mm,thp: add read-only THP support for (non-shmem) FS
[linux-block.git] / mm / filemap.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/filemap.c
4 *
5 * Copyright (C) 1994-1999 Linus Torvalds
6 */
7
8/*
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
12 */
b95f1b31 13#include <linux/export.h>
1da177e4 14#include <linux/compiler.h>
f9fe48be 15#include <linux/dax.h>
1da177e4 16#include <linux/fs.h>
3f07c014 17#include <linux/sched/signal.h>
c22ce143 18#include <linux/uaccess.h>
c59ede7b 19#include <linux/capability.h>
1da177e4 20#include <linux/kernel_stat.h>
5a0e3ad6 21#include <linux/gfp.h>
1da177e4
LT
22#include <linux/mm.h>
23#include <linux/swap.h>
24#include <linux/mman.h>
25#include <linux/pagemap.h>
26#include <linux/file.h>
27#include <linux/uio.h>
cfcbfb13 28#include <linux/error-injection.h>
1da177e4
LT
29#include <linux/hash.h>
30#include <linux/writeback.h>
53253383 31#include <linux/backing-dev.h>
1da177e4
LT
32#include <linux/pagevec.h>
33#include <linux/blkdev.h>
34#include <linux/security.h>
44110fe3 35#include <linux/cpuset.h>
00501b53 36#include <linux/hugetlb.h>
8a9f3ccd 37#include <linux/memcontrol.h>
c515e1fd 38#include <linux/cleancache.h>
c7df8ad2 39#include <linux/shmem_fs.h>
f1820361 40#include <linux/rmap.h>
b1d29ba8 41#include <linux/delayacct.h>
eb414681 42#include <linux/psi.h>
0f8053a5
NP
43#include "internal.h"
44
fe0bfaaf
RJ
45#define CREATE_TRACE_POINTS
46#include <trace/events/filemap.h>
47
1da177e4 48/*
1da177e4
LT
49 * FIXME: remove all knowledge of the buffer layer from the core VM
50 */
148f948b 51#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 52
1da177e4
LT
53#include <asm/mman.h>
54
55/*
56 * Shared mappings implemented 30.11.1994. It's not fully working yet,
57 * though.
58 *
59 * Shared mappings now work. 15.8.1995 Bruno.
60 *
61 * finished 'unifying' the page and buffer cache and SMP-threaded the
62 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
63 *
64 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
65 */
66
67/*
68 * Lock ordering:
69 *
c8c06efa 70 * ->i_mmap_rwsem (truncate_pagecache)
1da177e4 71 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91 72 * ->swap_lock (exclusive_swap_page, others)
b93b0163 73 * ->i_pages lock
1da177e4 74 *
1b1dcc1b 75 * ->i_mutex
c8c06efa 76 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
1da177e4
LT
77 *
78 * ->mmap_sem
c8c06efa 79 * ->i_mmap_rwsem
b8072f09 80 * ->page_table_lock or pte_lock (various, mainly in memory.c)
b93b0163 81 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
1da177e4
LT
82 *
83 * ->mmap_sem
84 * ->lock_page (access_process_vm)
85 *
ccad2365 86 * ->i_mutex (generic_perform_write)
82591e6e 87 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
1da177e4 88 *
f758eeab 89 * bdi->wb.list_lock
a66979ab 90 * sb_lock (fs/fs-writeback.c)
b93b0163 91 * ->i_pages lock (__sync_single_inode)
1da177e4 92 *
c8c06efa 93 * ->i_mmap_rwsem
1da177e4
LT
94 * ->anon_vma.lock (vma_adjust)
95 *
96 * ->anon_vma.lock
b8072f09 97 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 98 *
b8072f09 99 * ->page_table_lock or pte_lock
5d337b91 100 * ->swap_lock (try_to_unmap_one)
1da177e4 101 * ->private_lock (try_to_unmap_one)
b93b0163 102 * ->i_pages lock (try_to_unmap_one)
f4b7e272
AR
103 * ->pgdat->lru_lock (follow_page->mark_page_accessed)
104 * ->pgdat->lru_lock (check_pte_range->isolate_lru_page)
1da177e4 105 * ->private_lock (page_remove_rmap->set_page_dirty)
b93b0163 106 * ->i_pages lock (page_remove_rmap->set_page_dirty)
f758eeab 107 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
250df6ed 108 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
81f8c3a4 109 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
f758eeab 110 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 111 * ->inode->i_lock (zap_pte_range->set_page_dirty)
1da177e4
LT
112 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
113 *
c8c06efa 114 * ->i_mmap_rwsem
9a3c531d 115 * ->tasklist_lock (memory_failure, collect_procs_ao)
1da177e4
LT
116 */
117
5c024e6a 118static void page_cache_delete(struct address_space *mapping,
91b0abe3
JW
119 struct page *page, void *shadow)
120{
5c024e6a
MW
121 XA_STATE(xas, &mapping->i_pages, page->index);
122 unsigned int nr = 1;
c70b647d 123
5c024e6a 124 mapping_set_update(&xas, mapping);
c70b647d 125
5c024e6a
MW
126 /* hugetlb pages are represented by a single entry in the xarray */
127 if (!PageHuge(page)) {
128 xas_set_order(&xas, page->index, compound_order(page));
d8c6546b 129 nr = compound_nr(page);
5c024e6a 130 }
91b0abe3 131
83929372
KS
132 VM_BUG_ON_PAGE(!PageLocked(page), page);
133 VM_BUG_ON_PAGE(PageTail(page), page);
134 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
449dd698 135
5c024e6a
MW
136 xas_store(&xas, shadow);
137 xas_init_marks(&xas);
d3798ae8 138
2300638b
JK
139 page->mapping = NULL;
140 /* Leave page->index set: truncation lookup relies upon it */
141
d3798ae8
JW
142 if (shadow) {
143 mapping->nrexceptional += nr;
144 /*
145 * Make sure the nrexceptional update is committed before
146 * the nrpages update so that final truncate racing
147 * with reclaim does not see both counters 0 at the
148 * same time and miss a shadow entry.
149 */
150 smp_wmb();
151 }
152 mapping->nrpages -= nr;
91b0abe3
JW
153}
154
5ecc4d85
JK
155static void unaccount_page_cache_page(struct address_space *mapping,
156 struct page *page)
1da177e4 157{
5ecc4d85 158 int nr;
1da177e4 159
c515e1fd
DM
160 /*
161 * if we're uptodate, flush out into the cleancache, otherwise
162 * invalidate any existing cleancache entries. We can't leave
163 * stale data around in the cleancache once our page is gone
164 */
165 if (PageUptodate(page) && PageMappedToDisk(page))
166 cleancache_put_page(page);
167 else
3167760f 168 cleancache_invalidate_page(mapping, page);
c515e1fd 169
83929372 170 VM_BUG_ON_PAGE(PageTail(page), page);
06b241f3
HD
171 VM_BUG_ON_PAGE(page_mapped(page), page);
172 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
173 int mapcount;
174
175 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
176 current->comm, page_to_pfn(page));
177 dump_page(page, "still mapped when deleted");
178 dump_stack();
179 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
180
181 mapcount = page_mapcount(page);
182 if (mapping_exiting(mapping) &&
183 page_count(page) >= mapcount + 2) {
184 /*
185 * All vmas have already been torn down, so it's
186 * a good bet that actually the page is unmapped,
187 * and we'd prefer not to leak it: if we're wrong,
188 * some other bad page check should catch it later.
189 */
190 page_mapcount_reset(page);
6d061f9f 191 page_ref_sub(page, mapcount);
06b241f3
HD
192 }
193 }
194
4165b9b4 195 /* hugetlb pages do not participate in page cache accounting. */
5ecc4d85
JK
196 if (PageHuge(page))
197 return;
09612fa6 198
5ecc4d85
JK
199 nr = hpage_nr_pages(page);
200
201 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
202 if (PageSwapBacked(page)) {
203 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
204 if (PageTransHuge(page))
205 __dec_node_page_state(page, NR_SHMEM_THPS);
99cb0dbd
SL
206 } else if (PageTransHuge(page)) {
207 __dec_node_page_state(page, NR_FILE_THPS);
800d8c63 208 }
5ecc4d85
JK
209
210 /*
211 * At this point page must be either written or cleaned by
212 * truncate. Dirty page here signals a bug and loss of
213 * unwritten data.
214 *
215 * This fixes dirty accounting after removing the page entirely
216 * but leaves PageDirty set: it has no effect for truncated
217 * page and anyway will be cleared before returning page into
218 * buddy allocator.
219 */
220 if (WARN_ON_ONCE(PageDirty(page)))
221 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
222}
223
224/*
225 * Delete a page from the page cache and free it. Caller has to make
226 * sure the page is locked and that nobody else uses it - or that usage
b93b0163 227 * is safe. The caller must hold the i_pages lock.
5ecc4d85
JK
228 */
229void __delete_from_page_cache(struct page *page, void *shadow)
230{
231 struct address_space *mapping = page->mapping;
232
233 trace_mm_filemap_delete_from_page_cache(page);
234
235 unaccount_page_cache_page(mapping, page);
5c024e6a 236 page_cache_delete(mapping, page, shadow);
1da177e4
LT
237}
238
59c66c5f
JK
239static void page_cache_free_page(struct address_space *mapping,
240 struct page *page)
241{
242 void (*freepage)(struct page *);
243
244 freepage = mapping->a_ops->freepage;
245 if (freepage)
246 freepage(page);
247
248 if (PageTransHuge(page) && !PageHuge(page)) {
249 page_ref_sub(page, HPAGE_PMD_NR);
250 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
251 } else {
252 put_page(page);
253 }
254}
255
702cfbf9
MK
256/**
257 * delete_from_page_cache - delete page from page cache
258 * @page: the page which the kernel is trying to remove from page cache
259 *
260 * This must be called only on pages that have been verified to be in the page
261 * cache and locked. It will never put the page into the free list, the caller
262 * has a reference on the page.
