filemap: Convert page_cache_delete to take a folio
[linux-block.git] / mm / filemap.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/filemap.c
4 *
5 * Copyright (C) 1994-1999 Linus Torvalds
6 */
7
8/*
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
12 */
b95f1b31 13#include <linux/export.h>
1da177e4 14#include <linux/compiler.h>
f9fe48be 15#include <linux/dax.h>
1da177e4 16#include <linux/fs.h>
3f07c014 17#include <linux/sched/signal.h>
c22ce143 18#include <linux/uaccess.h>
c59ede7b 19#include <linux/capability.h>
1da177e4 20#include <linux/kernel_stat.h>
5a0e3ad6 21#include <linux/gfp.h>
1da177e4
LT
22#include <linux/mm.h>
23#include <linux/swap.h>
24#include <linux/mman.h>
25#include <linux/pagemap.h>
26#include <linux/file.h>
27#include <linux/uio.h>
cfcbfb13 28#include <linux/error-injection.h>
1da177e4
LT
29#include <linux/hash.h>
30#include <linux/writeback.h>
53253383 31#include <linux/backing-dev.h>
1da177e4 32#include <linux/pagevec.h>
1da177e4 33#include <linux/security.h>
44110fe3 34#include <linux/cpuset.h>
00501b53 35#include <linux/hugetlb.h>
8a9f3ccd 36#include <linux/memcontrol.h>
c515e1fd 37#include <linux/cleancache.h>
c7df8ad2 38#include <linux/shmem_fs.h>
f1820361 39#include <linux/rmap.h>
b1d29ba8 40#include <linux/delayacct.h>
eb414681 41#include <linux/psi.h>
d0e6a582 42#include <linux/ramfs.h>
b9306a79 43#include <linux/page_idle.h>
f9ce0be7 44#include <asm/pgalloc.h>
de591a82 45#include <asm/tlbflush.h>
0f8053a5
NP
46#include "internal.h"
47
fe0bfaaf
RJ
48#define CREATE_TRACE_POINTS
49#include <trace/events/filemap.h>
50
1da177e4 51/*
1da177e4
LT
52 * FIXME: remove all knowledge of the buffer layer from the core VM
53 */
148f948b 54#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 55
1da177e4
LT
56#include <asm/mman.h>
57
58/*
59 * Shared mappings implemented 30.11.1994. It's not fully working yet,
60 * though.
61 *
62 * Shared mappings now work. 15.8.1995 Bruno.
63 *
64 * finished 'unifying' the page and buffer cache and SMP-threaded the
65 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
66 *
67 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
68 */
69
70/*
71 * Lock ordering:
72 *
c8c06efa 73 * ->i_mmap_rwsem (truncate_pagecache)
1da177e4 74 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91 75 * ->swap_lock (exclusive_swap_page, others)
b93b0163 76 * ->i_pages lock
1da177e4 77 *
9608703e 78 * ->i_rwsem
730633f0
JK
79 * ->invalidate_lock (acquired by fs in truncate path)
80 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
1da177e4 81 *
c1e8d7c6 82 * ->mmap_lock
c8c06efa 83 * ->i_mmap_rwsem
b8072f09 84 * ->page_table_lock or pte_lock (various, mainly in memory.c)
b93b0163 85 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
1da177e4 86 *
c1e8d7c6 87 * ->mmap_lock
730633f0
JK
88 * ->invalidate_lock (filemap_fault)
89 * ->lock_page (filemap_fault, access_process_vm)
1da177e4 90 *
9608703e 91 * ->i_rwsem (generic_perform_write)
bb523b40 92 * ->mmap_lock (fault_in_readable->do_page_fault)
1da177e4 93 *
f758eeab 94 * bdi->wb.list_lock
a66979ab 95 * sb_lock (fs/fs-writeback.c)
b93b0163 96 * ->i_pages lock (__sync_single_inode)
1da177e4 97 *
c8c06efa 98 * ->i_mmap_rwsem
1da177e4
LT
99 * ->anon_vma.lock (vma_adjust)
100 *
101 * ->anon_vma.lock
b8072f09 102 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 103 *
b8072f09 104 * ->page_table_lock or pte_lock
5d337b91 105 * ->swap_lock (try_to_unmap_one)
1da177e4 106 * ->private_lock (try_to_unmap_one)
b93b0163 107 * ->i_pages lock (try_to_unmap_one)
15b44736
HD
108 * ->lruvec->lru_lock (follow_page->mark_page_accessed)
109 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page)
1da177e4 110 * ->private_lock (page_remove_rmap->set_page_dirty)
b93b0163 111 * ->i_pages lock (page_remove_rmap->set_page_dirty)
f758eeab 112 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
250df6ed 113 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
81f8c3a4 114 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
f758eeab 115 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 116 * ->inode->i_lock (zap_pte_range->set_page_dirty)
1da177e4
LT
117 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
118 *
c8c06efa 119 * ->i_mmap_rwsem
9a3c531d 120 * ->tasklist_lock (memory_failure, collect_procs_ao)
1da177e4
LT
121 */
122
5c024e6a 123static void page_cache_delete(struct address_space *mapping,
a548b615 124 struct folio *folio, void *shadow)
91b0abe3 125{
a548b615
MWO
126 XA_STATE(xas, &mapping->i_pages, folio->index);
127 long nr = 1;
c70b647d 128
5c024e6a 129 mapping_set_update(&xas, mapping);
c70b647d 130
5c024e6a 131 /* hugetlb pages are represented by a single entry in the xarray */
a548b615
MWO
132 if (!folio_test_hugetlb(folio)) {
133 xas_set_order(&xas, folio->index, folio_order(folio));
134 nr = folio_nr_pages(folio);
5c024e6a 135 }
91b0abe3 136
a548b615
MWO
137 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
138 VM_BUG_ON_FOLIO(nr != 1 && shadow, folio);
449dd698 139
5c024e6a
MW
140 xas_store(&xas, shadow);
141 xas_init_marks(&xas);
d3798ae8 142
a548b615 143 folio->mapping = NULL;
2300638b 144 /* Leave page->index set: truncation lookup relies upon it */
d3798ae8 145 mapping->nrpages -= nr;
91b0abe3
JW
146}
147
5ecc4d85
JK
148static void unaccount_page_cache_page(struct address_space *mapping,
149 struct page *page)
1da177e4 150{
5ecc4d85 151 int nr;
1da177e4 152
c515e1fd
DM
153 /*
154 * if we're uptodate, flush out into the cleancache, otherwise
155 * invalidate any existing cleancache entries. We can't leave
156 * stale data around in the cleancache once our page is gone
157 */
158 if (PageUptodate(page) && PageMappedToDisk(page))
159 cleancache_put_page(page);
160 else
3167760f 161 cleancache_invalidate_page(mapping, page);
c515e1fd 162
83929372 163 VM_BUG_ON_PAGE(PageTail(page), page);
06b241f3
HD
164 VM_BUG_ON_PAGE(page_mapped(page), page);
165 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
166 int mapcount;
167
168 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
169 current->comm, page_to_pfn(page));
170 dump_page(page, "still mapped when deleted");
171 dump_stack();
172 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
173
174 mapcount = page_mapcount(page);
175 if (mapping_exiting(mapping) &&
176 page_count(page) >= mapcount + 2) {
177 /*
178 * All vmas have already been torn down, so it's
179 * a good bet that actually the page is unmapped,
180 * and we'd prefer not to leak it: if we're wrong,
181 * some other bad page check should catch it later.
182 */
183 page_mapcount_reset(page);
6d061f9f 184 page_ref_sub(page, mapcount);
06b241f3
HD
185 }
186 }
187
4165b9b4 188 /* hugetlb pages do not participate in page cache accounting. */
5ecc4d85
JK
189 if (PageHuge(page))
190 return;
09612fa6 191
6c357848 192 nr = thp_nr_pages(page);
5ecc4d85 193
0d1c2072 194 __mod_lruvec_page_state(page, NR_FILE_PAGES, -nr);
5ecc4d85 195 if (PageSwapBacked(page)) {
0d1c2072 196 __mod_lruvec_page_state(page, NR_SHMEM, -nr);
5ecc4d85 197 if (PageTransHuge(page))
57b2847d 198 __mod_lruvec_page_state(page, NR_SHMEM_THPS, -nr);
99cb0dbd 199 } else if (PageTransHuge(page)) {
bf9ecead 200 __mod_lruvec_page_state(page, NR_FILE_THPS, -nr);
09d91cda 201 filemap_nr_thps_dec(mapping);
800d8c63 202 }
5ecc4d85
JK
203
204 /*
205 * At this point page must be either written or cleaned by
206 * truncate. Dirty page here signals a bug and loss of
207 * unwritten data.
208 *
209 * This fixes dirty accounting after removing the page entirely
210 * but leaves PageDirty set: it has no effect for truncated
211 * page and anyway will be cleared before returning page into
212 * buddy allocator.
213 */
214 if (WARN_ON_ONCE(PageDirty(page)))
215 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
216}
217
218/*
219 * Delete a page from the page cache and free it. Caller has to make
220 * sure the page is locked and that nobody else uses it - or that usage
b93b0163 221 * is safe. The caller must hold the i_pages lock.
5ecc4d85
JK
222 */
223void __delete_from_page_cache(struct page *page, void *shadow)
224{
a548b615 225 struct folio *folio = page_folio(page);
5ecc4d85
JK
226 struct address_space *mapping = page->mapping;
227
228 trace_mm_filemap_delete_from_page_cache(page);
229
230 unaccount_page_cache_page(mapping, page);
a548b615 231 page_cache_delete(mapping, folio, shadow);
1da177e4
LT
232}
233
59c66c5f
JK
234static void page_cache_free_page(struct address_space *mapping,
235 struct page *page)
236{
237 void (*freepage)(struct page *);
238
239 freepage = mapping->a_ops->freepage;
240 if (freepage)
241 freepage(page);
242
243 if (PageTransHuge(page) && !PageHuge(page)) {
887b22c6 244 page_ref_sub(page, thp_nr_pages(page));
59c66c5f
JK
245 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
246 } else {
247 put_page(page);
248 }
249}
250
702cfbf9
MK
251/**
252 * delete_from_page_cache - delete page from page cache
253 * @page: the page which the kernel is trying to remove from page cache
254 *
255 * This must be called only on pages that have been verified to be in the page
256 * cache and locked. It will never put the page into the free list, the caller
257 * has a reference on the page.
258 */
259void delete_from_page_cache(struct page *page)
1da177e4 260{
83929372 261 struct address_space *mapping = page_mapping(page);
1da177e4 262
cd7619d6 263 BUG_ON(!PageLocked(page));
51b8c1fe 264 spin_lock(&mapping->host->i_lock);
30472509 265 xa_lock_irq(&mapping->i_pages);
62cccb8c 266 __delete_from_page_cache(page, NULL);
30472509 267 xa_unlock_irq(&mapping->i_pages);
51b8c1fe
JW
268 if (mapping_shrinkable(mapping))
269 inode_add_lru(mapping->host);
270 spin_unlock(&mapping->host->i_lock);
6072d13c 271
59c66c5f 272 page_cache_free_page(mapping, page);
97cecb5a
MK
273}
274EXPORT_SYMBOL(delete_from_page_cache);
275
aa65c29c 276/*
ef8e5717 277 * page_cache_delete_batch - delete several pages from page cache
aa65c29c
JK
278 * @mapping: the mapping to which pages belong
279 * @pvec: pagevec with pages to delete
280 *
b93b0163 281 * The function walks over mapping->i_pages and removes pages passed in @pvec
4101196b
MWO
282 * from the mapping. The function expects @pvec to be sorted by page index
283 * and is optimised for it to be dense.
b93b0163 284 * It tolerates holes in @pvec (mapping entries at those indices are not
aa65c29c 285 * modified). The function expects only THP head pages to be present in the
4101196b 286 * @pvec.
aa65c29c 287 *
b93b0163 288 * The function expects the i_pages lock to be held.
aa65c29c 289 */
ef8e5717 290static void page_cache_delete_batch(struct address_space *mapping,
aa65c29c
JK
291 struct pagevec *pvec)
292{
ef8e5717 293 XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
aa65c29c 294 int total_pages = 0;
4101196b 295 int i = 0;
aa65c29c 296 struct page *page;
aa65c29c 297
ef8e5717
MW
298 mapping_set_update(&xas, mapping);
299 xas_for_each(&xas, page, ULONG_MAX) {
4101196b 300 if (i >= pagevec_count(pvec))
aa65c29c 301 break;
4101196b
MWO
302
303 /* A swap/dax/shadow entry got inserted? Skip it. */
3159f943 304 if (xa_is_value(page))
aa65c29c 305 continue;
4101196b
MWO
306 /*
307 * A page got inserted in our range? Skip it. We have our
308 * pages locked so they are protected from being removed.
309 * If we see a page whose index is higher than ours, it
310 * means our page has been removed, which shouldn't be
311 * possible because we're holding the PageLock.
312 */
313 if (page != pvec->pages[i]) {
314 VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
315 page);
316 continue;
317 }
318
319 WARN_ON_ONCE(!PageLocked(page));
320
321 if (page->index == xas.xa_index)
aa65c29c 322 page->mapping = NULL;
4101196b
MWO
323 /* Leave page->index set: truncation lookup relies on it */
324
325 /*
326 * Move to the next page in the vector if this is a regular
327 * page or the index is of the last sub-page of this compound
328 * page.
329 */
330 if (page->index + compound_nr(page) - 1 == xas.xa_index)
aa65c29c 331 i++;
ef8e5717 332 xas_store(&xas, NULL);
aa65c29c
JK
333 total_pages++;
334 }
335 mapping->nrpages -= total_pages;
336}
337
338void delete_from_page_cache_batch(struct address_space *mapping,
339 struct pagevec *pvec)
340{
341 int i;
aa65c29c
JK
342
343 if (!pagevec_count(pvec))
344 return;
345
51b8c1fe 346 spin_lock(&mapping->host->i_lock);
30472509 347 xa_lock_irq(&mapping->i_pages);
aa65c29c
JK
348 for (i = 0; i < pagevec_count(pvec); i++) {
349 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
350
351 unaccount_page_cache_page(mapping, pvec->pages[i]);
352 }
ef8e5717 353 page_cache_delete_batch(mapping, pvec);
30472509 354 xa_unlock_irq(&mapping->i_pages);
51b8c1fe
JW
355 if (mapping_shrinkable(mapping))
356 inode_add_lru(mapping->host);
357 spin_unlock(&mapping->host->i_lock);
aa65c29c
JK
358
359 for (i = 0; i < pagevec_count(pvec); i++)
360 page_cache_free_page(mapping, pvec->pages[i]);
361}
362
d72d9e2a 363int filemap_check_errors(struct address_space *mapping)
865ffef3
DM
364{
365 int ret = 0;
366 /* Check for outstanding write errors */
7fcbbaf1
JA
367 if (test_bit(AS_ENOSPC, &mapping->flags) &&
368 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
865ffef3 369 ret = -ENOSPC;
7fcbbaf1
JA
370 if (test_bit(AS_EIO, &mapping->flags) &&
371 test_and_clear_bit(AS_EIO, &mapping->flags))
865ffef3
DM
372 ret = -EIO;
373 return ret;
374}
d72d9e2a 375EXPORT_SYMBOL(filemap_check_errors);
865ffef3 376
76341cab
JL
377static int filemap_check_and_keep_errors(struct address_space *mapping)
378{
379 /* Check for outstanding write errors */
380 if (test_bit(AS_EIO, &mapping->flags))
381 return -EIO;
382 if (test_bit(AS_ENOSPC, &mapping->flags))
383 return -ENOSPC;
384 return 0;
385}
386
5a798493
JB
387/**
388 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
389 * @mapping: address space structure to write
390 * @wbc: the writeback_control controlling the writeout
391 *
392 * Call writepages on the mapping using the provided wbc to control the
393 * writeout.
394 *
395 * Return: %0 on success, negative error code otherwise.
396 */
397int filemap_fdatawrite_wbc(struct address_space *mapping,
398 struct writeback_control *wbc)
399{
400 int ret;
401
402 if (!mapping_can_writeback(mapping) ||
403 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
404 return 0;
405
406 wbc_attach_fdatawrite_inode(wbc, mapping->host);
407 ret = do_writepages(mapping, wbc);
408 wbc_detach_inode(wbc);
409 return ret;
410}
411EXPORT_SYMBOL(filemap_fdatawrite_wbc);
412
1da177e4 413/**
485bb99b 414 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
415 * @mapping: address space structure to write
416 * @start: offset in bytes where the range starts
469eb4d0 417 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 418 * @sync_mode: enable synchronous operation
1da177e4 419 *
485bb99b
RD
420 * Start writeback against all of a mapping's dirty pages that lie
421 * within the byte offsets <start, end> inclusive.
422 *
1da177e4 423 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 424 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
425 * these two operations is that if a dirty page/buffer is encountered, it must
426 * be waited upon, and not just skipped over.
a862f68a
MR
427 *
428 * Return: %0 on success, negative error code otherwise.
1da177e4 429 */
ebcf28e1
AM
430int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
431 loff_t end, int sync_mode)
1da177e4 432{
1da177e4
LT
433 struct writeback_control wbc = {
434 .sync_mode = sync_mode,
05fe478d 435 .nr_to_write = LONG_MAX,
111ebb6e
OH
436 .range_start = start,
437 .range_end = end,
1da177e4
LT
438 };
439
5a798493 440 return filemap_fdatawrite_wbc(mapping, &wbc);
1da177e4
LT
441}
442
443static inline int __filemap_fdatawrite(struct address_space *mapping,
444 int sync_mode)
445{
111ebb6e 446 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
447}
448
449int filemap_fdatawrite(struct address_space *mapping)
450{
451 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
452}
453EXPORT_SYMBOL(filemap_fdatawrite);
454
f4c0a0fd 455int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 456 loff_t end)
1da177e4
LT
457{
458 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
459}
f4c0a0fd 460EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 461
485bb99b
RD
462/**
463 * filemap_flush - mostly a non-blocking flush
464 * @mapping: target address_space
465 *
1da177e4
LT
466 * This is a mostly non-blocking flush. Not suitable for data-integrity
467 * purposes - I/O may not be started against all dirty pages.
a862f68a
MR
468 *
469 * Return: %0 on success, negative error code otherwise.
1da177e4
LT
470 */
471int filemap_flush(struct address_space *mapping)
472{
473 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
474}
475EXPORT_SYMBOL(filemap_flush);
476
7fc9e472
GR
477/**
478 * filemap_range_has_page - check if a page exists in range.
479 * @mapping: address space within which to check
480 * @start_byte: offset in bytes where the range starts
481 * @end_byte: offset in bytes where the range ends (inclusive)
482 *
483 * Find at least one page in the range supplied, usually used to check if
484 * direct writing in this range will trigger a writeback.
a862f68a
MR
485 *
486 * Return: %true if at least one page exists in the specified range,
487 * %false otherwise.
7fc9e472
GR
488 */
489bool filemap_range_has_page(struct address_space *mapping,
490 loff_t start_byte, loff_t end_byte)
491{
f7b68046 492 struct page *page;
8fa8e538
MW
493 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
494 pgoff_t max = end_byte >> PAGE_SHIFT;
7fc9e472
GR
495
496 if (end_byte < start_byte)
497 return false;
498
8fa8e538
MW
499 rcu_read_lock();
500 for (;;) {
501 page = xas_find(&xas, max);
502 if (xas_retry(&xas, page))
503 continue;
504 /* Shadow entries don't count */
505 if (xa_is_value(page))
506 continue;
507 /*
508 * We don't need to try to pin this page; we're about to
509 * release the RCU lock anyway. It is enough to know that
510 * there was a page here recently.
