mm: delete __ClearPageWaiters()
[linux-block.git] / mm / filemap.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/filemap.c
4 *
5 * Copyright (C) 1994-1999 Linus Torvalds
6 */
7
8/*
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
12 */
b95f1b31 13#include <linux/export.h>
1da177e4 14#include <linux/compiler.h>
f9fe48be 15#include <linux/dax.h>
1da177e4 16#include <linux/fs.h>
3f07c014 17#include <linux/sched/signal.h>
c22ce143 18#include <linux/uaccess.h>
c59ede7b 19#include <linux/capability.h>
1da177e4 20#include <linux/kernel_stat.h>
5a0e3ad6 21#include <linux/gfp.h>
1da177e4
LT
22#include <linux/mm.h>
23#include <linux/swap.h>
ffa65753 24#include <linux/swapops.h>
1da177e4
LT
25#include <linux/mman.h>
26#include <linux/pagemap.h>
27#include <linux/file.h>
28#include <linux/uio.h>
cfcbfb13 29#include <linux/error-injection.h>
1da177e4
LT
30#include <linux/hash.h>
31#include <linux/writeback.h>
53253383 32#include <linux/backing-dev.h>
1da177e4 33#include <linux/pagevec.h>
1da177e4 34#include <linux/security.h>
44110fe3 35#include <linux/cpuset.h>
00501b53 36#include <linux/hugetlb.h>
8a9f3ccd 37#include <linux/memcontrol.h>
c7df8ad2 38#include <linux/shmem_fs.h>
f1820361 39#include <linux/rmap.h>
b1d29ba8 40#include <linux/delayacct.h>
eb414681 41#include <linux/psi.h>
d0e6a582 42#include <linux/ramfs.h>
b9306a79 43#include <linux/page_idle.h>
ffa65753 44#include <linux/migrate.h>
f9ce0be7 45#include <asm/pgalloc.h>
de591a82 46#include <asm/tlbflush.h>
0f8053a5
NP
47#include "internal.h"
48
fe0bfaaf
RJ
49#define CREATE_TRACE_POINTS
50#include <trace/events/filemap.h>
51
1da177e4 52/*
1da177e4
LT
53 * FIXME: remove all knowledge of the buffer layer from the core VM
54 */
148f948b 55#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 56
1da177e4
LT
57#include <asm/mman.h>
58
59/*
60 * Shared mappings implemented 30.11.1994. It's not fully working yet,
61 * though.
62 *
63 * Shared mappings now work. 15.8.1995 Bruno.
64 *
65 * finished 'unifying' the page and buffer cache and SMP-threaded the
66 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
67 *
68 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
69 */
70
71/*
72 * Lock ordering:
73 *
c8c06efa 74 * ->i_mmap_rwsem (truncate_pagecache)
e621900a 75 * ->private_lock (__free_pte->block_dirty_folio)
5d337b91 76 * ->swap_lock (exclusive_swap_page, others)
b93b0163 77 * ->i_pages lock
1da177e4 78 *
9608703e 79 * ->i_rwsem
730633f0
JK
80 * ->invalidate_lock (acquired by fs in truncate path)
81 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
1da177e4 82 *
c1e8d7c6 83 * ->mmap_lock
c8c06efa 84 * ->i_mmap_rwsem
b8072f09 85 * ->page_table_lock or pte_lock (various, mainly in memory.c)
b93b0163 86 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
1da177e4 87 *
c1e8d7c6 88 * ->mmap_lock
730633f0
JK
89 * ->invalidate_lock (filemap_fault)
90 * ->lock_page (filemap_fault, access_process_vm)
1da177e4 91 *
9608703e 92 * ->i_rwsem (generic_perform_write)
bb523b40 93 * ->mmap_lock (fault_in_readable->do_page_fault)
1da177e4 94 *
f758eeab 95 * bdi->wb.list_lock
a66979ab 96 * sb_lock (fs/fs-writeback.c)
b93b0163 97 * ->i_pages lock (__sync_single_inode)
1da177e4 98 *
c8c06efa 99 * ->i_mmap_rwsem
1da177e4
LT
100 * ->anon_vma.lock (vma_adjust)
101 *
102 * ->anon_vma.lock
b8072f09 103 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 104 *
b8072f09 105 * ->page_table_lock or pte_lock
5d337b91 106 * ->swap_lock (try_to_unmap_one)
1da177e4 107 * ->private_lock (try_to_unmap_one)
b93b0163 108 * ->i_pages lock (try_to_unmap_one)
15b44736
HD
109 * ->lruvec->lru_lock (follow_page->mark_page_accessed)
110 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page)
1da177e4 111 * ->private_lock (page_remove_rmap->set_page_dirty)
b93b0163 112 * ->i_pages lock (page_remove_rmap->set_page_dirty)
f758eeab 113 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
250df6ed 114 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
81f8c3a4 115 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
f758eeab 116 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 117 * ->inode->i_lock (zap_pte_range->set_page_dirty)
e621900a 118 * ->private_lock (zap_pte_range->block_dirty_folio)
1da177e4 119 *
c8c06efa 120 * ->i_mmap_rwsem
9a3c531d 121 * ->tasklist_lock (memory_failure, collect_procs_ao)
1da177e4
LT
122 */
123
5c024e6a 124static void page_cache_delete(struct address_space *mapping,
a548b615 125 struct folio *folio, void *shadow)
91b0abe3 126{
a548b615
MWO
127 XA_STATE(xas, &mapping->i_pages, folio->index);
128 long nr = 1;
c70b647d 129
5c024e6a 130 mapping_set_update(&xas, mapping);
c70b647d 131
5c024e6a 132 /* hugetlb pages are represented by a single entry in the xarray */
a548b615
MWO
133 if (!folio_test_hugetlb(folio)) {
134 xas_set_order(&xas, folio->index, folio_order(folio));
135 nr = folio_nr_pages(folio);
5c024e6a 136 }
91b0abe3 137
a548b615 138 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
449dd698 139
5c024e6a
MW
140 xas_store(&xas, shadow);
141 xas_init_marks(&xas);
d3798ae8 142
a548b615 143 folio->mapping = NULL;
2300638b 144 /* Leave page->index set: truncation lookup relies upon it */
d3798ae8 145 mapping->nrpages -= nr;
91b0abe3
JW
146}
147
621db488
MWO
148static void filemap_unaccount_folio(struct address_space *mapping,
149 struct folio *folio)
1da177e4 150{
621db488 151 long nr;
1da177e4 152
621db488
MWO
153 VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
154 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
06b241f3
HD
155 int mapcount;
156
157 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
621db488
MWO
158 current->comm, folio_pfn(folio));
159 dump_page(&folio->page, "still mapped when deleted");
06b241f3
HD
160 dump_stack();
161 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
162
621db488 163 mapcount = page_mapcount(&folio->page);
06b241f3 164 if (mapping_exiting(mapping) &&
621db488 165 folio_ref_count(folio) >= mapcount + 2) {
06b241f3
HD
166 /*
167 * All vmas have already been torn down, so it's
621db488 168 * a good bet that actually the folio is unmapped,
06b241f3
HD
169 * and we'd prefer not to leak it: if we're wrong,
170 * some other bad page check should catch it later.
171 */
621db488
MWO
172 page_mapcount_reset(&folio->page);
173 folio_ref_sub(folio, mapcount);
06b241f3
HD
174 }
175 }
176
621db488
MWO
177 /* hugetlb folios do not participate in page cache accounting. */
178 if (folio_test_hugetlb(folio))
5ecc4d85 179 return;
09612fa6 180
621db488 181 nr = folio_nr_pages(folio);
5ecc4d85 182
621db488
MWO
183 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
184 if (folio_test_swapbacked(folio)) {
185 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
186 if (folio_test_pmd_mappable(folio))
187 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
188 } else if (folio_test_pmd_mappable(folio)) {
189 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
09d91cda 190 filemap_nr_thps_dec(mapping);
800d8c63 191 }
5ecc4d85
JK
192
193 /*
621db488
MWO
194 * At this point folio must be either written or cleaned by
195 * truncate. Dirty folio here signals a bug and loss of
5ecc4d85
JK
196 * unwritten data.
197 *
621db488
MWO
198 * This fixes dirty accounting after removing the folio entirely
199 * but leaves the dirty flag set: it has no effect for truncated
200 * folio and anyway will be cleared before returning folio to
5ecc4d85
JK
201 * buddy allocator.
202 */
621db488
MWO
203 if (WARN_ON_ONCE(folio_test_dirty(folio)))
204 folio_account_cleaned(folio, mapping,
205 inode_to_wb(mapping->host));
5ecc4d85
JK
206}
207
208/*
209 * Delete a page from the page cache and free it. Caller has to make
210 * sure the page is locked and that nobody else uses it - or that usage
b93b0163 211 * is safe. The caller must hold the i_pages lock.
5ecc4d85 212 */
452e9e69 213void __filemap_remove_folio(struct folio *folio, void *shadow)
5ecc4d85 214{
452e9e69 215 struct address_space *mapping = folio->mapping;
5ecc4d85 216
a0580c6f 217 trace_mm_filemap_delete_from_page_cache(folio);
621db488 218 filemap_unaccount_folio(mapping, folio);
a548b615 219 page_cache_delete(mapping, folio, shadow);
1da177e4
LT
220}
221
78f42660 222void filemap_free_folio(struct address_space *mapping, struct folio *folio)
59c66c5f
JK
223{
224 void (*freepage)(struct page *);
3abb28e2 225 int refs = 1;
59c66c5f
JK
226
227 freepage = mapping->a_ops->freepage;
228 if (freepage)
452e9e69 229 freepage(&folio->page);
59c66c5f 230
3abb28e2
MWO
231 if (folio_test_large(folio) && !folio_test_hugetlb(folio))
232 refs = folio_nr_pages(folio);
233 folio_put_refs(folio, refs);
59c66c5f
JK
234}
235
702cfbf9 236/**
452e9e69
MWO
237 * filemap_remove_folio - Remove folio from page cache.
238 * @folio: The folio.
702cfbf9 239 *
452e9e69
MWO
240 * This must be called only on folios that are locked and have been
241 * verified to be in the page cache. It will never put the folio into
242 * the free list because the caller has a reference on the page.
702cfbf9 243 */
452e9e69 244void filemap_remove_folio(struct folio *folio)
1da177e4 245{
452e9e69 246 struct address_space *mapping = folio->mapping;
1da177e4 247
452e9e69 248 BUG_ON(!folio_test_locked(folio));
51b8c1fe 249 spin_lock(&mapping->host->i_lock);
30472509 250 xa_lock_irq(&mapping->i_pages);
452e9e69 251 __filemap_remove_folio(folio, NULL);
30472509 252 xa_unlock_irq(&mapping->i_pages);
51b8c1fe
JW
253 if (mapping_shrinkable(mapping))
254 inode_add_lru(mapping->host);
255 spin_unlock(&mapping->host->i_lock);
6072d13c 256
452e9e69 257 filemap_free_folio(mapping, folio);
97cecb5a 258}
97cecb5a 259
aa65c29c 260/*
51dcbdac
MWO
261 * page_cache_delete_batch - delete several folios from page cache
262 * @mapping: the mapping to which folios belong
263 * @fbatch: batch of folios to delete
aa65c29c 264 *
51dcbdac
MWO
265 * The function walks over mapping->i_pages and removes folios passed in
266 * @fbatch from the mapping. The function expects @fbatch to be sorted
267 * by page index and is optimised for it to be dense.
268 * It tolerates holes in @fbatch (mapping entries at those indices are not
269 * modified).
aa65c29c 270 *
b93b0163 271 * The function expects the i_pages lock to be held.
aa65c29c 272 */
ef8e5717 273static void page_cache_delete_batch(struct address_space *mapping,
51dcbdac 274 struct folio_batch *fbatch)
aa65c29c 275{
51dcbdac 276 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
6b24ca4a 277 long total_pages = 0;
4101196b 278 int i = 0;
1afd7ae5 279 struct folio *folio;
aa65c29c 280
ef8e5717 281 mapping_set_update(&xas, mapping);
1afd7ae5 282 xas_for_each(&xas, folio, ULONG_MAX) {
51dcbdac 283 if (i >= folio_batch_count(fbatch))
aa65c29c 284 break;
4101196b
MWO
285
286 /* A swap/dax/shadow entry got inserted? Skip it. */
1afd7ae5 287 if (xa_is_value(folio))
aa65c29c 288 continue;
4101196b
MWO
289 /*
290 * A page got inserted in our range? Skip it. We have our
291 * pages locked so they are protected from being removed.
292 * If we see a page whose index is higher than ours, it
293 * means our page has been removed, which shouldn't be
294 * possible because we're holding the PageLock.
295 */
51dcbdac 296 if (folio != fbatch->folios[i]) {
1afd7ae5 297 VM_BUG_ON_FOLIO(folio->index >
51dcbdac 298 fbatch->folios[i]->index, folio);
4101196b
MWO
299 continue;
300 }
301
1afd7ae5 302 WARN_ON_ONCE(!folio_test_locked(folio));
4101196b 303
6b24ca4a 304 folio->mapping = NULL;
51dcbdac 305 /* Leave folio->index set: truncation lookup relies on it */
4101196b 306
6b24ca4a 307 i++;
ef8e5717 308 xas_store(&xas, NULL);
6b24ca4a 309 total_pages += folio_nr_pages(folio);
aa65c29c
JK
310 }
311 mapping->nrpages -= total_pages;
312}
313
314void delete_from_page_cache_batch(struct address_space *mapping,
51dcbdac 315 struct folio_batch *fbatch)
aa65c29c
JK
316{
317 int i;
aa65c29c 318
51dcbdac 319 if (!folio_batch_count(fbatch))
aa65c29c
JK
320 return;
321
51b8c1fe 322 spin_lock(&mapping->host->i_lock);
30472509 323 xa_lock_irq(&mapping->i_pages);
51dcbdac
MWO
324 for (i = 0; i < folio_batch_count(fbatch); i++) {
325 struct folio *folio = fbatch->folios[i];
aa65c29c 326
a0580c6f
MWO
327 trace_mm_filemap_delete_from_page_cache(folio);
328 filemap_unaccount_folio(mapping, folio);
aa65c29c 329 }
51dcbdac 330 page_cache_delete_batch(mapping, fbatch);
30472509 331 xa_unlock_irq(&mapping->i_pages);
51b8c1fe
JW
332 if (mapping_shrinkable(mapping))
333 inode_add_lru(mapping->host);
334 spin_unlock(&mapping->host->i_lock);
aa65c29c 335
51dcbdac
MWO
336 for (i = 0; i < folio_batch_count(fbatch); i++)
337 filemap_free_folio(mapping, fbatch->folios[i]);
aa65c29c
JK
338}
339
d72d9e2a 340int filemap_check_errors(struct address_space *mapping)
865ffef3
DM
341{
342 int ret = 0;
343 /* Check for outstanding write errors */
7fcbbaf1
JA
344 if (test_bit(AS_ENOSPC, &mapping->flags) &&
345 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
865ffef3 346 ret = -ENOSPC;
7fcbbaf1
JA
347 if (test_bit(AS_EIO, &mapping->flags) &&
348 test_and_clear_bit(AS_EIO, &mapping->flags))
865ffef3
DM
349 ret = -EIO;
350 return ret;
351}
d72d9e2a 352EXPORT_SYMBOL(filemap_check_errors);
865ffef3 353
76341cab
JL
354static int filemap_check_and_keep_errors(struct address_space *mapping)
355{
356 /* Check for outstanding write errors */
357 if (test_bit(AS_EIO, &mapping->flags))
358 return -EIO;
359 if (test_bit(AS_ENOSPC, &mapping->flags))
360 return -ENOSPC;
361 return 0;
362}
363
5a798493
JB
364/**
365 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
366 * @mapping: address space structure to write
367 * @wbc: the writeback_control controlling the writeout
368 *
369 * Call writepages on the mapping using the provided wbc to control the
370 * writeout.
371 *
372 * Return: %0 on success, negative error code otherwise.
373 */
374int filemap_fdatawrite_wbc(struct address_space *mapping,
375 struct writeback_control *wbc)
376{
377 int ret;
378
379 if (!mapping_can_writeback(mapping) ||
380 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
381 return 0;
382
383 wbc_attach_fdatawrite_inode(wbc, mapping->host);
384 ret = do_writepages(mapping, wbc);
385 wbc_detach_inode(wbc);
386 return ret;
387}
388EXPORT_SYMBOL(filemap_fdatawrite_wbc);
389
1da177e4 390/**
485bb99b 391 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
392 * @mapping: address space structure to write
393 * @start: offset in bytes where the range starts
469eb4d0 394 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 395 * @sync_mode: enable synchronous operation
1da177e4 396 *
485bb99b
RD
397 * Start writeback against all of a mapping's dirty pages that lie
398 * within the byte offsets <start, end> inclusive.
399 *
1da177e4 400 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 401 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
402 * these two operations is that if a dirty page/buffer is encountered, it must
403 * be waited upon, and not just skipped over.
a862f68a
MR
404 *
405 * Return: %0 on success, negative error code otherwise.
1da177e4 406 */
ebcf28e1
AM
407int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
408 loff_t end, int sync_mode)
1da177e4 409{
1da177e4
LT
410 struct writeback_control wbc = {
411 .sync_mode = sync_mode,
05fe478d 412 .nr_to_write = LONG_MAX,
111ebb6e
OH
413 .range_start = start,
414 .range_end = end,
1da177e4
LT
415 };
416
5a798493 417 return filemap_fdatawrite_wbc(mapping, &wbc);
1da177e4
LT
418}
419
420static inline int __filemap_fdatawrite(struct address_space *mapping,
421 int sync_mode)
422{
111ebb6e 423 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
424}
425
426int filemap_fdatawrite(struct address_space *mapping)
427{
428 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
429}
430EXPORT_SYMBOL(filemap_fdatawrite);
431
f4c0a0fd 432int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 433 loff_t end)
1da177e4
LT
434{
435 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
436}
f4c0a0fd 437EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 438
485bb99b
RD
439/**
440 * filemap_flush - mostly a non-blocking flush
441 * @mapping: target address_space
442 *
1da177e4
LT
443 * This is a mostly non-blocking flush. Not suitable for data-integrity
444 * purposes - I/O may not be started against all dirty pages.
a862f68a
MR
445 *
446 * Return: %0 on success, negative error code otherwise.
1da177e4
LT
447 */
448int filemap_flush(struct address_space *mapping)
449{
450 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
451}
452EXPORT_SYMBOL(filemap_flush);
453
7fc9e472
GR
454/**
455 * filemap_range_has_page - check if a page exists in range.
456 * @mapping: address space within which to check
457 * @start_byte: offset in bytes where the range starts
458 * @end_byte: offset in bytes where the range ends (inclusive)
459 *
460 * Find at least one page in the range supplied, usually used to check if
461 * direct writing in this range will trigger a writeback.
a862f68a
MR
462 *
463 * Return: %true if at least one page exists in the specified range,
464 * %false otherwise.
7fc9e472
GR
465 */
466bool filemap_range_has_page(struct address_space *mapping,
467 loff_t start_byte, loff_t end_byte)
468{
f7b68046 469 struct page *page;
8fa8e538
MW
470 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
471 pgoff_t max = end_byte >> PAGE_SHIFT;
7fc9e472
GR
472
473 if (end_byte < start_byte)
474 return false;
475
8fa8e538
MW
476 rcu_read_lock();
477 for (;;) {
478 page = xas_find(&xas, max);
479 if (xas_retry(&xas, page))
480 continue;
481 /* Shadow entries don't count */
482 if (xa_is_value(page))
483 continue;
484 /*
485 * We don't need to try to pin this page; we're about to
486 * release the RCU lock anyway. It is enough to know that
487 * there was a page here recently.
488 */
489 break;
490 }
491 rcu_read_unlock();
7fc9e472 492
8fa8e538 493 return page != NULL;
7fc9e472
GR
494}
495EXPORT_SYMBOL(filemap_range_has_page);
496
5e8fcc1a 497static void __filemap_fdatawait_range(struct address_space *mapping,
aa750fd7 498 loff_t start_byte, loff_t end_byte)
1da177e4 499{
09cbfeaf
KS
500 pgoff_t index = start_byte >> PAGE_SHIFT;
501 pgoff_t end = end_byte >> PAGE_SHIFT;
1da177e4
LT
502 struct pagevec pvec;
503 int nr_pages;
1da177e4 504
94004ed7 505 if (end_byte < start_byte)
5e8fcc1a 506 return;
1da177e4 507
86679820 508 pagevec_init(&pvec);
312e9d2f 509 while (index <= end) {
1da177e4
LT
510 unsigned i;
511
312e9d2f 512 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
67fd707f 513 end, PAGECACHE_TAG_WRITEBACK);
312e9d2f
JK
514 if (!nr_pages)
515 break;
516
1da177e4
LT
517 for (i = 0; i < nr_pages; i++) {
518 struct page *page = pvec.pages[i];
519
1da177e4 520 wait_on_page_writeback(page);
5e8fcc1a 521 ClearPageError(page);
1da177e4
LT
522 }
523 pagevec_release(&pvec);
524 cond_resched();
525 }
aa750fd7
JN
526}
527
528/**
529 * filemap_fdatawait_range - wait for writeback to complete
530 * @mapping: address space structure to wait for
531 * @start_byte: offset in bytes where the range starts
532 * @end_byte: offset in bytes where the range ends (inclusive)
533 *
534 * Walk the list of under-writeback pages of the given address space
535 * in the given range and wait for all of them. Check error status of
536 * the address space and return it.