263 */
264void delete_from_page_cache(struct page *page)
1da177e4 265{
83929372 266 struct address_space *mapping = page_mapping(page);
c4843a75 267 unsigned long flags;
1da177e4 268
cd7619d6 269 BUG_ON(!PageLocked(page));
b93b0163 270 xa_lock_irqsave(&mapping->i_pages, flags);
62cccb8c 271 __delete_from_page_cache(page, NULL);
b93b0163 272 xa_unlock_irqrestore(&mapping->i_pages, flags);
6072d13c 273
59c66c5f 274 page_cache_free_page(mapping, page);
97cecb5a
MK
275}
276EXPORT_SYMBOL(delete_from_page_cache);
277
aa65c29c 278/*
ef8e5717 279 * page_cache_delete_batch - delete several pages from page cache
aa65c29c
JK
280 * @mapping: the mapping to which pages belong
281 * @pvec: pagevec with pages to delete
282 *
b93b0163 283 * The function walks over mapping->i_pages and removes pages passed in @pvec
4101196b
MWO
284 * from the mapping. The function expects @pvec to be sorted by page index
285 * and is optimised for it to be dense.
b93b0163 286 * It tolerates holes in @pvec (mapping entries at those indices are not
aa65c29c 287 * modified). The function expects only THP head pages to be present in the
4101196b 288 * @pvec.
aa65c29c 289 *
b93b0163 290 * The function expects the i_pages lock to be held.
aa65c29c 291 */
ef8e5717 292static void page_cache_delete_batch(struct address_space *mapping,
aa65c29c
JK
293 struct pagevec *pvec)
294{
ef8e5717 295 XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
aa65c29c 296 int total_pages = 0;
4101196b 297 int i = 0;
aa65c29c 298 struct page *page;
aa65c29c 299
ef8e5717
MW
300 mapping_set_update(&xas, mapping);
301 xas_for_each(&xas, page, ULONG_MAX) {
4101196b 302 if (i >= pagevec_count(pvec))
aa65c29c 303 break;
4101196b
MWO
304
305 /* A swap/dax/shadow entry got inserted? Skip it. */
3159f943 306 if (xa_is_value(page))
aa65c29c 307 continue;
4101196b
MWO
308 /*
309 * A page got inserted in our range? Skip it. We have our
310 * pages locked so they are protected from being removed.
311 * If we see a page whose index is higher than ours, it
312 * means our page has been removed, which shouldn't be
313 * possible because we're holding the PageLock.
314 */
315 if (page != pvec->pages[i]) {
316 VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
317 page);
318 continue;
319 }
320
321 WARN_ON_ONCE(!PageLocked(page));
322
323 if (page->index == xas.xa_index)
aa65c29c 324 page->mapping = NULL;
4101196b
MWO
325 /* Leave page->index set: truncation lookup relies on it */
326
327 /*
328 * Move to the next page in the vector if this is a regular
329 * page or the index is of the last sub-page of this compound
330 * page.
331 */
332 if (page->index + compound_nr(page) - 1 == xas.xa_index)
aa65c29c 333 i++;
ef8e5717 334 xas_store(&xas, NULL);
aa65c29c
JK
335 total_pages++;
336 }
337 mapping->nrpages -= total_pages;
338}
339
340void delete_from_page_cache_batch(struct address_space *mapping,
341 struct pagevec *pvec)
342{
343 int i;
344 unsigned long flags;
345
346 if (!pagevec_count(pvec))
347 return;
348
b93b0163 349 xa_lock_irqsave(&mapping->i_pages, flags);
aa65c29c
JK
350 for (i = 0; i < pagevec_count(pvec); i++) {
351 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
352
353 unaccount_page_cache_page(mapping, pvec->pages[i]);
354 }
ef8e5717 355 page_cache_delete_batch(mapping, pvec);
b93b0163 356 xa_unlock_irqrestore(&mapping->i_pages, flags);
aa65c29c
JK
357
358 for (i = 0; i < pagevec_count(pvec); i++)
359 page_cache_free_page(mapping, pvec->pages[i]);
360}
361
d72d9e2a 362int filemap_check_errors(struct address_space *mapping)
865ffef3
DM
363{
364 int ret = 0;
365 /* Check for outstanding write errors */
7fcbbaf1
JA
366 if (test_bit(AS_ENOSPC, &mapping->flags) &&
367 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
865ffef3 368 ret = -ENOSPC;
7fcbbaf1
JA
369 if (test_bit(AS_EIO, &mapping->flags) &&
370 test_and_clear_bit(AS_EIO, &mapping->flags))
865ffef3
DM
371 ret = -EIO;
372 return ret;
373}
d72d9e2a 374EXPORT_SYMBOL(filemap_check_errors);
865ffef3 375
76341cab
JL
376static int filemap_check_and_keep_errors(struct address_space *mapping)
377{
378 /* Check for outstanding write errors */
379 if (test_bit(AS_EIO, &mapping->flags))
380 return -EIO;
381 if (test_bit(AS_ENOSPC, &mapping->flags))
382 return -ENOSPC;
383 return 0;
384}
385
1da177e4 386/**
485bb99b 387 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
388 * @mapping: address space structure to write
389 * @start: offset in bytes where the range starts
469eb4d0 390 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 391 * @sync_mode: enable synchronous operation
1da177e4 392 *
485bb99b
RD
393 * Start writeback against all of a mapping's dirty pages that lie
394 * within the byte offsets <start, end> inclusive.
395 *
1da177e4 396 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 397 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
398 * these two operations is that if a dirty page/buffer is encountered, it must
399 * be waited upon, and not just skipped over.
a862f68a
MR
400 *
401 * Return: %0 on success, negative error code otherwise.
1da177e4 402 */
ebcf28e1
AM
403int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
404 loff_t end, int sync_mode)
1da177e4
LT
405{
406 int ret;
407 struct writeback_control wbc = {
408 .sync_mode = sync_mode,
05fe478d 409 .nr_to_write = LONG_MAX,
111ebb6e
OH
410 .range_start = start,
411 .range_end = end,
1da177e4
LT
412 };
413
c3aab9a0
KK
414 if (!mapping_cap_writeback_dirty(mapping) ||
415 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1da177e4
LT
416 return 0;
417
b16b1deb 418 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
1da177e4 419 ret = do_writepages(mapping, &wbc);
b16b1deb 420 wbc_detach_inode(&wbc);
1da177e4
LT
421 return ret;
422}
423
424static inline int __filemap_fdatawrite(struct address_space *mapping,
425 int sync_mode)
426{
111ebb6e 427 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
428}
429
430int filemap_fdatawrite(struct address_space *mapping)
431{
432 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
433}
434EXPORT_SYMBOL(filemap_fdatawrite);
435
f4c0a0fd 436int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 437 loff_t end)
1da177e4
LT
438{
439 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
440}
f4c0a0fd 441EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 442
485bb99b
RD
443/**
444 * filemap_flush - mostly a non-blocking flush
445 * @mapping: target address_space
446 *
1da177e4
LT
447 * This is a mostly non-blocking flush. Not suitable for data-integrity
448 * purposes - I/O may not be started against all dirty pages.
a862f68a
MR
449 *
450 * Return: %0 on success, negative error code otherwise.
1da177e4
LT
451 */
452int filemap_flush(struct address_space *mapping)
453{
454 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
455}
456EXPORT_SYMBOL(filemap_flush);
457
7fc9e472
GR
458/**
459 * filemap_range_has_page - check if a page exists in range.
460 * @mapping: address space within which to check
461 * @start_byte: offset in bytes where the range starts
462 * @end_byte: offset in bytes where the range ends (inclusive)
463 *
464 * Find at least one page in the range supplied, usually used to check if
465 * direct writing in this range will trigger a writeback.
a862f68a
MR
466 *
467 * Return: %true if at least one page exists in the specified range,
468 * %false otherwise.
7fc9e472
GR
469 */
470bool filemap_range_has_page(struct address_space *mapping,
471 loff_t start_byte, loff_t end_byte)
472{
f7b68046 473 struct page *page;
8fa8e538
MW
474 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
475 pgoff_t max = end_byte >> PAGE_SHIFT;
7fc9e472
GR
476
477 if (end_byte < start_byte)
478 return false;
479
8fa8e538
MW
480 rcu_read_lock();
481 for (;;) {
482 page = xas_find(&xas, max);
483 if (xas_retry(&xas, page))
484 continue;
485 /* Shadow entries don't count */
486 if (xa_is_value(page))
487 continue;
488 /*
489 * We don't need to try to pin this page; we're about to
490 * release the RCU lock anyway. It is enough to know that
491 * there was a page here recently.
