Linux 5.8
[linux-block.git] / mm / filemap.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/filemap.c
4 *
5 * Copyright (C) 1994-1999 Linus Torvalds
6 */
7
8/*
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
12 */
b95f1b31 13#include <linux/export.h>
1da177e4 14#include <linux/compiler.h>
f9fe48be 15#include <linux/dax.h>
1da177e4 16#include <linux/fs.h>
3f07c014 17#include <linux/sched/signal.h>
c22ce143 18#include <linux/uaccess.h>
c59ede7b 19#include <linux/capability.h>
1da177e4 20#include <linux/kernel_stat.h>
5a0e3ad6 21#include <linux/gfp.h>
1da177e4
LT
22#include <linux/mm.h>
23#include <linux/swap.h>
24#include <linux/mman.h>
25#include <linux/pagemap.h>
26#include <linux/file.h>
27#include <linux/uio.h>
cfcbfb13 28#include <linux/error-injection.h>
1da177e4
LT
29#include <linux/hash.h>
30#include <linux/writeback.h>
53253383 31#include <linux/backing-dev.h>
1da177e4
LT
32#include <linux/pagevec.h>
33#include <linux/blkdev.h>
34#include <linux/security.h>
44110fe3 35#include <linux/cpuset.h>
00501b53 36#include <linux/hugetlb.h>
8a9f3ccd 37#include <linux/memcontrol.h>
c515e1fd 38#include <linux/cleancache.h>
c7df8ad2 39#include <linux/shmem_fs.h>
f1820361 40#include <linux/rmap.h>
b1d29ba8 41#include <linux/delayacct.h>
eb414681 42#include <linux/psi.h>
d0e6a582 43#include <linux/ramfs.h>
0f8053a5
NP
44#include "internal.h"
45
fe0bfaaf
RJ
46#define CREATE_TRACE_POINTS
47#include <trace/events/filemap.h>
48
1da177e4 49/*
1da177e4
LT
50 * FIXME: remove all knowledge of the buffer layer from the core VM
51 */
148f948b 52#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 53
1da177e4
LT
54#include <asm/mman.h>
55
56/*
57 * Shared mappings implemented 30.11.1994. It's not fully working yet,
58 * though.
59 *
60 * Shared mappings now work. 15.8.1995 Bruno.
61 *
62 * finished 'unifying' the page and buffer cache and SMP-threaded the
63 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
64 *
65 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
66 */
67
68/*
69 * Lock ordering:
70 *
c8c06efa 71 * ->i_mmap_rwsem (truncate_pagecache)
1da177e4 72 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91 73 * ->swap_lock (exclusive_swap_page, others)
b93b0163 74 * ->i_pages lock
1da177e4 75 *
1b1dcc1b 76 * ->i_mutex
c8c06efa 77 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
1da177e4 78 *
c1e8d7c6 79 * ->mmap_lock
c8c06efa 80 * ->i_mmap_rwsem
b8072f09 81 * ->page_table_lock or pte_lock (various, mainly in memory.c)
b93b0163 82 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
1da177e4 83 *
c1e8d7c6 84 * ->mmap_lock
1da177e4
LT
85 * ->lock_page (access_process_vm)
86 *
ccad2365 87 * ->i_mutex (generic_perform_write)
c1e8d7c6 88 * ->mmap_lock (fault_in_pages_readable->do_page_fault)
1da177e4 89 *
f758eeab 90 * bdi->wb.list_lock
a66979ab 91 * sb_lock (fs/fs-writeback.c)
b93b0163 92 * ->i_pages lock (__sync_single_inode)
1da177e4 93 *
c8c06efa 94 * ->i_mmap_rwsem
1da177e4
LT
95 * ->anon_vma.lock (vma_adjust)
96 *
97 * ->anon_vma.lock
b8072f09 98 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 99 *
b8072f09 100 * ->page_table_lock or pte_lock
5d337b91 101 * ->swap_lock (try_to_unmap_one)
1da177e4 102 * ->private_lock (try_to_unmap_one)
b93b0163 103 * ->i_pages lock (try_to_unmap_one)
f4b7e272
AR
104 * ->pgdat->lru_lock (follow_page->mark_page_accessed)
105 * ->pgdat->lru_lock (check_pte_range->isolate_lru_page)
1da177e4 106 * ->private_lock (page_remove_rmap->set_page_dirty)
b93b0163 107 * ->i_pages lock (page_remove_rmap->set_page_dirty)
f758eeab 108 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
250df6ed 109 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
81f8c3a4 110 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
f758eeab 111 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 112 * ->inode->i_lock (zap_pte_range->set_page_dirty)
1da177e4
LT
113 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
114 *
c8c06efa 115 * ->i_mmap_rwsem
9a3c531d 116 * ->tasklist_lock (memory_failure, collect_procs_ao)
1da177e4
LT
117 */
118
5c024e6a 119static void page_cache_delete(struct address_space *mapping,
91b0abe3
JW
120 struct page *page, void *shadow)
121{
5c024e6a
MW
122 XA_STATE(xas, &mapping->i_pages, page->index);
123 unsigned int nr = 1;
c70b647d 124
5c024e6a 125 mapping_set_update(&xas, mapping);
c70b647d 126
5c024e6a
MW
127 /* hugetlb pages are represented by a single entry in the xarray */
128 if (!PageHuge(page)) {
129 xas_set_order(&xas, page->index, compound_order(page));
d8c6546b 130 nr = compound_nr(page);
5c024e6a 131 }
91b0abe3 132
83929372
KS
133 VM_BUG_ON_PAGE(!PageLocked(page), page);
134 VM_BUG_ON_PAGE(PageTail(page), page);
135 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
449dd698 136
5c024e6a
MW
137 xas_store(&xas, shadow);
138 xas_init_marks(&xas);
d3798ae8 139
2300638b
JK
140 page->mapping = NULL;
141 /* Leave page->index set: truncation lookup relies upon it */
142
d3798ae8
JW
143 if (shadow) {
144 mapping->nrexceptional += nr;
145 /*
146 * Make sure the nrexceptional update is committed before
147 * the nrpages update so that final truncate racing
148 * with reclaim does not see both counters 0 at the
149 * same time and miss a shadow entry.
150 */
151 smp_wmb();
152 }
153 mapping->nrpages -= nr;
91b0abe3
JW
154}
155
5ecc4d85
JK
156static void unaccount_page_cache_page(struct address_space *mapping,
157 struct page *page)
1da177e4 158{
5ecc4d85 159 int nr;
1da177e4 160
c515e1fd
DM
161 /*
162 * if we're uptodate, flush out into the cleancache, otherwise
163 * invalidate any existing cleancache entries. We can't leave
164 * stale data around in the cleancache once our page is gone
165 */
166 if (PageUptodate(page) && PageMappedToDisk(page))
167 cleancache_put_page(page);
168 else
3167760f 169 cleancache_invalidate_page(mapping, page);
c515e1fd 170
83929372 171 VM_BUG_ON_PAGE(PageTail(page), page);
06b241f3
HD
172 VM_BUG_ON_PAGE(page_mapped(page), page);
173 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
174 int mapcount;
175
176 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
177 current->comm, page_to_pfn(page));
178 dump_page(page, "still mapped when deleted");
179 dump_stack();
180 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
181
182 mapcount = page_mapcount(page);
183 if (mapping_exiting(mapping) &&
184 page_count(page) >= mapcount + 2) {
185 /*
186 * All vmas have already been torn down, so it's
187 * a good bet that actually the page is unmapped,
188 * and we'd prefer not to leak it: if we're wrong,
189 * some other bad page check should catch it later.
190 */
191 page_mapcount_reset(page);
6d061f9f 192 page_ref_sub(page, mapcount);
06b241f3
HD
193 }
194 }
195
4165b9b4 196 /* hugetlb pages do not participate in page cache accounting. */
5ecc4d85
JK
197 if (PageHuge(page))
198 return;
09612fa6 199
5ecc4d85
JK
200 nr = hpage_nr_pages(page);
201
0d1c2072 202 __mod_lruvec_page_state(page, NR_FILE_PAGES, -nr);
5ecc4d85 203 if (PageSwapBacked(page)) {
0d1c2072 204 __mod_lruvec_page_state(page, NR_SHMEM, -nr);
5ecc4d85
JK
205 if (PageTransHuge(page))
206 __dec_node_page_state(page, NR_SHMEM_THPS);
99cb0dbd
SL
207 } else if (PageTransHuge(page)) {
208 __dec_node_page_state(page, NR_FILE_THPS);
09d91cda 209 filemap_nr_thps_dec(mapping);
800d8c63 210 }
5ecc4d85
JK
211
212 /*
213 * At this point page must be either written or cleaned by
214 * truncate. Dirty page here signals a bug and loss of
215 * unwritten data.
216 *
217 * This fixes dirty accounting after removing the page entirely
218 * but leaves PageDirty set: it has no effect for truncated
219 * page and anyway will be cleared before returning page into
220 * buddy allocator.
221 */
222 if (WARN_ON_ONCE(PageDirty(page)))
223 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
224}
225
226/*
227 * Delete a page from the page cache and free it. Caller has to make
228 * sure the page is locked and that nobody else uses it - or that usage
b93b0163 229 * is safe. The caller must hold the i_pages lock.
5ecc4d85
JK
230 */
231void __delete_from_page_cache(struct page *page, void *shadow)
232{
233 struct address_space *mapping = page->mapping;
234
235 trace_mm_filemap_delete_from_page_cache(page);
236
237 unaccount_page_cache_page(mapping, page);
5c024e6a 238 page_cache_delete(mapping, page, shadow);
1da177e4
LT
239}
240
59c66c5f
JK
241static void page_cache_free_page(struct address_space *mapping,
242 struct page *page)
243{
244 void (*freepage)(struct page *);
245
246 freepage = mapping->a_ops->freepage;
247 if (freepage)
248 freepage(page);
249
250 if (PageTransHuge(page) && !PageHuge(page)) {
251 page_ref_sub(page, HPAGE_PMD_NR);
252 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
253 } else {
254 put_page(page);
255 }
256}
257
702cfbf9
MK
258/**
259 * delete_from_page_cache - delete page from page cache
260 * @page: the page which the kernel is trying to remove from page cache
261 *
262 * This must be called only on pages that have been verified to be in the page
263 * cache and locked. It will never put the page into the free list, the caller
264 * has a reference on the page.
265 */
266void delete_from_page_cache(struct page *page)
1da177e4 267{
83929372 268 struct address_space *mapping = page_mapping(page);
c4843a75 269 unsigned long flags;
1da177e4 270
cd7619d6 271 BUG_ON(!PageLocked(page));
b93b0163 272 xa_lock_irqsave(&mapping->i_pages, flags);
62cccb8c 273 __delete_from_page_cache(page, NULL);
b93b0163 274 xa_unlock_irqrestore(&mapping->i_pages, flags);
6072d13c 275
59c66c5f 276 page_cache_free_page(mapping, page);
97cecb5a
MK
277}
278EXPORT_SYMBOL(delete_from_page_cache);
279
aa65c29c 280/*
ef8e5717 281 * page_cache_delete_batch - delete several pages from page cache
aa65c29c
JK
282 * @mapping: the mapping to which pages belong
283 * @pvec: pagevec with pages to delete
284 *
b93b0163 285 * The function walks over mapping->i_pages and removes pages passed in @pvec
4101196b
MWO
286 * from the mapping. The function expects @pvec to be sorted by page index
287 * and is optimised for it to be dense.
b93b0163 288 * It tolerates holes in @pvec (mapping entries at those indices are not
aa65c29c 289 * modified). The function expects only THP head pages to be present in the
4101196b 290 * @pvec.
aa65c29c 291 *
b93b0163 292 * The function expects the i_pages lock to be held.
aa65c29c 293 */
ef8e5717 294static void page_cache_delete_batch(struct address_space *mapping,
aa65c29c
JK
295 struct pagevec *pvec)
296{
ef8e5717 297 XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
aa65c29c 298 int total_pages = 0;
4101196b 299 int i = 0;
aa65c29c 300 struct page *page;
aa65c29c 301
ef8e5717
MW
302 mapping_set_update(&xas, mapping);
303 xas_for_each(&xas, page, ULONG_MAX) {
4101196b 304 if (i >= pagevec_count(pvec))
aa65c29c 305 break;
4101196b
MWO
306
307 /* A swap/dax/shadow entry got inserted? Skip it. */
3159f943 308 if (xa_is_value(page))
aa65c29c 309 continue;
4101196b
MWO
310 /*
311 * A page got inserted in our range? Skip it. We have our
312 * pages locked so they are protected from being removed.
313 * If we see a page whose index is higher than ours, it
314 * means our page has been removed, which shouldn't be
315 * possible because we're holding the PageLock.
316 */
317 if (page != pvec->pages[i]) {
318 VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
319 page);
320 continue;
321 }
322
323 WARN_ON_ONCE(!PageLocked(page));
324
325 if (page->index == xas.xa_index)
aa65c29c 326 page->mapping = NULL;
4101196b
MWO
327 /* Leave page->index set: truncation lookup relies on it */
328
329 /*
330 * Move to the next page in the vector if this is a regular
331 * page or the index is of the last sub-page of this compound
332 * page.
333 */
334 if (page->index + compound_nr(page) - 1 == xas.xa_index)
aa65c29c 335 i++;
ef8e5717 336 xas_store(&xas, NULL);
aa65c29c
JK
337 total_pages++;
338 }
339 mapping->nrpages -= total_pages;
340}
341
342void delete_from_page_cache_batch(struct address_space *mapping,
343 struct pagevec *pvec)
344{
345 int i;
346 unsigned long flags;
347
348 if (!pagevec_count(pvec))
349 return;
350
b93b0163 351 xa_lock_irqsave(&mapping->i_pages, flags);
aa65c29c
JK
352 for (i = 0; i < pagevec_count(pvec); i++) {
353 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
354
355 unaccount_page_cache_page(mapping, pvec->pages[i]);
356 }
ef8e5717 357 page_cache_delete_batch(mapping, pvec);
b93b0163 358 xa_unlock_irqrestore(&mapping->i_pages, flags);
aa65c29c
JK
359
360 for (i = 0; i < pagevec_count(pvec); i++)
361 page_cache_free_page(mapping, pvec->pages[i]);
362}
363
d72d9e2a 364int filemap_check_errors(struct address_space *mapping)
865ffef3
DM
365{
366 int ret = 0;
367 /* Check for outstanding write errors */
7fcbbaf1
JA
368 if (test_bit(AS_ENOSPC, &mapping->flags) &&
369 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
865ffef3 370 ret = -ENOSPC;
7fcbbaf1
JA
371 if (test_bit(AS_EIO, &mapping->flags) &&
372 test_and_clear_bit(AS_EIO, &mapping->flags))
865ffef3
DM
373 ret = -EIO;
374 return ret;
375}
d72d9e2a 376EXPORT_SYMBOL(filemap_check_errors);
865ffef3 377
76341cab
JL
378static int filemap_check_and_keep_errors(struct address_space *mapping)
379{
380 /* Check for outstanding write errors */
381 if (test_bit(AS_EIO, &mapping->flags))
382 return -EIO;
383 if (test_bit(AS_ENOSPC, &mapping->flags))
384 return -ENOSPC;
385 return 0;
386}
387
1da177e4 388/**
485bb99b 389 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
390 * @mapping: address space structure to write
391 * @start: offset in bytes where the range starts
469eb4d0 392 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 393 * @sync_mode: enable synchronous operation
1da177e4 394 *
485bb99b
RD
395 * Start writeback against all of a mapping's dirty pages that lie
396 * within the byte offsets <start, end> inclusive.
397 *
1da177e4 398 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 399 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
400 * these two operations is that if a dirty page/buffer is encountered, it must
401 * be waited upon, and not just skipped over.
a862f68a
MR
402 *
403 * Return: %0 on success, negative error code otherwise.
1da177e4 404 */
ebcf28e1
AM
405int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
406 loff_t end, int sync_mode)
1da177e4
LT
407{
408 int ret;
409 struct writeback_control wbc = {
410 .sync_mode = sync_mode,
05fe478d 411 .nr_to_write = LONG_MAX,
111ebb6e
OH
412 .range_start = start,
413 .range_end = end,
1da177e4
LT
414 };
415
c3aab9a0
KK
416 if (!mapping_cap_writeback_dirty(mapping) ||
417 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1da177e4
LT
418 return 0;
419
b16b1deb 420 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
1da177e4 421 ret = do_writepages(mapping, &wbc);
b16b1deb 422 wbc_detach_inode(&wbc);
1da177e4
LT
423 return ret;
424}
425
426static inline int __filemap_fdatawrite(struct address_space *mapping,
427 int sync_mode)
428{
111ebb6e 429 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
430}
431
432int filemap_fdatawrite(struct address_space *mapping)
433{
434 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
435}
436EXPORT_SYMBOL(filemap_fdatawrite);
437
f4c0a0fd 438int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 439 loff_t end)
1da177e4
LT
440{
441 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
442}
f4c0a0fd 443EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 444
485bb99b
RD
445/**
446 * filemap_flush - mostly a non-blocking flush
447 * @mapping: target address_space
448 *
1da177e4
LT
449 * This is a mostly non-blocking flush. Not suitable for data-integrity
450 * purposes - I/O may not be started against all dirty pages.
a862f68a
MR
451 *
452 * Return: %0 on success, negative error code otherwise.
1da177e4
LT
453 */
454int filemap_flush(struct address_space *mapping)
455{
456 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
457}
458EXPORT_SYMBOL(filemap_flush);
459
7fc9e472
GR
460/**
461 * filemap_range_has_page - check if a page exists in range.