537 *
538 * Since the error status of the address space is cleared by this function,
539 * callers are responsible for checking the return value and handling and/or
540 * reporting the error.
a862f68a
MR
541 *
542 * Return: error status of the address space.
aa750fd7
JN
543 */
544int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
545 loff_t end_byte)
546{
5e8fcc1a
JL
547 __filemap_fdatawait_range(mapping, start_byte, end_byte);
548 return filemap_check_errors(mapping);
1da177e4 549}
d3bccb6f
JK
550EXPORT_SYMBOL(filemap_fdatawait_range);
551
aa0bfcd9
RZ
552/**
553 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
554 * @mapping: address space structure to wait for
555 * @start_byte: offset in bytes where the range starts
556 * @end_byte: offset in bytes where the range ends (inclusive)
557 *
558 * Walk the list of under-writeback pages of the given address space in the
559 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
560 * this function does not clear error status of the address space.
561 *
562 * Use this function if callers don't handle errors themselves. Expected
563 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
564 * fsfreeze(8)
565 */
566int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
567 loff_t start_byte, loff_t end_byte)
568{
569 __filemap_fdatawait_range(mapping, start_byte, end_byte);
570 return filemap_check_and_keep_errors(mapping);
571}
572EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
573
a823e458
JL
574/**
575 * file_fdatawait_range - wait for writeback to complete
576 * @file: file pointing to address space structure to wait for
577 * @start_byte: offset in bytes where the range starts
578 * @end_byte: offset in bytes where the range ends (inclusive)
579 *
580 * Walk the list of under-writeback pages of the address space that file
581 * refers to, in the given range and wait for all of them. Check error
582 * status of the address space vs. the file->f_wb_err cursor and return it.
583 *
584 * Since the error status of the file is advanced by this function,
585 * callers are responsible for checking the return value and handling and/or
586 * reporting the error.
a862f68a
MR
587 *
588 * Return: error status of the address space vs. the file->f_wb_err cursor.
a823e458
JL
589 */
590int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
591{
592 struct address_space *mapping = file->f_mapping;
593
594 __filemap_fdatawait_range(mapping, start_byte, end_byte);
595 return file_check_and_advance_wb_err(file);
596}
597EXPORT_SYMBOL(file_fdatawait_range);
d3bccb6f 598
aa750fd7
JN
599/**
600 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
601 * @mapping: address space structure to wait for
602 *
603 * Walk the list of under-writeback pages of the given address space
604 * and wait for all of them. Unlike filemap_fdatawait(), this function
605 * does not clear error status of the address space.
606 *
607 * Use this function if callers don't handle errors themselves. Expected
608 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
609 * fsfreeze(8)
a862f68a
MR
610 *
611 * Return: error status of the address space.
aa750fd7 612 */
76341cab 613int filemap_fdatawait_keep_errors(struct address_space *mapping)
aa750fd7 614{
ffb959bb 615 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
76341cab 616 return filemap_check_and_keep_errors(mapping);
aa750fd7 617}
76341cab 618EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
aa750fd7 619
875d91b1 620/* Returns true if writeback might be needed or already in progress. */
9326c9b2 621static bool mapping_needs_writeback(struct address_space *mapping)
1da177e4 622{
875d91b1 623 return mapping->nrpages;
1da177e4 624}
1da177e4 625
4bdcd1dd
JA
626bool filemap_range_has_writeback(struct address_space *mapping,
627 loff_t start_byte, loff_t end_byte)
f8ee8909
JA
628{
629 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
630 pgoff_t max = end_byte >> PAGE_SHIFT;
631 struct page *page;
632
633 if (end_byte < start_byte)
634 return false;
635
636 rcu_read_lock();
637 xas_for_each(&xas, page, max) {
638 if (xas_retry(&xas, page))
639 continue;
640 if (xa_is_value(page))
641 continue;
642 if (PageDirty(page) || PageLocked(page) || PageWriteback(page))
643 break;
644 }
645 rcu_read_unlock();
646 return page != NULL;
63135aa3 647}
4bdcd1dd 648EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
63135aa3 649
485bb99b
RD
650/**
651 * filemap_write_and_wait_range - write out & wait on a file range
652 * @mapping: the address_space for the pages
653 * @lstart: offset in bytes where the range starts
654 * @lend: offset in bytes where the range ends (inclusive)
655 *
469eb4d0
AM
656 * Write out and wait upon file offsets lstart->lend, inclusive.
657 *
0e056eb5 658 * Note that @lend is inclusive (describes the last byte to be written) so
469eb4d0 659 * that this function can be used to write to the very end-of-file (end = -1).
a862f68a
MR
660 *
661 * Return: error status of the address space.
469eb4d0 662 */
1da177e4
LT
663int filemap_write_and_wait_range(struct address_space *mapping,
664 loff_t lstart, loff_t lend)
665{
28fd1298 666 int err = 0;
1da177e4 667
9326c9b2 668 if (mapping_needs_writeback(mapping)) {
28fd1298
OH
669 err = __filemap_fdatawrite_range(mapping, lstart, lend,
670 WB_SYNC_ALL);
ddf8f376
IW
671 /*
672 * Even if the above returned error, the pages may be
673 * written partially (e.g. -ENOSPC), so we wait for it.
674 * But the -EIO is special case, it may indicate the worst
675 * thing (e.g. bug) happened, so we avoid waiting for it.
676 */
28fd1298 677 if (err != -EIO) {
94004ed7
CH
678 int err2 = filemap_fdatawait_range(mapping,
679 lstart, lend);
28fd1298
OH
680 if (!err)
681 err = err2;
cbeaf951
JL
682 } else {
683 /* Clear any previously stored errors */
684 filemap_check_errors(mapping);
28fd1298 685 }
865ffef3
DM
686 } else {
687 err = filemap_check_errors(mapping);
1da177e4 688 }
28fd1298 689 return err;
1da177e4 690}
f6995585 691EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 692
5660e13d
JL
693void __filemap_set_wb_err(struct address_space *mapping, int err)
694{
3acdfd28 695 errseq_t eseq = errseq_set(&mapping->wb_err, err);
5660e13d
JL
696
697 trace_filemap_set_wb_err(mapping, eseq);
698}
699EXPORT_SYMBOL(__filemap_set_wb_err);
700
701/**
702 * file_check_and_advance_wb_err - report wb error (if any) that was previously
703 * and advance wb_err to current one
704 * @file: struct file on which the error is being reported
705 *
706 * When userland calls fsync (or something like nfsd does the equivalent), we
707 * want to report any writeback errors that occurred since the last fsync (or
708 * since the file was opened if there haven't been any).
709 *
710 * Grab the wb_err from the mapping. If it matches what we have in the file,
711 * then just quickly return 0. The file is all caught up.
712 *
713 * If it doesn't match, then take the mapping value, set the "seen" flag in
714 * it and try to swap it into place. If it works, or another task beat us
715 * to it with the new value, then update the f_wb_err and return the error
716 * portion. The error at this point must be reported via proper channels
717 * (a'la fsync, or NFS COMMIT operation, etc.).
718 *
719 * While we handle mapping->wb_err with atomic operations, the f_wb_err
720 * value is protected by the f_lock since we must ensure that it reflects
721 * the latest value swapped in for this file descriptor.
a862f68a
MR
722 *
723 * Return: %0 on success, negative error code otherwise.
5660e13d
JL
724 */
725int file_check_and_advance_wb_err(struct file *file)
726{
727 int err = 0;
728 errseq_t old = READ_ONCE(file->f_wb_err);
729 struct address_space *mapping = file->f_mapping;
730
731 /* Locklessly handle the common case where nothing has changed */
732 if (errseq_check(&mapping->wb_err, old)) {
733 /* Something changed, must use slow path */
734 spin_lock(&file->f_lock);
735 old = file->f_wb_err;
736 err = errseq_check_and_advance(&mapping->wb_err,
737 &file->f_wb_err);
738 trace_file_check_and_advance_wb_err(file, old);
739 spin_unlock(&file->f_lock);
740 }
f4e222c5
JL
741
742 /*
743 * We're mostly using this function as a drop in replacement for
744 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
745 * that the legacy code would have had on these flags.
746 */
747 clear_bit(AS_EIO, &mapping->flags);
748 clear_bit(AS_ENOSPC, &mapping->flags);
5660e13d
JL
749 return err;
750}
751EXPORT_SYMBOL(file_check_and_advance_wb_err);
752
753/**
754 * file_write_and_wait_range - write out & wait on a file range
755 * @file: file pointing to address_space with pages
756 * @lstart: offset in bytes where the range starts
757 * @lend: offset in bytes where the range ends (inclusive)
758 *
759 * Write out and wait upon file offsets lstart->lend, inclusive.
760 *
761 * Note that @lend is inclusive (describes the last byte to be written) so
762 * that this function can be used to write to the very end-of-file (end = -1).
763 *
764 * After writing out and waiting on the data, we check and advance the
765 * f_wb_err cursor to the latest value, and return any errors detected there.
a862f68a
MR
766 *
767 * Return: %0 on success, negative error code otherwise.
5660e13d
JL
768 */
769int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
770{
771 int err = 0, err2;
772 struct address_space *mapping = file->f_mapping;
773
9326c9b2 774 if (mapping_needs_writeback(mapping)) {
5660e13d
JL
775 err = __filemap_fdatawrite_range(mapping, lstart, lend,
776 WB_SYNC_ALL);
777 /* See comment of filemap_write_and_wait() */
778 if (err != -EIO)
779 __filemap_fdatawait_range(mapping, lstart, lend);
780 }
781 err2 = file_check_and_advance_wb_err(file);
782 if (!err)
783 err = err2;
784 return err;
785}
786EXPORT_SYMBOL(file_write_and_wait_range);
787
ef6a3c63
MS
788/**
789 * replace_page_cache_page - replace a pagecache page with a new one
790 * @old: page to be replaced
791 * @new: page to replace with
ef6a3c63
MS
792 *
793 * This function replaces a page in the pagecache with a new one. On
794 * success it acquires the pagecache reference for the new page and
795 * drops it for the old page. Both the old and new pages must be
796 * locked. This function does not add the new page to the LRU, the
797 * caller must do that.
798 *
74d60958 799 * The remove + add is atomic. This function cannot fail.
ef6a3c63 800 */
1f7ef657 801void replace_page_cache_page(struct page *old, struct page *new)
ef6a3c63 802{
d21bba2b
MWO
803 struct folio *fold = page_folio(old);
804 struct folio *fnew = page_folio(new);
74d60958
MW
805 struct address_space *mapping = old->mapping;
806 void (*freepage)(struct page *) = mapping->a_ops->freepage;
807 pgoff_t offset = old->index;
808 XA_STATE(xas, &mapping->i_pages, offset);
ef6a3c63 809
309381fe
SL
810 VM_BUG_ON_PAGE(!PageLocked(old), old);
811 VM_BUG_ON_PAGE(!PageLocked(new), new);
812 VM_BUG_ON_PAGE(new->mapping, new);
ef6a3c63 813
74d60958
MW
814 get_page(new);
815 new->mapping = mapping;
816 new->index = offset;
ef6a3c63 817
d21bba2b 818 mem_cgroup_migrate(fold, fnew);
0d1c2072 819
30472509 820 xas_lock_irq(&xas);
74d60958 821 xas_store(&xas, new);
4165b9b4 822
74d60958
MW
823 old->mapping = NULL;
824 /* hugetlb pages do not participate in page cache accounting. */
825 if (!PageHuge(old))
0d1c2072 826 __dec_lruvec_page_state(old, NR_FILE_PAGES);
74d60958 827 if (!PageHuge(new))
0d1c2072 828 __inc_lruvec_page_state(new, NR_FILE_PAGES);
74d60958 829 if (PageSwapBacked(old))
0d1c2072 830 __dec_lruvec_page_state(old, NR_SHMEM);
74d60958 831 if (PageSwapBacked(new))
0d1c2072 832 __inc_lruvec_page_state(new, NR_SHMEM);
30472509 833 xas_unlock_irq(&xas);
74d60958
MW
834 if (freepage)
835 freepage(old);
836 put_page(old);
ef6a3c63
MS
837}
838EXPORT_SYMBOL_GPL(replace_page_cache_page);
839
9dd3d069
MWO
840noinline int __filemap_add_folio(struct address_space *mapping,
841 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
1da177e4 842{
9dd3d069
MWO
843 XA_STATE(xas, &mapping->i_pages, index);
844 int huge = folio_test_hugetlb(folio);
da74240e 845 bool charged = false;
d68eccad 846 long nr = 1;
e286781d 847
9dd3d069
MWO
848 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
849 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
74d60958 850 mapping_set_update(&xas, mapping);
e286781d 851
3fea5a49 852 if (!huge) {
d68eccad 853 int error = mem_cgroup_charge(folio, NULL, gfp);
9dd3d069 854 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
3fea5a49 855 if (error)
d68eccad 856 return error;
da74240e 857 charged = true;
d68eccad
MWO
858 xas_set_order(&xas, index, folio_order(folio));
859 nr = folio_nr_pages(folio);
3fea5a49
JW
860 }
861
198b62f8 862 gfp &= GFP_RECLAIM_MASK;
d68eccad
MWO
863 folio_ref_add(folio, nr);
864 folio->mapping = mapping;
865 folio->index = xas.xa_index;
198b62f8 866
74d60958 867 do {
198b62f8
MWO
868 unsigned int order = xa_get_order(xas.xa, xas.xa_index);
869 void *entry, *old = NULL;
870
9dd3d069 871 if (order > folio_order(folio))
198b62f8
MWO
872 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
873 order, gfp);
74d60958 874 xas_lock_irq(&xas);
198b62f8
MWO
875 xas_for_each_conflict(&xas, entry) {
876 old = entry;
877 if (!xa_is_value(entry)) {
878 xas_set_err(&xas, -EEXIST);
879 goto unlock;
880 }
881 }
882
883 if (old) {
884 if (shadowp)
885 *shadowp = old;
886 /* entry may have been split before we acquired lock */
887 order = xa_get_order(xas.xa, xas.xa_index);
9dd3d069 888 if (order > folio_order(folio)) {
d68eccad
MWO
889 /* How to handle large swap entries? */
890 BUG_ON(shmem_mapping(mapping));
198b62f8
MWO
891 xas_split(&xas, old, order);
892 xas_reset(&xas);
893 }
894 }
895
9dd3d069 896 xas_store(&xas, folio);
74d60958
MW
897 if (xas_error(&xas))
898 goto unlock;
899
d68eccad 900 mapping->nrpages += nr;
74d60958
MW
901
902 /* hugetlb pages do not participate in page cache accounting */
d68eccad
MWO
903 if (!huge) {
904 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
905 if (folio_test_pmd_mappable(folio))
906 __lruvec_stat_mod_folio(folio,
907 NR_FILE_THPS, nr);
908 }
74d60958
MW
909unlock:
910 xas_unlock_irq(&xas);
198b62f8 911 } while (xas_nomem(&xas, gfp));
74d60958 912
d68eccad 913 if (xas_error(&xas))
74d60958 914 goto error;
4165b9b4 915
a0580c6f 916 trace_mm_filemap_add_to_page_cache(folio);
66a0c8ee 917 return 0;
74d60958 918error:
d68eccad
MWO
919 if (charged)
920 mem_cgroup_uncharge(folio);
9dd3d069 921 folio->mapping = NULL;
66a0c8ee 922 /* Leave page->index set: truncation relies upon it */
d68eccad
MWO
923 folio_put_refs(folio, nr);
924 return xas_error(&xas);
1da177e4 925}
9dd3d069 926ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
a528910e
JW
927
928/**
929 * add_to_page_cache_locked - add a locked page to the pagecache
930 * @page: page to add
931 * @mapping: the page's address_space
932 * @offset: page index
933 * @gfp_mask: page allocation mode
934 *
935 * This function is used to add a page to the pagecache. It must be locked.
936 * This function does not add the page to the LRU. The caller must do that.
a862f68a
MR
937 *
938 * Return: %0 on success, negative error code otherwise.
a528910e
JW
939 */
940int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
941 pgoff_t offset, gfp_t gfp_mask)
942{
9dd3d069 943 return __filemap_add_folio(mapping, page_folio(page), offset,
a528910e
JW
944 gfp_mask, NULL);
945}
e286781d 946EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4 947
9dd3d069
MWO
948int filemap_add_folio(struct address_space *mapping, struct folio *folio,
949 pgoff_t index, gfp_t gfp)
1da177e4 950{
a528910e 951 void *shadow = NULL;
4f98a2fe
RR
952 int ret;
953
9dd3d069
MWO
954 __folio_set_locked(folio);
955 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
a528910e 956 if (unlikely(ret))
9dd3d069 957 __folio_clear_locked(folio);
a528910e
JW
958 else {
959 /*
9dd3d069 960 * The folio might have been evicted from cache only
a528910e 961 * recently, in which case it should be activated like
9dd3d069
MWO
962 * any other repeatedly accessed folio.
963 * The exception is folios getting rewritten; evicting other
f0281a00
RR
964 * data from the working set, only to cache data that will
965 * get overwritten with something else, is a waste of memory.
a528910e 966 */
9dd3d069
MWO
967 WARN_ON_ONCE(folio_test_active(folio));
968 if (!(gfp & __GFP_WRITE) && shadow)
969 workingset_refault(folio, shadow);
970 folio_add_lru(folio);
a528910e 971 }
1da177e4
LT
972 return ret;
973}
9dd3d069 974EXPORT_SYMBOL_GPL(filemap_add_folio);
1da177e4 975
44110fe3 976#ifdef CONFIG_NUMA
bb3c579e 977struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
44110fe3 978{
c0ff7453 979 int n;
bb3c579e 980 struct folio *folio;
c0ff7453 981
44110fe3 982 if (cpuset_do_page_mem_spread()) {
cc9a6c87
MG
983 unsigned int cpuset_mems_cookie;
984 do {
d26914d1 985 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 986 n = cpuset_mem_spread_node();
bb3c579e
MWO
987 folio = __folio_alloc_node(gfp, order, n);
988 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
cc9a6c87 989
bb3c579e 990 return folio;
44110fe3 991 }
bb3c579e 992 return folio_alloc(gfp, order);
44110fe3 993}
bb3c579e 994EXPORT_SYMBOL(filemap_alloc_folio);
44110fe3
PJ
995#endif
996
7506ae6a
JK
997/*
998 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
999 *
1000 * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
1001 *
1002 * @mapping1: the first mapping to lock
1003 * @mapping2: the second mapping to lock
1004 */
1005void filemap_invalidate_lock_two(struct address_space *mapping1,
1006 struct address_space *mapping2)
1007{
1008 if (mapping1 > mapping2)
1009 swap(mapping1, mapping2);
1010 if (mapping1)
1011 down_write(&mapping1->invalidate_lock);
1012 if (mapping2 && mapping1 != mapping2)
1013 down_write_nested(&mapping2->invalidate_lock, 1);
1014}
1015EXPORT_SYMBOL(filemap_invalidate_lock_two);
1016
1017/*
1018 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1019 *
1020 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1021 *
1022 * @mapping1: the first mapping to unlock
1023 * @mapping2: the second mapping to unlock
1024 */
1025void filemap_invalidate_unlock_two(struct address_space *mapping1,
1026 struct address_space *mapping2)
1027{
1028 if (mapping1)
1029 up_write(&mapping1->invalidate_lock);
1030 if (mapping2 && mapping1 != mapping2)
1031 up_write(&mapping2->invalidate_lock);
1032}
1033EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1034
1da177e4
LT
1035/*
1036 * In order to wait for pages to become available there must be
1037 * waitqueues associated with pages. By using a hash table of
1038 * waitqueues where the bucket discipline is to maintain all
1039 * waiters on the same queue and wake all when any of the pages
1040 * become available, and for the woken contexts to check to be
1041 * sure the appropriate page became available, this saves space
1042 * at a cost of "thundering herd" phenomena during rare hash
1043 * collisions.