492 */
493 break;
494 }
495 rcu_read_unlock();
7fc9e472 496
8fa8e538 497 return page != NULL;
7fc9e472
GR
498}
499EXPORT_SYMBOL(filemap_range_has_page);
500
5e8fcc1a 501static void __filemap_fdatawait_range(struct address_space *mapping,
aa750fd7 502 loff_t start_byte, loff_t end_byte)
1da177e4 503{
09cbfeaf
KS
504 pgoff_t index = start_byte >> PAGE_SHIFT;
505 pgoff_t end = end_byte >> PAGE_SHIFT;
1da177e4
LT
506 struct pagevec pvec;
507 int nr_pages;
1da177e4 508
94004ed7 509 if (end_byte < start_byte)
5e8fcc1a 510 return;
1da177e4 511
86679820 512 pagevec_init(&pvec);
312e9d2f 513 while (index <= end) {
1da177e4
LT
514 unsigned i;
515
312e9d2f 516 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
67fd707f 517 end, PAGECACHE_TAG_WRITEBACK);
312e9d2f
JK
518 if (!nr_pages)
519 break;
520
1da177e4
LT
521 for (i = 0; i < nr_pages; i++) {
522 struct page *page = pvec.pages[i];
523
1da177e4 524 wait_on_page_writeback(page);
5e8fcc1a 525 ClearPageError(page);
1da177e4
LT
526 }
527 pagevec_release(&pvec);
528 cond_resched();
529 }
aa750fd7
JN
530}
531
532/**
533 * filemap_fdatawait_range - wait for writeback to complete
534 * @mapping: address space structure to wait for
535 * @start_byte: offset in bytes where the range starts
536 * @end_byte: offset in bytes where the range ends (inclusive)
537 *
538 * Walk the list of under-writeback pages of the given address space
539 * in the given range and wait for all of them. Check error status of
540 * the address space and return it.
541 *
542 * Since the error status of the address space is cleared by this function,
543 * callers are responsible for checking the return value and handling and/or
544 * reporting the error.
a862f68a
MR
545 *
546 * Return: error status of the address space.
aa750fd7
JN
547 */
548int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
549 loff_t end_byte)
550{
5e8fcc1a
JL
551 __filemap_fdatawait_range(mapping, start_byte, end_byte);
552 return filemap_check_errors(mapping);
1da177e4 553}
d3bccb6f
JK
554EXPORT_SYMBOL(filemap_fdatawait_range);
555
aa0bfcd9
RZ
556/**
557 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
558 * @mapping: address space structure to wait for
559 * @start_byte: offset in bytes where the range starts
560 * @end_byte: offset in bytes where the range ends (inclusive)
561 *
562 * Walk the list of under-writeback pages of the given address space in the
563 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
564 * this function does not clear error status of the address space.
565 *
566 * Use this function if callers don't handle errors themselves. Expected
567 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
568 * fsfreeze(8)
569 */
570int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
571 loff_t start_byte, loff_t end_byte)
572{
573 __filemap_fdatawait_range(mapping, start_byte, end_byte);
574 return filemap_check_and_keep_errors(mapping);
575}
576EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
577
a823e458
JL
578/**
579 * file_fdatawait_range - wait for writeback to complete
580 * @file: file pointing to address space structure to wait for
581 * @start_byte: offset in bytes where the range starts
582 * @end_byte: offset in bytes where the range ends (inclusive)
583 *
584 * Walk the list of under-writeback pages of the address space that file
585 * refers to, in the given range and wait for all of them. Check error
586 * status of the address space vs. the file->f_wb_err cursor and return it.
587 *
588 * Since the error status of the file is advanced by this function,
589 * callers are responsible for checking the return value and handling and/or
590 * reporting the error.
a862f68a
MR
591 *
592 * Return: error status of the address space vs. the file->f_wb_err cursor.
a823e458
JL
593 */
594int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
595{
596 struct address_space *mapping = file->f_mapping;
597
598 __filemap_fdatawait_range(mapping, start_byte, end_byte);
599 return file_check_and_advance_wb_err(file);
600}
601EXPORT_SYMBOL(file_fdatawait_range);
d3bccb6f 602
aa750fd7
JN
603/**
604 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
605 * @mapping: address space structure to wait for
606 *
607 * Walk the list of under-writeback pages of the given address space
608 * and wait for all of them. Unlike filemap_fdatawait(), this function
609 * does not clear error status of the address space.
610 *
611 * Use this function if callers don't handle errors themselves. Expected
612 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
613 * fsfreeze(8)
a862f68a
MR
614 *
615 * Return: error status of the address space.
aa750fd7 616 */
76341cab 617int filemap_fdatawait_keep_errors(struct address_space *mapping)
aa750fd7 618{
ffb959bb 619 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
76341cab 620 return filemap_check_and_keep_errors(mapping);
aa750fd7 621}
76341cab 622EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
aa750fd7 623
875d91b1 624/* Returns true if writeback might be needed or already in progress. */
9326c9b2 625static bool mapping_needs_writeback(struct address_space *mapping)
1da177e4 626{
875d91b1
KK
627 if (dax_mapping(mapping))
628 return mapping->nrexceptional;
629
630 return mapping->nrpages;
1da177e4 631}
1da177e4
LT
632
633int filemap_write_and_wait(struct address_space *mapping)
634{
28fd1298 635 int err = 0;
1da177e4 636
9326c9b2 637 if (mapping_needs_writeback(mapping)) {
28fd1298
OH
638 err = filemap_fdatawrite(mapping);
639 /*
640 * Even if the above returned error, the pages may be
641 * written partially (e.g. -ENOSPC), so we wait for it.
642 * But the -EIO is special case, it may indicate the worst
643 * thing (e.g. bug) happened, so we avoid waiting for it.
644 */
645 if (err != -EIO) {
646 int err2 = filemap_fdatawait(mapping);
647 if (!err)
648 err = err2;
cbeaf951
JL
649 } else {
650 /* Clear any previously stored errors */
651 filemap_check_errors(mapping);
28fd1298 652 }
865ffef3
DM
653 } else {
654 err = filemap_check_errors(mapping);
1da177e4 655 }
28fd1298 656 return err;
1da177e4 657}
28fd1298 658EXPORT_SYMBOL(filemap_write_and_wait);
1da177e4 659
485bb99b
RD
660/**
661 * filemap_write_and_wait_range - write out & wait on a file range
662 * @mapping: the address_space for the pages
663 * @lstart: offset in bytes where the range starts
664 * @lend: offset in bytes where the range ends (inclusive)
665 *
469eb4d0
AM
666 * Write out and wait upon file offsets lstart->lend, inclusive.
667 *
0e056eb5 668 * Note that @lend is inclusive (describes the last byte to be written) so
469eb4d0 669 * that this function can be used to write to the very end-of-file (end = -1).
a862f68a
MR
670 *
671 * Return: error status of the address space.
469eb4d0 672 */
1da177e4
LT
673int filemap_write_and_wait_range(struct address_space *mapping,
674 loff_t lstart, loff_t lend)
675{
28fd1298 676 int err = 0;
1da177e4 677
9326c9b2 678 if (mapping_needs_writeback(mapping)) {
28fd1298
OH
679 err = __filemap_fdatawrite_range(mapping, lstart, lend,
680 WB_SYNC_ALL);
681 /* See comment of filemap_write_and_wait() */
682 if (err != -EIO) {
94004ed7
CH
683 int err2 = filemap_fdatawait_range(mapping,
684 lstart, lend);
28fd1298
OH
685 if (!err)
686 err = err2;
cbeaf951
JL
687 } else {
688 /* Clear any previously stored errors */
689 filemap_check_errors(mapping);
28fd1298 690 }
865ffef3
DM
691 } else {
692 err = filemap_check_errors(mapping);
1da177e4 693 }
28fd1298 694 return err;
1da177e4 695}
f6995585 696EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 697
5660e13d
JL
698void __filemap_set_wb_err(struct address_space *mapping, int err)
699{
3acdfd28 700 errseq_t eseq = errseq_set(&mapping->wb_err, err);
5660e13d
JL
701
702 trace_filemap_set_wb_err(mapping, eseq);
703}
704EXPORT_SYMBOL(__filemap_set_wb_err);
705
706/**
707 * file_check_and_advance_wb_err - report wb error (if any) that was previously
708 * and advance wb_err to current one
709 * @file: struct file on which the error is being reported
710 *
711 * When userland calls fsync (or something like nfsd does the equivalent), we
712 * want to report any writeback errors that occurred since the last fsync (or
713 * since the file was opened if there haven't been any).
714 *
715 * Grab the wb_err from the mapping. If it matches what we have in the file,
716 * then just quickly return 0. The file is all caught up.
717 *
718 * If it doesn't match, then take the mapping value, set the "seen" flag in
719 * it and try to swap it into place. If it works, or another task beat us
720 * to it with the new value, then update the f_wb_err and return the error
721 * portion. The error at this point must be reported via proper channels
722 * (a'la fsync, or NFS COMMIT operation, etc.).
723 *
724 * While we handle mapping->wb_err with atomic operations, the f_wb_err
725 * value is protected by the f_lock since we must ensure that it reflects
726 * the latest value swapped in for this file descriptor.
a862f68a
MR
727 *
728 * Return: %0 on success, negative error code otherwise.
5660e13d
JL
729 */
730int file_check_and_advance_wb_err(struct file *file)
731{
732 int err = 0;
733 errseq_t old = READ_ONCE(file->f_wb_err);
734 struct address_space *mapping = file->f_mapping;
735
736 /* Locklessly handle the common case where nothing has changed */
737 if (errseq_check(&mapping->wb_err, old)) {
738 /* Something changed, must use slow path */
739 spin_lock(&file->f_lock);
740 old = file->f_wb_err;
741 err = errseq_check_and_advance(&mapping->wb_err,
742 &file->f_wb_err);
743 trace_file_check_and_advance_wb_err(file, old);
744 spin_unlock(&file->f_lock);
745 }
f4e222c5
JL
746
747 /*
748 * We're mostly using this function as a drop in replacement for
749 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
750 * that the legacy code would have had on these flags.
751 */
752 clear_bit(AS_EIO, &mapping->flags);
753 clear_bit(AS_ENOSPC, &mapping->flags);
5660e13d
JL
754 return err;
755}
756EXPORT_SYMBOL(file_check_and_advance_wb_err);
757
758/**
759 * file_write_and_wait_range - write out & wait on a file range
760 * @file: file pointing to address_space with pages
761 * @lstart: offset in bytes where the range starts
762 * @lend: offset in bytes where the range ends (inclusive)
763 *
764 * Write out and wait upon file offsets lstart->lend, inclusive.
