures.
2825 * Clear page error before actual read, PG_error will be
2826 * set again if read page fails.
2827 */
2828 ClearPageError(page);
32b63529
MG
2829 goto filler;
2830
c855ff37 2831out:
6fe6900e
NP
2832 mark_page_accessed(page);
2833 return page;
2834}
0531b2aa
LT
2835
2836/**
67f9fd91 2837 * read_cache_page - read into page cache, fill it if needed
0531b2aa
LT
2838 * @mapping: the page's address_space
2839 * @index: the page index
2840 * @filler: function to perform the read
5e5358e7 2841 * @data: first arg to filler(data, page) function, often left as NULL
0531b2aa 2842 *
0531b2aa 2843 * Read into the page cache. If a page already exists, and PageUptodate() is
67f9fd91 2844 * not set, try to fill the page and wait for it to become unlocked.
0531b2aa
LT
2845 *
2846 * If the page does not get brought uptodate, return -EIO.
a862f68a
MR
2847 *
2848 * Return: up to date page on success, ERR_PTR() on failure.
0531b2aa 2849 */
67f9fd91 2850struct page *read_cache_page(struct address_space *mapping,
0531b2aa 2851 pgoff_t index,
5e5358e7 2852 int (*filler)(void *, struct page *),
0531b2aa
LT
2853 void *data)
2854{
d322a8e5
CH
2855 return do_read_cache_page(mapping, index, filler, data,
2856 mapping_gfp_mask(mapping));
0531b2aa 2857}
67f9fd91 2858EXPORT_SYMBOL(read_cache_page);
0531b2aa
LT
2859
2860/**
2861 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2862 * @mapping: the page's address_space
2863 * @index: the page index
2864 * @gfp: the page allocator flags to use if allocating
2865 *
2866 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
e6f67b8c 2867 * any new page allocations done using the specified allocation flags.
0531b2aa
LT
2868 *
2869 * If the page does not get brought uptodate, return -EIO.
a862f68a
MR
2870 *
2871 * Return: up to date page on success, ERR_PTR() on failure.
0531b2aa
LT
2872 */
2873struct page *read_cache_page_gfp(struct address_space *mapping,
2874 pgoff_t index,
2875 gfp_t gfp)
2876{
6c45b454 2877 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
0531b2aa
LT
2878}
2879EXPORT_SYMBOL(read_cache_page_gfp);
2880
9fd91a90
DW
2881/*
2882 * Don't operate on ranges the page cache doesn't support, and don't exceed the
2883 * LFS limits. If pos is under the limit it becomes a short access. If it
2884 * exceeds the limit we return -EFBIG.
2885 */
9fd91a90
DW
2886static int generic_write_check_limits(struct file *file, loff_t pos,
2887 loff_t *count)
2888{
646955cd
AG
2889 struct inode *inode = file->f_mapping->host;
2890 loff_t max_size = inode->i_sb->s_maxbytes;
9fd91a90
DW
2891 loff_t limit = rlimit(RLIMIT_FSIZE);
2892
2893 if (limit != RLIM_INFINITY) {
2894 if (pos >= limit) {
2895 send_sig(SIGXFSZ, current, 0);
2896 return -EFBIG;
2897 }
2898 *count = min(*count, limit - pos);
2899 }
2900
646955cd
AG
2901 if (!(file->f_flags & O_LARGEFILE))
2902 max_size = MAX_NON_LFS;
2903
2904 if (unlikely(pos >= max_size))
2905 return -EFBIG;
2906
2907 *count = min(*count, max_size - pos);
2908
2909 return 0;
9fd91a90
DW
2910}
2911
1da177e4
LT
2912/*
2913 * Performs necessary checks before doing a write
2914 *
485bb99b 2915 * Can adjust writing position or amount of bytes to write.
1da177e4
LT
2916 * Returns appropriate error code that caller should return or
2917 * zero in case that write should be allowed.
