filemap: kill page_cache_read usage in filemap_fault
[linux-block.git] / mm / filemap.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
b95f1b31 12#include <linux/export.h>
1da177e4 13#include <linux/compiler.h>
f9fe48be 14#include <linux/dax.h>
1da177e4 15#include <linux/fs.h>
3f07c014 16#include <linux/sched/signal.h>
c22ce143 17#include <linux/uaccess.h>
c59ede7b 18#include <linux/capability.h>
1da177e4 19#include <linux/kernel_stat.h>
5a0e3ad6 20#include <linux/gfp.h>
1da177e4
LT
21#include <linux/mm.h>
22#include <linux/swap.h>
23#include <linux/mman.h>
24#include <linux/pagemap.h>
25#include <linux/file.h>
26#include <linux/uio.h>
27#include <linux/hash.h>
28#include <linux/writeback.h>
53253383 29#include <linux/backing-dev.h>
1da177e4
LT
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/security.h>
44110fe3 33#include <linux/cpuset.h>
00501b53 34#include <linux/hugetlb.h>
8a9f3ccd 35#include <linux/memcontrol.h>
c515e1fd 36#include <linux/cleancache.h>
c7df8ad2 37#include <linux/shmem_fs.h>
f1820361 38#include <linux/rmap.h>
b1d29ba8 39#include <linux/delayacct.h>
eb414681 40#include <linux/psi.h>
0f8053a5
NP
41#include "internal.h"
42
fe0bfaaf
RJ
43#define CREATE_TRACE_POINTS
44#include <trace/events/filemap.h>
45
1da177e4 46/*
1da177e4
LT
47 * FIXME: remove all knowledge of the buffer layer from the core VM
48 */
148f948b 49#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 50
1da177e4
LT
51#include <asm/mman.h>
52
53/*
54 * Shared mappings implemented 30.11.1994. It's not fully working yet,
55 * though.
56 *
57 * Shared mappings now work. 15.8.1995 Bruno.
58 *
59 * finished 'unifying' the page and buffer cache and SMP-threaded the
60 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
61 *
62 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
63 */
64
65/*
66 * Lock ordering:
67 *
c8c06efa 68 * ->i_mmap_rwsem (truncate_pagecache)
1da177e4 69 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91 70 * ->swap_lock (exclusive_swap_page, others)
b93b0163 71 * ->i_pages lock
1da177e4 72 *
1b1dcc1b 73 * ->i_mutex
c8c06efa 74 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
1da177e4
LT
75 *
76 * ->mmap_sem
c8c06efa 77 * ->i_mmap_rwsem
b8072f09 78 * ->page_table_lock or pte_lock (various, mainly in memory.c)
b93b0163 79 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
1da177e4
LT
80 *
81 * ->mmap_sem
82 * ->lock_page (access_process_vm)
83 *
ccad2365 84 * ->i_mutex (generic_perform_write)
82591e6e 85 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
1da177e4 86 *
f758eeab 87 * bdi->wb.list_lock
a66979ab 88 * sb_lock (fs/fs-writeback.c)
b93b0163 89 * ->i_pages lock (__sync_single_inode)
1da177e4 90 *
c8c06efa 91 * ->i_mmap_rwsem
1da177e4
LT
92 * ->anon_vma.lock (vma_adjust)
93 *
94 * ->anon_vma.lock
b8072f09 95 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 96 *
b8072f09 97 * ->page_table_lock or pte_lock
5d337b91 98 * ->swap_lock (try_to_unmap_one)
1da177e4 99 * ->private_lock (try_to_unmap_one)
b93b0163 100 * ->i_pages lock (try_to_unmap_one)
f4b7e272
AR
101 * ->pgdat->lru_lock (follow_page->mark_page_accessed)
102 * ->pgdat->lru_lock (check_pte_range->isolate_lru_page)
1da177e4 103 * ->private_lock (page_remove_rmap->set_page_dirty)
b93b0163 104 * ->i_pages lock (page_remove_rmap->set_page_dirty)
f758eeab 105 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
250df6ed 106 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
81f8c3a4 107 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
f758eeab 108 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 109 * ->inode->i_lock (zap_pte_range->set_page_dirty)
1da177e4
LT
110 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
111 *
c8c06efa 112 * ->i_mmap_rwsem
9a3c531d 113 * ->tasklist_lock (memory_failure, collect_procs_ao)
1da177e4
LT
114 */
115
5c024e6a 116static void page_cache_delete(struct address_space *mapping,
91b0abe3
JW
117 struct page *page, void *shadow)
118{
5c024e6a
MW
119 XA_STATE(xas, &mapping->i_pages, page->index);
120 unsigned int nr = 1;
c70b647d 121
5c024e6a 122 mapping_set_update(&xas, mapping);
c70b647d 123
5c024e6a
MW
124 /* hugetlb pages are represented by a single entry in the xarray */
125 if (!PageHuge(page)) {
126 xas_set_order(&xas, page->index, compound_order(page));
127 nr = 1U << compound_order(page);
128 }
91b0abe3 129
83929372
KS
130 VM_BUG_ON_PAGE(!PageLocked(page), page);
131 VM_BUG_ON_PAGE(PageTail(page), page);
132 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
449dd698 133
5c024e6a
MW
134 xas_store(&xas, shadow);
135 xas_init_marks(&xas);
d3798ae8 136
2300638b
JK
137 page->mapping = NULL;
138 /* Leave page->index set: truncation lookup relies upon it */
139
d3798ae8
JW
140 if (shadow) {
141 mapping->nrexceptional += nr;
142 /*
143 * Make sure the nrexceptional update is committed before
144 * the nrpages update so that final truncate racing
145 * with reclaim does not see both counters 0 at the
146 * same time and miss a shadow entry.
147 */
148 smp_wmb();
149 }
150 mapping->nrpages -= nr;
91b0abe3
JW
151}
152
5ecc4d85
JK
153static void unaccount_page_cache_page(struct address_space *mapping,
154 struct page *page)
1da177e4 155{
5ecc4d85 156 int nr;
1da177e4 157
c515e1fd
DM
158 /*
159 * if we're uptodate, flush out into the cleancache, otherwise
160 * invalidate any existing cleancache entries. We can't leave
161 * stale data around in the cleancache once our page is gone
162 */
163 if (PageUptodate(page) && PageMappedToDisk(page))
164 cleancache_put_page(page);
165 else
3167760f 166 cleancache_invalidate_page(mapping, page);
c515e1fd 167
83929372 168 VM_BUG_ON_PAGE(PageTail(page), page);
06b241f3
HD
169 VM_BUG_ON_PAGE(page_mapped(page), page);
170 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
171 int mapcount;
172
173 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
174 current->comm, page_to_pfn(page));
175 dump_page(page, "still mapped when deleted");
176 dump_stack();
177 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
178
179 mapcount = page_mapcount(page);
180 if (mapping_exiting(mapping) &&
181 page_count(page) >= mapcount + 2) {
182 /*
183 * All vmas have already been torn down, so it's
184 * a good bet that actually the page is unmapped,
185 * and we'd prefer not to leak it: if we're wrong,
186 * some other bad page check should catch it later.
187 */
188 page_mapcount_reset(page);
6d061f9f 189 page_ref_sub(page, mapcount);
06b241f3
HD
190 }
191 }
192
4165b9b4 193 /* hugetlb pages do not participate in page cache accounting. */
5ecc4d85
JK
194 if (PageHuge(page))
195 return;
09612fa6 196
5ecc4d85
JK
197 nr = hpage_nr_pages(page);
198
199 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
200 if (PageSwapBacked(page)) {
201 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
202 if (PageTransHuge(page))
203 __dec_node_page_state(page, NR_SHMEM_THPS);
204 } else {
205 VM_BUG_ON_PAGE(PageTransHuge(page), page);
800d8c63 206 }
5ecc4d85
JK
207
208 /*
209 * At this point page must be either written or cleaned by
210 * truncate. Dirty page here signals a bug and loss of
211 * unwritten data.
212 *
213 * This fixes dirty accounting after removing the page entirely
214 * but leaves PageDirty set: it has no effect for truncated
215 * page and anyway will be cleared before returning page into
216 * buddy allocator.
217 */
218 if (WARN_ON_ONCE(PageDirty(page)))
219 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
220}
221
222/*
223 * Delete a page from the page cache and free it. Caller has to make
224 * sure the page is locked and that nobody else uses it - or that usage
b93b0163 225 * is safe. The caller must hold the i_pages lock.
5ecc4d85
JK
226 */
227void __delete_from_page_cache(struct page *page, void *shadow)
228{
229 struct address_space *mapping = page->mapping;
230
231 trace_mm_filemap_delete_from_page_cache(page);
232
233 unaccount_page_cache_page(mapping, page);
5c024e6a 234 page_cache_delete(mapping, page, shadow);
1da177e4
LT
235}
236
59c66c5f
JK
237static void page_cache_free_page(struct address_space *mapping,
238 struct page *page)
239{
240 void (*freepage)(struct page *);
241
242 freepage = mapping->a_ops->freepage;
243 if (freepage)
244 freepage(page);
245
246 if (PageTransHuge(page) && !PageHuge(page)) {
247 page_ref_sub(page, HPAGE_PMD_NR);
248 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
249 } else {
250 put_page(page);
251 }
252}
253
702cfbf9
MK
254/**
255 * delete_from_page_cache - delete page from page cache
256 * @page: the page which the kernel is trying to remove from page cache
257 *
258 * This must be called only on pages that have been verified to be in the page
259 * cache and locked. It will never put the page into the free list, the caller
260 * has a reference on the page.
261 */
262void delete_from_page_cache(struct page *page)
1da177e4 263{
83929372 264 struct address_space *mapping = page_mapping(page);
c4843a75 265 unsigned long flags;
1da177e4 266
cd7619d6 267 BUG_ON(!PageLocked(page));
b93b0163 268 xa_lock_irqsave(&mapping->i_pages, flags);
62cccb8c 269 __delete_from_page_cache(page, NULL);
b93b0163 270 xa_unlock_irqrestore(&mapping->i_pages, flags);
6072d13c 271
59c66c5f 272 page_cache_free_page(mapping, page);
97cecb5a
MK
273}
274EXPORT_SYMBOL(delete_from_page_cache);
275
aa65c29c 276/*
ef8e5717 277 * page_cache_delete_batch - delete several pages from page cache
aa65c29c
JK
278 * @mapping: the mapping to which pages belong
279 * @pvec: pagevec with pages to delete
280 *
b93b0163
MW
281 * The function walks over mapping->i_pages and removes pages passed in @pvec
282 * from the mapping. The function expects @pvec to be sorted by page index.
283 * It tolerates holes in @pvec (mapping entries at those indices are not
aa65c29c 284 * modified). The function expects only THP head pages to be present in the
b93b0163
MW
285 * @pvec and takes care to delete all corresponding tail pages from the
286 * mapping as well.
aa65c29c 287 *
b93b0163 288 * The function expects the i_pages lock to be held.
aa65c29c 289 */
ef8e5717 290static void page_cache_delete_batch(struct address_space *mapping,
aa65c29c
JK
291 struct pagevec *pvec)
292{
ef8e5717 293 XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
aa65c29c
JK
294 int total_pages = 0;
295 int i = 0, tail_pages = 0;
296 struct page *page;
aa65c29c 297
ef8e5717
MW
298 mapping_set_update(&xas, mapping);
299 xas_for_each(&xas, page, ULONG_MAX) {
aa65c29c
JK
300 if (i >= pagevec_count(pvec) && !tail_pages)
301 break;
3159f943 302 if (xa_is_value(page))
aa65c29c
JK
303 continue;
304 if (!tail_pages) {
305 /*
306 * Some page got inserted in our range? Skip it. We
307 * have our pages locked so they are protected from
308 * being removed.
309 */
ef8e5717
MW
310 if (page != pvec->pages[i]) {
311 VM_BUG_ON_PAGE(page->index >
312 pvec->pages[i]->index, page);
aa65c29c 313 continue;
ef8e5717 314 }
aa65c29c
JK
315 WARN_ON_ONCE(!PageLocked(page));
316 if (PageTransHuge(page) && !PageHuge(page))
317 tail_pages = HPAGE_PMD_NR - 1;
318 page->mapping = NULL;
319 /*
320 * Leave page->index set: truncation lookup relies
321 * upon it
322 */
323 i++;
324 } else {
ef8e5717
MW
325 VM_BUG_ON_PAGE(page->index + HPAGE_PMD_NR - tail_pages
326 != pvec->pages[i]->index, page);
aa65c29c
JK
327 tail_pages--;
328 }
ef8e5717 329 xas_store(&xas, NULL);
aa65c29c
JK
330 total_pages++;
331 }
332 mapping->nrpages -= total_pages;
333}
334
335void delete_from_page_cache_batch(struct address_space *mapping,
336 struct pagevec *pvec)
337{
338 int i;
339 unsigned long flags;
340
341 if (!pagevec_count(pvec))
342 return;
343
b93b0163 344 xa_lock_irqsave(&mapping->i_pages, flags);
aa65c29c
JK
345 for (i = 0; i < pagevec_count(pvec); i++) {
346 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
347
348 unaccount_page_cache_page(mapping, pvec->pages[i]);
349 }
ef8e5717 350 page_cache_delete_batch(mapping, pvec);
b93b0163 351 xa_unlock_irqrestore(&mapping->i_pages, flags);
aa65c29c
JK
352
353 for (i = 0; i < pagevec_count(pvec); i++)
354 page_cache_free_page(mapping, pvec->pages[i]);
355}
356
d72d9e2a 357int filemap_check_errors(struct address_space *mapping)
865ffef3
DM
358{
359 int ret = 0;
360 /* Check for outstanding write errors */
7fcbbaf1
JA
361 if (test_bit(AS_ENOSPC, &mapping->flags) &&
362 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
865ffef3 363 ret = -ENOSPC;
7fcbbaf1
JA
364 if (test_bit(AS_EIO, &mapping->flags) &&
365 test_and_clear_bit(AS_EIO, &mapping->flags))
865ffef3
DM
366 ret = -EIO;
367 return ret;
368}
d72d9e2a 369EXPORT_SYMBOL(filemap_check_errors);
865ffef3 370
76341cab
JL
371static int filemap_check_and_keep_errors(struct address_space *mapping)
372{
373 /* Check for outstanding write errors */
374 if (test_bit(AS_EIO, &mapping->flags))
375 return -EIO;
376 if (test_bit(AS_ENOSPC, &mapping->flags))
377 return -ENOSPC;
378 return 0;
379}
380
1da177e4 381/**
485bb99b 382 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
383 * @mapping: address space structure to write
384 * @start: offset in bytes where the range starts
469eb4d0 385 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 386 * @sync_mode: enable synchronous operation
1da177e4 387 *
485bb99b
RD
388 * Start writeback against all of a mapping's dirty pages that lie
389 * within the byte offsets <start, end> inclusive.
390 *
1da177e4 391 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 392 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
393 * these two operations is that if a dirty page/buffer is encountered, it must
394 * be waited upon, and not just skipped over.
a862f68a
MR
395 *
396 * Return: %0 on success, negative error code otherwise.
1da177e4 397 */
ebcf28e1
AM
398int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
399 loff_t end, int sync_mode)
1da177e4
LT
400{
401 int ret;
402 struct writeback_control wbc = {
403 .sync_mode = sync_mode,
05fe478d 404 .nr_to_write = LONG_MAX,
111ebb6e
OH
405 .range_start = start,
406 .range_end = end,
1da177e4
LT
407 };
408
409 if (!mapping_cap_writeback_dirty(mapping))
410 return 0;
411
b16b1deb 412 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
1da177e4 413 ret = do_writepages(mapping, &wbc);
b16b1deb 414 wbc_detach_inode(&wbc);
1da177e4
LT
415 return ret;
416}
417
418static inline int __filemap_fdatawrite(struct address_space *mapping,
419 int sync_mode)
420{
111ebb6e 421 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
422}
423
424int filemap_fdatawrite(struct address_space *mapping)
425{
426 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
427}
428EXPORT_SYMBOL(filemap_fdatawrite);
429
f4c0a0fd 430int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 431 loff_t end)
1da177e4
LT
432{
433 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
434}
f4c0a0fd 435EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 436
485bb99b
RD
437/**
438 * filemap_flush - mostly a non-blocking flush
439 * @mapping: target address_space
440 *
1da177e4
LT
441 * This is a mostly non-blocking flush. Not suitable for data-integrity
442 * purposes - I/O may not be started against all dirty pages.
a862f68a
MR
443 *
444 * Return: %0 on success, negative error code otherwise.