765 *
766 * Note that @lend is inclusive (describes the last byte to be written) so
767 * that this function can be used to write to the very end-of-file (end = -1).
768 *
769 * After writing out and waiting on the data, we check and advance the
770 * f_wb_err cursor to the latest value, and return any errors detected there.
a862f68a
MR
771 *
772 * Return: %0 on success, negative error code otherwise.
5660e13d
JL
773 */
774int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
775{
776 int err = 0, err2;
777 struct address_space *mapping = file->f_mapping;
778
9326c9b2 779 if (mapping_needs_writeback(mapping)) {
5660e13d
JL
780 err = __filemap_fdatawrite_range(mapping, lstart, lend,
781 WB_SYNC_ALL);
782 /* See comment of filemap_write_and_wait() */
783 if (err != -EIO)
784 __filemap_fdatawait_range(mapping, lstart, lend);
785 }
786 err2 = file_check_and_advance_wb_err(file);
787 if (!err)
788 err = err2;
789 return err;
790}
791EXPORT_SYMBOL(file_write_and_wait_range);
792
ef6a3c63
MS
793/**
794 * replace_page_cache_page - replace a pagecache page with a new one
795 * @old: page to be replaced
796 * @new: page to replace with
797 * @gfp_mask: allocation mode
798 *
799 * This function replaces a page in the pagecache with a new one. On
800 * success it acquires the pagecache reference for the new page and
801 * drops it for the old page. Both the old and new pages must be
802 * locked. This function does not add the new page to the LRU, the
803 * caller must do that.
804 *
74d60958 805 * The remove + add is atomic. This function cannot fail.
a862f68a
MR
806 *
807 * Return: %0
ef6a3c63
MS
808 */
809int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
810{
74d60958
MW
811 struct address_space *mapping = old->mapping;
812 void (*freepage)(struct page *) = mapping->a_ops->freepage;
813 pgoff_t offset = old->index;
814 XA_STATE(xas, &mapping->i_pages, offset);
815 unsigned long flags;
ef6a3c63 816
309381fe
SL
817 VM_BUG_ON_PAGE(!PageLocked(old), old);
818 VM_BUG_ON_PAGE(!PageLocked(new), new);
819 VM_BUG_ON_PAGE(new->mapping, new);
ef6a3c63 820
74d60958
MW
821 get_page(new);
822 new->mapping = mapping;
823 new->index = offset;
ef6a3c63 824
74d60958
MW
825 xas_lock_irqsave(&xas, flags);
826 xas_store(&xas, new);
4165b9b4 827
74d60958
MW
828 old->mapping = NULL;
829 /* hugetlb pages do not participate in page cache accounting. */
830 if (!PageHuge(old))
831 __dec_node_page_state(new, NR_FILE_PAGES);
832 if (!PageHuge(new))
833 __inc_node_page_state(new, NR_FILE_PAGES);
834 if (PageSwapBacked(old))
835 __dec_node_page_state(new, NR_SHMEM);
836 if (PageSwapBacked(new))
837 __inc_node_page_state(new, NR_SHMEM);
838 xas_unlock_irqrestore(&xas, flags);
839 mem_cgroup_migrate(old, new);
840 if (freepage)
841 freepage(old);
842 put_page(old);
ef6a3c63 843
74d60958 844 return 0;
ef6a3c63
MS
845}
846EXPORT_SYMBOL_GPL(replace_page_cache_page);
847
a528910e
JW
848static int __add_to_page_cache_locked(struct page *page,
849 struct address_space *mapping,
850 pgoff_t offset, gfp_t gfp_mask,
851 void **shadowp)
1da177e4 852{
74d60958 853 XA_STATE(xas, &mapping->i_pages, offset);
00501b53
JW
854 int huge = PageHuge(page);
855 struct mem_cgroup *memcg;
e286781d 856 int error;
74d60958 857 void *old;
e286781d 858
309381fe
SL
859 VM_BUG_ON_PAGE(!PageLocked(page), page);
860 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
74d60958 861 mapping_set_update(&xas, mapping);
e286781d 862
00501b53
JW
863 if (!huge) {
864 error = mem_cgroup_try_charge(page, current->mm,
f627c2f5 865 gfp_mask, &memcg, false);
00501b53
JW
866 if (error)
867 return error;
868 }
1da177e4 869
09cbfeaf 870 get_page(page);
66a0c8ee
KS
871 page->mapping = mapping;
872 page->index = offset;
873
74d60958
MW
874 do {
875 xas_lock_irq(&xas);
876 old = xas_load(&xas);
877 if (old && !xa_is_value(old))
878 xas_set_err(&xas, -EEXIST);
879 xas_store(&xas, page);
880 if (xas_error(&xas))
881 goto unlock;
882
883 if (xa_is_value(old)) {
884 mapping->nrexceptional--;
885 if (shadowp)
886 *shadowp = old;
887 }
888 mapping->nrpages++;
889
890 /* hugetlb pages do not participate in page cache accounting */
891 if (!huge)
892 __inc_node_page_state(page, NR_FILE_PAGES);
893unlock:
894 xas_unlock_irq(&xas);
895 } while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK));
896
897 if (xas_error(&xas))
898 goto error;
4165b9b4 899
00501b53 900 if (!huge)
f627c2f5 901 mem_cgroup_commit_charge(page, memcg, false, false);
66a0c8ee
KS
902 trace_mm_filemap_add_to_page_cache(page);
903 return 0;
74d60958 904error:
66a0c8ee
KS
905 page->mapping = NULL;
906 /* Leave page->index set: truncation relies upon it */
00501b53 907 if (!huge)
f627c2f5 908 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 909 put_page(page);
74d60958 910 return xas_error(&xas);
1da177e4 911}
cfcbfb13 912ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
a528910e
JW
913
914/**
915 * add_to_page_cache_locked - add a locked page to the pagecache
916 * @page: page to add
917 * @mapping: the page's address_space
918 * @offset: page index
919 * @gfp_mask: page allocation mode
920 *
921 * This function is used to add a page to the pagecache. It must be locked.
922 * This function does not add the page to the LRU. The caller must do that.
a862f68a
MR
923 *
924 * Return: %0 on success, negative error code otherwise.
a528910e
JW
925 */
926int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
927 pgoff_t offset, gfp_t gfp_mask)
928{
929 return __add_to_page_cache_locked(page, mapping, offset,
930 gfp_mask, NULL);
931}
e286781d 932EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4
LT
933
934int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 935 pgoff_t offset, gfp_t gfp_mask)
1da177e4 936{
a528910e 937 void *shadow = NULL;
4f98a2fe
RR
938 int ret;
939
48c935ad 940 __SetPageLocked(page);
a528910e
JW
941 ret = __add_to_page_cache_locked(page, mapping, offset,
942 gfp_mask, &shadow);
943 if (unlikely(ret))
48c935ad 944 __ClearPageLocked(page);
a528910e
JW
945 else {
946 /*
947 * The page might have been evicted from cache only
948 * recently, in which case it should be activated like
949 * any other repeatedly accessed page.
f0281a00
RR
950 * The exception is pages getting rewritten; evicting other
951 * data from the working set, only to cache data that will
952 * get overwritten with something else, is a waste of memory.
a528910e 953 */
1899ad18
JW
954 WARN_ON_ONCE(PageActive(page));
955 if (!(gfp_mask & __GFP_WRITE) && shadow)
956 workingset_refault(page, shadow);
a528910e
JW
957 lru_cache_add(page);
958 }
1da177e4
LT
959 return ret;
960}
18bc0bbd 961EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1da177e4 962
44110fe3 963#ifdef CONFIG_NUMA
2ae88149 964struct page *__page_cache_alloc(gfp_t gfp)
44110fe3 965{
c0ff7453
MX
966 int n;
967 struct page *page;
968
44110fe3 969 if (cpuset_do_page_mem_spread()) {
cc9a6c87
MG
970 unsigned int cpuset_mems_cookie;
971 do {
d26914d1 972 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 973 n = cpuset_mem_spread_node();
96db800f 974 page = __alloc_pages_node(n, gfp, 0);
d26914d1 975 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
cc9a6c87 976
c0ff7453 977 return page;
44110fe3 978 }
2ae88149 979 return alloc_pages(gfp, 0);
44110fe3 980}
2ae88149 981EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
982#endif
983
1da177e4
LT
984/*
985 * In order to wait for pages to become available there must be
986 * waitqueues associated with pages. By using a hash table of
987 * waitqueues where the bucket discipline is to maintain all
988 * waiters on the same queue and wake all when any of the pages
989 * become available, and for the woken contexts to check to be
990 * sure the appropriate page became available, this saves space
991 * at a cost of "thundering herd" phenomena during rare hash
992 * collisions.
993 */
62906027
NP
994#define PAGE_WAIT_TABLE_BITS 8
995#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
996static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
997
998static wait_queue_head_t *page_waitqueue(struct page *page)
1da177e4 999{
62906027 1000 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
1da177e4 1001}
1da177e4 1002
62906027 1003void __init pagecache_init(void)
1da177e4 1004{
62906027 1005 int i;
1da177e4 1006
62906027
NP
1007 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1008 init_waitqueue_head(&page_wait_table[i]);
1009
1010 page_writeback_init();
1da177e4 1011}
1da177e4 1012
3510ca20 1013/* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
62906027
NP
1014struct wait_page_key {
1015 struct page *page;
1016 int bit_nr;
1017 int page_match;
1018};
1019
1020struct wait_page_queue {
1021 struct page *page;
1022 int bit_nr;
ac6424b9 1023 wait_queue_entry_t wait;
62906027
NP
1024};
1025
ac6424b9 1026static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
f62e00cc 1027{
62906027
NP
1028 struct wait_page_key *key = arg;
1029 struct wait_page_queue *wait_page
1030 = container_of(wait, struct wait_page_queue, wait);
1031
1032 if (wait_page->page != key->page)
1033 return 0;
1034 key->page_match = 1;
f62e00cc 1035
62906027
NP
1036 if (wait_page->bit_nr != key->bit_nr)
1037 return 0;
3510ca20 1038
9a1ea439
HD
1039 /*
1040 * Stop walking if it's locked.