1044 */
62906027
NP
1045#define PAGE_WAIT_TABLE_BITS 8
1046#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
df4d4f12 1047static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
62906027 1048
df4d4f12 1049static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1da177e4 1050{
df4d4f12 1051 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1da177e4 1052}
1da177e4 1053
62906027 1054void __init pagecache_init(void)
1da177e4 1055{
62906027 1056 int i;
1da177e4 1057
62906027 1058 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
df4d4f12 1059 init_waitqueue_head(&folio_wait_table[i]);
62906027
NP
1060
1061 page_writeback_init();
56a8c8eb
HD
1062
1063 /*
1064 * tmpfs uses the ZERO_PAGE for reading holes: it is up-to-date,
1065 * and splice's page_cache_pipe_buf_confirm() needs to see that.
1066 */
1067 SetPageUptodate(ZERO_PAGE(0));
1da177e4 1068}
1da177e4 1069
5ef64cc8
LT
1070/*
1071 * The page wait code treats the "wait->flags" somewhat unusually, because
5868ec26 1072 * we have multiple different kinds of waits, not just the usual "exclusive"
5ef64cc8
LT
1073 * one.
1074 *
1075 * We have:
1076 *
1077 * (a) no special bits set:
1078 *
1079 * We're just waiting for the bit to be released, and when a waker
1080 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1081 * and remove it from the wait queue.
1082 *
1083 * Simple and straightforward.
1084 *
1085 * (b) WQ_FLAG_EXCLUSIVE:
1086 *
1087 * The waiter is waiting to get the lock, and only one waiter should
1088 * be woken up to avoid any thundering herd behavior. We'll set the
1089 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1090 *
1091 * This is the traditional exclusive wait.
1092 *
5868ec26 1093 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
5ef64cc8
LT
1094 *
1095 * The waiter is waiting to get the bit, and additionally wants the
1096 * lock to be transferred to it for fair lock behavior. If the lock
1097 * cannot be taken, we stop walking the wait queue without waking
1098 * the waiter.
1099 *
1100 * This is the "fair lock handoff" case, and in addition to setting
1101 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1102 * that it now has the lock.
1103 */
ac6424b9 1104static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
f62e00cc 1105{
5ef64cc8 1106 unsigned int flags;
62906027
NP
1107 struct wait_page_key *key = arg;
1108 struct wait_page_queue *wait_page
1109 = container_of(wait, struct wait_page_queue, wait);
1110
cdc8fcb4 1111 if (!wake_page_match(wait_page, key))
62906027 1112 return 0;
3510ca20 1113
9a1ea439 1114 /*
5ef64cc8
LT
1115 * If it's a lock handoff wait, we get the bit for it, and
1116 * stop walking (and do not wake it up) if we can't.
9a1ea439 1117 */
5ef64cc8
LT
1118 flags = wait->flags;
1119 if (flags & WQ_FLAG_EXCLUSIVE) {
df4d4f12 1120 if (test_bit(key->bit_nr, &key->folio->flags))
2a9127fc 1121 return -1;
5ef64cc8 1122 if (flags & WQ_FLAG_CUSTOM) {
df4d4f12 1123 if (test_and_set_bit(key->bit_nr, &key->folio->flags))
5ef64cc8
LT
1124 return -1;
1125 flags |= WQ_FLAG_DONE;
1126 }
2a9127fc 1127 }
f62e00cc 1128
5ef64cc8
LT
1129 /*
1130 * We are holding the wait-queue lock, but the waiter that
1131 * is waiting for this will be checking the flags without
1132 * any locking.
1133 *
1134 * So update the flags atomically, and wake up the waiter
1135 * afterwards to avoid any races. This store-release pairs
101c0bf6 1136 * with the load-acquire in folio_wait_bit_common().
5ef64cc8
LT
1137 */
1138 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
2a9127fc
LT
1139 wake_up_state(wait->private, mode);
1140
1141 /*
1142 * Ok, we have successfully done what we're waiting for,
1143 * and we can unconditionally remove the wait entry.
1144 *
5ef64cc8
LT
1145 * Note that this pairs with the "finish_wait()" in the
1146 * waiter, and has to be the absolute last thing we do.
1147 * After this list_del_init(&wait->entry) the wait entry
2a9127fc
LT
1148 * might be de-allocated and the process might even have
1149 * exited.
2a9127fc 1150 */
c6fe44d9 1151 list_del_init_careful(&wait->entry);
5ef64cc8 1152 return (flags & WQ_FLAG_EXCLUSIVE) != 0;
f62e00cc
KM
1153}
1154
6974d7c9 1155static void folio_wake_bit(struct folio *folio, int bit_nr)
cbbce822 1156{
df4d4f12 1157 wait_queue_head_t *q = folio_waitqueue(folio);
62906027
NP
1158 struct wait_page_key key;
1159 unsigned long flags;
11a19c7b 1160 wait_queue_entry_t bookmark;
cbbce822 1161
df4d4f12 1162 key.folio = folio;
62906027
NP
1163 key.bit_nr = bit_nr;
1164 key.page_match = 0;
1165
11a19c7b
TC
1166 bookmark.flags = 0;
1167 bookmark.private = NULL;
1168 bookmark.func = NULL;
1169 INIT_LIST_HEAD(&bookmark.entry);
1170
62906027 1171 spin_lock_irqsave(&q->lock, flags);
11a19c7b
TC
1172 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1173
1174 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1175 /*
1176 * Take a breather from holding the lock,
1177 * allow pages that finish wake up asynchronously
1178 * to acquire the lock and remove themselves
1179 * from wait queue
1180 */
1181 spin_unlock_irqrestore(&q->lock, flags);
1182 cpu_relax();
1183 spin_lock_irqsave(&q->lock, flags);
1184 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1185 }
1186
62906027 1187 /*
bb43b14b
HD
1188 * It's possible to miss clearing waiters here, when we woke our page
1189 * waiters, but the hashed waitqueue has waiters for other pages on it.
1190 * That's okay, it's a rare case. The next waker will clear it.
62906027 1191 *
bb43b14b
HD
1192 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1193 * other), the flag may be cleared in the course of freeing the page;
1194 * but that is not required for correctness.
62906027 1195 */
bb43b14b 1196 if (!waitqueue_active(q) || !key.page_match)
6974d7c9 1197 folio_clear_waiters(folio);
bb43b14b 1198
62906027
NP
1199 spin_unlock_irqrestore(&q->lock, flags);
1200}
74d81bfa 1201
4268b480 1202static void folio_wake(struct folio *folio, int bit)
74d81bfa 1203{
4268b480 1204 if (!folio_test_waiters(folio))
74d81bfa 1205 return;
6974d7c9 1206 folio_wake_bit(folio, bit);
74d81bfa 1207}
62906027 1208
9a1ea439 1209/*
101c0bf6 1210 * A choice of three behaviors for folio_wait_bit_common():
9a1ea439
HD
1211 */
1212enum behavior {
1213 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
7c23c782 1214 * __folio_lock() waiting on then setting PG_locked.
9a1ea439
HD
1215 */
1216 SHARED, /* Hold ref to page and check the bit when woken, like
9f2b04a2 1217 * folio_wait_writeback() waiting on PG_writeback.
9a1ea439
HD
1218 */
1219 DROP, /* Drop ref to page before wait, no check when woken,
9f2b04a2 1220 * like folio_put_wait_locked() on PG_locked.
9a1ea439
HD
1221 */
1222};
1223
2a9127fc 1224/*
101c0bf6 1225 * Attempt to check (or get) the folio flag, and mark us done
5ef64cc8 1226 * if successful.
2a9127fc 1227 */
101c0bf6 1228static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
2a9127fc
LT
1229 struct wait_queue_entry *wait)
1230{
1231 if (wait->flags & WQ_FLAG_EXCLUSIVE) {
101c0bf6 1232 if (test_and_set_bit(bit_nr, &folio->flags))
2a9127fc 1233 return false;
101c0bf6 1234 } else if (test_bit(bit_nr, &folio->flags))
2a9127fc
LT
1235 return false;
1236
5ef64cc8 1237 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
2a9127fc
LT
1238 return true;
1239}
1240
5ef64cc8
LT
1241/* How many times do we accept lock stealing from under a waiter? */
1242int sysctl_page_lock_unfairness = 5;
1243
101c0bf6
MWO
1244static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1245 int state, enum behavior behavior)
62906027 1246{
df4d4f12 1247 wait_queue_head_t *q = folio_waitqueue(folio);
5ef64cc8 1248 int unfairness = sysctl_page_lock_unfairness;
62906027 1249 struct wait_page_queue wait_page;
ac6424b9 1250 wait_queue_entry_t *wait = &wait_page.wait;
b1d29ba8 1251 bool thrashing = false;
9a1ea439 1252 bool delayacct = false;
eb414681 1253 unsigned long pflags;
62906027 1254
eb414681 1255 if (bit_nr == PG_locked &&
101c0bf6
MWO
1256 !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1257 if (!folio_test_swapbacked(folio)) {
eb414681 1258 delayacct_thrashing_start();
9a1ea439
HD
1259 delayacct = true;
1260 }
eb414681 1261 psi_memstall_enter(&pflags);
b1d29ba8
JW
1262 thrashing = true;
1263 }
1264
62906027
NP
1265 init_wait(wait);
1266 wait->func = wake_page_function;
df4d4f12 1267 wait_page.folio = folio;
62906027
NP
1268 wait_page.bit_nr = bit_nr;
1269
5ef64cc8
LT
1270repeat:
1271 wait->flags = 0;
1272 if (behavior == EXCLUSIVE) {
1273 wait->flags = WQ_FLAG_EXCLUSIVE;
1274 if (--unfairness < 0)
1275 wait->flags |= WQ_FLAG_CUSTOM;
1276 }
1277
2a9127fc
LT
1278 /*
1279 * Do one last check whether we can get the
1280 * page bit synchronously.
1281 *
101c0bf6 1282 * Do the folio_set_waiters() marking before that
2a9127fc
LT
1283 * to let any waker we _just_ missed know they
1284 * need to wake us up (otherwise they'll never
1285 * even go to the slow case that looks at the
1286 * page queue), and add ourselves to the wait
1287 * queue if we need to sleep.
1288 *
1289 * This part needs to be done under the queue
1290 * lock to avoid races.
1291 */
1292 spin_lock_irq(&q->lock);
101c0bf6
MWO
1293 folio_set_waiters(folio);
1294 if (!folio_trylock_flag(folio, bit_nr, wait))
2a9127fc
LT
1295 __add_wait_queue_entry_tail(q, wait);
1296 spin_unlock_irq(&q->lock);
62906027 1297
2a9127fc
LT
1298 /*
1299 * From now on, all the logic will be based on
5ef64cc8
LT
1300 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1301 * see whether the page bit testing has already
1302 * been done by the wake function.
2a9127fc 1303 *
101c0bf6 1304 * We can drop our reference to the folio.
2a9127fc
LT
1305 */
1306 if (behavior == DROP)
101c0bf6 1307 folio_put(folio);
62906027 1308
5ef64cc8
LT
1309 /*
1310 * Note that until the "finish_wait()", or until
1311 * we see the WQ_FLAG_WOKEN flag, we need to
1312 * be very careful with the 'wait->flags', because
1313 * we may race with a waker that sets them.
1314 */
2a9127fc 1315 for (;;) {
5ef64cc8
LT
1316 unsigned int flags;
1317
62906027
NP
1318 set_current_state(state);
1319
5ef64cc8
LT
1320 /* Loop until we've been woken or interrupted */
1321 flags = smp_load_acquire(&wait->flags);
1322 if (!(flags & WQ_FLAG_WOKEN)) {
1323 if (signal_pending_state(state, current))
1324 break;
1325
1326 io_schedule();
1327 continue;
1328 }
1329
1330 /* If we were non-exclusive, we're done */
1331 if (behavior != EXCLUSIVE)
a8b169af 1332 break;
9a1ea439 1333
5ef64cc8
LT
1334 /* If the waker got the lock for us, we're done */
1335 if (flags & WQ_FLAG_DONE)
9a1ea439 1336 break;
2a9127fc 1337
5ef64cc8
LT
1338 /*
1339 * Otherwise, if we're getting the lock, we need to
1340 * try to get it ourselves.
1341 *
1342 * And if that fails, we'll have to retry this all.
1343 */
101c0bf6 1344 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
5ef64cc8
LT
1345 goto repeat;
1346
1347 wait->flags |= WQ_FLAG_DONE;
1348 break;
62906027
NP
1349 }
1350
5ef64cc8
LT
1351 /*
1352 * If a signal happened, this 'finish_wait()' may remove the last
101c0bf6 1353 * waiter from the wait-queues, but the folio waiters bit will remain
5ef64cc8
LT
1354 * set. That's ok. The next wakeup will take care of it, and trying
1355 * to do it here would be difficult and prone to races.
1356 */
62906027
NP
1357 finish_wait(q, wait);
1358
eb414681 1359 if (thrashing) {
9a1ea439 1360 if (delayacct)
eb414681
JW
1361 delayacct_thrashing_end();
1362 psi_memstall_leave(&pflags);
1363 }
b1d29ba8 1364
62906027 1365 /*
5ef64cc8
LT
1366 * NOTE! The wait->flags weren't stable until we've done the
1367 * 'finish_wait()', and we could have exited the loop above due
1368 * to a signal, and had a wakeup event happen after the signal
1369 * test but before the 'finish_wait()'.
1370 *
1371 * So only after the finish_wait() can we reliably determine
1372 * if we got woken up or not, so we can now figure out the final
1373 * return value based on that state without races.
1374 *
1375 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1376 * waiter, but an exclusive one requires WQ_FLAG_DONE.
62906027 1377 */
5ef64cc8
LT
1378 if (behavior == EXCLUSIVE)
1379 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
62906027 1380
2a9127fc 1381 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
62906027
NP
1382}
1383
ffa65753
AP
1384#ifdef CONFIG_MIGRATION
1385/**
1386 * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1387 * @entry: migration swap entry.
1388 * @ptep: mapped pte pointer. Will return with the ptep unmapped. Only required
1389 * for pte entries, pass NULL for pmd entries.
1390 * @ptl: already locked ptl. This function will drop the lock.
1391 *
1392 * Wait for a migration entry referencing the given page to be removed. This is
1393 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except
1394 * this can be called without taking a reference on the page. Instead this
1395 * should be called while holding the ptl for the migration entry referencing
1396 * the page.
1397 *
1398 * Returns after unmapping and unlocking the pte/ptl with pte_unmap_unlock().
1399 *
1400 * This follows the same logic as folio_wait_bit_common() so see the comments
1401 * there.
1402 */
1403void migration_entry_wait_on_locked(swp_entry_t entry, pte_t *ptep,
1404 spinlock_t *ptl)
1405{
1406 struct wait_page_queue wait_page;
1407 wait_queue_entry_t *wait = &wait_page.wait;
1408 bool thrashing = false;
1409 bool delayacct = false;
1410 unsigned long pflags;
1411 wait_queue_head_t *q;
1412 struct folio *folio = page_folio(pfn_swap_entry_to_page(entry));
1413
1414 q = folio_waitqueue(folio);
1415 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1416 if (!folio_test_swapbacked(folio)) {
1417 delayacct_thrashing_start();
1418 delayacct = true;
1419 }
1420 psi_memstall_enter(&pflags);
1421 thrashing = true;
1422 }
1423
1424 init_wait(wait);
1425 wait->func = wake_page_function;
1426 wait_page.folio = folio;
1427 wait_page.bit_nr = PG_locked;
1428 wait->flags = 0;
1429
1430 spin_lock_irq(&q->lock);
1431 folio_set_waiters(folio);
1432 if (!folio_trylock_flag(folio, PG_locked, wait))
1433 __add_wait_queue_entry_tail(q, wait);
1434 spin_unlock_irq(&q->lock);
1435
1436 /*
1437 * If a migration entry exists for the page the migration path must hold
1438 * a valid reference to the page, and it must take the ptl to remove the
1439 * migration entry. So the page is valid until the ptl is dropped.
1440 */
1441 if (ptep)
1442 pte_unmap_unlock(ptep, ptl);
1443 else
1444 spin_unlock(ptl);
1445
1446 for (;;) {
1447 unsigned int flags;
1448
1449 set_current_state(TASK_UNINTERRUPTIBLE);
1450
1451 /* Loop until we've been woken or interrupted */
1452 flags = smp_load_acquire(&wait->flags);
1453 if (!(flags & WQ_FLAG_WOKEN)) {
1454 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1455 break;
1456
1457 io_schedule();
1458 continue;
1459 }
1460 break;
1461 }
1462
1463 finish_wait(q, wait);
1464
1465 if (thrashing) {
1466 if (delayacct)
1467 delayacct_thrashing_end();
1468 psi_memstall_leave(&pflags);
1469 }
1470}
1471#endif
1472
101c0bf6 1473void folio_wait_bit(struct folio *folio, int bit_nr)
62906027 1474{
101c0bf6 1475 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
62906027 1476}
101c0bf6 1477EXPORT_SYMBOL(folio_wait_bit);
62906027 1478
101c0bf6 1479int folio_wait_bit_killable(struct folio *folio, int bit_nr)
62906027 1480{
101c0bf6 1481 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
cbbce822 1482}
101c0bf6 1483EXPORT_SYMBOL(folio_wait_bit_killable);
cbbce822 1484
9a1ea439 1485/**
9f2b04a2
MWO
1486 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1487 * @folio: The folio to wait for.
48054625 1488 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
9a1ea439 1489 *
9f2b04a2 1490 * The caller should hold a reference on @folio. They expect the page to
9a1ea439 1491 * become unlocked relatively soon, but do not wish to hold up migration
9f2b04a2 1492 * (for example) by holding the reference while waiting for the folio to
9a1ea439 1493 * come unlocked. After this function returns, the caller should not
9f2b04a2 1494 * dereference @folio.
48054625 1495 *
9f2b04a2 1496 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
9a1ea439 1497 */
9f2b04a2 1498int folio_put_wait_locked(struct folio *folio, int state)
9a1ea439 1499{
9f2b04a2 1500 return folio_wait_bit_common(folio, PG_locked, state, DROP);
9a1ea439
HD
1501}
1502
385e1ca5 1503/**
df4d4f12
MWO
1504 * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1505 * @folio: Folio defining the wait queue of interest
697f619f 1506 * @waiter: Waiter to add to the queue
385e1ca5 1507 *
df4d4f12 1508 * Add an arbitrary @waiter to the wait queue for the nominated @folio.
385e1ca5 1509 */
df4d4f12 1510void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
385e1ca5 1511{
df4d4f12 1512 wait_queue_head_t *q = folio_waitqueue(folio);
385e1ca5
DH
1513 unsigned long flags;
1514
1515 spin_lock_irqsave(&q->lock, flags);
9c3a815f 1516 __add_wait_queue_entry_tail(q, waiter);
df4d4f12 1517 folio_set_waiters(folio);
385e1ca5
DH
1518 spin_unlock_irqrestore(&q->lock, flags);
1519}
df4d4f12 1520EXPORT_SYMBOL_GPL(folio_add_wait_queue);
385e1ca5 1521
b91e1302
LT
1522#ifndef clear_bit_unlock_is_negative_byte
1523
1524/*
1525 * PG_waiters is the high bit in the same byte as PG_lock.
1526 *
1527 * On x86 (and on many other architectures), we can clear PG_lock and
1528 * test the sign bit at the same time. But if the architecture does
1529 * not support that special operation, we just do this all by hand
1530 * instead.
1531 *
1532 * The read of PG_waiters has to be after (or concurrently with) PG_locked
ffceeb62 1533 * being cleared, but a memory barrier should be unnecessary since it is
b91e1302
LT
1534 * in the same byte as PG_locked.
1535 */
1536static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1537{
1538 clear_bit_unlock(nr, mem);
1539 /* smp_mb__after_atomic(); */
98473f9f 1540 return test_bit(PG_waiters, mem);
b91e1302
LT
1541}
1542
1543#endif
1544
1da177e4 1545/**
4e136428
MWO
1546 * folio_unlock - Unlock a locked folio.
1547 * @folio: The folio.
1548 *
1549 * Unlocks the folio and wakes up any thread sleeping on the page lock.
1550 *
1551 * Context: May be called from interrupt or process context. May not be
1552 * called from NMI context.