462 * @mapping: address space within which to check
463 * @start_byte: offset in bytes where the range starts
464 * @end_byte: offset in bytes where the range ends (inclusive)
465 *
466 * Find at least one page in the range supplied, usually used to check if
467 * direct writing in this range will trigger a writeback.
a862f68a
MR
468 *
469 * Return: %true if at least one page exists in the specified range,
470 * %false otherwise.
7fc9e472
GR
471 */
472bool filemap_range_has_page(struct address_space *mapping,
473 loff_t start_byte, loff_t end_byte)
474{
f7b68046 475 struct page *page;
8fa8e538
MW
476 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
477 pgoff_t max = end_byte >> PAGE_SHIFT;
7fc9e472
GR
478
479 if (end_byte < start_byte)
480 return false;
481
8fa8e538
MW
482 rcu_read_lock();
483 for (;;) {
484 page = xas_find(&xas, max);
485 if (xas_retry(&xas, page))
486 continue;
487 /* Shadow entries don't count */
488 if (xa_is_value(page))
489 continue;
490 /*
491 * We don't need to try to pin this page; we're about to
492 * release the RCU lock anyway. It is enough to know that
493 * there was a page here recently.
494 */
495 break;
496 }
497 rcu_read_unlock();
7fc9e472 498
8fa8e538 499 return page != NULL;
7fc9e472
GR
500}
501EXPORT_SYMBOL(filemap_range_has_page);
502
5e8fcc1a 503static void __filemap_fdatawait_range(struct address_space *mapping,
aa750fd7 504 loff_t start_byte, loff_t end_byte)
1da177e4 505{
09cbfeaf
KS
506 pgoff_t index = start_byte >> PAGE_SHIFT;
507 pgoff_t end = end_byte >> PAGE_SHIFT;
1da177e4
LT
508 struct pagevec pvec;
509 int nr_pages;
1da177e4 510
94004ed7 511 if (end_byte < start_byte)
5e8fcc1a 512 return;
1da177e4 513
86679820 514 pagevec_init(&pvec);
312e9d2f 515 while (index <= end) {
1da177e4
LT
516 unsigned i;
517
312e9d2f 518 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
67fd707f 519 end, PAGECACHE_TAG_WRITEBACK);
312e9d2f
JK
520 if (!nr_pages)
521 break;
522
1da177e4
LT
523 for (i = 0; i < nr_pages; i++) {
524 struct page *page = pvec.pages[i];
525
1da177e4 526 wait_on_page_writeback(page);
5e8fcc1a 527 ClearPageError(page);
1da177e4
LT
528 }
529 pagevec_release(&pvec);
530 cond_resched();
531 }
aa750fd7
JN
532}
533
534/**
535 * filemap_fdatawait_range - wait for writeback to complete
536 * @mapping: address space structure to wait for
537 * @start_byte: offset in bytes where the range starts
538 * @end_byte: offset in bytes where the range ends (inclusive)
539 *
540 * Walk the list of under-writeback pages of the given address space
541 * in the given range and wait for all of them. Check error status of
542 * the address space and return it.
543 *
544 * Since the error status of the address space is cleared by this function,
545 * callers are responsible for checking the return value and handling and/or
546 * reporting the error.
a862f68a
MR
547 *
548 * Return: error status of the address space.
aa750fd7
JN
549 */
550int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
551 loff_t end_byte)
552{
5e8fcc1a
JL
553 __filemap_fdatawait_range(mapping, start_byte, end_byte);
554 return filemap_check_errors(mapping);
1da177e4 555}
d3bccb6f
JK
556EXPORT_SYMBOL(filemap_fdatawait_range);
557
aa0bfcd9
RZ
558/**
559 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
560 * @mapping: address space structure to wait for
561 * @start_byte: offset in bytes where the range starts
562 * @end_byte: offset in bytes where the range ends (inclusive)
563 *
564 * Walk the list of under-writeback pages of the given address space in the
565 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
566 * this function does not clear error status of the address space.
567 *
568 * Use this function if callers don't handle errors themselves. Expected
569 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
570 * fsfreeze(8)
571 */
572int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
573 loff_t start_byte, loff_t end_byte)
574{
575 __filemap_fdatawait_range(mapping, start_byte, end_byte);
576 return filemap_check_and_keep_errors(mapping);
577}
578EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
579
a823e458
JL
580/**
581 * file_fdatawait_range - wait for writeback to complete
582 * @file: file pointing to address space structure to wait for
583 * @start_byte: offset in bytes where the range starts
584 * @end_byte: offset in bytes where the range ends (inclusive)
585 *
586 * Walk the list of under-writeback pages of the address space that file
587 * refers to, in the given range and wait for all of them. Check error
588 * status of the address space vs. the file->f_wb_err cursor and return it.
589 *
590 * Since the error status of the file is advanced by this function,
591 * callers are responsible for checking the return value and handling and/or
592 * reporting the error.
a862f68a
MR
593 *
594 * Return: error status of the address space vs. the file->f_wb_err cursor.
a823e458
JL
595 */
596int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
597{
598 struct address_space *mapping = file->f_mapping;
599
600 __filemap_fdatawait_range(mapping, start_byte, end_byte);
601 return file_check_and_advance_wb_err(file);
602}
603EXPORT_SYMBOL(file_fdatawait_range);
d3bccb6f 604
aa750fd7
JN
605/**
606 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
607 * @mapping: address space structure to wait for
608 *
609 * Walk the list of under-writeback pages of the given address space
610 * and wait for all of them. Unlike filemap_fdatawait(), this function
611 * does not clear error status of the address space.
612 *
613 * Use this function if callers don't handle errors themselves. Expected
614 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
615 * fsfreeze(8)
a862f68a
MR
616 *
617 * Return: error status of the address space.
aa750fd7 618 */
76341cab 619int filemap_fdatawait_keep_errors(struct address_space *mapping)
aa750fd7 620{
ffb959bb 621 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
76341cab 622 return filemap_check_and_keep_errors(mapping);
aa750fd7 623}
76341cab 624EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
aa750fd7 625
875d91b1 626/* Returns true if writeback might be needed or already in progress. */
9326c9b2 627static bool mapping_needs_writeback(struct address_space *mapping)
1da177e4 628{
875d91b1
KK
629 if (dax_mapping(mapping))
630 return mapping->nrexceptional;
631
632 return mapping->nrpages;
1da177e4 633}
1da177e4 634
485bb99b
RD
635/**
636 * filemap_write_and_wait_range - write out & wait on a file range
637 * @mapping: the address_space for the pages
638 * @lstart: offset in bytes where the range starts
639 * @lend: offset in bytes where the range ends (inclusive)
640 *
469eb4d0
AM
641 * Write out and wait upon file offsets lstart->lend, inclusive.
642 *
0e056eb5 643 * Note that @lend is inclusive (describes the last byte to be written) so
469eb4d0 644 * that this function can be used to write to the very end-of-file (end = -1).
a862f68a
MR
645 *
646 * Return: error status of the address space.
469eb4d0 647 */
1da177e4
LT
648int filemap_write_and_wait_range(struct address_space *mapping,
649 loff_t lstart, loff_t lend)
650{
28fd1298 651 int err = 0;
1da177e4 652
9326c9b2 653 if (mapping_needs_writeback(mapping)) {
28fd1298
OH
654 err = __filemap_fdatawrite_range(mapping, lstart, lend,
655 WB_SYNC_ALL);
ddf8f376
IW
656 /*
657 * Even if the above returned error, the pages may be
658 * written partially (e.g. -ENOSPC), so we wait for it.
659 * But the -EIO is special case, it may indicate the worst
660 * thing (e.g. bug) happened, so we avoid waiting for it.
661 */
28fd1298 662 if (err != -EIO) {
94004ed7
CH
663 int err2 = filemap_fdatawait_range(mapping,
664 lstart, lend);
28fd1298
OH
665 if (!err)
666 err = err2;
cbeaf951
JL
667 } else {
668 /* Clear any previously stored errors */
669 filemap_check_errors(mapping);
28fd1298 670 }
865ffef3
DM
671 } else {
672 err = filemap_check_errors(mapping);
1da177e4 673 }
28fd1298 674 return err;
1da177e4 675}
f6995585 676EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 677
5660e13d
JL
678void __filemap_set_wb_err(struct address_space *mapping, int err)
679{
3acdfd28 680 errseq_t eseq = errseq_set(&mapping->wb_err, err);
5660e13d
JL
681
682 trace_filemap_set_wb_err(mapping, eseq);
683}
684EXPORT_SYMBOL(__filemap_set_wb_err);
685
686/**
687 * file_check_and_advance_wb_err - report wb error (if any) that was previously
688 * and advance wb_err to current one
689 * @file: struct file on which the error is being reported
690 *
691 * When userland calls fsync (or something like nfsd does the equivalent), we
692 * want to report any writeback errors that occurred since the last fsync (or
693 * since the file was opened if there haven't been any).
694 *
695 * Grab the wb_err from the mapping. If it matches what we have in the file,
696 * then just quickly return 0. The file is all caught up.
697 *
698 * If it doesn't match, then take the mapping value, set the "seen" flag in
699 * it and try to swap it into place. If it works, or another task beat us
700 * to it with the new value, then update the f_wb_err and return the error
701 * portion. The error at this point must be reported via proper channels
702 * (a'la fsync, or NFS COMMIT operation, etc.).
703 *
704 * While we handle mapping->wb_err with atomic operations, the f_wb_err
705 * value is protected by the f_lock since we must ensure that it reflects
706 * the latest value swapped in for this file descriptor.
a862f68a
MR
707 *
708 * Return: %0 on success, negative error code otherwise.
5660e13d
JL
709 */
710int file_check_and_advance_wb_err(struct file *file)
711{
712 int err = 0;
713 errseq_t old = READ_ONCE(file->f_wb_err);
714 struct address_space *mapping = file->f_mapping;
715
716 /* Locklessly handle the common case where nothing has changed */
717 if (errseq_check(&mapping->wb_err, old)) {
718 /* Something changed, must use slow path */
719 spin_lock(&file->f_lock);
720 old = file->f_wb_err;
721 err = errseq_check_and_advance(&mapping->wb_err,
722 &file->f_wb_err);
723 trace_file_check_and_advance_wb_err(file, old);
724 spin_unlock(&file->f_lock);
725 }
f4e222c5
JL
726
727 /*
728 * We're mostly using this function as a drop in replacement for
729 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
730 * that the legacy code would have had on these flags.
731 */
732 clear_bit(AS_EIO, &mapping->flags);
733 clear_bit(AS_ENOSPC, &mapping->flags);
5660e13d
JL
734 return err;
735}
736EXPORT_SYMBOL(file_check_and_advance_wb_err);
737
738/**
739 * file_write_and_wait_range - write out & wait on a file range
740 * @file: file pointing to address_space with pages
741 * @lstart: offset in bytes where the range starts
742 * @lend: offset in bytes where the range ends (inclusive)
743 *
744 * Write out and wait upon file offsets lstart->lend, inclusive.
745 *
746 * Note that @lend is inclusive (describes the last byte to be written) so
747 * that this function can be used to write to the very end-of-file (end = -1).
748 *
749 * After writing out and waiting on the data, we check and advance the
750 * f_wb_err cursor to the latest value, and return any errors detected there.
a862f68a
MR
751 *
752 * Return: %0 on success, negative error code otherwise.
5660e13d
JL
753 */
754int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
755{
756 int err = 0, err2;
757 struct address_space *mapping = file->f_mapping;
758
9326c9b2 759 if (mapping_needs_writeback(mapping)) {
5660e13d
JL
760 err = __filemap_fdatawrite_range(mapping, lstart, lend,
761 WB_SYNC_ALL);
762 /* See comment of filemap_write_and_wait() */
763 if (err != -EIO)
764 __filemap_fdatawait_range(mapping, lstart, lend);
765 }
766 err2 = file_check_and_advance_wb_err(file);
767 if (!err)
768 err = err2;
769 return err;
770}
771EXPORT_SYMBOL(file_write_and_wait_range);
772
ef6a3c63
MS
773/**
774 * replace_page_cache_page - replace a pagecache page with a new one
775 * @old: page to be replaced
776 * @new: page to replace with
777 * @gfp_mask: allocation mode
778 *
779 * This function replaces a page in the pagecache with a new one. On
780 * success it acquires the pagecache reference for the new page and
781 * drops it for the old page. Both the old and new pages must be
782 * locked. This function does not add the new page to the LRU, the
783 * caller must do that.
784 *
74d60958 785 * The remove + add is atomic. This function cannot fail.
a862f68a
MR
786 *
787 * Return: %0
ef6a3c63
MS
788 */
789int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
790{
74d60958
MW
791 struct address_space *mapping = old->mapping;
792 void (*freepage)(struct page *) = mapping->a_ops->freepage;
793 pgoff_t offset = old->index;
794 XA_STATE(xas, &mapping->i_pages, offset);
795 unsigned long flags;
ef6a3c63 796
309381fe
SL
797 VM_BUG_ON_PAGE(!PageLocked(old), old);
798 VM_BUG_ON_PAGE(!PageLocked(new), new);
799 VM_BUG_ON_PAGE(new->mapping, new);
ef6a3c63 800
74d60958
MW
801 get_page(new);
802 new->mapping = mapping;
803 new->index = offset;
ef6a3c63 804
0d1c2072
JW
805 mem_cgroup_migrate(old, new);
806
74d60958
MW
807 xas_lock_irqsave(&xas, flags);
808 xas_store(&xas, new);
4165b9b4 809
74d60958
MW
810 old->mapping = NULL;
811 /* hugetlb pages do not participate in page cache accounting. */
812 if (!PageHuge(old))
0d1c2072 813 __dec_lruvec_page_state(old, NR_FILE_PAGES);
74d60958 814 if (!PageHuge(new))
0d1c2072 815 __inc_lruvec_page_state(new, NR_FILE_PAGES);
74d60958 816 if (PageSwapBacked(old))
0d1c2072 817 __dec_lruvec_page_state(old, NR_SHMEM);
74d60958 818 if (PageSwapBacked(new))
0d1c2072 819 __inc_lruvec_page_state(new, NR_SHMEM);
74d60958 820 xas_unlock_irqrestore(&xas, flags);
74d60958
MW
821 if (freepage)
822 freepage(old);
823 put_page(old);
ef6a3c63 824
74d60958 825 return 0;
ef6a3c63
MS
826}
827EXPORT_SYMBOL_GPL(replace_page_cache_page);
828
a528910e
JW
829static int __add_to_page_cache_locked(struct page *page,
830 struct address_space *mapping,
831 pgoff_t offset, gfp_t gfp_mask,
832 void **shadowp)
1da177e4 833{
74d60958 834 XA_STATE(xas, &mapping->i_pages, offset);
00501b53 835 int huge = PageHuge(page);
e286781d 836 int error;
74d60958 837 void *old;
e286781d 838
309381fe
SL
839 VM_BUG_ON_PAGE(!PageLocked(page), page);
840 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
74d60958 841 mapping_set_update(&xas, mapping);
e286781d 842
09cbfeaf 843 get_page(page);
66a0c8ee
KS
844 page->mapping = mapping;
845 page->index = offset;
846
3fea5a49 847 if (!huge) {
d9eb1ea2 848 error = mem_cgroup_charge(page, current->mm, gfp_mask);
3fea5a49
JW
849 if (error)
850 goto error;
851 }
852
74d60958
MW
853 do {
854 xas_lock_irq(&xas);
855 old = xas_load(&xas);
856 if (old && !xa_is_value(old))
857 xas_set_err(&xas, -EEXIST);
858 xas_store(&xas, page);
859 if (xas_error(&xas))
860 goto unlock;
861
862 if (xa_is_value(old)) {
863 mapping->nrexceptional--;
864 if (shadowp)
865 *shadowp = old;
866 }
867 mapping->nrpages++;
868
869 /* hugetlb pages do not participate in page cache accounting */
870 if (!huge)
0d1c2072 871 __inc_lruvec_page_state(page, NR_FILE_PAGES);
74d60958
MW
872unlock:
873 xas_unlock_irq(&xas);
874 } while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK));
875
3fea5a49
JW
876 if (xas_error(&xas)) {
877 error = xas_error(&xas);
74d60958 878 goto error;
3fea5a49 879 }
4165b9b4 880
66a0c8ee
KS
881 trace_mm_filemap_add_to_page_cache(page);
882 return 0;
74d60958 883error:
66a0c8ee
KS
884 page->mapping = NULL;
885 /* Leave page->index set: truncation relies upon it */
09cbfeaf 886 put_page(page);
3fea5a49 887 return error;
1da177e4 888}
cfcbfb13 889ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
a528910e
JW
890
891/**
892 * add_to_page_cache_locked - add a locked page to the pagecache
893 * @page: page to add
894 * @mapping: the page's address_space
895 * @offset: page index
896 * @gfp_mask: page allocation mode
897 *
898 * This function is used to add a page to the pagecache. It must be locked.