1041 * Is this safe if put_and_wait_on_page_locked() is in use?
1042 * Yes: the waker must hold a reference to this page, and if PG_locked
1043 * has now already been set by another task, that task must also hold
1044 * a reference to the *same usage* of this page; so there is no need
1045 * to walk on to wake even the put_and_wait_on_page_locked() callers.
1046 */
62906027 1047 if (test_bit(key->bit_nr, &key->page->flags))
3510ca20 1048 return -1;
f62e00cc 1049
62906027 1050 return autoremove_wake_function(wait, mode, sync, key);
f62e00cc
KM
1051}
1052
74d81bfa 1053static void wake_up_page_bit(struct page *page, int bit_nr)
cbbce822 1054{
62906027
NP
1055 wait_queue_head_t *q = page_waitqueue(page);
1056 struct wait_page_key key;
1057 unsigned long flags;
11a19c7b 1058 wait_queue_entry_t bookmark;
cbbce822 1059
62906027
NP
1060 key.page = page;
1061 key.bit_nr = bit_nr;
1062 key.page_match = 0;
1063
11a19c7b
TC
1064 bookmark.flags = 0;
1065 bookmark.private = NULL;
1066 bookmark.func = NULL;
1067 INIT_LIST_HEAD(&bookmark.entry);
1068
62906027 1069 spin_lock_irqsave(&q->lock, flags);
11a19c7b
TC
1070 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1071
1072 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1073 /*
1074 * Take a breather from holding the lock,
1075 * allow pages that finish wake up asynchronously
1076 * to acquire the lock and remove themselves
1077 * from wait queue
1078 */
1079 spin_unlock_irqrestore(&q->lock, flags);
1080 cpu_relax();
1081 spin_lock_irqsave(&q->lock, flags);
1082 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1083 }
1084
62906027
NP
1085 /*
1086 * It is possible for other pages to have collided on the waitqueue
1087 * hash, so in that case check for a page match. That prevents a long-
1088 * term waiter
1089 *
1090 * It is still possible to miss a case here, when we woke page waiters
1091 * and removed them from the waitqueue, but there are still other
1092 * page waiters.
1093 */
1094 if (!waitqueue_active(q) || !key.page_match) {
1095 ClearPageWaiters(page);
1096 /*
1097 * It's possible to miss clearing Waiters here, when we woke
1098 * our page waiters, but the hashed waitqueue has waiters for
1099 * other pages on it.
1100 *
1101 * That's okay, it's a rare case. The next waker will clear it.
1102 */
1103 }
1104 spin_unlock_irqrestore(&q->lock, flags);
1105}
74d81bfa
NP
1106
1107static void wake_up_page(struct page *page, int bit)
1108{
1109 if (!PageWaiters(page))
1110 return;
1111 wake_up_page_bit(page, bit);
1112}
62906027 1113
9a1ea439
HD
1114/*
1115 * A choice of three behaviors for wait_on_page_bit_common():
1116 */
1117enum behavior {
1118 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
1119 * __lock_page() waiting on then setting PG_locked.
1120 */
1121 SHARED, /* Hold ref to page and check the bit when woken, like
1122 * wait_on_page_writeback() waiting on PG_writeback.
1123 */
1124 DROP, /* Drop ref to page before wait, no check when woken,
1125 * like put_and_wait_on_page_locked() on PG_locked.
1126 */
1127};
1128
62906027 1129static inline int wait_on_page_bit_common(wait_queue_head_t *q,
9a1ea439 1130 struct page *page, int bit_nr, int state, enum behavior behavior)
62906027
NP
1131{
1132 struct wait_page_queue wait_page;
ac6424b9 1133 wait_queue_entry_t *wait = &wait_page.wait;
9a1ea439 1134 bool bit_is_set;
b1d29ba8 1135 bool thrashing = false;
9a1ea439 1136 bool delayacct = false;
eb414681 1137 unsigned long pflags;
62906027
NP
1138 int ret = 0;
1139
eb414681 1140 if (bit_nr == PG_locked &&
b1d29ba8 1141 !PageUptodate(page) && PageWorkingset(page)) {
9a1ea439 1142 if (!PageSwapBacked(page)) {
eb414681 1143 delayacct_thrashing_start();
9a1ea439
HD
1144 delayacct = true;
1145 }
eb414681 1146 psi_memstall_enter(&pflags);
b1d29ba8
JW
1147 thrashing = true;
1148 }
1149
62906027 1150 init_wait(wait);
9a1ea439 1151 wait->flags = behavior == EXCLUSIVE ? WQ_FLAG_EXCLUSIVE : 0;
62906027
NP
1152 wait->func = wake_page_function;
1153 wait_page.page = page;
1154 wait_page.bit_nr = bit_nr;
1155
1156 for (;;) {
1157 spin_lock_irq(&q->lock);
1158
2055da97 1159 if (likely(list_empty(&wait->entry))) {
3510ca20 1160 __add_wait_queue_entry_tail(q, wait);
62906027
NP
1161 SetPageWaiters(page);
1162 }
1163
1164 set_current_state(state);
1165
1166 spin_unlock_irq(&q->lock);
1167
9a1ea439
HD
1168 bit_is_set = test_bit(bit_nr, &page->flags);
1169 if (behavior == DROP)
1170 put_page(page);
1171
1172 if (likely(bit_is_set))
62906027 1173 io_schedule();
62906027 1174
9a1ea439 1175 if (behavior == EXCLUSIVE) {
62906027
NP
1176 if (!test_and_set_bit_lock(bit_nr, &page->flags))
1177 break;
9a1ea439 1178 } else if (behavior == SHARED) {
62906027
NP
1179 if (!test_bit(bit_nr, &page->flags))
1180 break;
1181 }
a8b169af 1182
fa45f116 1183 if (signal_pending_state(state, current)) {
a8b169af
LT
1184 ret = -EINTR;
1185 break;
1186 }
9a1ea439
HD
1187
1188 if (behavior == DROP) {
1189 /*
1190 * We can no longer safely access page->flags:
1191 * even if CONFIG_MEMORY_HOTREMOVE is not enabled,
1192 * there is a risk of waiting forever on a page reused
1193 * for something that keeps it locked indefinitely.
1194 * But best check for -EINTR above before breaking.
1195 */
1196 break;
1197 }
62906027
NP
1198 }
1199
1200 finish_wait(q, wait);
1201
eb414681 1202 if (thrashing) {
9a1ea439 1203 if (delayacct)
eb414681
JW
1204 delayacct_thrashing_end();
1205 psi_memstall_leave(&pflags);
1206 }
b1d29ba8 1207
62906027
NP
1208 /*
1209 * A signal could leave PageWaiters set. Clearing it here if
1210 * !waitqueue_active would be possible (by open-coding finish_wait),
1211 * but still fail to catch it in the case of wait hash collision. We
1212 * already can fail to clear wait hash collision cases, so don't
1213 * bother with signals either.
1214 */
1215
1216 return ret;
1217}
1218
1219void wait_on_page_bit(struct page *page, int bit_nr)
1220{
1221 wait_queue_head_t *q = page_waitqueue(page);
9a1ea439 1222 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
62906027
NP
1223}
1224EXPORT_SYMBOL(wait_on_page_bit);
1225
1226int wait_on_page_bit_killable(struct page *page, int bit_nr)
1227{
1228 wait_queue_head_t *q = page_waitqueue(page);
9a1ea439 1229 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
cbbce822 1230}
4343d008 1231EXPORT_SYMBOL(wait_on_page_bit_killable);
cbbce822 1232
9a1ea439
HD
1233/**
1234 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1235 * @page: The page to wait for.
1236 *
1237 * The caller should hold a reference on @page. They expect the page to
1238 * become unlocked relatively soon, but do not wish to hold up migration
1239 * (for example) by holding the reference while waiting for the page to
1240 * come unlocked. After this function returns, the caller should not
1241 * dereference @page.
1242 */
1243void put_and_wait_on_page_locked(struct page *page)
1244{
1245 wait_queue_head_t *q;
1246
1247 page = compound_head(page);
1248 q = page_waitqueue(page);
1249 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP);
1250}
1251
385e1ca5
DH
1252/**
1253 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
697f619f
RD
1254 * @page: Page defining the wait queue of interest
1255 * @waiter: Waiter to add to the queue
385e1ca5
DH
1256 *
1257 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1258 */
ac6424b9 1259void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
385e1ca5
DH
1260{
1261 wait_queue_head_t *q = page_waitqueue(page);
1262 unsigned long flags;
1263
1264 spin_lock_irqsave(&q->lock, flags);
9c3a815f 1265 __add_wait_queue_entry_tail(q, waiter);
62906027 1266 SetPageWaiters(page);
385e1ca5
DH
1267 spin_unlock_irqrestore(&q->lock, flags);
1268}
1269EXPORT_SYMBOL_GPL(add_page_wait_queue);
1270
b91e1302
LT
1271#ifndef clear_bit_unlock_is_negative_byte
1272
1273/*
1274 * PG_waiters is the high bit in the same byte as PG_lock.