1da177e4 1553 */
4e136428 1554void folio_unlock(struct folio *folio)
1da177e4 1555{
4e136428 1556 /* Bit 7 allows x86 to check the byte's sign bit */
b91e1302 1557 BUILD_BUG_ON(PG_waiters != 7);
4e136428
MWO
1558 BUILD_BUG_ON(PG_locked > 7);
1559 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1560 if (clear_bit_unlock_is_negative_byte(PG_locked, folio_flags(folio, 0)))
6974d7c9 1561 folio_wake_bit(folio, PG_locked);
1da177e4 1562}
4e136428 1563EXPORT_SYMBOL(folio_unlock);
1da177e4 1564
73e10ded 1565/**
b47393f8
MWO
1566 * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1567 * @folio: The folio.
73e10ded 1568 *
b47393f8
MWO
1569 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1570 * it. The folio reference held for PG_private_2 being set is released.
73e10ded 1571 *
b47393f8
MWO
1572 * This is, for example, used when a netfs folio is being written to a local
1573 * disk cache, thereby allowing writes to the cache for the same folio to be
73e10ded
DH
1574 * serialised.
1575 */
b47393f8 1576void folio_end_private_2(struct folio *folio)
73e10ded 1577{
6974d7c9
MWO
1578 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1579 clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1580 folio_wake_bit(folio, PG_private_2);
1581 folio_put(folio);
73e10ded 1582}
b47393f8 1583EXPORT_SYMBOL(folio_end_private_2);
73e10ded
DH
1584
1585/**
b47393f8
MWO
1586 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1587 * @folio: The folio to wait on.
73e10ded 1588 *
b47393f8 1589 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio.
73e10ded 1590 */
b47393f8 1591void folio_wait_private_2(struct folio *folio)
73e10ded 1592{
101c0bf6
MWO
1593 while (folio_test_private_2(folio))
1594 folio_wait_bit(folio, PG_private_2);
73e10ded 1595}
b47393f8 1596EXPORT_SYMBOL(folio_wait_private_2);
73e10ded
DH
1597
1598/**
b47393f8
MWO
1599 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1600 * @folio: The folio to wait on.
73e10ded 1601 *
b47393f8 1602 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a
73e10ded
DH
1603 * fatal signal is received by the calling task.
1604 *
1605 * Return:
1606 * - 0 if successful.
1607 * - -EINTR if a fatal signal was encountered.
1608 */
b47393f8 1609int folio_wait_private_2_killable(struct folio *folio)
73e10ded
DH
1610{
1611 int ret = 0;
1612
101c0bf6
MWO
1613 while (folio_test_private_2(folio)) {
1614 ret = folio_wait_bit_killable(folio, PG_private_2);
73e10ded
DH
1615 if (ret < 0)
1616 break;
1617 }
1618
1619 return ret;
1620}
b47393f8 1621EXPORT_SYMBOL(folio_wait_private_2_killable);
73e10ded 1622
485bb99b 1623/**
4268b480
MWO
1624 * folio_end_writeback - End writeback against a folio.
1625 * @folio: The folio.
1da177e4 1626 */
4268b480 1627void folio_end_writeback(struct folio *folio)
1da177e4 1628{
888cf2db 1629 /*
4268b480
MWO
1630 * folio_test_clear_reclaim() could be used here but it is an
1631 * atomic operation and overkill in this particular case. Failing
1632 * to shuffle a folio marked for immediate reclaim is too mild
1633 * a gain to justify taking an atomic operation penalty at the
1634 * end of every folio writeback.
888cf2db 1635 */
4268b480
MWO
1636 if (folio_test_reclaim(folio)) {
1637 folio_clear_reclaim(folio);
575ced1c 1638 folio_rotate_reclaimable(folio);
888cf2db 1639 }
ac6aadb2 1640
073861ed 1641 /*
4268b480 1642 * Writeback does not hold a folio reference of its own, relying
073861ed 1643 * on truncation to wait for the clearing of PG_writeback.
4268b480
MWO
1644 * But here we must make sure that the folio is not freed and
1645 * reused before the folio_wake().
073861ed 1646 */
4268b480 1647 folio_get(folio);
269ccca3 1648 if (!__folio_end_writeback(folio))
ac6aadb2
MS
1649 BUG();
1650
4e857c58 1651 smp_mb__after_atomic();
4268b480 1652 folio_wake(folio, PG_writeback);
512b7931 1653 acct_reclaim_writeback(folio);
4268b480 1654 folio_put(folio);
1da177e4 1655}
4268b480 1656EXPORT_SYMBOL(folio_end_writeback);
1da177e4 1657
57d99845
MW
1658/*
1659 * After completing I/O on a page, call this routine to update the page
1660 * flags appropriately
1661 */
c11f0c0b 1662void page_endio(struct page *page, bool is_write, int err)
57d99845 1663{
c11f0c0b 1664 if (!is_write) {
57d99845
MW
1665 if (!err) {
1666 SetPageUptodate(page);
1667 } else {
1668 ClearPageUptodate(page);
1669 SetPageError(page);
1670 }
1671 unlock_page(page);
abf54548 1672 } else {
57d99845 1673 if (err) {
dd8416c4
MK
1674 struct address_space *mapping;
1675
57d99845 1676 SetPageError(page);
dd8416c4
MK
1677 mapping = page_mapping(page);
1678 if (mapping)
1679 mapping_set_error(mapping, err);
57d99845
MW
1680 }
1681 end_page_writeback(page);
1682 }
1683}
1684EXPORT_SYMBOL_GPL(page_endio);
1685
485bb99b 1686/**
7c23c782
MWO
1687 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1688 * @folio: The folio to lock
1da177e4 1689 */
7c23c782 1690void __folio_lock(struct folio *folio)
1da177e4 1691{
101c0bf6 1692 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
9a1ea439 1693 EXCLUSIVE);
1da177e4 1694}
7c23c782 1695EXPORT_SYMBOL(__folio_lock);
1da177e4 1696
af7f29d9 1697int __folio_lock_killable(struct folio *folio)
2687a356 1698{
101c0bf6 1699 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
9a1ea439 1700 EXCLUSIVE);
2687a356 1701}
af7f29d9 1702EXPORT_SYMBOL_GPL(__folio_lock_killable);
2687a356 1703
ffdc8dab 1704static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
dd3e6d50 1705{
df4d4f12 1706 struct wait_queue_head *q = folio_waitqueue(folio);
f32b5dd7
MWO
1707 int ret = 0;
1708
df4d4f12 1709 wait->folio = folio;
f32b5dd7
MWO
1710 wait->bit_nr = PG_locked;
1711
1712 spin_lock_irq(&q->lock);
1713 __add_wait_queue_entry_tail(q, &wait->wait);
ffdc8dab
MWO
1714 folio_set_waiters(folio);
1715 ret = !folio_trylock(folio);
f32b5dd7
MWO
1716 /*
1717 * If we were successful now, we know we're still on the
1718 * waitqueue as we're still under the lock. This means it's
1719 * safe to remove and return success, we know the callback
1720 * isn't going to trigger.
1721 */
1722 if (!ret)
1723 __remove_wait_queue(q, &wait->wait);
1724 else
1725 ret = -EIOCBQUEUED;
1726 spin_unlock_irq(&q->lock);
1727 return ret;
dd3e6d50
JA
1728}
1729
9a95f3cf
PC
1730/*
1731 * Return values:
9138e47e
MWO
1732 * true - folio is locked; mmap_lock is still held.
1733 * false - folio is not locked.
3e4e28c5 1734 * mmap_lock has been released (mmap_read_unlock(), unless flags had both
9a95f3cf 1735 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
c1e8d7c6 1736 * which case mmap_lock is still held.
9a95f3cf 1737 *
9138e47e
MWO
1738 * If neither ALLOW_RETRY nor KILLABLE are set, will always return true
1739 * with the folio locked and the mmap_lock unperturbed.
9a95f3cf 1740 */
9138e47e 1741bool __folio_lock_or_retry(struct folio *folio, struct mm_struct *mm,
d065bd81
ML
1742 unsigned int flags)
1743{
4064b982 1744 if (fault_flag_allow_retry_first(flags)) {
37b23e05 1745 /*
c1e8d7c6 1746 * CAUTION! In this case, mmap_lock is not released
37b23e05
KM
1747 * even though return 0.
1748 */
1749 if (flags & FAULT_FLAG_RETRY_NOWAIT)
9138e47e 1750 return false;
37b23e05 1751
d8ed45c5 1752 mmap_read_unlock(mm);
37b23e05 1753 if (flags & FAULT_FLAG_KILLABLE)
6baa8d60 1754 folio_wait_locked_killable(folio);
37b23e05 1755 else
6baa8d60 1756 folio_wait_locked(folio);
9138e47e 1757 return false;
800bca7c
HL
1758 }
1759 if (flags & FAULT_FLAG_KILLABLE) {
9138e47e 1760 bool ret;
37b23e05 1761
af7f29d9 1762 ret = __folio_lock_killable(folio);
800bca7c
HL
1763 if (ret) {
1764 mmap_read_unlock(mm);
9138e47e 1765 return false;
800bca7c
HL
1766 }
1767 } else {
af7f29d9 1768 __folio_lock(folio);
d065bd81 1769 }
800bca7c 1770
9138e47e 1771 return true;
d065bd81
ML
1772}
1773
e7b563bb 1774/**
0d3f9296
MW
1775 * page_cache_next_miss() - Find the next gap in the page cache.
1776 * @mapping: Mapping.
1777 * @index: Index.
1778 * @max_scan: Maximum range to search.
e7b563bb 1779 *
0d3f9296
MW
1780 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1781 * gap with the lowest index.
e7b563bb 1782 *
0d3f9296
MW
1783 * This function may be called under the rcu_read_lock. However, this will
1784 * not atomically search a snapshot of the cache at a single point in time.
1785 * For example, if a gap is created at index 5, then subsequently a gap is
1786 * created at index 10, page_cache_next_miss covering both indices may
1787 * return 10 if called under the rcu_read_lock.
e7b563bb 1788 *
0d3f9296
MW
1789 * Return: The index of the gap if found, otherwise an index outside the
1790 * range specified (in which case 'return - index >= max_scan' will be true).
1791 * In the rare case of index wrap-around, 0 will be returned.
e7b563bb 1792 */
0d3f9296 1793pgoff_t page_cache_next_miss(struct address_space *mapping,
e7b563bb
JW
1794 pgoff_t index, unsigned long max_scan)
1795{
0d3f9296 1796 XA_STATE(xas, &mapping->i_pages, index);
e7b563bb 1797
0d3f9296
MW
1798 while (max_scan--) {
1799 void *entry = xas_next(&xas);
1800 if (!entry || xa_is_value(entry))
e7b563bb 1801 break;
0d3f9296 1802 if (xas.xa_index == 0)
e7b563bb
JW
1803 break;
1804 }
1805
0d3f9296 1806 return xas.xa_index;
e7b563bb 1807}
0d3f9296 1808EXPORT_SYMBOL(page_cache_next_miss);
e7b563bb
JW
1809
1810/**
2346a560 1811 * page_cache_prev_miss() - Find the previous gap in the page cache.
0d3f9296
MW
1812 * @mapping: Mapping.
1813 * @index: Index.
1814 * @max_scan: Maximum range to search.
e7b563bb 1815 *
0d3f9296
MW
1816 * Search the range [max(index - max_scan + 1, 0), index] for the
1817 * gap with the highest index.
e7b563bb 1818 *
0d3f9296
MW
1819 * This function may be called under the rcu_read_lock. However, this will
1820 * not atomically search a snapshot of the cache at a single point in time.
1821 * For example, if a gap is created at index 10, then subsequently a gap is
1822 * created at index 5, page_cache_prev_miss() covering both indices may
1823 * return 5 if called under the rcu_read_lock.
e7b563bb 1824 *
0d3f9296
MW
1825 * Return: The index of the gap if found, otherwise an index outside the
1826 * range specified (in which case 'index - return >= max_scan' will be true).
1827 * In the rare case of wrap-around, ULONG_MAX will be returned.
e7b563bb 1828 */
0d3f9296 1829pgoff_t page_cache_prev_miss(struct address_space *mapping,
e7b563bb
JW
1830 pgoff_t index, unsigned long max_scan)
1831{
0d3f9296 1832 XA_STATE(xas, &mapping->i_pages, index);
e7b563bb 1833
0d3f9296
MW
1834 while (max_scan--) {
1835 void *entry = xas_prev(&xas);
1836 if (!entry || xa_is_value(entry))
e7b563bb 1837 break;
0d3f9296 1838 if (xas.xa_index == ULONG_MAX)
e7b563bb
JW
1839 break;
1840 }
1841
0d3f9296 1842 return xas.xa_index;
e7b563bb 1843}
0d3f9296 1844EXPORT_SYMBOL(page_cache_prev_miss);
e7b563bb 1845
020853b6
MWO
1846/*
1847 * Lockless page cache protocol:
1848 * On the lookup side:
1849 * 1. Load the folio from i_pages
1850 * 2. Increment the refcount if it's not zero
1851 * 3. If the folio is not found by xas_reload(), put the refcount and retry
1852 *
1853 * On the removal side:
1854 * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1855 * B. Remove the page from i_pages
1856 * C. Return the page to the page allocator
1857 *
1858 * This means that any page may have its reference count temporarily
1859 * increased by a speculative page cache (or fast GUP) lookup as it can
1860 * be allocated by another user before the RCU grace period expires.
1861 * Because the refcount temporarily acquired here may end up being the
1862 * last refcount on the page, any page allocation must be freeable by
1863 * folio_put().
1864 */
1865
44835d20 1866/*
bc5a3011 1867 * mapping_get_entry - Get a page cache entry.
485bb99b 1868 * @mapping: the address_space to search
a6de4b48 1869 * @index: The page cache index.
0cd6144a 1870 *
bca65eea
MWO
1871 * Looks up the page cache entry at @mapping & @index. If it is a folio,
1872 * it is returned with an increased refcount. If it is a shadow entry
1873 * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1874 * it is returned without further action.
485bb99b 1875 *
bca65eea 1876 * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1da177e4 1877 */
bca65eea 1878static void *mapping_get_entry(struct address_space *mapping, pgoff_t index)
1da177e4 1879{
a6de4b48 1880 XA_STATE(xas, &mapping->i_pages, index);
bca65eea 1881 struct folio *folio;
1da177e4 1882
a60637c8
NP
1883 rcu_read_lock();
1884repeat:
4c7472c0 1885 xas_reset(&xas);
bca65eea
MWO
1886 folio = xas_load(&xas);
1887 if (xas_retry(&xas, folio))
4c7472c0
MW
1888 goto repeat;
1889 /*
1890 * A shadow entry of a recently evicted page, or a swap entry from
1891 * shmem/tmpfs. Return it without attempting to raise page count.
1892 */
bca65eea 1893 if (!folio || xa_is_value(folio))
4c7472c0 1894 goto out;
83929372 1895
bca65eea 1896 if (!folio_try_get_rcu(folio))
4c7472c0 1897 goto repeat;
83929372 1898
bca65eea
MWO
1899 if (unlikely(folio != xas_reload(&xas))) {
1900 folio_put(folio);
4c7472c0 1901 goto repeat;
a60637c8 1902 }
27d20fdd 1903out:
a60637c8
NP
1904 rcu_read_unlock();
1905
bca65eea 1906 return folio;
1da177e4 1907}
1da177e4 1908
0cd6144a 1909/**
3f0c6a07 1910 * __filemap_get_folio - Find and get a reference to a folio.
2294b32e
MWO
1911 * @mapping: The address_space to search.
1912 * @index: The page index.
3f0c6a07
MWO
1913 * @fgp_flags: %FGP flags modify how the folio is returned.
1914 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1da177e4 1915 *
2294b32e 1916 * Looks up the page cache entry at @mapping & @index.
0cd6144a 1917 *
2294b32e 1918 * @fgp_flags can be zero or more of these flags:
0e056eb5 1919 *
3f0c6a07
MWO
1920 * * %FGP_ACCESSED - The folio will be marked accessed.
1921 * * %FGP_LOCK - The folio is returned locked.
44835d20 1922 * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it
3f0c6a07 1923 * instead of allocating a new folio to replace it.
2294b32e 1924 * * %FGP_CREAT - If no page is present then a new page is allocated using
3f0c6a07 1925 * @gfp and added to the page cache and the VM's LRU list.
2294b32e
MWO
1926 * The page is returned locked and with an increased refcount.
1927 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1928 * page is already in cache. If the page was allocated, unlock it before
1929 * returning so the caller can do the same dance.
3f0c6a07
MWO
1930 * * %FGP_WRITE - The page will be written to by the caller.
1931 * * %FGP_NOFS - __GFP_FS will get cleared in gfp.
1932 * * %FGP_NOWAIT - Don't get blocked by page lock.
b27652d9 1933 * * %FGP_STABLE - Wait for the folio to be stable (finished writeback)
1da177e4 1934 *
2294b32e
MWO
1935 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1936 * if the %GFP flags specified for %FGP_CREAT are atomic.
1da177e4 1937 *
2457aec6 1938 * If there is a page cache page, it is returned with an increased refcount.
a862f68a 1939 *
3f0c6a07 1940 * Return: The found folio or %NULL otherwise.
1da177e4 1941 */
3f0c6a07
MWO
1942struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1943 int fgp_flags, gfp_t gfp)
1da177e4 1944{
3f0c6a07 1945 struct folio *folio;
2457aec6 1946
1da177e4 1947repeat:
3f0c6a07
MWO
1948 folio = mapping_get_entry(mapping, index);
1949 if (xa_is_value(folio)) {
44835d20 1950 if (fgp_flags & FGP_ENTRY)
3f0c6a07
MWO
1951 return folio;
1952 folio = NULL;
44835d20 1953 }
3f0c6a07 1954 if (!folio)
2457aec6
MG
1955 goto no_page;
1956
1957 if (fgp_flags & FGP_LOCK) {
1958 if (fgp_flags & FGP_NOWAIT) {
3f0c6a07
MWO
1959 if (!folio_trylock(folio)) {
1960 folio_put(folio);
2457aec6
MG
1961 return NULL;
1962 }
1963 } else {
3f0c6a07 1964 folio_lock(folio);
2457aec6
MG
1965 }
1966
1967 /* Has the page been truncated? */
3f0c6a07
MWO
1968 if (unlikely(folio->mapping != mapping)) {
1969 folio_unlock(folio);
1970 folio_put(folio);
2457aec6
MG
1971 goto repeat;
1972 }
3f0c6a07 1973 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
2457aec6
MG
1974 }
1975
c16eb000 1976 if (fgp_flags & FGP_ACCESSED)
3f0c6a07 1977 folio_mark_accessed(folio);
b9306a79
YS
1978 else if (fgp_flags & FGP_WRITE) {
1979 /* Clear idle flag for buffer write */
3f0c6a07
MWO
1980 if (folio_test_idle(folio))
1981 folio_clear_idle(folio);
b9306a79 1982 }
2457aec6 1983
b27652d9
MWO
1984 if (fgp_flags & FGP_STABLE)
1985 folio_wait_stable(folio);
2457aec6 1986no_page:
3f0c6a07 1987 if (!folio && (fgp_flags & FGP_CREAT)) {
2457aec6 1988 int err;
f56753ac 1989 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
3f0c6a07 1990 gfp |= __GFP_WRITE;
45f87de5 1991 if (fgp_flags & FGP_NOFS)
3f0c6a07 1992 gfp &= ~__GFP_FS;
2457aec6 1993
3f0c6a07
MWO
1994 folio = filemap_alloc_folio(gfp, 0);
1995 if (!folio)
eb2be189 1996 return NULL;
2457aec6 1997
a75d4c33 1998 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
2457aec6
MG
1999 fgp_flags |= FGP_LOCK;
2000
eb39d618 2001 /* Init accessed so avoid atomic mark_page_accessed later */
2457aec6 2002 if (fgp_flags & FGP_ACCESSED)
3f0c6a07 2003 __folio_set_referenced(folio);
2457aec6 2004
3f0c6a07 2005 err = filemap_add_folio(mapping, folio, index, gfp);
eb2be189 2006 if (unlikely(err)) {
3f0c6a07
MWO
2007 folio_put(folio);
2008 folio = NULL;
eb2be189
NP
2009 if (err == -EEXIST)
2010 goto repeat;
1da177e4 2011 }
a75d4c33
JB
2012
2013 /*
3f0c6a07
MWO
2014 * filemap_add_folio locks the page, and for mmap
2015 * we expect an unlocked page.
a75d4c33 2016 */
3f0c6a07
MWO
2017 if (folio && (fgp_flags & FGP_FOR_MMAP))
2018 folio_unlock(folio);
1da177e4 2019 }
2457aec6 2020
3f0c6a07 2021 return folio;
1da177e4 2022}
3f0c6a07 2023EXPORT_SYMBOL(__filemap_get_folio);
1da177e4 2024
f5e6429a 2025static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
c7bad633
MWO
2026 xa_mark_t mark)
2027{
f5e6429a 2028 struct folio *folio;
c7bad633
MWO
2029
2030retry:
2031 if (mark == XA_PRESENT)
f5e6429a 2032 folio = xas_find(xas, max);
c7bad633 2033 else
f5e6429a 2034 folio = xas_find_marked(xas, max, mark);
c7bad633 2035
f5e6429a 2036 if (xas_retry(xas, folio))
c7bad633
MWO
2037 goto retry;
2038 /*
2039 * A shadow entry of a recently evicted page, a swap
2040 * entry from shmem/tmpfs or a DAX entry. Return it
2041 * without attempting to raise page count.