2918 */
3309dd04 2919inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
1da177e4 2920{
3309dd04 2921 struct file *file = iocb->ki_filp;
1da177e4 2922 struct inode *inode = file->f_mapping->host;
9fd91a90
DW
2923 loff_t count;
2924 int ret;
1da177e4 2925
dc617f29
DW
2926 if (IS_SWAPFILE(inode))
2927 return -ETXTBSY;
2928
3309dd04
AV
2929 if (!iov_iter_count(from))
2930 return 0;
1da177e4 2931
0fa6b005 2932 /* FIXME: this is for backwards compatibility with 2.4 */
2ba48ce5 2933 if (iocb->ki_flags & IOCB_APPEND)
3309dd04 2934 iocb->ki_pos = i_size_read(inode);
1da177e4 2935
6be96d3a
GR
2936 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2937 return -EINVAL;
2938
9fd91a90
DW
2939 count = iov_iter_count(from);
2940 ret = generic_write_check_limits(file, iocb->ki_pos, &count);
2941 if (ret)
2942 return ret;
1da177e4 2943
9fd91a90 2944 iov_iter_truncate(from, count);
3309dd04 2945 return iov_iter_count(from);
1da177e4
LT
2946}
2947EXPORT_SYMBOL(generic_write_checks);
2948
1383a7ed
DW
2949/*
2950 * Performs necessary checks before doing a clone.
2951 *
646955cd 2952 * Can adjust amount of bytes to clone via @req_count argument.
1383a7ed
DW
2953 * Returns appropriate error code that caller should return or
2954 * zero in case the clone should be allowed.
2955 */
2956int generic_remap_checks(struct file *file_in, loff_t pos_in,
2957 struct file *file_out, loff_t pos_out,
42ec3d4c 2958 loff_t *req_count, unsigned int remap_flags)
1383a7ed
DW
2959{
2960 struct inode *inode_in = file_in->f_mapping->host;
2961 struct inode *inode_out = file_out->f_mapping->host;
2962 uint64_t count = *req_count;
2963 uint64_t bcount;
2964 loff_t size_in, size_out;
2965 loff_t bs = inode_out->i_sb->s_blocksize;
9fd91a90 2966 int ret;
1383a7ed
DW
2967
2968 /* The start of both ranges must be aligned to an fs block. */
2969 if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs))
2970 return -EINVAL;
2971
2972 /* Ensure offsets don't wrap. */
2973 if (pos_in + count < pos_in || pos_out + count < pos_out)
2974 return -EINVAL;
2975
2976 size_in = i_size_read(inode_in);
2977 size_out = i_size_read(inode_out);
2978
2979 /* Dedupe requires both ranges to be within EOF. */
3d28193e 2980 if ((remap_flags & REMAP_FILE_DEDUP) &&
1383a7ed
DW
2981 (pos_in >= size_in || pos_in + count > size_in ||
2982 pos_out >= size_out || pos_out + count > size_out))
2983 return -EINVAL;
2984
2985 /* Ensure the infile range is within the infile. */
2986 if (pos_in >= size_in)
2987 return -EINVAL;
2988 count = min(count, size_in - (uint64_t)pos_in);
2989
9fd91a90
DW
2990 ret = generic_write_check_limits(file_out, pos_out, &count);
2991 if (ret)
2992 return ret;
1da177e4
LT
2993
2994 /*
1383a7ed
DW
2995 * If the user wanted us to link to the infile's EOF, round up to the
2996 * next block boundary for this check.
2997 *
2998 * Otherwise, make sure the count is also block-aligned, having
2999 * already confirmed the starting offsets' block alignment.