1da177e4
LT
445 */
446int filemap_flush(struct address_space *mapping)
447{
448 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
449}
450EXPORT_SYMBOL(filemap_flush);
451
7fc9e472
GR
452/**
453 * filemap_range_has_page - check if a page exists in range.
454 * @mapping: address space within which to check
455 * @start_byte: offset in bytes where the range starts
456 * @end_byte: offset in bytes where the range ends (inclusive)
457 *
458 * Find at least one page in the range supplied, usually used to check if
459 * direct writing in this range will trigger a writeback.
a862f68a
MR
460 *
461 * Return: %true if at least one page exists in the specified range,
462 * %false otherwise.
7fc9e472
GR
463 */
464bool filemap_range_has_page(struct address_space *mapping,
465 loff_t start_byte, loff_t end_byte)
466{
f7b68046 467 struct page *page;
8fa8e538
MW
468 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
469 pgoff_t max = end_byte >> PAGE_SHIFT;
7fc9e472
GR
470
471 if (end_byte < start_byte)
472 return false;
473
8fa8e538
MW
474 rcu_read_lock();
475 for (;;) {
476 page = xas_find(&xas, max);
477 if (xas_retry(&xas, page))
478 continue;
479 /* Shadow entries don't count */
480 if (xa_is_value(page))
481 continue;
482 /*
483 * We don't need to try to pin this page; we're about to
484 * release the RCU lock anyway. It is enough to know that
485 * there was a page here recently.
486 */
487 break;
488 }
489 rcu_read_unlock();
7fc9e472 490
8fa8e538 491 return page != NULL;
7fc9e472
GR
492}
493EXPORT_SYMBOL(filemap_range_has_page);
494
5e8fcc1a 495static void __filemap_fdatawait_range(struct address_space *mapping,
aa750fd7 496 loff_t start_byte, loff_t end_byte)
1da177e4 497{
09cbfeaf
KS
498 pgoff_t index = start_byte >> PAGE_SHIFT;
499 pgoff_t end = end_byte >> PAGE_SHIFT;
1da177e4
LT
500 struct pagevec pvec;
501 int nr_pages;
1da177e4 502
94004ed7 503 if (end_byte < start_byte)
5e8fcc1a 504 return;
1da177e4 505
86679820 506 pagevec_init(&pvec);
312e9d2f 507 while (index <= end) {
1da177e4
LT
508 unsigned i;
509
312e9d2f 510 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
67fd707f 511 end, PAGECACHE_TAG_WRITEBACK);
312e9d2f
JK
512 if (!nr_pages)
513 break;
514
1da177e4
LT
515 for (i = 0; i < nr_pages; i++) {
516 struct page *page = pvec.pages[i];
517
1da177e4 518 wait_on_page_writeback(page);
5e8fcc1a 519 ClearPageError(page);
1da177e4
LT
520 }
521 pagevec_release(&pvec);
522 cond_resched();
523 }
aa750fd7
JN
524}
525
526/**
527 * filemap_fdatawait_range - wait for writeback to complete
528 * @mapping: address space structure to wait for
529 * @start_byte: offset in bytes where the range starts
530 * @end_byte: offset in bytes where the range ends (inclusive)
531 *
532 * Walk the list of under-writeback pages of the given address space
533 * in the given range and wait for all of them. Check error status of
534 * the address space and return it.
535 *
536 * Since the error status of the address space is cleared by this function,
537 * callers are responsible for checking the return value and handling and/or
538 * reporting the error.
a862f68a
MR
539 *
540 * Return: error status of the address space.
aa750fd7
JN
541 */
542int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
543 loff_t end_byte)
544{
5e8fcc1a
JL
545 __filemap_fdatawait_range(mapping, start_byte, end_byte);
546 return filemap_check_errors(mapping);
1da177e4 547}
d3bccb6f
JK
548EXPORT_SYMBOL(filemap_fdatawait_range);
549
a823e458
JL
550/**
551 * file_fdatawait_range - wait for writeback to complete
552 * @file: file pointing to address space structure to wait for
553 * @start_byte: offset in bytes where the range starts
554 * @end_byte: offset in bytes where the range ends (inclusive)
555 *
556 * Walk the list of under-writeback pages of the address space that file
557 * refers to, in the given range and wait for all of them. Check error
558 * status of the address space vs. the file->f_wb_err cursor and return it.
559 *
560 * Since the error status of the file is advanced by this function,
561 * callers are responsible for checking the return value and handling and/or
562 * reporting the error.
a862f68a
MR
563 *
564 * Return: error status of the address space vs. the file->f_wb_err cursor.
a823e458
JL
565 */
566int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
567{
568 struct address_space *mapping = file->f_mapping;
569
570 __filemap_fdatawait_range(mapping, start_byte, end_byte);
571 return file_check_and_advance_wb_err(file);
572}
573EXPORT_SYMBOL(file_fdatawait_range);
d3bccb6f 574
aa750fd7
JN
575/**
576 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
577 * @mapping: address space structure to wait for
578 *
579 * Walk the list of under-writeback pages of the given address space
580 * and wait for all of them. Unlike filemap_fdatawait(), this function
581 * does not clear error status of the address space.
582 *
583 * Use this function if callers don't handle errors themselves. Expected
584 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
585 * fsfreeze(8)
a862f68a
MR
586 *
587 * Return: error status of the address space.
aa750fd7 588 */
76341cab 589int filemap_fdatawait_keep_errors(struct address_space *mapping)
aa750fd7 590{
ffb959bb 591 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
76341cab 592 return filemap_check_and_keep_errors(mapping);
aa750fd7 593}
76341cab 594EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
aa750fd7 595
9326c9b2 596static bool mapping_needs_writeback(struct address_space *mapping)
1da177e4 597{
9326c9b2
JL
598 return (!dax_mapping(mapping) && mapping->nrpages) ||
599 (dax_mapping(mapping) && mapping->nrexceptional);
1da177e4 600}
1da177e4
LT
601
602int filemap_write_and_wait(struct address_space *mapping)
603{
28fd1298 604 int err = 0;
1da177e4 605
9326c9b2 606 if (mapping_needs_writeback(mapping)) {
28fd1298
OH
607 err = filemap_fdatawrite(mapping);
608 /*
609 * Even if the above returned error, the pages may be
610 * written partially (e.g. -ENOSPC), so we wait for it.
611 * But the -EIO is special case, it may indicate the worst
612 * thing (e.g. bug) happened, so we avoid waiting for it.
613 */
614 if (err != -EIO) {
615 int err2 = filemap_fdatawait(mapping);
616 if (!err)
617 err = err2;
cbeaf951
JL
618 } else {
619 /* Clear any previously stored errors */
620 filemap_check_errors(mapping);
28fd1298 621 }
865ffef3
DM
622 } else {
623 err = filemap_check_errors(mapping);
1da177e4 624 }
28fd1298 625 return err;
1da177e4 626}
28fd1298 627EXPORT_SYMBOL(filemap_write_and_wait);
1da177e4 628
485bb99b
RD
629/**
630 * filemap_write_and_wait_range - write out & wait on a file range
631 * @mapping: the address_space for the pages
632 * @lstart: offset in bytes where the range starts
633 * @lend: offset in bytes where the range ends (inclusive)
634 *
469eb4d0
AM
635 * Write out and wait upon file offsets lstart->lend, inclusive.
636 *
0e056eb5 637 * Note that @lend is inclusive (describes the last byte to be written) so
469eb4d0 638 * that this function can be used to write to the very end-of-file (end = -1).
a862f68a
MR
639 *
640 * Return: error status of the address space.
469eb4d0 641 */
1da177e4
LT
642int filemap_write_and_wait_range(struct address_space *mapping,
643 loff_t lstart, loff_t lend)
644{
28fd1298 645 int err = 0;
1da177e4 646
9326c9b2 647 if (mapping_needs_writeback(mapping)) {
28fd1298
OH
648 err = __filemap_fdatawrite_range(mapping, lstart, lend,
649 WB_SYNC_ALL);
650 /* See comment of filemap_write_and_wait() */
651 if (err != -EIO) {
94004ed7
CH
652 int err2 = filemap_fdatawait_range(mapping,
653 lstart, lend);
28fd1298
OH
654 if (!err)
655 err = err2;
cbeaf951
JL
656 } else {
657 /* Clear any previously stored errors */
658 filemap_check_errors(mapping);
28fd1298 659 }
865ffef3
DM
660 } else {
661 err = filemap_check_errors(mapping);
1da177e4 662 }
28fd1298 663 return err;
1da177e4 664}
f6995585 665EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 666
5660e13d
JL
667void __filemap_set_wb_err(struct address_space *mapping, int err)
668{
3acdfd28 669 errseq_t eseq = errseq_set(&mapping->wb_err, err);
5660e13d
JL
670
671 trace_filemap_set_wb_err(mapping, eseq);
672}
673EXPORT_SYMBOL(__filemap_set_wb_err);
674
675/**
676 * file_check_and_advance_wb_err - report wb error (if any) that was previously
677 * and advance wb_err to current one
678 * @file: struct file on which the error is being reported
679 *
680 * When userland calls fsync (or something like nfsd does the equivalent), we
681 * want to report any writeback errors that occurred since the last fsync (or
682 * since the file was opened if there haven't been any).
683 *
684 * Grab the wb_err from the mapping. If it matches what we have in the file,
685 * then just quickly return 0. The file is all caught up.
686 *
687 * If it doesn't match, then take the mapping value, set the "seen" flag in
688 * it and try to swap it into place. If it works, or another task beat us
689 * to it with the new value, then update the f_wb_err and return the error
690 * portion. The error at this point must be reported via proper channels
691 * (a'la fsync, or NFS COMMIT operation, etc.).
692 *
693 * While we handle mapping->wb_err with atomic operations, the f_wb_err
694 * value is protected by the f_lock since we must ensure that it reflects
695 * the latest value swapped in for this file descriptor.
a862f68a
MR
696 *
697 * Return: %0 on success, negative error code otherwise.
5660e13d
JL
698 */
699int file_check_and_advance_wb_err(struct file *file)
700{
701 int err = 0;
702 errseq_t old = READ_ONCE(file->f_wb_err);
703 struct address_space *mapping = file->f_mapping;
704
705 /* Locklessly handle the common case where nothing has changed */
706 if (errseq_check(&mapping->wb_err, old)) {
707 /* Something changed, must use slow path */
708 spin_lock(&file->f_lock);
709 old = file->f_wb_err;
710 err = errseq_check_and_advance(&mapping->wb_err,
711 &file->f_wb_err);
712 trace_file_check_and_advance_wb_err(file, old);
713 spin_unlock(&file->f_lock);
714 }
f4e222c5
JL
715
716 /*
717 * We're mostly using this function as a drop in replacement for
718 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
719 * that the legacy code would have had on these flags.
720 */
721 clear_bit(AS_EIO, &mapping->flags);
722 clear_bit(AS_ENOSPC, &mapping->flags);
5660e13d
JL
723 return err;
724}
725EXPORT_SYMBOL(file_check_and_advance_wb_err);
726
727/**
728 * file_write_and_wait_range - write out & wait on a file range
729 * @file: file pointing to address_space with pages
730 * @lstart: offset in bytes where the range starts
731 * @lend: offset in bytes where the range ends (inclusive)
732 *
733 * Write out and wait upon file offsets lstart->lend, inclusive.
734 *
735 * Note that @lend is inclusive (describes the last byte to be written) so
736 * that this function can be used to write to the very end-of-file (end = -1).
737 *
738 * After writing out and waiting on the data, we check and advance the
739 * f_wb_err cursor to the latest value, and return any errors detected there.
a862f68a
MR
740 *
741 * Return: %0 on success, negative error code otherwise.
5660e13d
JL
742 */
743int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
744{
745 int err = 0, err2;
746 struct address_space *mapping = file->f_mapping;
747
9326c9b2 748 if (mapping_needs_writeback(mapping)) {
5660e13d
JL
749 err = __filemap_fdatawrite_range(mapping, lstart, lend,
750 WB_SYNC_ALL);
751 /* See comment of filemap_write_and_wait() */
752 if (err != -EIO)
753 __filemap_fdatawait_range(mapping, lstart, lend);
754 }
755 err2 = file_check_and_advance_wb_err(file);
756 if (!err)
757 err = err2;
758 return err;
759}
760EXPORT_SYMBOL(file_write_and_wait_range);
761
ef6a3c63
MS
762/**
763 * replace_page_cache_page - replace a pagecache page with a new one
764 * @old: page to be replaced
765 * @new: page to replace with
766 * @gfp_mask: allocation mode
767 *
768 * This function replaces a page in the pagecache with a new one. On
769 * success it acquires the pagecache reference for the new page and
770 * drops it for the old page. Both the old and new pages must be
771 * locked. This function does not add the new page to the LRU, the
772 * caller must do that.
773 *
74d60958 774 * The remove + add is atomic. This function cannot fail.
a862f68a
MR
775 *
776 * Return: %0
ef6a3c63
MS
777 */
778int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
779{
74d60958
MW
780 struct address_space *mapping = old->mapping;
781 void (*freepage)(struct page *) = mapping->a_ops->freepage;
782 pgoff_t offset = old->index;
783 XA_STATE(xas, &mapping->i_pages, offset);
784 unsigned long flags;
ef6a3c63 785
309381fe
SL
786 VM_BUG_ON_PAGE(!PageLocked(old), old);
787 VM_BUG_ON_PAGE(!PageLocked(new), new);
788 VM_BUG_ON_PAGE(new->mapping, new);
ef6a3c63 789
74d60958
MW
790 get_page(new);
791 new->mapping = mapping;
792 new->index = offset;
ef6a3c63 793
74d60958
MW
794 xas_lock_irqsave(&xas, flags);
795 xas_store(&xas, new);
4165b9b4 796
74d60958
MW
797 old->mapping = NULL;
798 /* hugetlb pages do not participate in page cache accounting. */
799 if (!PageHuge(old))
800 __dec_node_page_state(new, NR_FILE_PAGES);
801 if (!PageHuge(new))
802 __inc_node_page_state(new, NR_FILE_PAGES);
803 if (PageSwapBacked(old))
804 __dec_node_page_state(new, NR_SHMEM);
805 if (PageSwapBacked(new))
806 __inc_node_page_state(new, NR_SHMEM);
807 xas_unlock_irqrestore(&xas, flags);
808 mem_cgroup_migrate(old, new);
809 if (freepage)
810 freepage(old);
811 put_page(old);
ef6a3c63 812
74d60958 813 return 0;
ef6a3c63
MS
814}
815EXPORT_SYMBOL_GPL(replace_page_cache_page);
816
a528910e
JW
817static int __add_to_page_cache_locked(struct page *page,
818 struct address_space *mapping,
819 pgoff_t offset, gfp_t gfp_mask,
820 void **shadowp)
1da177e4 821{
74d60958 822 XA_STATE(xas, &mapping->i_pages, offset);
00501b53
JW
823 int huge = PageHuge(page);
824 struct mem_cgroup *memcg;
e286781d 825 int error;
74d60958 826 void *old;
e286781d 827
309381fe
SL
828 VM_BUG_ON_PAGE(!PageLocked(page), page);
829 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
74d60958 830 mapping_set_update(&xas, mapping);
e286781d 831
00501b53
JW
832 if (!huge) {
833 error = mem_cgroup_try_charge(page, current->mm,
f627c2f5 834 gfp_mask, &memcg, false);
00501b53
JW
835 if (error)
836 return error;
837 }
1da177e4 838
09cbfeaf 839 get_page(page);
66a0c8ee
KS
840 page->mapping = mapping;
841 page->index = offset;
842
74d60958
MW
843 do {
844 xas_lock_irq(&xas);
845 old = xas_load(&xas);
846 if (old && !xa_is_value(old))
847 xas_set_err(&xas, -EEXIST);
848 xas_store(&xas, page);
849 if (xas_error(&xas))
850 goto unlock;
851
852 if (xa_is_value(old)) {
853 mapping->nrexceptional--;
854 if (shadowp)
855 *shadowp = old;
856 }
857 mapping->nrpages++;
858
859 /* hugetlb pages do not participate in page cache accounting */
860 if (!huge)
861 __inc_node_page_state(page, NR_FILE_PAGES);
862unlock:
863 xas_unlock_irq(&xas);
864 } while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK));
865
866 if (xas_error(&xas))
867 goto error;
4165b9b4 868
00501b53 869 if (!huge)
f627c2f5 870 mem_cgroup_commit_charge(page, memcg, false, false);
66a0c8ee
KS
871 trace_mm_filemap_add_to_page_cache(page);
872 return 0;
74d60958 873error:
66a0c8ee
KS
874 page->mapping = NULL;
875 /* Leave page->index set: truncation relies upon it */
00501b53 876 if (!huge)
f627c2f5 877 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 878 put_page(page);
74d60958 879 return xas_error(&xas);
1da177e4 880}
a528910e
JW
881
882/**
883 * add_to_page_cache_locked - add a locked page to the pagecache
884 * @page: page to add
885 * @mapping: the page's address_space
886 * @offset: page index
887 * @gfp_mask: page allocation mode
888 *
889 * This function is used to add a page to the pagecache. It must be locked.