899 * This function does not add the page to the LRU. The caller must do that.
a862f68a
MR
900 *
901 * Return: %0 on success, negative error code otherwise.
a528910e
JW
902 */
903int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
904 pgoff_t offset, gfp_t gfp_mask)
905{
906 return __add_to_page_cache_locked(page, mapping, offset,
907 gfp_mask, NULL);
908}
e286781d 909EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4
LT
910
911int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 912 pgoff_t offset, gfp_t gfp_mask)
1da177e4 913{
a528910e 914 void *shadow = NULL;
4f98a2fe
RR
915 int ret;
916
48c935ad 917 __SetPageLocked(page);
a528910e
JW
918 ret = __add_to_page_cache_locked(page, mapping, offset,
919 gfp_mask, &shadow);
920 if (unlikely(ret))
48c935ad 921 __ClearPageLocked(page);
a528910e
JW
922 else {
923 /*
924 * The page might have been evicted from cache only
925 * recently, in which case it should be activated like
926 * any other repeatedly accessed page.
f0281a00
RR
927 * The exception is pages getting rewritten; evicting other
928 * data from the working set, only to cache data that will
929 * get overwritten with something else, is a waste of memory.
a528910e 930 */
1899ad18
JW
931 WARN_ON_ONCE(PageActive(page));
932 if (!(gfp_mask & __GFP_WRITE) && shadow)
933 workingset_refault(page, shadow);
a528910e
JW
934 lru_cache_add(page);
935 }
1da177e4
LT
936 return ret;
937}
18bc0bbd 938EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1da177e4 939
44110fe3 940#ifdef CONFIG_NUMA
2ae88149 941struct page *__page_cache_alloc(gfp_t gfp)
44110fe3 942{
c0ff7453
MX
943 int n;
944 struct page *page;
945
44110fe3 946 if (cpuset_do_page_mem_spread()) {
cc9a6c87
MG
947 unsigned int cpuset_mems_cookie;
948 do {
d26914d1 949 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 950 n = cpuset_mem_spread_node();
96db800f 951 page = __alloc_pages_node(n, gfp, 0);
d26914d1 952 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
cc9a6c87 953
c0ff7453 954 return page;
44110fe3 955 }
2ae88149 956 return alloc_pages(gfp, 0);
44110fe3 957}
2ae88149 958EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
959#endif
960
1da177e4
LT
961/*
962 * In order to wait for pages to become available there must be
963 * waitqueues associated with pages. By using a hash table of
964 * waitqueues where the bucket discipline is to maintain all
965 * waiters on the same queue and wake all when any of the pages
966 * become available, and for the woken contexts to check to be
967 * sure the appropriate page became available, this saves space
968 * at a cost of "thundering herd" phenomena during rare hash
969 * collisions.
970 */
62906027
NP
971#define PAGE_WAIT_TABLE_BITS 8
972#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
973static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
974
975static wait_queue_head_t *page_waitqueue(struct page *page)
1da177e4 976{
62906027 977 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
1da177e4 978}
1da177e4 979
62906027 980void __init pagecache_init(void)
1da177e4 981{
62906027 982 int i;
1da177e4 983
62906027
NP
984 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
985 init_waitqueue_head(&page_wait_table[i]);
986
987 page_writeback_init();
1da177e4 988}
1da177e4 989
3510ca20 990/* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
62906027
NP
991struct wait_page_key {
992 struct page *page;
993 int bit_nr;
994 int page_match;
995};
996
997struct wait_page_queue {
998 struct page *page;
999 int bit_nr;
ac6424b9 1000 wait_queue_entry_t wait;
62906027
NP
1001};
1002
ac6424b9 1003static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
f62e00cc 1004{
62906027
NP
1005 struct wait_page_key *key = arg;
1006 struct wait_page_queue *wait_page
1007 = container_of(wait, struct wait_page_queue, wait);
1008
1009 if (wait_page->page != key->page)
1010 return 0;
1011 key->page_match = 1;
f62e00cc 1012
62906027
NP
1013 if (wait_page->bit_nr != key->bit_nr)
1014 return 0;
3510ca20 1015
9a1ea439
HD
1016 /*
1017 * Stop walking if it's locked.
1018 * Is this safe if put_and_wait_on_page_locked() is in use?
1019 * Yes: the waker must hold a reference to this page, and if PG_locked
1020 * has now already been set by another task, that task must also hold
1021 * a reference to the *same usage* of this page; so there is no need
1022 * to walk on to wake even the put_and_wait_on_page_locked() callers.
1023 */
62906027 1024 if (test_bit(key->bit_nr, &key->page->flags))
3510ca20 1025 return -1;
f62e00cc 1026
62906027 1027 return autoremove_wake_function(wait, mode, sync, key);
f62e00cc
KM
1028}
1029
74d81bfa 1030static void wake_up_page_bit(struct page *page, int bit_nr)
cbbce822 1031{
62906027
NP
1032 wait_queue_head_t *q = page_waitqueue(page);
1033 struct wait_page_key key;
1034 unsigned long flags;
11a19c7b 1035 wait_queue_entry_t bookmark;
cbbce822 1036
62906027
NP
1037 key.page = page;
1038 key.bit_nr = bit_nr;
1039 key.page_match = 0;
1040
11a19c7b
TC
1041 bookmark.flags = 0;
1042 bookmark.private = NULL;
1043 bookmark.func = NULL;
1044 INIT_LIST_HEAD(&bookmark.entry);
1045
62906027 1046 spin_lock_irqsave(&q->lock, flags);
11a19c7b
TC
1047 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1048
1049 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1050 /*
1051 * Take a breather from holding the lock,
1052 * allow pages that finish wake up asynchronously
1053 * to acquire the lock and remove themselves
1054 * from wait queue
1055 */
1056 spin_unlock_irqrestore(&q->lock, flags);
1057 cpu_relax();
1058 spin_lock_irqsave(&q->lock, flags);
1059 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1060 }
1061
62906027
NP
1062 /*
1063 * It is possible for other pages to have collided on the waitqueue
1064 * hash, so in that case check for a page match. That prevents a long-
1065 * term waiter
1066 *
1067 * It is still possible to miss a case here, when we woke page waiters
1068 * and removed them from the waitqueue, but there are still other
1069 * page waiters.
1070 */
1071 if (!waitqueue_active(q) || !key.page_match) {
1072 ClearPageWaiters(page);
1073 /*
1074 * It's possible to miss clearing Waiters here, when we woke
1075 * our page waiters, but the hashed waitqueue has waiters for
1076 * other pages on it.
1077 *
1078 * That's okay, it's a rare case. The next waker will clear it.
1079 */
1080 }
1081 spin_unlock_irqrestore(&q->lock, flags);
1082}
74d81bfa
NP
1083
1084static void wake_up_page(struct page *page, int bit)
1085{
1086 if (!PageWaiters(page))
1087 return;
1088 wake_up_page_bit(page, bit);
1089}
62906027 1090
9a1ea439
HD
1091/*
1092 * A choice of three behaviors for wait_on_page_bit_common():
1093 */
1094enum behavior {
1095 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
1096 * __lock_page() waiting on then setting PG_locked.
1097 */
1098 SHARED, /* Hold ref to page and check the bit when woken, like
1099 * wait_on_page_writeback() waiting on PG_writeback.
1100 */
1101 DROP, /* Drop ref to page before wait, no check when woken,
1102 * like put_and_wait_on_page_locked() on PG_locked.
1103 */
1104};
1105
62906027 1106static inline int wait_on_page_bit_common(wait_queue_head_t *q,
9a1ea439 1107 struct page *page, int bit_nr, int state, enum behavior behavior)
62906027
NP
1108{
1109 struct wait_page_queue wait_page;
ac6424b9 1110 wait_queue_entry_t *wait = &wait_page.wait;
9a1ea439 1111 bool bit_is_set;
b1d29ba8 1112 bool thrashing = false;
9a1ea439 1113 bool delayacct = false;
eb414681 1114 unsigned long pflags;
62906027
NP
1115 int ret = 0;
1116
eb414681 1117 if (bit_nr == PG_locked &&
b1d29ba8 1118 !PageUptodate(page) && PageWorkingset(page)) {
9a1ea439 1119 if (!PageSwapBacked(page)) {
eb414681 1120 delayacct_thrashing_start();
9a1ea439
HD
1121 delayacct = true;
1122 }
eb414681 1123 psi_memstall_enter(&pflags);
b1d29ba8
JW
1124 thrashing = true;
1125 }
1126
62906027 1127 init_wait(wait);
9a1ea439 1128 wait->flags = behavior == EXCLUSIVE ? WQ_FLAG_EXCLUSIVE : 0;
62906027
NP
1129 wait->func = wake_page_function;
1130 wait_page.page = page;
1131 wait_page.bit_nr = bit_nr;
1132
1133 for (;;) {
1134 spin_lock_irq(&q->lock);
1135
2055da97 1136 if (likely(list_empty(&wait->entry))) {
3510ca20 1137 __add_wait_queue_entry_tail(q, wait);
62906027
NP
1138 SetPageWaiters(page);
1139 }
1140
1141 set_current_state(state);
1142
1143 spin_unlock_irq(&q->lock);
1144
9a1ea439
HD
1145 bit_is_set = test_bit(bit_nr, &page->flags);
1146 if (behavior == DROP)
1147 put_page(page);
1148
1149 if (likely(bit_is_set))
62906027 1150 io_schedule();
62906027 1151
9a1ea439 1152 if (behavior == EXCLUSIVE) {
62906027
NP
1153 if (!test_and_set_bit_lock(bit_nr, &page->flags))
1154 break;
9a1ea439 1155 } else if (behavior == SHARED) {
62906027
NP
1156 if (!test_bit(bit_nr, &page->flags))
1157 break;
1158 }
a8b169af 1159
fa45f116 1160 if (signal_pending_state(state, current)) {
a8b169af
LT
1161 ret = -EINTR;
1162 break;
1163 }
9a1ea439
HD
1164
1165 if (behavior == DROP) {
1166 /*
1167 * We can no longer safely access page->flags:
1168 * even if CONFIG_MEMORY_HOTREMOVE is not enabled,
1169 * there is a risk of waiting forever on a page reused
1170 * for something that keeps it locked indefinitely.
1171 * But best check for -EINTR above before breaking.
1172 */
1173 break;
1174 }
62906027
NP
1175 }
1176
1177 finish_wait(q, wait);
1178
eb414681 1179 if (thrashing) {
9a1ea439 1180 if (delayacct)
eb414681
JW
1181 delayacct_thrashing_end();
1182 psi_memstall_leave(&pflags);
1183 }
b1d29ba8 1184
62906027
NP
1185 /*
1186 * A signal could leave PageWaiters set. Clearing it here if
1187 * !waitqueue_active would be possible (by open-coding finish_wait),
1188 * but still fail to catch it in the case of wait hash collision. We
1189 * already can fail to clear wait hash collision cases, so don't
1190 * bother with signals either.
1191 */
1192
1193 return ret;
1194}
1195
1196void wait_on_page_bit(struct page *page, int bit_nr)
1197{
1198 wait_queue_head_t *q = page_waitqueue(page);
9a1ea439 1199 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
62906027
NP
1200}
1201EXPORT_SYMBOL(wait_on_page_bit);
1202
1203int wait_on_page_bit_killable(struct page *page, int bit_nr)
1204{
1205 wait_queue_head_t *q = page_waitqueue(page);
9a1ea439 1206 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
cbbce822 1207}
4343d008 1208EXPORT_SYMBOL(wait_on_page_bit_killable);
cbbce822 1209
9a1ea439
HD
1210/**
1211 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1212 * @page: The page to wait for.
1213 *
1214 * The caller should hold a reference on @page. They expect the page to
1215 * become unlocked relatively soon, but do not wish to hold up migration
1216 * (for example) by holding the reference while waiting for the page to
1217 * come unlocked. After this function returns, the caller should not
1218 * dereference @page.
1219 */
1220void put_and_wait_on_page_locked(struct page *page)
1221{
1222 wait_queue_head_t *q;
1223
1224 page = compound_head(page);
1225 q = page_waitqueue(page);
1226 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP);
1227}
1228
385e1ca5
DH
1229/**
1230 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
697f619f
RD
1231 * @page: Page defining the wait queue of interest
1232 * @waiter: Waiter to add to the queue
385e1ca5
DH
1233 *
1234 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1235 */
ac6424b9 1236void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
385e1ca5
DH
1237{
1238 wait_queue_head_t *q = page_waitqueue(page);
1239 unsigned long flags;
1240
1241 spin_lock_irqsave(&q->lock, flags);
9c3a815f 1242 __add_wait_queue_entry_tail(q, waiter);
62906027 1243 SetPageWaiters(page);
385e1ca5
DH
1244 spin_unlock_irqrestore(&q->lock, flags);
1245}
1246EXPORT_SYMBOL_GPL(add_page_wait_queue);
1247
b91e1302
LT
1248#ifndef clear_bit_unlock_is_negative_byte
1249
1250/*
1251 * PG_waiters is the high bit in the same byte as PG_lock.
1252 *
1253 * On x86 (and on many other architectures), we can clear PG_lock and
1254 * test the sign bit at the same time. But if the architecture does
1255 * not support that special operation, we just do this all by hand
1256 * instead.
1257 *
1258 * The read of PG_waiters has to be after (or concurrently with) PG_locked
ffceeb62 1259 * being cleared, but a memory barrier should be unnecessary since it is
b91e1302
LT
1260 * in the same byte as PG_locked.
1261 */
1262static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1263{
1264 clear_bit_unlock(nr, mem);
1265 /* smp_mb__after_atomic(); */
98473f9f 1266 return test_bit(PG_waiters, mem);
b91e1302
LT
1267}
1268
1269#endif
1270
1da177e4 1271/**
485bb99b 1272 * unlock_page - unlock a locked page
1da177e4
LT
1273 * @page: the page
1274 *
1275 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1276 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
da3dae54 1277 * mechanism between PageLocked pages and PageWriteback pages is shared.
1da177e4
LT
1278 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1279 *
b91e1302
LT
1280 * Note that this depends on PG_waiters being the sign bit in the byte
1281 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1282 * clear the PG_locked bit and test PG_waiters at the same time fairly
1283 * portably (architectures that do LL/SC can test any bit, while x86 can
1284 * test the sign bit).
1da177e4 1285 */
920c7a5d 1286void unlock_page(struct page *page)
1da177e4 1287{
b91e1302 1288 BUILD_BUG_ON(PG_waiters != 7);
48c935ad 1289 page = compound_head(page);
309381fe 1290 VM_BUG_ON_PAGE(!PageLocked(page), page);
b91e1302
LT
1291 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1292 wake_up_page_bit(page, PG_locked);
1da177e4
LT
1293}
1294EXPORT_SYMBOL(unlock_page);
1295
485bb99b
RD
1296/**
1297 * end_page_writeback - end writeback against a page
1298 * @page: the page
1da177e4
LT
1299 */
1300void end_page_writeback(struct page *page)
1301{
888cf2db
MG
1302 /*
1303 * TestClearPageReclaim could be used here but it is an atomic
1304 * operation and overkill in this particular case. Failing to
1305 * shuffle a page marked for immediate reclaim is too mild to
1306 * justify taking an atomic operation penalty at the end of
1307 * ever page writeback.
1308 */
1309 if (PageReclaim(page)) {
1310 ClearPageReclaim(page);
ac6aadb2 1311 rotate_reclaimable_page(page);
888cf2db 1312 }
ac6aadb2
MS
1313
1314 if (!test_clear_page_writeback(page))
1315 BUG();
1316
4e857c58 1317 smp_mb__after_atomic();
1da177e4
LT
1318 wake_up_page(page, PG_writeback);
1319}
1320EXPORT_SYMBOL(end_page_writeback);
1321
57d99845
MW
1322/*
1323 * After completing I/O on a page, call this routine to update the page
1324 * flags appropriately
1325 */
c11f0c0b 1326void page_endio(struct page *page, bool is_write, int err)
57d99845 1327{
c11f0c0b 1328 if (!is_write) {
57d99845
MW
1329 if (!err) {
1330 SetPageUptodate(page);
1331 } else {
1332 ClearPageUptodate(page);
1333 SetPageError(page);
1334 }
1335 unlock_page(page);
abf54548 1336 } else {
57d99845 1337 if (err) {
dd8416c4
MK
1338 struct address_space *mapping;
1339
57d99845 1340 SetPageError(page);
dd8416c4
MK
1341 mapping = page_mapping(page);
1342 if (mapping)
1343 mapping_set_error(mapping, err);
57d99845
MW
1344 }
1345 end_page_writeback(page);
1346 }
1347}
1348EXPORT_SYMBOL_GPL(page_endio);
1349
485bb99b
RD
1350/**
1351 * __lock_page - get a lock on the page, assuming we need to sleep to get it
87066755 1352 * @__page: the page to lock
1da177e4 1353 */
62906027 1354void __lock_page(struct page *__page)
1da177e4 1355{
62906027
NP
1356 struct page *page = compound_head(__page);
1357 wait_queue_head_t *q = page_waitqueue(page);
9a1ea439
HD
1358 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1359 EXCLUSIVE);
1da177e4
LT
1360}
1361EXPORT_SYMBOL(__lock_page);
1362
62906027 1363int __lock_page_killable(struct page *__page)
2687a356 1364{
62906027
NP
1365 struct page *page = compound_head(__page);
1366 wait_queue_head_t *q = page_waitqueue(page);
9a1ea439
HD
1367 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1368 EXCLUSIVE);
2687a356 1369}
18bc0bbd 1370EXPORT_SYMBOL_GPL(__lock_page_killable);
2687a356 1371
9a95f3cf
PC
1372/*
1373 * Return values:
c1e8d7c6 1374 * 1 - page is locked; mmap_lock is still held.
9a95f3cf 1375 * 0 - page is not locked.
3e4e28c5 1376 * mmap_lock has been released (mmap_read_unlock(), unless flags had both
9a95f3cf 1377 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
c1e8d7c6 1378 * which case mmap_lock is still held.