511 */
512 break;
513 }
514 rcu_read_unlock();
7fc9e472 515
8fa8e538 516 return page != NULL;
7fc9e472
GR
517}
518EXPORT_SYMBOL(filemap_range_has_page);
519
5e8fcc1a 520static void __filemap_fdatawait_range(struct address_space *mapping,
aa750fd7 521 loff_t start_byte, loff_t end_byte)
1da177e4 522{
09cbfeaf
KS
523 pgoff_t index = start_byte >> PAGE_SHIFT;
524 pgoff_t end = end_byte >> PAGE_SHIFT;
1da177e4
LT
525 struct pagevec pvec;
526 int nr_pages;
1da177e4 527
94004ed7 528 if (end_byte < start_byte)
5e8fcc1a 529 return;
1da177e4 530
86679820 531 pagevec_init(&pvec);
312e9d2f 532 while (index <= end) {
1da177e4
LT
533 unsigned i;
534
312e9d2f 535 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
67fd707f 536 end, PAGECACHE_TAG_WRITEBACK);
312e9d2f
JK
537 if (!nr_pages)
538 break;
539
1da177e4
LT
540 for (i = 0; i < nr_pages; i++) {
541 struct page *page = pvec.pages[i];
542
1da177e4 543 wait_on_page_writeback(page);
5e8fcc1a 544 ClearPageError(page);
1da177e4
LT
545 }
546 pagevec_release(&pvec);
547 cond_resched();
548 }
aa750fd7
JN
549}
550
551/**
552 * filemap_fdatawait_range - wait for writeback to complete
553 * @mapping: address space structure to wait for
554 * @start_byte: offset in bytes where the range starts
555 * @end_byte: offset in bytes where the range ends (inclusive)
556 *
557 * Walk the list of under-writeback pages of the given address space
558 * in the given range and wait for all of them. Check error status of
559 * the address space and return it.
560 *
561 * Since the error status of the address space is cleared by this function,
562 * callers are responsible for checking the return value and handling and/or
563 * reporting the error.
a862f68a
MR
564 *
565 * Return: error status of the address space.
aa750fd7
JN
566 */
567int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
568 loff_t end_byte)
569{
5e8fcc1a
JL
570 __filemap_fdatawait_range(mapping, start_byte, end_byte);
571 return filemap_check_errors(mapping);
1da177e4 572}
d3bccb6f
JK
573EXPORT_SYMBOL(filemap_fdatawait_range);
574
aa0bfcd9
RZ
575/**
576 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
577 * @mapping: address space structure to wait for
578 * @start_byte: offset in bytes where the range starts
579 * @end_byte: offset in bytes where the range ends (inclusive)
580 *
581 * Walk the list of under-writeback pages of the given address space in the
582 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
583 * this function does not clear error status of the address space.
584 *
585 * Use this function if callers don't handle errors themselves. Expected
586 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
587 * fsfreeze(8)
588 */
589int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
590 loff_t start_byte, loff_t end_byte)
591{
592 __filemap_fdatawait_range(mapping, start_byte, end_byte);
593 return filemap_check_and_keep_errors(mapping);
594}
595EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
596
a823e458
JL
597/**
598 * file_fdatawait_range - wait for writeback to complete
599 * @file: file pointing to address space structure to wait for
600 * @start_byte: offset in bytes where the range starts
601 * @end_byte: offset in bytes where the range ends (inclusive)
602 *
603 * Walk the list of under-writeback pages of the address space that file
604 * refers to, in the given range and wait for all of them. Check error
605 * status of the address space vs. the file->f_wb_err cursor and return it.
606 *
607 * Since the error status of the file is advanced by this function,
608 * callers are responsible for checking the return value and handling and/or
609 * reporting the error.
a862f68a
MR
610 *
611 * Return: error status of the address space vs. the file->f_wb_err cursor.
a823e458
JL
612 */
613int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
614{
615 struct address_space *mapping = file->f_mapping;
616
617 __filemap_fdatawait_range(mapping, start_byte, end_byte);
618 return file_check_and_advance_wb_err(file);
619}
620EXPORT_SYMBOL(file_fdatawait_range);
d3bccb6f 621
aa750fd7
JN
622/**
623 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
624 * @mapping: address space structure to wait for
625 *
626 * Walk the list of under-writeback pages of the given address space
627 * and wait for all of them. Unlike filemap_fdatawait(), this function
628 * does not clear error status of the address space.
629 *
630 * Use this function if callers don't handle errors themselves. Expected
631 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
632 * fsfreeze(8)
a862f68a
MR
633 *
634 * Return: error status of the address space.
aa750fd7 635 */
76341cab 636int filemap_fdatawait_keep_errors(struct address_space *mapping)
aa750fd7 637{
ffb959bb 638 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
76341cab 639 return filemap_check_and_keep_errors(mapping);
aa750fd7 640}
76341cab 641EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
aa750fd7 642
875d91b1 643/* Returns true if writeback might be needed or already in progress. */
9326c9b2 644static bool mapping_needs_writeback(struct address_space *mapping)
1da177e4 645{
875d91b1 646 return mapping->nrpages;
1da177e4 647}
1da177e4 648
f8ee8909
JA
649static bool filemap_range_has_writeback(struct address_space *mapping,
650 loff_t start_byte, loff_t end_byte)
651{
652 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
653 pgoff_t max = end_byte >> PAGE_SHIFT;
654 struct page *page;
655
656 if (end_byte < start_byte)
657 return false;
658
659 rcu_read_lock();
660 xas_for_each(&xas, page, max) {
661 if (xas_retry(&xas, page))
662 continue;
663 if (xa_is_value(page))
664 continue;
665 if (PageDirty(page) || PageLocked(page) || PageWriteback(page))
666 break;
667 }
668 rcu_read_unlock();
669 return page != NULL;
670
671}
672
63135aa3
JA
673/**
674 * filemap_range_needs_writeback - check if range potentially needs writeback
675 * @mapping: address space within which to check
676 * @start_byte: offset in bytes where the range starts
677 * @end_byte: offset in bytes where the range ends (inclusive)
678 *
679 * Find at least one page in the range supplied, usually used to check if
680 * direct writing in this range will trigger a writeback. Used by O_DIRECT
681 * read/write with IOCB_NOWAIT, to see if the caller needs to do
682 * filemap_write_and_wait_range() before proceeding.
683 *
684 * Return: %true if the caller should do filemap_write_and_wait_range() before
685 * doing O_DIRECT to a page in this range, %false otherwise.
686 */
687bool filemap_range_needs_writeback(struct address_space *mapping,
688 loff_t start_byte, loff_t end_byte)
689{
63135aa3
JA
690 if (!mapping_needs_writeback(mapping))
691 return false;
692 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
693 !mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
694 return false;
f8ee8909 695 return filemap_range_has_writeback(mapping, start_byte, end_byte);
63135aa3
JA
696}
697EXPORT_SYMBOL_GPL(filemap_range_needs_writeback);
698
485bb99b
RD
699/**
700 * filemap_write_and_wait_range - write out & wait on a file range
701 * @mapping: the address_space for the pages
702 * @lstart: offset in bytes where the range starts
703 * @lend: offset in bytes where the range ends (inclusive)
704 *
469eb4d0
AM
705 * Write out and wait upon file offsets lstart->lend, inclusive.
706 *
0e056eb5 707 * Note that @lend is inclusive (describes the last byte to be written) so
469eb4d0 708 * that this function can be used to write to the very end-of-file (end = -1).
a862f68a
MR
709 *
710 * Return: error status of the address space.
469eb4d0 711 */
1da177e4
LT
712int filemap_write_and_wait_range(struct address_space *mapping,
713 loff_t lstart, loff_t lend)
714{
28fd1298 715 int err = 0;
1da177e4 716
9326c9b2 717 if (mapping_needs_writeback(mapping)) {
28fd1298
OH
718 err = __filemap_fdatawrite_range(mapping, lstart, lend,
719 WB_SYNC_ALL);
ddf8f376
IW
720 /*
721 * Even if the above returned error, the pages may be
722 * written partially (e.g. -ENOSPC), so we wait for it.
723 * But the -EIO is special case, it may indicate the worst
724 * thing (e.g. bug) happened, so we avoid waiting for it.
725 */
28fd1298 726 if (err != -EIO) {
94004ed7
CH
727 int err2 = filemap_fdatawait_range(mapping,
728 lstart, lend);
28fd1298
OH
729 if (!err)
730 err = err2;
cbeaf951
JL
731 } else {
732 /* Clear any previously stored errors */
733 filemap_check_errors(mapping);
28fd1298 734 }
865ffef3
DM
735 } else {
736 err = filemap_check_errors(mapping);
1da177e4 737 }
28fd1298 738 return err;
1da177e4 739}
f6995585 740EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 741
5660e13d
JL
742void __filemap_set_wb_err(struct address_space *mapping, int err)
743{
3acdfd28 744 errseq_t eseq = errseq_set(&mapping->wb_err, err);
5660e13d
JL
745
746 trace_filemap_set_wb_err(mapping, eseq);
747}
748EXPORT_SYMBOL(__filemap_set_wb_err);
749
750/**
751 * file_check_and_advance_wb_err - report wb error (if any) that was previously
752 * and advance wb_err to current one
753 * @file: struct file on which the error is being reported
754 *
755 * When userland calls fsync (or something like nfsd does the equivalent), we
756 * want to report any writeback errors that occurred since the last fsync (or
757 * since the file was opened if there haven't been any).
758 *
759 * Grab the wb_err from the mapping. If it matches what we have in the file,
760 * then just quickly return 0. The file is all caught up.
761 *
762 * If it doesn't match, then take the mapping value, set the "seen" flag in
763 * it and try to swap it into place. If it works, or another task beat us
764 * to it with the new value, then update the f_wb_err and return the error
765 * portion. The error at this point must be reported via proper channels
766 * (a'la fsync, or NFS COMMIT operation, etc.).
767 *
768 * While we handle mapping->wb_err with atomic operations, the f_wb_err
769 * value is protected by the f_lock since we must ensure that it reflects
770 * the latest value swapped in for this file descriptor.
a862f68a
MR
771 *
772 * Return: %0 on success, negative error code otherwise.
5660e13d
JL
773 */
774int file_check_and_advance_wb_err(struct file *file)
775{
776 int err = 0;
777 errseq_t old = READ_ONCE(file->f_wb_err);
778 struct address_space *mapping = file->f_mapping;
779
780 /* Locklessly handle the common case where nothing has changed */
781 if (errseq_check(&mapping->wb_err, old)) {
782 /* Something changed, must use slow path */
783 spin_lock(&file->f_lock);
784 old = file->f_wb_err;
785 err = errseq_check_and_advance(&mapping->wb_err,
786 &file->f_wb_err);
787 trace_file_check_and_advance_wb_err(file, old);
788 spin_unlock(&file->f_lock);
789 }
f4e222c5
JL
790
791 /*
792 * We're mostly using this function as a drop in replacement for
793 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
794 * that the legacy code would have had on these flags.
795 */
796 clear_bit(AS_EIO, &mapping->flags);
797 clear_bit(AS_ENOSPC, &mapping->flags);
5660e13d
JL
798 return err;
799}
800EXPORT_SYMBOL(file_check_and_advance_wb_err);
801
802/**
803 * file_write_and_wait_range - write out & wait on a file range
804 * @file: file pointing to address_space with pages
805 * @lstart: offset in bytes where the range starts
806 * @lend: offset in bytes where the range ends (inclusive)
807 *
808 * Write out and wait upon file offsets lstart->lend, inclusive.
809 *
810 * Note that @lend is inclusive (describes the last byte to be written) so
811 * that this function can be used to write to the very end-of-file (end = -1).
812 *
813 * After writing out and waiting on the data, we check and advance the
814 * f_wb_err cursor to the latest value, and return any errors detected there.
a862f68a
MR
815 *
816 * Return: %0 on success, negative error code otherwise.
5660e13d
JL
817 */
818int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
819{
820 int err = 0, err2;
821 struct address_space *mapping = file->f_mapping;
822
9326c9b2 823 if (mapping_needs_writeback(mapping)) {
5660e13d
JL
824 err = __filemap_fdatawrite_range(mapping, lstart, lend,
825 WB_SYNC_ALL);
826 /* See comment of filemap_write_and_wait() */
827 if (err != -EIO)
828 __filemap_fdatawait_range(mapping, lstart, lend);
829 }
830 err2 = file_check_and_advance_wb_err(file);
831 if (!err)
832 err = err2;
833 return err;
834}
835EXPORT_SYMBOL(file_write_and_wait_range);
836
ef6a3c63
MS
837/**
838 * replace_page_cache_page - replace a pagecache page with a new one
839 * @old: page to be replaced
840 * @new: page to replace with
ef6a3c63
MS
841 *
842 * This function replaces a page in the pagecache with a new one. On
843 * success it acquires the pagecache reference for the new page and
844 * drops it for the old page. Both the old and new pages must be
845 * locked. This function does not add the new page to the LRU, the
846 * caller must do that.
847 *
74d60958 848 * The remove + add is atomic. This function cannot fail.
ef6a3c63 849 */
1f7ef657 850void replace_page_cache_page(struct page *old, struct page *new)
ef6a3c63 851{
d21bba2b
MWO
852 struct folio *fold = page_folio(old);
853 struct folio *fnew = page_folio(new);
74d60958
MW
854 struct address_space *mapping = old->mapping;
855 void (*freepage)(struct page *) = mapping->a_ops->freepage;
856 pgoff_t offset = old->index;
857 XA_STATE(xas, &mapping->i_pages, offset);
ef6a3c63 858
309381fe
SL
859 VM_BUG_ON_PAGE(!PageLocked(old), old);
860 VM_BUG_ON_PAGE(!PageLocked(new), new);
861 VM_BUG_ON_PAGE(new->mapping, new);
ef6a3c63 862
74d60958
MW
863 get_page(new);
864 new->mapping = mapping;
865 new->index = offset;
ef6a3c63 866
d21bba2b 867 mem_cgroup_migrate(fold, fnew);
0d1c2072 868
30472509 869 xas_lock_irq(&xas);
74d60958 870 xas_store(&xas, new);
4165b9b4 871
74d60958
MW
872 old->mapping = NULL;
873 /* hugetlb pages do not participate in page cache accounting. */
874 if (!PageHuge(old))
0d1c2072 875 __dec_lruvec_page_state(old, NR_FILE_PAGES);
74d60958 876 if (!PageHuge(new))
0d1c2072 877 __inc_lruvec_page_state(new, NR_FILE_PAGES);
74d60958 878 if (PageSwapBacked(old))
0d1c2072 879 __dec_lruvec_page_state(old, NR_SHMEM);
74d60958 880 if (PageSwapBacked(new))
0d1c2072 881 __inc_lruvec_page_state(new, NR_SHMEM);
30472509 882 xas_unlock_irq(&xas);
74d60958
MW
883 if (freepage)
884 freepage(old);
885 put_page(old);
ef6a3c63
MS
886}
887EXPORT_SYMBOL_GPL(replace_page_cache_page);
888
9dd3d069
MWO
889noinline int __filemap_add_folio(struct address_space *mapping,
890 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
1da177e4 891{
9dd3d069
MWO
892 XA_STATE(xas, &mapping->i_pages, index);
893 int huge = folio_test_hugetlb(folio);
e286781d 894 int error;
da74240e 895 bool charged = false;
e286781d 896
9dd3d069
MWO
897 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
898 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
74d60958 899 mapping_set_update(&xas, mapping);
e286781d 900
9dd3d069
MWO
901 folio_get(folio);
902 folio->mapping = mapping;
903 folio->index = index;
66a0c8ee 904
3fea5a49 905 if (!huge) {
9dd3d069
MWO
906 error = mem_cgroup_charge(folio, NULL, gfp);
907 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
3fea5a49
JW
908 if (error)
909 goto error;
da74240e 910 charged = true;
3fea5a49
JW
911 }
912
198b62f8
MWO
913 gfp &= GFP_RECLAIM_MASK;
914
74d60958 915 do {
198b62f8
MWO
916 unsigned int order = xa_get_order(xas.xa, xas.xa_index);
917 void *entry, *old = NULL;
918
9dd3d069 919 if (order > folio_order(folio))
198b62f8
MWO
920 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
921 order, gfp);
74d60958 922 xas_lock_irq(&xas);
198b62f8
MWO
923 xas_for_each_conflict(&xas, entry) {
924 old = entry;
925 if (!xa_is_value(entry)) {
926 xas_set_err(&xas, -EEXIST);
927 goto unlock;
928 }
929 }
930
931 if (old) {
932 if (shadowp)
933 *shadowp = old;
934 /* entry may have been split before we acquired lock */
935 order = xa_get_order(xas.xa, xas.xa_index);
9dd3d069 936 if (order > folio_order(folio)) {
198b62f8
MWO
937 xas_split(&xas, old, order);
938 xas_reset(&xas);
939 }
940 }
941
9dd3d069 942 xas_store(&xas, folio);
74d60958
MW
943 if (xas_error(&xas))
944 goto unlock;
945
74d60958
MW
946 mapping->nrpages++;
947
948 /* hugetlb pages do not participate in page cache accounting */
949 if (!huge)
9dd3d069 950 __lruvec_stat_add_folio(folio, NR_FILE_PAGES);
74d60958
MW
951unlock:
952 xas_unlock_irq(&xas);
198b62f8 953 } while (xas_nomem(&xas, gfp));
74d60958 954
3fea5a49
JW
955 if (xas_error(&xas)) {
956 error = xas_error(&xas);
da74240e 957 if (charged)
9dd3d069 958 mem_cgroup_uncharge(folio);
74d60958 959 goto error;
3fea5a49 960 }
4165b9b4 961
9dd3d069 962 trace_mm_filemap_add_to_page_cache(&folio->page);
66a0c8ee 963 return 0;
74d60958 964error:
9dd3d069 965 folio->mapping = NULL;
66a0c8ee 966 /* Leave page->index set: truncation relies upon it */
9dd3d069 967 folio_put(folio);
3fea5a49 968 return error;
1da177e4 969}
9dd3d069 970ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
a528910e
JW
971
972/**
973 * add_to_page_cache_locked - add a locked page to the pagecache
974 * @page: page to add
975 * @mapping: the page's address_space
976 * @offset: page index
977 * @gfp_mask: page allocation mode
978 *
979 * This function is used to add a page to the pagecache. It must be locked.
980 * This function does not add the page to the LRU. The caller must do that.
a862f68a
MR
981 *
982 * Return: %0 on success, negative error code otherwise.
a528910e
JW
983 */
984int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
985 pgoff_t offset, gfp_t gfp_mask)
986{
9dd3d069 987 return __filemap_add_folio(mapping, page_folio(page), offset,
a528910e
JW
988 gfp_mask, NULL);
989}
e286781d 990EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4 991
9dd3d069
MWO
992int filemap_add_folio(struct address_space *mapping, struct folio *folio,
993 pgoff_t index, gfp_t gfp)
1da177e4 994{
a528910e 995 void *shadow = NULL;
4f98a2fe
RR
996 int ret;
997
9dd3d069
MWO
998 __folio_set_locked(folio);
999 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
a528910e 1000 if (unlikely(ret))
9dd3d069 1001 __folio_clear_locked(folio);
a528910e
JW
1002 else {
1003 /*
9dd3d069 1004 * The folio might have been evicted from cache only
a528910e 1005 * recently, in which case it should be activated like
9dd3d069
MWO
1006 * any other repeatedly accessed folio.