890 * This function does not add the page to the LRU. The caller must do that.
a862f68a
MR
891 *
892 * Return: %0 on success, negative error code otherwise.
a528910e
JW
893 */
894int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
895 pgoff_t offset, gfp_t gfp_mask)
896{
897 return __add_to_page_cache_locked(page, mapping, offset,
898 gfp_mask, NULL);
899}
e286781d 900EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4
LT
901
902int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 903 pgoff_t offset, gfp_t gfp_mask)
1da177e4 904{
a528910e 905 void *shadow = NULL;
4f98a2fe
RR
906 int ret;
907
48c935ad 908 __SetPageLocked(page);
a528910e
JW
909 ret = __add_to_page_cache_locked(page, mapping, offset,
910 gfp_mask, &shadow);
911 if (unlikely(ret))
48c935ad 912 __ClearPageLocked(page);
a528910e
JW
913 else {
914 /*
915 * The page might have been evicted from cache only
916 * recently, in which case it should be activated like
917 * any other repeatedly accessed page.
f0281a00
RR
918 * The exception is pages getting rewritten; evicting other
919 * data from the working set, only to cache data that will
920 * get overwritten with something else, is a waste of memory.
a528910e 921 */
1899ad18
JW
922 WARN_ON_ONCE(PageActive(page));
923 if (!(gfp_mask & __GFP_WRITE) && shadow)
924 workingset_refault(page, shadow);
a528910e
JW
925 lru_cache_add(page);
926 }
1da177e4
LT
927 return ret;
928}
18bc0bbd 929EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1da177e4 930
44110fe3 931#ifdef CONFIG_NUMA
2ae88149 932struct page *__page_cache_alloc(gfp_t gfp)
44110fe3 933{
c0ff7453
MX
934 int n;
935 struct page *page;
936
44110fe3 937 if (cpuset_do_page_mem_spread()) {
cc9a6c87
MG
938 unsigned int cpuset_mems_cookie;
939 do {
d26914d1 940 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 941 n = cpuset_mem_spread_node();
96db800f 942 page = __alloc_pages_node(n, gfp, 0);
d26914d1 943 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
cc9a6c87 944
c0ff7453 945 return page;
44110fe3 946 }
2ae88149 947 return alloc_pages(gfp, 0);
44110fe3 948}
2ae88149 949EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
950#endif
951
1da177e4
LT
952/*
953 * In order to wait for pages to become available there must be
954 * waitqueues associated with pages. By using a hash table of
955 * waitqueues where the bucket discipline is to maintain all
956 * waiters on the same queue and wake all when any of the pages
957 * become available, and for the woken contexts to check to be
958 * sure the appropriate page became available, this saves space
959 * at a cost of "thundering herd" phenomena during rare hash
960 * collisions.
961 */
62906027
NP
962#define PAGE_WAIT_TABLE_BITS 8
963#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
964static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
965
966static wait_queue_head_t *page_waitqueue(struct page *page)
1da177e4 967{
62906027 968 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
1da177e4 969}
1da177e4 970
62906027 971void __init pagecache_init(void)
1da177e4 972{
62906027 973 int i;
1da177e4 974
62906027
NP
975 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
976 init_waitqueue_head(&page_wait_table[i]);
977
978 page_writeback_init();
1da177e4 979}
1da177e4 980
3510ca20 981/* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
62906027
NP
982struct wait_page_key {
983 struct page *page;
984 int bit_nr;
985 int page_match;
986};
987
988struct wait_page_queue {
989 struct page *page;
990 int bit_nr;
ac6424b9 991 wait_queue_entry_t wait;
62906027
NP
992};
993
ac6424b9 994static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
f62e00cc 995{
62906027
NP
996 struct wait_page_key *key = arg;
997 struct wait_page_queue *wait_page
998 = container_of(wait, struct wait_page_queue, wait);
999
1000 if (wait_page->page != key->page)
1001 return 0;
1002 key->page_match = 1;
f62e00cc 1003
62906027
NP
1004 if (wait_page->bit_nr != key->bit_nr)
1005 return 0;
3510ca20 1006
9a1ea439
HD
1007 /*
1008 * Stop walking if it's locked.
1009 * Is this safe if put_and_wait_on_page_locked() is in use?
1010 * Yes: the waker must hold a reference to this page, and if PG_locked
1011 * has now already been set by another task, that task must also hold
1012 * a reference to the *same usage* of this page; so there is no need
1013 * to walk on to wake even the put_and_wait_on_page_locked() callers.
1014 */
62906027 1015 if (test_bit(key->bit_nr, &key->page->flags))
3510ca20 1016 return -1;
f62e00cc 1017
62906027 1018 return autoremove_wake_function(wait, mode, sync, key);
f62e00cc
KM
1019}
1020
74d81bfa 1021static void wake_up_page_bit(struct page *page, int bit_nr)
cbbce822 1022{
62906027
NP
1023 wait_queue_head_t *q = page_waitqueue(page);
1024 struct wait_page_key key;
1025 unsigned long flags;
11a19c7b 1026 wait_queue_entry_t bookmark;
cbbce822 1027
62906027
NP
1028 key.page = page;
1029 key.bit_nr = bit_nr;
1030 key.page_match = 0;
1031
11a19c7b
TC
1032 bookmark.flags = 0;
1033 bookmark.private = NULL;
1034 bookmark.func = NULL;
1035 INIT_LIST_HEAD(&bookmark.entry);
1036
62906027 1037 spin_lock_irqsave(&q->lock, flags);
11a19c7b
TC
1038 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1039
1040 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1041 /*
1042 * Take a breather from holding the lock,
1043 * allow pages that finish wake up asynchronously
1044 * to acquire the lock and remove themselves
1045 * from wait queue
1046 */
1047 spin_unlock_irqrestore(&q->lock, flags);
1048 cpu_relax();
1049 spin_lock_irqsave(&q->lock, flags);
1050 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1051 }
1052
62906027
NP
1053 /*
1054 * It is possible for other pages to have collided on the waitqueue
1055 * hash, so in that case check for a page match. That prevents a long-
1056 * term waiter
1057 *
1058 * It is still possible to miss a case here, when we woke page waiters
1059 * and removed them from the waitqueue, but there are still other
1060 * page waiters.
1061 */
1062 if (!waitqueue_active(q) || !key.page_match) {
1063 ClearPageWaiters(page);
1064 /*
1065 * It's possible to miss clearing Waiters here, when we woke
1066 * our page waiters, but the hashed waitqueue has waiters for
1067 * other pages on it.
1068 *
1069 * That's okay, it's a rare case. The next waker will clear it.
1070 */
1071 }
1072 spin_unlock_irqrestore(&q->lock, flags);
1073}
74d81bfa
NP
1074
1075static void wake_up_page(struct page *page, int bit)
1076{
1077 if (!PageWaiters(page))
1078 return;
1079 wake_up_page_bit(page, bit);
1080}
62906027 1081
9a1ea439
HD
1082/*
1083 * A choice of three behaviors for wait_on_page_bit_common():
1084 */
1085enum behavior {
1086 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
1087 * __lock_page() waiting on then setting PG_locked.
1088 */
1089 SHARED, /* Hold ref to page and check the bit when woken, like
1090 * wait_on_page_writeback() waiting on PG_writeback.
1091 */
1092 DROP, /* Drop ref to page before wait, no check when woken,
1093 * like put_and_wait_on_page_locked() on PG_locked.
1094 */
1095};
1096
62906027 1097static inline int wait_on_page_bit_common(wait_queue_head_t *q,
9a1ea439 1098 struct page *page, int bit_nr, int state, enum behavior behavior)
62906027
NP
1099{
1100 struct wait_page_queue wait_page;
ac6424b9 1101 wait_queue_entry_t *wait = &wait_page.wait;
9a1ea439 1102 bool bit_is_set;
b1d29ba8 1103 bool thrashing = false;
9a1ea439 1104 bool delayacct = false;
eb414681 1105 unsigned long pflags;
62906027
NP
1106 int ret = 0;
1107
eb414681 1108 if (bit_nr == PG_locked &&
b1d29ba8 1109 !PageUptodate(page) && PageWorkingset(page)) {
9a1ea439 1110 if (!PageSwapBacked(page)) {
eb414681 1111 delayacct_thrashing_start();
9a1ea439
HD
1112 delayacct = true;
1113 }
eb414681 1114 psi_memstall_enter(&pflags);
b1d29ba8
JW
1115 thrashing = true;
1116 }
1117
62906027 1118 init_wait(wait);
9a1ea439 1119 wait->flags = behavior == EXCLUSIVE ? WQ_FLAG_EXCLUSIVE : 0;
62906027
NP
1120 wait->func = wake_page_function;
1121 wait_page.page = page;
1122 wait_page.bit_nr = bit_nr;
1123
1124 for (;;) {
1125 spin_lock_irq(&q->lock);
1126
2055da97 1127 if (likely(list_empty(&wait->entry))) {
3510ca20 1128 __add_wait_queue_entry_tail(q, wait);
62906027
NP
1129 SetPageWaiters(page);
1130 }
1131
1132 set_current_state(state);
1133
1134 spin_unlock_irq(&q->lock);
1135
9a1ea439
HD
1136 bit_is_set = test_bit(bit_nr, &page->flags);
1137 if (behavior == DROP)
1138 put_page(page);
1139
1140 if (likely(bit_is_set))
62906027 1141 io_schedule();
62906027 1142
9a1ea439 1143 if (behavior == EXCLUSIVE) {
62906027
NP
1144 if (!test_and_set_bit_lock(bit_nr, &page->flags))
1145 break;
9a1ea439 1146 } else if (behavior == SHARED) {
62906027
NP
1147 if (!test_bit(bit_nr, &page->flags))
1148 break;
1149 }
a8b169af 1150
fa45f116 1151 if (signal_pending_state(state, current)) {
a8b169af
LT
1152 ret = -EINTR;
1153 break;
1154 }
9a1ea439
HD
1155
1156 if (behavior == DROP) {
1157 /*
1158 * We can no longer safely access page->flags:
1159 * even if CONFIG_MEMORY_HOTREMOVE is not enabled,
1160 * there is a risk of waiting forever on a page reused
1161 * for something that keeps it locked indefinitely.
1162 * But best check for -EINTR above before breaking.
1163 */
1164 break;
1165 }
62906027
NP
1166 }
1167
1168 finish_wait(q, wait);
1169
eb414681 1170 if (thrashing) {
9a1ea439 1171 if (delayacct)
eb414681
JW
1172 delayacct_thrashing_end();
1173 psi_memstall_leave(&pflags);
1174 }
b1d29ba8 1175
62906027
NP
1176 /*
1177 * A signal could leave PageWaiters set. Clearing it here if
1178 * !waitqueue_active would be possible (by open-coding finish_wait),
1179 * but still fail to catch it in the case of wait hash collision. We
1180 * already can fail to clear wait hash collision cases, so don't
1181 * bother with signals either.
1182 */
1183
1184 return ret;
1185}
1186
1187void wait_on_page_bit(struct page *page, int bit_nr)
1188{
1189 wait_queue_head_t *q = page_waitqueue(page);
9a1ea439 1190 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
62906027
NP
1191}
1192EXPORT_SYMBOL(wait_on_page_bit);
1193
1194int wait_on_page_bit_killable(struct page *page, int bit_nr)
1195{
1196 wait_queue_head_t *q = page_waitqueue(page);
9a1ea439 1197 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
cbbce822 1198}
4343d008 1199EXPORT_SYMBOL(wait_on_page_bit_killable);
cbbce822 1200
9a1ea439
HD
1201/**
1202 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1203 * @page: The page to wait for.
1204 *
1205 * The caller should hold a reference on @page. They expect the page to
1206 * become unlocked relatively soon, but do not wish to hold up migration
1207 * (for example) by holding the reference while waiting for the page to
1208 * come unlocked. After this function returns, the caller should not
1209 * dereference @page.
1210 */
1211void put_and_wait_on_page_locked(struct page *page)
1212{
1213 wait_queue_head_t *q;
1214
1215 page = compound_head(page);
1216 q = page_waitqueue(page);
1217 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP);
1218}
1219
385e1ca5
DH
1220/**
1221 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
697f619f
RD
1222 * @page: Page defining the wait queue of interest
1223 * @waiter: Waiter to add to the queue
385e1ca5
DH
1224 *
1225 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1226 */
ac6424b9 1227void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
385e1ca5
DH
1228{
1229 wait_queue_head_t *q = page_waitqueue(page);
1230 unsigned long flags;
1231
1232 spin_lock_irqsave(&q->lock, flags);
9c3a815f 1233 __add_wait_queue_entry_tail(q, waiter);
62906027 1234 SetPageWaiters(page);
385e1ca5
DH
1235 spin_unlock_irqrestore(&q->lock, flags);
1236}
1237EXPORT_SYMBOL_GPL(add_page_wait_queue);
1238
b91e1302
LT
1239#ifndef clear_bit_unlock_is_negative_byte
1240
1241/*
1242 * PG_waiters is the high bit in the same byte as PG_lock.
1243 *
1244 * On x86 (and on many other architectures), we can clear PG_lock and
1245 * test the sign bit at the same time. But if the architecture does
1246 * not support that special operation, we just do this all by hand
1247 * instead.
1248 *
1249 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1250 * being cleared, but a memory barrier should be unneccssary since it is
1251 * in the same byte as PG_locked.
1252 */
1253static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1254{
1255 clear_bit_unlock(nr, mem);
1256 /* smp_mb__after_atomic(); */
98473f9f 1257 return test_bit(PG_waiters, mem);
b91e1302
LT
1258}
1259
1260#endif
1261
1da177e4 1262/**
485bb99b 1263 * unlock_page - unlock a locked page
1da177e4
LT
1264 * @page: the page
1265 *
1266 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1267 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
da3dae54 1268 * mechanism between PageLocked pages and PageWriteback pages is shared.
1da177e4
LT
1269 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1270 *
b91e1302
LT
1271 * Note that this depends on PG_waiters being the sign bit in the byte
1272 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1273 * clear the PG_locked bit and test PG_waiters at the same time fairly
1274 * portably (architectures that do LL/SC can test any bit, while x86 can
1275 * test the sign bit).
1da177e4 1276 */
920c7a5d 1277void unlock_page(struct page *page)
1da177e4 1278{
b91e1302 1279 BUILD_BUG_ON(PG_waiters != 7);
48c935ad 1280 page = compound_head(page);
309381fe 1281 VM_BUG_ON_PAGE(!PageLocked(page), page);
b91e1302
LT
1282 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1283 wake_up_page_bit(page, PG_locked);
1da177e4
LT
1284}
1285EXPORT_SYMBOL(unlock_page);
1286
485bb99b
RD
1287/**
1288 * end_page_writeback - end writeback against a page
1289 * @page: the page
1da177e4
LT
1290 */
1291void end_page_writeback(struct page *page)
1292{
888cf2db
MG
1293 /*
1294 * TestClearPageReclaim could be used here but it is an atomic
1295 * operation and overkill in this particular case. Failing to
1296 * shuffle a page marked for immediate reclaim is too mild to
1297 * justify taking an atomic operation penalty at the end of
1298 * ever page writeback.