9a95f3cf
PC
1379 *
1380 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
c1e8d7c6 1381 * with the page locked and the mmap_lock unperturbed.
9a95f3cf 1382 */
d065bd81
ML
1383int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1384 unsigned int flags)
1385{
4064b982 1386 if (fault_flag_allow_retry_first(flags)) {
37b23e05 1387 /*
c1e8d7c6 1388 * CAUTION! In this case, mmap_lock is not released
37b23e05
KM
1389 * even though return 0.
1390 */
1391 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1392 return 0;
1393
d8ed45c5 1394 mmap_read_unlock(mm);
37b23e05
KM
1395 if (flags & FAULT_FLAG_KILLABLE)
1396 wait_on_page_locked_killable(page);
1397 else
318b275f 1398 wait_on_page_locked(page);
d065bd81 1399 return 0;
37b23e05
KM
1400 } else {
1401 if (flags & FAULT_FLAG_KILLABLE) {
1402 int ret;
1403
1404 ret = __lock_page_killable(page);
1405 if (ret) {
d8ed45c5 1406 mmap_read_unlock(mm);
37b23e05
KM
1407 return 0;
1408 }
1409 } else
1410 __lock_page(page);
1411 return 1;
d065bd81
ML
1412 }
1413}
1414
e7b563bb 1415/**
0d3f9296
MW
1416 * page_cache_next_miss() - Find the next gap in the page cache.
1417 * @mapping: Mapping.
1418 * @index: Index.
1419 * @max_scan: Maximum range to search.
e7b563bb 1420 *
0d3f9296
MW
1421 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1422 * gap with the lowest index.
e7b563bb 1423 *
0d3f9296
MW
1424 * This function may be called under the rcu_read_lock. However, this will
1425 * not atomically search a snapshot of the cache at a single point in time.
1426 * For example, if a gap is created at index 5, then subsequently a gap is
1427 * created at index 10, page_cache_next_miss covering both indices may
1428 * return 10 if called under the rcu_read_lock.
e7b563bb 1429 *
0d3f9296
MW
1430 * Return: The index of the gap if found, otherwise an index outside the
1431 * range specified (in which case 'return - index >= max_scan' will be true).
1432 * In the rare case of index wrap-around, 0 will be returned.
e7b563bb 1433 */
0d3f9296 1434pgoff_t page_cache_next_miss(struct address_space *mapping,
e7b563bb
JW
1435 pgoff_t index, unsigned long max_scan)
1436{
0d3f9296 1437 XA_STATE(xas, &mapping->i_pages, index);
e7b563bb 1438
0d3f9296
MW
1439 while (max_scan--) {
1440 void *entry = xas_next(&xas);
1441 if (!entry || xa_is_value(entry))
e7b563bb 1442 break;
0d3f9296 1443 if (xas.xa_index == 0)
e7b563bb
JW
1444 break;
1445 }
1446
0d3f9296 1447 return xas.xa_index;
e7b563bb 1448}
0d3f9296 1449EXPORT_SYMBOL(page_cache_next_miss);
e7b563bb
JW
1450
1451/**
2346a560 1452 * page_cache_prev_miss() - Find the previous gap in the page cache.
0d3f9296
MW
1453 * @mapping: Mapping.
1454 * @index: Index.
1455 * @max_scan: Maximum range to search.
e7b563bb 1456 *
0d3f9296
MW
1457 * Search the range [max(index - max_scan + 1, 0), index] for the
1458 * gap with the highest index.
e7b563bb 1459 *
0d3f9296
MW
1460 * This function may be called under the rcu_read_lock. However, this will
1461 * not atomically search a snapshot of the cache at a single point in time.
1462 * For example, if a gap is created at index 10, then subsequently a gap is
1463 * created at index 5, page_cache_prev_miss() covering both indices may
1464 * return 5 if called under the rcu_read_lock.
e7b563bb 1465 *
0d3f9296
MW
1466 * Return: The index of the gap if found, otherwise an index outside the
1467 * range specified (in which case 'index - return >= max_scan' will be true).
1468 * In the rare case of wrap-around, ULONG_MAX will be returned.
e7b563bb 1469 */
0d3f9296 1470pgoff_t page_cache_prev_miss(struct address_space *mapping,
e7b563bb
JW
1471 pgoff_t index, unsigned long max_scan)
1472{
0d3f9296 1473 XA_STATE(xas, &mapping->i_pages, index);
e7b563bb 1474
0d3f9296
MW
1475 while (max_scan--) {
1476 void *entry = xas_prev(&xas);
1477 if (!entry || xa_is_value(entry))
e7b563bb 1478 break;
0d3f9296 1479 if (xas.xa_index == ULONG_MAX)
e7b563bb
JW
1480 break;
1481 }
1482
0d3f9296 1483 return xas.xa_index;
e7b563bb 1484}
0d3f9296 1485EXPORT_SYMBOL(page_cache_prev_miss);
e7b563bb 1486
485bb99b 1487/**
0cd6144a 1488 * find_get_entry - find and get a page cache entry
485bb99b 1489 * @mapping: the address_space to search
0cd6144a
JW
1490 * @offset: the page cache index
1491 *
1492 * Looks up the page cache slot at @mapping & @offset. If there is a
1493 * page cache page, it is returned with an increased refcount.
485bb99b 1494 *
139b6a6f
JW
1495 * If the slot holds a shadow entry of a previously evicted page, or a
1496 * swap entry from shmem/tmpfs, it is returned.
0cd6144a 1497 *
a862f68a 1498 * Return: the found page or shadow entry, %NULL if nothing is found.
1da177e4 1499 */
0cd6144a 1500struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1da177e4 1501{
4c7472c0 1502 XA_STATE(xas, &mapping->i_pages, offset);
4101196b 1503 struct page *page;
1da177e4 1504
a60637c8
NP
1505 rcu_read_lock();
1506repeat:
4c7472c0
MW
1507 xas_reset(&xas);
1508 page = xas_load(&xas);
1509 if (xas_retry(&xas, page))
1510 goto repeat;
1511 /*
1512 * A shadow entry of a recently evicted page, or a swap entry from
1513 * shmem/tmpfs. Return it without attempting to raise page count.
1514 */
1515 if (!page || xa_is_value(page))
1516 goto out;
83929372 1517
4101196b 1518 if (!page_cache_get_speculative(page))
4c7472c0 1519 goto repeat;
83929372 1520
4c7472c0 1521 /*
4101196b 1522 * Has the page moved or been split?
4c7472c0
MW
1523 * This is part of the lockless pagecache protocol. See
1524 * include/linux/pagemap.h for details.
1525 */
1526 if (unlikely(page != xas_reload(&xas))) {
4101196b 1527 put_page(page);
4c7472c0 1528 goto repeat;
a60637c8 1529 }
4101196b 1530 page = find_subpage(page, offset);
27d20fdd 1531out:
a60637c8
NP
1532 rcu_read_unlock();
1533
1da177e4
LT
1534 return page;
1535}
1da177e4 1536
0cd6144a
JW
1537/**
1538 * find_lock_entry - locate, pin and lock a page cache entry
1539 * @mapping: the address_space to search
1540 * @offset: the page cache index
1541 *
1542 * Looks up the page cache slot at @mapping & @offset. If there is a
1543 * page cache page, it is returned locked and with an increased
1544 * refcount.
1545 *
139b6a6f
JW
1546 * If the slot holds a shadow entry of a previously evicted page, or a
1547 * swap entry from shmem/tmpfs, it is returned.
0cd6144a 1548 *
0cd6144a 1549 * find_lock_entry() may sleep.
a862f68a
MR
1550 *
1551 * Return: the found page or shadow entry, %NULL if nothing is found.
0cd6144a
JW
1552 */
1553struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1da177e4
LT
1554{
1555 struct page *page;
1556
1da177e4 1557repeat:
0cd6144a 1558 page = find_get_entry(mapping, offset);
4c7472c0 1559 if (page && !xa_is_value(page)) {
a60637c8
NP
1560 lock_page(page);
1561 /* Has the page been truncated? */
83929372 1562 if (unlikely(page_mapping(page) != mapping)) {
a60637c8 1563 unlock_page(page);
09cbfeaf 1564 put_page(page);
a60637c8 1565 goto repeat;
1da177e4 1566 }
83929372 1567 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1da177e4 1568 }
1da177e4
LT
1569 return page;
1570}
0cd6144a
JW
1571EXPORT_SYMBOL(find_lock_entry);
1572
1573/**
2294b32e
MWO
1574 * pagecache_get_page - Find and get a reference to a page.
1575 * @mapping: The address_space to search.
1576 * @index: The page index.
1577 * @fgp_flags: %FGP flags modify how the page is returned.
1578 * @gfp_mask: Memory allocation flags to use if %FGP_CREAT is specified.
1da177e4 1579 *
2294b32e 1580 * Looks up the page cache entry at @mapping & @index.
0cd6144a 1581 *
2294b32e 1582 * @fgp_flags can be zero or more of these flags:
0e056eb5 1583 *
2294b32e
MWO
1584 * * %FGP_ACCESSED - The page will be marked accessed.
1585 * * %FGP_LOCK - The page is returned locked.
1586 * * %FGP_CREAT - If no page is present then a new page is allocated using
1587 * @gfp_mask and added to the page cache and the VM's LRU list.
1588 * The page is returned locked and with an increased refcount.
1589 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1590 * page is already in cache. If the page was allocated, unlock it before
1591 * returning so the caller can do the same dance.
1da177e4 1592 *
2294b32e
MWO
1593 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1594 * if the %GFP flags specified for %FGP_CREAT are atomic.
1da177e4 1595 *
2457aec6 1596 * If there is a page cache page, it is returned with an increased refcount.
a862f68a 1597 *
2294b32e 1598 * Return: The found page or %NULL otherwise.
1da177e4 1599 */
2294b32e
MWO
1600struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
1601 int fgp_flags, gfp_t gfp_mask)
1da177e4 1602{
eb2be189 1603 struct page *page;
2457aec6 1604
1da177e4 1605repeat:
2294b32e 1606 page = find_get_entry(mapping, index);
3159f943 1607 if (xa_is_value(page))
2457aec6
MG
1608 page = NULL;
1609 if (!page)
1610 goto no_page;
1611
1612 if (fgp_flags & FGP_LOCK) {
1613 if (fgp_flags & FGP_NOWAIT) {
1614 if (!trylock_page(page)) {
09cbfeaf 1615 put_page(page);
2457aec6
MG
1616 return NULL;
1617 }
1618 } else {
1619 lock_page(page);
1620 }
1621
1622 /* Has the page been truncated? */
31895438 1623 if (unlikely(compound_head(page)->mapping != mapping)) {
2457aec6 1624 unlock_page(page);
09cbfeaf 1625 put_page(page);
2457aec6
MG
1626 goto repeat;
1627 }
2294b32e 1628 VM_BUG_ON_PAGE(page->index != index, page);
2457aec6
MG
1629 }
1630
c16eb000 1631 if (fgp_flags & FGP_ACCESSED)
2457aec6
MG
1632 mark_page_accessed(page);
1633
1634no_page:
1635 if (!page && (fgp_flags & FGP_CREAT)) {
1636 int err;
1637 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
45f87de5
MH
1638 gfp_mask |= __GFP_WRITE;
1639 if (fgp_flags & FGP_NOFS)
1640 gfp_mask &= ~__GFP_FS;
2457aec6 1641
45f87de5 1642 page = __page_cache_alloc(gfp_mask);
eb2be189
NP
1643 if (!page)
1644 return NULL;
2457aec6 1645
a75d4c33 1646 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
2457aec6
MG
1647 fgp_flags |= FGP_LOCK;
1648
eb39d618 1649 /* Init accessed so avoid atomic mark_page_accessed later */
2457aec6 1650 if (fgp_flags & FGP_ACCESSED)
eb39d618 1651 __SetPageReferenced(page);
2457aec6 1652
2294b32e 1653 err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
eb2be189 1654 if (unlikely(err)) {
09cbfeaf 1655 put_page(page);
eb2be189
NP
1656 page = NULL;
1657 if (err == -EEXIST)
1658 goto repeat;
1da177e4 1659 }
a75d4c33
JB
1660
1661 /*
1662 * add_to_page_cache_lru locks the page, and for mmap we expect
1663 * an unlocked page.
1664 */
1665 if (page && (fgp_flags & FGP_FOR_MMAP))
1666 unlock_page(page);
1da177e4 1667 }
2457aec6 1668
1da177e4
LT
1669 return page;
1670}
2457aec6 1671EXPORT_SYMBOL(pagecache_get_page);
1da177e4 1672
0cd6144a
JW
1673/**
1674 * find_get_entries - gang pagecache lookup
1675 * @mapping: The address_space to search
1676 * @start: The starting page cache index
1677 * @nr_entries: The maximum number of entries
1678 * @entries: Where the resulting entries are placed
1679 * @indices: The cache indices corresponding to the entries in @entries
1680 *
1681 * find_get_entries() will search for and return a group of up to
1682 * @nr_entries entries in the mapping. The entries are placed at
1683 * @entries. find_get_entries() takes a reference against any actual
1684 * pages it returns.
1685 *
1686 * The search returns a group of mapping-contiguous page cache entries
1687 * with ascending indexes. There may be holes in the indices due to
1688 * not-present pages.
1689 *
139b6a6f
JW
1690 * Any shadow entries of evicted pages, or swap entries from
1691 * shmem/tmpfs, are included in the returned array.
0cd6144a 1692 *
71725ed1
HD
1693 * If it finds a Transparent Huge Page, head or tail, find_get_entries()
1694 * stops at that page: the caller is likely to have a better way to handle
1695 * the compound page as a whole, and then skip its extent, than repeatedly
1696 * calling find_get_entries() to return all its tails.
1697 *
a862f68a 1698 * Return: the number of pages and shadow entries which were found.
0cd6144a
JW
1699 */
1700unsigned find_get_entries(struct address_space *mapping,
1701 pgoff_t start, unsigned int nr_entries,
1702 struct page **entries, pgoff_t *indices)
1703{
f280bf09
MW
1704 XA_STATE(xas, &mapping->i_pages, start);
1705 struct page *page;
0cd6144a 1706 unsigned int ret = 0;
0cd6144a
JW
1707
1708 if (!nr_entries)
1709 return 0;
1710
1711 rcu_read_lock();
f280bf09 1712 xas_for_each(&xas, page, ULONG_MAX) {
f280bf09 1713 if (xas_retry(&xas, page))
0cd6144a 1714 continue;
f280bf09
MW
1715 /*
1716 * A shadow entry of a recently evicted page, a swap
1717 * entry from shmem/tmpfs or a DAX entry. Return it
1718 * without attempting to raise page count.
1719 */
1720 if (xa_is_value(page))
0cd6144a 1721 goto export;
83929372 1722
4101196b 1723 if (!page_cache_get_speculative(page))
f280bf09 1724 goto retry;
83929372 1725
4101196b 1726 /* Has the page moved or been split? */
f280bf09
MW
1727 if (unlikely(page != xas_reload(&xas)))
1728 goto put_page;
1729
71725ed1
HD
1730 /*
1731 * Terminate early on finding a THP, to allow the caller to
1732 * handle it all at once; but continue if this is hugetlbfs.
1733 */
1734 if (PageTransHuge(page) && !PageHuge(page)) {
1735 page = find_subpage(page, xas.xa_index);
1736 nr_entries = ret + 1;
1737 }
0cd6144a 1738export:
f280bf09 1739 indices[ret] = xas.xa_index;
0cd6144a
JW
1740 entries[ret] = page;
1741 if (++ret == nr_entries)
1742 break;
f280bf09
MW
1743 continue;
1744put_page:
4101196b 1745 put_page(page);
f280bf09
MW
1746retry:
1747 xas_reset(&xas);
0cd6144a
JW
1748 }
1749 rcu_read_unlock();
1750 return ret;
1751}
1752
1da177e4 1753/**
b947cee4 1754 * find_get_pages_range - gang pagecache lookup
1da177e4
LT
1755 * @mapping: The address_space to search
1756 * @start: The starting page index
b947cee4 1757 * @end: The final page index (inclusive)
1da177e4
LT
1758 * @nr_pages: The maximum number of pages
1759 * @pages: Where the resulting pages are placed
1760 *
b947cee4
JK
1761 * find_get_pages_range() will search for and return a group of up to @nr_pages
1762 * pages in the mapping starting at index @start and up to index @end
1763 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes
1764 * a reference against the returned pages.
1da177e4
LT
1765 *
1766 * The search returns a group of mapping-contiguous pages with ascending
1767 * indexes. There may be holes in the indices due to not-present pages.
d72dc8a2 1768 * We also update @start to index the next page for the traversal.
1da177e4 1769 *
a862f68a
MR
1770 * Return: the number of pages which were found. If this number is
1771 * smaller than @nr_pages, the end of specified range has been
b947cee4 1772 * reached.