1da177e4 3000 */
1383a7ed
DW
3001 if (pos_in + count == size_in) {
3002 bcount = ALIGN(size_in, bs) - pos_in;
3003 } else {
3004 if (!IS_ALIGNED(count, bs))
eca3654e 3005 count = ALIGN_DOWN(count, bs);
1383a7ed 3006 bcount = count;
1da177e4
LT
3007 }
3008
1383a7ed
DW
3009 /* Don't allow overlapped cloning within the same file. */
3010 if (inode_in == inode_out &&
3011 pos_out + bcount > pos_in &&
3012 pos_out < pos_in + bcount)
3013 return -EINVAL;
3014
1da177e4 3015 /*
eca3654e
DW
3016 * We shortened the request but the caller can't deal with that, so
3017 * bounce the request back to userspace.
1da177e4 3018 */
eca3654e 3019 if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN))
1383a7ed 3020 return -EINVAL;
1da177e4 3021
eca3654e 3022 *req_count = count;
1383a7ed 3023 return 0;
1da177e4 3024}
1da177e4 3025
a3171351
AG
3026
3027/*
3028 * Performs common checks before doing a file copy/clone
3029 * from @file_in to @file_out.
3030 */
3031int generic_file_rw_checks(struct file *file_in, struct file *file_out)
3032{
3033 struct inode *inode_in = file_inode(file_in);
3034 struct inode *inode_out = file_inode(file_out);
3035
3036 /* Don't copy dirs, pipes, sockets... */
3037 if (S_ISDIR(inode_in->i_mode) || S_ISDIR(inode_out->i_mode))
3038 return -EISDIR;
3039 if (!S_ISREG(inode_in->i_mode) || !S_ISREG(inode_out->i_mode))
3040 return -EINVAL;
3041
3042 if (!(file_in->f_mode & FMODE_READ) ||
3043 !(file_out->f_mode & FMODE_WRITE) ||
3044 (file_out->f_flags & O_APPEND))
3045 return -EBADF;
3046
3047 return 0;
3048}
3049
96e6e8f4
AG
3050/*
3051 * Performs necessary checks before doing a file copy
3052 *
3053 * Can adjust amount of bytes to copy via @req_count argument.
3054 * Returns appropriate error code that caller should return or
3055 * zero in case the copy should be allowed.
3056 */
3057int generic_copy_file_checks(struct file *file_in, loff_t pos_in,
3058 struct file *file_out, loff_t pos_out,
3059 size_t *req_count, unsigned int flags)
3060{
3061 struct inode *inode_in = file_inode(file_in);
3062 struct inode *inode_out = file_inode(file_out);
3063 uint64_t count = *req_count;
3064 loff_t size_in;
3065 int ret;
3066
3067 ret = generic_file_rw_checks(file_in, file_out);
3068 if (ret)
3069 return ret;
3070
3071 /* Don't touch certain kinds of inodes */
3072 if (IS_IMMUTABLE(inode_out))
3073 return -EPERM;
3074
3075 if (IS_SWAPFILE(inode_in) || IS_SWAPFILE(inode_out))
3076 return -ETXTBSY;
3077
3078 /* Ensure offsets don't wrap. */
3079 if (pos_in + count < pos_in || pos_out + count < pos_out)
3080 return -EOVERFLOW;
3081
3082 /* Shorten the copy to EOF */
3083 size_in = i_size_read(inode_in);
3084 if (pos_in >= size_in)
3085 count = 0;
3086 else
3087 count = min(count, size_in - (uint64_t)pos_in);
3088
3089 ret = generic_write_check_limits(file_out, pos_out, &count);
3090 if (ret)
3091 return ret;
3092
3093 /* Don't allow overlapped copying within the same file. */
3094 if (inode_in == inode_out &&
3095 pos_out + count > pos_in &&
3096 pos_out < pos_in + count)
3097 return -EINVAL;
3098
3099 *req_count = count;
3100 return 0;
3101}
3102
afddba49
NP
3103int pagecache_write_begin(struct file *file, struct address_space *mapping,
3104 loff_t pos, unsigned len, unsigned flags,
3105 struct page **pagep, void **fsdata)
3106{
3107 const struct address_space_operations *aops = mapping->a_ops;
3108
4e02ed4b 3109 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 3110 pagep, fsdata);
afddba49
NP
3111}
3112EXPORT_SYMBOL(pagecache_write_begin);
3113
3114int pagecache_write_end(struct file *file, struct address_space *mapping,
3115 loff_t pos, unsigned len, unsigned copied,
3116 struct page *page, void *fsdata)
3117{
3118 const struct address_space_operations *aops = mapping->a_ops;
afddba49 3119
4e02ed4b 3120 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
3121}
3122EXPORT_SYMBOL(pagecache_write_end);
3123
a92853b6
KK
3124/*
3125 * Warn about a page cache invalidation failure during a direct I/O write.