1299 */
1300 if (PageReclaim(page)) {
1301 ClearPageReclaim(page);
ac6aadb2 1302 rotate_reclaimable_page(page);
888cf2db 1303 }
ac6aadb2
MS
1304
1305 if (!test_clear_page_writeback(page))
1306 BUG();
1307
4e857c58 1308 smp_mb__after_atomic();
1da177e4
LT
1309 wake_up_page(page, PG_writeback);
1310}
1311EXPORT_SYMBOL(end_page_writeback);
1312
57d99845
MW
1313/*
1314 * After completing I/O on a page, call this routine to update the page
1315 * flags appropriately
1316 */
c11f0c0b 1317void page_endio(struct page *page, bool is_write, int err)
57d99845 1318{
c11f0c0b 1319 if (!is_write) {
57d99845
MW
1320 if (!err) {
1321 SetPageUptodate(page);
1322 } else {
1323 ClearPageUptodate(page);
1324 SetPageError(page);
1325 }
1326 unlock_page(page);
abf54548 1327 } else {
57d99845 1328 if (err) {
dd8416c4
MK
1329 struct address_space *mapping;
1330
57d99845 1331 SetPageError(page);
dd8416c4
MK
1332 mapping = page_mapping(page);
1333 if (mapping)
1334 mapping_set_error(mapping, err);
57d99845
MW
1335 }
1336 end_page_writeback(page);
1337 }
1338}
1339EXPORT_SYMBOL_GPL(page_endio);
1340
485bb99b
RD
1341/**
1342 * __lock_page - get a lock on the page, assuming we need to sleep to get it
87066755 1343 * @__page: the page to lock
1da177e4 1344 */
62906027 1345void __lock_page(struct page *__page)
1da177e4 1346{
62906027
NP
1347 struct page *page = compound_head(__page);
1348 wait_queue_head_t *q = page_waitqueue(page);
9a1ea439
HD
1349 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1350 EXCLUSIVE);
1da177e4
LT
1351}
1352EXPORT_SYMBOL(__lock_page);
1353
62906027 1354int __lock_page_killable(struct page *__page)
2687a356 1355{
62906027
NP
1356 struct page *page = compound_head(__page);
1357 wait_queue_head_t *q = page_waitqueue(page);
9a1ea439
HD
1358 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1359 EXCLUSIVE);
2687a356 1360}
18bc0bbd 1361EXPORT_SYMBOL_GPL(__lock_page_killable);
2687a356 1362
9a95f3cf
PC
1363/*
1364 * Return values:
1365 * 1 - page is locked; mmap_sem is still held.
1366 * 0 - page is not locked.
1367 * mmap_sem has been released (up_read()), unless flags had both
1368 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1369 * which case mmap_sem is still held.
1370 *
1371 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1372 * with the page locked and the mmap_sem unperturbed.
1373 */
d065bd81
ML
1374int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1375 unsigned int flags)
1376{
37b23e05
KM
1377 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1378 /*
1379 * CAUTION! In this case, mmap_sem is not released
1380 * even though return 0.
1381 */
1382 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1383 return 0;
1384
1385 up_read(&mm->mmap_sem);
1386 if (flags & FAULT_FLAG_KILLABLE)
1387 wait_on_page_locked_killable(page);
1388 else
318b275f 1389 wait_on_page_locked(page);
d065bd81 1390 return 0;
37b23e05
KM
1391 } else {
1392 if (flags & FAULT_FLAG_KILLABLE) {
1393 int ret;
1394
1395 ret = __lock_page_killable(page);
1396 if (ret) {
1397 up_read(&mm->mmap_sem);
1398 return 0;
1399 }
1400 } else
1401 __lock_page(page);
1402 return 1;
d065bd81
ML
1403 }
1404}
1405
e7b563bb 1406/**
0d3f9296
MW
1407 * page_cache_next_miss() - Find the next gap in the page cache.
1408 * @mapping: Mapping.
1409 * @index: Index.
1410 * @max_scan: Maximum range to search.
e7b563bb 1411 *
0d3f9296
MW
1412 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1413 * gap with the lowest index.
e7b563bb 1414 *
0d3f9296
MW
1415 * This function may be called under the rcu_read_lock. However, this will
1416 * not atomically search a snapshot of the cache at a single point in time.
1417 * For example, if a gap is created at index 5, then subsequently a gap is
1418 * created at index 10, page_cache_next_miss covering both indices may
1419 * return 10 if called under the rcu_read_lock.
e7b563bb 1420 *
0d3f9296
MW
1421 * Return: The index of the gap if found, otherwise an index outside the
1422 * range specified (in which case 'return - index >= max_scan' will be true).
1423 * In the rare case of index wrap-around, 0 will be returned.
e7b563bb 1424 */
0d3f9296 1425pgoff_t page_cache_next_miss(struct address_space *mapping,
e7b563bb
JW
1426 pgoff_t index, unsigned long max_scan)
1427{
0d3f9296 1428 XA_STATE(xas, &mapping->i_pages, index);
e7b563bb 1429
0d3f9296
MW
1430 while (max_scan--) {
1431 void *entry = xas_next(&xas);
1432 if (!entry || xa_is_value(entry))
e7b563bb 1433 break;
0d3f9296 1434 if (xas.xa_index == 0)
e7b563bb
JW
1435 break;
1436 }
1437
0d3f9296 1438 return xas.xa_index;
e7b563bb 1439}
0d3f9296 1440EXPORT_SYMBOL(page_cache_next_miss);
e7b563bb
JW
1441
1442/**
0d3f9296
MW
1443 * page_cache_prev_miss() - Find the next gap in the page cache.
1444 * @mapping: Mapping.
1445 * @index: Index.
1446 * @max_scan: Maximum range to search.
e7b563bb 1447 *
0d3f9296
MW
1448 * Search the range [max(index - max_scan + 1, 0), index] for the
1449 * gap with the highest index.
e7b563bb 1450 *
0d3f9296
MW
1451 * This function may be called under the rcu_read_lock. However, this will
1452 * not atomically search a snapshot of the cache at a single point in time.
1453 * For example, if a gap is created at index 10, then subsequently a gap is
1454 * created at index 5, page_cache_prev_miss() covering both indices may
1455 * return 5 if called under the rcu_read_lock.
e7b563bb 1456 *
0d3f9296
MW
1457 * Return: The index of the gap if found, otherwise an index outside the
1458 * range specified (in which case 'index - return >= max_scan' will be true).
1459 * In the rare case of wrap-around, ULONG_MAX will be returned.
e7b563bb 1460 */
0d3f9296 1461pgoff_t page_cache_prev_miss(struct address_space *mapping,
e7b563bb
JW
1462 pgoff_t index, unsigned long max_scan)
1463{
0d3f9296 1464 XA_STATE(xas, &mapping->i_pages, index);
e7b563bb 1465
0d3f9296
MW
1466 while (max_scan--) {
1467 void *entry = xas_prev(&xas);
1468 if (!entry || xa_is_value(entry))
e7b563bb 1469 break;
0d3f9296 1470 if (xas.xa_index == ULONG_MAX)
e7b563bb
JW
1471 break;
1472 }
1473
0d3f9296 1474 return xas.xa_index;
e7b563bb 1475}
0d3f9296 1476EXPORT_SYMBOL(page_cache_prev_miss);
e7b563bb 1477
485bb99b 1478/**
0cd6144a 1479 * find_get_entry - find and get a page cache entry
485bb99b 1480 * @mapping: the address_space to search
0cd6144a
JW
1481 * @offset: the page cache index
1482 *
1483 * Looks up the page cache slot at @mapping & @offset. If there is a
1484 * page cache page, it is returned with an increased refcount.
485bb99b 1485 *
139b6a6f
JW
1486 * If the slot holds a shadow entry of a previously evicted page, or a
1487 * swap entry from shmem/tmpfs, it is returned.
0cd6144a 1488 *
a862f68a 1489 * Return: the found page or shadow entry, %NULL if nothing is found.
1da177e4 1490 */
0cd6144a 1491struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1da177e4 1492{
4c7472c0 1493 XA_STATE(xas, &mapping->i_pages, offset);
83929372 1494 struct page *head, *page;
1da177e4 1495
a60637c8
NP
1496 rcu_read_lock();
1497repeat:
4c7472c0
MW
1498 xas_reset(&xas);
1499 page = xas_load(&xas);
1500 if (xas_retry(&xas, page))
1501 goto repeat;
1502 /*
1503 * A shadow entry of a recently evicted page, or a swap entry from
1504 * shmem/tmpfs. Return it without attempting to raise page count.
1505 */
1506 if (!page || xa_is_value(page))
1507 goto out;
83929372 1508
4c7472c0
MW
1509 head = compound_head(page);
1510 if (!page_cache_get_speculative(head))
1511 goto repeat;
83929372 1512
4c7472c0
MW
1513 /* The page was split under us? */
1514 if (compound_head(page) != head) {
1515 put_page(head);
1516 goto repeat;
1517 }
a60637c8 1518
4c7472c0
MW
1519 /*
1520 * Has the page moved?
1521 * This is part of the lockless pagecache protocol. See
1522 * include/linux/pagemap.h for details.
1523 */
1524 if (unlikely(page != xas_reload(&xas))) {
1525 put_page(head);
1526 goto repeat;
a60637c8 1527 }
27d20fdd 1528out:
a60637c8
NP
1529 rcu_read_unlock();
1530
1da177e4
LT
1531 return page;
1532}
0cd6144a 1533EXPORT_SYMBOL(find_get_entry);
1da177e4 1534
0cd6144a
JW
1535/**
1536 * find_lock_entry - locate, pin and lock a page cache entry
1537 * @mapping: the address_space to search
1538 * @offset: the page cache index
1539 *
1540 * Looks up the page cache slot at @mapping & @offset. If there is a
1541 * page cache page, it is returned locked and with an increased
1542 * refcount.
1543 *
139b6a6f
JW
1544 * If the slot holds a shadow entry of a previously evicted page, or a
1545 * swap entry from shmem/tmpfs, it is returned.
0cd6144a 1546 *
0cd6144a 1547 * find_lock_entry() may sleep.
a862f68a
MR
1548 *
1549 * Return: the found page or shadow entry, %NULL if nothing is found.
0cd6144a
JW
1550 */
1551struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1da177e4
LT
1552{
1553 struct page *page;
1554
1da177e4 1555repeat:
0cd6144a 1556 page = find_get_entry(mapping, offset);
4c7472c0 1557 if (page && !xa_is_value(page)) {
a60637c8
NP
1558 lock_page(page);
1559 /* Has the page been truncated? */
83929372 1560 if (unlikely(page_mapping(page) != mapping)) {
a60637c8 1561 unlock_page(page);
09cbfeaf 1562 put_page(page);
a60637c8 1563 goto repeat;
1da177e4 1564 }
83929372 1565 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1da177e4 1566 }
1da177e4
LT
1567 return page;
1568}
0cd6144a
JW
1569EXPORT_SYMBOL(find_lock_entry);
1570
1571/**
2457aec6 1572 * pagecache_get_page - find and get a page reference
0cd6144a
JW
1573 * @mapping: the address_space to search
1574 * @offset: the page index
2457aec6 1575 * @fgp_flags: PCG flags
45f87de5 1576 * @gfp_mask: gfp mask to use for the page cache data page allocation
0cd6144a 1577 *
2457aec6 1578 * Looks up the page cache slot at @mapping & @offset.
1da177e4 1579 *
75325189 1580 * PCG flags modify how the page is returned.
0cd6144a 1581 *
0e056eb5 1582 * @fgp_flags can be:
1583 *
1584 * - FGP_ACCESSED: the page will be marked accessed
1585 * - FGP_LOCK: Page is return locked
1586 * - FGP_CREAT: If page is not present then a new page is allocated using
1587 * @gfp_mask and added to the page cache and the VM's LRU
1588 * list. The page is returned locked and with an increased
a862f68a 1589 * refcount.
a75d4c33
JB
1590 * - FGP_FOR_MMAP: Similar to FGP_CREAT, only we want to allow the caller to do
1591 * its own locking dance if the page is already in cache, or unlock the page
1592 * before returning if we had to add the page to pagecache.
1da177e4 1593 *
2457aec6
MG
1594 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1595 * if the GFP flags specified for FGP_CREAT are atomic.
1da177e4 1596 *
2457aec6 1597 * If there is a page cache page, it is returned with an increased refcount.
a862f68a
MR
1598 *
1599 * Return: the found page or %NULL otherwise.
1da177e4 1600 */
2457aec6 1601struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
45f87de5 1602 int fgp_flags, gfp_t gfp_mask)
1da177e4 1603{
eb2be189 1604 struct page *page;
2457aec6 1605
1da177e4 1606repeat:
2457aec6 1607 page = find_get_entry(mapping, offset);
3159f943 1608 if (xa_is_value(page))
2457aec6
MG
1609 page = NULL;
1610 if (!page)
1611 goto no_page;
1612
1613 if (fgp_flags & FGP_LOCK) {
1614 if (fgp_flags & FGP_NOWAIT) {
1615 if (!trylock_page(page)) {
09cbfeaf 1616 put_page(page);
2457aec6
MG
1617 return NULL;
1618 }
1619 } else {
1620 lock_page(page);
1621 }
1622
1623 /* Has the page been truncated? */
1624 if (unlikely(page->mapping != mapping)) {
1625 unlock_page(page);
09cbfeaf 1626 put_page(page);
2457aec6
MG
1627 goto repeat;
1628 }
1629 VM_BUG_ON_PAGE(page->index != offset, page);
1630 }
1631
c16eb000 1632 if (fgp_flags & FGP_ACCESSED)
2457aec6
MG
1633 mark_page_accessed(page);
1634
1635no_page:
1636 if (!page && (fgp_flags & FGP_CREAT)) {
1637 int err;
1638 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
45f87de5
MH
1639 gfp_mask |= __GFP_WRITE;
1640 if (fgp_flags & FGP_NOFS)
1641 gfp_mask &= ~__GFP_FS;
2457aec6 1642
45f87de5 1643 page = __page_cache_alloc(gfp_mask);
eb2be189
NP
1644 if (!page)
1645 return NULL;
2457aec6 1646
a75d4c33 1647 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
2457aec6
MG
1648 fgp_flags |= FGP_LOCK;
1649
eb39d618 1650 /* Init accessed so avoid atomic mark_page_accessed later */
2457aec6 1651 if (fgp_flags & FGP_ACCESSED)
eb39d618 1652 __SetPageReferenced(page);
2457aec6 1653
abc1be13 1654 err = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
eb2be189 1655 if (unlikely(err)) {
09cbfeaf 1656 put_page(page);
eb2be189
NP
1657 page = NULL;
1658 if (err == -EEXIST)
1659 goto repeat;
1da177e4 1660 }
a75d4c33
JB
1661
1662 /*
1663 * add_to_page_cache_lru locks the page, and for mmap we expect
1664 * an unlocked page.
1665 */
1666 if (page && (fgp_flags & FGP_FOR_MMAP))
1667 unlock_page(page);
1da177e4 1668 }
2457aec6 1669
1da177e4
LT
1670 return page;
1671}
2457aec6 1672EXPORT_SYMBOL(pagecache_get_page);
1da177e4 1673
0cd6144a
JW
1674/**
1675 * find_get_entries - gang pagecache lookup
1676 * @mapping: The address_space to search
1677 * @start: The starting page cache index
1678 * @nr_entries: The maximum number of entries
1679 * @entries: Where the resulting entries are placed
1680 * @indices: The cache indices corresponding to the entries in @entries
1681 *
1682 * find_get_entries() will search for and return a group of up to
1683 * @nr_entries entries in the mapping. The entries are placed at
1684 * @entries. find_get_entries() takes a reference against any actual
1685 * pages it returns.
1686 *
1687 * The search returns a group of mapping-contiguous page cache entries
1688 * with ascending indexes. There may be holes in the indices due to
1689 * not-present pages.
1690 *
139b6a6f
JW
1691 * Any shadow entries of evicted pages, or swap entries from
1692 * shmem/tmpfs, are included in the returned array.
0cd6144a 1693 *
a862f68a 1694 * Return: the number of pages and shadow entries which were found.
0cd6144a
JW
1695 */
1696unsigned find_get_entries(struct address_space *mapping,
1697 pgoff_t start, unsigned int nr_entries,
1698 struct page **entries, pgoff_t *indices)
1699{
f280bf09
MW
1700 XA_STATE(xas, &mapping->i_pages, start);
1701 struct page *page;
0cd6144a 1702 unsigned int ret = 0;
0cd6144a
JW
1703
1704 if (!nr_entries)
1705 return 0;
1706
1707 rcu_read_lock();
f280bf09
MW
1708 xas_for_each(&xas, page, ULONG_MAX) {
1709 struct page *head;
1710 if (xas_retry(&xas, page))
0cd6144a 1711 continue;
f280bf09
MW
1712 /*
1713 * A shadow entry of a recently evicted page, a swap
1714 * entry from shmem/tmpfs or a DAX entry. Return it
1715 * without attempting to raise page count.
1716 */
1717 if (xa_is_value(page))
0cd6144a 1718 goto export;
83929372
KS
1719
1720 head = compound_head(page);
1721 if (!page_cache_get_speculative(head))
f280bf09 1722 goto retry;
83929372
KS
1723
1724 /* The page was split under us? */
f280bf09
MW
1725 if (compound_head(page) != head)
1726 goto put_page;
0cd6144a
JW
1727
1728 /* Has the page moved? */
f280bf09
MW
1729 if (unlikely(page != xas_reload(&xas)))
1730 goto put_page;
1731
0cd6144a 1732export:
f280bf09 1733 indices[ret] = xas.xa_index;
0cd6144a
JW
1734 entries[ret] = page;
1735 if (++ret == nr_entries)
1736 break;
f280bf09
MW
1737 continue;
1738put_page:
1739 put_page(head);
1740retry:
1741 xas_reset(&xas);
0cd6144a
JW
1742 }
1743 rcu_read_unlock();
1744 return ret;
1745}
1746
1da177e4 1747/**
b947cee4 1748 * find_get_pages_range - gang pagecache lookup
1da177e4
LT
1749 * @mapping: The address_space to search
1750 * @start: The starting page index
b947cee4 1751 * @end: The final page index (inclusive)
1da177e4
LT
1752 * @nr_pages: The maximum number of pages
1753 * @pages: Where the resulting pages are placed
1754 *
b947cee4
JK
1755 * find_get_pages_range() will search for and return a group of up to @nr_pages
1756 * pages in the mapping starting at index @start and up to index @end
1757 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes
1758 * a reference against the returned pages.