1da177e4 1773 */
b947cee4
JK
1774unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1775 pgoff_t end, unsigned int nr_pages,
1776 struct page **pages)
1da177e4 1777{
fd1b3cee
MW
1778 XA_STATE(xas, &mapping->i_pages, *start);
1779 struct page *page;
0fc9d104
KK
1780 unsigned ret = 0;
1781
1782 if (unlikely(!nr_pages))
1783 return 0;
a60637c8
NP
1784
1785 rcu_read_lock();
fd1b3cee 1786 xas_for_each(&xas, page, end) {
fd1b3cee 1787 if (xas_retry(&xas, page))
a60637c8 1788 continue;
fd1b3cee
MW
1789 /* Skip over shadow, swap and DAX entries */
1790 if (xa_is_value(page))
8079b1c8 1791 continue;
a60637c8 1792
4101196b 1793 if (!page_cache_get_speculative(page))
fd1b3cee 1794 goto retry;
83929372 1795
4101196b 1796 /* Has the page moved or been split? */
fd1b3cee
MW
1797 if (unlikely(page != xas_reload(&xas)))
1798 goto put_page;
1da177e4 1799
4101196b 1800 pages[ret] = find_subpage(page, xas.xa_index);
b947cee4 1801 if (++ret == nr_pages) {
5d3ee42f 1802 *start = xas.xa_index + 1;
b947cee4
JK
1803 goto out;
1804 }
fd1b3cee
MW
1805 continue;
1806put_page:
4101196b 1807 put_page(page);
fd1b3cee
MW
1808retry:
1809 xas_reset(&xas);
a60637c8 1810 }
5b280c0c 1811
b947cee4
JK
1812 /*
1813 * We come here when there is no page beyond @end. We take care to not
1814 * overflow the index @start as it confuses some of the callers. This
fd1b3cee 1815 * breaks the iteration when there is a page at index -1 but that is
b947cee4
JK
1816 * already broken anyway.
1817 */
1818 if (end == (pgoff_t)-1)
1819 *start = (pgoff_t)-1;
1820 else
1821 *start = end + 1;
1822out:
a60637c8 1823 rcu_read_unlock();
d72dc8a2 1824
1da177e4
LT
1825 return ret;
1826}
1827
ebf43500
JA
1828/**
1829 * find_get_pages_contig - gang contiguous pagecache lookup
1830 * @mapping: The address_space to search
1831 * @index: The starting page index
1832 * @nr_pages: The maximum number of pages
1833 * @pages: Where the resulting pages are placed
1834 *
1835 * find_get_pages_contig() works exactly like find_get_pages(), except
1836 * that the returned number of pages are guaranteed to be contiguous.
1837 *
a862f68a 1838 * Return: the number of pages which were found.
ebf43500
JA
1839 */
1840unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1841 unsigned int nr_pages, struct page **pages)
1842{
3ece58a2
MW
1843 XA_STATE(xas, &mapping->i_pages, index);
1844 struct page *page;
0fc9d104
KK
1845 unsigned int ret = 0;
1846
1847 if (unlikely(!nr_pages))
1848 return 0;
a60637c8
NP
1849
1850 rcu_read_lock();
3ece58a2 1851 for (page = xas_load(&xas); page; page = xas_next(&xas)) {
3ece58a2
MW
1852 if (xas_retry(&xas, page))
1853 continue;
1854 /*
1855 * If the entry has been swapped out, we can stop looking.
1856 * No current caller is looking for DAX entries.
1857 */
1858 if (xa_is_value(page))
8079b1c8 1859 break;
ebf43500 1860
4101196b 1861 if (!page_cache_get_speculative(page))
3ece58a2 1862 goto retry;
83929372 1863
4101196b 1864 /* Has the page moved or been split? */
3ece58a2
MW
1865 if (unlikely(page != xas_reload(&xas)))
1866 goto put_page;
a60637c8 1867
4101196b 1868 pages[ret] = find_subpage(page, xas.xa_index);
0fc9d104
KK
1869 if (++ret == nr_pages)
1870 break;
3ece58a2
MW
1871 continue;
1872put_page:
4101196b 1873 put_page(page);
3ece58a2
MW
1874retry:
1875 xas_reset(&xas);
ebf43500 1876 }
a60637c8
NP
1877 rcu_read_unlock();
1878 return ret;
ebf43500 1879}
ef71c15c 1880EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 1881
485bb99b 1882/**
72b045ae 1883 * find_get_pages_range_tag - find and return pages in given range matching @tag
485bb99b
RD
1884 * @mapping: the address_space to search
1885 * @index: the starting page index
72b045ae 1886 * @end: The final page index (inclusive)
485bb99b
RD
1887 * @tag: the tag index
1888 * @nr_pages: the maximum number of pages
1889 * @pages: where the resulting pages are placed
1890 *
1da177e4 1891 * Like find_get_pages, except we only return pages which are tagged with
485bb99b 1892 * @tag. We update @index to index the next page for the traversal.
a862f68a
MR
1893 *
1894 * Return: the number of pages which were found.
1da177e4 1895 */
72b045ae 1896unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
a6906972 1897 pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
72b045ae 1898 struct page **pages)
1da177e4 1899{
a6906972
MW
1900 XA_STATE(xas, &mapping->i_pages, *index);
1901 struct page *page;
0fc9d104
KK
1902 unsigned ret = 0;
1903
1904 if (unlikely(!nr_pages))
1905 return 0;
a60637c8
NP
1906
1907 rcu_read_lock();
a6906972 1908 xas_for_each_marked(&xas, page, end, tag) {
a6906972 1909 if (xas_retry(&xas, page))
a60637c8 1910 continue;
a6906972
MW
1911 /*
1912 * Shadow entries should never be tagged, but this iteration
1913 * is lockless so there is a window for page reclaim to evict
1914 * a page we saw tagged. Skip over it.
1915 */
1916 if (xa_is_value(page))
139b6a6f 1917 continue;
a60637c8 1918
4101196b 1919 if (!page_cache_get_speculative(page))
a6906972 1920 goto retry;
a60637c8 1921
4101196b 1922 /* Has the page moved or been split? */
a6906972
MW
1923 if (unlikely(page != xas_reload(&xas)))
1924 goto put_page;
a60637c8 1925
4101196b 1926 pages[ret] = find_subpage(page, xas.xa_index);
72b045ae 1927 if (++ret == nr_pages) {
5d3ee42f 1928 *index = xas.xa_index + 1;
72b045ae
JK
1929 goto out;
1930 }
a6906972
MW
1931 continue;
1932put_page:
4101196b 1933 put_page(page);
a6906972
MW
1934retry:
1935 xas_reset(&xas);
a60637c8 1936 }
5b280c0c 1937
72b045ae 1938 /*
a6906972 1939 * We come here when we got to @end. We take care to not overflow the
72b045ae 1940 * index @index as it confuses some of the callers. This breaks the
a6906972
MW
1941 * iteration when there is a page at index -1 but that is already
1942 * broken anyway.
72b045ae
JK
1943 */
1944 if (end == (pgoff_t)-1)
1945 *index = (pgoff_t)-1;
1946 else
1947 *index = end + 1;
1948out:
a60637c8 1949 rcu_read_unlock();
1da177e4 1950
1da177e4
LT
1951 return ret;
1952}
72b045ae 1953EXPORT_SYMBOL(find_get_pages_range_tag);
1da177e4 1954
76d42bd9
WF
1955/*
1956 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1957 * a _large_ part of the i/o request. Imagine the worst scenario:
1958 *
1959 * ---R__________________________________________B__________
1960 * ^ reading here ^ bad block(assume 4k)
1961 *
1962 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1963 * => failing the whole request => read(R) => read(R+1) =>
1964 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1965 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1966 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1967 *
1968 * It is going insane. Fix it by quickly scaling down the readahead size.
1969 */
0f8e2db4 1970static void shrink_readahead_size_eio(struct file_ra_state *ra)
76d42bd9 1971{
76d42bd9 1972 ra->ra_pages /= 4;
76d42bd9
WF
1973}
1974
485bb99b 1975/**
47c27bc4
CH
1976 * generic_file_buffered_read - generic file read routine
1977 * @iocb: the iocb to read
6e58e79d
AV
1978 * @iter: data destination
1979 * @written: already copied
485bb99b 1980 *
1da177e4 1981 * This is a generic file read routine, and uses the
485bb99b 1982 * mapping->a_ops->readpage() function for the actual low-level stuff.
1da177e4
LT
1983 *
1984 * This is really ugly. But the goto's actually try to clarify some
1985 * of the logic when it comes to error handling etc.
a862f68a
MR
1986 *
1987 * Return:
1988 * * total number of bytes copied, including those the were already @written
1989 * * negative error code if nothing was copied
1da177e4 1990 */
d85dc2e1 1991ssize_t generic_file_buffered_read(struct kiocb *iocb,
6e58e79d 1992 struct iov_iter *iter, ssize_t written)
1da177e4 1993{
47c27bc4 1994 struct file *filp = iocb->ki_filp;
36e78914 1995 struct address_space *mapping = filp->f_mapping;
1da177e4 1996 struct inode *inode = mapping->host;
36e78914 1997 struct file_ra_state *ra = &filp->f_ra;
47c27bc4 1998 loff_t *ppos = &iocb->ki_pos;
57f6b96c
FW
1999 pgoff_t index;
2000 pgoff_t last_index;
2001 pgoff_t prev_index;
2002 unsigned long offset; /* offset into pagecache page */
ec0f1637 2003 unsigned int prev_offset;
6e58e79d 2004 int error = 0;
1da177e4 2005
c2a9737f 2006 if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
d05c5f7b 2007 return 0;
c2a9737f
WF
2008 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2009
09cbfeaf
KS
2010 index = *ppos >> PAGE_SHIFT;
2011 prev_index = ra->prev_pos >> PAGE_SHIFT;
2012 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
2013 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2014 offset = *ppos & ~PAGE_MASK;
1da177e4 2015
1da177e4
LT
2016 for (;;) {
2017 struct page *page;
57f6b96c 2018 pgoff_t end_index;
a32ea1e1 2019 loff_t isize;
1da177e4
LT
2020 unsigned long nr, ret;
2021
1da177e4 2022 cond_resched();
1da177e4 2023find_page:
5abf186a
MH
2024 if (fatal_signal_pending(current)) {
2025 error = -EINTR;
2026 goto out;
2027 }
2028
1da177e4 2029 page = find_get_page(mapping, index);
3ea89ee8 2030 if (!page) {
41da51bc 2031 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
3239d834 2032 goto would_block;
cf914a7d 2033 page_cache_sync_readahead(mapping,
7ff81078 2034 ra, filp,
3ea89ee8
FW
2035 index, last_index - index);
2036 page = find_get_page(mapping, index);
2037 if (unlikely(page == NULL))
2038 goto no_cached_page;
2039 }
2040 if (PageReadahead(page)) {
41da51bc
AG
2041 if (iocb->ki_flags & IOCB_NOIO) {
2042 put_page(page);
2043 goto out;
2044 }
cf914a7d 2045 page_cache_async_readahead(mapping,
7ff81078 2046 ra, filp, page,
3ea89ee8 2047 index, last_index - index);
1da177e4 2048 }
8ab22b9a 2049 if (!PageUptodate(page)) {
3239d834
MT
2050 if (iocb->ki_flags & IOCB_NOWAIT) {
2051 put_page(page);
2052 goto would_block;
2053 }
2054
ebded027
MG
2055 /*
2056 * See comment in do_read_cache_page on why
2057 * wait_on_page_locked is used to avoid unnecessarily
2058 * serialisations and why it's safe.
2059 */
c4b209a4
BVA
2060 error = wait_on_page_locked_killable(page);
2061 if (unlikely(error))
2062 goto readpage_error;
ebded027
MG
2063 if (PageUptodate(page))
2064 goto page_ok;
2065
09cbfeaf 2066 if (inode->i_blkbits == PAGE_SHIFT ||
8ab22b9a
HH
2067 !mapping->a_ops->is_partially_uptodate)
2068 goto page_not_up_to_date;
6d6d36bc 2069 /* pipes can't handle partially uptodate pages */
00e23707 2070 if (unlikely(iov_iter_is_pipe(iter)))
6d6d36bc 2071 goto page_not_up_to_date;
529ae9aa 2072 if (!trylock_page(page))
8ab22b9a 2073 goto page_not_up_to_date;
8d056cb9
DH
2074 /* Did it get truncated before we got the lock? */
2075 if (!page->mapping)
2076 goto page_not_up_to_date_locked;
8ab22b9a 2077 if (!mapping->a_ops->is_partially_uptodate(page,
6e58e79d 2078 offset, iter->count))
8ab22b9a
HH
2079 goto page_not_up_to_date_locked;
2080 unlock_page(page);
2081 }
1da177e4 2082page_ok:
a32ea1e1
N
2083 /*
2084 * i_size must be checked after we know the page is Uptodate.
2085 *
2086 * Checking i_size after the check allows us to calculate
2087 * the correct value for "nr", which means the zero-filled
2088 * part of the page is not copied back to userspace (unless
2089 * another truncate extends the file - this is desired though).
2090 */
2091
2092 isize = i_size_read(inode);
09cbfeaf 2093 end_index = (isize - 1) >> PAGE_SHIFT;
a32ea1e1 2094 if (unlikely(!isize || index > end_index)) {
09cbfeaf 2095 put_page(page);
a32ea1e1
N
2096 goto out;
2097 }
2098
2099 /* nr is the maximum number of bytes to copy from this page */
09cbfeaf 2100 nr = PAGE_SIZE;
a32ea1e1 2101 if (index == end_index) {
09cbfeaf 2102 nr = ((isize - 1) & ~PAGE_MASK) + 1;
a32ea1e1 2103 if (nr <= offset) {
09cbfeaf 2104 put_page(page);
a32ea1e1
N
2105 goto out;
2106 }
2107 }
2108 nr = nr - offset;
1da177e4
LT
2109
2110 /* If users can be writing to this page using arbitrary
2111 * virtual addresses, take care about potential aliasing
2112 * before reading the page on the kernel side.
2113 */
2114 if (mapping_writably_mapped(mapping))
2115 flush_dcache_page(page);
2116
2117 /*
ec0f1637
JK
2118 * When a sequential read accesses a page several times,
2119 * only mark it as accessed the first time.
1da177e4 2120 */
ec0f1637 2121 if (prev_index != index || offset != prev_offset)
1da177e4
LT
2122 mark_page_accessed(page);
2123 prev_index = index;
2124
2125 /*
2126 * Ok, we have the page, and it's up-to-date, so
2127 * now we can copy it to user space...
1da177e4 2128 */
6e58e79d
AV
2129
2130 ret = copy_page_to_iter(page, offset, nr, iter);
1da177e4 2131 offset += ret;
09cbfeaf
KS
2132 index += offset >> PAGE_SHIFT;
2133 offset &= ~PAGE_MASK;
6ce745ed 2134 prev_offset = offset;
1da177e4 2135
09cbfeaf 2136 put_page(page);
6e58e79d
AV
2137 written += ret;
2138 if (!iov_iter_count(iter))
2139 goto out;
2140 if (ret < nr) {
2141 error = -EFAULT;
2142 goto out;
2143 }
2144 continue;
1da177e4
LT
2145
2146page_not_up_to_date:
2147 /* Get exclusive access to the page ... */
85462323
ON
2148 error = lock_page_killable(page);
2149 if (unlikely(error))
2150 goto readpage_error;
1da177e4 2151
8ab22b9a 2152page_not_up_to_date_locked:
da6052f7 2153 /* Did it get truncated before we got the lock? */
1da177e4
LT
2154 if (!page->mapping) {
2155 unlock_page(page);
09cbfeaf 2156 put_page(page);
1da177e4
LT
2157 continue;
2158 }
2159
2160 /* Did somebody else fill it already? */
2161 if (PageUptodate(page)) {
2162 unlock_page(page);
2163 goto page_ok;
2164 }
2165
2166readpage:
41da51bc
AG
2167 if (iocb->ki_flags & IOCB_NOIO) {
2168 unlock_page(page);
2169 put_page(page);
2170 goto would_block;
2171 }
91803b49
JM
2172 /*
2173 * A previous I/O error may have been due to temporary
2174 * failures, eg. multipath errors.
2175 * PG_error will be set again if readpage fails.
2176 */
2177 ClearPageError(page);
1da177e4
LT
2178 /* Start the actual read. The read will unlock the page. */
2179 error = mapping->a_ops->readpage(filp, page);
2180
994fc28c
ZB
2181 if (unlikely(error)) {
2182 if (error == AOP_TRUNCATED_PAGE) {
09cbfeaf 2183 put_page(page);
6e58e79d 2184 error = 0;
994fc28c
ZB
2185 goto find_page;
2186 }
1da177e4 2187 goto readpage_error;
994fc28c 2188 }
1da177e4
LT
2189
2190 if (!PageUptodate(page)) {
85462323
ON
2191 error = lock_page_killable(page);
2192 if (unlikely(error))
2193 goto readpage_error;
1da177e4
LT
2194 if (!PageUptodate(page)) {
2195 if (page->mapping == NULL) {
2196 /*
2ecdc82e 2197 * invalidate_mapping_pages got it
1da177e4
LT
2198 */
2199 unlock_page(page);
09cbfeaf 2200 put_page(page);
1da177e4
LT
2201 goto find_page;
2202 }
2203 unlock_page(page);
0f8e2db4 2204 shrink_readahead_size_eio(ra);
85462323
ON
2205 error = -EIO;
2206 goto readpage_error;
1da177e4
LT
2207 }
2208 unlock_page(page);
2209 }
2210
1da177e4
LT
2211 goto page_ok;
2212
2213readpage_error:
2214 /* UHHUH! A synchronous read error occurred. Report it */
09cbfeaf 2215 put_page(page);
1da177e4
LT
2216 goto out;
2217
2218no_cached_page:
2219 /*
2220 * Ok, it wasn't cached, so we need to create a new
2221 * page..