2042 */
f5e6429a
MWO
2043 if (!folio || xa_is_value(folio))
2044 return folio;
c7bad633 2045
f5e6429a 2046 if (!folio_try_get_rcu(folio))
c7bad633
MWO
2047 goto reset;
2048
f5e6429a
MWO
2049 if (unlikely(folio != xas_reload(xas))) {
2050 folio_put(folio);
c7bad633
MWO
2051 goto reset;
2052 }
2053
f5e6429a 2054 return folio;
c7bad633
MWO
2055reset:
2056 xas_reset(xas);
2057 goto retry;
2058}
2059
0cd6144a
JW
2060/**
2061 * find_get_entries - gang pagecache lookup
2062 * @mapping: The address_space to search
2063 * @start: The starting page cache index
ca122fe4 2064 * @end: The final page index (inclusive).
0e499ed3 2065 * @fbatch: Where the resulting entries are placed.
0cd6144a
JW
2066 * @indices: The cache indices corresponding to the entries in @entries
2067 *
cf2039af 2068 * find_get_entries() will search for and return a batch of entries in
0e499ed3
MWO
2069 * the mapping. The entries are placed in @fbatch. find_get_entries()
2070 * takes a reference on any actual folios it returns.
0cd6144a 2071 *
0e499ed3
MWO
2072 * The entries have ascending indexes. The indices may not be consecutive
2073 * due to not-present entries or large folios.
0cd6144a 2074 *
0e499ed3 2075 * Any shadow entries of evicted folios, or swap entries from
139b6a6f 2076 * shmem/tmpfs, are included in the returned array.
0cd6144a 2077 *
0e499ed3 2078 * Return: The number of entries which were found.
0cd6144a 2079 */
ca122fe4 2080unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
0e499ed3 2081 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
0cd6144a 2082{
f280bf09 2083 XA_STATE(xas, &mapping->i_pages, start);
f5e6429a 2084 struct folio *folio;
0cd6144a
JW
2085
2086 rcu_read_lock();
f5e6429a 2087 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
0e499ed3
MWO
2088 indices[fbatch->nr] = xas.xa_index;
2089 if (!folio_batch_add(fbatch, folio))
0cd6144a
JW
2090 break;
2091 }
2092 rcu_read_unlock();
cf2039af 2093
0e499ed3 2094 return folio_batch_count(fbatch);
0cd6144a
JW
2095}
2096
5c211ba2
MWO
2097/**
2098 * find_lock_entries - Find a batch of pagecache entries.
2099 * @mapping: The address_space to search.
2100 * @start: The starting page cache index.
2101 * @end: The final page index (inclusive).
51dcbdac
MWO
2102 * @fbatch: Where the resulting entries are placed.
2103 * @indices: The cache indices of the entries in @fbatch.
5c211ba2
MWO
2104 *
2105 * find_lock_entries() will return a batch of entries from @mapping.
f5e6429a
MWO
2106 * Swap, shadow and DAX entries are included. Folios are returned
2107 * locked and with an incremented refcount. Folios which are locked
2108 * by somebody else or under writeback are skipped. Folios which are
2109 * partially outside the range are not returned.
5c211ba2
MWO
2110 *
2111 * The entries have ascending indexes. The indices may not be consecutive
f5e6429a
MWO
2112 * due to not-present entries, large folios, folios which could not be
2113 * locked or folios under writeback.
5c211ba2
MWO
2114 *
2115 * Return: The number of entries which were found.
2116 */
2117unsigned find_lock_entries(struct address_space *mapping, pgoff_t start,
51dcbdac 2118 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
5c211ba2
MWO
2119{
2120 XA_STATE(xas, &mapping->i_pages, start);
f5e6429a 2121 struct folio *folio;
5c211ba2
MWO
2122
2123 rcu_read_lock();
f5e6429a
MWO
2124 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2125 if (!xa_is_value(folio)) {
2126 if (folio->index < start)
5c211ba2 2127 goto put;
f5e6429a 2128 if (folio->index + folio_nr_pages(folio) - 1 > end)
5c211ba2 2129 goto put;
f5e6429a 2130 if (!folio_trylock(folio))
5c211ba2 2131 goto put;
f5e6429a
MWO
2132 if (folio->mapping != mapping ||
2133 folio_test_writeback(folio))
5c211ba2 2134 goto unlock;
f5e6429a
MWO
2135 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2136 folio);
5c211ba2 2137 }
51dcbdac
MWO
2138 indices[fbatch->nr] = xas.xa_index;
2139 if (!folio_batch_add(fbatch, folio))
5c211ba2 2140 break;
6b24ca4a 2141 continue;
5c211ba2 2142unlock:
f5e6429a 2143 folio_unlock(folio);
5c211ba2 2144put:
f5e6429a 2145 folio_put(folio);
5c211ba2
MWO
2146 }
2147 rcu_read_unlock();
2148
51dcbdac 2149 return folio_batch_count(fbatch);
5c211ba2
MWO
2150}
2151
6b24ca4a
MWO
2152static inline
2153bool folio_more_pages(struct folio *folio, pgoff_t index, pgoff_t max)
2154{
2155 if (!folio_test_large(folio) || folio_test_hugetlb(folio))
2156 return false;
2157 if (index >= max)
2158 return false;
2159 return index < folio->index + folio_nr_pages(folio) - 1;
5c211ba2
MWO
2160}
2161
1da177e4 2162/**
b947cee4 2163 * find_get_pages_range - gang pagecache lookup
1da177e4
LT
2164 * @mapping: The address_space to search
2165 * @start: The starting page index
b947cee4 2166 * @end: The final page index (inclusive)
1da177e4
LT
2167 * @nr_pages: The maximum number of pages
2168 * @pages: Where the resulting pages are placed
2169 *
b947cee4
JK
2170 * find_get_pages_range() will search for and return a group of up to @nr_pages
2171 * pages in the mapping starting at index @start and up to index @end
2172 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes
2173 * a reference against the returned pages.
1da177e4
LT
2174 *
2175 * The search returns a group of mapping-contiguous pages with ascending
2176 * indexes. There may be holes in the indices due to not-present pages.
d72dc8a2 2177 * We also update @start to index the next page for the traversal.
1da177e4 2178 *
a862f68a
MR
2179 * Return: the number of pages which were found. If this number is
2180 * smaller than @nr_pages, the end of specified range has been
b947cee4 2181 * reached.
1da177e4 2182 */
b947cee4
JK
2183unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
2184 pgoff_t end, unsigned int nr_pages,
2185 struct page **pages)
1da177e4 2186{
fd1b3cee 2187 XA_STATE(xas, &mapping->i_pages, *start);
f5e6429a 2188 struct folio *folio;
0fc9d104
KK
2189 unsigned ret = 0;
2190
2191 if (unlikely(!nr_pages))
2192 return 0;
a60637c8
NP
2193
2194 rcu_read_lock();
f5e6429a 2195 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
fd1b3cee 2196 /* Skip over shadow, swap and DAX entries */
f5e6429a 2197 if (xa_is_value(folio))
8079b1c8 2198 continue;
a60637c8 2199
6b24ca4a 2200again:
f5e6429a 2201 pages[ret] = folio_file_page(folio, xas.xa_index);
b947cee4 2202 if (++ret == nr_pages) {
5d3ee42f 2203 *start = xas.xa_index + 1;
b947cee4
JK
2204 goto out;
2205 }
6b24ca4a
MWO
2206 if (folio_more_pages(folio, xas.xa_index, end)) {
2207 xas.xa_index++;
2208 folio_ref_inc(folio);
2209 goto again;
2210 }
a60637c8 2211 }
5b280c0c 2212
b947cee4
JK
2213 /*
2214 * We come here when there is no page beyond @end. We take care to not
2215 * overflow the index @start as it confuses some of the callers. This
fd1b3cee 2216 * breaks the iteration when there is a page at index -1 but that is
b947cee4
JK
2217 * already broken anyway.
2218 */
2219 if (end == (pgoff_t)-1)
2220 *start = (pgoff_t)-1;
2221 else
2222 *start = end + 1;
2223out:
a60637c8 2224 rcu_read_unlock();
d72dc8a2 2225
1da177e4
LT
2226 return ret;
2227}
2228
ebf43500
JA
2229/**
2230 * find_get_pages_contig - gang contiguous pagecache lookup
2231 * @mapping: The address_space to search
2232 * @index: The starting page index
2233 * @nr_pages: The maximum number of pages
2234 * @pages: Where the resulting pages are placed
2235 *
eb5279fb
ML
2236 * find_get_pages_contig() works exactly like find_get_pages_range(),
2237 * except that the returned number of pages are guaranteed to be
2238 * contiguous.
ebf43500 2239 *
a862f68a 2240 * Return: the number of pages which were found.
ebf43500
JA
2241 */
2242unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
2243 unsigned int nr_pages, struct page **pages)
2244{
3ece58a2 2245 XA_STATE(xas, &mapping->i_pages, index);
e1c37722 2246 struct folio *folio;
0fc9d104
KK
2247 unsigned int ret = 0;
2248
2249 if (unlikely(!nr_pages))
2250 return 0;
a60637c8
NP
2251
2252 rcu_read_lock();
e1c37722
MWO
2253 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2254 if (xas_retry(&xas, folio))
3ece58a2
MW
2255 continue;
2256 /*
2257 * If the entry has been swapped out, we can stop looking.
2258 * No current caller is looking for DAX entries.
2259 */
e1c37722 2260 if (xa_is_value(folio))
8079b1c8 2261 break;
ebf43500 2262
e1c37722 2263 if (!folio_try_get_rcu(folio))
3ece58a2 2264 goto retry;
83929372 2265
e1c37722 2266 if (unlikely(folio != xas_reload(&xas)))
3ece58a2 2267 goto put_page;
a60637c8 2268
6b24ca4a
MWO
2269again:
2270 pages[ret] = folio_file_page(folio, xas.xa_index);
0fc9d104
KK
2271 if (++ret == nr_pages)
2272 break;
6b24ca4a
MWO
2273 if (folio_more_pages(folio, xas.xa_index, ULONG_MAX)) {
2274 xas.xa_index++;
2275 folio_ref_inc(folio);
2276 goto again;
2277 }
3ece58a2
MW
2278 continue;
2279put_page:
e1c37722 2280 folio_put(folio);
3ece58a2
MW
2281retry:
2282 xas_reset(&xas);
ebf43500 2283 }
a60637c8
NP
2284 rcu_read_unlock();
2285 return ret;
ebf43500 2286}
ef71c15c 2287EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 2288
485bb99b 2289/**
c49f50d1 2290 * find_get_pages_range_tag - Find and return head pages matching @tag.
485bb99b
RD
2291 * @mapping: the address_space to search
2292 * @index: the starting page index
72b045ae 2293 * @end: The final page index (inclusive)
485bb99b
RD
2294 * @tag: the tag index
2295 * @nr_pages: the maximum number of pages
2296 * @pages: where the resulting pages are placed
2297 *
eb5279fb
ML
2298 * Like find_get_pages_range(), except we only return head pages which are
2299 * tagged with @tag. @index is updated to the index immediately after the
2300 * last page we return, ready for the next iteration.
a862f68a
MR
2301 *
2302 * Return: the number of pages which were found.
1da177e4 2303 */
72b045ae 2304unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
a6906972 2305 pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
72b045ae 2306 struct page **pages)
1da177e4 2307{
a6906972 2308 XA_STATE(xas, &mapping->i_pages, *index);
f5e6429a 2309 struct folio *folio;
0fc9d104
KK
2310 unsigned ret = 0;
2311
2312 if (unlikely(!nr_pages))
2313 return 0;
a60637c8
NP
2314
2315 rcu_read_lock();
f5e6429a 2316 while ((folio = find_get_entry(&xas, end, tag))) {
a6906972
MW
2317 /*
2318 * Shadow entries should never be tagged, but this iteration
2319 * is lockless so there is a window for page reclaim to evict
2320 * a page we saw tagged. Skip over it.
2321 */
f5e6429a 2322 if (xa_is_value(folio))
139b6a6f 2323 continue;
a60637c8 2324
f5e6429a 2325 pages[ret] = &folio->page;
72b045ae 2326 if (++ret == nr_pages) {
f5e6429a 2327 *index = folio->index + folio_nr_pages(folio);
72b045ae
JK
2328 goto out;
2329 }
a60637c8 2330 }
5b280c0c 2331
72b045ae 2332 /*
a6906972 2333 * We come here when we got to @end. We take care to not overflow the
72b045ae 2334 * index @index as it confuses some of the callers. This breaks the
a6906972
MW
2335 * iteration when there is a page at index -1 but that is already
2336 * broken anyway.
72b045ae
JK
2337 */
2338 if (end == (pgoff_t)-1)
2339 *index = (pgoff_t)-1;
2340 else
2341 *index = end + 1;
2342out:
a60637c8 2343 rcu_read_unlock();
1da177e4 2344
1da177e4
LT
2345 return ret;
2346}
72b045ae 2347EXPORT_SYMBOL(find_get_pages_range_tag);
1da177e4 2348
76d42bd9
WF
2349/*
2350 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2351 * a _large_ part of the i/o request. Imagine the worst scenario:
2352 *
2353 * ---R__________________________________________B__________
2354 * ^ reading here ^ bad block(assume 4k)
2355 *
2356 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2357 * => failing the whole request => read(R) => read(R+1) =>
2358 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2359 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2360 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2361 *
2362 * It is going insane. Fix it by quickly scaling down the readahead size.
2363 */
0f8e2db4 2364static void shrink_readahead_size_eio(struct file_ra_state *ra)
76d42bd9 2365{
76d42bd9 2366 ra->ra_pages /= 4;
76d42bd9
WF
2367}
2368
cbd59c48 2369/*
25d6a23e 2370 * filemap_get_read_batch - Get a batch of folios for read
cbd59c48 2371 *
25d6a23e
MWO
2372 * Get a batch of folios which represent a contiguous range of bytes in
2373 * the file. No exceptional entries will be returned. If @index is in
2374 * the middle of a folio, the entire folio will be returned. The last
2375 * folio in the batch may have the readahead flag set or the uptodate flag
2376 * clear so that the caller can take the appropriate action.
cbd59c48
MWO
2377 */
2378static void filemap_get_read_batch(struct address_space *mapping,
25d6a23e 2379 pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
cbd59c48
MWO
2380{
2381 XA_STATE(xas, &mapping->i_pages, index);
bdb72932 2382 struct folio *folio;
cbd59c48
MWO
2383
2384 rcu_read_lock();
bdb72932
MWO
2385 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2386 if (xas_retry(&xas, folio))
cbd59c48 2387 continue;
bdb72932 2388 if (xas.xa_index > max || xa_is_value(folio))
cbd59c48 2389 break;
bdb72932 2390 if (!folio_try_get_rcu(folio))
cbd59c48
MWO
2391 goto retry;
2392
bdb72932 2393 if (unlikely(folio != xas_reload(&xas)))
25d6a23e 2394 goto put_folio;
cbd59c48 2395
25d6a23e 2396 if (!folio_batch_add(fbatch, folio))
cbd59c48 2397 break;
bdb72932 2398 if (!folio_test_uptodate(folio))
cbd59c48 2399 break;
bdb72932 2400 if (folio_test_readahead(folio))
cbd59c48 2401 break;
6b24ca4a 2402 xas_advance(&xas, folio->index + folio_nr_pages(folio) - 1);
cbd59c48 2403 continue;
25d6a23e 2404put_folio:
bdb72932 2405 folio_put(folio);
cbd59c48
MWO
2406retry:
2407 xas_reset(&xas);
2408 }
2409 rcu_read_unlock();
2410}
2411
9d427b4e
MWO
2412static int filemap_read_folio(struct file *file, struct address_space *mapping,
2413 struct folio *folio)
723ef24b 2414{
723ef24b
KO
2415 int error;
2416
723ef24b 2417 /*
68430303
MWO
2418 * A previous I/O error may have been due to temporary failures,
2419 * eg. multipath errors. PG_error will be set again if readpage
2420 * fails.
723ef24b 2421 */
9d427b4e 2422 folio_clear_error(folio);
723ef24b 2423 /* Start the actual read. The read will unlock the page. */
9d427b4e 2424 error = mapping->a_ops->readpage(file, &folio->page);
68430303
MWO
2425 if (error)
2426 return error;
723ef24b 2427
9d427b4e 2428 error = folio_wait_locked_killable(folio);
68430303
MWO
2429 if (error)
2430 return error;
9d427b4e 2431 if (folio_test_uptodate(folio))
aa1ec2f6 2432 return 0;
aa1ec2f6
MWO
2433 shrink_readahead_size_eio(&file->f_ra);
2434 return -EIO;
723ef24b
KO
2435}
2436
fce70da3 2437static bool filemap_range_uptodate(struct address_space *mapping,
2fa4eeb8 2438 loff_t pos, struct iov_iter *iter, struct folio *folio)
fce70da3
MWO
2439{
2440 int count;
2441
2fa4eeb8 2442 if (folio_test_uptodate(folio))
fce70da3
MWO
2443 return true;
2444 /* pipes can't handle partially uptodate pages */
2445 if (iov_iter_is_pipe(iter))
2446 return false;
2447 if (!mapping->a_ops->is_partially_uptodate)
2448 return false;
2fa4eeb8 2449 if (mapping->host->i_blkbits >= folio_shift(folio))
fce70da3
MWO
2450 return false;
2451
2452 count = iter->count;
2fa4eeb8
MWO
2453 if (folio_pos(folio) > pos) {
2454 count -= folio_pos(folio) - pos;
fce70da3
MWO
2455 pos = 0;
2456 } else {
2fa4eeb8 2457 pos -= folio_pos(folio);
fce70da3
MWO
2458 }
2459
2e7e80f7 2460 return mapping->a_ops->is_partially_uptodate(folio, pos, count);
fce70da3
MWO
2461}
2462
4612aeef
MWO
2463static int filemap_update_page(struct kiocb *iocb,
2464 struct address_space *mapping, struct iov_iter *iter,
65bca53b 2465 struct folio *folio)
723ef24b 2466{
723ef24b
KO
2467 int error;
2468
730633f0
JK
2469 if (iocb->ki_flags & IOCB_NOWAIT) {
2470 if (!filemap_invalidate_trylock_shared(mapping))
2471 return -EAGAIN;
2472 } else {
2473 filemap_invalidate_lock_shared(mapping);
2474 }
2475
ffdc8dab 2476 if (!folio_trylock(folio)) {
730633f0 2477 error = -EAGAIN;
87d1d7b6 2478 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
730633f0 2479 goto unlock_mapping;
87d1d7b6 2480 if (!(iocb->ki_flags & IOCB_WAITQ)) {
730633f0 2481 filemap_invalidate_unlock_shared(mapping);
9f2b04a2
MWO
2482 /*
2483 * This is where we usually end up waiting for a
2484 * previously submitted readahead to finish.
2485 */
2486 folio_put_wait_locked(folio, TASK_KILLABLE);
4612aeef 2487 return AOP_TRUNCATED_PAGE;
bd8a1f36 2488 }
ffdc8dab 2489 error = __folio_lock_async(folio, iocb->ki_waitq);
87d1d7b6 2490 if (error)
730633f0 2491 goto unlock_mapping;
723ef24b 2492 }
723ef24b 2493
730633f0 2494 error = AOP_TRUNCATED_PAGE;
ffdc8dab 2495 if (!folio->mapping)
730633f0 2496 goto unlock;
723ef24b 2497
fce70da3 2498 error = 0;
2fa4eeb8 2499 if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, folio))
fce70da3
MWO
2500 goto unlock;
2501
2502 error = -EAGAIN;
2503 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2504 goto unlock;
2505
9d427b4e 2506 error = filemap_read_folio(iocb->ki_filp, mapping, folio);
730633f0 2507 goto unlock_mapping;
fce70da3 2508unlock:
ffdc8dab 2509 folio_unlock(folio);
730633f0
JK
2510unlock_mapping:
2511 filemap_invalidate_unlock_shared(mapping);
2512 if (error == AOP_TRUNCATED_PAGE)
ffdc8dab 2513 folio_put(folio);
fce70da3 2514 return error;
723ef24b
KO
2515}
2516
a5d4ad09 2517static int filemap_create_folio(struct file *file,
f253e185 2518 struct address_space *mapping, pgoff_t index,
25d6a23e 2519 struct folio_batch *fbatch)
723ef24b 2520{
a5d4ad09 2521 struct folio *folio;
723ef24b
KO
2522 int error;
2523
a5d4ad09
MWO
2524 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0);
2525 if (!folio)
f253e185 2526 return -ENOMEM;
723ef24b 2527
730633f0 2528 /*
a5d4ad09
MWO
2529 * Protect against truncate / hole punch. Grabbing invalidate_lock
2530 * here assures we cannot instantiate and bring uptodate new
2531 * pagecache folios after evicting page cache during truncate
2532 * and before actually freeing blocks. Note that we could
2533 * release invalidate_lock after inserting the folio into
2534 * the page cache as the locked folio would then be enough to
2535 * synchronize with hole punching. But there are code paths
2536 * such as filemap_update_page() filling in partially uptodate
2537 * pages or ->readpages() that need to hold invalidate_lock
2538 * while mapping blocks for IO so let's hold the lock here as
2539 * well to keep locking rules simple.