1275 *
1276 * On x86 (and on many other architectures), we can clear PG_lock and
1277 * test the sign bit at the same time. But if the architecture does
1278 * not support that special operation, we just do this all by hand
1279 * instead.
1280 *
1281 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1282 * being cleared, but a memory barrier should be unneccssary since it is
1283 * in the same byte as PG_locked.
1284 */
1285static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1286{
1287 clear_bit_unlock(nr, mem);
1288 /* smp_mb__after_atomic(); */
98473f9f 1289 return test_bit(PG_waiters, mem);
b91e1302
LT
1290}
1291
1292#endif
1293
1da177e4 1294/**
485bb99b 1295 * unlock_page - unlock a locked page
1da177e4
LT
1296 * @page: the page
1297 *
1298 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1299 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
da3dae54 1300 * mechanism between PageLocked pages and PageWriteback pages is shared.
1da177e4
LT
1301 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1302 *
b91e1302
LT
1303 * Note that this depends on PG_waiters being the sign bit in the byte
1304 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1305 * clear the PG_locked bit and test PG_waiters at the same time fairly
1306 * portably (architectures that do LL/SC can test any bit, while x86 can
1307 * test the sign bit).
1da177e4 1308 */
920c7a5d 1309void unlock_page(struct page *page)
1da177e4 1310{
b91e1302 1311 BUILD_BUG_ON(PG_waiters != 7);
48c935ad 1312 page = compound_head(page);
309381fe 1313 VM_BUG_ON_PAGE(!PageLocked(page), page);
b91e1302
LT
1314 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1315 wake_up_page_bit(page, PG_locked);
1da177e4
LT
1316}
1317EXPORT_SYMBOL(unlock_page);
1318
485bb99b
RD
1319/**
1320 * end_page_writeback - end writeback against a page
1321 * @page: the page
1da177e4
LT
1322 */
1323void end_page_writeback(struct page *page)
1324{
888cf2db
MG
1325 /*
1326 * TestClearPageReclaim could be used here but it is an atomic
1327 * operation and overkill in this particular case. Failing to
1328 * shuffle a page marked for immediate reclaim is too mild to
1329 * justify taking an atomic operation penalty at the end of
1330 * ever page writeback.
1331 */
1332 if (PageReclaim(page)) {
1333 ClearPageReclaim(page);
ac6aadb2 1334 rotate_reclaimable_page(page);
888cf2db 1335 }
ac6aadb2
MS
1336
1337 if (!test_clear_page_writeback(page))
1338 BUG();
1339
4e857c58 1340 smp_mb__after_atomic();
1da177e4
LT
1341 wake_up_page(page, PG_writeback);
1342}
1343EXPORT_SYMBOL(end_page_writeback);
1344
57d99845
MW
1345/*
1346 * After completing I/O on a page, call this routine to update the page
1347 * flags appropriately
1348 */
c11f0c0b 1349void page_endio(struct page *page, bool is_write, int err)
57d99845 1350{
c11f0c0b 1351 if (!is_write) {
57d99845
MW
1352 if (!err) {
1353 SetPageUptodate(page);
1354 } else {
1355 ClearPageUptodate(page);
1356 SetPageError(page);
1357 }
1358 unlock_page(page);
abf54548 1359 } else {
57d99845 1360 if (err) {
dd8416c4
MK
1361 struct address_space *mapping;
1362
57d99845 1363 SetPageError(page);
dd8416c4
MK
1364 mapping = page_mapping(page);
1365 if (mapping)
1366 mapping_set_error(mapping, err);
57d99845
MW
1367 }
1368 end_page_writeback(page);
1369 }
1370}
1371EXPORT_SYMBOL_GPL(page_endio);
1372
485bb99b
RD
1373/**
1374 * __lock_page - get a lock on the page, assuming we need to sleep to get it
87066755 1375 * @__page: the page to lock
1da177e4 1376 */
62906027 1377void __lock_page(struct page *__page)
1da177e4 1378{
62906027
NP
1379 struct page *page = compound_head(__page);
1380 wait_queue_head_t *q = page_waitqueue(page);
9a1ea439
HD
1381 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1382 EXCLUSIVE);
1da177e4
LT
1383}
1384EXPORT_SYMBOL(__lock_page);
1385
62906027 1386int __lock_page_killable(struct page *__page)
2687a356 1387{
62906027
NP
1388 struct page *page = compound_head(__page);
1389 wait_queue_head_t *q = page_waitqueue(page);
9a1ea439
HD
1390 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1391 EXCLUSIVE);
2687a356 1392}
18bc0bbd 1393EXPORT_SYMBOL_GPL(__lock_page_killable);
2687a356 1394
9a95f3cf
PC
1395/*
1396 * Return values:
1397 * 1 - page is locked; mmap_sem is still held.
1398 * 0 - page is not locked.
1399 * mmap_sem has been released (up_read()), unless flags had both
1400 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1401 * which case mmap_sem is still held.
1402 *
1403 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1404 * with the page locked and the mmap_sem unperturbed.
1405 */
d065bd81
ML
1406int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1407 unsigned int flags)
1408{
37b23e05
KM
1409 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1410 /*
1411 * CAUTION! In this case, mmap_sem is not released
1412 * even though return 0.
1413 */
1414 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1415 return 0;
1416
1417 up_read(&mm->mmap_sem);
1418 if (flags & FAULT_FLAG_KILLABLE)
1419 wait_on_page_locked_killable(page);
1420 else
318b275f 1421 wait_on_page_locked(page);
d065bd81 1422 return 0;
37b23e05
KM
1423 } else {
1424 if (flags & FAULT_FLAG_KILLABLE) {
1425 int ret;
1426
1427 ret = __lock_page_killable(page);
1428 if (ret) {
1429 up_read(&mm->mmap_sem);
1430 return 0;
1431 }
1432 } else
1433 __lock_page(page);
1434 return 1;
d065bd81
ML
1435 }
1436}
1437
e7b563bb 1438/**
0d3f9296
MW
1439 * page_cache_next_miss() - Find the next gap in the page cache.
1440 * @mapping: Mapping.
1441 * @index: Index.
1442 * @max_scan: Maximum range to search.
e7b563bb 1443 *
0d3f9296
MW
1444 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1445 * gap with the lowest index.
e7b563bb 1446 *
0d3f9296
MW
1447 * This function may be called under the rcu_read_lock. However, this will
1448 * not atomically search a snapshot of the cache at a single point in time.
1449 * For example, if a gap is created at index 5, then subsequently a gap is
1450 * created at index 10, page_cache_next_miss covering both indices may
1451 * return 10 if called under the rcu_read_lock.
e7b563bb 1452 *
0d3f9296
MW
1453 * Return: The index of the gap if found, otherwise an index outside the
1454 * range specified (in which case 'return - index >= max_scan' will be true).
1455 * In the rare case of index wrap-around, 0 will be returned.
e7b563bb 1456 */
0d3f9296 1457pgoff_t page_cache_next_miss(struct address_space *mapping,
e7b563bb
JW
1458 pgoff_t index, unsigned long max_scan)
1459{
0d3f9296 1460 XA_STATE(xas, &mapping->i_pages, index);
e7b563bb 1461
0d3f9296
MW
1462 while (max_scan--) {
1463 void *entry = xas_next(&xas);
1464 if (!entry || xa_is_value(entry))
e7b563bb 1465 break;
0d3f9296 1466 if (xas.xa_index == 0)
e7b563bb
JW
1467 break;
1468 }
1469
0d3f9296 1470 return xas.xa_index;
e7b563bb 1471}
0d3f9296 1472EXPORT_SYMBOL(page_cache_next_miss);
e7b563bb
JW
1473
1474/**
2346a560 1475 * page_cache_prev_miss() - Find the previous gap in the page cache.
0d3f9296
MW
1476 * @mapping: Mapping.
1477 * @index: Index.
1478 * @max_scan: Maximum range to search.
e7b563bb 1479 *
0d3f9296
MW
1480 * Search the range [max(index - max_scan + 1, 0), index] for the
1481 * gap with the highest index.
e7b563bb 1482 *
0d3f9296
MW
1483 * This function may be called under the rcu_read_lock. However, this will
1484 * not atomically search a snapshot of the cache at a single point in time.
1485 * For example, if a gap is created at index 10, then subsequently a gap is
1486 * created at index 5, page_cache_prev_miss() covering both indices may
1487 * return 5 if called under the rcu_read_lock.
e7b563bb 1488 *
0d3f9296
MW
1489 * Return: The index of the gap if found, otherwise an index outside the
1490 * range specified (in which case 'index - return >= max_scan' will be true).
1491 * In the rare case of wrap-around, ULONG_MAX will be returned.
e7b563bb 1492 */
0d3f9296 1493pgoff_t page_cache_prev_miss(struct address_space *mapping,
e7b563bb
JW
1494 pgoff_t index, unsigned long max_scan)
1495{
0d3f9296 1496 XA_STATE(xas, &mapping->i_pages, index);
e7b563bb 1497
0d3f9296
MW
1498 while (max_scan--) {
1499 void *entry = xas_prev(&xas);
1500 if (!entry || xa_is_value(entry))
e7b563bb 1501 break;
0d3f9296 1502 if (xas.xa_index == ULONG_MAX)
e7b563bb
JW
1503 break;
1504 }
1505
0d3f9296 1506 return xas.xa_index;
e7b563bb 1507}
0d3f9296 1508EXPORT_SYMBOL(page_cache_prev_miss);
e7b563bb 1509
485bb99b 1510/**
0cd6144a 1511 * find_get_entry - find and get a page cache entry
485bb99b 1512 * @mapping: the address_space to search
0cd6144a
JW
1513 * @offset: the page cache index
1514 *
1515 * Looks up the page cache slot at @mapping & @offset. If there is a
1516 * page cache page, it is returned with an increased refcount.