2222 */
453f85d4 2223 page = page_cache_alloc(mapping);
eb2be189 2224 if (!page) {
6e58e79d 2225 error = -ENOMEM;
eb2be189 2226 goto out;
1da177e4 2227 }
6afdb859 2228 error = add_to_page_cache_lru(page, mapping, index,
c62d2555 2229 mapping_gfp_constraint(mapping, GFP_KERNEL));
1da177e4 2230 if (error) {
09cbfeaf 2231 put_page(page);
6e58e79d
AV
2232 if (error == -EEXIST) {
2233 error = 0;
1da177e4 2234 goto find_page;
6e58e79d 2235 }
1da177e4
LT
2236 goto out;
2237 }
1da177e4
LT
2238 goto readpage;
2239 }
2240
3239d834
MT
2241would_block:
2242 error = -EAGAIN;
1da177e4 2243out:
7ff81078 2244 ra->prev_pos = prev_index;
09cbfeaf 2245 ra->prev_pos <<= PAGE_SHIFT;
7ff81078 2246 ra->prev_pos |= prev_offset;
1da177e4 2247
09cbfeaf 2248 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
0c6aa263 2249 file_accessed(filp);
6e58e79d 2250 return written ? written : error;
1da177e4 2251}
d85dc2e1 2252EXPORT_SYMBOL_GPL(generic_file_buffered_read);
1da177e4 2253
485bb99b 2254/**
6abd2322 2255 * generic_file_read_iter - generic filesystem read routine
485bb99b 2256 * @iocb: kernel I/O control block
6abd2322 2257 * @iter: destination for the data read
485bb99b 2258 *
6abd2322 2259 * This is the "read_iter()" routine for all filesystems
1da177e4 2260 * that can use the page cache directly.
41da51bc
AG
2261 *
2262 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2263 * be returned when no data can be read without waiting for I/O requests
2264 * to complete; it doesn't prevent readahead.
2265 *
2266 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2267 * requests shall be made for the read or for readahead. When no data
2268 * can be read, -EAGAIN shall be returned. When readahead would be
2269 * triggered, a partial, possibly empty read shall be returned.
2270 *
a862f68a
MR
2271 * Return:
2272 * * number of bytes copied, even for partial reads
41da51bc 2273 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
1da177e4
LT
2274 */
2275ssize_t
ed978a81 2276generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1da177e4 2277{
e7080a43 2278 size_t count = iov_iter_count(iter);
47c27bc4 2279 ssize_t retval = 0;
e7080a43
NS
2280
2281 if (!count)
2282 goto out; /* skip atime */
1da177e4 2283
2ba48ce5 2284 if (iocb->ki_flags & IOCB_DIRECT) {
47c27bc4 2285 struct file *file = iocb->ki_filp;
ed978a81
AV
2286 struct address_space *mapping = file->f_mapping;
2287 struct inode *inode = mapping->host;
543ade1f 2288 loff_t size;
1da177e4 2289
1da177e4 2290 size = i_size_read(inode);
6be96d3a
GR
2291 if (iocb->ki_flags & IOCB_NOWAIT) {
2292 if (filemap_range_has_page(mapping, iocb->ki_pos,
2293 iocb->ki_pos + count - 1))
2294 return -EAGAIN;
2295 } else {
2296 retval = filemap_write_and_wait_range(mapping,
2297 iocb->ki_pos,
2298 iocb->ki_pos + count - 1);
2299 if (retval < 0)
2300 goto out;
2301 }
d8d3d94b 2302
0d5b0cf2
CH
2303 file_accessed(file);
2304
5ecda137 2305 retval = mapping->a_ops->direct_IO(iocb, iter);
c3a69024 2306 if (retval >= 0) {
c64fb5c7 2307 iocb->ki_pos += retval;
5ecda137 2308 count -= retval;
9fe55eea 2309 }
5b47d59a 2310 iov_iter_revert(iter, count - iov_iter_count(iter));
66f998f6 2311
9fe55eea
SW
2312 /*
2313 * Btrfs can have a short DIO read if we encounter
2314 * compressed extents, so if there was an error, or if
2315 * we've already read everything we wanted to, or if
2316 * there was a short read because we hit EOF, go ahead
2317 * and return. Otherwise fallthrough to buffered io for
fbbbad4b
MW
2318 * the rest of the read. Buffered reads will not work for
2319 * DAX files, so don't bother trying.
9fe55eea 2320 */
5ecda137 2321 if (retval < 0 || !count || iocb->ki_pos >= size ||
0d5b0cf2 2322 IS_DAX(inode))
9fe55eea 2323 goto out;
1da177e4
LT
2324 }
2325
47c27bc4 2326 retval = generic_file_buffered_read(iocb, iter, retval);
1da177e4
LT
2327out:
2328 return retval;
2329}
ed978a81 2330EXPORT_SYMBOL(generic_file_read_iter);
1da177e4 2331
1da177e4 2332#ifdef CONFIG_MMU
1da177e4 2333#define MMAP_LOTSAMISS (100)
6b4c9f44 2334/*
c1e8d7c6 2335 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
6b4c9f44
JB
2336 * @vmf - the vm_fault for this fault.
2337 * @page - the page to lock.
2338 * @fpin - the pointer to the file we may pin (or is already pinned).
2339 *
c1e8d7c6 2340 * This works similar to lock_page_or_retry in that it can drop the mmap_lock.
6b4c9f44 2341 * It differs in that it actually returns the page locked if it returns 1 and 0
c1e8d7c6 2342 * if it couldn't lock the page. If we did have to drop the mmap_lock then fpin
6b4c9f44
JB
2343 * will point to the pinned file and needs to be fput()'ed at a later point.
2344 */
2345static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2346 struct file **fpin)
2347{
2348 if (trylock_page(page))
2349 return 1;
2350
8b0f9fa2
LT
2351 /*
2352 * NOTE! This will make us return with VM_FAULT_RETRY, but with
c1e8d7c6 2353 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
8b0f9fa2
LT
2354 * is supposed to work. We have way too many special cases..
2355 */
6b4c9f44
JB
2356 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2357 return 0;
2358
2359 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2360 if (vmf->flags & FAULT_FLAG_KILLABLE) {
2361 if (__lock_page_killable(page)) {
2362 /*
c1e8d7c6 2363 * We didn't have the right flags to drop the mmap_lock,
6b4c9f44
JB
2364 * but all fault_handlers only check for fatal signals
2365 * if we return VM_FAULT_RETRY, so we need to drop the
c1e8d7c6 2366 * mmap_lock here and return 0 if we don't have a fpin.
6b4c9f44
JB
2367 */
2368 if (*fpin == NULL)
d8ed45c5 2369 mmap_read_unlock(vmf->vma->vm_mm);
6b4c9f44
JB
2370 return 0;
2371 }
2372 } else
2373 __lock_page(page);
2374 return 1;
2375}
2376
1da177e4 2377
ef00e08e 2378/*
6b4c9f44
JB
2379 * Synchronous readahead happens when we don't even find a page in the page
2380 * cache at all. We don't want to perform IO under the mmap sem, so if we have
2381 * to drop the mmap sem we return the file that was pinned in order for us to do
2382 * that. If we didn't pin a file then we return NULL. The file that is
2383 * returned needs to be fput()'ed when we're done with it.
ef00e08e 2384 */
6b4c9f44 2385static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
ef00e08e 2386{
2a1180f1
JB
2387 struct file *file = vmf->vma->vm_file;
2388 struct file_ra_state *ra = &file->f_ra;
ef00e08e 2389 struct address_space *mapping = file->f_mapping;
6b4c9f44 2390 struct file *fpin = NULL;
2a1180f1 2391 pgoff_t offset = vmf->pgoff;
ef00e08e
LT
2392
2393 /* If we don't want any read-ahead, don't bother */
2a1180f1 2394 if (vmf->vma->vm_flags & VM_RAND_READ)
6b4c9f44 2395 return fpin;
275b12bf 2396 if (!ra->ra_pages)
6b4c9f44 2397 return fpin;
ef00e08e 2398
2a1180f1 2399 if (vmf->vma->vm_flags & VM_SEQ_READ) {
6b4c9f44 2400 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
7ffc59b4
WF
2401 page_cache_sync_readahead(mapping, ra, file, offset,
2402 ra->ra_pages);
6b4c9f44 2403 return fpin;
ef00e08e
LT
2404 }
2405
207d04ba
AK
2406 /* Avoid banging the cache line if not needed */
2407 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
ef00e08e
LT
2408 ra->mmap_miss++;
2409
2410 /*
2411 * Do we miss much more than hit in this file? If so,
2412 * stop bothering with read-ahead. It will only hurt.
2413 */
2414 if (ra->mmap_miss > MMAP_LOTSAMISS)
6b4c9f44 2415 return fpin;
ef00e08e 2416
d30a1100
WF
2417 /*
2418 * mmap read-around
2419 */
6b4c9f44 2420 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
600e19af
RG
2421 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2422 ra->size = ra->ra_pages;
2423 ra->async_size = ra->ra_pages / 4;
275b12bf 2424 ra_submit(ra, mapping, file);
6b4c9f44 2425 return fpin;
ef00e08e
LT
2426}
2427
2428/*
2429 * Asynchronous readahead happens when we find the page and PG_readahead,
6b4c9f44 2430 * so we want to possibly extend the readahead further. We return the file that
c1e8d7c6 2431 * was pinned if we have to drop the mmap_lock in order to do IO.
ef00e08e 2432 */
6b4c9f44
JB
2433static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2434 struct page *page)
ef00e08e 2435{
2a1180f1
JB
2436 struct file *file = vmf->vma->vm_file;
2437 struct file_ra_state *ra = &file->f_ra;
ef00e08e 2438 struct address_space *mapping = file->f_mapping;
6b4c9f44 2439 struct file *fpin = NULL;
2a1180f1 2440 pgoff_t offset = vmf->pgoff;
ef00e08e
LT
2441
2442 /* If we don't want any read-ahead, don't bother */
5c72feee 2443 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
6b4c9f44 2444 return fpin;
ef00e08e
LT
2445 if (ra->mmap_miss > 0)
2446 ra->mmap_miss--;
6b4c9f44
JB
2447 if (PageReadahead(page)) {
2448 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2fad6f5d
WF
2449 page_cache_async_readahead(mapping, ra, file,
2450 page, offset, ra->ra_pages);
6b4c9f44
JB
2451 }
2452 return fpin;
ef00e08e
LT
2453}
2454
485bb99b 2455/**
54cb8821 2456 * filemap_fault - read in file data for page fault handling
d0217ac0 2457 * @vmf: struct vm_fault containing details of the fault
485bb99b 2458 *
54cb8821 2459 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
2460 * mapped memory region to read in file data during a page fault.
2461 *
2462 * The goto's are kind of ugly, but this streamlines the normal case of having
2463 * it in the page cache, and handles the special cases reasonably without
2464 * having a lot of duplicated code.
9a95f3cf 2465 *
c1e8d7c6 2466 * vma->vm_mm->mmap_lock must be held on entry.
9a95f3cf 2467 *
c1e8d7c6 2468 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
a4985833 2469 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
9a95f3cf 2470 *
c1e8d7c6 2471 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
9a95f3cf
PC
2472 * has not been released.
2473 *
2474 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
a862f68a
MR
2475 *
2476 * Return: bitwise-OR of %VM_FAULT_ codes.
1da177e4 2477 */
2bcd6454 2478vm_fault_t filemap_fault(struct vm_fault *vmf)
1da177e4
LT
2479{
2480 int error;
11bac800 2481 struct file *file = vmf->vma->vm_file;
6b4c9f44 2482 struct file *fpin = NULL;
1da177e4
LT
2483 struct address_space *mapping = file->f_mapping;
2484 struct file_ra_state *ra = &file->f_ra;
2485 struct inode *inode = mapping->host;
ef00e08e 2486 pgoff_t offset = vmf->pgoff;
9ab2594f 2487 pgoff_t max_off;
1da177e4 2488 struct page *page;
2bcd6454 2489 vm_fault_t ret = 0;
1da177e4 2490
9ab2594f
MW
2491 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2492 if (unlikely(offset >= max_off))
5307cc1a 2493 return VM_FAULT_SIGBUS;
1da177e4 2494
1da177e4 2495 /*
49426420 2496 * Do we have something in the page cache already?
1da177e4 2497 */
ef00e08e 2498 page = find_get_page(mapping, offset);
45cac65b 2499 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1da177e4 2500 /*
ef00e08e
LT
2501 * We found the page, so try async readahead before
2502 * waiting for the lock.
1da177e4 2503 */
6b4c9f44 2504 fpin = do_async_mmap_readahead(vmf, page);
45cac65b 2505 } else if (!page) {
ef00e08e 2506 /* No page in the page cache at all */
ef00e08e 2507 count_vm_event(PGMAJFAULT);
2262185c 2508 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
ef00e08e 2509 ret = VM_FAULT_MAJOR;
6b4c9f44 2510 fpin = do_sync_mmap_readahead(vmf);
ef00e08e 2511retry_find:
a75d4c33
JB
2512 page = pagecache_get_page(mapping, offset,
2513 FGP_CREAT|FGP_FOR_MMAP,
2514 vmf->gfp_mask);
6b4c9f44
JB
2515 if (!page) {
2516 if (fpin)
2517 goto out_retry;
e520e932 2518 return VM_FAULT_OOM;
6b4c9f44 2519 }
1da177e4
LT
2520 }
2521
6b4c9f44
JB
2522 if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
2523 goto out_retry;
b522c94d
ML
2524
2525 /* Did it get truncated? */
585e5a7b 2526 if (unlikely(compound_head(page)->mapping != mapping)) {
b522c94d
ML
2527 unlock_page(page);
2528 put_page(page);
2529 goto retry_find;
2530 }
520e5ba4 2531 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
b522c94d 2532
1da177e4 2533 /*
d00806b1
NP
2534 * We have a locked page in the page cache, now we need to check
2535 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 2536 */
d00806b1 2537 if (unlikely(!PageUptodate(page)))
1da177e4
LT
2538 goto page_not_uptodate;
2539
6b4c9f44 2540 /*
c1e8d7c6 2541 * We've made it this far and we had to drop our mmap_lock, now is the
6b4c9f44
JB
2542 * time to return to the upper layer and have it re-find the vma and
2543 * redo the fault.
2544 */
2545 if (fpin) {
2546 unlock_page(page);
2547 goto out_retry;
2548 }
2549
ef00e08e
LT
2550 /*
2551 * Found the page and have a reference on it.
2552 * We must recheck i_size under page lock.
2553 */
9ab2594f
MW
2554 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2555 if (unlikely(offset >= max_off)) {
d00806b1 2556 unlock_page(page);
09cbfeaf 2557 put_page(page);
5307cc1a 2558 return VM_FAULT_SIGBUS;
d00806b1
NP
2559 }
2560
d0217ac0 2561 vmf->page = page;
83c54070 2562 return ret | VM_FAULT_LOCKED;
1da177e4 2563
1da177e4 2564page_not_uptodate:
1da177e4
LT
2565 /*
2566 * Umm, take care of errors if the page isn't up-to-date.
2567 * Try to re-read it _once_. We do this synchronously,
2568 * because there really aren't any performance issues here
2569 * and we need to check for errors.
2570 */
1da177e4 2571 ClearPageError(page);
6b4c9f44 2572 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
994fc28c 2573 error = mapping->a_ops->readpage(file, page);
3ef0f720
MS
2574 if (!error) {
2575 wait_on_page_locked(page);
2576 if (!PageUptodate(page))
2577 error = -EIO;
2578 }
6b4c9f44
JB
2579 if (fpin)
2580 goto out_retry;
09cbfeaf 2581 put_page(page);
d00806b1
NP
2582
2583 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 2584 goto retry_find;
1da177e4 2585
0f8e2db4 2586 shrink_readahead_size_eio(ra);
d0217ac0 2587 return VM_FAULT_SIGBUS;
6b4c9f44
JB
2588
2589out_retry:
2590 /*
c1e8d7c6 2591 * We dropped the mmap_lock, we need to return to the fault handler to
6b4c9f44
JB
2592 * re-find the vma and come back and find our hopefully still populated
2593 * page.
2594 */
2595 if (page)
2596 put_page(page);
2597 if (fpin)
2598 fput(fpin);
2599 return ret | VM_FAULT_RETRY;
54cb8821
NP
2600}
2601EXPORT_SYMBOL(filemap_fault);
2602
82b0f8c3 2603void filemap_map_pages(struct vm_fault *vmf,
bae473a4 2604 pgoff_t start_pgoff, pgoff_t end_pgoff)
f1820361 2605{
82b0f8c3 2606 struct file *file = vmf->vma->vm_file;
f1820361 2607 struct address_space *mapping = file->f_mapping;
bae473a4 2608 pgoff_t last_pgoff = start_pgoff;
9ab2594f 2609 unsigned long max_idx;
070e807c 2610 XA_STATE(xas, &mapping->i_pages, start_pgoff);
4101196b 2611 struct page *page;
f1820361
KS
2612
2613 rcu_read_lock();
070e807c
MW
2614 xas_for_each(&xas, page, end_pgoff) {
2615 if (xas_retry(&xas, page))
2616 continue;
2617 if (xa_is_value(page))
2cf938aa 2618 goto next;
f1820361 2619
e0975b2a
MH
2620 /*
2621 * Check for a locked page first, as a speculative
2622 * reference may adversely influence page migration.