730633f0
JK
2540 */
2541 filemap_invalidate_lock_shared(mapping);
a5d4ad09 2542 error = filemap_add_folio(mapping, folio, index,
f253e185
MWO
2543 mapping_gfp_constraint(mapping, GFP_KERNEL));
2544 if (error == -EEXIST)
2545 error = AOP_TRUNCATED_PAGE;
2546 if (error)
2547 goto error;
2548
a5d4ad09 2549 error = filemap_read_folio(file, mapping, folio);
f253e185
MWO
2550 if (error)
2551 goto error;
2552
730633f0 2553 filemap_invalidate_unlock_shared(mapping);
25d6a23e 2554 folio_batch_add(fbatch, folio);
f253e185
MWO
2555 return 0;
2556error:
730633f0 2557 filemap_invalidate_unlock_shared(mapping);
a5d4ad09 2558 folio_put(folio);
f253e185 2559 return error;
723ef24b
KO
2560}
2561
5963fe03 2562static int filemap_readahead(struct kiocb *iocb, struct file *file,
65bca53b 2563 struct address_space *mapping, struct folio *folio,
5963fe03
MWO
2564 pgoff_t last_index)
2565{
65bca53b
MWO
2566 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2567
5963fe03
MWO
2568 if (iocb->ki_flags & IOCB_NOIO)
2569 return -EAGAIN;
65bca53b 2570 page_cache_async_ra(&ractl, folio, last_index - folio->index);
5963fe03
MWO
2571 return 0;
2572}
2573
3a6bae48 2574static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter,
25d6a23e 2575 struct folio_batch *fbatch)
06c04442
KO
2576{
2577 struct file *filp = iocb->ki_filp;
2578 struct address_space *mapping = filp->f_mapping;
2579 struct file_ra_state *ra = &filp->f_ra;
2580 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
cbd59c48 2581 pgoff_t last_index;
65bca53b 2582 struct folio *folio;
cbd59c48 2583 int err = 0;
06c04442 2584
cbd59c48 2585 last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE);
2642fca6 2586retry:
06c04442
KO
2587 if (fatal_signal_pending(current))
2588 return -EINTR;
2589
25d6a23e
MWO
2590 filemap_get_read_batch(mapping, index, last_index, fbatch);
2591 if (!folio_batch_count(fbatch)) {
2642fca6
MWO
2592 if (iocb->ki_flags & IOCB_NOIO)
2593 return -EAGAIN;
2594 page_cache_sync_readahead(mapping, ra, filp, index,
2595 last_index - index);
25d6a23e 2596 filemap_get_read_batch(mapping, index, last_index, fbatch);
2642fca6 2597 }
25d6a23e 2598 if (!folio_batch_count(fbatch)) {
f253e185
MWO
2599 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2600 return -EAGAIN;
a5d4ad09 2601 err = filemap_create_folio(filp, mapping,
25d6a23e 2602 iocb->ki_pos >> PAGE_SHIFT, fbatch);
f253e185 2603 if (err == AOP_TRUNCATED_PAGE)
2642fca6 2604 goto retry;
f253e185
MWO
2605 return err;
2606 }
06c04442 2607
25d6a23e 2608 folio = fbatch->folios[folio_batch_count(fbatch) - 1];
65bca53b
MWO
2609 if (folio_test_readahead(folio)) {
2610 err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2642fca6
MWO
2611 if (err)
2612 goto err;
2613 }
65bca53b 2614 if (!folio_test_uptodate(folio)) {
25d6a23e
MWO
2615 if ((iocb->ki_flags & IOCB_WAITQ) &&
2616 folio_batch_count(fbatch) > 1)
2642fca6 2617 iocb->ki_flags |= IOCB_NOWAIT;
65bca53b 2618 err = filemap_update_page(iocb, mapping, iter, folio);
2642fca6
MWO
2619 if (err)
2620 goto err;
06c04442
KO
2621 }
2622
2642fca6 2623 return 0;
cbd59c48 2624err:
2642fca6 2625 if (err < 0)
65bca53b 2626 folio_put(folio);
25d6a23e 2627 if (likely(--fbatch->nr))
ff993ba1 2628 return 0;
4612aeef 2629 if (err == AOP_TRUNCATED_PAGE)
2642fca6
MWO
2630 goto retry;
2631 return err;
06c04442
KO
2632}
2633
485bb99b 2634/**
87fa0f3e
CH
2635 * filemap_read - Read data from the page cache.
2636 * @iocb: The iocb to read.
2637 * @iter: Destination for the data.
2638 * @already_read: Number of bytes already read by the caller.
485bb99b 2639 *
87fa0f3e
CH
2640 * Copies data from the page cache. If the data is not currently present,
2641 * uses the readahead and readpage address_space operations to fetch it.
1da177e4 2642 *
87fa0f3e
CH
2643 * Return: Total number of bytes copied, including those already read by
2644 * the caller. If an error happens before any bytes are copied, returns
2645 * a negative error number.
1da177e4 2646 */
87fa0f3e
CH
2647ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2648 ssize_t already_read)
1da177e4 2649{
47c27bc4 2650 struct file *filp = iocb->ki_filp;
06c04442 2651 struct file_ra_state *ra = &filp->f_ra;
36e78914 2652 struct address_space *mapping = filp->f_mapping;
1da177e4 2653 struct inode *inode = mapping->host;
25d6a23e 2654 struct folio_batch fbatch;
ff993ba1 2655 int i, error = 0;
06c04442
KO
2656 bool writably_mapped;
2657 loff_t isize, end_offset;
1da177e4 2658
723ef24b 2659 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
d05c5f7b 2660 return 0;
3644e2d2
KO
2661 if (unlikely(!iov_iter_count(iter)))
2662 return 0;
2663
c2a9737f 2664 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
25d6a23e 2665 folio_batch_init(&fbatch);
c2a9737f 2666
06c04442 2667 do {
1da177e4 2668 cond_resched();
5abf186a 2669
723ef24b 2670 /*
06c04442
KO
2671 * If we've already successfully copied some data, then we
2672 * can no longer safely return -EIOCBQUEUED. Hence mark
2673 * an async read NOWAIT at that point.
723ef24b 2674 */
87fa0f3e 2675 if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
723ef24b
KO
2676 iocb->ki_flags |= IOCB_NOWAIT;
2677
8c8387ee
DH
2678 if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2679 break;
2680
25d6a23e 2681 error = filemap_get_pages(iocb, iter, &fbatch);
ff993ba1 2682 if (error < 0)
06c04442 2683 break;
1da177e4 2684
06c04442
KO
2685 /*
2686 * i_size must be checked after we know the pages are Uptodate.
2687 *
2688 * Checking i_size after the check allows us to calculate
2689 * the correct value for "nr", which means the zero-filled
2690 * part of the page is not copied back to userspace (unless
2691 * another truncate extends the file - this is desired though).
2692 */
2693 isize = i_size_read(inode);
2694 if (unlikely(iocb->ki_pos >= isize))
25d6a23e 2695 goto put_folios;
06c04442
KO
2696 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2697
06c04442
KO
2698 /*
2699 * Once we start copying data, we don't want to be touching any
2700 * cachelines that might be contended:
2701 */
2702 writably_mapped = mapping_writably_mapped(mapping);
2703
2704 /*
2705 * When a sequential read accesses a page several times, only
2706 * mark it as accessed the first time.
2707 */
2708 if (iocb->ki_pos >> PAGE_SHIFT !=
2709 ra->prev_pos >> PAGE_SHIFT)
25d6a23e 2710 folio_mark_accessed(fbatch.folios[0]);
06c04442 2711
25d6a23e
MWO
2712 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2713 struct folio *folio = fbatch.folios[i];
d996fc7f
MWO
2714 size_t fsize = folio_size(folio);
2715 size_t offset = iocb->ki_pos & (fsize - 1);
cbd59c48 2716 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
d996fc7f 2717 fsize - offset);
cbd59c48 2718 size_t copied;
06c04442 2719
d996fc7f 2720 if (end_offset < folio_pos(folio))
cbd59c48
MWO
2721 break;
2722 if (i > 0)
d996fc7f 2723 folio_mark_accessed(folio);
06c04442 2724 /*
d996fc7f
MWO
2725 * If users can be writing to this folio using arbitrary
2726 * virtual addresses, take care of potential aliasing
2727 * before reading the folio on the kernel side.
06c04442 2728 */
d996fc7f
MWO
2729 if (writably_mapped)
2730 flush_dcache_folio(folio);
06c04442 2731
d996fc7f 2732 copied = copy_folio_to_iter(folio, offset, bytes, iter);
06c04442 2733
87fa0f3e 2734 already_read += copied;
06c04442
KO
2735 iocb->ki_pos += copied;
2736 ra->prev_pos = iocb->ki_pos;
2737
2738 if (copied < bytes) {
2739 error = -EFAULT;
2740 break;
2741 }
1da177e4 2742 }
25d6a23e
MWO
2743put_folios:
2744 for (i = 0; i < folio_batch_count(&fbatch); i++)
2745 folio_put(fbatch.folios[i]);
2746 folio_batch_init(&fbatch);
06c04442 2747 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
1da177e4 2748
0c6aa263 2749 file_accessed(filp);
06c04442 2750
87fa0f3e 2751 return already_read ? already_read : error;
1da177e4 2752}
87fa0f3e 2753EXPORT_SYMBOL_GPL(filemap_read);
1da177e4 2754
485bb99b 2755/**
6abd2322 2756 * generic_file_read_iter - generic filesystem read routine
485bb99b 2757 * @iocb: kernel I/O control block
6abd2322 2758 * @iter: destination for the data read
485bb99b 2759 *
6abd2322 2760 * This is the "read_iter()" routine for all filesystems
1da177e4 2761 * that can use the page cache directly.
41da51bc
AG
2762 *
2763 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2764 * be returned when no data can be read without waiting for I/O requests
2765 * to complete; it doesn't prevent readahead.
2766 *
2767 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2768 * requests shall be made for the read or for readahead. When no data
2769 * can be read, -EAGAIN shall be returned. When readahead would be
2770 * triggered, a partial, possibly empty read shall be returned.
2771 *
a862f68a
MR
2772 * Return:
2773 * * number of bytes copied, even for partial reads
41da51bc 2774 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
1da177e4
LT
2775 */
2776ssize_t
ed978a81 2777generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1da177e4 2778{
e7080a43 2779 size_t count = iov_iter_count(iter);
47c27bc4 2780 ssize_t retval = 0;
e7080a43
NS
2781
2782 if (!count)
826ea860 2783 return 0; /* skip atime */
1da177e4 2784
2ba48ce5 2785 if (iocb->ki_flags & IOCB_DIRECT) {
47c27bc4 2786 struct file *file = iocb->ki_filp;
ed978a81
AV
2787 struct address_space *mapping = file->f_mapping;
2788 struct inode *inode = mapping->host;
1da177e4 2789
6be96d3a 2790 if (iocb->ki_flags & IOCB_NOWAIT) {
7a60d6d7
JA
2791 if (filemap_range_needs_writeback(mapping, iocb->ki_pos,
2792 iocb->ki_pos + count - 1))
6be96d3a
GR
2793 return -EAGAIN;
2794 } else {
2795 retval = filemap_write_and_wait_range(mapping,
2796 iocb->ki_pos,
2797 iocb->ki_pos + count - 1);
2798 if (retval < 0)
826ea860 2799 return retval;
6be96d3a 2800 }
d8d3d94b 2801
0d5b0cf2
CH
2802 file_accessed(file);
2803
5ecda137 2804 retval = mapping->a_ops->direct_IO(iocb, iter);
c3a69024 2805 if (retval >= 0) {
c64fb5c7 2806 iocb->ki_pos += retval;
5ecda137 2807 count -= retval;
9fe55eea 2808 }
ab2125df
PB
2809 if (retval != -EIOCBQUEUED)
2810 iov_iter_revert(iter, count - iov_iter_count(iter));
66f998f6 2811
9fe55eea
SW
2812 /*
2813 * Btrfs can have a short DIO read if we encounter
2814 * compressed extents, so if there was an error, or if
2815 * we've already read everything we wanted to, or if
2816 * there was a short read because we hit EOF, go ahead
2817 * and return. Otherwise fallthrough to buffered io for
fbbbad4b
MW
2818 * the rest of the read. Buffered reads will not work for
2819 * DAX files, so don't bother trying.
9fe55eea 2820 */
61d0017e
JA
2821 if (retval < 0 || !count || IS_DAX(inode))
2822 return retval;
2823 if (iocb->ki_pos >= i_size_read(inode))
826ea860 2824 return retval;
1da177e4
LT
2825 }
2826
826ea860 2827 return filemap_read(iocb, iter, retval);
1da177e4 2828}
ed978a81 2829EXPORT_SYMBOL(generic_file_read_iter);
1da177e4 2830
f5e6429a
MWO
2831static inline loff_t folio_seek_hole_data(struct xa_state *xas,
2832 struct address_space *mapping, struct folio *folio,
54fa39ac 2833 loff_t start, loff_t end, bool seek_data)
41139aa4 2834{
54fa39ac
MWO
2835 const struct address_space_operations *ops = mapping->a_ops;
2836 size_t offset, bsz = i_blocksize(mapping->host);
2837
f5e6429a 2838 if (xa_is_value(folio) || folio_test_uptodate(folio))
54fa39ac
MWO
2839 return seek_data ? start : end;
2840 if (!ops->is_partially_uptodate)
2841 return seek_data ? end : start;
2842
2843 xas_pause(xas);
2844 rcu_read_unlock();
f5e6429a
MWO
2845 folio_lock(folio);
2846 if (unlikely(folio->mapping != mapping))
54fa39ac
MWO
2847 goto unlock;
2848
f5e6429a 2849 offset = offset_in_folio(folio, start) & ~(bsz - 1);
54fa39ac
MWO
2850
2851 do {
2e7e80f7 2852 if (ops->is_partially_uptodate(folio, offset, bsz) ==
f5e6429a 2853 seek_data)
54fa39ac
MWO
2854 break;
2855 start = (start + bsz) & ~(bsz - 1);
2856 offset += bsz;
f5e6429a 2857 } while (offset < folio_size(folio));
54fa39ac 2858unlock:
f5e6429a 2859 folio_unlock(folio);
54fa39ac
MWO
2860 rcu_read_lock();
2861 return start;
41139aa4
MWO
2862}
2863
f5e6429a 2864static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
41139aa4 2865{
f5e6429a 2866 if (xa_is_value(folio))
41139aa4 2867 return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
f5e6429a 2868 return folio_size(folio);
41139aa4
MWO
2869}
2870
2871/**
2872 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
2873 * @mapping: Address space to search.
2874 * @start: First byte to consider.
2875 * @end: Limit of search (exclusive).
2876 * @whence: Either SEEK_HOLE or SEEK_DATA.
2877 *
2878 * If the page cache knows which blocks contain holes and which blocks
2879 * contain data, your filesystem can use this function to implement
2880 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are
2881 * entirely memory-based such as tmpfs, and filesystems which support
2882 * unwritten extents.
2883 *
f0953a1b 2884 * Return: The requested offset on success, or -ENXIO if @whence specifies
41139aa4
MWO
2885 * SEEK_DATA and there is no data after @start. There is an implicit hole
2886 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
2887 * and @end contain data.
2888 */
2889loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
2890 loff_t end, int whence)
2891{
2892 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
ed98b015 2893 pgoff_t max = (end - 1) >> PAGE_SHIFT;
41139aa4 2894 bool seek_data = (whence == SEEK_DATA);
f5e6429a 2895 struct folio *folio;
41139aa4
MWO
2896
2897 if (end <= start)
2898 return -ENXIO;
2899
2900 rcu_read_lock();
f5e6429a 2901 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
ed98b015 2902 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
f5e6429a 2903 size_t seek_size;
41139aa4
MWO
2904
2905 if (start < pos) {
2906 if (!seek_data)
2907 goto unlock;
2908 start = pos;
2909 }
2910
f5e6429a
MWO
2911 seek_size = seek_folio_size(&xas, folio);
2912 pos = round_up((u64)pos + 1, seek_size);
2913 start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
54fa39ac
MWO
2914 seek_data);
2915 if (start < pos)
41139aa4 2916 goto unlock;
ed98b015
HD
2917 if (start >= end)
2918 break;
2919 if (seek_size > PAGE_SIZE)
2920 xas_set(&xas, pos >> PAGE_SHIFT);
f5e6429a
MWO
2921 if (!xa_is_value(folio))
2922 folio_put(folio);
41139aa4 2923 }
41139aa4 2924 if (seek_data)
ed98b015 2925 start = -ENXIO;
41139aa4
MWO
2926unlock:
2927 rcu_read_unlock();
f5e6429a
MWO
2928 if (folio && !xa_is_value(folio))
2929 folio_put(folio);
41139aa4
MWO
2930 if (start > end)
2931 return end;
2932 return start;
2933}
2934
1da177e4 2935#ifdef CONFIG_MMU
1da177e4 2936#define MMAP_LOTSAMISS (100)
6b4c9f44 2937/*
e292e6d6 2938 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
6b4c9f44 2939 * @vmf - the vm_fault for this fault.
e292e6d6 2940 * @folio - the folio to lock.
6b4c9f44
JB
2941 * @fpin - the pointer to the file we may pin (or is already pinned).
2942 *
e292e6d6
MWO
2943 * This works similar to lock_folio_or_retry in that it can drop the
2944 * mmap_lock. It differs in that it actually returns the folio locked
2945 * if it returns 1 and 0 if it couldn't lock the folio. If we did have
2946 * to drop the mmap_lock then fpin will point to the pinned file and
2947 * needs to be fput()'ed at a later point.
6b4c9f44 2948 */
e292e6d6 2949static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
6b4c9f44
JB
2950 struct file **fpin)
2951{
7c23c782 2952 if (folio_trylock(folio))
6b4c9f44
JB
2953 return 1;
2954
8b0f9fa2
LT
2955 /*
2956 * NOTE! This will make us return with VM_FAULT_RETRY, but with
c1e8d7c6 2957 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
8b0f9fa2
LT
2958 * is supposed to work. We have way too many special cases..
2959 */
6b4c9f44
JB
2960 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2961 return 0;
2962
2963 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2964 if (vmf->flags & FAULT_FLAG_KILLABLE) {
af7f29d9 2965 if (__folio_lock_killable(folio)) {
6b4c9f44 2966 /*
c1e8d7c6 2967 * We didn't have the right flags to drop the mmap_lock,
6b4c9f44
JB
2968 * but all fault_handlers only check for fatal signals
2969 * if we return VM_FAULT_RETRY, so we need to drop the
c1e8d7c6 2970 * mmap_lock here and return 0 if we don't have a fpin.
6b4c9f44
JB
2971 */
2972 if (*fpin == NULL)
d8ed45c5 2973 mmap_read_unlock(vmf->vma->vm_mm);
6b4c9f44
JB
2974 return 0;
2975 }
2976 } else
7c23c782
MWO
2977 __folio_lock(folio);
2978
6b4c9f44
JB
2979 return 1;
2980}
2981
ef00e08e 2982/*
6b4c9f44
JB
2983 * Synchronous readahead happens when we don't even find a page in the page
2984 * cache at all. We don't want to perform IO under the mmap sem, so if we have
2985 * to drop the mmap sem we return the file that was pinned in order for us to do
2986 * that. If we didn't pin a file then we return NULL. The file that is
2987 * returned needs to be fput()'ed when we're done with it.
ef00e08e 2988 */
6b4c9f44 2989static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
ef00e08e 2990{
2a1180f1
JB
2991 struct file *file = vmf->vma->vm_file;
2992 struct file_ra_state *ra = &file->f_ra;
ef00e08e 2993 struct address_space *mapping = file->f_mapping;
fcd9ae4f 2994 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
6b4c9f44 2995 struct file *fpin = NULL;
e630bfac 2996 unsigned int mmap_miss;
ef00e08e 2997
4687fdbb
MWO
2998#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2999 /* Use the readahead code, even if readahead is disabled */
3000 if (vmf->vma->vm_flags & VM_HUGEPAGE) {
3001 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3002 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
3003 ra->size = HPAGE_PMD_NR;
3004 /*
3005 * Fetch two PMD folios, so we get the chance to actually
3006 * readahead, unless we've been told not to.