3126 */
3127void dio_warn_stale_pagecache(struct file *filp)
3128{
3129 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3130 char pathname[128];
3131 struct inode *inode = file_inode(filp);
3132 char *path;
3133
3134 errseq_set(&inode->i_mapping->wb_err, -EIO);
3135 if (__ratelimit(&_rs)) {
3136 path = file_path(filp, pathname, sizeof(pathname));
3137 if (IS_ERR(path))
3138 path = "(unknown)";
3139 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
3140 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3141 current->comm);
3142 }
3143}
3144
1da177e4 3145ssize_t
1af5bb49 3146generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3147{
3148 struct file *file = iocb->ki_filp;
3149 struct address_space *mapping = file->f_mapping;
3150 struct inode *inode = mapping->host;
1af5bb49 3151 loff_t pos = iocb->ki_pos;
1da177e4 3152 ssize_t written;
a969e903
CH
3153 size_t write_len;
3154 pgoff_t end;
1da177e4 3155
0c949334 3156 write_len = iov_iter_count(from);
09cbfeaf 3157 end = (pos + write_len - 1) >> PAGE_SHIFT;
a969e903 3158
6be96d3a
GR
3159 if (iocb->ki_flags & IOCB_NOWAIT) {
3160 /* If there are pages to writeback, return */
3161 if (filemap_range_has_page(inode->i_mapping, pos,
35f12f0f 3162 pos + write_len - 1))
6be96d3a
GR
3163 return -EAGAIN;
3164 } else {
3165 written = filemap_write_and_wait_range(mapping, pos,
3166 pos + write_len - 1);
3167 if (written)
3168 goto out;
3169 }
a969e903
CH
3170
3171 /*
3172 * After a write we want buffered reads to be sure to go to disk to get
3173 * the new data. We invalidate clean cached page from the region we're
3174 * about to write. We do this *before* the write so that we can return
6ccfa806 3175 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903 3176 */
55635ba7 3177 written = invalidate_inode_pages2_range(mapping,
09cbfeaf 3178 pos >> PAGE_SHIFT, end);
55635ba7
AR
3179 /*
3180 * If a page can not be invalidated, return 0 to fall back
3181 * to buffered write.
3182 */
3183 if (written) {
3184 if (written == -EBUSY)
3185 return 0;
3186 goto out;
a969e903
CH
3187 }
3188
639a93a5 3189 written = mapping->a_ops->direct_IO(iocb, from);
a969e903
CH
3190
3191 /*
3192 * Finally, try again to invalidate clean pages which might have been
3193 * cached by non-direct readahead, or faulted in by get_user_pages()
3194 * if the source of the write was an mmap'ed region of the file
3195 * we're writing. Either one is a pretty crazy thing to do,
3196 * so we don't support it 100%. If this invalidation
3197 * fails, tough, the write still worked...
332391a9
LC
3198 *
3199 * Most of the time we do not need this since dio_complete() will do
3200 * the invalidation for us. However there are some file systems that
3201 * do not end up with dio_complete() being called, so let's not break
80c1fe90
KK
3202 * them by removing it completely.
3203 *
9266a140
KK
3204 * Noticeable example is a blkdev_direct_IO().