2623 */
4101196b 2624 if (PageLocked(page))
e0975b2a 2625 goto next;
4101196b 2626 if (!page_cache_get_speculative(page))
070e807c 2627 goto next;
f1820361 2628
4101196b 2629 /* Has the page moved or been split? */
070e807c
MW
2630 if (unlikely(page != xas_reload(&xas)))
2631 goto skip;
4101196b 2632 page = find_subpage(page, xas.xa_index);
f1820361
KS
2633
2634 if (!PageUptodate(page) ||
2635 PageReadahead(page) ||
2636 PageHWPoison(page))
2637 goto skip;
2638 if (!trylock_page(page))
2639 goto skip;
2640
2641 if (page->mapping != mapping || !PageUptodate(page))
2642 goto unlock;
2643
9ab2594f
MW
2644 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2645 if (page->index >= max_idx)
f1820361
KS
2646 goto unlock;
2647
f1820361
KS
2648 if (file->f_ra.mmap_miss > 0)
2649 file->f_ra.mmap_miss--;
7267ec00 2650
070e807c 2651 vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
82b0f8c3 2652 if (vmf->pte)
070e807c
MW
2653 vmf->pte += xas.xa_index - last_pgoff;
2654 last_pgoff = xas.xa_index;
9d82c694 2655 if (alloc_set_pte(vmf, page))
7267ec00 2656 goto unlock;
f1820361
KS
2657 unlock_page(page);
2658 goto next;
2659unlock:
2660 unlock_page(page);
2661skip:
09cbfeaf 2662 put_page(page);
f1820361 2663next:
7267ec00 2664 /* Huge page is mapped? No need to proceed. */
82b0f8c3 2665 if (pmd_trans_huge(*vmf->pmd))
7267ec00 2666 break;
f1820361
KS
2667 }
2668 rcu_read_unlock();
2669}
2670EXPORT_SYMBOL(filemap_map_pages);
2671
2bcd6454 2672vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
4fcf1c62
JK
2673{
2674 struct page *page = vmf->page;
11bac800 2675 struct inode *inode = file_inode(vmf->vma->vm_file);
2bcd6454 2676 vm_fault_t ret = VM_FAULT_LOCKED;
4fcf1c62 2677
14da9200 2678 sb_start_pagefault(inode->i_sb);
11bac800 2679 file_update_time(vmf->vma->vm_file);
4fcf1c62
JK
2680 lock_page(page);
2681 if (page->mapping != inode->i_mapping) {
2682 unlock_page(page);
2683 ret = VM_FAULT_NOPAGE;
2684 goto out;
2685 }
14da9200
JK
2686 /*
2687 * We mark the page dirty already here so that when freeze is in
2688 * progress, we are guaranteed that writeback during freezing will
2689 * see the dirty page and writeprotect it again.
2690 */
2691 set_page_dirty(page);
1d1d1a76 2692 wait_for_stable_page(page);
4fcf1c62 2693out:
14da9200 2694 sb_end_pagefault(inode->i_sb);
4fcf1c62
JK
2695 return ret;
2696}
4fcf1c62 2697
f0f37e2f 2698const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 2699 .fault = filemap_fault,
f1820361 2700 .map_pages = filemap_map_pages,
4fcf1c62 2701 .page_mkwrite = filemap_page_mkwrite,
1da177e4
LT
2702};
2703
2704/* This is used for a general mmap of a disk file */
2705
2706int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2707{
2708 struct address_space *mapping = file->f_mapping;
2709
2710 if (!mapping->a_ops->readpage)
2711 return -ENOEXEC;
2712 file_accessed(file);
2713 vma->vm_ops = &generic_file_vm_ops;
2714 return 0;
2715}
1da177e4
LT
2716
2717/*
2718 * This is for filesystems which do not implement ->writepage.
2719 */
2720int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2721{
2722 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2723 return -EINVAL;
2724 return generic_file_mmap(file, vma);
2725}
2726#else
4b96a37d 2727vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
45397228 2728{
4b96a37d 2729 return VM_FAULT_SIGBUS;
45397228 2730}
1da177e4
LT
2731int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2732{
2733 return -ENOSYS;
2734}
2735int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2736{
2737 return -ENOSYS;
2738}
2739#endif /* CONFIG_MMU */
2740
45397228 2741EXPORT_SYMBOL(filemap_page_mkwrite);
1da177e4
LT
2742EXPORT_SYMBOL(generic_file_mmap);
2743EXPORT_SYMBOL(generic_file_readonly_mmap);
2744
67f9fd91
SL
2745static struct page *wait_on_page_read(struct page *page)
2746{
2747 if (!IS_ERR(page)) {
2748 wait_on_page_locked(page);
2749 if (!PageUptodate(page)) {
09cbfeaf 2750 put_page(page);
67f9fd91
SL
2751 page = ERR_PTR(-EIO);
2752 }
2753 }
2754 return page;
2755}
2756
32b63529 2757static struct page *do_read_cache_page(struct address_space *mapping,
57f6b96c 2758 pgoff_t index,
5e5358e7 2759 int (*filler)(void *, struct page *),
0531b2aa
LT
2760 void *data,
2761 gfp_t gfp)
1da177e4 2762{
eb2be189 2763 struct page *page;
1da177e4
LT
2764 int err;
2765repeat:
2766 page = find_get_page(mapping, index);
2767 if (!page) {
453f85d4 2768 page = __page_cache_alloc(gfp);
eb2be189
NP
2769 if (!page)
2770 return ERR_PTR(-ENOMEM);
e6f67b8c 2771 err = add_to_page_cache_lru(page, mapping, index, gfp);
eb2be189 2772 if (unlikely(err)) {
09cbfeaf 2773 put_page(page);
eb2be189
NP
2774 if (err == -EEXIST)
2775 goto repeat;
22ecdb4f 2776 /* Presumably ENOMEM for xarray node */
1da177e4
LT
2777 return ERR_PTR(err);
2778 }
32b63529
MG
2779
2780filler:
6c45b454
CH
2781 if (filler)
2782 err = filler(data, page);
2783 else
2784 err = mapping->a_ops->readpage(data, page);
2785
1da177e4 2786 if (err < 0) {
09cbfeaf 2787 put_page(page);
32b63529 2788 return ERR_PTR(err);
1da177e4 2789 }
1da177e4 2790
32b63529
MG
2791 page = wait_on_page_read(page);
2792 if (IS_ERR(page))
2793 return page;
2794 goto out;
2795 }
1da177e4
LT
2796 if (PageUptodate(page))
2797 goto out;
2798
ebded027
MG
2799 /*
2800 * Page is not up to date and may be locked due one of the following
2801 * case a: Page is being filled and the page lock is held
2802 * case b: Read/write error clearing the page uptodate status
2803 * case c: Truncation in progress (page locked)
2804 * case d: Reclaim in progress
2805 *
2806 * Case a, the page will be up to date when the page is unlocked.
2807 * There is no need to serialise on the page lock here as the page
2808 * is pinned so the lock gives no additional protection. Even if the
2809 * the page is truncated, the data is still valid if PageUptodate as
2810 * it's a race vs truncate race.
2811 * Case b, the page will not be up to date
2812 * Case c, the page may be truncated but in itself, the data may still
2813 * be valid after IO completes as it's a read vs truncate race. The
2814 * operation must restart if the page is not uptodate on unlock but
2815 * otherwise serialising on page lock to stabilise the mapping gives
2816 * no additional guarantees to the caller as the page lock is
2817 * released before return.
2818 * Case d, similar to truncation. If reclaim holds the page lock, it
2819 * will be a race with remove_mapping that determines if the mapping
2820 * is valid on unlock but otherwise the data is valid and there is
2821 * no need to serialise with page lock.
2822 *
2823 * As the page lock gives no additional guarantee, we optimistically
2824 * wait on the page to be unlocked and check if it's up to date and
2825 * use the page if it is. Otherwise, the page lock is required to
2826 * distinguish between the different cases. The motivation is that we
2827 * avoid spurious serialisations and wakeups when multiple processes
2828 * wait on the same page for IO to complete.
2829 */
2830 wait_on_page_locked(page);
2831 if (PageUptodate(page))
2832 goto out;
2833
2834 /* Distinguish between all the cases under the safety of the lock */
1da177e4 2835 lock_page(page);
ebded027
MG
2836
2837 /* Case c or d, restart the operation */
1da177e4
LT
2838 if (!page->mapping) {
2839 unlock_page(page);
09cbfeaf 2840 put_page(page);
32b63529 2841 goto repeat;
1da177e4 2842 }
ebded027
MG
2843
2844 /* Someone else locked and filled the page in a very small window */
1da177e4
LT
2845 if (PageUptodate(page)) {
2846 unlock_page(page);
2847 goto out;
2848 }
faffdfa0
XT
2849
2850 /*
2851 * A previous I/O error may have been due to temporary
2852 * failures.
2853 * Clear page error before actual read, PG_error will be
2854 * set again if read page fails.
2855 */
2856 ClearPageError(page);
32b63529
MG
2857 goto filler;
2858
c855ff37 2859out:
6fe6900e
NP
2860 mark_page_accessed(page);
2861 return page;
2862}
0531b2aa
LT
2863
2864/**
67f9fd91 2865 * read_cache_page - read into page cache, fill it if needed
0531b2aa
LT
2866 * @mapping: the page's address_space
2867 * @index: the page index
2868 * @filler: function to perform the read
5e5358e7 2869 * @data: first arg to filler(data, page) function, often left as NULL
0531b2aa 2870 *
0531b2aa 2871 * Read into the page cache. If a page already exists, and PageUptodate() is
67f9fd91 2872 * not set, try to fill the page and wait for it to become unlocked.
0531b2aa
LT
2873 *
2874 * If the page does not get brought uptodate, return -EIO.
a862f68a
MR
2875 *
2876 * Return: up to date page on success, ERR_PTR() on failure.
0531b2aa 2877 */
67f9fd91 2878struct page *read_cache_page(struct address_space *mapping,
0531b2aa 2879 pgoff_t index,
5e5358e7 2880 int (*filler)(void *, struct page *),
0531b2aa
LT
2881 void *data)
2882{
d322a8e5
CH
2883 return do_read_cache_page(mapping, index, filler, data,
2884 mapping_gfp_mask(mapping));
0531b2aa 2885}
67f9fd91 2886EXPORT_SYMBOL(read_cache_page);
0531b2aa
LT
2887
2888/**
2889 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2890 * @mapping: the page's address_space
2891 * @index: the page index
2892 * @gfp: the page allocator flags to use if allocating
2893 *
2894 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
e6f67b8c 2895 * any new page allocations done using the specified allocation flags.
0531b2aa
LT
2896 *
2897 * If the page does not get brought uptodate, return -EIO.
a862f68a
MR
2898 *
2899 * Return: up to date page on success, ERR_PTR() on failure.
0531b2aa
LT
2900 */
2901struct page *read_cache_page_gfp(struct address_space *mapping,
2902 pgoff_t index,
2903 gfp_t gfp)
2904{
6c45b454 2905 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
0531b2aa
LT
2906}
2907EXPORT_SYMBOL(read_cache_page_gfp);
2908
9fd91a90
DW
2909/*
2910 * Don't operate on ranges the page cache doesn't support, and don't exceed the
2911 * LFS limits. If pos is under the limit it becomes a short access. If it
2912 * exceeds the limit we return -EFBIG.
2913 */
9fd91a90
DW
2914static int generic_write_check_limits(struct file *file, loff_t pos,
2915 loff_t *count)
2916{
646955cd
AG
2917 struct inode *inode = file->f_mapping->host;
2918 loff_t max_size = inode->i_sb->s_maxbytes;
9fd91a90
DW
2919 loff_t limit = rlimit(RLIMIT_FSIZE);
2920
2921 if (limit != RLIM_INFINITY) {
2922 if (pos >= limit) {
2923 send_sig(SIGXFSZ, current, 0);
2924 return -EFBIG;
2925 }
2926 *count = min(*count, limit - pos);
2927 }
2928
646955cd
AG
2929 if (!(file->f_flags & O_LARGEFILE))
2930 max_size = MAX_NON_LFS;
2931
2932 if (unlikely(pos >= max_size))
2933 return -EFBIG;
2934
2935 *count = min(*count, max_size - pos);
2936
2937 return 0;
9fd91a90
DW
2938}
2939
1da177e4
LT
2940/*
2941 * Performs necessary checks before doing a write
2942 *
485bb99b 2943 * Can adjust writing position or amount of bytes to write.
1da177e4
LT
2944 * Returns appropriate error code that caller should return or
2945 * zero in case that write should be allowed.
2946 */
3309dd04 2947inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
1da177e4 2948{
3309dd04 2949 struct file *file = iocb->ki_filp;
1da177e4 2950 struct inode *inode = file->f_mapping->host;
9fd91a90
DW
2951 loff_t count;
2952 int ret;
1da177e4 2953
dc617f29
DW
2954 if (IS_SWAPFILE(inode))
2955 return -ETXTBSY;
2956
3309dd04
AV
2957 if (!iov_iter_count(from))
2958 return 0;
1da177e4 2959
0fa6b005 2960 /* FIXME: this is for backwards compatibility with 2.4 */
2ba48ce5 2961 if (iocb->ki_flags & IOCB_APPEND)
3309dd04 2962 iocb->ki_pos = i_size_read(inode);
1da177e4 2963
6be96d3a
GR
2964 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2965 return -EINVAL;
2966
9fd91a90
DW
2967 count = iov_iter_count(from);
2968 ret = generic_write_check_limits(file, iocb->ki_pos, &count);
2969 if (ret)
2970 return ret;
1da177e4 2971
9fd91a90 2972 iov_iter_truncate(from, count);
3309dd04 2973 return iov_iter_count(from);
1da177e4
LT
2974}
2975EXPORT_SYMBOL(generic_write_checks);
2976
1383a7ed
DW
2977/*
2978 * Performs necessary checks before doing a clone.
2979 *
646955cd 2980 * Can adjust amount of bytes to clone via @req_count argument.
1383a7ed
DW
2981 * Returns appropriate error code that caller should return or
2982 * zero in case the clone should be allowed.
2983 */
2984int generic_remap_checks(struct file *file_in, loff_t pos_in,
2985 struct file *file_out, loff_t pos_out,
42ec3d4c 2986 loff_t *req_count, unsigned int remap_flags)
1383a7ed
DW
2987{
2988 struct inode *inode_in = file_in->f_mapping->host;
2989 struct inode *inode_out = file_out->f_mapping->host;
2990 uint64_t count = *req_count;
2991 uint64_t bcount;
2992 loff_t size_in, size_out;
2993 loff_t bs = inode_out->i_sb->s_blocksize;
9fd91a90 2994 int ret;
1383a7ed
DW
2995
2996 /* The start of both ranges must be aligned to an fs block. */
2997 if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs))
2998 return -EINVAL;
2999
3000 /* Ensure offsets don't wrap. */
3001 if (pos_in + count < pos_in || pos_out + count < pos_out)
3002 return -EINVAL;
3003
3004 size_in = i_size_read(inode_in);
3005 size_out = i_size_read(inode_out);
3006
3007 /* Dedupe requires both ranges to be within EOF. */
3d28193e 3008 if ((remap_flags & REMAP_FILE_DEDUP) &&
1383a7ed
DW
3009 (pos_in >= size_in || pos_in + count > size_in ||
3010 pos_out >= size_out || pos_out + count > size_out))
3011 return -EINVAL;
3012
3013 /* Ensure the infile range is within the infile. */
3014 if (pos_in >= size_in)
3015 return -EINVAL;
3016 count = min(count, size_in - (uint64_t)pos_in);
3017
9fd91a90
DW
3018 ret = generic_write_check_limits(file_out, pos_out, &count);
3019 if (ret)
3020 return ret;
1da177e4
LT
3021
3022 /*
1383a7ed
DW
3023 * If the user wanted us to link to the infile's EOF, round up to the
3024 * next block boundary for this check.
3025 *
3026 * Otherwise, make sure the count is also block-aligned, having
3027 * already confirmed the starting offsets' block alignment.
1da177e4 3028 */
1383a7ed
DW
3029 if (pos_in + count == size_in) {
3030 bcount = ALIGN(size_in, bs) - pos_in;
3031 } else {
3032 if (!IS_ALIGNED(count, bs))
eca3654e 3033 count = ALIGN_DOWN(count, bs);
1383a7ed 3034 bcount = count;
1da177e4
LT
3035 }
3036
1383a7ed
DW
3037 /* Don't allow overlapped cloning within the same file. */
3038 if (inode_in == inode_out &&
3039 pos_out + bcount > pos_in &&
3040 pos_out < pos_in + bcount)
3041 return -EINVAL;
3042
1da177e4 3043 /*
eca3654e
DW
3044 * We shortened the request but the caller can't deal with that, so
3045 * bounce the request back to userspace.
1da177e4 3046 */
eca3654e 3047 if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN))
1383a7ed 3048 return -EINVAL;
1da177e4 3049
eca3654e 3050 *req_count = count;
1383a7ed 3051 return 0;
1da177e4 3052}
1da177e4 3053
a3171351
AG
3054
3055/*
3056 * Performs common checks before doing a file copy/clone
3057 * from @file_in to @file_out.
3058 */
3059int generic_file_rw_checks(struct file *file_in, struct file *file_out)
3060{
3061 struct inode *inode_in = file_inode(file_in);
3062 struct inode *inode_out = file_inode(file_out);
3063
3064 /* Don't copy dirs, pipes, sockets... */
3065 if (S_ISDIR(inode_in->i_mode) || S_ISDIR(inode_out->i_mode))
3066 return -EISDIR;
3067 if (!S_ISREG(inode_in->i_mode) || !S_ISREG(inode_out->i_mode))
3068 return -EINVAL;
3069
3070 if (!(file_in->f_mode & FMODE_READ) ||
3071 !(file_out->f_mode & FMODE_WRITE) ||
3072 (file_out->f_flags & O_APPEND))
3073 return -EBADF;
3074
3075 return 0;
3076}
3077
96e6e8f4
AG
3078/*
3079 * Performs necessary checks before doing a file copy
3080 *
3081 * Can adjust amount of bytes to copy via @req_count argument.