1007 * The exception is folios getting rewritten; evicting other
f0281a00
RR
1008 * data from the working set, only to cache data that will
1009 * get overwritten with something else, is a waste of memory.
a528910e 1010 */
9dd3d069
MWO
1011 WARN_ON_ONCE(folio_test_active(folio));
1012 if (!(gfp & __GFP_WRITE) && shadow)
1013 workingset_refault(folio, shadow);
1014 folio_add_lru(folio);
a528910e 1015 }
1da177e4
LT
1016 return ret;
1017}
9dd3d069 1018EXPORT_SYMBOL_GPL(filemap_add_folio);
1da177e4 1019
44110fe3 1020#ifdef CONFIG_NUMA
bb3c579e 1021struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
44110fe3 1022{
c0ff7453 1023 int n;
bb3c579e 1024 struct folio *folio;
c0ff7453 1025
44110fe3 1026 if (cpuset_do_page_mem_spread()) {
cc9a6c87
MG
1027 unsigned int cpuset_mems_cookie;
1028 do {
d26914d1 1029 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 1030 n = cpuset_mem_spread_node();
bb3c579e
MWO
1031 folio = __folio_alloc_node(gfp, order, n);
1032 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
cc9a6c87 1033
bb3c579e 1034 return folio;
44110fe3 1035 }
bb3c579e 1036 return folio_alloc(gfp, order);
44110fe3 1037}
bb3c579e 1038EXPORT_SYMBOL(filemap_alloc_folio);
44110fe3
PJ
1039#endif
1040
7506ae6a
JK
1041/*
1042 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
1043 *
1044 * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
1045 *
1046 * @mapping1: the first mapping to lock
1047 * @mapping2: the second mapping to lock
1048 */
1049void filemap_invalidate_lock_two(struct address_space *mapping1,
1050 struct address_space *mapping2)
1051{
1052 if (mapping1 > mapping2)
1053 swap(mapping1, mapping2);
1054 if (mapping1)
1055 down_write(&mapping1->invalidate_lock);
1056 if (mapping2 && mapping1 != mapping2)
1057 down_write_nested(&mapping2->invalidate_lock, 1);
1058}
1059EXPORT_SYMBOL(filemap_invalidate_lock_two);
1060
1061/*
1062 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1063 *
1064 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1065 *
1066 * @mapping1: the first mapping to unlock
1067 * @mapping2: the second mapping to unlock
1068 */
1069void filemap_invalidate_unlock_two(struct address_space *mapping1,
1070 struct address_space *mapping2)
1071{
1072 if (mapping1)
1073 up_write(&mapping1->invalidate_lock);
1074 if (mapping2 && mapping1 != mapping2)
1075 up_write(&mapping2->invalidate_lock);
1076}
1077EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1078
1da177e4
LT
1079/*
1080 * In order to wait for pages to become available there must be
1081 * waitqueues associated with pages. By using a hash table of
1082 * waitqueues where the bucket discipline is to maintain all
1083 * waiters on the same queue and wake all when any of the pages
1084 * become available, and for the woken contexts to check to be
1085 * sure the appropriate page became available, this saves space
1086 * at a cost of "thundering herd" phenomena during rare hash
1087 * collisions.
1088 */
62906027
NP
1089#define PAGE_WAIT_TABLE_BITS 8
1090#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
df4d4f12 1091static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
62906027 1092
df4d4f12 1093static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1da177e4 1094{
df4d4f12 1095 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1da177e4 1096}
1da177e4 1097
62906027 1098void __init pagecache_init(void)
1da177e4 1099{
62906027 1100 int i;
1da177e4 1101
62906027 1102 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
df4d4f12 1103 init_waitqueue_head(&folio_wait_table[i]);
62906027
NP
1104
1105 page_writeback_init();
1da177e4 1106}
1da177e4 1107
5ef64cc8
LT
1108/*
1109 * The page wait code treats the "wait->flags" somewhat unusually, because
5868ec26 1110 * we have multiple different kinds of waits, not just the usual "exclusive"
5ef64cc8
LT
1111 * one.
1112 *
1113 * We have:
1114 *
1115 * (a) no special bits set:
1116 *
1117 * We're just waiting for the bit to be released, and when a waker
1118 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1119 * and remove it from the wait queue.
1120 *
1121 * Simple and straightforward.
1122 *
1123 * (b) WQ_FLAG_EXCLUSIVE:
1124 *
1125 * The waiter is waiting to get the lock, and only one waiter should
1126 * be woken up to avoid any thundering herd behavior. We'll set the
1127 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1128 *
1129 * This is the traditional exclusive wait.
1130 *
5868ec26 1131 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
5ef64cc8
LT
1132 *
1133 * The waiter is waiting to get the bit, and additionally wants the
1134 * lock to be transferred to it for fair lock behavior. If the lock
1135 * cannot be taken, we stop walking the wait queue without waking
1136 * the waiter.
1137 *
1138 * This is the "fair lock handoff" case, and in addition to setting
1139 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1140 * that it now has the lock.
1141 */
ac6424b9 1142static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
f62e00cc 1143{
5ef64cc8 1144 unsigned int flags;
62906027
NP
1145 struct wait_page_key *key = arg;
1146 struct wait_page_queue *wait_page
1147 = container_of(wait, struct wait_page_queue, wait);
1148
cdc8fcb4 1149 if (!wake_page_match(wait_page, key))
62906027 1150 return 0;
3510ca20 1151
9a1ea439 1152 /*
5ef64cc8
LT
1153 * If it's a lock handoff wait, we get the bit for it, and
1154 * stop walking (and do not wake it up) if we can't.
9a1ea439 1155 */
5ef64cc8
LT
1156 flags = wait->flags;
1157 if (flags & WQ_FLAG_EXCLUSIVE) {
df4d4f12 1158 if (test_bit(key->bit_nr, &key->folio->flags))
2a9127fc 1159 return -1;
5ef64cc8 1160 if (flags & WQ_FLAG_CUSTOM) {
df4d4f12 1161 if (test_and_set_bit(key->bit_nr, &key->folio->flags))
5ef64cc8
LT
1162 return -1;
1163 flags |= WQ_FLAG_DONE;
1164 }
2a9127fc 1165 }
f62e00cc 1166
5ef64cc8
LT
1167 /*
1168 * We are holding the wait-queue lock, but the waiter that
1169 * is waiting for this will be checking the flags without
1170 * any locking.
1171 *
1172 * So update the flags atomically, and wake up the waiter
1173 * afterwards to avoid any races. This store-release pairs
101c0bf6 1174 * with the load-acquire in folio_wait_bit_common().
5ef64cc8
LT
1175 */
1176 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
2a9127fc
LT
1177 wake_up_state(wait->private, mode);
1178
1179 /*
1180 * Ok, we have successfully done what we're waiting for,
1181 * and we can unconditionally remove the wait entry.
1182 *
5ef64cc8
LT
1183 * Note that this pairs with the "finish_wait()" in the
1184 * waiter, and has to be the absolute last thing we do.
1185 * After this list_del_init(&wait->entry) the wait entry
2a9127fc
LT
1186 * might be de-allocated and the process might even have
1187 * exited.
2a9127fc 1188 */
c6fe44d9 1189 list_del_init_careful(&wait->entry);
5ef64cc8 1190 return (flags & WQ_FLAG_EXCLUSIVE) != 0;
f62e00cc
KM
1191}
1192
6974d7c9 1193static void folio_wake_bit(struct folio *folio, int bit_nr)
cbbce822 1194{
df4d4f12 1195 wait_queue_head_t *q = folio_waitqueue(folio);
62906027
NP
1196 struct wait_page_key key;
1197 unsigned long flags;
11a19c7b 1198 wait_queue_entry_t bookmark;
cbbce822 1199
df4d4f12 1200 key.folio = folio;
62906027
NP
1201 key.bit_nr = bit_nr;
1202 key.page_match = 0;
1203
11a19c7b
TC
1204 bookmark.flags = 0;
1205 bookmark.private = NULL;
1206 bookmark.func = NULL;
1207 INIT_LIST_HEAD(&bookmark.entry);
1208
62906027 1209 spin_lock_irqsave(&q->lock, flags);
11a19c7b
TC
1210 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1211
1212 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1213 /*
1214 * Take a breather from holding the lock,
1215 * allow pages that finish wake up asynchronously
1216 * to acquire the lock and remove themselves
1217 * from wait queue
1218 */
1219 spin_unlock_irqrestore(&q->lock, flags);
1220 cpu_relax();
1221 spin_lock_irqsave(&q->lock, flags);
1222 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1223 }
1224
62906027
NP
1225 /*
1226 * It is possible for other pages to have collided on the waitqueue
1227 * hash, so in that case check for a page match. That prevents a long-
1228 * term waiter
1229 *
1230 * It is still possible to miss a case here, when we woke page waiters
1231 * and removed them from the waitqueue, but there are still other
1232 * page waiters.
1233 */
1234 if (!waitqueue_active(q) || !key.page_match) {
6974d7c9 1235 folio_clear_waiters(folio);
62906027
NP
1236 /*
1237 * It's possible to miss clearing Waiters here, when we woke
1238 * our page waiters, but the hashed waitqueue has waiters for
1239 * other pages on it.
1240 *
1241 * That's okay, it's a rare case. The next waker will clear it.
1242 */
1243 }
1244 spin_unlock_irqrestore(&q->lock, flags);
1245}
74d81bfa 1246
4268b480 1247static void folio_wake(struct folio *folio, int bit)
74d81bfa 1248{
4268b480 1249 if (!folio_test_waiters(folio))
74d81bfa 1250 return;
6974d7c9 1251 folio_wake_bit(folio, bit);
74d81bfa 1252}
62906027 1253
9a1ea439 1254/*
101c0bf6 1255 * A choice of three behaviors for folio_wait_bit_common():
9a1ea439
HD
1256 */
1257enum behavior {
1258 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
7c23c782 1259 * __folio_lock() waiting on then setting PG_locked.
9a1ea439
HD
1260 */
1261 SHARED, /* Hold ref to page and check the bit when woken, like
9f2b04a2 1262 * folio_wait_writeback() waiting on PG_writeback.
9a1ea439
HD
1263 */
1264 DROP, /* Drop ref to page before wait, no check when woken,
9f2b04a2 1265 * like folio_put_wait_locked() on PG_locked.
9a1ea439
HD
1266 */
1267};
1268
2a9127fc 1269/*
101c0bf6 1270 * Attempt to check (or get) the folio flag, and mark us done
5ef64cc8 1271 * if successful.
2a9127fc 1272 */
101c0bf6 1273static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
2a9127fc
LT
1274 struct wait_queue_entry *wait)
1275{
1276 if (wait->flags & WQ_FLAG_EXCLUSIVE) {
101c0bf6 1277 if (test_and_set_bit(bit_nr, &folio->flags))
2a9127fc 1278 return false;
101c0bf6 1279 } else if (test_bit(bit_nr, &folio->flags))
2a9127fc
LT
1280 return false;
1281
5ef64cc8 1282 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
2a9127fc
LT
1283 return true;
1284}
1285
5ef64cc8
LT
1286/* How many times do we accept lock stealing from under a waiter? */
1287int sysctl_page_lock_unfairness = 5;
1288
101c0bf6
MWO
1289static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1290 int state, enum behavior behavior)
62906027 1291{
df4d4f12 1292 wait_queue_head_t *q = folio_waitqueue(folio);
5ef64cc8 1293 int unfairness = sysctl_page_lock_unfairness;
62906027 1294 struct wait_page_queue wait_page;
ac6424b9 1295 wait_queue_entry_t *wait = &wait_page.wait;
b1d29ba8 1296 bool thrashing = false;
9a1ea439 1297 bool delayacct = false;
eb414681 1298 unsigned long pflags;
62906027 1299
eb414681 1300 if (bit_nr == PG_locked &&
101c0bf6
MWO
1301 !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1302 if (!folio_test_swapbacked(folio)) {
eb414681 1303 delayacct_thrashing_start();
9a1ea439
HD
1304 delayacct = true;
1305 }
eb414681 1306 psi_memstall_enter(&pflags);
b1d29ba8
JW
1307 thrashing = true;
1308 }
1309
62906027
NP
1310 init_wait(wait);
1311 wait->func = wake_page_function;
df4d4f12 1312 wait_page.folio = folio;
62906027
NP
1313 wait_page.bit_nr = bit_nr;
1314
5ef64cc8
LT
1315repeat:
1316 wait->flags = 0;
1317 if (behavior == EXCLUSIVE) {
1318 wait->flags = WQ_FLAG_EXCLUSIVE;
1319 if (--unfairness < 0)
1320 wait->flags |= WQ_FLAG_CUSTOM;
1321 }
1322
2a9127fc
LT
1323 /*
1324 * Do one last check whether we can get the
1325 * page bit synchronously.
1326 *
101c0bf6 1327 * Do the folio_set_waiters() marking before that
2a9127fc
LT
1328 * to let any waker we _just_ missed know they
1329 * need to wake us up (otherwise they'll never
1330 * even go to the slow case that looks at the
1331 * page queue), and add ourselves to the wait
1332 * queue if we need to sleep.
1333 *
1334 * This part needs to be done under the queue
1335 * lock to avoid races.
1336 */
1337 spin_lock_irq(&q->lock);
101c0bf6
MWO
1338 folio_set_waiters(folio);
1339 if (!folio_trylock_flag(folio, bit_nr, wait))
2a9127fc
LT
1340 __add_wait_queue_entry_tail(q, wait);
1341 spin_unlock_irq(&q->lock);
62906027 1342
2a9127fc
LT
1343 /*
1344 * From now on, all the logic will be based on
5ef64cc8
LT
1345 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1346 * see whether the page bit testing has already
1347 * been done by the wake function.
2a9127fc 1348 *
101c0bf6 1349 * We can drop our reference to the folio.
2a9127fc
LT
1350 */
1351 if (behavior == DROP)
101c0bf6 1352 folio_put(folio);
62906027 1353
5ef64cc8
LT
1354 /*
1355 * Note that until the "finish_wait()", or until
1356 * we see the WQ_FLAG_WOKEN flag, we need to
1357 * be very careful with the 'wait->flags', because
1358 * we may race with a waker that sets them.
1359 */
2a9127fc 1360 for (;;) {
5ef64cc8
LT
1361 unsigned int flags;
1362
62906027
NP
1363 set_current_state(state);
1364
5ef64cc8
LT
1365 /* Loop until we've been woken or interrupted */
1366 flags = smp_load_acquire(&wait->flags);
1367 if (!(flags & WQ_FLAG_WOKEN)) {
1368 if (signal_pending_state(state, current))
1369 break;
1370
1371 io_schedule();
1372 continue;
1373 }
1374
1375 /* If we were non-exclusive, we're done */
1376 if (behavior != EXCLUSIVE)
a8b169af 1377 break;
9a1ea439 1378
5ef64cc8
LT
1379 /* If the waker got the lock for us, we're done */
1380 if (flags & WQ_FLAG_DONE)
9a1ea439 1381 break;
2a9127fc 1382
5ef64cc8
LT
1383 /*
1384 * Otherwise, if we're getting the lock, we need to
1385 * try to get it ourselves.
1386 *
1387 * And if that fails, we'll have to retry this all.
1388 */
101c0bf6 1389 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
5ef64cc8
LT
1390 goto repeat;
1391
1392 wait->flags |= WQ_FLAG_DONE;
1393 break;
62906027
NP
1394 }
1395
5ef64cc8
LT
1396 /*
1397 * If a signal happened, this 'finish_wait()' may remove the last
101c0bf6 1398 * waiter from the wait-queues, but the folio waiters bit will remain
5ef64cc8
LT
1399 * set. That's ok. The next wakeup will take care of it, and trying
1400 * to do it here would be difficult and prone to races.
1401 */
62906027
NP
1402 finish_wait(q, wait);
1403
eb414681 1404 if (thrashing) {
9a1ea439 1405 if (delayacct)
eb414681
JW
1406 delayacct_thrashing_end();
1407 psi_memstall_leave(&pflags);
1408 }
b1d29ba8 1409
62906027 1410 /*
5ef64cc8
LT
1411 * NOTE! The wait->flags weren't stable until we've done the
1412 * 'finish_wait()', and we could have exited the loop above due
1413 * to a signal, and had a wakeup event happen after the signal
1414 * test but before the 'finish_wait()'.
1415 *
1416 * So only after the finish_wait() can we reliably determine
1417 * if we got woken up or not, so we can now figure out the final
1418 * return value based on that state without races.
1419 *
1420 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1421 * waiter, but an exclusive one requires WQ_FLAG_DONE.
62906027 1422 */
5ef64cc8
LT
1423 if (behavior == EXCLUSIVE)
1424 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
62906027 1425
2a9127fc 1426 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
62906027
NP
1427}
1428
101c0bf6 1429void folio_wait_bit(struct folio *folio, int bit_nr)
62906027 1430{
101c0bf6 1431 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
62906027 1432}
101c0bf6 1433EXPORT_SYMBOL(folio_wait_bit);
62906027 1434
101c0bf6 1435int folio_wait_bit_killable(struct folio *folio, int bit_nr)
62906027 1436{
101c0bf6 1437 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
cbbce822 1438}
101c0bf6 1439EXPORT_SYMBOL(folio_wait_bit_killable);
cbbce822 1440
9a1ea439 1441/**
9f2b04a2
MWO
1442 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1443 * @folio: The folio to wait for.
48054625 1444 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
9a1ea439 1445 *
9f2b04a2 1446 * The caller should hold a reference on @folio. They expect the page to
9a1ea439 1447 * become unlocked relatively soon, but do not wish to hold up migration
9f2b04a2 1448 * (for example) by holding the reference while waiting for the folio to
9a1ea439 1449 * come unlocked. After this function returns, the caller should not
9f2b04a2 1450 * dereference @folio.
48054625 1451 *
9f2b04a2 1452 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
9a1ea439 1453 */
9f2b04a2 1454int folio_put_wait_locked(struct folio *folio, int state)
9a1ea439 1455{
9f2b04a2 1456 return folio_wait_bit_common(folio, PG_locked, state, DROP);
9a1ea439
HD
1457}
1458
385e1ca5 1459/**
df4d4f12
MWO
1460 * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1461 * @folio: Folio defining the wait queue of interest
697f619f 1462 * @waiter: Waiter to add to the queue
385e1ca5 1463 *
df4d4f12 1464 * Add an arbitrary @waiter to the wait queue for the nominated @folio.
385e1ca5 1465 */
df4d4f12 1466void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
385e1ca5 1467{
df4d4f12 1468 wait_queue_head_t *q = folio_waitqueue(folio);
385e1ca5
DH
1469 unsigned long flags;
1470
1471 spin_lock_irqsave(&q->lock, flags);
9c3a815f 1472 __add_wait_queue_entry_tail(q, waiter);
df4d4f12 1473 folio_set_waiters(folio);
385e1ca5
DH
1474 spin_unlock_irqrestore(&q->lock, flags);
1475}
df4d4f12 1476EXPORT_SYMBOL_GPL(folio_add_wait_queue);
385e1ca5 1477
b91e1302
LT
1478#ifndef clear_bit_unlock_is_negative_byte
1479
1480/*
1481 * PG_waiters is the high bit in the same byte as PG_lock.
1482 *
1483 * On x86 (and on many other architectures), we can clear PG_lock and
1484 * test the sign bit at the same time. But if the architecture does
1485 * not support that special operation, we just do this all by hand
1486 * instead.
1487 *
1488 * The read of PG_waiters has to be after (or concurrently with) PG_locked
ffceeb62 1489 * being cleared, but a memory barrier should be unnecessary since it is
b91e1302
LT
1490 * in the same byte as PG_locked.
1491 */
1492static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1493{
1494 clear_bit_unlock(nr, mem);
1495 /* smp_mb__after_atomic(); */
98473f9f 1496 return test_bit(PG_waiters, mem);
b91e1302
LT
1497}
1498
1499#endif
1500
1da177e4 1501/**
4e136428
MWO
1502 * folio_unlock - Unlock a locked folio.
1503 * @folio: The folio.
1504 *
1505 * Unlocks the folio and wakes up any thread sleeping on the page lock.
1506 *
1507 * Context: May be called from interrupt or process context. May not be
1508 * called from NMI context.
1da177e4 1509 */
4e136428 1510void folio_unlock(struct folio *folio)
1da177e4 1511{
4e136428 1512 /* Bit 7 allows x86 to check the byte's sign bit */
b91e1302 1513 BUILD_BUG_ON(PG_waiters != 7);
4e136428
MWO
1514 BUILD_BUG_ON(PG_locked > 7);
1515 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1516 if (clear_bit_unlock_is_negative_byte(PG_locked, folio_flags(folio, 0)))
6974d7c9 1517 folio_wake_bit(folio, PG_locked);
1da177e4 1518}
4e136428 1519EXPORT_SYMBOL(folio_unlock);
1da177e4 1520
73e10ded 1521/**
b47393f8
MWO
1522 * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1523 * @folio: The folio.