485bb99b 1517 *
139b6a6f
JW
1518 * If the slot holds a shadow entry of a previously evicted page, or a
1519 * swap entry from shmem/tmpfs, it is returned.
0cd6144a 1520 *
a862f68a 1521 * Return: the found page or shadow entry, %NULL if nothing is found.
1da177e4 1522 */
0cd6144a 1523struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1da177e4 1524{
4c7472c0 1525 XA_STATE(xas, &mapping->i_pages, offset);
4101196b 1526 struct page *page;
1da177e4 1527
a60637c8
NP
1528 rcu_read_lock();
1529repeat:
4c7472c0
MW
1530 xas_reset(&xas);
1531 page = xas_load(&xas);
1532 if (xas_retry(&xas, page))
1533 goto repeat;
1534 /*
1535 * A shadow entry of a recently evicted page, or a swap entry from
1536 * shmem/tmpfs. Return it without attempting to raise page count.
1537 */
1538 if (!page || xa_is_value(page))
1539 goto out;
83929372 1540
4101196b 1541 if (!page_cache_get_speculative(page))
4c7472c0 1542 goto repeat;
83929372 1543
4c7472c0 1544 /*
4101196b 1545 * Has the page moved or been split?
4c7472c0
MW
1546 * This is part of the lockless pagecache protocol. See
1547 * include/linux/pagemap.h for details.
1548 */
1549 if (unlikely(page != xas_reload(&xas))) {
4101196b 1550 put_page(page);
4c7472c0 1551 goto repeat;
a60637c8 1552 }
4101196b 1553 page = find_subpage(page, offset);
27d20fdd 1554out:
a60637c8
NP
1555 rcu_read_unlock();
1556
1da177e4
LT
1557 return page;
1558}
0cd6144a 1559EXPORT_SYMBOL(find_get_entry);
1da177e4 1560
0cd6144a
JW
1561/**
1562 * find_lock_entry - locate, pin and lock a page cache entry
1563 * @mapping: the address_space to search
1564 * @offset: the page cache index
1565 *
1566 * Looks up the page cache slot at @mapping & @offset. If there is a
1567 * page cache page, it is returned locked and with an increased
1568 * refcount.
1569 *
139b6a6f
JW
1570 * If the slot holds a shadow entry of a previously evicted page, or a
1571 * swap entry from shmem/tmpfs, it is returned.
0cd6144a 1572 *
0cd6144a 1573 * find_lock_entry() may sleep.
a862f68a
MR
1574 *
1575 * Return: the found page or shadow entry, %NULL if nothing is found.
0cd6144a
JW
1576 */
1577struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1da177e4
LT
1578{
1579 struct page *page;
1580
1da177e4 1581repeat:
0cd6144a 1582 page = find_get_entry(mapping, offset);
4c7472c0 1583 if (page && !xa_is_value(page)) {
a60637c8
NP
1584 lock_page(page);
1585 /* Has the page been truncated? */
83929372 1586 if (unlikely(page_mapping(page) != mapping)) {
a60637c8 1587 unlock_page(page);
09cbfeaf 1588 put_page(page);
a60637c8 1589 goto repeat;
1da177e4 1590 }
83929372 1591 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1da177e4 1592 }
1da177e4
LT
1593 return page;
1594}
0cd6144a
JW
1595EXPORT_SYMBOL(find_lock_entry);
1596
1597/**
2457aec6 1598 * pagecache_get_page - find and get a page reference
0cd6144a
JW
1599 * @mapping: the address_space to search
1600 * @offset: the page index
2457aec6 1601 * @fgp_flags: PCG flags
45f87de5 1602 * @gfp_mask: gfp mask to use for the page cache data page allocation
0cd6144a 1603 *
2457aec6 1604 * Looks up the page cache slot at @mapping & @offset.
1da177e4 1605 *
75325189 1606 * PCG flags modify how the page is returned.
0cd6144a 1607 *
0e056eb5 1608 * @fgp_flags can be:
1609 *
1610 * - FGP_ACCESSED: the page will be marked accessed
1611 * - FGP_LOCK: Page is return locked
1612 * - FGP_CREAT: If page is not present then a new page is allocated using
1613 * @gfp_mask and added to the page cache and the VM's LRU
1614 * list. The page is returned locked and with an increased
a862f68a 1615 * refcount.
a75d4c33
JB
1616 * - FGP_FOR_MMAP: Similar to FGP_CREAT, only we want to allow the caller to do
1617 * its own locking dance if the page is already in cache, or unlock the page
1618 * before returning if we had to add the page to pagecache.
1da177e4 1619 *
2457aec6
MG
1620 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1621 * if the GFP flags specified for FGP_CREAT are atomic.
1da177e4 1622 *
2457aec6 1623 * If there is a page cache page, it is returned with an increased refcount.
a862f68a
MR
1624 *
1625 * Return: the found page or %NULL otherwise.
1da177e4 1626 */
2457aec6 1627struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
45f87de5 1628 int fgp_flags, gfp_t gfp_mask)
1da177e4 1629{
eb2be189 1630 struct page *page;
2457aec6 1631
1da177e4 1632repeat:
2457aec6 1633 page = find_get_entry(mapping, offset);
3159f943 1634 if (xa_is_value(page))
2457aec6
MG
1635 page = NULL;
1636 if (!page)
1637 goto no_page;
1638
1639 if (fgp_flags & FGP_LOCK) {
1640 if (fgp_flags & FGP_NOWAIT) {
1641 if (!trylock_page(page)) {
09cbfeaf 1642 put_page(page);
2457aec6
MG
1643 return NULL;
1644 }
1645 } else {
1646 lock_page(page);
1647 }
1648
1649 /* Has the page been truncated? */
31895438 1650 if (unlikely(compound_head(page)->mapping != mapping)) {
2457aec6 1651 unlock_page(page);
09cbfeaf 1652 put_page(page);
2457aec6
MG
1653 goto repeat;
1654 }
1655 VM_BUG_ON_PAGE(page->index != offset, page);
1656 }
1657
c16eb000 1658 if (fgp_flags & FGP_ACCESSED)
2457aec6
MG
1659 mark_page_accessed(page);
1660
1661no_page:
1662 if (!page && (fgp_flags & FGP_CREAT)) {
1663 int err;
1664 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
45f87de5
MH
1665 gfp_mask |= __GFP_WRITE;
1666 if (fgp_flags & FGP_NOFS)
1667 gfp_mask &= ~__GFP_FS;
2457aec6 1668
45f87de5 1669 page = __page_cache_alloc(gfp_mask);
eb2be189
NP
1670 if (!page)
1671 return NULL;
2457aec6 1672
a75d4c33 1673 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
2457aec6
MG
1674 fgp_flags |= FGP_LOCK;
1675
eb39d618 1676 /* Init accessed so avoid atomic mark_page_accessed later */
2457aec6 1677 if (fgp_flags & FGP_ACCESSED)
eb39d618 1678 __SetPageReferenced(page);
2457aec6 1679
abc1be13 1680 err = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
eb2be189 1681 if (unlikely(err)) {
09cbfeaf 1682 put_page(page);
eb2be189
NP
1683 page = NULL;
1684 if (err == -EEXIST)
1685 goto repeat;
1da177e4 1686 }
a75d4c33
JB
1687
1688 /*
1689 * add_to_page_cache_lru locks the page, and for mmap we expect
1690 * an unlocked page.
1691 */
1692 if (page && (fgp_flags & FGP_FOR_MMAP))
1693 unlock_page(page);
1da177e4 1694 }
2457aec6 1695
1da177e4
LT
1696 return page;
1697}
2457aec6 1698EXPORT_SYMBOL(pagecache_get_page);
1da177e4 1699
0cd6144a
JW
1700/**
1701 * find_get_entries - gang pagecache lookup
1702 * @mapping: The address_space to search
1703 * @start: The starting page cache index
1704 * @nr_entries: The maximum number of entries
1705 * @entries: Where the resulting entries are placed
1706 * @indices: The cache indices corresponding to the entries in @entries
1707 *
1708 * find_get_entries() will search for and return a group of up to
1709 * @nr_entries entries in the mapping. The entries are placed at
1710 * @entries. find_get_entries() takes a reference against any actual
1711 * pages it returns.
1712 *
1713 * The search returns a group of mapping-contiguous page cache entries
1714 * with ascending indexes. There may be holes in the indices due to
1715 * not-present pages.
1716 *
139b6a6f
JW
1717 * Any shadow entries of evicted pages, or swap entries from
1718 * shmem/tmpfs, are included in the returned array.
0cd6144a 1719 *
a862f68a 1720 * Return: the number of pages and shadow entries which were found.
0cd6144a
JW
1721 */
1722unsigned find_get_entries(struct address_space *mapping,
1723 pgoff_t start, unsigned int nr_entries,
1724 struct page **entries, pgoff_t *indices)
1725{
f280bf09
MW
1726 XA_STATE(xas, &mapping->i_pages, start);
1727 struct page *page;
0cd6144a 1728 unsigned int ret = 0;
0cd6144a
JW
1729
1730 if (!nr_entries)
1731 return 0;
1732
1733 rcu_read_lock();
f280bf09 1734 xas_for_each(&xas, page, ULONG_MAX) {
f280bf09 1735 if (xas_retry(&xas, page))
0cd6144a 1736 continue;
f280bf09
MW
1737 /*
1738 * A shadow entry of a recently evicted page, a swap
1739 * entry from shmem/tmpfs or a DAX entry. Return it
1740 * without attempting to raise page count.