3082 * Returns appropriate error code that caller should return or
3083 * zero in case the copy should be allowed.
3084 */
3085int generic_copy_file_checks(struct file *file_in, loff_t pos_in,
3086 struct file *file_out, loff_t pos_out,
3087 size_t *req_count, unsigned int flags)
3088{
3089 struct inode *inode_in = file_inode(file_in);
3090 struct inode *inode_out = file_inode(file_out);
3091 uint64_t count = *req_count;
3092 loff_t size_in;
3093 int ret;
3094
3095 ret = generic_file_rw_checks(file_in, file_out);
3096 if (ret)
3097 return ret;
3098
3099 /* Don't touch certain kinds of inodes */
3100 if (IS_IMMUTABLE(inode_out))
3101 return -EPERM;
3102
3103 if (IS_SWAPFILE(inode_in) || IS_SWAPFILE(inode_out))
3104 return -ETXTBSY;
3105
3106 /* Ensure offsets don't wrap. */
3107 if (pos_in + count < pos_in || pos_out + count < pos_out)
3108 return -EOVERFLOW;
3109
3110 /* Shorten the copy to EOF */
3111 size_in = i_size_read(inode_in);
3112 if (pos_in >= size_in)
3113 count = 0;
3114 else
3115 count = min(count, size_in - (uint64_t)pos_in);
3116
3117 ret = generic_write_check_limits(file_out, pos_out, &count);
3118 if (ret)
3119 return ret;
3120
3121 /* Don't allow overlapped copying within the same file. */
3122 if (inode_in == inode_out &&
3123 pos_out + count > pos_in &&
3124 pos_out < pos_in + count)
3125 return -EINVAL;
3126
3127 *req_count = count;
3128 return 0;
3129}
3130
afddba49
NP
3131int pagecache_write_begin(struct file *file, struct address_space *mapping,
3132 loff_t pos, unsigned len, unsigned flags,
3133 struct page **pagep, void **fsdata)
3134{
3135 const struct address_space_operations *aops = mapping->a_ops;
3136
4e02ed4b 3137 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 3138 pagep, fsdata);
afddba49
NP
3139}
3140EXPORT_SYMBOL(pagecache_write_begin);
3141
3142int pagecache_write_end(struct file *file, struct address_space *mapping,
3143 loff_t pos, unsigned len, unsigned copied,
3144 struct page *page, void *fsdata)
3145{
3146 const struct address_space_operations *aops = mapping->a_ops;
afddba49 3147
4e02ed4b 3148 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
3149}
3150EXPORT_SYMBOL(pagecache_write_end);
3151
a92853b6
KK
3152/*
3153 * Warn about a page cache invalidation failure during a direct I/O write.
3154 */
3155void dio_warn_stale_pagecache(struct file *filp)
3156{
3157 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3158 char pathname[128];
3159 struct inode *inode = file_inode(filp);
3160 char *path;
3161
3162 errseq_set(&inode->i_mapping->wb_err, -EIO);
3163 if (__ratelimit(&_rs)) {
3164 path = file_path(filp, pathname, sizeof(pathname));
3165 if (IS_ERR(path))
3166 path = "(unknown)";
3167 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
3168 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3169 current->comm);
3170 }
3171}
3172
1da177e4 3173ssize_t
1af5bb49 3174generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3175{
3176 struct file *file = iocb->ki_filp;
3177 struct address_space *mapping = file->f_mapping;
3178 struct inode *inode = mapping->host;
1af5bb49 3179 loff_t pos = iocb->ki_pos;
1da177e4 3180 ssize_t written;
a969e903
CH
3181 size_t write_len;
3182 pgoff_t end;
1da177e4 3183
0c949334 3184 write_len = iov_iter_count(from);
09cbfeaf 3185 end = (pos + write_len - 1) >> PAGE_SHIFT;
a969e903 3186
6be96d3a
GR
3187 if (iocb->ki_flags & IOCB_NOWAIT) {
3188 /* If there are pages to writeback, return */
3189 if (filemap_range_has_page(inode->i_mapping, pos,
35f12f0f 3190 pos + write_len - 1))
6be96d3a
GR
3191 return -EAGAIN;
3192 } else {
3193 written = filemap_write_and_wait_range(mapping, pos,
3194 pos + write_len - 1);
3195 if (written)
3196 goto out;
3197 }
a969e903
CH
3198
3199 /*
3200 * After a write we want buffered reads to be sure to go to disk to get
3201 * the new data. We invalidate clean cached page from the region we're
3202 * about to write. We do this *before* the write so that we can return
6ccfa806 3203 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903 3204 */
55635ba7 3205 written = invalidate_inode_pages2_range(mapping,
09cbfeaf 3206 pos >> PAGE_SHIFT, end);
55635ba7
AR
3207 /*
3208 * If a page can not be invalidated, return 0 to fall back
3209 * to buffered write.
3210 */
3211 if (written) {
3212 if (written == -EBUSY)
3213 return 0;
3214 goto out;
a969e903
CH
3215 }
3216
639a93a5 3217 written = mapping->a_ops->direct_IO(iocb, from);
a969e903
CH
3218
3219 /*
3220 * Finally, try again to invalidate clean pages which might have been
3221 * cached by non-direct readahead, or faulted in by get_user_pages()
3222 * if the source of the write was an mmap'ed region of the file
3223 * we're writing. Either one is a pretty crazy thing to do,
3224 * so we don't support it 100%. If this invalidation
3225 * fails, tough, the write still worked...
332391a9
LC
3226 *
3227 * Most of the time we do not need this since dio_complete() will do
3228 * the invalidation for us. However there are some file systems that
3229 * do not end up with dio_complete() being called, so let's not break
80c1fe90
KK
3230 * them by removing it completely.
3231 *
9266a140
KK
3232 * Noticeable example is a blkdev_direct_IO().
3233 *
80c1fe90 3234 * Skip invalidation for async writes or if mapping has no pages.
a969e903 3235 */
9266a140
KK
3236 if (written > 0 && mapping->nrpages &&
3237 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3238 dio_warn_stale_pagecache(file);
a969e903 3239
1da177e4 3240 if (written > 0) {
0116651c 3241 pos += written;
639a93a5 3242 write_len -= written;
0116651c
NK
3243 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3244 i_size_write(inode, pos);
1da177e4
LT
3245 mark_inode_dirty(inode);
3246 }
5cb6c6c7 3247 iocb->ki_pos = pos;
1da177e4 3248 }
639a93a5 3249 iov_iter_revert(from, write_len - iov_iter_count(from));
a969e903 3250out:
1da177e4
LT
3251 return written;
3252}
3253EXPORT_SYMBOL(generic_file_direct_write);
3254
eb2be189
NP
3255/*
3256 * Find or create a page at the given pagecache position. Return the locked
3257 * page. This function is specifically for buffered writes.
3258 */
54566b2c
NP
3259struct page *grab_cache_page_write_begin(struct address_space *mapping,
3260 pgoff_t index, unsigned flags)
eb2be189 3261{
eb2be189 3262 struct page *page;
bbddabe2 3263 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
0faa70cb 3264
54566b2c 3265 if (flags & AOP_FLAG_NOFS)
2457aec6
MG
3266 fgp_flags |= FGP_NOFS;
3267
3268 page = pagecache_get_page(mapping, index, fgp_flags,
45f87de5 3269 mapping_gfp_mask(mapping));
c585a267 3270 if (page)
2457aec6 3271 wait_for_stable_page(page);
eb2be189 3272
eb2be189
NP
3273 return page;
3274}
54566b2c 3275EXPORT_SYMBOL(grab_cache_page_write_begin);
eb2be189 3276
3b93f911 3277ssize_t generic_perform_write(struct file *file,
afddba49
NP
3278 struct iov_iter *i, loff_t pos)
3279{
3280 struct address_space *mapping = file->f_mapping;
3281 const struct address_space_operations *a_ops = mapping->a_ops;
3282 long status = 0;
3283 ssize_t written = 0;
674b892e
NP
3284 unsigned int flags = 0;
3285
afddba49
NP
3286 do {
3287 struct page *page;
afddba49
NP
3288 unsigned long offset; /* Offset into pagecache page */
3289 unsigned long bytes; /* Bytes to write to page */
3290 size_t copied; /* Bytes copied from user */
3291 void *fsdata;
3292
09cbfeaf
KS
3293 offset = (pos & (PAGE_SIZE - 1));
3294 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
3295 iov_iter_count(i));
3296
3297again:
00a3d660
LT
3298 /*
3299 * Bring in the user page that we will copy from _first_.
3300 * Otherwise there's a nasty deadlock on copying from the
3301 * same page as we're writing to, without it being marked
3302 * up-to-date.
3303 *
3304 * Not only is this an optimisation, but it is also required
3305 * to check that the address is actually valid, when atomic
3306 * usercopies are used, below.
3307 */
3308 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3309 status = -EFAULT;
3310 break;
3311 }
3312
296291cd
JK
3313 if (fatal_signal_pending(current)) {
3314 status = -EINTR;
3315 break;
3316 }
3317
674b892e 3318 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49 3319 &page, &fsdata);
2457aec6 3320 if (unlikely(status < 0))
afddba49
NP
3321 break;
3322
931e80e4 3323 if (mapping_writably_mapped(mapping))
3324 flush_dcache_page(page);
00a3d660 3325
afddba49 3326 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
afddba49
NP
3327 flush_dcache_page(page);
3328
3329 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3330 page, fsdata);
3331 if (unlikely(status < 0))
3332 break;
3333 copied = status;
3334
3335 cond_resched();
3336
124d3b70 3337 iov_iter_advance(i, copied);
afddba49
NP
3338 if (unlikely(copied == 0)) {
3339 /*
3340 * If we were unable to copy any data at all, we must
3341 * fall back to a single segment length write.
3342 *
3343 * If we didn't fallback here, we could livelock
3344 * because not all segments in the iov can be copied at
3345 * once without a pagefault.
3346 */
09cbfeaf 3347 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
3348 iov_iter_single_seg_count(i));
3349 goto again;
3350 }
afddba49
NP
3351 pos += copied;
3352 written += copied;
3353
3354 balance_dirty_pages_ratelimited(mapping);
afddba49
NP
3355 } while (iov_iter_count(i));
3356
3357 return written ? written : status;
3358}
3b93f911 3359EXPORT_SYMBOL(generic_perform_write);
1da177e4 3360
e4dd9de3 3361/**
8174202b 3362 * __generic_file_write_iter - write data to a file
e4dd9de3 3363 * @iocb: IO state structure (file, offset, etc.)
8174202b 3364 * @from: iov_iter with data to write
e4dd9de3
JK
3365 *
3366 * This function does all the work needed for actually writing data to a
3367 * file. It does all basic checks, removes SUID from the file, updates
3368 * modification times and calls proper subroutines depending on whether we
3369 * do direct IO or a standard buffered write.
3370 *
3371 * It expects i_mutex to be grabbed unless we work on a block device or similar
3372 * object which does not need locking at all.
3373 *
3374 * This function does *not* take care of syncing data in case of O_SYNC write.
3375 * A caller has to handle it. This is mainly due to the fact that we want to
3376 * avoid syncing under i_mutex.
a862f68a
MR
3377 *
3378 * Return:
3379 * * number of bytes written, even for truncated writes
3380 * * negative error code if no data has been written at all
e4dd9de3 3381 */
8174202b 3382ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3383{
3384 struct file *file = iocb->ki_filp;
fb5527e6 3385 struct address_space * mapping = file->f_mapping;
1da177e4 3386 struct inode *inode = mapping->host;
3b93f911 3387 ssize_t written = 0;
1da177e4 3388 ssize_t err;
3b93f911 3389 ssize_t status;
1da177e4 3390
1da177e4 3391 /* We can write back this queue in page reclaim */
de1414a6 3392 current->backing_dev_info = inode_to_bdi(inode);
5fa8e0a1 3393 err = file_remove_privs(file);
1da177e4
LT
3394 if (err)
3395 goto out;
3396
c3b2da31
JB
3397 err = file_update_time(file);
3398 if (err)
3399 goto out;
1da177e4 3400
2ba48ce5 3401 if (iocb->ki_flags & IOCB_DIRECT) {
0b8def9d 3402 loff_t pos, endbyte;
fb5527e6 3403
1af5bb49 3404 written = generic_file_direct_write(iocb, from);
1da177e4 3405 /*
fbbbad4b
MW
3406 * If the write stopped short of completing, fall back to
3407 * buffered writes. Some filesystems do this for writes to
3408 * holes, for example. For DAX files, a buffered write will
3409 * not succeed (even if it did, DAX does not handle dirty
3410 * page-cache pages correctly).
1da177e4 3411 */
0b8def9d 3412 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
fbbbad4b
MW
3413 goto out;
3414
0b8def9d 3415 status = generic_perform_write(file, from, pos = iocb->ki_pos);
fb5527e6 3416 /*
3b93f911 3417 * If generic_perform_write() returned a synchronous error
fb5527e6
JM
3418 * then we want to return the number of bytes which were
3419 * direct-written, or the error code if that was zero. Note
3420 * that this differs from normal direct-io semantics, which
3421 * will return -EFOO even if some bytes were written.
3422 */
60bb4529 3423 if (unlikely(status < 0)) {
3b93f911 3424 err = status;
fb5527e6
JM
3425 goto out;
3426 }
fb5527e6
JM
3427 /*
3428 * We need to ensure that the page cache pages are written to
3429 * disk and invalidated to preserve the expected O_DIRECT
3430 * semantics.
3431 */
3b93f911 3432 endbyte = pos + status - 1;
0b8def9d 3433 err = filemap_write_and_wait_range(mapping, pos, endbyte);
fb5527e6 3434 if (err == 0) {
0b8def9d 3435 iocb->ki_pos = endbyte + 1;
3b93f911 3436 written += status;
fb5527e6 3437 invalidate_mapping_pages(mapping,
09cbfeaf
KS
3438 pos >> PAGE_SHIFT,
3439 endbyte >> PAGE_SHIFT);
fb5527e6
JM
3440 } else {
3441 /*
3442 * We don't know how much we wrote, so just return
3443 * the number of bytes which were direct-written
3444 */
3445 }
3446 } else {
0b8def9d
AV
3447 written = generic_perform_write(file, from, iocb->ki_pos);
3448 if (likely(written > 0))
3449 iocb->ki_pos += written;
fb5527e6 3450 }
1da177e4
LT
3451out:
3452 current->backing_dev_info = NULL;
3453 return written ? written : err;
3454}
8174202b 3455EXPORT_SYMBOL(__generic_file_write_iter);
e4dd9de3 3456
e4dd9de3 3457/**
8174202b 3458 * generic_file_write_iter - write data to a file
e4dd9de3 3459 * @iocb: IO state structure
8174202b 3460 * @from: iov_iter with data to write
e4dd9de3 3461 *
8174202b 3462 * This is a wrapper around __generic_file_write_iter() to be used by most
e4dd9de3
JK
3463 * filesystems. It takes care of syncing the file in case of O_SYNC file
3464 * and acquires i_mutex as needed.
a862f68a
MR
3465 * Return:
3466 * * negative error code if no data has been written at all of
3467 * vfs_fsync_range() failed for a synchronous write
3468 * * number of bytes written, even for truncated writes
e4dd9de3 3469 */
8174202b 3470ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3471{
3472 struct file *file = iocb->ki_filp;
148f948b 3473 struct inode *inode = file->f_mapping->host;
1da177e4 3474 ssize_t ret;
1da177e4 3475
5955102c 3476 inode_lock(inode);
3309dd04
AV
3477 ret = generic_write_checks(iocb, from);
3478 if (ret > 0)
5f380c7f 3479 ret = __generic_file_write_iter(iocb, from);
5955102c 3480 inode_unlock(inode);
1da177e4 3481
e2592217
CH
3482 if (ret > 0)
3483 ret = generic_write_sync(iocb, ret);
1da177e4
LT
3484 return ret;
3485}
8174202b 3486EXPORT_SYMBOL(generic_file_write_iter);
1da177e4 3487
cf9a2ae8
DH
3488/**
3489 * try_to_release_page() - release old fs-specific metadata on a page
3490 *
3491 * @page: the page which the kernel is trying to free
3492 * @gfp_mask: memory allocation flags (and I/O mode)
3493 *
3494 * The address_space is to try to release any data against the page
a862f68a 3495 * (presumably at page->private).
cf9a2ae8 3496 *
266cf658
DH
3497 * This may also be called if PG_fscache is set on a page, indicating that the
3498 * page is known to the local caching routines.
3499 *
cf9a2ae8 3500 * The @gfp_mask argument specifies whether I/O may be performed to release
71baba4b 3501 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
cf9a2ae8 3502 *
a862f68a 3503 * Return: %1 if the release was successful, otherwise return zero.
cf9a2ae8
DH
3504 */
3505int try_to_release_page(struct page *page, gfp_t gfp_mask)
3506{
3507 struct address_space * const mapping = page->mapping;
3508
3509 BUG_ON(!PageLocked(page));
3510 if (PageWriteback(page))
3511 return 0;
3512
3513 if (mapping && mapping->a_ops->releasepage)
3514 return mapping->a_ops->releasepage(page, gfp_mask);
3515 return try_to_free_buffers(page);
3516}
3517
3518EXPORT_SYMBOL(try_to_release_page);