3205 *
80c1fe90 3206 * Skip invalidation for async writes or if mapping has no pages.
a969e903 3207 */
9266a140
KK
3208 if (written > 0 && mapping->nrpages &&
3209 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3210 dio_warn_stale_pagecache(file);
a969e903 3211
1da177e4 3212 if (written > 0) {
0116651c 3213 pos += written;
639a93a5 3214 write_len -= written;
0116651c
NK
3215 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3216 i_size_write(inode, pos);
1da177e4
LT
3217 mark_inode_dirty(inode);
3218 }
5cb6c6c7 3219 iocb->ki_pos = pos;
1da177e4 3220 }
639a93a5 3221 iov_iter_revert(from, write_len - iov_iter_count(from));
a969e903 3222out:
1da177e4
LT
3223 return written;
3224}
3225EXPORT_SYMBOL(generic_file_direct_write);
3226
eb2be189
NP
3227/*
3228 * Find or create a page at the given pagecache position. Return the locked
3229 * page. This function is specifically for buffered writes.
3230 */
54566b2c
NP
3231struct page *grab_cache_page_write_begin(struct address_space *mapping,
3232 pgoff_t index, unsigned flags)
eb2be189 3233{
eb2be189 3234 struct page *page;
bbddabe2 3235 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
0faa70cb 3236
54566b2c 3237 if (flags & AOP_FLAG_NOFS)
2457aec6
MG
3238 fgp_flags |= FGP_NOFS;
3239
3240 page = pagecache_get_page(mapping, index, fgp_flags,
45f87de5 3241 mapping_gfp_mask(mapping));
c585a267 3242 if (page)
2457aec6 3243 wait_for_stable_page(page);
eb2be189 3244
eb2be189
NP
3245 return page;
3246}
54566b2c 3247EXPORT_SYMBOL(grab_cache_page_write_begin);
eb2be189 3248
3b93f911 3249ssize_t generic_perform_write(struct file *file,
afddba49
NP
3250 struct iov_iter *i, loff_t pos)
3251{
3252 struct address_space *mapping = file->f_mapping;
3253 const struct address_space_operations *a_ops = mapping->a_ops;
3254 long status = 0;
3255 ssize_t written = 0;
674b892e
NP
3256 unsigned int flags = 0;
3257
afddba49
NP
3258 do {
3259 struct page *page;
afddba49
NP
3260 unsigned long offset; /* Offset into pagecache page */
3261 unsigned long bytes; /* Bytes to write to page */
3262 size_t copied; /* Bytes copied from user */
3263 void *fsdata;
3264
09cbfeaf
KS
3265 offset = (pos & (PAGE_SIZE - 1));
3266 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
3267 iov_iter_count(i));
3268
3269again:
00a3d660
LT
3270 /*
3271 * Bring in the user page that we will copy from _first_.
3272 * Otherwise there's a nasty deadlock on copying from the
3273 * same page as we're writing to, without it being marked
3274 * up-to-date.
3275 *
3276 * Not only is this an optimisation, but it is also required
3277 * to check that the address is actually valid, when atomic
3278 * usercopies are used, below.
3279 */
3280 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3281 status = -EFAULT;
3282 break;
3283 }
3284
296291cd
JK
3285 if (fatal_signal_pending(current)) {
3286 status = -EINTR;
3287 break;
3288 }
3289
674b892e 3290 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49 3291 &page, &fsdata);
2457aec6 3292 if (unlikely(status < 0))
afddba49
NP
3293 break;
3294
931e80e4 3295 if (mapping_writably_mapped(mapping))
3296 flush_dcache_page(page);
00a3d660 3297
afddba49 3298 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
afddba49
NP
3299 flush_dcache_page(page);
3300
3301 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3302 page, fsdata);
3303 if (unlikely(status < 0))
3304 break;
3305 copied = status;
3306
3307 cond_resched();
3308
124d3b70 3309 iov_iter_advance(i, copied);
afddba49
NP
3310 if (unlikely(copied == 0)) {
3311 /*
3312 * If we were unable to copy any data at all, we must
3313 * fall back to a single segment length write.