73e10ded 1524 *
b47393f8
MWO
1525 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1526 * it. The folio reference held for PG_private_2 being set is released.
73e10ded 1527 *
b47393f8
MWO
1528 * This is, for example, used when a netfs folio is being written to a local
1529 * disk cache, thereby allowing writes to the cache for the same folio to be
73e10ded
DH
1530 * serialised.
1531 */
b47393f8 1532void folio_end_private_2(struct folio *folio)
73e10ded 1533{
6974d7c9
MWO
1534 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1535 clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1536 folio_wake_bit(folio, PG_private_2);
1537 folio_put(folio);
73e10ded 1538}
b47393f8 1539EXPORT_SYMBOL(folio_end_private_2);
73e10ded
DH
1540
1541/**
b47393f8
MWO
1542 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1543 * @folio: The folio to wait on.
73e10ded 1544 *
b47393f8 1545 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio.
73e10ded 1546 */
b47393f8 1547void folio_wait_private_2(struct folio *folio)
73e10ded 1548{
101c0bf6
MWO
1549 while (folio_test_private_2(folio))
1550 folio_wait_bit(folio, PG_private_2);
73e10ded 1551}
b47393f8 1552EXPORT_SYMBOL(folio_wait_private_2);
73e10ded
DH
1553
1554/**
b47393f8
MWO
1555 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1556 * @folio: The folio to wait on.
73e10ded 1557 *
b47393f8 1558 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a
73e10ded
DH
1559 * fatal signal is received by the calling task.
1560 *
1561 * Return:
1562 * - 0 if successful.
1563 * - -EINTR if a fatal signal was encountered.
1564 */
b47393f8 1565int folio_wait_private_2_killable(struct folio *folio)
73e10ded
DH
1566{
1567 int ret = 0;
1568
101c0bf6
MWO
1569 while (folio_test_private_2(folio)) {
1570 ret = folio_wait_bit_killable(folio, PG_private_2);
73e10ded
DH
1571 if (ret < 0)
1572 break;
1573 }
1574
1575 return ret;
1576}
b47393f8 1577EXPORT_SYMBOL(folio_wait_private_2_killable);
73e10ded 1578
485bb99b 1579/**
4268b480
MWO
1580 * folio_end_writeback - End writeback against a folio.
1581 * @folio: The folio.
1da177e4 1582 */
4268b480 1583void folio_end_writeback(struct folio *folio)
1da177e4 1584{
888cf2db 1585 /*
4268b480
MWO
1586 * folio_test_clear_reclaim() could be used here but it is an
1587 * atomic operation and overkill in this particular case. Failing
1588 * to shuffle a folio marked for immediate reclaim is too mild
1589 * a gain to justify taking an atomic operation penalty at the
1590 * end of every folio writeback.
888cf2db 1591 */
4268b480
MWO
1592 if (folio_test_reclaim(folio)) {
1593 folio_clear_reclaim(folio);
575ced1c 1594 folio_rotate_reclaimable(folio);
888cf2db 1595 }
ac6aadb2 1596
073861ed 1597 /*
4268b480 1598 * Writeback does not hold a folio reference of its own, relying
073861ed 1599 * on truncation to wait for the clearing of PG_writeback.
4268b480
MWO
1600 * But here we must make sure that the folio is not freed and
1601 * reused before the folio_wake().
073861ed 1602 */
4268b480 1603 folio_get(folio);
269ccca3 1604 if (!__folio_end_writeback(folio))
ac6aadb2
MS
1605 BUG();
1606
4e857c58 1607 smp_mb__after_atomic();
4268b480 1608 folio_wake(folio, PG_writeback);
512b7931 1609 acct_reclaim_writeback(folio);
4268b480 1610 folio_put(folio);
1da177e4 1611}
4268b480 1612EXPORT_SYMBOL(folio_end_writeback);
1da177e4 1613
57d99845
MW
1614/*
1615 * After completing I/O on a page, call this routine to update the page
1616 * flags appropriately
1617 */
c11f0c0b 1618void page_endio(struct page *page, bool is_write, int err)
57d99845 1619{
c11f0c0b 1620 if (!is_write) {
57d99845
MW
1621 if (!err) {
1622 SetPageUptodate(page);
1623 } else {
1624 ClearPageUptodate(page);
1625 SetPageError(page);
1626 }
1627 unlock_page(page);
abf54548 1628 } else {
57d99845 1629 if (err) {
dd8416c4
MK
1630 struct address_space *mapping;
1631
57d99845 1632 SetPageError(page);
dd8416c4
MK
1633 mapping = page_mapping(page);
1634 if (mapping)
1635 mapping_set_error(mapping, err);
57d99845
MW
1636 }
1637 end_page_writeback(page);
1638 }
1639}
1640EXPORT_SYMBOL_GPL(page_endio);
1641
485bb99b 1642/**
7c23c782
MWO
1643 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1644 * @folio: The folio to lock
1da177e4 1645 */
7c23c782 1646void __folio_lock(struct folio *folio)
1da177e4 1647{
101c0bf6 1648 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
9a1ea439 1649 EXCLUSIVE);
1da177e4 1650}
7c23c782 1651EXPORT_SYMBOL(__folio_lock);
1da177e4 1652
af7f29d9 1653int __folio_lock_killable(struct folio *folio)
2687a356 1654{
101c0bf6 1655 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
9a1ea439 1656 EXCLUSIVE);
2687a356 1657}
af7f29d9 1658EXPORT_SYMBOL_GPL(__folio_lock_killable);
2687a356 1659
ffdc8dab 1660static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
dd3e6d50 1661{
df4d4f12 1662 struct wait_queue_head *q = folio_waitqueue(folio);
f32b5dd7
MWO
1663 int ret = 0;
1664
df4d4f12 1665 wait->folio = folio;
f32b5dd7
MWO
1666 wait->bit_nr = PG_locked;
1667
1668 spin_lock_irq(&q->lock);
1669 __add_wait_queue_entry_tail(q, &wait->wait);
ffdc8dab
MWO
1670 folio_set_waiters(folio);
1671 ret = !folio_trylock(folio);
f32b5dd7
MWO
1672 /*
1673 * If we were successful now, we know we're still on the
1674 * waitqueue as we're still under the lock. This means it's
1675 * safe to remove and return success, we know the callback
1676 * isn't going to trigger.
1677 */
1678 if (!ret)
1679 __remove_wait_queue(q, &wait->wait);
1680 else
1681 ret = -EIOCBQUEUED;
1682 spin_unlock_irq(&q->lock);
1683 return ret;
dd3e6d50
JA
1684}
1685
9a95f3cf
PC
1686/*
1687 * Return values:
9138e47e
MWO
1688 * true - folio is locked; mmap_lock is still held.
1689 * false - folio is not locked.
3e4e28c5 1690 * mmap_lock has been released (mmap_read_unlock(), unless flags had both
9a95f3cf 1691 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
c1e8d7c6 1692 * which case mmap_lock is still held.
9a95f3cf 1693 *
9138e47e
MWO
1694 * If neither ALLOW_RETRY nor KILLABLE are set, will always return true
1695 * with the folio locked and the mmap_lock unperturbed.
9a95f3cf 1696 */
9138e47e 1697bool __folio_lock_or_retry(struct folio *folio, struct mm_struct *mm,
d065bd81
ML
1698 unsigned int flags)
1699{
4064b982 1700 if (fault_flag_allow_retry_first(flags)) {
37b23e05 1701 /*
c1e8d7c6 1702 * CAUTION! In this case, mmap_lock is not released
37b23e05
KM
1703 * even though return 0.
1704 */
1705 if (flags & FAULT_FLAG_RETRY_NOWAIT)
9138e47e 1706 return false;
37b23e05 1707
d8ed45c5 1708 mmap_read_unlock(mm);
37b23e05 1709 if (flags & FAULT_FLAG_KILLABLE)
6baa8d60 1710 folio_wait_locked_killable(folio);
37b23e05 1711 else
6baa8d60 1712 folio_wait_locked(folio);
9138e47e 1713 return false;
800bca7c
HL
1714 }
1715 if (flags & FAULT_FLAG_KILLABLE) {
9138e47e 1716 bool ret;
37b23e05 1717
af7f29d9 1718 ret = __folio_lock_killable(folio);
800bca7c
HL
1719 if (ret) {
1720 mmap_read_unlock(mm);
9138e47e 1721 return false;
800bca7c
HL
1722 }
1723 } else {
af7f29d9 1724 __folio_lock(folio);
d065bd81 1725 }
800bca7c 1726
9138e47e 1727 return true;
d065bd81
ML
1728}
1729
e7b563bb 1730/**
0d3f9296
MW
1731 * page_cache_next_miss() - Find the next gap in the page cache.
1732 * @mapping: Mapping.
1733 * @index: Index.
1734 * @max_scan: Maximum range to search.
e7b563bb 1735 *
0d3f9296
MW
1736 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1737 * gap with the lowest index.
e7b563bb 1738 *
0d3f9296
MW
1739 * This function may be called under the rcu_read_lock. However, this will
1740 * not atomically search a snapshot of the cache at a single point in time.
1741 * For example, if a gap is created at index 5, then subsequently a gap is
1742 * created at index 10, page_cache_next_miss covering both indices may
1743 * return 10 if called under the rcu_read_lock.
e7b563bb 1744 *
0d3f9296
MW
1745 * Return: The index of the gap if found, otherwise an index outside the
1746 * range specified (in which case 'return - index >= max_scan' will be true).
1747 * In the rare case of index wrap-around, 0 will be returned.
e7b563bb 1748 */
0d3f9296 1749pgoff_t page_cache_next_miss(struct address_space *mapping,
e7b563bb
JW
1750 pgoff_t index, unsigned long max_scan)
1751{
0d3f9296 1752 XA_STATE(xas, &mapping->i_pages, index);
e7b563bb 1753
0d3f9296
MW
1754 while (max_scan--) {
1755 void *entry = xas_next(&xas);
1756 if (!entry || xa_is_value(entry))
e7b563bb 1757 break;
0d3f9296 1758 if (xas.xa_index == 0)
e7b563bb
JW
1759 break;
1760 }
1761
0d3f9296 1762 return xas.xa_index;
e7b563bb 1763}
0d3f9296 1764EXPORT_SYMBOL(page_cache_next_miss);
e7b563bb
JW
1765
1766/**
2346a560 1767 * page_cache_prev_miss() - Find the previous gap in the page cache.
0d3f9296
MW
1768 * @mapping: Mapping.
1769 * @index: Index.
1770 * @max_scan: Maximum range to search.
e7b563bb 1771 *
0d3f9296
MW
1772 * Search the range [max(index - max_scan + 1, 0), index] for the
1773 * gap with the highest index.
e7b563bb 1774 *
0d3f9296
MW
1775 * This function may be called under the rcu_read_lock. However, this will
1776 * not atomically search a snapshot of the cache at a single point in time.
1777 * For example, if a gap is created at index 10, then subsequently a gap is
1778 * created at index 5, page_cache_prev_miss() covering both indices may
1779 * return 5 if called under the rcu_read_lock.
e7b563bb 1780 *
0d3f9296
MW
1781 * Return: The index of the gap if found, otherwise an index outside the
1782 * range specified (in which case 'index - return >= max_scan' will be true).
1783 * In the rare case of wrap-around, ULONG_MAX will be returned.
e7b563bb 1784 */
0d3f9296 1785pgoff_t page_cache_prev_miss(struct address_space *mapping,
e7b563bb
JW
1786 pgoff_t index, unsigned long max_scan)
1787{
0d3f9296 1788 XA_STATE(xas, &mapping->i_pages, index);
e7b563bb 1789
0d3f9296
MW
1790 while (max_scan--) {
1791 void *entry = xas_prev(&xas);
1792 if (!entry || xa_is_value(entry))
e7b563bb 1793 break;
0d3f9296 1794 if (xas.xa_index == ULONG_MAX)
e7b563bb
JW
1795 break;
1796 }
1797
0d3f9296 1798 return xas.xa_index;
e7b563bb 1799}
0d3f9296 1800EXPORT_SYMBOL(page_cache_prev_miss);
e7b563bb 1801
020853b6
MWO
1802/*
1803 * Lockless page cache protocol:
1804 * On the lookup side:
1805 * 1. Load the folio from i_pages
1806 * 2. Increment the refcount if it's not zero
1807 * 3. If the folio is not found by xas_reload(), put the refcount and retry
1808 *
1809 * On the removal side:
1810 * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1811 * B. Remove the page from i_pages
1812 * C. Return the page to the page allocator
1813 *
1814 * This means that any page may have its reference count temporarily
1815 * increased by a speculative page cache (or fast GUP) lookup as it can
1816 * be allocated by another user before the RCU grace period expires.
1817 * Because the refcount temporarily acquired here may end up being the
1818 * last refcount on the page, any page allocation must be freeable by
1819 * folio_put().
1820 */
1821
44835d20 1822/*
bc5a3011 1823 * mapping_get_entry - Get a page cache entry.
485bb99b 1824 * @mapping: the address_space to search
a6de4b48 1825 * @index: The page cache index.
0cd6144a 1826 *
bca65eea
MWO
1827 * Looks up the page cache entry at @mapping & @index. If it is a folio,
1828 * it is returned with an increased refcount. If it is a shadow entry
1829 * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1830 * it is returned without further action.
485bb99b 1831 *
bca65eea 1832 * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1da177e4 1833 */
bca65eea 1834static void *mapping_get_entry(struct address_space *mapping, pgoff_t index)
1da177e4 1835{
a6de4b48 1836 XA_STATE(xas, &mapping->i_pages, index);
bca65eea 1837 struct folio *folio;
1da177e4 1838
a60637c8
NP
1839 rcu_read_lock();
1840repeat:
4c7472c0 1841 xas_reset(&xas);
bca65eea
MWO
1842 folio = xas_load(&xas);
1843 if (xas_retry(&xas, folio))
4c7472c0
MW
1844 goto repeat;
1845 /*
1846 * A shadow entry of a recently evicted page, or a swap entry from
1847 * shmem/tmpfs. Return it without attempting to raise page count.
1848 */
bca65eea 1849 if (!folio || xa_is_value(folio))
4c7472c0 1850 goto out;
83929372 1851
bca65eea 1852 if (!folio_try_get_rcu(folio))
4c7472c0 1853 goto repeat;
83929372 1854
bca65eea
MWO
1855 if (unlikely(folio != xas_reload(&xas))) {
1856 folio_put(folio);
4c7472c0 1857 goto repeat;
a60637c8 1858 }
27d20fdd 1859out:
a60637c8
NP
1860 rcu_read_unlock();
1861
bca65eea 1862 return folio;
1da177e4 1863}
1da177e4 1864
0cd6144a 1865/**
3f0c6a07 1866 * __filemap_get_folio - Find and get a reference to a folio.
2294b32e
MWO
1867 * @mapping: The address_space to search.
1868 * @index: The page index.
3f0c6a07
MWO
1869 * @fgp_flags: %FGP flags modify how the folio is returned.
1870 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1da177e4 1871 *
2294b32e 1872 * Looks up the page cache entry at @mapping & @index.
0cd6144a 1873 *
2294b32e 1874 * @fgp_flags can be zero or more of these flags:
0e056eb5 1875 *
3f0c6a07
MWO
1876 * * %FGP_ACCESSED - The folio will be marked accessed.
1877 * * %FGP_LOCK - The folio is returned locked.
44835d20 1878 * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it
3f0c6a07 1879 * instead of allocating a new folio to replace it.
2294b32e 1880 * * %FGP_CREAT - If no page is present then a new page is allocated using
3f0c6a07 1881 * @gfp and added to the page cache and the VM's LRU list.
2294b32e
MWO
1882 * The page is returned locked and with an increased refcount.
1883 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1884 * page is already in cache. If the page was allocated, unlock it before
1885 * returning so the caller can do the same dance.
3f0c6a07
MWO
1886 * * %FGP_WRITE - The page will be written to by the caller.
1887 * * %FGP_NOFS - __GFP_FS will get cleared in gfp.
1888 * * %FGP_NOWAIT - Don't get blocked by page lock.
b27652d9 1889 * * %FGP_STABLE - Wait for the folio to be stable (finished writeback)
1da177e4 1890 *
2294b32e
MWO
1891 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1892 * if the %GFP flags specified for %FGP_CREAT are atomic.
1da177e4 1893 *
2457aec6 1894 * If there is a page cache page, it is returned with an increased refcount.
a862f68a 1895 *
3f0c6a07 1896 * Return: The found folio or %NULL otherwise.
1da177e4 1897 */
3f0c6a07
MWO
1898struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1899 int fgp_flags, gfp_t gfp)
1da177e4 1900{
3f0c6a07 1901 struct folio *folio;
2457aec6 1902
1da177e4 1903repeat:
3f0c6a07
MWO
1904 folio = mapping_get_entry(mapping, index);
1905 if (xa_is_value(folio)) {
44835d20 1906 if (fgp_flags & FGP_ENTRY)
3f0c6a07
MWO
1907 return folio;
1908 folio = NULL;
44835d20 1909 }
3f0c6a07 1910 if (!folio)
2457aec6
MG
1911 goto no_page;
1912
1913 if (fgp_flags & FGP_LOCK) {
1914 if (fgp_flags & FGP_NOWAIT) {
3f0c6a07
MWO
1915 if (!folio_trylock(folio)) {
1916 folio_put(folio);
2457aec6
MG
1917 return NULL;
1918 }
1919 } else {
3f0c6a07 1920 folio_lock(folio);
2457aec6
MG
1921 }
1922
1923 /* Has the page been truncated? */
3f0c6a07
MWO
1924 if (unlikely(folio->mapping != mapping)) {
1925 folio_unlock(folio);
1926 folio_put(folio);
2457aec6
MG
1927 goto repeat;
1928 }
3f0c6a07 1929 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
2457aec6
MG
1930 }
1931
c16eb000 1932 if (fgp_flags & FGP_ACCESSED)
3f0c6a07 1933 folio_mark_accessed(folio);
b9306a79
YS
1934 else if (fgp_flags & FGP_WRITE) {
1935 /* Clear idle flag for buffer write */
3f0c6a07
MWO
1936 if (folio_test_idle(folio))
1937 folio_clear_idle(folio);
b9306a79 1938 }
2457aec6 1939
b27652d9
MWO
1940 if (fgp_flags & FGP_STABLE)
1941 folio_wait_stable(folio);
2457aec6 1942no_page:
3f0c6a07 1943 if (!folio && (fgp_flags & FGP_CREAT)) {
2457aec6 1944 int err;
f56753ac 1945 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
3f0c6a07 1946 gfp |= __GFP_WRITE;
45f87de5 1947 if (fgp_flags & FGP_NOFS)
3f0c6a07 1948 gfp &= ~__GFP_FS;
2457aec6 1949
3f0c6a07
MWO
1950 folio = filemap_alloc_folio(gfp, 0);
1951 if (!folio)
eb2be189 1952 return NULL;
2457aec6 1953
a75d4c33 1954 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
2457aec6
MG
1955 fgp_flags |= FGP_LOCK;
1956
eb39d618 1957 /* Init accessed so avoid atomic mark_page_accessed later */
2457aec6 1958 if (fgp_flags & FGP_ACCESSED)
3f0c6a07 1959 __folio_set_referenced(folio);
2457aec6 1960
3f0c6a07 1961 err = filemap_add_folio(mapping, folio, index, gfp);
eb2be189 1962 if (unlikely(err)) {
3f0c6a07
MWO
1963 folio_put(folio);
1964 folio = NULL;
eb2be189
NP
1965 if (err == -EEXIST)
1966 goto repeat;
1da177e4 1967 }
a75d4c33
JB
1968
1969 /*
3f0c6a07
MWO
1970 * filemap_add_folio locks the page, and for mmap
1971 * we expect an unlocked page.
a75d4c33 1972 */
3f0c6a07
MWO
1973 if (folio && (fgp_flags & FGP_FOR_MMAP))
1974 folio_unlock(folio);
1da177e4 1975 }
2457aec6 1976
3f0c6a07 1977 return folio;
1da177e4 1978}
3f0c6a07 1979EXPORT_SYMBOL(__filemap_get_folio);
1da177e4 1980
c7bad633
MWO
1981static inline struct page *find_get_entry(struct xa_state *xas, pgoff_t max,
1982 xa_mark_t mark)
1983{
1984 struct page *page;
1985
1986retry:
1987 if (mark == XA_PRESENT)
1988 page = xas_find(xas, max);
1989 else
1990 page = xas_find_marked(xas, max, mark);
1991
1992 if (xas_retry(xas, page))
1993 goto retry;
1994 /*
1995 * A shadow entry of a recently evicted page, a swap
1996 * entry from shmem/tmpfs or a DAX entry. Return it
1997 * without attempting to raise page count.