3007 */
3008 if (!(vmf->vma->vm_flags & VM_RAND_READ))
3009 ra->size *= 2;
3010 ra->async_size = HPAGE_PMD_NR;
3011 page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER);
3012 return fpin;
3013 }
3014#endif
3015
ef00e08e 3016 /* If we don't want any read-ahead, don't bother */
2a1180f1 3017 if (vmf->vma->vm_flags & VM_RAND_READ)
6b4c9f44 3018 return fpin;
275b12bf 3019 if (!ra->ra_pages)
6b4c9f44 3020 return fpin;
ef00e08e 3021
2a1180f1 3022 if (vmf->vma->vm_flags & VM_SEQ_READ) {
6b4c9f44 3023 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
fcd9ae4f 3024 page_cache_sync_ra(&ractl, ra->ra_pages);
6b4c9f44 3025 return fpin;
ef00e08e
LT
3026 }
3027
207d04ba 3028 /* Avoid banging the cache line if not needed */
e630bfac
KS
3029 mmap_miss = READ_ONCE(ra->mmap_miss);
3030 if (mmap_miss < MMAP_LOTSAMISS * 10)
3031 WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
ef00e08e
LT
3032
3033 /*
3034 * Do we miss much more than hit in this file? If so,
3035 * stop bothering with read-ahead. It will only hurt.
3036 */
e630bfac 3037 if (mmap_miss > MMAP_LOTSAMISS)
6b4c9f44 3038 return fpin;
ef00e08e 3039
d30a1100
WF
3040 /*
3041 * mmap read-around
3042 */
6b4c9f44 3043 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
db660d46 3044 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
600e19af
RG
3045 ra->size = ra->ra_pages;
3046 ra->async_size = ra->ra_pages / 4;
db660d46 3047 ractl._index = ra->start;
56a4d67c 3048 page_cache_ra_order(&ractl, ra, 0);
6b4c9f44 3049 return fpin;
ef00e08e
LT
3050}
3051
3052/*
3053 * Asynchronous readahead happens when we find the page and PG_readahead,
6b4c9f44 3054 * so we want to possibly extend the readahead further. We return the file that
c1e8d7c6 3055 * was pinned if we have to drop the mmap_lock in order to do IO.
ef00e08e 3056 */
6b4c9f44 3057static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
79598ced 3058 struct folio *folio)
ef00e08e 3059{
2a1180f1
JB
3060 struct file *file = vmf->vma->vm_file;
3061 struct file_ra_state *ra = &file->f_ra;
79598ced 3062 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
6b4c9f44 3063 struct file *fpin = NULL;
e630bfac 3064 unsigned int mmap_miss;
ef00e08e
LT
3065
3066 /* If we don't want any read-ahead, don't bother */
5c72feee 3067 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
6b4c9f44 3068 return fpin;
79598ced 3069
e630bfac
KS
3070 mmap_miss = READ_ONCE(ra->mmap_miss);
3071 if (mmap_miss)
3072 WRITE_ONCE(ra->mmap_miss, --mmap_miss);
79598ced
MWO
3073
3074 if (folio_test_readahead(folio)) {
6b4c9f44 3075 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
79598ced 3076 page_cache_async_ra(&ractl, folio, ra->ra_pages);
6b4c9f44
JB
3077 }
3078 return fpin;
ef00e08e
LT
3079}
3080
485bb99b 3081/**
54cb8821 3082 * filemap_fault - read in file data for page fault handling
d0217ac0 3083 * @vmf: struct vm_fault containing details of the fault
485bb99b 3084 *
54cb8821 3085 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
3086 * mapped memory region to read in file data during a page fault.
3087 *
3088 * The goto's are kind of ugly, but this streamlines the normal case of having
3089 * it in the page cache, and handles the special cases reasonably without
3090 * having a lot of duplicated code.
9a95f3cf 3091 *
c1e8d7c6 3092 * vma->vm_mm->mmap_lock must be held on entry.
9a95f3cf 3093 *
c1e8d7c6 3094 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
e292e6d6 3095 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
9a95f3cf 3096 *
c1e8d7c6 3097 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
9a95f3cf
PC
3098 * has not been released.
3099 *
3100 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
a862f68a
MR
3101 *
3102 * Return: bitwise-OR of %VM_FAULT_ codes.
1da177e4 3103 */
2bcd6454 3104vm_fault_t filemap_fault(struct vm_fault *vmf)
1da177e4
LT
3105{
3106 int error;
11bac800 3107 struct file *file = vmf->vma->vm_file;
6b4c9f44 3108 struct file *fpin = NULL;
1da177e4 3109 struct address_space *mapping = file->f_mapping;
1da177e4 3110 struct inode *inode = mapping->host;
e292e6d6
MWO
3111 pgoff_t max_idx, index = vmf->pgoff;
3112 struct folio *folio;
2bcd6454 3113 vm_fault_t ret = 0;
730633f0 3114 bool mapping_locked = false;
1da177e4 3115
e292e6d6
MWO
3116 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3117 if (unlikely(index >= max_idx))
5307cc1a 3118 return VM_FAULT_SIGBUS;
1da177e4 3119
1da177e4 3120 /*
49426420 3121 * Do we have something in the page cache already?
1da177e4 3122 */
e292e6d6
MWO
3123 folio = filemap_get_folio(mapping, index);
3124 if (likely(folio)) {
1da177e4 3125 /*
730633f0
JK
3126 * We found the page, so try async readahead before waiting for
3127 * the lock.
1da177e4 3128 */
730633f0 3129 if (!(vmf->flags & FAULT_FLAG_TRIED))
79598ced 3130 fpin = do_async_mmap_readahead(vmf, folio);
e292e6d6 3131 if (unlikely(!folio_test_uptodate(folio))) {
730633f0
JK
3132 filemap_invalidate_lock_shared(mapping);
3133 mapping_locked = true;
3134 }
3135 } else {
ef00e08e 3136 /* No page in the page cache at all */
ef00e08e 3137 count_vm_event(PGMAJFAULT);
2262185c 3138 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
ef00e08e 3139 ret = VM_FAULT_MAJOR;
6b4c9f44 3140 fpin = do_sync_mmap_readahead(vmf);
ef00e08e 3141retry_find:
730633f0 3142 /*
e292e6d6 3143 * See comment in filemap_create_folio() why we need
730633f0
JK
3144 * invalidate_lock
3145 */
3146 if (!mapping_locked) {
3147 filemap_invalidate_lock_shared(mapping);
3148 mapping_locked = true;
3149 }
e292e6d6 3150 folio = __filemap_get_folio(mapping, index,
a75d4c33
JB
3151 FGP_CREAT|FGP_FOR_MMAP,
3152 vmf->gfp_mask);
e292e6d6 3153 if (!folio) {
6b4c9f44
JB
3154 if (fpin)
3155 goto out_retry;
730633f0 3156 filemap_invalidate_unlock_shared(mapping);
e520e932 3157 return VM_FAULT_OOM;
6b4c9f44 3158 }
1da177e4
LT
3159 }
3160
e292e6d6 3161 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
6b4c9f44 3162 goto out_retry;
b522c94d
ML
3163
3164 /* Did it get truncated? */
e292e6d6
MWO
3165 if (unlikely(folio->mapping != mapping)) {
3166 folio_unlock(folio);
3167 folio_put(folio);
b522c94d
ML
3168 goto retry_find;
3169 }
e292e6d6 3170 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
b522c94d 3171
1da177e4 3172 /*
d00806b1
NP
3173 * We have a locked page in the page cache, now we need to check
3174 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 3175 */
e292e6d6 3176 if (unlikely(!folio_test_uptodate(folio))) {
730633f0
JK
3177 /*
3178 * The page was in cache and uptodate and now it is not.
3179 * Strange but possible since we didn't hold the page lock all
3180 * the time. Let's drop everything get the invalidate lock and
3181 * try again.
3182 */
3183 if (!mapping_locked) {
e292e6d6
MWO
3184 folio_unlock(folio);
3185 folio_put(folio);
730633f0
JK
3186 goto retry_find;
3187 }
1da177e4 3188 goto page_not_uptodate;
730633f0 3189 }
1da177e4 3190
6b4c9f44 3191 /*
c1e8d7c6 3192 * We've made it this far and we had to drop our mmap_lock, now is the
6b4c9f44
JB
3193 * time to return to the upper layer and have it re-find the vma and
3194 * redo the fault.
3195 */
3196 if (fpin) {
e292e6d6 3197 folio_unlock(folio);
6b4c9f44
JB
3198 goto out_retry;
3199 }
730633f0
JK
3200 if (mapping_locked)
3201 filemap_invalidate_unlock_shared(mapping);
6b4c9f44 3202
ef00e08e
LT
3203 /*
3204 * Found the page and have a reference on it.
3205 * We must recheck i_size under page lock.
3206 */
e292e6d6
MWO
3207 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3208 if (unlikely(index >= max_idx)) {
3209 folio_unlock(folio);
3210 folio_put(folio);
5307cc1a 3211 return VM_FAULT_SIGBUS;
d00806b1
NP
3212 }
3213
e292e6d6 3214 vmf->page = folio_file_page(folio, index);
83c54070 3215 return ret | VM_FAULT_LOCKED;
1da177e4 3216
1da177e4 3217page_not_uptodate:
1da177e4
LT
3218 /*
3219 * Umm, take care of errors if the page isn't up-to-date.
3220 * Try to re-read it _once_. We do this synchronously,
3221 * because there really aren't any performance issues here
3222 * and we need to check for errors.
3223 */
6b4c9f44 3224 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
e292e6d6 3225 error = filemap_read_folio(file, mapping, folio);
6b4c9f44
JB
3226 if (fpin)
3227 goto out_retry;
e292e6d6 3228 folio_put(folio);
d00806b1
NP
3229
3230 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 3231 goto retry_find;
730633f0 3232 filemap_invalidate_unlock_shared(mapping);
1da177e4 3233
d0217ac0 3234 return VM_FAULT_SIGBUS;
6b4c9f44
JB
3235
3236out_retry:
3237 /*
c1e8d7c6 3238 * We dropped the mmap_lock, we need to return to the fault handler to
6b4c9f44
JB
3239 * re-find the vma and come back and find our hopefully still populated
3240 * page.
3241 */
e292e6d6
MWO
3242 if (folio)
3243 folio_put(folio);
730633f0
JK
3244 if (mapping_locked)
3245 filemap_invalidate_unlock_shared(mapping);
6b4c9f44
JB
3246 if (fpin)
3247 fput(fpin);
3248 return ret | VM_FAULT_RETRY;
54cb8821
NP
3249}
3250EXPORT_SYMBOL(filemap_fault);
3251
f9ce0be7 3252static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page)
f1820361 3253{
f9ce0be7
KS
3254 struct mm_struct *mm = vmf->vma->vm_mm;
3255
3256 /* Huge page is mapped? No need to proceed. */
3257 if (pmd_trans_huge(*vmf->pmd)) {
3258 unlock_page(page);
3259 put_page(page);
3260 return true;
3261 }
3262
3263 if (pmd_none(*vmf->pmd) && PageTransHuge(page)) {
e0f43fa5
YS
3264 vm_fault_t ret = do_set_pmd(vmf, page);
3265 if (!ret) {
3266 /* The page is mapped successfully, reference consumed. */
3267 unlock_page(page);
3268 return true;
f9ce0be7 3269 }
f9ce0be7
KS
3270 }
3271
03c4f204
QZ
3272 if (pmd_none(*vmf->pmd))
3273 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
f9ce0be7
KS
3274
3275 /* See comment in handle_pte_fault() */
3276 if (pmd_devmap_trans_unstable(vmf->pmd)) {
3277 unlock_page(page);
3278 put_page(page);
3279 return true;
3280 }
3281
3282 return false;
3283}
3284
820b05e9 3285static struct folio *next_uptodate_page(struct folio *folio,
f9ce0be7
KS
3286 struct address_space *mapping,
3287 struct xa_state *xas, pgoff_t end_pgoff)
3288{
3289 unsigned long max_idx;
3290
3291 do {
9184a307 3292 if (!folio)
f9ce0be7 3293 return NULL;
9184a307 3294 if (xas_retry(xas, folio))
f9ce0be7 3295 continue;
9184a307 3296 if (xa_is_value(folio))
f9ce0be7 3297 continue;
9184a307 3298 if (folio_test_locked(folio))
f9ce0be7 3299 continue;
9184a307 3300 if (!folio_try_get_rcu(folio))
f9ce0be7
KS
3301 continue;
3302 /* Has the page moved or been split? */
9184a307 3303 if (unlikely(folio != xas_reload(xas)))
f9ce0be7 3304 goto skip;
9184a307 3305 if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
f9ce0be7 3306 goto skip;
9184a307 3307 if (!folio_trylock(folio))
f9ce0be7 3308 goto skip;
9184a307 3309 if (folio->mapping != mapping)
f9ce0be7 3310 goto unlock;
9184a307 3311 if (!folio_test_uptodate(folio))
f9ce0be7
KS
3312 goto unlock;
3313 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3314 if (xas->xa_index >= max_idx)
3315 goto unlock;
820b05e9 3316 return folio;
f9ce0be7 3317unlock:
9184a307 3318 folio_unlock(folio);
f9ce0be7 3319skip:
9184a307
MWO
3320 folio_put(folio);
3321 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
f9ce0be7
KS
3322
3323 return NULL;
3324}
3325
820b05e9 3326static inline struct folio *first_map_page(struct address_space *mapping,
f9ce0be7
KS
3327 struct xa_state *xas,
3328 pgoff_t end_pgoff)
3329{
3330 return next_uptodate_page(xas_find(xas, end_pgoff),
3331 mapping, xas, end_pgoff);
3332}
3333
820b05e9 3334static inline struct folio *next_map_page(struct address_space *mapping,
f9ce0be7
KS
3335 struct xa_state *xas,
3336 pgoff_t end_pgoff)
3337{
3338 return next_uptodate_page(xas_next_entry(xas, end_pgoff),
3339 mapping, xas, end_pgoff);
3340}
3341
3342vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3343 pgoff_t start_pgoff, pgoff_t end_pgoff)
3344{
3345 struct vm_area_struct *vma = vmf->vma;
3346 struct file *file = vma->vm_file;
f1820361 3347 struct address_space *mapping = file->f_mapping;
bae473a4 3348 pgoff_t last_pgoff = start_pgoff;
9d3af4b4 3349 unsigned long addr;
070e807c 3350 XA_STATE(xas, &mapping->i_pages, start_pgoff);
820b05e9
MWO
3351 struct folio *folio;
3352 struct page *page;
e630bfac 3353 unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
f9ce0be7 3354 vm_fault_t ret = 0;
f1820361
KS
3355
3356 rcu_read_lock();
820b05e9
MWO
3357 folio = first_map_page(mapping, &xas, end_pgoff);
3358 if (!folio)
f9ce0be7 3359 goto out;
f1820361 3360
820b05e9 3361 if (filemap_map_pmd(vmf, &folio->page)) {
f9ce0be7
KS
3362 ret = VM_FAULT_NOPAGE;
3363 goto out;
3364 }
f1820361 3365
9d3af4b4
WD
3366 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3367 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
f9ce0be7 3368 do {
6b24ca4a 3369again:
820b05e9 3370 page = folio_file_page(folio, xas.xa_index);
f9ce0be7 3371 if (PageHWPoison(page))
f1820361
KS
3372 goto unlock;
3373
e630bfac
KS
3374 if (mmap_miss > 0)
3375 mmap_miss--;
7267ec00 3376
9d3af4b4 3377 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
f9ce0be7 3378 vmf->pte += xas.xa_index - last_pgoff;
070e807c 3379 last_pgoff = xas.xa_index;
f9ce0be7
KS
3380
3381 if (!pte_none(*vmf->pte))
7267ec00 3382 goto unlock;
f9ce0be7 3383
46bdb427 3384 /* We're about to handle the fault */
9d3af4b4 3385 if (vmf->address == addr)
46bdb427 3386 ret = VM_FAULT_NOPAGE;
46bdb427 3387
9d3af4b4 3388 do_set_pte(vmf, page, addr);
f9ce0be7 3389 /* no need to invalidate: a not-present page won't be cached */
9d3af4b4 3390 update_mmu_cache(vma, addr, vmf->pte);
6b24ca4a
MWO
3391 if (folio_more_pages(folio, xas.xa_index, end_pgoff)) {
3392 xas.xa_index++;
3393 folio_ref_inc(folio);
3394 goto again;
3395 }
820b05e9 3396 folio_unlock(folio);
f9ce0be7 3397 continue;
f1820361 3398unlock:
6b24ca4a
MWO
3399 if (folio_more_pages(folio, xas.xa_index, end_pgoff)) {
3400 xas.xa_index++;
3401 goto again;
3402 }
820b05e9
MWO
3403 folio_unlock(folio);
3404 folio_put(folio);
3405 } while ((folio = next_map_page(mapping, &xas, end_pgoff)) != NULL);
f9ce0be7
KS
3406 pte_unmap_unlock(vmf->pte, vmf->ptl);
3407out:
f1820361 3408 rcu_read_unlock();
e630bfac 3409 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
f9ce0be7 3410 return ret;
f1820361
KS
3411}
3412EXPORT_SYMBOL(filemap_map_pages);
3413
2bcd6454 3414vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
4fcf1c62 3415{
5df1a672 3416 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
960ea971 3417 struct folio *folio = page_folio(vmf->page);
2bcd6454 3418 vm_fault_t ret = VM_FAULT_LOCKED;
4fcf1c62 3419
5df1a672 3420 sb_start_pagefault(mapping->host->i_sb);
11bac800 3421 file_update_time(vmf->vma->vm_file);
960ea971
MWO
3422 folio_lock(folio);
3423 if (folio->mapping != mapping) {
3424 folio_unlock(folio);
4fcf1c62
JK
3425 ret = VM_FAULT_NOPAGE;
3426 goto out;
3427 }
14da9200 3428 /*
960ea971 3429 * We mark the folio dirty already here so that when freeze is in
14da9200 3430 * progress, we are guaranteed that writeback during freezing will
960ea971 3431 * see the dirty folio and writeprotect it again.
14da9200 3432 */
960ea971
MWO
3433 folio_mark_dirty(folio);
3434 folio_wait_stable(folio);
4fcf1c62 3435out:
5df1a672 3436 sb_end_pagefault(mapping->host->i_sb);
4fcf1c62
JK
3437 return ret;
3438}
4fcf1c62 3439
f0f37e2f 3440const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 3441 .fault = filemap_fault,
f1820361 3442 .map_pages = filemap_map_pages,
4fcf1c62 3443 .page_mkwrite = filemap_page_mkwrite,
1da177e4
LT
3444};
3445
3446/* This is used for a general mmap of a disk file */
3447
68d68ff6 3448int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
3449{
3450 struct address_space *mapping = file->f_mapping;
3451
3452 if (!mapping->a_ops->readpage)
3453 return -ENOEXEC;
3454 file_accessed(file);
3455 vma->vm_ops = &generic_file_vm_ops;
3456 return 0;
3457}
1da177e4
LT
3458
3459/*
3460 * This is for filesystems which do not implement ->writepage.