1da177e4
LT
1759 *
1760 * The search returns a group of mapping-contiguous pages with ascending
1761 * indexes. There may be holes in the indices due to not-present pages.
d72dc8a2 1762 * We also update @start to index the next page for the traversal.
1da177e4 1763 *
a862f68a
MR
1764 * Return: the number of pages which were found. If this number is
1765 * smaller than @nr_pages, the end of specified range has been
b947cee4 1766 * reached.
1da177e4 1767 */
b947cee4
JK
1768unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1769 pgoff_t end, unsigned int nr_pages,
1770 struct page **pages)
1da177e4 1771{
fd1b3cee
MW
1772 XA_STATE(xas, &mapping->i_pages, *start);
1773 struct page *page;
0fc9d104
KK
1774 unsigned ret = 0;
1775
1776 if (unlikely(!nr_pages))
1777 return 0;
a60637c8
NP
1778
1779 rcu_read_lock();
fd1b3cee
MW
1780 xas_for_each(&xas, page, end) {
1781 struct page *head;
1782 if (xas_retry(&xas, page))
a60637c8 1783 continue;
fd1b3cee
MW
1784 /* Skip over shadow, swap and DAX entries */
1785 if (xa_is_value(page))
8079b1c8 1786 continue;
a60637c8 1787
83929372
KS
1788 head = compound_head(page);
1789 if (!page_cache_get_speculative(head))
fd1b3cee 1790 goto retry;
83929372
KS
1791
1792 /* The page was split under us? */
fd1b3cee
MW
1793 if (compound_head(page) != head)
1794 goto put_page;
a60637c8
NP
1795
1796 /* Has the page moved? */
fd1b3cee
MW
1797 if (unlikely(page != xas_reload(&xas)))
1798 goto put_page;
1da177e4 1799
a60637c8 1800 pages[ret] = page;
b947cee4 1801 if (++ret == nr_pages) {
5d3ee42f 1802 *start = xas.xa_index + 1;
b947cee4
JK
1803 goto out;
1804 }
fd1b3cee
MW
1805 continue;
1806put_page:
1807 put_page(head);
1808retry:
1809 xas_reset(&xas);
a60637c8 1810 }
5b280c0c 1811
b947cee4
JK
1812 /*
1813 * We come here when there is no page beyond @end. We take care to not
1814 * overflow the index @start as it confuses some of the callers. This
fd1b3cee 1815 * breaks the iteration when there is a page at index -1 but that is
b947cee4
JK
1816 * already broken anyway.
1817 */
1818 if (end == (pgoff_t)-1)
1819 *start = (pgoff_t)-1;
1820 else
1821 *start = end + 1;
1822out:
a60637c8 1823 rcu_read_unlock();
d72dc8a2 1824
1da177e4
LT
1825 return ret;
1826}
1827
ebf43500
JA
1828/**
1829 * find_get_pages_contig - gang contiguous pagecache lookup
1830 * @mapping: The address_space to search
1831 * @index: The starting page index
1832 * @nr_pages: The maximum number of pages
1833 * @pages: Where the resulting pages are placed
1834 *
1835 * find_get_pages_contig() works exactly like find_get_pages(), except
1836 * that the returned number of pages are guaranteed to be contiguous.
1837 *
a862f68a 1838 * Return: the number of pages which were found.
ebf43500
JA
1839 */
1840unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1841 unsigned int nr_pages, struct page **pages)
1842{
3ece58a2
MW
1843 XA_STATE(xas, &mapping->i_pages, index);
1844 struct page *page;
0fc9d104
KK
1845 unsigned int ret = 0;
1846
1847 if (unlikely(!nr_pages))
1848 return 0;
a60637c8
NP
1849
1850 rcu_read_lock();
3ece58a2
MW
1851 for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1852 struct page *head;
1853 if (xas_retry(&xas, page))
1854 continue;
1855 /*
1856 * If the entry has been swapped out, we can stop looking.
1857 * No current caller is looking for DAX entries.
1858 */
1859 if (xa_is_value(page))
8079b1c8 1860 break;
ebf43500 1861
83929372
KS
1862 head = compound_head(page);
1863 if (!page_cache_get_speculative(head))
3ece58a2 1864 goto retry;
83929372
KS
1865
1866 /* The page was split under us? */
3ece58a2
MW
1867 if (compound_head(page) != head)
1868 goto put_page;
a60637c8
NP
1869
1870 /* Has the page moved? */
3ece58a2
MW
1871 if (unlikely(page != xas_reload(&xas)))
1872 goto put_page;
a60637c8
NP
1873
1874 pages[ret] = page;
0fc9d104
KK
1875 if (++ret == nr_pages)
1876 break;
3ece58a2
MW
1877 continue;
1878put_page:
1879 put_page(head);
1880retry:
1881 xas_reset(&xas);
ebf43500 1882 }
a60637c8
NP
1883 rcu_read_unlock();
1884 return ret;
ebf43500 1885}
ef71c15c 1886EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 1887
485bb99b 1888/**
72b045ae 1889 * find_get_pages_range_tag - find and return pages in given range matching @tag
485bb99b
RD
1890 * @mapping: the address_space to search
1891 * @index: the starting page index
72b045ae 1892 * @end: The final page index (inclusive)
485bb99b
RD
1893 * @tag: the tag index
1894 * @nr_pages: the maximum number of pages
1895 * @pages: where the resulting pages are placed
1896 *
1da177e4 1897 * Like find_get_pages, except we only return pages which are tagged with
485bb99b 1898 * @tag. We update @index to index the next page for the traversal.
a862f68a
MR
1899 *
1900 * Return: the number of pages which were found.
1da177e4 1901 */
72b045ae 1902unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
a6906972 1903 pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
72b045ae 1904 struct page **pages)
1da177e4 1905{
a6906972
MW
1906 XA_STATE(xas, &mapping->i_pages, *index);
1907 struct page *page;
0fc9d104
KK
1908 unsigned ret = 0;
1909
1910 if (unlikely(!nr_pages))
1911 return 0;
a60637c8
NP
1912
1913 rcu_read_lock();
a6906972
MW
1914 xas_for_each_marked(&xas, page, end, tag) {
1915 struct page *head;
1916 if (xas_retry(&xas, page))
a60637c8 1917 continue;
a6906972
MW
1918 /*
1919 * Shadow entries should never be tagged, but this iteration
1920 * is lockless so there is a window for page reclaim to evict
1921 * a page we saw tagged. Skip over it.
1922 */
1923 if (xa_is_value(page))
139b6a6f 1924 continue;
a60637c8 1925
83929372
KS
1926 head = compound_head(page);
1927 if (!page_cache_get_speculative(head))
a6906972 1928 goto retry;
a60637c8 1929
83929372 1930 /* The page was split under us? */
a6906972
MW
1931 if (compound_head(page) != head)
1932 goto put_page;
83929372 1933
a60637c8 1934 /* Has the page moved? */
a6906972
MW
1935 if (unlikely(page != xas_reload(&xas)))
1936 goto put_page;
a60637c8
NP
1937
1938 pages[ret] = page;
72b045ae 1939 if (++ret == nr_pages) {
5d3ee42f 1940 *index = xas.xa_index + 1;
72b045ae
JK
1941 goto out;
1942 }
a6906972
MW
1943 continue;
1944put_page:
1945 put_page(head);
1946retry:
1947 xas_reset(&xas);
a60637c8 1948 }
5b280c0c 1949
72b045ae 1950 /*
a6906972 1951 * We come here when we got to @end. We take care to not overflow the
72b045ae 1952 * index @index as it confuses some of the callers. This breaks the
a6906972
MW
1953 * iteration when there is a page at index -1 but that is already
1954 * broken anyway.
72b045ae
JK
1955 */
1956 if (end == (pgoff_t)-1)
1957 *index = (pgoff_t)-1;
1958 else
1959 *index = end + 1;
1960out:
a60637c8 1961 rcu_read_unlock();
1da177e4 1962
1da177e4
LT
1963 return ret;
1964}
72b045ae 1965EXPORT_SYMBOL(find_get_pages_range_tag);
1da177e4 1966
7e7f7749
RZ
1967/**
1968 * find_get_entries_tag - find and return entries that match @tag
1969 * @mapping: the address_space to search
1970 * @start: the starting page cache index
1971 * @tag: the tag index
1972 * @nr_entries: the maximum number of entries
1973 * @entries: where the resulting entries are placed
1974 * @indices: the cache indices corresponding to the entries in @entries
1975 *
1976 * Like find_get_entries, except we only return entries which are tagged with
1977 * @tag.
a862f68a
MR
1978 *
1979 * Return: the number of entries which were found.
7e7f7749
RZ
1980 */
1981unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
c1901cd3 1982 xa_mark_t tag, unsigned int nr_entries,
7e7f7749
RZ
1983 struct page **entries, pgoff_t *indices)
1984{
c1901cd3
MW
1985 XA_STATE(xas, &mapping->i_pages, start);
1986 struct page *page;
7e7f7749 1987 unsigned int ret = 0;
7e7f7749
RZ
1988
1989 if (!nr_entries)
1990 return 0;
1991
1992 rcu_read_lock();
c1901cd3
MW
1993 xas_for_each_marked(&xas, page, ULONG_MAX, tag) {
1994 struct page *head;
1995 if (xas_retry(&xas, page))
7e7f7749 1996 continue;
c1901cd3
MW
1997 /*
1998 * A shadow entry of a recently evicted page, a swap
1999 * entry from shmem/tmpfs or a DAX entry. Return it
2000 * without attempting to raise page count.
2001 */
2002 if (xa_is_value(page))
7e7f7749 2003 goto export;
83929372
KS
2004
2005 head = compound_head(page);
2006 if (!page_cache_get_speculative(head))
c1901cd3 2007 goto retry;
7e7f7749 2008
83929372 2009 /* The page was split under us? */
c1901cd3
MW
2010 if (compound_head(page) != head)
2011 goto put_page;
83929372 2012
7e7f7749 2013 /* Has the page moved? */
c1901cd3
MW
2014 if (unlikely(page != xas_reload(&xas)))
2015 goto put_page;
2016
7e7f7749 2017export:
c1901cd3 2018 indices[ret] = xas.xa_index;
7e7f7749
RZ
2019 entries[ret] = page;
2020 if (++ret == nr_entries)
2021 break;
c1901cd3
MW
2022 continue;
2023put_page:
2024 put_page(head);
2025retry:
2026 xas_reset(&xas);
7e7f7749
RZ
2027 }
2028 rcu_read_unlock();
2029 return ret;
2030}
2031EXPORT_SYMBOL(find_get_entries_tag);
2032
76d42bd9
WF
2033/*
2034 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2035 * a _large_ part of the i/o request. Imagine the worst scenario:
2036 *
2037 * ---R__________________________________________B__________
2038 * ^ reading here ^ bad block(assume 4k)
2039 *
2040 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2041 * => failing the whole request => read(R) => read(R+1) =>
2042 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2043 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2044 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2045 *
2046 * It is going insane. Fix it by quickly scaling down the readahead size.
2047 */
2048static void shrink_readahead_size_eio(struct file *filp,
2049 struct file_ra_state *ra)
2050{
76d42bd9 2051 ra->ra_pages /= 4;
76d42bd9
WF
2052}
2053
485bb99b 2054/**
47c27bc4
CH
2055 * generic_file_buffered_read - generic file read routine
2056 * @iocb: the iocb to read
6e58e79d
AV
2057 * @iter: data destination
2058 * @written: already copied
485bb99b 2059 *
1da177e4 2060 * This is a generic file read routine, and uses the
485bb99b 2061 * mapping->a_ops->readpage() function for the actual low-level stuff.
1da177e4
LT
2062 *
2063 * This is really ugly. But the goto's actually try to clarify some
2064 * of the logic when it comes to error handling etc.
a862f68a
MR
2065 *
2066 * Return:
2067 * * total number of bytes copied, including those the were already @written
2068 * * negative error code if nothing was copied
1da177e4 2069 */
47c27bc4 2070static ssize_t generic_file_buffered_read(struct kiocb *iocb,
6e58e79d 2071 struct iov_iter *iter, ssize_t written)
1da177e4 2072{
47c27bc4 2073 struct file *filp = iocb->ki_filp;
36e78914 2074 struct address_space *mapping = filp->f_mapping;
1da177e4 2075 struct inode *inode = mapping->host;
36e78914 2076 struct file_ra_state *ra = &filp->f_ra;
47c27bc4 2077 loff_t *ppos = &iocb->ki_pos;
57f6b96c
FW
2078 pgoff_t index;
2079 pgoff_t last_index;
2080 pgoff_t prev_index;
2081 unsigned long offset; /* offset into pagecache page */
ec0f1637 2082 unsigned int prev_offset;
6e58e79d 2083 int error = 0;
1da177e4 2084
c2a9737f 2085 if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
d05c5f7b 2086 return 0;
c2a9737f
WF
2087 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2088
09cbfeaf
KS
2089 index = *ppos >> PAGE_SHIFT;
2090 prev_index = ra->prev_pos >> PAGE_SHIFT;
2091 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
2092 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2093 offset = *ppos & ~PAGE_MASK;
1da177e4 2094
1da177e4
LT
2095 for (;;) {
2096 struct page *page;
57f6b96c 2097 pgoff_t end_index;
a32ea1e1 2098 loff_t isize;
1da177e4
LT
2099 unsigned long nr, ret;
2100
1da177e4 2101 cond_resched();
1da177e4 2102find_page:
5abf186a
MH
2103 if (fatal_signal_pending(current)) {
2104 error = -EINTR;
2105 goto out;
2106 }
2107
1da177e4 2108 page = find_get_page(mapping, index);
3ea89ee8 2109 if (!page) {
3239d834
MT
2110 if (iocb->ki_flags & IOCB_NOWAIT)
2111 goto would_block;
cf914a7d 2112 page_cache_sync_readahead(mapping,
7ff81078 2113 ra, filp,
3ea89ee8
FW
2114 index, last_index - index);
2115 page = find_get_page(mapping, index);
2116 if (unlikely(page == NULL))
2117 goto no_cached_page;
2118 }
2119 if (PageReadahead(page)) {
cf914a7d 2120 page_cache_async_readahead(mapping,
7ff81078 2121 ra, filp, page,
3ea89ee8 2122 index, last_index - index);
1da177e4 2123 }
8ab22b9a 2124 if (!PageUptodate(page)) {
3239d834
MT
2125 if (iocb->ki_flags & IOCB_NOWAIT) {
2126 put_page(page);
2127 goto would_block;
2128 }
2129
ebded027
MG
2130 /*
2131 * See comment in do_read_cache_page on why
2132 * wait_on_page_locked is used to avoid unnecessarily
2133 * serialisations and why it's safe.
2134 */
c4b209a4
BVA
2135 error = wait_on_page_locked_killable(page);
2136 if (unlikely(error))
2137 goto readpage_error;
ebded027
MG
2138 if (PageUptodate(page))
2139 goto page_ok;
2140
09cbfeaf 2141 if (inode->i_blkbits == PAGE_SHIFT ||
8ab22b9a
HH
2142 !mapping->a_ops->is_partially_uptodate)
2143 goto page_not_up_to_date;
6d6d36bc 2144 /* pipes can't handle partially uptodate pages */
00e23707 2145 if (unlikely(iov_iter_is_pipe(iter)))
6d6d36bc 2146 goto page_not_up_to_date;
529ae9aa 2147 if (!trylock_page(page))
8ab22b9a 2148 goto page_not_up_to_date;
8d056cb9
DH
2149 /* Did it get truncated before we got the lock? */
2150 if (!page->mapping)
2151 goto page_not_up_to_date_locked;
8ab22b9a 2152 if (!mapping->a_ops->is_partially_uptodate(page,
6e58e79d 2153 offset, iter->count))
8ab22b9a
HH
2154 goto page_not_up_to_date_locked;
2155 unlock_page(page);
2156 }
1da177e4 2157page_ok:
a32ea1e1
N
2158 /*
2159 * i_size must be checked after we know the page is Uptodate.