1998 */
1999 if (!page || xa_is_value(page))
2000 return page;
2001
2002 if (!page_cache_get_speculative(page))
2003 goto reset;
2004
2005 /* Has the page moved or been split? */
2006 if (unlikely(page != xas_reload(xas))) {
2007 put_page(page);
2008 goto reset;
2009 }
2010
2011 return page;
2012reset:
2013 xas_reset(xas);
2014 goto retry;
2015}
2016
0cd6144a
JW
2017/**
2018 * find_get_entries - gang pagecache lookup
2019 * @mapping: The address_space to search
2020 * @start: The starting page cache index
ca122fe4 2021 * @end: The final page index (inclusive).
cf2039af 2022 * @pvec: Where the resulting entries are placed.
0cd6144a
JW
2023 * @indices: The cache indices corresponding to the entries in @entries
2024 *
cf2039af
MWO
2025 * find_get_entries() will search for and return a batch of entries in
2026 * the mapping. The entries are placed in @pvec. find_get_entries()
2027 * takes a reference on any actual pages it returns.
0cd6144a
JW
2028 *
2029 * The search returns a group of mapping-contiguous page cache entries
2030 * with ascending indexes. There may be holes in the indices due to
2031 * not-present pages.
2032 *
139b6a6f
JW
2033 * Any shadow entries of evicted pages, or swap entries from
2034 * shmem/tmpfs, are included in the returned array.
0cd6144a 2035 *
71725ed1
HD
2036 * If it finds a Transparent Huge Page, head or tail, find_get_entries()
2037 * stops at that page: the caller is likely to have a better way to handle
2038 * the compound page as a whole, and then skip its extent, than repeatedly
2039 * calling find_get_entries() to return all its tails.
2040 *
a862f68a 2041 * Return: the number of pages and shadow entries which were found.
0cd6144a 2042 */
ca122fe4 2043unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
cf2039af 2044 pgoff_t end, struct pagevec *pvec, pgoff_t *indices)
0cd6144a 2045{
f280bf09
MW
2046 XA_STATE(xas, &mapping->i_pages, start);
2047 struct page *page;
0cd6144a 2048 unsigned int ret = 0;
cf2039af 2049 unsigned nr_entries = PAGEVEC_SIZE;
0cd6144a
JW
2050
2051 rcu_read_lock();
ca122fe4 2052 while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
71725ed1
HD
2053 /*
2054 * Terminate early on finding a THP, to allow the caller to
2055 * handle it all at once; but continue if this is hugetlbfs.
2056 */
c7bad633
MWO
2057 if (!xa_is_value(page) && PageTransHuge(page) &&
2058 !PageHuge(page)) {
71725ed1
HD
2059 page = find_subpage(page, xas.xa_index);
2060 nr_entries = ret + 1;
2061 }
c7bad633 2062
f280bf09 2063 indices[ret] = xas.xa_index;
cf2039af 2064 pvec->pages[ret] = page;
0cd6144a
JW
2065 if (++ret == nr_entries)
2066 break;
2067 }
2068 rcu_read_unlock();
cf2039af
MWO
2069
2070 pvec->nr = ret;
0cd6144a
JW
2071 return ret;
2072}
2073
5c211ba2
MWO
2074/**
2075 * find_lock_entries - Find a batch of pagecache entries.
2076 * @mapping: The address_space to search.
2077 * @start: The starting page cache index.
2078 * @end: The final page index (inclusive).
2079 * @pvec: Where the resulting entries are placed.
2080 * @indices: The cache indices of the entries in @pvec.
2081 *
2082 * find_lock_entries() will return a batch of entries from @mapping.
2083 * Swap, shadow and DAX entries are included. Pages are returned
2084 * locked and with an incremented refcount. Pages which are locked by
2085 * somebody else or under writeback are skipped. Only the head page of
2086 * a THP is returned. Pages which are partially outside the range are
2087 * not returned.
2088 *
2089 * The entries have ascending indexes. The indices may not be consecutive
2090 * due to not-present entries, THP pages, pages which could not be locked
2091 * or pages under writeback.
2092 *
2093 * Return: The number of entries which were found.
2094 */
2095unsigned find_lock_entries(struct address_space *mapping, pgoff_t start,
2096 pgoff_t end, struct pagevec *pvec, pgoff_t *indices)
2097{
2098 XA_STATE(xas, &mapping->i_pages, start);
2099 struct page *page;
2100
2101 rcu_read_lock();
2102 while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
2103 if (!xa_is_value(page)) {
2104 if (page->index < start)
2105 goto put;
5c211ba2
MWO
2106 if (page->index + thp_nr_pages(page) - 1 > end)
2107 goto put;
2108 if (!trylock_page(page))
2109 goto put;
2110 if (page->mapping != mapping || PageWriteback(page))
2111 goto unlock;
2112 VM_BUG_ON_PAGE(!thp_contains(page, xas.xa_index),
2113 page);
2114 }
2115 indices[pvec->nr] = xas.xa_index;
2116 if (!pagevec_add(pvec, page))
2117 break;
2118 goto next;
2119unlock:
2120 unlock_page(page);
2121put:
2122 put_page(page);
2123next:
2d11e738
HD
2124 if (!xa_is_value(page) && PageTransHuge(page)) {
2125 unsigned int nr_pages = thp_nr_pages(page);
2126
2127 /* Final THP may cross MAX_LFS_FILESIZE on 32-bit */
2128 xas_set(&xas, page->index + nr_pages);
2129 if (xas.xa_index < nr_pages)
2130 break;
2131 }
5c211ba2
MWO
2132 }
2133 rcu_read_unlock();
2134
2135 return pagevec_count(pvec);
2136}
2137
1da177e4 2138/**
b947cee4 2139 * find_get_pages_range - gang pagecache lookup
1da177e4
LT
2140 * @mapping: The address_space to search
2141 * @start: The starting page index
b947cee4 2142 * @end: The final page index (inclusive)
1da177e4
LT
2143 * @nr_pages: The maximum number of pages
2144 * @pages: Where the resulting pages are placed
2145 *
b947cee4
JK
2146 * find_get_pages_range() will search for and return a group of up to @nr_pages
2147 * pages in the mapping starting at index @start and up to index @end
2148 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes
2149 * a reference against the returned pages.
1da177e4
LT
2150 *
2151 * The search returns a group of mapping-contiguous pages with ascending
2152 * indexes. There may be holes in the indices due to not-present pages.
d72dc8a2 2153 * We also update @start to index the next page for the traversal.
1da177e4 2154 *
a862f68a
MR
2155 * Return: the number of pages which were found. If this number is
2156 * smaller than @nr_pages, the end of specified range has been
b947cee4 2157 * reached.
1da177e4 2158 */
b947cee4
JK
2159unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
2160 pgoff_t end, unsigned int nr_pages,
2161 struct page **pages)
1da177e4 2162{
fd1b3cee
MW
2163 XA_STATE(xas, &mapping->i_pages, *start);
2164 struct page *page;
0fc9d104
KK
2165 unsigned ret = 0;
2166
2167 if (unlikely(!nr_pages))
2168 return 0;
a60637c8
NP
2169
2170 rcu_read_lock();
c7bad633 2171 while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
fd1b3cee
MW
2172 /* Skip over shadow, swap and DAX entries */
2173 if (xa_is_value(page))
8079b1c8 2174 continue;
a60637c8 2175
4101196b 2176 pages[ret] = find_subpage(page, xas.xa_index);
b947cee4 2177 if (++ret == nr_pages) {
5d3ee42f 2178 *start = xas.xa_index + 1;
b947cee4
JK
2179 goto out;
2180 }
a60637c8 2181 }
5b280c0c 2182
b947cee4
JK
2183 /*
2184 * We come here when there is no page beyond @end. We take care to not
2185 * overflow the index @start as it confuses some of the callers. This
fd1b3cee 2186 * breaks the iteration when there is a page at index -1 but that is
b947cee4
JK
2187 * already broken anyway.
2188 */
2189 if (end == (pgoff_t)-1)
2190 *start = (pgoff_t)-1;
2191 else
2192 *start = end + 1;
2193out:
a60637c8 2194 rcu_read_unlock();
d72dc8a2 2195
1da177e4
LT
2196 return ret;
2197}
2198
ebf43500
JA
2199/**
2200 * find_get_pages_contig - gang contiguous pagecache lookup
2201 * @mapping: The address_space to search
2202 * @index: The starting page index
2203 * @nr_pages: The maximum number of pages
2204 * @pages: Where the resulting pages are placed
2205 *
2206 * find_get_pages_contig() works exactly like find_get_pages(), except
2207 * that the returned number of pages are guaranteed to be contiguous.
2208 *
a862f68a 2209 * Return: the number of pages which were found.
ebf43500
JA
2210 */
2211unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
2212 unsigned int nr_pages, struct page **pages)
2213{
3ece58a2
MW
2214 XA_STATE(xas, &mapping->i_pages, index);
2215 struct page *page;
0fc9d104
KK
2216 unsigned int ret = 0;
2217
2218 if (unlikely(!nr_pages))
2219 return 0;
a60637c8
NP
2220
2221 rcu_read_lock();
3ece58a2 2222 for (page = xas_load(&xas); page; page = xas_next(&xas)) {
3ece58a2
MW
2223 if (xas_retry(&xas, page))
2224 continue;
2225 /*
2226 * If the entry has been swapped out, we can stop looking.
2227 * No current caller is looking for DAX entries.
2228 */
2229 if (xa_is_value(page))
8079b1c8 2230 break;
ebf43500 2231
4101196b 2232 if (!page_cache_get_speculative(page))
3ece58a2 2233 goto retry;
83929372 2234
4101196b 2235 /* Has the page moved or been split? */
3ece58a2
MW
2236 if (unlikely(page != xas_reload(&xas)))
2237 goto put_page;
a60637c8 2238
4101196b 2239 pages[ret] = find_subpage(page, xas.xa_index);
0fc9d104
KK
2240 if (++ret == nr_pages)
2241 break;
3ece58a2
MW
2242 continue;
2243put_page:
4101196b 2244 put_page(page);
3ece58a2
MW
2245retry:
2246 xas_reset(&xas);
ebf43500 2247 }
a60637c8
NP
2248 rcu_read_unlock();
2249 return ret;
ebf43500 2250}
ef71c15c 2251EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 2252
485bb99b 2253/**
c49f50d1 2254 * find_get_pages_range_tag - Find and return head pages matching @tag.
485bb99b
RD
2255 * @mapping: the address_space to search
2256 * @index: the starting page index
72b045ae 2257 * @end: The final page index (inclusive)
485bb99b
RD
2258 * @tag: the tag index
2259 * @nr_pages: the maximum number of pages
2260 * @pages: where the resulting pages are placed
2261 *
c49f50d1
MWO
2262 * Like find_get_pages(), except we only return head pages which are tagged
2263 * with @tag. @index is updated to the index immediately after the last
2264 * page we return, ready for the next iteration.
a862f68a
MR
2265 *
2266 * Return: the number of pages which were found.
1da177e4 2267 */
72b045ae 2268unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
a6906972 2269 pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
72b045ae 2270 struct page **pages)
1da177e4 2271{
a6906972
MW
2272 XA_STATE(xas, &mapping->i_pages, *index);
2273 struct page *page;
0fc9d104
KK
2274 unsigned ret = 0;
2275
2276 if (unlikely(!nr_pages))
2277 return 0;
a60637c8
NP
2278
2279 rcu_read_lock();
c7bad633 2280 while ((page = find_get_entry(&xas, end, tag))) {
a6906972
MW
2281 /*
2282 * Shadow entries should never be tagged, but this iteration
2283 * is lockless so there is a window for page reclaim to evict
2284 * a page we saw tagged. Skip over it.
2285 */
2286 if (xa_is_value(page))
139b6a6f 2287 continue;
a60637c8 2288
c49f50d1 2289 pages[ret] = page;
72b045ae 2290 if (++ret == nr_pages) {
c49f50d1 2291 *index = page->index + thp_nr_pages(page);
72b045ae
JK
2292 goto out;
2293 }
a60637c8 2294 }
5b280c0c 2295
72b045ae 2296 /*
a6906972 2297 * We come here when we got to @end. We take care to not overflow the
72b045ae 2298 * index @index as it confuses some of the callers. This breaks the
a6906972
MW
2299 * iteration when there is a page at index -1 but that is already
2300 * broken anyway.
72b045ae
JK
2301 */
2302 if (end == (pgoff_t)-1)
2303 *index = (pgoff_t)-1;
2304 else
2305 *index = end + 1;
2306out:
a60637c8 2307 rcu_read_unlock();
1da177e4 2308
1da177e4
LT
2309 return ret;
2310}
72b045ae 2311EXPORT_SYMBOL(find_get_pages_range_tag);
1da177e4 2312
76d42bd9
WF
2313/*
2314 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2315 * a _large_ part of the i/o request. Imagine the worst scenario:
2316 *
2317 * ---R__________________________________________B__________
2318 * ^ reading here ^ bad block(assume 4k)
2319 *
2320 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2321 * => failing the whole request => read(R) => read(R+1) =>
2322 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2323 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2324 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2325 *
2326 * It is going insane. Fix it by quickly scaling down the readahead size.
2327 */
0f8e2db4 2328static void shrink_readahead_size_eio(struct file_ra_state *ra)
76d42bd9 2329{
76d42bd9 2330 ra->ra_pages /= 4;
76d42bd9
WF
2331}
2332
cbd59c48
MWO
2333/*
2334 * filemap_get_read_batch - Get a batch of pages for read
2335 *
2336 * Get a batch of pages which represent a contiguous range of bytes
2337 * in the file. No tail pages will be returned. If @index is in the
2338 * middle of a THP, the entire THP will be returned. The last page in
2339 * the batch may have Readahead set or be not Uptodate so that the
2340 * caller can take the appropriate action.
2341 */
2342static void filemap_get_read_batch(struct address_space *mapping,
2343 pgoff_t index, pgoff_t max, struct pagevec *pvec)
2344{
2345 XA_STATE(xas, &mapping->i_pages, index);
2346 struct page *head;
2347
2348 rcu_read_lock();
2349 for (head = xas_load(&xas); head; head = xas_next(&xas)) {
2350 if (xas_retry(&xas, head))
2351 continue;
2352 if (xas.xa_index > max || xa_is_value(head))
2353 break;
2354 if (!page_cache_get_speculative(head))
2355 goto retry;
2356
2357 /* Has the page moved or been split? */
2358 if (unlikely(head != xas_reload(&xas)))
2359 goto put_page;
2360
2361 if (!pagevec_add(pvec, head))
2362 break;
2363 if (!PageUptodate(head))
2364 break;
2365 if (PageReadahead(head))
2366 break;
2367 xas.xa_index = head->index + thp_nr_pages(head) - 1;
2368 xas.xa_offset = (xas.xa_index >> xas.xa_shift) & XA_CHUNK_MASK;
2369 continue;
2370put_page:
2371 put_page(head);
2372retry:
2373 xas_reset(&xas);
2374 }
2375 rcu_read_unlock();
2376}
2377
68430303
MWO
2378static int filemap_read_page(struct file *file, struct address_space *mapping,
2379 struct page *page)
723ef24b 2380{
723ef24b
KO
2381 int error;
2382
723ef24b 2383 /*
68430303
MWO
2384 * A previous I/O error may have been due to temporary failures,
2385 * eg. multipath errors. PG_error will be set again if readpage
2386 * fails.
723ef24b
KO
2387 */
2388 ClearPageError(page);
2389 /* Start the actual read. The read will unlock the page. */
68430303
MWO
2390 error = mapping->a_ops->readpage(file, page);
2391 if (error)
2392 return error;
723ef24b 2393
aa1ec2f6 2394 error = wait_on_page_locked_killable(page);
68430303
MWO
2395 if (error)
2396 return error;
aa1ec2f6
MWO
2397 if (PageUptodate(page))
2398 return 0;
aa1ec2f6
MWO
2399 shrink_readahead_size_eio(&file->f_ra);
2400 return -EIO;
723ef24b
KO
2401}
2402
fce70da3
MWO
2403static bool filemap_range_uptodate(struct address_space *mapping,
2404 loff_t pos, struct iov_iter *iter, struct page *page)
2405{
2406 int count;
2407
2408 if (PageUptodate(page))
2409 return true;
2410 /* pipes can't handle partially uptodate pages */
2411 if (iov_iter_is_pipe(iter))
2412 return false;
2413 if (!mapping->a_ops->is_partially_uptodate)
2414 return false;
2415 if (mapping->host->i_blkbits >= (PAGE_SHIFT + thp_order(page)))
2416 return false;
2417
2418 count = iter->count;
2419 if (page_offset(page) > pos) {
2420 count -= page_offset(page) - pos;
2421 pos = 0;
2422 } else {
2423 pos -= page_offset(page);
2424 }
2425
2426 return mapping->a_ops->is_partially_uptodate(page, pos, count);
2427}
2428
4612aeef
MWO
2429static int filemap_update_page(struct kiocb *iocb,
2430 struct address_space *mapping, struct iov_iter *iter,
fce70da3 2431 struct page *page)
723ef24b 2432{
ffdc8dab 2433 struct folio *folio = page_folio(page);
723ef24b
KO
2434 int error;
2435
730633f0
JK
2436 if (iocb->ki_flags & IOCB_NOWAIT) {
2437 if (!filemap_invalidate_trylock_shared(mapping))
2438 return -EAGAIN;
2439 } else {
2440 filemap_invalidate_lock_shared(mapping);
2441 }
2442
ffdc8dab 2443 if (!folio_trylock(folio)) {
730633f0 2444 error = -EAGAIN;
87d1d7b6 2445 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
730633f0 2446 goto unlock_mapping;
87d1d7b6 2447 if (!(iocb->ki_flags & IOCB_WAITQ)) {
730633f0 2448 filemap_invalidate_unlock_shared(mapping);
9f2b04a2
MWO
2449 /*
2450 * This is where we usually end up waiting for a
2451 * previously submitted readahead to finish.
2452 */
2453 folio_put_wait_locked(folio, TASK_KILLABLE);
4612aeef 2454 return AOP_TRUNCATED_PAGE;
bd8a1f36 2455 }
ffdc8dab 2456 error = __folio_lock_async(folio, iocb->ki_waitq);
87d1d7b6 2457 if (error)
730633f0 2458 goto unlock_mapping;
723ef24b 2459 }
723ef24b 2460
730633f0 2461 error = AOP_TRUNCATED_PAGE;
ffdc8dab 2462 if (!folio->mapping)
730633f0 2463 goto unlock;
723ef24b 2464
fce70da3 2465 error = 0;
ffdc8dab 2466 if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, &folio->page))
fce70da3
MWO
2467 goto unlock;
2468
2469 error = -EAGAIN;
2470 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2471 goto unlock;
2472
ffdc8dab 2473 error = filemap_read_page(iocb->ki_filp, mapping, &folio->page);
730633f0 2474 goto unlock_mapping;
fce70da3 2475unlock:
ffdc8dab 2476 folio_unlock(folio);
730633f0
JK
2477unlock_mapping:
2478 filemap_invalidate_unlock_shared(mapping);
2479 if (error == AOP_TRUNCATED_PAGE)
ffdc8dab 2480 folio_put(folio);
fce70da3 2481 return error;
723ef24b
KO
2482}
2483
f253e185
MWO
2484static int filemap_create_page(struct file *file,
2485 struct address_space *mapping, pgoff_t index,
2486 struct pagevec *pvec)
723ef24b 2487{
723ef24b
KO
2488 struct page *page;
2489 int error;
2490
723ef24b
KO
2491 page = page_cache_alloc(mapping);
2492 if (!page)
f253e185 2493 return -ENOMEM;
723ef24b 2494
730633f0
JK
2495 /*
2496 * Protect against truncate / hole punch. Grabbing invalidate_lock here
2497 * assures we cannot instantiate and bring uptodate new pagecache pages
2498 * after evicting page cache during truncate and before actually
2499 * freeing blocks. Note that we could release invalidate_lock after
2500 * inserting the page into page cache as the locked page would then be
2501 * enough to synchronize with hole punching. But there are code paths
2502 * such as filemap_update_page() filling in partially uptodate pages or
2503 * ->readpages() that need to hold invalidate_lock while mapping blocks
2504 * for IO so let's hold the lock here as well to keep locking rules
2505 * simple.