3314 *
3315 * If we didn't fallback here, we could livelock
3316 * because not all segments in the iov can be copied at
3317 * once without a pagefault.
3318 */
09cbfeaf 3319 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
3320 iov_iter_single_seg_count(i));
3321 goto again;
3322 }
afddba49
NP
3323 pos += copied;
3324 written += copied;
3325
3326 balance_dirty_pages_ratelimited(mapping);
afddba49
NP
3327 } while (iov_iter_count(i));
3328
3329 return written ? written : status;
3330}
3b93f911 3331EXPORT_SYMBOL(generic_perform_write);
1da177e4 3332
e4dd9de3 3333/**
8174202b 3334 * __generic_file_write_iter - write data to a file
e4dd9de3 3335 * @iocb: IO state structure (file, offset, etc.)
8174202b 3336 * @from: iov_iter with data to write
e4dd9de3
JK
3337 *
3338 * This function does all the work needed for actually writing data to a
3339 * file. It does all basic checks, removes SUID from the file, updates
3340 * modification times and calls proper subroutines depending on whether we
3341 * do direct IO or a standard buffered write.
3342 *
3343 * It expects i_mutex to be grabbed unless we work on a block device or similar
3344 * object which does not need locking at all.
3345 *
3346 * This function does *not* take care of syncing data in case of O_SYNC write.
3347 * A caller has to handle it. This is mainly due to the fact that we want to
3348 * avoid syncing under i_mutex.
a862f68a
MR
3349 *
3350 * Return:
3351 * * number of bytes written, even for truncated writes
3352 * * negative error code if no data has been written at all
e4dd9de3 3353 */
8174202b 3354ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3355{
3356 struct file *file = iocb->ki_filp;
fb5527e6 3357 struct address_space * mapping = file->f_mapping;
1da177e4 3358 struct inode *inode = mapping->host;
3b93f911 3359 ssize_t written = 0;
1da177e4 3360 ssize_t err;
3b93f911 3361 ssize_t status;
1da177e4 3362
1da177e4 3363 /* We can write back this queue in page reclaim */
de1414a6 3364 current->backing_dev_info = inode_to_bdi(inode);
5fa8e0a1 3365 err = file_remove_privs(file);
1da177e4
LT
3366 if (err)
3367 goto out;
3368
c3b2da31
JB
3369 err = file_update_time(file);
3370 if (err)
3371 goto out;
1da177e4 3372
2ba48ce5 3373 if (iocb->ki_flags & IOCB_DIRECT) {
0b8def9d 3374 loff_t pos, endbyte;
fb5527e6 3375
1af5bb49 3376 written = generic_file_direct_write(iocb, from);
1da177e4 3377 /*
fbbbad4b
MW
3378 * If the write stopped short of completing, fall back to
3379 * buffered writes. Some filesystems do this for writes to
3380 * holes, for example. For DAX files, a buffered write will
3381 * not succeed (even if it did, DAX does not handle dirty
3382 * page-cache pages correctly).
1da177e4 3383 */
0b8def9d 3384 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
fbbbad4b
MW
3385 goto out;
3386
0b8def9d 3387 status = generic_perform_write(file, from, pos = iocb->ki_pos);
fb5527e6 3388 /*
3b93f911 3389 * If generic_perform_write() returned a synchronous error
fb5527e6
JM
3390 * then we want to return the number of bytes which were
3391 * direct-written, or the error code if that was zero. Note
3392 * that this differs from normal direct-io semantics, which
3393 * will return -EFOO even if some bytes were written.
3394 */
60bb4529 3395 if (unlikely(status < 0)) {
3b93f911 3396 err = status;
fb5527e6
JM
3397 goto out;
3398 }
fb5527e6
JM
3399 /*
3400 * We need to ensure that the page cache pages are written to
3401 * disk and invalidated to preserve the expected O_DIRECT
3402 * semantics.