2160 *
2161 * Checking i_size after the check allows us to calculate
2162 * the correct value for "nr", which means the zero-filled
2163 * part of the page is not copied back to userspace (unless
2164 * another truncate extends the file - this is desired though).
2165 */
2166
2167 isize = i_size_read(inode);
09cbfeaf 2168 end_index = (isize - 1) >> PAGE_SHIFT;
a32ea1e1 2169 if (unlikely(!isize || index > end_index)) {
09cbfeaf 2170 put_page(page);
a32ea1e1
N
2171 goto out;
2172 }
2173
2174 /* nr is the maximum number of bytes to copy from this page */
09cbfeaf 2175 nr = PAGE_SIZE;
a32ea1e1 2176 if (index == end_index) {
09cbfeaf 2177 nr = ((isize - 1) & ~PAGE_MASK) + 1;
a32ea1e1 2178 if (nr <= offset) {
09cbfeaf 2179 put_page(page);
a32ea1e1
N
2180 goto out;
2181 }
2182 }
2183 nr = nr - offset;
1da177e4
LT
2184
2185 /* If users can be writing to this page using arbitrary
2186 * virtual addresses, take care about potential aliasing
2187 * before reading the page on the kernel side.
2188 */
2189 if (mapping_writably_mapped(mapping))
2190 flush_dcache_page(page);
2191
2192 /*
ec0f1637
JK
2193 * When a sequential read accesses a page several times,
2194 * only mark it as accessed the first time.
1da177e4 2195 */
ec0f1637 2196 if (prev_index != index || offset != prev_offset)
1da177e4
LT
2197 mark_page_accessed(page);
2198 prev_index = index;
2199
2200 /*
2201 * Ok, we have the page, and it's up-to-date, so
2202 * now we can copy it to user space...
1da177e4 2203 */
6e58e79d
AV
2204
2205 ret = copy_page_to_iter(page, offset, nr, iter);
1da177e4 2206 offset += ret;
09cbfeaf
KS
2207 index += offset >> PAGE_SHIFT;
2208 offset &= ~PAGE_MASK;
6ce745ed 2209 prev_offset = offset;
1da177e4 2210
09cbfeaf 2211 put_page(page);
6e58e79d
AV
2212 written += ret;
2213 if (!iov_iter_count(iter))
2214 goto out;
2215 if (ret < nr) {
2216 error = -EFAULT;
2217 goto out;
2218 }
2219 continue;
1da177e4
LT
2220
2221page_not_up_to_date:
2222 /* Get exclusive access to the page ... */
85462323
ON
2223 error = lock_page_killable(page);
2224 if (unlikely(error))
2225 goto readpage_error;
1da177e4 2226
8ab22b9a 2227page_not_up_to_date_locked:
da6052f7 2228 /* Did it get truncated before we got the lock? */
1da177e4
LT
2229 if (!page->mapping) {
2230 unlock_page(page);
09cbfeaf 2231 put_page(page);
1da177e4
LT
2232 continue;
2233 }
2234
2235 /* Did somebody else fill it already? */
2236 if (PageUptodate(page)) {
2237 unlock_page(page);
2238 goto page_ok;
2239 }
2240
2241readpage:
91803b49
JM
2242 /*
2243 * A previous I/O error may have been due to temporary
2244 * failures, eg. multipath errors.
2245 * PG_error will be set again if readpage fails.
2246 */
2247 ClearPageError(page);
1da177e4
LT
2248 /* Start the actual read. The read will unlock the page. */
2249 error = mapping->a_ops->readpage(filp, page);
2250
994fc28c
ZB
2251 if (unlikely(error)) {
2252 if (error == AOP_TRUNCATED_PAGE) {
09cbfeaf 2253 put_page(page);
6e58e79d 2254 error = 0;
994fc28c
ZB
2255 goto find_page;
2256 }
1da177e4 2257 goto readpage_error;
994fc28c 2258 }
1da177e4
LT
2259
2260 if (!PageUptodate(page)) {
85462323
ON
2261 error = lock_page_killable(page);
2262 if (unlikely(error))
2263 goto readpage_error;
1da177e4
LT
2264 if (!PageUptodate(page)) {
2265 if (page->mapping == NULL) {
2266 /*
2ecdc82e 2267 * invalidate_mapping_pages got it
1da177e4
LT
2268 */
2269 unlock_page(page);
09cbfeaf 2270 put_page(page);
1da177e4
LT
2271 goto find_page;
2272 }
2273 unlock_page(page);
7ff81078 2274 shrink_readahead_size_eio(filp, ra);
85462323
ON
2275 error = -EIO;
2276 goto readpage_error;
1da177e4
LT
2277 }
2278 unlock_page(page);
2279 }
2280
1da177e4
LT
2281 goto page_ok;
2282
2283readpage_error:
2284 /* UHHUH! A synchronous read error occurred. Report it */
09cbfeaf 2285 put_page(page);
1da177e4
LT
2286 goto out;
2287
2288no_cached_page:
2289 /*
2290 * Ok, it wasn't cached, so we need to create a new
2291 * page..
2292 */
453f85d4 2293 page = page_cache_alloc(mapping);
eb2be189 2294 if (!page) {
6e58e79d 2295 error = -ENOMEM;
eb2be189 2296 goto out;
1da177e4 2297 }
6afdb859 2298 error = add_to_page_cache_lru(page, mapping, index,
c62d2555 2299 mapping_gfp_constraint(mapping, GFP_KERNEL));
1da177e4 2300 if (error) {
09cbfeaf 2301 put_page(page);
6e58e79d
AV
2302 if (error == -EEXIST) {
2303 error = 0;
1da177e4 2304 goto find_page;
6e58e79d 2305 }
1da177e4
LT
2306 goto out;
2307 }
1da177e4
LT
2308 goto readpage;
2309 }
2310
3239d834
MT
2311would_block:
2312 error = -EAGAIN;
1da177e4 2313out:
7ff81078 2314 ra->prev_pos = prev_index;
09cbfeaf 2315 ra->prev_pos <<= PAGE_SHIFT;
7ff81078 2316 ra->prev_pos |= prev_offset;
1da177e4 2317
09cbfeaf 2318 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
0c6aa263 2319 file_accessed(filp);
6e58e79d 2320 return written ? written : error;
1da177e4
LT
2321}
2322
485bb99b 2323/**
6abd2322 2324 * generic_file_read_iter - generic filesystem read routine
485bb99b 2325 * @iocb: kernel I/O control block
6abd2322 2326 * @iter: destination for the data read
485bb99b 2327 *
6abd2322 2328 * This is the "read_iter()" routine for all filesystems
1da177e4 2329 * that can use the page cache directly.
a862f68a
MR
2330 * Return:
2331 * * number of bytes copied, even for partial reads
2332 * * negative error code if nothing was read
1da177e4
LT
2333 */
2334ssize_t
ed978a81 2335generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1da177e4 2336{
e7080a43 2337 size_t count = iov_iter_count(iter);
47c27bc4 2338 ssize_t retval = 0;
e7080a43
NS
2339
2340 if (!count)
2341 goto out; /* skip atime */
1da177e4 2342
2ba48ce5 2343 if (iocb->ki_flags & IOCB_DIRECT) {
47c27bc4 2344 struct file *file = iocb->ki_filp;
ed978a81
AV
2345 struct address_space *mapping = file->f_mapping;
2346 struct inode *inode = mapping->host;
543ade1f 2347 loff_t size;
1da177e4 2348
1da177e4 2349 size = i_size_read(inode);
6be96d3a
GR
2350 if (iocb->ki_flags & IOCB_NOWAIT) {
2351 if (filemap_range_has_page(mapping, iocb->ki_pos,
2352 iocb->ki_pos + count - 1))
2353 return -EAGAIN;
2354 } else {
2355 retval = filemap_write_and_wait_range(mapping,
2356 iocb->ki_pos,
2357 iocb->ki_pos + count - 1);
2358 if (retval < 0)
2359 goto out;
2360 }
d8d3d94b 2361
0d5b0cf2
CH
2362 file_accessed(file);
2363
5ecda137 2364 retval = mapping->a_ops->direct_IO(iocb, iter);
c3a69024 2365 if (retval >= 0) {
c64fb5c7 2366 iocb->ki_pos += retval;
5ecda137 2367 count -= retval;
9fe55eea 2368 }
5b47d59a 2369 iov_iter_revert(iter, count - iov_iter_count(iter));
66f998f6 2370
9fe55eea
SW
2371 /*
2372 * Btrfs can have a short DIO read if we encounter
2373 * compressed extents, so if there was an error, or if
2374 * we've already read everything we wanted to, or if
2375 * there was a short read because we hit EOF, go ahead
2376 * and return. Otherwise fallthrough to buffered io for
fbbbad4b
MW
2377 * the rest of the read. Buffered reads will not work for
2378 * DAX files, so don't bother trying.
9fe55eea 2379 */
5ecda137 2380 if (retval < 0 || !count || iocb->ki_pos >= size ||
0d5b0cf2 2381 IS_DAX(inode))
9fe55eea 2382 goto out;
1da177e4
LT
2383 }
2384
47c27bc4 2385 retval = generic_file_buffered_read(iocb, iter, retval);
1da177e4
LT
2386out:
2387 return retval;
2388}
ed978a81 2389EXPORT_SYMBOL(generic_file_read_iter);
1da177e4 2390
1da177e4 2391#ifdef CONFIG_MMU
1da177e4
LT
2392#define MMAP_LOTSAMISS (100)
2393
ef00e08e
LT
2394/*
2395 * Synchronous readahead happens when we don't even find
2396 * a page in the page cache at all.
2397 */
2a1180f1 2398static void do_sync_mmap_readahead(struct vm_fault *vmf)
ef00e08e 2399{
2a1180f1
JB
2400 struct file *file = vmf->vma->vm_file;
2401 struct file_ra_state *ra = &file->f_ra;
ef00e08e 2402 struct address_space *mapping = file->f_mapping;
2a1180f1 2403 pgoff_t offset = vmf->pgoff;
ef00e08e
LT
2404
2405 /* If we don't want any read-ahead, don't bother */
2a1180f1 2406 if (vmf->vma->vm_flags & VM_RAND_READ)
ef00e08e 2407 return;
275b12bf
WF
2408 if (!ra->ra_pages)
2409 return;
ef00e08e 2410
2a1180f1 2411 if (vmf->vma->vm_flags & VM_SEQ_READ) {
7ffc59b4
WF
2412 page_cache_sync_readahead(mapping, ra, file, offset,
2413 ra->ra_pages);
ef00e08e
LT
2414 return;
2415 }
2416
207d04ba
AK
2417 /* Avoid banging the cache line if not needed */
2418 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
ef00e08e
LT
2419 ra->mmap_miss++;
2420
2421 /*
2422 * Do we miss much more than hit in this file? If so,
2423 * stop bothering with read-ahead. It will only hurt.
2424 */
2425 if (ra->mmap_miss > MMAP_LOTSAMISS)
2426 return;
2427
d30a1100
WF
2428 /*
2429 * mmap read-around
2430 */
600e19af
RG
2431 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2432 ra->size = ra->ra_pages;
2433 ra->async_size = ra->ra_pages / 4;
275b12bf 2434 ra_submit(ra, mapping, file);
ef00e08e
LT
2435}
2436
2437/*
2438 * Asynchronous readahead happens when we find the page and PG_readahead,
2439 * so we want to possibly extend the readahead further..
2440 */
2a1180f1
JB
2441static void do_async_mmap_readahead(struct vm_fault *vmf,
2442 struct page *page)
ef00e08e 2443{
2a1180f1
JB
2444 struct file *file = vmf->vma->vm_file;
2445 struct file_ra_state *ra = &file->f_ra;
ef00e08e 2446 struct address_space *mapping = file->f_mapping;
2a1180f1 2447 pgoff_t offset = vmf->pgoff;
ef00e08e
LT
2448
2449 /* If we don't want any read-ahead, don't bother */
2a1180f1 2450 if (vmf->vma->vm_flags & VM_RAND_READ)
ef00e08e
LT
2451 return;
2452 if (ra->mmap_miss > 0)
2453 ra->mmap_miss--;
2454 if (PageReadahead(page))
2fad6f5d
WF
2455 page_cache_async_readahead(mapping, ra, file,
2456 page, offset, ra->ra_pages);
ef00e08e
LT
2457}
2458
485bb99b 2459/**
54cb8821 2460 * filemap_fault - read in file data for page fault handling
d0217ac0 2461 * @vmf: struct vm_fault containing details of the fault
485bb99b 2462 *
54cb8821 2463 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
2464 * mapped memory region to read in file data during a page fault.
2465 *
2466 * The goto's are kind of ugly, but this streamlines the normal case of having
2467 * it in the page cache, and handles the special cases reasonably without
2468 * having a lot of duplicated code.
9a95f3cf
PC
2469 *
2470 * vma->vm_mm->mmap_sem must be held on entry.
2471 *
2472 * If our return value has VM_FAULT_RETRY set, it's because
2473 * lock_page_or_retry() returned 0.
2474 * The mmap_sem has usually been released in this case.
2475 * See __lock_page_or_retry() for the exception.
2476 *
2477 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2478 * has not been released.
2479 *
2480 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
a862f68a
MR
2481 *
2482 * Return: bitwise-OR of %VM_FAULT_ codes.
1da177e4 2483 */
2bcd6454 2484vm_fault_t filemap_fault(struct vm_fault *vmf)
1da177e4
LT
2485{
2486 int error;
11bac800 2487 struct file *file = vmf->vma->vm_file;
1da177e4
LT
2488 struct address_space *mapping = file->f_mapping;
2489 struct file_ra_state *ra = &file->f_ra;
2490 struct inode *inode = mapping->host;
ef00e08e 2491 pgoff_t offset = vmf->pgoff;
9ab2594f 2492 pgoff_t max_off;
1da177e4 2493 struct page *page;
2bcd6454 2494 vm_fault_t ret = 0;
1da177e4 2495
9ab2594f
MW
2496 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2497 if (unlikely(offset >= max_off))
5307cc1a 2498 return VM_FAULT_SIGBUS;
1da177e4 2499
1da177e4 2500 /*
49426420 2501 * Do we have something in the page cache already?
1da177e4 2502 */
ef00e08e 2503 page = find_get_page(mapping, offset);
45cac65b 2504 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1da177e4 2505 /*
ef00e08e
LT
2506 * We found the page, so try async readahead before
2507 * waiting for the lock.
1da177e4 2508 */
2a1180f1 2509 do_async_mmap_readahead(vmf, page);
45cac65b 2510 } else if (!page) {
ef00e08e 2511 /* No page in the page cache at all */
2a1180f1 2512 do_sync_mmap_readahead(vmf);
ef00e08e 2513 count_vm_event(PGMAJFAULT);
2262185c 2514 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
ef00e08e
LT
2515 ret = VM_FAULT_MAJOR;
2516retry_find:
a75d4c33
JB
2517 page = pagecache_get_page(mapping, offset,
2518 FGP_CREAT|FGP_FOR_MMAP,
2519 vmf->gfp_mask);
1da177e4 2520 if (!page)
a75d4c33 2521 return vmf_error(-ENOMEM);
1da177e4
LT
2522 }
2523
11bac800 2524 if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
09cbfeaf 2525 put_page(page);
d065bd81 2526 return ret | VM_FAULT_RETRY;
d88c0922 2527 }
b522c94d
ML
2528
2529 /* Did it get truncated? */
2530 if (unlikely(page->mapping != mapping)) {
2531 unlock_page(page);
2532 put_page(page);
2533 goto retry_find;
2534 }
309381fe 2535 VM_BUG_ON_PAGE(page->index != offset, page);
b522c94d 2536
1da177e4 2537 /*
d00806b1
NP
2538 * We have a locked page in the page cache, now we need to check
2539 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 2540 */
d00806b1 2541 if (unlikely(!PageUptodate(page)))
1da177e4
LT
2542 goto page_not_uptodate;
2543
ef00e08e
LT
2544 /*
2545 * Found the page and have a reference on it.
2546 * We must recheck i_size under page lock.
2547 */
9ab2594f
MW
2548 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2549 if (unlikely(offset >= max_off)) {
d00806b1 2550 unlock_page(page);
09cbfeaf 2551 put_page(page);
5307cc1a 2552 return VM_FAULT_SIGBUS;
d00806b1
NP
2553 }
2554
d0217ac0 2555 vmf->page = page;
83c54070 2556 return ret | VM_FAULT_LOCKED;
1da177e4 2557
1da177e4 2558page_not_uptodate:
1da177e4
LT
2559 /*
2560 * Umm, take care of errors if the page isn't up-to-date.