2506 */
2507 filemap_invalidate_lock_shared(mapping);
723ef24b 2508 error = add_to_page_cache_lru(page, mapping, index,
f253e185
MWO
2509 mapping_gfp_constraint(mapping, GFP_KERNEL));
2510 if (error == -EEXIST)
2511 error = AOP_TRUNCATED_PAGE;
2512 if (error)
2513 goto error;
2514
2515 error = filemap_read_page(file, mapping, page);
2516 if (error)
2517 goto error;
2518
730633f0 2519 filemap_invalidate_unlock_shared(mapping);
f253e185
MWO
2520 pagevec_add(pvec, page);
2521 return 0;
2522error:
730633f0 2523 filemap_invalidate_unlock_shared(mapping);
68430303 2524 put_page(page);
f253e185 2525 return error;
723ef24b
KO
2526}
2527
5963fe03
MWO
2528static int filemap_readahead(struct kiocb *iocb, struct file *file,
2529 struct address_space *mapping, struct page *page,
2530 pgoff_t last_index)
2531{
2532 if (iocb->ki_flags & IOCB_NOIO)
2533 return -EAGAIN;
2534 page_cache_async_readahead(mapping, &file->f_ra, file, page,
2535 page->index, last_index - page->index);
2536 return 0;
2537}
2538
3a6bae48 2539static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter,
ff993ba1 2540 struct pagevec *pvec)
06c04442
KO
2541{
2542 struct file *filp = iocb->ki_filp;
2543 struct address_space *mapping = filp->f_mapping;
2544 struct file_ra_state *ra = &filp->f_ra;
2545 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
cbd59c48 2546 pgoff_t last_index;
2642fca6 2547 struct page *page;
cbd59c48 2548 int err = 0;
06c04442 2549
cbd59c48 2550 last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE);
2642fca6 2551retry:
06c04442
KO
2552 if (fatal_signal_pending(current))
2553 return -EINTR;
2554
cbd59c48 2555 filemap_get_read_batch(mapping, index, last_index, pvec);
2642fca6
MWO
2556 if (!pagevec_count(pvec)) {
2557 if (iocb->ki_flags & IOCB_NOIO)
2558 return -EAGAIN;
2559 page_cache_sync_readahead(mapping, ra, filp, index,
2560 last_index - index);
2561 filemap_get_read_batch(mapping, index, last_index, pvec);
2562 }
f253e185
MWO
2563 if (!pagevec_count(pvec)) {
2564 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2565 return -EAGAIN;
2566 err = filemap_create_page(filp, mapping,
2567 iocb->ki_pos >> PAGE_SHIFT, pvec);
2568 if (err == AOP_TRUNCATED_PAGE)
2642fca6 2569 goto retry;
f253e185
MWO
2570 return err;
2571 }
06c04442 2572
2642fca6
MWO
2573 page = pvec->pages[pagevec_count(pvec) - 1];
2574 if (PageReadahead(page)) {
2575 err = filemap_readahead(iocb, filp, mapping, page, last_index);
2576 if (err)
2577 goto err;
2578 }
2579 if (!PageUptodate(page)) {
2580 if ((iocb->ki_flags & IOCB_WAITQ) && pagevec_count(pvec) > 1)
2581 iocb->ki_flags |= IOCB_NOWAIT;
2582 err = filemap_update_page(iocb, mapping, iter, page);
2583 if (err)
2584 goto err;
06c04442
KO
2585 }
2586
2642fca6 2587 return 0;
cbd59c48 2588err:
2642fca6
MWO
2589 if (err < 0)
2590 put_page(page);
2591 if (likely(--pvec->nr))
ff993ba1 2592 return 0;
4612aeef 2593 if (err == AOP_TRUNCATED_PAGE)
2642fca6
MWO
2594 goto retry;
2595 return err;
06c04442
KO
2596}
2597
485bb99b 2598/**
87fa0f3e
CH
2599 * filemap_read - Read data from the page cache.
2600 * @iocb: The iocb to read.
2601 * @iter: Destination for the data.
2602 * @already_read: Number of bytes already read by the caller.
485bb99b 2603 *
87fa0f3e
CH
2604 * Copies data from the page cache. If the data is not currently present,
2605 * uses the readahead and readpage address_space operations to fetch it.
1da177e4 2606 *
87fa0f3e
CH
2607 * Return: Total number of bytes copied, including those already read by
2608 * the caller. If an error happens before any bytes are copied, returns
2609 * a negative error number.
1da177e4 2610 */
87fa0f3e
CH
2611ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2612 ssize_t already_read)
1da177e4 2613{
47c27bc4 2614 struct file *filp = iocb->ki_filp;
06c04442 2615 struct file_ra_state *ra = &filp->f_ra;
36e78914 2616 struct address_space *mapping = filp->f_mapping;
1da177e4 2617 struct inode *inode = mapping->host;
ff993ba1
MWO
2618 struct pagevec pvec;
2619 int i, error = 0;
06c04442
KO
2620 bool writably_mapped;
2621 loff_t isize, end_offset;
1da177e4 2622
723ef24b 2623 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
d05c5f7b 2624 return 0;
3644e2d2
KO
2625 if (unlikely(!iov_iter_count(iter)))
2626 return 0;
2627
c2a9737f 2628 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
cbd59c48 2629 pagevec_init(&pvec);
c2a9737f 2630
06c04442 2631 do {
1da177e4 2632 cond_resched();
5abf186a 2633
723ef24b 2634 /*
06c04442
KO
2635 * If we've already successfully copied some data, then we
2636 * can no longer safely return -EIOCBQUEUED. Hence mark
2637 * an async read NOWAIT at that point.
723ef24b 2638 */
87fa0f3e 2639 if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
723ef24b
KO
2640 iocb->ki_flags |= IOCB_NOWAIT;
2641
8c8387ee
DH
2642 if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2643 break;
2644
ff993ba1
MWO
2645 error = filemap_get_pages(iocb, iter, &pvec);
2646 if (error < 0)
06c04442 2647 break;
1da177e4 2648
06c04442
KO
2649 /*
2650 * i_size must be checked after we know the pages are Uptodate.
2651 *
2652 * Checking i_size after the check allows us to calculate
2653 * the correct value for "nr", which means the zero-filled
2654 * part of the page is not copied back to userspace (unless
2655 * another truncate extends the file - this is desired though).
2656 */
2657 isize = i_size_read(inode);
2658 if (unlikely(iocb->ki_pos >= isize))
2659 goto put_pages;
06c04442
KO
2660 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2661
06c04442
KO
2662 /*
2663 * Once we start copying data, we don't want to be touching any
2664 * cachelines that might be contended:
2665 */
2666 writably_mapped = mapping_writably_mapped(mapping);
2667
2668 /*
2669 * When a sequential read accesses a page several times, only
2670 * mark it as accessed the first time.
2671 */
2672 if (iocb->ki_pos >> PAGE_SHIFT !=
2673 ra->prev_pos >> PAGE_SHIFT)
ff993ba1 2674 mark_page_accessed(pvec.pages[0]);
06c04442 2675
ff993ba1 2676 for (i = 0; i < pagevec_count(&pvec); i++) {
cbd59c48
MWO
2677 struct page *page = pvec.pages[i];
2678 size_t page_size = thp_size(page);
2679 size_t offset = iocb->ki_pos & (page_size - 1);
2680 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2681 page_size - offset);
2682 size_t copied;
06c04442 2683
cbd59c48
MWO
2684 if (end_offset < page_offset(page))
2685 break;
2686 if (i > 0)
2687 mark_page_accessed(page);
06c04442
KO
2688 /*
2689 * If users can be writing to this page using arbitrary
2690 * virtual addresses, take care about potential aliasing
2691 * before reading the page on the kernel side.
2692 */
cbd59c48
MWO
2693 if (writably_mapped) {
2694 int j;
2695
2696 for (j = 0; j < thp_nr_pages(page); j++)
2697 flush_dcache_page(page + j);
2698 }
06c04442 2699
cbd59c48 2700 copied = copy_page_to_iter(page, offset, bytes, iter);
06c04442 2701
87fa0f3e 2702 already_read += copied;
06c04442
KO
2703 iocb->ki_pos += copied;
2704 ra->prev_pos = iocb->ki_pos;
2705
2706 if (copied < bytes) {
2707 error = -EFAULT;
2708 break;
2709 }
1da177e4 2710 }
06c04442 2711put_pages:
ff993ba1
MWO
2712 for (i = 0; i < pagevec_count(&pvec); i++)
2713 put_page(pvec.pages[i]);
cbd59c48 2714 pagevec_reinit(&pvec);
06c04442 2715 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
1da177e4 2716
0c6aa263 2717 file_accessed(filp);
06c04442 2718
87fa0f3e 2719 return already_read ? already_read : error;
1da177e4 2720}
87fa0f3e 2721EXPORT_SYMBOL_GPL(filemap_read);
1da177e4 2722
485bb99b 2723/**
6abd2322 2724 * generic_file_read_iter - generic filesystem read routine
485bb99b 2725 * @iocb: kernel I/O control block
6abd2322 2726 * @iter: destination for the data read
485bb99b 2727 *
6abd2322 2728 * This is the "read_iter()" routine for all filesystems
1da177e4 2729 * that can use the page cache directly.
41da51bc
AG
2730 *
2731 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2732 * be returned when no data can be read without waiting for I/O requests
2733 * to complete; it doesn't prevent readahead.
2734 *
2735 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2736 * requests shall be made for the read or for readahead. When no data
2737 * can be read, -EAGAIN shall be returned. When readahead would be
2738 * triggered, a partial, possibly empty read shall be returned.
2739 *
a862f68a
MR
2740 * Return:
2741 * * number of bytes copied, even for partial reads
41da51bc 2742 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
1da177e4
LT
2743 */
2744ssize_t
ed978a81 2745generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1da177e4 2746{
e7080a43 2747 size_t count = iov_iter_count(iter);
47c27bc4 2748 ssize_t retval = 0;
e7080a43
NS
2749
2750 if (!count)
826ea860 2751 return 0; /* skip atime */
1da177e4 2752
2ba48ce5 2753 if (iocb->ki_flags & IOCB_DIRECT) {
47c27bc4 2754 struct file *file = iocb->ki_filp;
ed978a81
AV
2755 struct address_space *mapping = file->f_mapping;
2756 struct inode *inode = mapping->host;
1da177e4 2757
6be96d3a 2758 if (iocb->ki_flags & IOCB_NOWAIT) {
7a60d6d7
JA
2759 if (filemap_range_needs_writeback(mapping, iocb->ki_pos,
2760 iocb->ki_pos + count - 1))
6be96d3a
GR
2761 return -EAGAIN;
2762 } else {
2763 retval = filemap_write_and_wait_range(mapping,
2764 iocb->ki_pos,
2765 iocb->ki_pos + count - 1);
2766 if (retval < 0)
826ea860 2767 return retval;
6be96d3a 2768 }
d8d3d94b 2769
0d5b0cf2
CH
2770 file_accessed(file);
2771
5ecda137 2772 retval = mapping->a_ops->direct_IO(iocb, iter);
c3a69024 2773 if (retval >= 0) {
c64fb5c7 2774 iocb->ki_pos += retval;
5ecda137 2775 count -= retval;
9fe55eea 2776 }
ab2125df
PB
2777 if (retval != -EIOCBQUEUED)
2778 iov_iter_revert(iter, count - iov_iter_count(iter));
66f998f6 2779
9fe55eea
SW
2780 /*
2781 * Btrfs can have a short DIO read if we encounter
2782 * compressed extents, so if there was an error, or if
2783 * we've already read everything we wanted to, or if
2784 * there was a short read because we hit EOF, go ahead
2785 * and return. Otherwise fallthrough to buffered io for
fbbbad4b
MW
2786 * the rest of the read. Buffered reads will not work for
2787 * DAX files, so don't bother trying.
9fe55eea 2788 */
61d0017e
JA
2789 if (retval < 0 || !count || IS_DAX(inode))
2790 return retval;
2791 if (iocb->ki_pos >= i_size_read(inode))
826ea860 2792 return retval;
1da177e4
LT
2793 }
2794
826ea860 2795 return filemap_read(iocb, iter, retval);
1da177e4 2796}
ed978a81 2797EXPORT_SYMBOL(generic_file_read_iter);
1da177e4 2798
54fa39ac
MWO
2799static inline loff_t page_seek_hole_data(struct xa_state *xas,
2800 struct address_space *mapping, struct page *page,
2801 loff_t start, loff_t end, bool seek_data)
41139aa4 2802{
54fa39ac
MWO
2803 const struct address_space_operations *ops = mapping->a_ops;
2804 size_t offset, bsz = i_blocksize(mapping->host);
2805
41139aa4 2806 if (xa_is_value(page) || PageUptodate(page))
54fa39ac
MWO
2807 return seek_data ? start : end;
2808 if (!ops->is_partially_uptodate)
2809 return seek_data ? end : start;
2810
2811 xas_pause(xas);
2812 rcu_read_unlock();
2813 lock_page(page);
2814 if (unlikely(page->mapping != mapping))
2815 goto unlock;
2816
2817 offset = offset_in_thp(page, start) & ~(bsz - 1);
2818
2819 do {
2820 if (ops->is_partially_uptodate(page, offset, bsz) == seek_data)
2821 break;
2822 start = (start + bsz) & ~(bsz - 1);
2823 offset += bsz;
2824 } while (offset < thp_size(page));
2825unlock:
2826 unlock_page(page);
2827 rcu_read_lock();
2828 return start;
41139aa4
MWO
2829}
2830
2831static inline
2832unsigned int seek_page_size(struct xa_state *xas, struct page *page)
2833{
2834 if (xa_is_value(page))
2835 return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
2836 return thp_size(page);
2837}
2838
2839/**
2840 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
2841 * @mapping: Address space to search.
2842 * @start: First byte to consider.
2843 * @end: Limit of search (exclusive).
2844 * @whence: Either SEEK_HOLE or SEEK_DATA.
2845 *
2846 * If the page cache knows which blocks contain holes and which blocks
2847 * contain data, your filesystem can use this function to implement
2848 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are
2849 * entirely memory-based such as tmpfs, and filesystems which support
2850 * unwritten extents.
2851 *
f0953a1b 2852 * Return: The requested offset on success, or -ENXIO if @whence specifies
41139aa4
MWO
2853 * SEEK_DATA and there is no data after @start. There is an implicit hole
2854 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
2855 * and @end contain data.
2856 */
2857loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
2858 loff_t end, int whence)
2859{
2860 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
ed98b015 2861 pgoff_t max = (end - 1) >> PAGE_SHIFT;
41139aa4
MWO
2862 bool seek_data = (whence == SEEK_DATA);
2863 struct page *page;
2864
2865 if (end <= start)
2866 return -ENXIO;
2867
2868 rcu_read_lock();
2869 while ((page = find_get_entry(&xas, max, XA_PRESENT))) {
ed98b015
HD
2870 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
2871 unsigned int seek_size;
41139aa4
MWO
2872
2873 if (start < pos) {
2874 if (!seek_data)
2875 goto unlock;
2876 start = pos;
2877 }
2878
ed98b015
HD
2879 seek_size = seek_page_size(&xas, page);
2880 pos = round_up(pos + 1, seek_size);
54fa39ac
MWO
2881 start = page_seek_hole_data(&xas, mapping, page, start, pos,
2882 seek_data);
2883 if (start < pos)
41139aa4 2884 goto unlock;
ed98b015
HD
2885 if (start >= end)
2886 break;
2887 if (seek_size > PAGE_SIZE)
2888 xas_set(&xas, pos >> PAGE_SHIFT);
41139aa4
MWO
2889 if (!xa_is_value(page))
2890 put_page(page);
2891 }
41139aa4 2892 if (seek_data)
ed98b015 2893 start = -ENXIO;
41139aa4
MWO
2894unlock:
2895 rcu_read_unlock();
ed98b015 2896 if (page && !xa_is_value(page))
41139aa4 2897 put_page(page);
41139aa4
MWO
2898 if (start > end)
2899 return end;
2900 return start;
2901}
2902
1da177e4 2903#ifdef CONFIG_MMU
1da177e4 2904#define MMAP_LOTSAMISS (100)
6b4c9f44 2905/*
c1e8d7c6 2906 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
6b4c9f44
JB
2907 * @vmf - the vm_fault for this fault.
2908 * @page - the page to lock.
2909 * @fpin - the pointer to the file we may pin (or is already pinned).
2910 *
c1e8d7c6 2911 * This works similar to lock_page_or_retry in that it can drop the mmap_lock.
6b4c9f44 2912 * It differs in that it actually returns the page locked if it returns 1 and 0
c1e8d7c6 2913 * if it couldn't lock the page. If we did have to drop the mmap_lock then fpin
6b4c9f44
JB
2914 * will point to the pinned file and needs to be fput()'ed at a later point.
2915 */
2916static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2917 struct file **fpin)
2918{
7c23c782
MWO
2919 struct folio *folio = page_folio(page);
2920
2921 if (folio_trylock(folio))
6b4c9f44
JB
2922 return 1;
2923
8b0f9fa2
LT
2924 /*
2925 * NOTE! This will make us return with VM_FAULT_RETRY, but with
c1e8d7c6 2926 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
8b0f9fa2
LT
2927 * is supposed to work. We have way too many special cases..
2928 */
6b4c9f44
JB
2929 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2930 return 0;
2931
2932 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2933 if (vmf->flags & FAULT_FLAG_KILLABLE) {
af7f29d9 2934 if (__folio_lock_killable(folio)) {
6b4c9f44 2935 /*
c1e8d7c6 2936 * We didn't have the right flags to drop the mmap_lock,
6b4c9f44
JB
2937 * but all fault_handlers only check for fatal signals
2938 * if we return VM_FAULT_RETRY, so we need to drop the
c1e8d7c6 2939 * mmap_lock here and return 0 if we don't have a fpin.
6b4c9f44
JB
2940 */
2941 if (*fpin == NULL)
d8ed45c5 2942 mmap_read_unlock(vmf->vma->vm_mm);
6b4c9f44
JB
2943 return 0;
2944 }
2945 } else
7c23c782
MWO
2946 __folio_lock(folio);
2947
6b4c9f44
JB
2948 return 1;
2949}
2950
ef00e08e 2951/*
6b4c9f44
JB
2952 * Synchronous readahead happens when we don't even find a page in the page
2953 * cache at all. We don't want to perform IO under the mmap sem, so if we have
2954 * to drop the mmap sem we return the file that was pinned in order for us to do
2955 * that. If we didn't pin a file then we return NULL. The file that is
2956 * returned needs to be fput()'ed when we're done with it.
ef00e08e 2957 */
6b4c9f44 2958static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
ef00e08e 2959{
2a1180f1
JB
2960 struct file *file = vmf->vma->vm_file;
2961 struct file_ra_state *ra = &file->f_ra;
ef00e08e 2962 struct address_space *mapping = file->f_mapping;
fcd9ae4f 2963 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
6b4c9f44 2964 struct file *fpin = NULL;
e630bfac 2965 unsigned int mmap_miss;
ef00e08e
LT
2966
2967 /* If we don't want any read-ahead, don't bother */
2a1180f1 2968 if (vmf->vma->vm_flags & VM_RAND_READ)
6b4c9f44 2969 return fpin;
275b12bf 2970 if (!ra->ra_pages)
6b4c9f44 2971 return fpin;
ef00e08e 2972
2a1180f1 2973 if (vmf->vma->vm_flags & VM_SEQ_READ) {
6b4c9f44 2974 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
fcd9ae4f 2975 page_cache_sync_ra(&ractl, ra->ra_pages);
6b4c9f44 2976 return fpin;
ef00e08e
LT
2977 }
2978
207d04ba 2979 /* Avoid banging the cache line if not needed */
e630bfac
KS
2980 mmap_miss = READ_ONCE(ra->mmap_miss);
2981 if (mmap_miss < MMAP_LOTSAMISS * 10)
2982 WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
ef00e08e
LT
2983
2984 /*
2985 * Do we miss much more than hit in this file? If so,
2986 * stop bothering with read-ahead. It will only hurt.