3403 */
3b93f911 3404 endbyte = pos + status - 1;
0b8def9d 3405 err = filemap_write_and_wait_range(mapping, pos, endbyte);
fb5527e6 3406 if (err == 0) {
0b8def9d 3407 iocb->ki_pos = endbyte + 1;
3b93f911 3408 written += status;
fb5527e6 3409 invalidate_mapping_pages(mapping,
09cbfeaf
KS
3410 pos >> PAGE_SHIFT,
3411 endbyte >> PAGE_SHIFT);
fb5527e6
JM
3412 } else {
3413 /*
3414 * We don't know how much we wrote, so just return
3415 * the number of bytes which were direct-written
3416 */
3417 }
3418 } else {
0b8def9d
AV
3419 written = generic_perform_write(file, from, iocb->ki_pos);
3420 if (likely(written > 0))
3421 iocb->ki_pos += written;
fb5527e6 3422 }
1da177e4
LT
3423out:
3424 current->backing_dev_info = NULL;
3425 return written ? written : err;
3426}
8174202b 3427EXPORT_SYMBOL(__generic_file_write_iter);
e4dd9de3 3428
e4dd9de3 3429/**
8174202b 3430 * generic_file_write_iter - write data to a file
e4dd9de3 3431 * @iocb: IO state structure
8174202b 3432 * @from: iov_iter with data to write
e4dd9de3 3433 *
8174202b 3434 * This is a wrapper around __generic_file_write_iter() to be used by most
e4dd9de3
JK
3435 * filesystems. It takes care of syncing the file in case of O_SYNC file
3436 * and acquires i_mutex as needed.
a862f68a
MR
3437 * Return:
3438 * * negative error code if no data has been written at all of
3439 * vfs_fsync_range() failed for a synchronous write
3440 * * number of bytes written, even for truncated writes
e4dd9de3 3441 */
8174202b 3442ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3443{
3444 struct file *file = iocb->ki_filp;
148f948b 3445 struct inode *inode = file->f_mapping->host;
1da177e4 3446 ssize_t ret;
1da177e4 3447
5955102c 3448 inode_lock(inode);
3309dd04
AV
3449 ret = generic_write_checks(iocb, from);
3450 if (ret > 0)
5f380c7f 3451 ret = __generic_file_write_iter(iocb, from);
5955102c 3452 inode_unlock(inode);
1da177e4 3453
e2592217
CH
3454 if (ret > 0)
3455 ret = generic_write_sync(iocb, ret);
1da177e4
LT
3456 return ret;
3457}
8174202b 3458EXPORT_SYMBOL(generic_file_write_iter);
1da177e4 3459
cf9a2ae8
DH
3460/**
3461 * try_to_release_page() - release old fs-specific metadata on a page
3462 *
3463 * @page: the page which the kernel is trying to free
3464 * @gfp_mask: memory allocation flags (and I/O mode)
3465 *
3466 * The address_space is to try to release any data against the page
a862f68a 3467 * (presumably at page->private).
cf9a2ae8 3468 *
266cf658
DH
3469 * This may also be called if PG_fscache is set on a page, indicating that the
3470 * page is known to the local caching routines.
3471 *
cf9a2ae8 3472 * The @gfp_mask argument specifies whether I/O may be performed to release
71baba4b 3473 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
cf9a2ae8 3474 *
a862f68a 3475 * Return: %1 if the release was successful, otherwise return zero.
cf9a2ae8
DH
3476 */
3477int try_to_release_page(struct page *page, gfp_t gfp_mask)
3478{
3479 struct address_space * const mapping = page->mapping;
3480
3481 BUG_ON(!PageLocked(page));
3482 if (PageWriteback(page))
3483 return 0;
3484
3485 if (mapping && mapping->a_ops->releasepage)
3486 return mapping->a_ops->releasepage(page, gfp_mask);
3487 return try_to_free_buffers(page);
3488}
3489
3490EXPORT_SYMBOL(try_to_release_page);