3461 */
3462int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3463{
3464 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3465 return -EINVAL;
3466 return generic_file_mmap(file, vma);
3467}
3468#else
4b96a37d 3469vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
45397228 3470{
4b96a37d 3471 return VM_FAULT_SIGBUS;
45397228 3472}
68d68ff6 3473int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
3474{
3475 return -ENOSYS;
3476}
68d68ff6 3477int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
3478{
3479 return -ENOSYS;
3480}
3481#endif /* CONFIG_MMU */
3482
45397228 3483EXPORT_SYMBOL(filemap_page_mkwrite);
1da177e4
LT
3484EXPORT_SYMBOL(generic_file_mmap);
3485EXPORT_SYMBOL(generic_file_readonly_mmap);
3486
539a3322
MWO
3487static struct folio *do_read_cache_folio(struct address_space *mapping,
3488 pgoff_t index, filler_t filler, void *data, gfp_t gfp)
67f9fd91 3489{
539a3322 3490 struct folio *folio;
1da177e4
LT
3491 int err;
3492repeat:
539a3322
MWO
3493 folio = filemap_get_folio(mapping, index);
3494 if (!folio) {
3495 folio = filemap_alloc_folio(gfp, 0);
3496 if (!folio)
eb2be189 3497 return ERR_PTR(-ENOMEM);
539a3322 3498 err = filemap_add_folio(mapping, folio, index, gfp);
eb2be189 3499 if (unlikely(err)) {
539a3322 3500 folio_put(folio);
eb2be189
NP
3501 if (err == -EEXIST)
3502 goto repeat;
22ecdb4f 3503 /* Presumably ENOMEM for xarray node */
1da177e4
LT
3504 return ERR_PTR(err);
3505 }
32b63529
MG
3506
3507filler:
6c45b454 3508 if (filler)
539a3322 3509 err = filler(data, &folio->page);
6c45b454 3510 else
539a3322 3511 err = mapping->a_ops->readpage(data, &folio->page);
6c45b454 3512
1da177e4 3513 if (err < 0) {
539a3322 3514 folio_put(folio);
32b63529 3515 return ERR_PTR(err);
1da177e4 3516 }
1da177e4 3517
539a3322
MWO
3518 folio_wait_locked(folio);
3519 if (!folio_test_uptodate(folio)) {
3520 folio_put(folio);
3521 return ERR_PTR(-EIO);
3522 }
3523
32b63529
MG
3524 goto out;
3525 }
539a3322 3526 if (folio_test_uptodate(folio))
1da177e4
LT
3527 goto out;
3528
81f4c03b
MWO
3529 if (!folio_trylock(folio)) {
3530 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3531 goto repeat;
3532 }
ebded027 3533
81f4c03b 3534 /* Folio was truncated from mapping */
539a3322
MWO
3535 if (!folio->mapping) {
3536 folio_unlock(folio);
3537 folio_put(folio);
32b63529 3538 goto repeat;
1da177e4 3539 }
ebded027
MG
3540
3541 /* Someone else locked and filled the page in a very small window */
539a3322
MWO
3542 if (folio_test_uptodate(folio)) {
3543 folio_unlock(folio);
1da177e4
LT
3544 goto out;
3545 }
faffdfa0
XT
3546
3547 /*
3548 * A previous I/O error may have been due to temporary
3549 * failures.
3550 * Clear page error before actual read, PG_error will be
3551 * set again if read page fails.
3552 */
539a3322 3553 folio_clear_error(folio);
32b63529
MG
3554 goto filler;
3555
c855ff37 3556out:
539a3322
MWO
3557 folio_mark_accessed(folio);
3558 return folio;
6fe6900e 3559}
0531b2aa
LT
3560
3561/**
539a3322 3562 * read_cache_folio - read into page cache, fill it if needed
0531b2aa
LT
3563 * @mapping: the page's address_space
3564 * @index: the page index
3565 * @filler: function to perform the read
5e5358e7 3566 * @data: first arg to filler(data, page) function, often left as NULL
0531b2aa 3567 *
0531b2aa 3568 * Read into the page cache. If a page already exists, and PageUptodate() is
67f9fd91 3569 * not set, try to fill the page and wait for it to become unlocked.
0531b2aa
LT
3570 *
3571 * If the page does not get brought uptodate, return -EIO.
a862f68a 3572 *
730633f0
JK
3573 * The function expects mapping->invalidate_lock to be already held.
3574 *
a862f68a 3575 * Return: up to date page on success, ERR_PTR() on failure.
0531b2aa 3576 */
539a3322
MWO
3577struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
3578 filler_t filler, void *data)
3579{
3580 return do_read_cache_folio(mapping, index, filler, data,
3581 mapping_gfp_mask(mapping));
3582}
3583EXPORT_SYMBOL(read_cache_folio);
3584
3585static struct page *do_read_cache_page(struct address_space *mapping,
3586 pgoff_t index, filler_t *filler, void *data, gfp_t gfp)
3587{
3588 struct folio *folio;
3589
3590 folio = do_read_cache_folio(mapping, index, filler, data, gfp);
3591 if (IS_ERR(folio))
3592 return &folio->page;
3593 return folio_file_page(folio, index);
3594}
3595
67f9fd91 3596struct page *read_cache_page(struct address_space *mapping,
539a3322 3597 pgoff_t index, filler_t *filler, void *data)
0531b2aa 3598{
d322a8e5
CH
3599 return do_read_cache_page(mapping, index, filler, data,
3600 mapping_gfp_mask(mapping));
0531b2aa 3601}
67f9fd91 3602EXPORT_SYMBOL(read_cache_page);
0531b2aa
LT
3603
3604/**
3605 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3606 * @mapping: the page's address_space
3607 * @index: the page index
3608 * @gfp: the page allocator flags to use if allocating
3609 *
3610 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
e6f67b8c 3611 * any new page allocations done using the specified allocation flags.
0531b2aa
LT
3612 *
3613 * If the page does not get brought uptodate, return -EIO.
a862f68a 3614 *
730633f0
JK
3615 * The function expects mapping->invalidate_lock to be already held.
3616 *
a862f68a 3617 * Return: up to date page on success, ERR_PTR() on failure.
0531b2aa
LT
3618 */
3619struct page *read_cache_page_gfp(struct address_space *mapping,
3620 pgoff_t index,
3621 gfp_t gfp)
3622{
6c45b454 3623 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
0531b2aa
LT
3624}
3625EXPORT_SYMBOL(read_cache_page_gfp);
3626
afddba49
NP
3627int pagecache_write_begin(struct file *file, struct address_space *mapping,
3628 loff_t pos, unsigned len, unsigned flags,
3629 struct page **pagep, void **fsdata)
3630{
3631 const struct address_space_operations *aops = mapping->a_ops;
3632
4e02ed4b 3633 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 3634 pagep, fsdata);
afddba49
NP
3635}
3636EXPORT_SYMBOL(pagecache_write_begin);
3637
3638int pagecache_write_end(struct file *file, struct address_space *mapping,
3639 loff_t pos, unsigned len, unsigned copied,
3640 struct page *page, void *fsdata)
3641{
3642 const struct address_space_operations *aops = mapping->a_ops;
afddba49 3643
4e02ed4b 3644 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
3645}
3646EXPORT_SYMBOL(pagecache_write_end);
3647
a92853b6
KK
3648/*
3649 * Warn about a page cache invalidation failure during a direct I/O write.
3650 */
3651void dio_warn_stale_pagecache(struct file *filp)
3652{
3653 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3654 char pathname[128];
a92853b6
KK
3655 char *path;
3656
5df1a672 3657 errseq_set(&filp->f_mapping->wb_err, -EIO);
a92853b6
KK
3658 if (__ratelimit(&_rs)) {
3659 path = file_path(filp, pathname, sizeof(pathname));
3660 if (IS_ERR(path))
3661 path = "(unknown)";
3662 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
3663 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3664 current->comm);
3665 }
3666}
3667
1da177e4 3668ssize_t
1af5bb49 3669generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3670{
3671 struct file *file = iocb->ki_filp;
3672 struct address_space *mapping = file->f_mapping;
3673 struct inode *inode = mapping->host;
1af5bb49 3674 loff_t pos = iocb->ki_pos;
1da177e4 3675 ssize_t written;
a969e903
CH
3676 size_t write_len;
3677 pgoff_t end;
1da177e4 3678
0c949334 3679 write_len = iov_iter_count(from);
09cbfeaf 3680 end = (pos + write_len - 1) >> PAGE_SHIFT;
a969e903 3681
6be96d3a
GR
3682 if (iocb->ki_flags & IOCB_NOWAIT) {
3683 /* If there are pages to writeback, return */
5df1a672 3684 if (filemap_range_has_page(file->f_mapping, pos,
35f12f0f 3685 pos + write_len - 1))
6be96d3a
GR
3686 return -EAGAIN;
3687 } else {
3688 written = filemap_write_and_wait_range(mapping, pos,
3689 pos + write_len - 1);
3690 if (written)
3691 goto out;
3692 }
a969e903
CH
3693
3694 /*
3695 * After a write we want buffered reads to be sure to go to disk to get
3696 * the new data. We invalidate clean cached page from the region we're
3697 * about to write. We do this *before* the write so that we can return
6ccfa806 3698 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903 3699 */
55635ba7 3700 written = invalidate_inode_pages2_range(mapping,
09cbfeaf 3701 pos >> PAGE_SHIFT, end);
55635ba7
AR
3702 /*
3703 * If a page can not be invalidated, return 0 to fall back
3704 * to buffered write.
3705 */
3706 if (written) {
3707 if (written == -EBUSY)
3708 return 0;
3709 goto out;
a969e903
CH
3710 }
3711
639a93a5 3712 written = mapping->a_ops->direct_IO(iocb, from);
a969e903
CH
3713
3714 /*
3715 * Finally, try again to invalidate clean pages which might have been
3716 * cached by non-direct readahead, or faulted in by get_user_pages()
3717 * if the source of the write was an mmap'ed region of the file
3718 * we're writing. Either one is a pretty crazy thing to do,
3719 * so we don't support it 100%. If this invalidation
3720 * fails, tough, the write still worked...
332391a9
LC
3721 *
3722 * Most of the time we do not need this since dio_complete() will do
3723 * the invalidation for us. However there are some file systems that
3724 * do not end up with dio_complete() being called, so let's not break
80c1fe90
KK
3725 * them by removing it completely.
3726 *
9266a140
KK
3727 * Noticeable example is a blkdev_direct_IO().
3728 *
80c1fe90 3729 * Skip invalidation for async writes or if mapping has no pages.
a969e903 3730 */
9266a140
KK
3731 if (written > 0 && mapping->nrpages &&
3732 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3733 dio_warn_stale_pagecache(file);
a969e903 3734
1da177e4 3735 if (written > 0) {
0116651c 3736 pos += written;
639a93a5 3737 write_len -= written;
0116651c
NK
3738 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3739 i_size_write(inode, pos);
1da177e4
LT
3740 mark_inode_dirty(inode);
3741 }
5cb6c6c7 3742 iocb->ki_pos = pos;
1da177e4 3743 }
ab2125df
PB
3744 if (written != -EIOCBQUEUED)
3745 iov_iter_revert(from, write_len - iov_iter_count(from));
a969e903 3746out:
1da177e4
LT
3747 return written;
3748}
3749EXPORT_SYMBOL(generic_file_direct_write);
3750
3b93f911 3751ssize_t generic_perform_write(struct file *file,
afddba49
NP
3752 struct iov_iter *i, loff_t pos)
3753{
3754 struct address_space *mapping = file->f_mapping;
3755 const struct address_space_operations *a_ops = mapping->a_ops;
3756 long status = 0;
3757 ssize_t written = 0;
674b892e
NP
3758 unsigned int flags = 0;
3759
afddba49
NP
3760 do {
3761 struct page *page;
afddba49
NP
3762 unsigned long offset; /* Offset into pagecache page */
3763 unsigned long bytes; /* Bytes to write to page */
3764 size_t copied; /* Bytes copied from user */
3765 void *fsdata;
3766
09cbfeaf
KS
3767 offset = (pos & (PAGE_SIZE - 1));
3768 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
3769 iov_iter_count(i));
3770
3771again:
00a3d660
LT
3772 /*
3773 * Bring in the user page that we will copy from _first_.
3774 * Otherwise there's a nasty deadlock on copying from the
3775 * same page as we're writing to, without it being marked
3776 * up-to-date.
00a3d660 3777 */
a6294593 3778 if (unlikely(fault_in_iov_iter_readable(i, bytes))) {
00a3d660
LT
3779 status = -EFAULT;
3780 break;
3781 }
3782
296291cd
JK
3783 if (fatal_signal_pending(current)) {
3784 status = -EINTR;
3785 break;
3786 }
3787
674b892e 3788 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49 3789 &page, &fsdata);
2457aec6 3790 if (unlikely(status < 0))
afddba49
NP
3791 break;
3792
931e80e4 3793 if (mapping_writably_mapped(mapping))
3794 flush_dcache_page(page);
00a3d660 3795
f0b65f39 3796 copied = copy_page_from_iter_atomic(page, offset, bytes, i);
afddba49
NP
3797 flush_dcache_page(page);
3798
3799 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3800 page, fsdata);
f0b65f39
AV
3801 if (unlikely(status != copied)) {
3802 iov_iter_revert(i, copied - max(status, 0L));
3803 if (unlikely(status < 0))
3804 break;
3805 }
afddba49
NP
3806 cond_resched();
3807
bc1bb416 3808 if (unlikely(status == 0)) {
afddba49 3809 /*
bc1bb416
AV
3810 * A short copy made ->write_end() reject the
3811 * thing entirely. Might be memory poisoning
3812 * halfway through, might be a race with munmap,
3813 * might be severe memory pressure.
afddba49 3814 */
bc1bb416
AV
3815 if (copied)
3816 bytes = copied;
afddba49
NP
3817 goto again;
3818 }
f0b65f39
AV
3819 pos += status;
3820 written += status;
afddba49
NP
3821
3822 balance_dirty_pages_ratelimited(mapping);
afddba49
NP
3823 } while (iov_iter_count(i));
3824
3825 return written ? written : status;
3826}
3b93f911 3827EXPORT_SYMBOL(generic_perform_write);
1da177e4 3828
e4dd9de3 3829/**
8174202b 3830 * __generic_file_write_iter - write data to a file
e4dd9de3 3831 * @iocb: IO state structure (file, offset, etc.)
8174202b 3832 * @from: iov_iter with data to write
e4dd9de3
JK
3833 *
3834 * This function does all the work needed for actually writing data to a
3835 * file. It does all basic checks, removes SUID from the file, updates
3836 * modification times and calls proper subroutines depending on whether we
3837 * do direct IO or a standard buffered write.
3838 *
9608703e 3839 * It expects i_rwsem to be grabbed unless we work on a block device or similar
e4dd9de3
JK
3840 * object which does not need locking at all.
3841 *
3842 * This function does *not* take care of syncing data in case of O_SYNC write.
3843 * A caller has to handle it. This is mainly due to the fact that we want to
9608703e 3844 * avoid syncing under i_rwsem.
a862f68a
MR
3845 *
3846 * Return:
3847 * * number of bytes written, even for truncated writes
3848 * * negative error code if no data has been written at all
e4dd9de3 3849 */
8174202b 3850ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3851{
3852 struct file *file = iocb->ki_filp;
68d68ff6 3853 struct address_space *mapping = file->f_mapping;
1da177e4 3854 struct inode *inode = mapping->host;
3b93f911 3855 ssize_t written = 0;
1da177e4 3856 ssize_t err;
3b93f911 3857 ssize_t status;
1da177e4 3858
1da177e4 3859 /* We can write back this queue in page reclaim */
de1414a6 3860 current->backing_dev_info = inode_to_bdi(inode);
5fa8e0a1 3861 err = file_remove_privs(file);
1da177e4
LT
3862 if (err)
3863 goto out;
3864
c3b2da31
JB
3865 err = file_update_time(file);
3866 if (err)
3867 goto out;
1da177e4 3868
2ba48ce5 3869 if (iocb->ki_flags & IOCB_DIRECT) {
0b8def9d 3870 loff_t pos, endbyte;
fb5527e6 3871
1af5bb49 3872 written = generic_file_direct_write(iocb, from);
1da177e4 3873 /*
fbbbad4b
MW
3874 * If the write stopped short of completing, fall back to
3875 * buffered writes. Some filesystems do this for writes to
3876 * holes, for example. For DAX files, a buffered write will
3877 * not succeed (even if it did, DAX does not handle dirty
3878 * page-cache pages correctly).
1da177e4 3879 */
0b8def9d 3880 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
fbbbad4b
MW
3881 goto out;
3882
0b8def9d 3883 status = generic_perform_write(file, from, pos = iocb->ki_pos);
fb5527e6 3884 /*
3b93f911 3885 * If generic_perform_write() returned a synchronous error
fb5527e6
JM
3886 * then we want to return the number of bytes which were
3887 * direct-written, or the error code if that was zero. Note
3888 * that this differs from normal direct-io semantics, which
3889 * will return -EFOO even if some bytes were written.
3890 */
60bb4529 3891 if (unlikely(status < 0)) {
3b93f911 3892 err = status;
fb5527e6
JM
3893 goto out;
3894 }
fb5527e6
JM
3895 /*
3896 * We need to ensure that the page cache pages are written to
3897 * disk and invalidated to preserve the expected O_DIRECT
3898 * semantics.
3899 */
3b93f911 3900 endbyte = pos + status - 1;
0b8def9d 3901 err = filemap_write_and_wait_range(mapping, pos, endbyte);
fb5527e6 3902 if (err == 0) {
0b8def9d 3903 iocb->ki_pos = endbyte + 1;
3b93f911 3904 written += status;
fb5527e6 3905 invalidate_mapping_pages(mapping,
09cbfeaf
KS
3906 pos >> PAGE_SHIFT,
3907 endbyte >> PAGE_SHIFT);
fb5527e6
JM
3908 } else {
3909 /*
3910 * We don't know how much we wrote, so just return
3911 * the number of bytes which were direct-written
3912 */
3913 }
3914 } else {
0b8def9d
AV
3915 written = generic_perform_write(file, from, iocb->ki_pos);
3916 if (likely(written > 0))
3917 iocb->ki_pos += written;
fb5527e6 3918 }
1da177e4
LT
3919out:
3920 current->backing_dev_info = NULL;
3921 return written ? written : err;
3922}
8174202b 3923EXPORT_SYMBOL(__generic_file_write_iter);
e4dd9de3 3924
e4dd9de3 3925/**
8174202b 3926 * generic_file_write_iter - write data to a file
e4dd9de3 3927 * @iocb: IO state structure
8174202b 3928 * @from: iov_iter with data to write
e4dd9de3 3929 *
8174202b 3930 * This is a wrapper around __generic_file_write_iter() to be used by most
e4dd9de3 3931 * filesystems. It takes care of syncing the file in case of O_SYNC file
9608703e 3932 * and acquires i_rwsem as needed.
a862f68a
MR
3933 * Return:
3934 * * negative error code if no data has been written at all of
3935 * vfs_fsync_range() failed for a synchronous write
3936 * * number of bytes written, even for truncated writes
e4dd9de3 3937 */
8174202b 3938ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3939{
3940 struct file *file = iocb->ki_filp;
148f948b 3941 struct inode *inode = file->f_mapping->host;
1da177e4 3942 ssize_t ret;
1da177e4 3943
5955102c 3944 inode_lock(inode);
3309dd04
AV
3945 ret = generic_write_checks(iocb, from);
3946 if (ret > 0)
5f380c7f 3947 ret = __generic_file_write_iter(iocb, from);
5955102c 3948 inode_unlock(inode);
1da177e4 3949
e2592217
CH
3950 if (ret > 0)
3951 ret = generic_write_sync(iocb, ret);
1da177e4
LT
3952 return ret;
3953}
8174202b 3954EXPORT_SYMBOL(generic_file_write_iter);
1da177e4 3955
cf9a2ae8 3956/**
82c50f8b
MWO
3957 * filemap_release_folio() - Release fs-specific metadata on a folio.
3958 * @folio: The folio which the kernel is trying to free.
3959 * @gfp: Memory allocation flags (and I/O mode).
cf9a2ae8 3960 *
82c50f8b
MWO
3961 * The address_space is trying to release any data attached to a folio
3962 * (presumably at folio->private).
cf9a2ae8 3963 *
82c50f8b
MWO
3964 * This will also be called if the private_2 flag is set on a page,
3965 * indicating that the folio has other metadata associated with it.
266cf658 3966 *
82c50f8b
MWO
3967 * The @gfp argument specifies whether I/O may be performed to release
3968 * this page (__GFP_IO), and whether the call may block
3969 * (__GFP_RECLAIM & __GFP_FS).
cf9a2ae8 3970 *
82c50f8b 3971 * Return: %true if the release was successful, otherwise %false.
cf9a2ae8 3972 */
82c50f8b 3973bool filemap_release_folio(struct folio *folio, gfp_t gfp)
cf9a2ae8 3974{
82c50f8b 3975 struct address_space * const mapping = folio->mapping;
cf9a2ae8 3976
82c50f8b
MWO
3977 BUG_ON(!folio_test_locked(folio));
3978 if (folio_test_writeback(folio))
3979 return false;
cf9a2ae8
DH
3980
3981 if (mapping && mapping->a_ops->releasepage)
82c50f8b
MWO
3982 return mapping->a_ops->releasepage(&folio->page, gfp);
3983 return try_to_free_buffers(&folio->page);
cf9a2ae8 3984}
82c50f8b 3985EXPORT_SYMBOL(filemap_release_folio);