2987 */
e630bfac 2988 if (mmap_miss > MMAP_LOTSAMISS)
6b4c9f44 2989 return fpin;
ef00e08e 2990
d30a1100
WF
2991 /*
2992 * mmap read-around
2993 */
6b4c9f44 2994 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
db660d46 2995 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
600e19af
RG
2996 ra->size = ra->ra_pages;
2997 ra->async_size = ra->ra_pages / 4;
db660d46
DH
2998 ractl._index = ra->start;
2999 do_page_cache_ra(&ractl, ra->size, ra->async_size);
6b4c9f44 3000 return fpin;
ef00e08e
LT
3001}
3002
3003/*
3004 * Asynchronous readahead happens when we find the page and PG_readahead,
6b4c9f44 3005 * so we want to possibly extend the readahead further. We return the file that
c1e8d7c6 3006 * was pinned if we have to drop the mmap_lock in order to do IO.
ef00e08e 3007 */
6b4c9f44
JB
3008static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3009 struct page *page)
ef00e08e 3010{
2a1180f1
JB
3011 struct file *file = vmf->vma->vm_file;
3012 struct file_ra_state *ra = &file->f_ra;
ef00e08e 3013 struct address_space *mapping = file->f_mapping;
6b4c9f44 3014 struct file *fpin = NULL;
e630bfac 3015 unsigned int mmap_miss;
2a1180f1 3016 pgoff_t offset = vmf->pgoff;
ef00e08e
LT
3017
3018 /* If we don't want any read-ahead, don't bother */
5c72feee 3019 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
6b4c9f44 3020 return fpin;
e630bfac
KS
3021 mmap_miss = READ_ONCE(ra->mmap_miss);
3022 if (mmap_miss)
3023 WRITE_ONCE(ra->mmap_miss, --mmap_miss);
6b4c9f44
JB
3024 if (PageReadahead(page)) {
3025 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2fad6f5d
WF
3026 page_cache_async_readahead(mapping, ra, file,
3027 page, offset, ra->ra_pages);
6b4c9f44
JB
3028 }
3029 return fpin;
ef00e08e
LT
3030}
3031
485bb99b 3032/**
54cb8821 3033 * filemap_fault - read in file data for page fault handling
d0217ac0 3034 * @vmf: struct vm_fault containing details of the fault
485bb99b 3035 *
54cb8821 3036 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
3037 * mapped memory region to read in file data during a page fault.
3038 *
3039 * The goto's are kind of ugly, but this streamlines the normal case of having
3040 * it in the page cache, and handles the special cases reasonably without
3041 * having a lot of duplicated code.
9a95f3cf 3042 *
c1e8d7c6 3043 * vma->vm_mm->mmap_lock must be held on entry.
9a95f3cf 3044 *
c1e8d7c6 3045 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
a4985833 3046 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
9a95f3cf 3047 *
c1e8d7c6 3048 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
9a95f3cf
PC
3049 * has not been released.
3050 *
3051 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
a862f68a
MR
3052 *
3053 * Return: bitwise-OR of %VM_FAULT_ codes.
1da177e4 3054 */
2bcd6454 3055vm_fault_t filemap_fault(struct vm_fault *vmf)
1da177e4
LT
3056{
3057 int error;
11bac800 3058 struct file *file = vmf->vma->vm_file;
6b4c9f44 3059 struct file *fpin = NULL;
1da177e4 3060 struct address_space *mapping = file->f_mapping;
1da177e4 3061 struct inode *inode = mapping->host;
ef00e08e 3062 pgoff_t offset = vmf->pgoff;
9ab2594f 3063 pgoff_t max_off;
1da177e4 3064 struct page *page;
2bcd6454 3065 vm_fault_t ret = 0;
730633f0 3066 bool mapping_locked = false;
1da177e4 3067
9ab2594f
MW
3068 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3069 if (unlikely(offset >= max_off))
5307cc1a 3070 return VM_FAULT_SIGBUS;
1da177e4 3071
1da177e4 3072 /*
49426420 3073 * Do we have something in the page cache already?
1da177e4 3074 */
ef00e08e 3075 page = find_get_page(mapping, offset);
730633f0 3076 if (likely(page)) {
1da177e4 3077 /*
730633f0
JK
3078 * We found the page, so try async readahead before waiting for
3079 * the lock.
1da177e4 3080 */
730633f0
JK
3081 if (!(vmf->flags & FAULT_FLAG_TRIED))
3082 fpin = do_async_mmap_readahead(vmf, page);
3083 if (unlikely(!PageUptodate(page))) {
3084 filemap_invalidate_lock_shared(mapping);
3085 mapping_locked = true;
3086 }
3087 } else {
ef00e08e 3088 /* No page in the page cache at all */
ef00e08e 3089 count_vm_event(PGMAJFAULT);
2262185c 3090 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
ef00e08e 3091 ret = VM_FAULT_MAJOR;
6b4c9f44 3092 fpin = do_sync_mmap_readahead(vmf);
ef00e08e 3093retry_find:
730633f0
JK
3094 /*
3095 * See comment in filemap_create_page() why we need
3096 * invalidate_lock
3097 */
3098 if (!mapping_locked) {
3099 filemap_invalidate_lock_shared(mapping);
3100 mapping_locked = true;
3101 }
a75d4c33
JB
3102 page = pagecache_get_page(mapping, offset,
3103 FGP_CREAT|FGP_FOR_MMAP,
3104 vmf->gfp_mask);
6b4c9f44
JB
3105 if (!page) {
3106 if (fpin)
3107 goto out_retry;
730633f0 3108 filemap_invalidate_unlock_shared(mapping);
e520e932 3109 return VM_FAULT_OOM;
6b4c9f44 3110 }
1da177e4
LT
3111 }
3112
6b4c9f44
JB
3113 if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
3114 goto out_retry;
b522c94d
ML
3115
3116 /* Did it get truncated? */
585e5a7b 3117 if (unlikely(compound_head(page)->mapping != mapping)) {
b522c94d
ML
3118 unlock_page(page);
3119 put_page(page);
3120 goto retry_find;
3121 }
520e5ba4 3122 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
b522c94d 3123
1da177e4 3124 /*
d00806b1
NP
3125 * We have a locked page in the page cache, now we need to check
3126 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 3127 */
730633f0
JK
3128 if (unlikely(!PageUptodate(page))) {
3129 /*
3130 * The page was in cache and uptodate and now it is not.
3131 * Strange but possible since we didn't hold the page lock all
3132 * the time. Let's drop everything get the invalidate lock and
3133 * try again.
3134 */
3135 if (!mapping_locked) {
3136 unlock_page(page);
3137 put_page(page);
3138 goto retry_find;
3139 }
1da177e4 3140 goto page_not_uptodate;
730633f0 3141 }
1da177e4 3142
6b4c9f44 3143 /*
c1e8d7c6 3144 * We've made it this far and we had to drop our mmap_lock, now is the
6b4c9f44
JB
3145 * time to return to the upper layer and have it re-find the vma and
3146 * redo the fault.
3147 */
3148 if (fpin) {
3149 unlock_page(page);
3150 goto out_retry;
3151 }
730633f0
JK
3152 if (mapping_locked)
3153 filemap_invalidate_unlock_shared(mapping);
6b4c9f44 3154
ef00e08e
LT
3155 /*
3156 * Found the page and have a reference on it.
3157 * We must recheck i_size under page lock.
3158 */
9ab2594f
MW
3159 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3160 if (unlikely(offset >= max_off)) {
d00806b1 3161 unlock_page(page);
09cbfeaf 3162 put_page(page);
5307cc1a 3163 return VM_FAULT_SIGBUS;
d00806b1
NP
3164 }
3165
d0217ac0 3166 vmf->page = page;
83c54070 3167 return ret | VM_FAULT_LOCKED;
1da177e4 3168
1da177e4 3169page_not_uptodate:
1da177e4
LT
3170 /*
3171 * Umm, take care of errors if the page isn't up-to-date.
3172 * Try to re-read it _once_. We do this synchronously,
3173 * because there really aren't any performance issues here
3174 * and we need to check for errors.
3175 */
6b4c9f44 3176 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
d31fa86a 3177 error = filemap_read_page(file, mapping, page);
6b4c9f44
JB
3178 if (fpin)
3179 goto out_retry;
09cbfeaf 3180 put_page(page);
d00806b1
NP
3181
3182 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 3183 goto retry_find;
730633f0 3184 filemap_invalidate_unlock_shared(mapping);
1da177e4 3185
d0217ac0 3186 return VM_FAULT_SIGBUS;
6b4c9f44
JB
3187
3188out_retry:
3189 /*
c1e8d7c6 3190 * We dropped the mmap_lock, we need to return to the fault handler to
6b4c9f44
JB
3191 * re-find the vma and come back and find our hopefully still populated
3192 * page.
3193 */
3194 if (page)
3195 put_page(page);
730633f0
JK
3196 if (mapping_locked)
3197 filemap_invalidate_unlock_shared(mapping);
6b4c9f44
JB
3198 if (fpin)
3199 fput(fpin);
3200 return ret | VM_FAULT_RETRY;
54cb8821
NP
3201}
3202EXPORT_SYMBOL(filemap_fault);
3203
f9ce0be7 3204static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page)
f1820361 3205{
f9ce0be7
KS
3206 struct mm_struct *mm = vmf->vma->vm_mm;
3207
3208 /* Huge page is mapped? No need to proceed. */
3209 if (pmd_trans_huge(*vmf->pmd)) {
3210 unlock_page(page);
3211 put_page(page);
3212 return true;
3213 }
3214
3215 if (pmd_none(*vmf->pmd) && PageTransHuge(page)) {
e0f43fa5
YS
3216 vm_fault_t ret = do_set_pmd(vmf, page);
3217 if (!ret) {
3218 /* The page is mapped successfully, reference consumed. */
3219 unlock_page(page);
3220 return true;
f9ce0be7 3221 }
f9ce0be7
KS
3222 }
3223
03c4f204
QZ
3224 if (pmd_none(*vmf->pmd))
3225 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
f9ce0be7
KS
3226
3227 /* See comment in handle_pte_fault() */
3228 if (pmd_devmap_trans_unstable(vmf->pmd)) {
3229 unlock_page(page);
3230 put_page(page);
3231 return true;
3232 }
3233
3234 return false;
3235}
3236
3237static struct page *next_uptodate_page(struct page *page,
3238 struct address_space *mapping,
3239 struct xa_state *xas, pgoff_t end_pgoff)
3240{
3241 unsigned long max_idx;
3242
3243 do {
3244 if (!page)
3245 return NULL;
3246 if (xas_retry(xas, page))
3247 continue;
3248 if (xa_is_value(page))
3249 continue;
3250 if (PageLocked(page))
3251 continue;
3252 if (!page_cache_get_speculative(page))
3253 continue;
3254 /* Has the page moved or been split? */
3255 if (unlikely(page != xas_reload(xas)))
3256 goto skip;
3257 if (!PageUptodate(page) || PageReadahead(page))
3258 goto skip;
f9ce0be7
KS
3259 if (!trylock_page(page))
3260 goto skip;
3261 if (page->mapping != mapping)
3262 goto unlock;
3263 if (!PageUptodate(page))
3264 goto unlock;
3265 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3266 if (xas->xa_index >= max_idx)
3267 goto unlock;
3268 return page;
3269unlock:
3270 unlock_page(page);
3271skip:
3272 put_page(page);
3273 } while ((page = xas_next_entry(xas, end_pgoff)) != NULL);
3274
3275 return NULL;
3276}
3277
3278static inline struct page *first_map_page(struct address_space *mapping,
3279 struct xa_state *xas,
3280 pgoff_t end_pgoff)
3281{
3282 return next_uptodate_page(xas_find(xas, end_pgoff),
3283 mapping, xas, end_pgoff);
3284}
3285
3286static inline struct page *next_map_page(struct address_space *mapping,
3287 struct xa_state *xas,
3288 pgoff_t end_pgoff)
3289{
3290 return next_uptodate_page(xas_next_entry(xas, end_pgoff),
3291 mapping, xas, end_pgoff);
3292}
3293
3294vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3295 pgoff_t start_pgoff, pgoff_t end_pgoff)
3296{
3297 struct vm_area_struct *vma = vmf->vma;
3298 struct file *file = vma->vm_file;
f1820361 3299 struct address_space *mapping = file->f_mapping;
bae473a4 3300 pgoff_t last_pgoff = start_pgoff;
9d3af4b4 3301 unsigned long addr;
070e807c 3302 XA_STATE(xas, &mapping->i_pages, start_pgoff);
27a83a60 3303 struct page *head, *page;
e630bfac 3304 unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
f9ce0be7 3305 vm_fault_t ret = 0;
f1820361
KS
3306
3307 rcu_read_lock();
f9ce0be7
KS
3308 head = first_map_page(mapping, &xas, end_pgoff);
3309 if (!head)
3310 goto out;
f1820361 3311
f9ce0be7
KS
3312 if (filemap_map_pmd(vmf, head)) {
3313 ret = VM_FAULT_NOPAGE;
3314 goto out;
3315 }
f1820361 3316
9d3af4b4
WD
3317 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3318 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
f9ce0be7 3319 do {
27a83a60 3320 page = find_subpage(head, xas.xa_index);
f9ce0be7 3321 if (PageHWPoison(page))
f1820361
KS
3322 goto unlock;
3323
e630bfac
KS
3324 if (mmap_miss > 0)
3325 mmap_miss--;
7267ec00 3326
9d3af4b4 3327 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
f9ce0be7 3328 vmf->pte += xas.xa_index - last_pgoff;
070e807c 3329 last_pgoff = xas.xa_index;
f9ce0be7
KS
3330
3331 if (!pte_none(*vmf->pte))
7267ec00 3332 goto unlock;
f9ce0be7 3333
46bdb427 3334 /* We're about to handle the fault */
9d3af4b4 3335 if (vmf->address == addr)
46bdb427 3336 ret = VM_FAULT_NOPAGE;
46bdb427 3337
9d3af4b4 3338 do_set_pte(vmf, page, addr);
f9ce0be7 3339 /* no need to invalidate: a not-present page won't be cached */
9d3af4b4 3340 update_mmu_cache(vma, addr, vmf->pte);
27a83a60 3341 unlock_page(head);
f9ce0be7 3342 continue;
f1820361 3343unlock:
27a83a60 3344 unlock_page(head);
27a83a60 3345 put_page(head);
f9ce0be7
KS
3346 } while ((head = next_map_page(mapping, &xas, end_pgoff)) != NULL);
3347 pte_unmap_unlock(vmf->pte, vmf->ptl);
3348out:
f1820361 3349 rcu_read_unlock();
e630bfac 3350 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
f9ce0be7 3351 return ret;
f1820361
KS
3352}
3353EXPORT_SYMBOL(filemap_map_pages);
3354
2bcd6454 3355vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
4fcf1c62 3356{
5df1a672 3357 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
4fcf1c62 3358 struct page *page = vmf->page;
2bcd6454 3359 vm_fault_t ret = VM_FAULT_LOCKED;
4fcf1c62 3360
5df1a672 3361 sb_start_pagefault(mapping->host->i_sb);
11bac800 3362 file_update_time(vmf->vma->vm_file);
4fcf1c62 3363 lock_page(page);
5df1a672 3364 if (page->mapping != mapping) {
4fcf1c62
JK
3365 unlock_page(page);
3366 ret = VM_FAULT_NOPAGE;
3367 goto out;
3368 }
14da9200
JK
3369 /*
3370 * We mark the page dirty already here so that when freeze is in
3371 * progress, we are guaranteed that writeback during freezing will
3372 * see the dirty page and writeprotect it again.
3373 */
3374 set_page_dirty(page);
1d1d1a76 3375 wait_for_stable_page(page);
4fcf1c62 3376out:
5df1a672 3377 sb_end_pagefault(mapping->host->i_sb);
4fcf1c62
JK
3378 return ret;
3379}
4fcf1c62 3380
f0f37e2f 3381const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 3382 .fault = filemap_fault,
f1820361 3383 .map_pages = filemap_map_pages,
4fcf1c62 3384 .page_mkwrite = filemap_page_mkwrite,
1da177e4
LT
3385};
3386
3387/* This is used for a general mmap of a disk file */
3388
68d68ff6 3389int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
3390{
3391 struct address_space *mapping = file->f_mapping;
3392
3393 if (!mapping->a_ops->readpage)
3394 return -ENOEXEC;
3395 file_accessed(file);
3396 vma->vm_ops = &generic_file_vm_ops;
3397 return 0;
3398}
1da177e4
LT
3399
3400/*
3401 * This is for filesystems which do not implement ->writepage.
3402 */
3403int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3404{
3405 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3406 return -EINVAL;
3407 return generic_file_mmap(file, vma);
3408}
3409#else
4b96a37d 3410vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
45397228 3411{
4b96a37d 3412 return VM_FAULT_SIGBUS;
45397228 3413}
68d68ff6 3414int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
3415{
3416 return -ENOSYS;
3417}
68d68ff6 3418int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
3419{
3420 return -ENOSYS;
3421}
3422#endif /* CONFIG_MMU */
3423
45397228 3424EXPORT_SYMBOL(filemap_page_mkwrite);
1da177e4
LT
3425EXPORT_SYMBOL(generic_file_mmap);
3426EXPORT_SYMBOL(generic_file_readonly_mmap);
3427
67f9fd91
SL
3428static struct page *wait_on_page_read(struct page *page)
3429{
3430 if (!IS_ERR(page)) {
3431 wait_on_page_locked(page);
3432 if (!PageUptodate(page)) {
09cbfeaf 3433 put_page(page);
67f9fd91
SL
3434 page = ERR_PTR(-EIO);
3435 }
3436 }
3437 return page;
3438}
3439
32b63529 3440static struct page *do_read_cache_page(struct address_space *mapping,
57f6b96c 3441 pgoff_t index,
5e5358e7 3442 int (*filler)(void *, struct page *),
0531b2aa
LT
3443 void *data,
3444 gfp_t gfp)
1da177e4 3445{
eb2be189 3446 struct page *page;
1da177e4
LT
3447 int err;
3448repeat:
3449 page = find_get_page(mapping, index);
3450 if (!page) {
453f85d4 3451 page = __page_cache_alloc(gfp);
eb2be189
NP
3452 if (!page)
3453 return ERR_PTR(-ENOMEM);
e6f67b8c 3454 err = add_to_page_cache_lru(page, mapping, index, gfp);
eb2be189 3455 if (unlikely(err)) {
09cbfeaf 3456 put_page(page);
eb2be189
NP
3457 if (err == -EEXIST)
3458 goto repeat;
22ecdb4f 3459 /* Presumably ENOMEM for xarray node */
1da177e4
LT
3460 return ERR_PTR(err);
3461 }
32b63529
MG
3462
3463filler:
6c45b454
CH
3464 if (filler)
3465 err = filler(data, page);
3466 else
3467 err = mapping->a_ops->readpage(data, page);
3468
1da177e4 3469 if (err < 0) {
09cbfeaf 3470 put_page(page);
32b63529 3471 return ERR_PTR(err);
1da177e4 3472 }
1da177e4 3473
32b63529
MG
3474 page = wait_on_page_read(page);
3475 if (IS_ERR(page))
3476 return page;
3477 goto out;
3478 }
1da177e4
LT
3479 if (PageUptodate(page))
3480 goto out;
3481
ebded027 3482 /*
0e9aa675 3483 * Page is not up to date and may be locked due to one of the following
ebded027
MG
3484 * case a: Page is being filled and the page lock is held
3485 * case b: Read/write error clearing the page uptodate status
3486 * case c: Truncation in progress (page locked)
3487 * case d: Reclaim in progress
3488 *
3489 * Case a, the page will be up to date when the page is unlocked.