2561 * Try to re-read it _once_. We do this synchronously,
2562 * because there really aren't any performance issues here
2563 * and we need to check for errors.
2564 */
1da177e4 2565 ClearPageError(page);
994fc28c 2566 error = mapping->a_ops->readpage(file, page);
3ef0f720
MS
2567 if (!error) {
2568 wait_on_page_locked(page);
2569 if (!PageUptodate(page))
2570 error = -EIO;
2571 }
09cbfeaf 2572 put_page(page);
d00806b1
NP
2573
2574 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 2575 goto retry_find;
1da177e4 2576
d00806b1 2577 /* Things didn't work out. Return zero to tell the mm layer so. */
76d42bd9 2578 shrink_readahead_size_eio(file, ra);
d0217ac0 2579 return VM_FAULT_SIGBUS;
54cb8821
NP
2580}
2581EXPORT_SYMBOL(filemap_fault);
2582
82b0f8c3 2583void filemap_map_pages(struct vm_fault *vmf,
bae473a4 2584 pgoff_t start_pgoff, pgoff_t end_pgoff)
f1820361 2585{
82b0f8c3 2586 struct file *file = vmf->vma->vm_file;
f1820361 2587 struct address_space *mapping = file->f_mapping;
bae473a4 2588 pgoff_t last_pgoff = start_pgoff;
9ab2594f 2589 unsigned long max_idx;
070e807c 2590 XA_STATE(xas, &mapping->i_pages, start_pgoff);
83929372 2591 struct page *head, *page;
f1820361
KS
2592
2593 rcu_read_lock();
070e807c
MW
2594 xas_for_each(&xas, page, end_pgoff) {
2595 if (xas_retry(&xas, page))
2596 continue;
2597 if (xa_is_value(page))
2cf938aa 2598 goto next;
f1820361 2599
83929372 2600 head = compound_head(page);
e0975b2a
MH
2601
2602 /*
2603 * Check for a locked page first, as a speculative
2604 * reference may adversely influence page migration.
2605 */
2606 if (PageLocked(head))
2607 goto next;
83929372 2608 if (!page_cache_get_speculative(head))
070e807c 2609 goto next;
f1820361 2610
83929372 2611 /* The page was split under us? */
070e807c
MW
2612 if (compound_head(page) != head)
2613 goto skip;
83929372 2614
f1820361 2615 /* Has the page moved? */
070e807c
MW
2616 if (unlikely(page != xas_reload(&xas)))
2617 goto skip;
f1820361
KS
2618
2619 if (!PageUptodate(page) ||
2620 PageReadahead(page) ||
2621 PageHWPoison(page))
2622 goto skip;
2623 if (!trylock_page(page))
2624 goto skip;
2625
2626 if (page->mapping != mapping || !PageUptodate(page))
2627 goto unlock;
2628
9ab2594f
MW
2629 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2630 if (page->index >= max_idx)
f1820361
KS
2631 goto unlock;
2632
f1820361
KS
2633 if (file->f_ra.mmap_miss > 0)
2634 file->f_ra.mmap_miss--;
7267ec00 2635
070e807c 2636 vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
82b0f8c3 2637 if (vmf->pte)
070e807c
MW
2638 vmf->pte += xas.xa_index - last_pgoff;
2639 last_pgoff = xas.xa_index;
82b0f8c3 2640 if (alloc_set_pte(vmf, NULL, page))
7267ec00 2641 goto unlock;
f1820361
KS
2642 unlock_page(page);
2643 goto next;
2644unlock:
2645 unlock_page(page);
2646skip:
09cbfeaf 2647 put_page(page);
f1820361 2648next:
7267ec00 2649 /* Huge page is mapped? No need to proceed. */
82b0f8c3 2650 if (pmd_trans_huge(*vmf->pmd))
7267ec00 2651 break;
f1820361
KS
2652 }
2653 rcu_read_unlock();
2654}
2655EXPORT_SYMBOL(filemap_map_pages);
2656
2bcd6454 2657vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
4fcf1c62
JK
2658{
2659 struct page *page = vmf->page;
11bac800 2660 struct inode *inode = file_inode(vmf->vma->vm_file);
2bcd6454 2661 vm_fault_t ret = VM_FAULT_LOCKED;
4fcf1c62 2662
14da9200 2663 sb_start_pagefault(inode->i_sb);
11bac800 2664 file_update_time(vmf->vma->vm_file);
4fcf1c62
JK
2665 lock_page(page);
2666 if (page->mapping != inode->i_mapping) {
2667 unlock_page(page);
2668 ret = VM_FAULT_NOPAGE;
2669 goto out;
2670 }
14da9200
JK
2671 /*
2672 * We mark the page dirty already here so that when freeze is in
2673 * progress, we are guaranteed that writeback during freezing will
2674 * see the dirty page and writeprotect it again.
2675 */
2676 set_page_dirty(page);
1d1d1a76 2677 wait_for_stable_page(page);
4fcf1c62 2678out:
14da9200 2679 sb_end_pagefault(inode->i_sb);
4fcf1c62
JK
2680 return ret;
2681}
4fcf1c62 2682
f0f37e2f 2683const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 2684 .fault = filemap_fault,
f1820361 2685 .map_pages = filemap_map_pages,
4fcf1c62 2686 .page_mkwrite = filemap_page_mkwrite,
1da177e4
LT
2687};
2688
2689/* This is used for a general mmap of a disk file */
2690
2691int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2692{
2693 struct address_space *mapping = file->f_mapping;
2694
2695 if (!mapping->a_ops->readpage)
2696 return -ENOEXEC;
2697 file_accessed(file);
2698 vma->vm_ops = &generic_file_vm_ops;
2699 return 0;
2700}
1da177e4
LT
2701
2702/*
2703 * This is for filesystems which do not implement ->writepage.
2704 */
2705int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2706{
2707 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2708 return -EINVAL;
2709 return generic_file_mmap(file, vma);
2710}
2711#else
4b96a37d 2712vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
45397228 2713{
4b96a37d 2714 return VM_FAULT_SIGBUS;
45397228 2715}
1da177e4
LT
2716int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2717{
2718 return -ENOSYS;
2719}
2720int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2721{
2722 return -ENOSYS;
2723}
2724#endif /* CONFIG_MMU */
2725
45397228 2726EXPORT_SYMBOL(filemap_page_mkwrite);
1da177e4
LT
2727EXPORT_SYMBOL(generic_file_mmap);
2728EXPORT_SYMBOL(generic_file_readonly_mmap);
2729
67f9fd91
SL
2730static struct page *wait_on_page_read(struct page *page)
2731{
2732 if (!IS_ERR(page)) {
2733 wait_on_page_locked(page);
2734 if (!PageUptodate(page)) {
09cbfeaf 2735 put_page(page);
67f9fd91
SL
2736 page = ERR_PTR(-EIO);
2737 }
2738 }
2739 return page;
2740}
2741
32b63529 2742static struct page *do_read_cache_page(struct address_space *mapping,
57f6b96c 2743 pgoff_t index,
5e5358e7 2744 int (*filler)(void *, struct page *),
0531b2aa
LT
2745 void *data,
2746 gfp_t gfp)
1da177e4 2747{
eb2be189 2748 struct page *page;
1da177e4
LT
2749 int err;
2750repeat:
2751 page = find_get_page(mapping, index);
2752 if (!page) {
453f85d4 2753 page = __page_cache_alloc(gfp);
eb2be189
NP
2754 if (!page)
2755 return ERR_PTR(-ENOMEM);
e6f67b8c 2756 err = add_to_page_cache_lru(page, mapping, index, gfp);
eb2be189 2757 if (unlikely(err)) {
09cbfeaf 2758 put_page(page);
eb2be189
NP
2759 if (err == -EEXIST)
2760 goto repeat;
22ecdb4f 2761 /* Presumably ENOMEM for xarray node */
1da177e4
LT
2762 return ERR_PTR(err);
2763 }
32b63529
MG
2764
2765filler:
1da177e4
LT
2766 err = filler(data, page);
2767 if (err < 0) {
09cbfeaf 2768 put_page(page);
32b63529 2769 return ERR_PTR(err);
1da177e4 2770 }
1da177e4 2771
32b63529
MG
2772 page = wait_on_page_read(page);
2773 if (IS_ERR(page))
2774 return page;
2775 goto out;
2776 }
1da177e4
LT
2777 if (PageUptodate(page))
2778 goto out;
2779
ebded027
MG
2780 /*
2781 * Page is not up to date and may be locked due one of the following
2782 * case a: Page is being filled and the page lock is held
2783 * case b: Read/write error clearing the page uptodate status
2784 * case c: Truncation in progress (page locked)
2785 * case d: Reclaim in progress
2786 *
2787 * Case a, the page will be up to date when the page is unlocked.
2788 * There is no need to serialise on the page lock here as the page
2789 * is pinned so the lock gives no additional protection. Even if the
2790 * the page is truncated, the data is still valid if PageUptodate as
2791 * it's a race vs truncate race.
2792 * Case b, the page will not be up to date
2793 * Case c, the page may be truncated but in itself, the data may still
2794 * be valid after IO completes as it's a read vs truncate race. The
2795 * operation must restart if the page is not uptodate on unlock but
2796 * otherwise serialising on page lock to stabilise the mapping gives
2797 * no additional guarantees to the caller as the page lock is
2798 * released before return.
2799 * Case d, similar to truncation. If reclaim holds the page lock, it
2800 * will be a race with remove_mapping that determines if the mapping
2801 * is valid on unlock but otherwise the data is valid and there is
2802 * no need to serialise with page lock.
2803 *
2804 * As the page lock gives no additional guarantee, we optimistically
2805 * wait on the page to be unlocked and check if it's up to date and
2806 * use the page if it is. Otherwise, the page lock is required to
2807 * distinguish between the different cases. The motivation is that we
2808 * avoid spurious serialisations and wakeups when multiple processes
2809 * wait on the same page for IO to complete.
2810 */
2811 wait_on_page_locked(page);
2812 if (PageUptodate(page))
2813 goto out;
2814
2815 /* Distinguish between all the cases under the safety of the lock */
1da177e4 2816 lock_page(page);
ebded027
MG
2817
2818 /* Case c or d, restart the operation */
1da177e4
LT
2819 if (!page->mapping) {
2820 unlock_page(page);
09cbfeaf 2821 put_page(page);
32b63529 2822 goto repeat;
1da177e4 2823 }
ebded027
MG
2824
2825 /* Someone else locked and filled the page in a very small window */
1da177e4
LT
2826 if (PageUptodate(page)) {
2827 unlock_page(page);
2828 goto out;
2829 }
32b63529
MG
2830 goto filler;
2831
c855ff37 2832out:
6fe6900e
NP
2833 mark_page_accessed(page);
2834 return page;
2835}
0531b2aa
LT
2836
2837/**
67f9fd91 2838 * read_cache_page - read into page cache, fill it if needed
0531b2aa
LT
2839 * @mapping: the page's address_space
2840 * @index: the page index
2841 * @filler: function to perform the read
5e5358e7 2842 * @data: first arg to filler(data, page) function, often left as NULL
0531b2aa 2843 *
0531b2aa 2844 * Read into the page cache. If a page already exists, and PageUptodate() is
67f9fd91 2845 * not set, try to fill the page and wait for it to become unlocked.
0531b2aa
LT
2846 *
2847 * If the page does not get brought uptodate, return -EIO.
a862f68a
MR
2848 *
2849 * Return: up to date page on success, ERR_PTR() on failure.
0531b2aa 2850 */
67f9fd91 2851struct page *read_cache_page(struct address_space *mapping,
0531b2aa 2852 pgoff_t index,
5e5358e7 2853 int (*filler)(void *, struct page *),
0531b2aa
LT
2854 void *data)
2855{
2856 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2857}
67f9fd91 2858EXPORT_SYMBOL(read_cache_page);
0531b2aa
LT
2859
2860/**
2861 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2862 * @mapping: the page's address_space
2863 * @index: the page index
2864 * @gfp: the page allocator flags to use if allocating
2865 *
2866 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
e6f67b8c 2867 * any new page allocations done using the specified allocation flags.
0531b2aa
LT
2868 *
2869 * If the page does not get brought uptodate, return -EIO.
a862f68a
MR
2870 *
2871 * Return: up to date page on success, ERR_PTR() on failure.
0531b2aa
LT
2872 */
2873struct page *read_cache_page_gfp(struct address_space *mapping,
2874 pgoff_t index,
2875 gfp_t gfp)
2876{
2877 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2878
67f9fd91 2879 return do_read_cache_page(mapping, index, filler, NULL, gfp);
0531b2aa
LT
2880}
2881EXPORT_SYMBOL(read_cache_page_gfp);
2882
9fd91a90
DW
2883/*
2884 * Don't operate on ranges the page cache doesn't support, and don't exceed the
2885 * LFS limits. If pos is under the limit it becomes a short access. If it
2886 * exceeds the limit we return -EFBIG.
2887 */
2888static int generic_access_check_limits(struct file *file, loff_t pos,
2889 loff_t *count)
2890{
2891 struct inode *inode = file->f_mapping->host;
2892 loff_t max_size = inode->i_sb->s_maxbytes;
2893
2894 if (!(file->f_flags & O_LARGEFILE))
2895 max_size = MAX_NON_LFS;
2896
2897 if (unlikely(pos >= max_size))
2898 return -EFBIG;
2899 *count = min(*count, max_size - pos);
2900 return 0;
2901}
2902
2903static int generic_write_check_limits(struct file *file, loff_t pos,
2904 loff_t *count)
2905{
2906 loff_t limit = rlimit(RLIMIT_FSIZE);
2907
2908 if (limit != RLIM_INFINITY) {
2909 if (pos >= limit) {
2910 send_sig(SIGXFSZ, current, 0);
2911 return -EFBIG;
2912 }
2913 *count = min(*count, limit - pos);
2914 }
2915
2916 return generic_access_check_limits(file, pos, count);
2917}
2918
1da177e4
LT
2919/*
2920 * Performs necessary checks before doing a write
2921 *
485bb99b 2922 * Can adjust writing position or amount of bytes to write.
1da177e4
LT
2923 * Returns appropriate error code that caller should return or
2924 * zero in case that write should be allowed.
2925 */
3309dd04 2926inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
1da177e4 2927{
3309dd04 2928 struct file *file = iocb->ki_filp;
1da177e4 2929 struct inode *inode = file->f_mapping->host;
9fd91a90
DW
2930 loff_t count;
2931 int ret;
1da177e4 2932
3309dd04
AV
2933 if (!iov_iter_count(from))
2934 return 0;
1da177e4 2935
0fa6b005 2936 /* FIXME: this is for backwards compatibility with 2.4 */
2ba48ce5 2937 if (iocb->ki_flags & IOCB_APPEND)
3309dd04 2938 iocb->ki_pos = i_size_read(inode);
1da177e4 2939
6be96d3a
GR
2940 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2941 return -EINVAL;
2942
9fd91a90
DW
2943 count = iov_iter_count(from);
2944 ret = generic_write_check_limits(file, iocb->ki_pos, &count);
2945 if (ret)
2946 return ret;
1da177e4 2947
9fd91a90 2948 iov_iter_truncate(from, count);
3309dd04 2949 return iov_iter_count(from);
1da177e4
LT
2950}
2951EXPORT_SYMBOL(generic_write_checks);
2952
1383a7ed
DW
2953/*
2954 * Performs necessary checks before doing a clone.
2955 *
2956 * Can adjust amount of bytes to clone.
2957 * Returns appropriate error code that caller should return or
2958 * zero in case the clone should be allowed.
2959 */
2960int generic_remap_checks(struct file *file_in, loff_t pos_in,
2961 struct file *file_out, loff_t pos_out,
42ec3d4c 2962 loff_t *req_count, unsigned int remap_flags)
1383a7ed
DW
2963{
2964 struct inode *inode_in = file_in->f_mapping->host;
2965 struct inode *inode_out = file_out->f_mapping->host;
2966 uint64_t count = *req_count;
2967 uint64_t bcount;
2968 loff_t size_in, size_out;
2969 loff_t bs = inode_out->i_sb->s_blocksize;
9fd91a90 2970 int ret;
1383a7ed
DW
2971
2972 /* The start of both ranges must be aligned to an fs block. */
2973 if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs))
2974 return -EINVAL;
2975
2976 /* Ensure offsets don't wrap. */
2977 if (pos_in + count < pos_in || pos_out + count < pos_out)
2978 return -EINVAL;
2979
2980 size_in = i_size_read(inode_in);
2981 size_out = i_size_read(inode_out);
2982
2983 /* Dedupe requires both ranges to be within EOF. */
3d28193e 2984 if ((remap_flags & REMAP_FILE_DEDUP) &&
1383a7ed
DW
2985 (pos_in >= size_in || pos_in + count > size_in ||
2986 pos_out >= size_out || pos_out + count > size_out))
2987 return -EINVAL;
2988
2989 /* Ensure the infile range is within the infile. */
2990 if (pos_in >= size_in)
2991 return -EINVAL;
2992 count = min(count, size_in - (uint64_t)pos_in);
2993
9fd91a90
DW
2994 ret = generic_access_check_limits(file_in, pos_in, &count);
2995 if (ret)
2996 return ret;
2997
2998 ret = generic_write_check_limits(file_out, pos_out, &count);
2999 if (ret)
3000 return ret;
1da177e4
LT
3001
3002 /*
1383a7ed
DW
3003 * If the user wanted us to link to the infile's EOF, round up to the
3004 * next block boundary for this check.