3490 * There is no need to serialise on the page lock here as the page
3491 * is pinned so the lock gives no additional protection. Even if the
ce89fddf 3492 * page is truncated, the data is still valid if PageUptodate as
ebded027
MG
3493 * it's a race vs truncate race.
3494 * Case b, the page will not be up to date
3495 * Case c, the page may be truncated but in itself, the data may still
3496 * be valid after IO completes as it's a read vs truncate race. The
3497 * operation must restart if the page is not uptodate on unlock but
3498 * otherwise serialising on page lock to stabilise the mapping gives
3499 * no additional guarantees to the caller as the page lock is
3500 * released before return.
3501 * Case d, similar to truncation. If reclaim holds the page lock, it
3502 * will be a race with remove_mapping that determines if the mapping
3503 * is valid on unlock but otherwise the data is valid and there is
3504 * no need to serialise with page lock.
3505 *
3506 * As the page lock gives no additional guarantee, we optimistically
3507 * wait on the page to be unlocked and check if it's up to date and
3508 * use the page if it is. Otherwise, the page lock is required to
3509 * distinguish between the different cases. The motivation is that we
3510 * avoid spurious serialisations and wakeups when multiple processes
3511 * wait on the same page for IO to complete.
3512 */
3513 wait_on_page_locked(page);
3514 if (PageUptodate(page))
3515 goto out;
3516
3517 /* Distinguish between all the cases under the safety of the lock */
1da177e4 3518 lock_page(page);
ebded027
MG
3519
3520 /* Case c or d, restart the operation */
1da177e4
LT
3521 if (!page->mapping) {
3522 unlock_page(page);
09cbfeaf 3523 put_page(page);
32b63529 3524 goto repeat;
1da177e4 3525 }
ebded027
MG
3526
3527 /* Someone else locked and filled the page in a very small window */
1da177e4
LT
3528 if (PageUptodate(page)) {
3529 unlock_page(page);
3530 goto out;
3531 }
faffdfa0
XT
3532
3533 /*
3534 * A previous I/O error may have been due to temporary
3535 * failures.
3536 * Clear page error before actual read, PG_error will be
3537 * set again if read page fails.
3538 */
3539 ClearPageError(page);
32b63529
MG
3540 goto filler;
3541
c855ff37 3542out:
6fe6900e
NP
3543 mark_page_accessed(page);
3544 return page;
3545}
0531b2aa
LT
3546
3547/**
67f9fd91 3548 * read_cache_page - read into page cache, fill it if needed
0531b2aa
LT
3549 * @mapping: the page's address_space
3550 * @index: the page index
3551 * @filler: function to perform the read
5e5358e7 3552 * @data: first arg to filler(data, page) function, often left as NULL
0531b2aa 3553 *
0531b2aa 3554 * Read into the page cache. If a page already exists, and PageUptodate() is
67f9fd91 3555 * not set, try to fill the page and wait for it to become unlocked.
0531b2aa
LT
3556 *
3557 * If the page does not get brought uptodate, return -EIO.
a862f68a 3558 *
730633f0
JK
3559 * The function expects mapping->invalidate_lock to be already held.
3560 *
a862f68a 3561 * Return: up to date page on success, ERR_PTR() on failure.
0531b2aa 3562 */
67f9fd91 3563struct page *read_cache_page(struct address_space *mapping,
0531b2aa 3564 pgoff_t index,
5e5358e7 3565 int (*filler)(void *, struct page *),
0531b2aa
LT
3566 void *data)
3567{
d322a8e5
CH
3568 return do_read_cache_page(mapping, index, filler, data,
3569 mapping_gfp_mask(mapping));
0531b2aa 3570}
67f9fd91 3571EXPORT_SYMBOL(read_cache_page);
0531b2aa
LT
3572
3573/**
3574 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3575 * @mapping: the page's address_space
3576 * @index: the page index
3577 * @gfp: the page allocator flags to use if allocating
3578 *
3579 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
e6f67b8c 3580 * any new page allocations done using the specified allocation flags.
0531b2aa
LT
3581 *
3582 * If the page does not get brought uptodate, return -EIO.
a862f68a 3583 *
730633f0
JK
3584 * The function expects mapping->invalidate_lock to be already held.
3585 *
a862f68a 3586 * Return: up to date page on success, ERR_PTR() on failure.
0531b2aa
LT
3587 */
3588struct page *read_cache_page_gfp(struct address_space *mapping,
3589 pgoff_t index,
3590 gfp_t gfp)
3591{
6c45b454 3592 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
0531b2aa
LT
3593}
3594EXPORT_SYMBOL(read_cache_page_gfp);
3595
afddba49
NP
3596int pagecache_write_begin(struct file *file, struct address_space *mapping,
3597 loff_t pos, unsigned len, unsigned flags,
3598 struct page **pagep, void **fsdata)
3599{
3600 const struct address_space_operations *aops = mapping->a_ops;
3601
4e02ed4b 3602 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 3603 pagep, fsdata);
afddba49
NP
3604}
3605EXPORT_SYMBOL(pagecache_write_begin);
3606
3607int pagecache_write_end(struct file *file, struct address_space *mapping,
3608 loff_t pos, unsigned len, unsigned copied,
3609 struct page *page, void *fsdata)
3610{
3611 const struct address_space_operations *aops = mapping->a_ops;
afddba49 3612
4e02ed4b 3613 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
3614}
3615EXPORT_SYMBOL(pagecache_write_end);
3616
a92853b6
KK
3617/*
3618 * Warn about a page cache invalidation failure during a direct I/O write.
3619 */
3620void dio_warn_stale_pagecache(struct file *filp)
3621{
3622 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3623 char pathname[128];
a92853b6
KK
3624 char *path;
3625
5df1a672 3626 errseq_set(&filp->f_mapping->wb_err, -EIO);
a92853b6
KK
3627 if (__ratelimit(&_rs)) {
3628 path = file_path(filp, pathname, sizeof(pathname));
3629 if (IS_ERR(path))
3630 path = "(unknown)";
3631 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
3632 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3633 current->comm);
3634 }
3635}
3636
1da177e4 3637ssize_t
1af5bb49 3638generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3639{
3640 struct file *file = iocb->ki_filp;
3641 struct address_space *mapping = file->f_mapping;
3642 struct inode *inode = mapping->host;
1af5bb49 3643 loff_t pos = iocb->ki_pos;
1da177e4 3644 ssize_t written;
a969e903
CH
3645 size_t write_len;
3646 pgoff_t end;
1da177e4 3647
0c949334 3648 write_len = iov_iter_count(from);
09cbfeaf 3649 end = (pos + write_len - 1) >> PAGE_SHIFT;
a969e903 3650
6be96d3a
GR
3651 if (iocb->ki_flags & IOCB_NOWAIT) {
3652 /* If there are pages to writeback, return */
5df1a672 3653 if (filemap_range_has_page(file->f_mapping, pos,
35f12f0f 3654 pos + write_len - 1))
6be96d3a
GR
3655 return -EAGAIN;
3656 } else {
3657 written = filemap_write_and_wait_range(mapping, pos,
3658 pos + write_len - 1);
3659 if (written)
3660 goto out;
3661 }
a969e903
CH
3662
3663 /*
3664 * After a write we want buffered reads to be sure to go to disk to get
3665 * the new data. We invalidate clean cached page from the region we're
3666 * about to write. We do this *before* the write so that we can return
6ccfa806 3667 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903 3668 */
55635ba7 3669 written = invalidate_inode_pages2_range(mapping,
09cbfeaf 3670 pos >> PAGE_SHIFT, end);
55635ba7
AR
3671 /*
3672 * If a page can not be invalidated, return 0 to fall back
3673 * to buffered write.
3674 */
3675 if (written) {
3676 if (written == -EBUSY)
3677 return 0;
3678 goto out;
a969e903
CH
3679 }
3680
639a93a5 3681 written = mapping->a_ops->direct_IO(iocb, from);
a969e903
CH
3682
3683 /*
3684 * Finally, try again to invalidate clean pages which might have been
3685 * cached by non-direct readahead, or faulted in by get_user_pages()
3686 * if the source of the write was an mmap'ed region of the file
3687 * we're writing. Either one is a pretty crazy thing to do,
3688 * so we don't support it 100%. If this invalidation
3689 * fails, tough, the write still worked...
332391a9
LC
3690 *
3691 * Most of the time we do not need this since dio_complete() will do
3692 * the invalidation for us. However there are some file systems that
3693 * do not end up with dio_complete() being called, so let's not break
80c1fe90
KK
3694 * them by removing it completely.
3695 *
9266a140
KK
3696 * Noticeable example is a blkdev_direct_IO().
3697 *
80c1fe90 3698 * Skip invalidation for async writes or if mapping has no pages.
a969e903 3699 */
9266a140
KK
3700 if (written > 0 && mapping->nrpages &&
3701 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3702 dio_warn_stale_pagecache(file);
a969e903 3703
1da177e4 3704 if (written > 0) {
0116651c 3705 pos += written;
639a93a5 3706 write_len -= written;
0116651c
NK
3707 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3708 i_size_write(inode, pos);
1da177e4
LT
3709 mark_inode_dirty(inode);
3710 }
5cb6c6c7 3711 iocb->ki_pos = pos;
1da177e4 3712 }
ab2125df
PB
3713 if (written != -EIOCBQUEUED)
3714 iov_iter_revert(from, write_len - iov_iter_count(from));
a969e903 3715out:
1da177e4
LT
3716 return written;
3717}
3718EXPORT_SYMBOL(generic_file_direct_write);
3719
3b93f911 3720ssize_t generic_perform_write(struct file *file,
afddba49
NP
3721 struct iov_iter *i, loff_t pos)
3722{
3723 struct address_space *mapping = file->f_mapping;
3724 const struct address_space_operations *a_ops = mapping->a_ops;
3725 long status = 0;
3726 ssize_t written = 0;
674b892e
NP
3727 unsigned int flags = 0;
3728
afddba49
NP
3729 do {
3730 struct page *page;
afddba49
NP
3731 unsigned long offset; /* Offset into pagecache page */
3732 unsigned long bytes; /* Bytes to write to page */
3733 size_t copied; /* Bytes copied from user */
3734 void *fsdata;
3735
09cbfeaf
KS
3736 offset = (pos & (PAGE_SIZE - 1));
3737 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
3738 iov_iter_count(i));
3739
3740again:
00a3d660
LT
3741 /*
3742 * Bring in the user page that we will copy from _first_.
3743 * Otherwise there's a nasty deadlock on copying from the
3744 * same page as we're writing to, without it being marked
3745 * up-to-date.
00a3d660 3746 */
a6294593 3747 if (unlikely(fault_in_iov_iter_readable(i, bytes))) {
00a3d660
LT
3748 status = -EFAULT;
3749 break;
3750 }
3751
296291cd
JK
3752 if (fatal_signal_pending(current)) {
3753 status = -EINTR;
3754 break;
3755 }
3756
674b892e 3757 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49 3758 &page, &fsdata);
2457aec6 3759 if (unlikely(status < 0))
afddba49
NP
3760 break;
3761
931e80e4 3762 if (mapping_writably_mapped(mapping))
3763 flush_dcache_page(page);
00a3d660 3764
f0b65f39 3765 copied = copy_page_from_iter_atomic(page, offset, bytes, i);
afddba49
NP
3766 flush_dcache_page(page);
3767
3768 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3769 page, fsdata);
f0b65f39
AV
3770 if (unlikely(status != copied)) {
3771 iov_iter_revert(i, copied - max(status, 0L));
3772 if (unlikely(status < 0))
3773 break;
3774 }
afddba49
NP
3775 cond_resched();
3776
bc1bb416 3777 if (unlikely(status == 0)) {
afddba49 3778 /*
bc1bb416
AV
3779 * A short copy made ->write_end() reject the
3780 * thing entirely. Might be memory poisoning
3781 * halfway through, might be a race with munmap,
3782 * might be severe memory pressure.
afddba49 3783 */
bc1bb416
AV
3784 if (copied)
3785 bytes = copied;
afddba49
NP
3786 goto again;
3787 }
f0b65f39
AV
3788 pos += status;
3789 written += status;
afddba49
NP
3790
3791 balance_dirty_pages_ratelimited(mapping);
afddba49
NP
3792 } while (iov_iter_count(i));
3793
3794 return written ? written : status;
3795}
3b93f911 3796EXPORT_SYMBOL(generic_perform_write);
1da177e4 3797
e4dd9de3 3798/**
8174202b 3799 * __generic_file_write_iter - write data to a file
e4dd9de3 3800 * @iocb: IO state structure (file, offset, etc.)
8174202b 3801 * @from: iov_iter with data to write
e4dd9de3
JK
3802 *
3803 * This function does all the work needed for actually writing data to a
3804 * file. It does all basic checks, removes SUID from the file, updates
3805 * modification times and calls proper subroutines depending on whether we
3806 * do direct IO or a standard buffered write.
3807 *
9608703e 3808 * It expects i_rwsem to be grabbed unless we work on a block device or similar
e4dd9de3
JK
3809 * object which does not need locking at all.
3810 *
3811 * This function does *not* take care of syncing data in case of O_SYNC write.
3812 * A caller has to handle it. This is mainly due to the fact that we want to
9608703e 3813 * avoid syncing under i_rwsem.
a862f68a
MR
3814 *
3815 * Return:
3816 * * number of bytes written, even for truncated writes
3817 * * negative error code if no data has been written at all
e4dd9de3 3818 */
8174202b 3819ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3820{
3821 struct file *file = iocb->ki_filp;
68d68ff6 3822 struct address_space *mapping = file->f_mapping;
1da177e4 3823 struct inode *inode = mapping->host;
3b93f911 3824 ssize_t written = 0;
1da177e4 3825 ssize_t err;
3b93f911 3826 ssize_t status;
1da177e4 3827
1da177e4 3828 /* We can write back this queue in page reclaim */
de1414a6 3829 current->backing_dev_info = inode_to_bdi(inode);
5fa8e0a1 3830 err = file_remove_privs(file);
1da177e4
LT
3831 if (err)
3832 goto out;
3833
c3b2da31
JB
3834 err = file_update_time(file);
3835 if (err)
3836 goto out;
1da177e4 3837
2ba48ce5 3838 if (iocb->ki_flags & IOCB_DIRECT) {
0b8def9d 3839 loff_t pos, endbyte;
fb5527e6 3840
1af5bb49 3841 written = generic_file_direct_write(iocb, from);
1da177e4 3842 /*
fbbbad4b
MW
3843 * If the write stopped short of completing, fall back to
3844 * buffered writes. Some filesystems do this for writes to
3845 * holes, for example. For DAX files, a buffered write will
3846 * not succeed (even if it did, DAX does not handle dirty
3847 * page-cache pages correctly).
1da177e4 3848 */
0b8def9d 3849 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
fbbbad4b
MW
3850 goto out;
3851
0b8def9d 3852 status = generic_perform_write(file, from, pos = iocb->ki_pos);
fb5527e6 3853 /*
3b93f911 3854 * If generic_perform_write() returned a synchronous error
fb5527e6
JM
3855 * then we want to return the number of bytes which were
3856 * direct-written, or the error code if that was zero. Note
3857 * that this differs from normal direct-io semantics, which
3858 * will return -EFOO even if some bytes were written.
3859 */
60bb4529 3860 if (unlikely(status < 0)) {
3b93f911 3861 err = status;
fb5527e6
JM
3862 goto out;
3863 }
fb5527e6
JM
3864 /*
3865 * We need to ensure that the page cache pages are written to
3866 * disk and invalidated to preserve the expected O_DIRECT
3867 * semantics.
3868 */
3b93f911 3869 endbyte = pos + status - 1;
0b8def9d 3870 err = filemap_write_and_wait_range(mapping, pos, endbyte);
fb5527e6 3871 if (err == 0) {
0b8def9d 3872 iocb->ki_pos = endbyte + 1;
3b93f911 3873 written += status;
fb5527e6 3874 invalidate_mapping_pages(mapping,
09cbfeaf
KS
3875 pos >> PAGE_SHIFT,
3876 endbyte >> PAGE_SHIFT);
fb5527e6
JM
3877 } else {
3878 /*
3879 * We don't know how much we wrote, so just return
3880 * the number of bytes which were direct-written
3881 */
3882 }
3883 } else {
0b8def9d
AV
3884 written = generic_perform_write(file, from, iocb->ki_pos);
3885 if (likely(written > 0))
3886 iocb->ki_pos += written;
fb5527e6 3887 }
1da177e4
LT
3888out:
3889 current->backing_dev_info = NULL;
3890 return written ? written : err;
3891}
8174202b 3892EXPORT_SYMBOL(__generic_file_write_iter);
e4dd9de3 3893
e4dd9de3 3894/**
8174202b 3895 * generic_file_write_iter - write data to a file
e4dd9de3 3896 * @iocb: IO state structure
8174202b 3897 * @from: iov_iter with data to write
e4dd9de3 3898 *
8174202b 3899 * This is a wrapper around __generic_file_write_iter() to be used by most
e4dd9de3 3900 * filesystems. It takes care of syncing the file in case of O_SYNC file
9608703e 3901 * and acquires i_rwsem as needed.
a862f68a
MR
3902 * Return:
3903 * * negative error code if no data has been written at all of
3904 * vfs_fsync_range() failed for a synchronous write
3905 * * number of bytes written, even for truncated writes
e4dd9de3 3906 */
8174202b 3907ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3908{
3909 struct file *file = iocb->ki_filp;
148f948b 3910 struct inode *inode = file->f_mapping->host;
1da177e4 3911 ssize_t ret;
1da177e4 3912
5955102c 3913 inode_lock(inode);
3309dd04
AV
3914 ret = generic_write_checks(iocb, from);
3915 if (ret > 0)
5f380c7f 3916 ret = __generic_file_write_iter(iocb, from);
5955102c 3917 inode_unlock(inode);
1da177e4 3918
e2592217
CH
3919 if (ret > 0)
3920 ret = generic_write_sync(iocb, ret);
1da177e4
LT
3921 return ret;
3922}
8174202b 3923EXPORT_SYMBOL(generic_file_write_iter);
1da177e4 3924
cf9a2ae8
DH
3925/**
3926 * try_to_release_page() - release old fs-specific metadata on a page
3927 *
3928 * @page: the page which the kernel is trying to free
3929 * @gfp_mask: memory allocation flags (and I/O mode)
3930 *
3931 * The address_space is to try to release any data against the page
a862f68a 3932 * (presumably at page->private).
cf9a2ae8 3933 *
266cf658
DH
3934 * This may also be called if PG_fscache is set on a page, indicating that the
3935 * page is known to the local caching routines.
3936 *
cf9a2ae8 3937 * The @gfp_mask argument specifies whether I/O may be performed to release
71baba4b 3938 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
cf9a2ae8 3939 *
a862f68a 3940 * Return: %1 if the release was successful, otherwise return zero.
cf9a2ae8
DH
3941 */
3942int try_to_release_page(struct page *page, gfp_t gfp_mask)
3943{
3944 struct address_space * const mapping = page->mapping;
3945
3946 BUG_ON(!PageLocked(page));
3947 if (PageWriteback(page))
3948 return 0;
3949
3950 if (mapping && mapping->a_ops->releasepage)
3951 return mapping->a_ops->releasepage(page, gfp_mask);
3952 return try_to_free_buffers(page);
3953}
3954
3955EXPORT_SYMBOL(try_to_release_page);