3005 *
3006 * Otherwise, make sure the count is also block-aligned, having
3007 * already confirmed the starting offsets' block alignment.
1da177e4 3008 */
1383a7ed
DW
3009 if (pos_in + count == size_in) {
3010 bcount = ALIGN(size_in, bs) - pos_in;
3011 } else {
3012 if (!IS_ALIGNED(count, bs))
eca3654e 3013 count = ALIGN_DOWN(count, bs);
1383a7ed 3014 bcount = count;
1da177e4
LT
3015 }
3016
1383a7ed
DW
3017 /* Don't allow overlapped cloning within the same file. */
3018 if (inode_in == inode_out &&
3019 pos_out + bcount > pos_in &&
3020 pos_out < pos_in + bcount)
3021 return -EINVAL;
3022
1da177e4 3023 /*
eca3654e
DW
3024 * We shortened the request but the caller can't deal with that, so
3025 * bounce the request back to userspace.
1da177e4 3026 */
eca3654e 3027 if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN))
1383a7ed 3028 return -EINVAL;
1da177e4 3029
eca3654e 3030 *req_count = count;
1383a7ed 3031 return 0;
1da177e4 3032}
1da177e4 3033
afddba49
NP
3034int pagecache_write_begin(struct file *file, struct address_space *mapping,
3035 loff_t pos, unsigned len, unsigned flags,
3036 struct page **pagep, void **fsdata)
3037{
3038 const struct address_space_operations *aops = mapping->a_ops;
3039
4e02ed4b 3040 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 3041 pagep, fsdata);
afddba49
NP
3042}
3043EXPORT_SYMBOL(pagecache_write_begin);
3044
3045int pagecache_write_end(struct file *file, struct address_space *mapping,
3046 loff_t pos, unsigned len, unsigned copied,
3047 struct page *page, void *fsdata)
3048{
3049 const struct address_space_operations *aops = mapping->a_ops;
afddba49 3050
4e02ed4b 3051 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
3052}
3053EXPORT_SYMBOL(pagecache_write_end);
3054
1da177e4 3055ssize_t
1af5bb49 3056generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3057{
3058 struct file *file = iocb->ki_filp;
3059 struct address_space *mapping = file->f_mapping;
3060 struct inode *inode = mapping->host;
1af5bb49 3061 loff_t pos = iocb->ki_pos;
1da177e4 3062 ssize_t written;
a969e903
CH
3063 size_t write_len;
3064 pgoff_t end;
1da177e4 3065
0c949334 3066 write_len = iov_iter_count(from);
09cbfeaf 3067 end = (pos + write_len - 1) >> PAGE_SHIFT;
a969e903 3068
6be96d3a
GR
3069 if (iocb->ki_flags & IOCB_NOWAIT) {
3070 /* If there are pages to writeback, return */
3071 if (filemap_range_has_page(inode->i_mapping, pos,
35f12f0f 3072 pos + write_len - 1))
6be96d3a
GR
3073 return -EAGAIN;
3074 } else {
3075 written = filemap_write_and_wait_range(mapping, pos,
3076 pos + write_len - 1);
3077 if (written)
3078 goto out;
3079 }
a969e903
CH
3080
3081 /*
3082 * After a write we want buffered reads to be sure to go to disk to get
3083 * the new data. We invalidate clean cached page from the region we're
3084 * about to write. We do this *before* the write so that we can return
6ccfa806 3085 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903 3086 */
55635ba7 3087 written = invalidate_inode_pages2_range(mapping,
09cbfeaf 3088 pos >> PAGE_SHIFT, end);
55635ba7
AR
3089 /*
3090 * If a page can not be invalidated, return 0 to fall back
3091 * to buffered write.
3092 */
3093 if (written) {
3094 if (written == -EBUSY)
3095 return 0;
3096 goto out;
a969e903
CH
3097 }
3098
639a93a5 3099 written = mapping->a_ops->direct_IO(iocb, from);
a969e903
CH
3100
3101 /*
3102 * Finally, try again to invalidate clean pages which might have been
3103 * cached by non-direct readahead, or faulted in by get_user_pages()
3104 * if the source of the write was an mmap'ed region of the file
3105 * we're writing. Either one is a pretty crazy thing to do,
3106 * so we don't support it 100%. If this invalidation
3107 * fails, tough, the write still worked...
332391a9
LC
3108 *
3109 * Most of the time we do not need this since dio_complete() will do
3110 * the invalidation for us. However there are some file systems that
3111 * do not end up with dio_complete() being called, so let's not break
3112 * them by removing it completely
a969e903 3113 */
332391a9
LC
3114 if (mapping->nrpages)
3115 invalidate_inode_pages2_range(mapping,
3116 pos >> PAGE_SHIFT, end);
a969e903 3117
1da177e4 3118 if (written > 0) {
0116651c 3119 pos += written;
639a93a5 3120 write_len -= written;
0116651c
NK
3121 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3122 i_size_write(inode, pos);
1da177e4
LT
3123 mark_inode_dirty(inode);
3124 }
5cb6c6c7 3125 iocb->ki_pos = pos;
1da177e4 3126 }
639a93a5 3127 iov_iter_revert(from, write_len - iov_iter_count(from));
a969e903 3128out:
1da177e4
LT
3129 return written;
3130}
3131EXPORT_SYMBOL(generic_file_direct_write);
3132
eb2be189
NP
3133/*
3134 * Find or create a page at the given pagecache position. Return the locked
3135 * page. This function is specifically for buffered writes.
3136 */
54566b2c
NP
3137struct page *grab_cache_page_write_begin(struct address_space *mapping,
3138 pgoff_t index, unsigned flags)
eb2be189 3139{
eb2be189 3140 struct page *page;
bbddabe2 3141 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
0faa70cb 3142
54566b2c 3143 if (flags & AOP_FLAG_NOFS)
2457aec6
MG
3144 fgp_flags |= FGP_NOFS;
3145
3146 page = pagecache_get_page(mapping, index, fgp_flags,
45f87de5 3147 mapping_gfp_mask(mapping));
c585a267 3148 if (page)
2457aec6 3149 wait_for_stable_page(page);
eb2be189 3150
eb2be189
NP
3151 return page;
3152}
54566b2c 3153EXPORT_SYMBOL(grab_cache_page_write_begin);
eb2be189 3154
3b93f911 3155ssize_t generic_perform_write(struct file *file,
afddba49
NP
3156 struct iov_iter *i, loff_t pos)
3157{
3158 struct address_space *mapping = file->f_mapping;
3159 const struct address_space_operations *a_ops = mapping->a_ops;
3160 long status = 0;
3161 ssize_t written = 0;
674b892e
NP
3162 unsigned int flags = 0;
3163
afddba49
NP
3164 do {
3165 struct page *page;
afddba49
NP
3166 unsigned long offset; /* Offset into pagecache page */
3167 unsigned long bytes; /* Bytes to write to page */
3168 size_t copied; /* Bytes copied from user */
3169 void *fsdata;
3170
09cbfeaf
KS
3171 offset = (pos & (PAGE_SIZE - 1));
3172 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
3173 iov_iter_count(i));
3174
3175again:
00a3d660
LT
3176 /*
3177 * Bring in the user page that we will copy from _first_.
3178 * Otherwise there's a nasty deadlock on copying from the
3179 * same page as we're writing to, without it being marked
3180 * up-to-date.
3181 *
3182 * Not only is this an optimisation, but it is also required
3183 * to check that the address is actually valid, when atomic
3184 * usercopies are used, below.
3185 */
3186 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3187 status = -EFAULT;
3188 break;
3189 }
3190
296291cd
JK
3191 if (fatal_signal_pending(current)) {
3192 status = -EINTR;
3193 break;
3194 }
3195
674b892e 3196 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49 3197 &page, &fsdata);
2457aec6 3198 if (unlikely(status < 0))
afddba49
NP
3199 break;
3200
931e80e4 3201 if (mapping_writably_mapped(mapping))
3202 flush_dcache_page(page);
00a3d660 3203
afddba49 3204 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
afddba49
NP
3205 flush_dcache_page(page);
3206
3207 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3208 page, fsdata);
3209 if (unlikely(status < 0))
3210 break;
3211 copied = status;
3212
3213 cond_resched();
3214
124d3b70 3215 iov_iter_advance(i, copied);
afddba49
NP
3216 if (unlikely(copied == 0)) {
3217 /*
3218 * If we were unable to copy any data at all, we must
3219 * fall back to a single segment length write.
3220 *
3221 * If we didn't fallback here, we could livelock
3222 * because not all segments in the iov can be copied at
3223 * once without a pagefault.
3224 */
09cbfeaf 3225 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
3226 iov_iter_single_seg_count(i));
3227 goto again;
3228 }
afddba49
NP
3229 pos += copied;
3230 written += copied;
3231
3232 balance_dirty_pages_ratelimited(mapping);
afddba49
NP
3233 } while (iov_iter_count(i));
3234
3235 return written ? written : status;
3236}
3b93f911 3237EXPORT_SYMBOL(generic_perform_write);
1da177e4 3238
e4dd9de3 3239/**
8174202b 3240 * __generic_file_write_iter - write data to a file
e4dd9de3 3241 * @iocb: IO state structure (file, offset, etc.)
8174202b 3242 * @from: iov_iter with data to write
e4dd9de3
JK
3243 *
3244 * This function does all the work needed for actually writing data to a
3245 * file. It does all basic checks, removes SUID from the file, updates
3246 * modification times and calls proper subroutines depending on whether we
3247 * do direct IO or a standard buffered write.
3248 *
3249 * It expects i_mutex to be grabbed unless we work on a block device or similar
3250 * object which does not need locking at all.
3251 *
3252 * This function does *not* take care of syncing data in case of O_SYNC write.
3253 * A caller has to handle it. This is mainly due to the fact that we want to
3254 * avoid syncing under i_mutex.
a862f68a
MR
3255 *
3256 * Return:
3257 * * number of bytes written, even for truncated writes
3258 * * negative error code if no data has been written at all
e4dd9de3 3259 */
8174202b 3260ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3261{
3262 struct file *file = iocb->ki_filp;
fb5527e6 3263 struct address_space * mapping = file->f_mapping;
1da177e4 3264 struct inode *inode = mapping->host;
3b93f911 3265 ssize_t written = 0;
1da177e4 3266 ssize_t err;
3b93f911 3267 ssize_t status;
1da177e4 3268
1da177e4 3269 /* We can write back this queue in page reclaim */
de1414a6 3270 current->backing_dev_info = inode_to_bdi(inode);
5fa8e0a1 3271 err = file_remove_privs(file);
1da177e4
LT
3272 if (err)
3273 goto out;
3274
c3b2da31
JB
3275 err = file_update_time(file);
3276 if (err)
3277 goto out;
1da177e4 3278
2ba48ce5 3279 if (iocb->ki_flags & IOCB_DIRECT) {
0b8def9d 3280 loff_t pos, endbyte;
fb5527e6 3281
1af5bb49 3282 written = generic_file_direct_write(iocb, from);
1da177e4 3283 /*
fbbbad4b
MW
3284 * If the write stopped short of completing, fall back to
3285 * buffered writes. Some filesystems do this for writes to
3286 * holes, for example. For DAX files, a buffered write will
3287 * not succeed (even if it did, DAX does not handle dirty
3288 * page-cache pages correctly).
1da177e4 3289 */
0b8def9d 3290 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
fbbbad4b
MW
3291 goto out;
3292
0b8def9d 3293 status = generic_perform_write(file, from, pos = iocb->ki_pos);
fb5527e6 3294 /*
3b93f911 3295 * If generic_perform_write() returned a synchronous error
fb5527e6
JM
3296 * then we want to return the number of bytes which were
3297 * direct-written, or the error code if that was zero. Note
3298 * that this differs from normal direct-io semantics, which
3299 * will return -EFOO even if some bytes were written.
3300 */
60bb4529 3301 if (unlikely(status < 0)) {
3b93f911 3302 err = status;
fb5527e6
JM
3303 goto out;
3304 }
fb5527e6
JM
3305 /*
3306 * We need to ensure that the page cache pages are written to
3307 * disk and invalidated to preserve the expected O_DIRECT
3308 * semantics.
3309 */
3b93f911 3310 endbyte = pos + status - 1;
0b8def9d 3311 err = filemap_write_and_wait_range(mapping, pos, endbyte);
fb5527e6 3312 if (err == 0) {
0b8def9d 3313 iocb->ki_pos = endbyte + 1;
3b93f911 3314 written += status;
fb5527e6 3315 invalidate_mapping_pages(mapping,
09cbfeaf
KS
3316 pos >> PAGE_SHIFT,
3317 endbyte >> PAGE_SHIFT);
fb5527e6
JM
3318 } else {
3319 /*
3320 * We don't know how much we wrote, so just return
3321 * the number of bytes which were direct-written
3322 */
3323 }
3324 } else {
0b8def9d
AV
3325 written = generic_perform_write(file, from, iocb->ki_pos);
3326 if (likely(written > 0))
3327 iocb->ki_pos += written;
fb5527e6 3328 }
1da177e4
LT
3329out:
3330 current->backing_dev_info = NULL;
3331 return written ? written : err;
3332}
8174202b 3333EXPORT_SYMBOL(__generic_file_write_iter);
e4dd9de3 3334
e4dd9de3 3335/**
8174202b 3336 * generic_file_write_iter - write data to a file
e4dd9de3 3337 * @iocb: IO state structure
8174202b 3338 * @from: iov_iter with data to write
e4dd9de3 3339 *
8174202b 3340 * This is a wrapper around __generic_file_write_iter() to be used by most
e4dd9de3
JK
3341 * filesystems. It takes care of syncing the file in case of O_SYNC file
3342 * and acquires i_mutex as needed.
a862f68a
MR
3343 * Return:
3344 * * negative error code if no data has been written at all of
3345 * vfs_fsync_range() failed for a synchronous write
3346 * * number of bytes written, even for truncated writes
e4dd9de3 3347 */
8174202b 3348ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3349{
3350 struct file *file = iocb->ki_filp;
148f948b 3351 struct inode *inode = file->f_mapping->host;
1da177e4 3352 ssize_t ret;
1da177e4 3353
5955102c 3354 inode_lock(inode);
3309dd04
AV
3355 ret = generic_write_checks(iocb, from);
3356 if (ret > 0)
5f380c7f 3357 ret = __generic_file_write_iter(iocb, from);
5955102c 3358 inode_unlock(inode);
1da177e4 3359
e2592217
CH
3360 if (ret > 0)
3361 ret = generic_write_sync(iocb, ret);
1da177e4
LT
3362 return ret;
3363}
8174202b 3364EXPORT_SYMBOL(generic_file_write_iter);
1da177e4 3365
cf9a2ae8
DH
3366/**
3367 * try_to_release_page() - release old fs-specific metadata on a page
3368 *
3369 * @page: the page which the kernel is trying to free
3370 * @gfp_mask: memory allocation flags (and I/O mode)
3371 *
3372 * The address_space is to try to release any data against the page
a862f68a 3373 * (presumably at page->private).
cf9a2ae8 3374 *
266cf658
DH
3375 * This may also be called if PG_fscache is set on a page, indicating that the
3376 * page is known to the local caching routines.
3377 *
cf9a2ae8 3378 * The @gfp_mask argument specifies whether I/O may be performed to release
71baba4b 3379 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
cf9a2ae8 3380 *
a862f68a 3381 * Return: %1 if the release was successful, otherwise return zero.
cf9a2ae8
DH
3382 */
3383int try_to_release_page(struct page *page, gfp_t gfp_mask)
3384{
3385 struct address_space * const mapping = page->mapping;
3386
3387 BUG_ON(!PageLocked(page));
3388 if (PageWriteback(page))
3389 return 0;
3390
3391 if (mapping && mapping->a_ops->releasepage)
3392 return mapping->a_ops->releasepage(page, gfp_mask);
3393 return try_to_free_buffers(page);
3394}
3395
3396EXPORT_SYMBOL(try_to_release_page);