1741 */
1742 if (xa_is_value(page))
0cd6144a 1743 goto export;
83929372 1744
4101196b 1745 if (!page_cache_get_speculative(page))
f280bf09 1746 goto retry;
83929372 1747
4101196b 1748 /* Has the page moved or been split? */
f280bf09
MW
1749 if (unlikely(page != xas_reload(&xas)))
1750 goto put_page;
4101196b 1751 page = find_subpage(page, xas.xa_index);
f280bf09 1752
0cd6144a 1753export:
f280bf09 1754 indices[ret] = xas.xa_index;
0cd6144a
JW
1755 entries[ret] = page;
1756 if (++ret == nr_entries)
1757 break;
f280bf09
MW
1758 continue;
1759put_page:
4101196b 1760 put_page(page);
f280bf09
MW
1761retry:
1762 xas_reset(&xas);
0cd6144a
JW
1763 }
1764 rcu_read_unlock();
1765 return ret;
1766}
1767
1da177e4 1768/**
b947cee4 1769 * find_get_pages_range - gang pagecache lookup
1da177e4
LT
1770 * @mapping: The address_space to search
1771 * @start: The starting page index
b947cee4 1772 * @end: The final page index (inclusive)
1da177e4
LT
1773 * @nr_pages: The maximum number of pages
1774 * @pages: Where the resulting pages are placed
1775 *
b947cee4
JK
1776 * find_get_pages_range() will search for and return a group of up to @nr_pages
1777 * pages in the mapping starting at index @start and up to index @end
1778 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes
1779 * a reference against the returned pages.
1da177e4
LT
1780 *
1781 * The search returns a group of mapping-contiguous pages with ascending
1782 * indexes. There may be holes in the indices due to not-present pages.
d72dc8a2 1783 * We also update @start to index the next page for the traversal.
1da177e4 1784 *
a862f68a
MR
1785 * Return: the number of pages which were found. If this number is
1786 * smaller than @nr_pages, the end of specified range has been
b947cee4 1787 * reached.
1da177e4 1788 */
b947cee4
JK
1789unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1790 pgoff_t end, unsigned int nr_pages,
1791 struct page **pages)
1da177e4 1792{
fd1b3cee
MW
1793 XA_STATE(xas, &mapping->i_pages, *start);
1794 struct page *page;
0fc9d104
KK
1795 unsigned ret = 0;
1796
1797 if (unlikely(!nr_pages))
1798 return 0;
a60637c8
NP
1799
1800 rcu_read_lock();
fd1b3cee 1801 xas_for_each(&xas, page, end) {
fd1b3cee 1802 if (xas_retry(&xas, page))
a60637c8 1803 continue;
fd1b3cee
MW
1804 /* Skip over shadow, swap and DAX entries */
1805 if (xa_is_value(page))
8079b1c8 1806 continue;
a60637c8 1807
4101196b 1808 if (!page_cache_get_speculative(page))
fd1b3cee 1809 goto retry;
83929372 1810
4101196b 1811 /* Has the page moved or been split? */
fd1b3cee
MW
1812 if (unlikely(page != xas_reload(&xas)))
1813 goto put_page;
1da177e4 1814
4101196b 1815 pages[ret] = find_subpage(page, xas.xa_index);
b947cee4 1816 if (++ret == nr_pages) {
5d3ee42f 1817 *start = xas.xa_index + 1;
b947cee4
JK
1818 goto out;
1819 }
fd1b3cee
MW
1820 continue;
1821put_page:
4101196b 1822 put_page(page);
fd1b3cee
MW
1823retry:
1824 xas_reset(&xas);
a60637c8 1825 }
5b280c0c 1826
b947cee4
JK
1827 /*
1828 * We come here when there is no page beyond @end. We take care to not
1829 * overflow the index @start as it confuses some of the callers. This
fd1b3cee 1830 * breaks the iteration when there is a page at index -1 but that is
b947cee4
JK
1831 * already broken anyway.
1832 */
1833 if (end == (pgoff_t)-1)
1834 *start = (pgoff_t)-1;
1835 else
1836 *start = end + 1;
1837out:
a60637c8 1838 rcu_read_unlock();
d72dc8a2 1839
1da177e4
LT
1840 return ret;
1841}
1842
ebf43500
JA
1843/**
1844 * find_get_pages_contig - gang contiguous pagecache lookup
1845 * @mapping: The address_space to search
1846 * @index: The starting page index
1847 * @nr_pages: The maximum number of pages
1848 * @pages: Where the resulting pages are placed
1849 *
1850 * find_get_pages_contig() works exactly like find_get_pages(), except
1851 * that the returned number of pages are guaranteed to be contiguous.
1852 *
a862f68a 1853 * Return: the number of pages which were found.
ebf43500
JA
1854 */
1855unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1856 unsigned int nr_pages, struct page **pages)
1857{
3ece58a2
MW
1858 XA_STATE(xas, &mapping->i_pages, index);
1859 struct page *page;
0fc9d104
KK
1860 unsigned int ret = 0;
1861
1862 if (unlikely(!nr_pages))
1863 return 0;
a60637c8
NP
1864
1865 rcu_read_lock();
3ece58a2 1866 for (page = xas_load(&xas); page; page = xas_next(&xas)) {
3ece58a2
MW
1867 if (xas_retry(&xas, page))
1868 continue;
1869 /*
1870 * If the entry has been swapped out, we can stop looking.
1871 * No current caller is looking for DAX entries.
1872 */
1873 if (xa_is_value(page))
8079b1c8 1874 break;
ebf43500 1875
4101196b 1876 if (!page_cache_get_speculative(page))
3ece58a2 1877 goto retry;
83929372 1878
4101196b 1879 /* Has the page moved or been split? */
3ece58a2
MW
1880 if (unlikely(page != xas_reload(&xas)))
1881 goto put_page;
a60637c8 1882
4101196b 1883 pages[ret] = find_subpage(page, xas.xa_index);
0fc9d104
KK
1884 if (++ret == nr_pages)
1885 break;
3ece58a2
MW
1886 continue;
1887put_page:
4101196b 1888 put_page(page);
3ece58a2
MW
1889retry:
1890 xas_reset(&xas);
ebf43500 1891 }
a60637c8
NP
1892 rcu_read_unlock();
1893 return ret;
ebf43500 1894}
ef71c15c 1895EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 1896
485bb99b 1897/**
72b045ae 1898 * find_get_pages_range_tag - find and return pages in given range matching @tag
485bb99b
RD
1899 * @mapping: the address_space to search
1900 * @index: the starting page index
72b045ae 1901 * @end: The final page index (inclusive)
485bb99b
RD
1902 * @tag: the tag index
1903 * @nr_pages: the maximum number of pages
1904 * @pages: where the resulting pages are placed
1905 *
1da177e4 1906 * Like find_get_pages, except we only return pages which are tagged with
485bb99b 1907 * @tag. We update @index to index the next page for the traversal.
a862f68a
MR
1908 *
1909 * Return: the number of pages which were found.
1da177e4 1910 */
72b045ae 1911unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
a6906972 1912 pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
72b045ae 1913 struct page **pages)
1da177e4 1914{
a6906972
MW
1915 XA_STATE(xas, &mapping->i_pages, *index);
1916 struct page *page;
0fc9d104
KK
1917 unsigned ret = 0;
1918
1919 if (unlikely(!nr_pages))
1920 return 0;
a60637c8
NP
1921
1922 rcu_read_lock();
a6906972 1923 xas_for_each_marked(&xas, page, end, tag) {
a6906972 1924 if (xas_retry(&xas, page))
a60637c8 1925 continue;
a6906972
MW
1926 /*
1927 * Shadow entries should never be tagged, but this iteration
1928 * is lockless so there is a window for page reclaim to evict
1929 * a page we saw tagged. Skip over it.
1930 */
1931 if (xa_is_value(page))
139b6a6f 1932 continue;
a60637c8 1933
4101196b 1934 if (!page_cache_get_speculative(page))
a6906972 1935 goto retry;
a60637c8 1936
4101196b 1937 /* Has the page moved or been split? */
a6906972
MW
1938 if (unlikely(page != xas_reload(&xas)))
1939 goto put_page;
a60637c8 1940
4101196b 1941 pages[ret] = find_subpage(page, xas.xa_index);
72b045ae 1942 if (++ret == nr_pages) {
5d3ee42f 1943 *index = xas.xa_index + 1;
72b045ae
JK
1944 goto out;
1945 }
a6906972
MW
1946 continue;
1947put_page:
4101196b 1948 put_page(page);
a6906972
MW
1949retry:
1950 xas_reset(&xas);
a60637c8 1951 }
5b280c0c 1952
72b045ae 1953 /*
a6906972 1954 * We come here when we got to @end. We take care to not overflow the
72b045ae 1955 * index @index as it confuses some of the callers. This breaks the
a6906972
MW
1956 * iteration when there is a page at index -1 but that is already
1957 * broken anyway.
72b045ae
JK
1958 */
1959 if (end == (pgoff_t)-1)
1960 *index = (pgoff_t)-1;
1961 else
1962 *index = end + 1;
1963out:
a60637c8 1964 rcu_read_unlock();
1da177e4 1965
1da177e4
LT
1966 return ret;
1967}
72b045ae 1968EXPORT_SYMBOL(find_get_pages_range_tag);
1da177e4 1969
76d42bd9
WF
1970/*
1971 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1972 * a _large_ part of the i/o request. Imagine the worst scenario:
1973 *
1974 * ---R__________________________________________B__________
1975 * ^ reading here ^ bad block(assume 4k)
1976 *
1977 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1978 * => failing the whole request => read(R) => read(R+1) =>
1979 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1980 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1981 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1982 *
1983 * It is going insane. Fix it by quickly scaling down the readahead size.
1984 */
1985static void shrink_readahead_size_eio(struct file *filp,
1986 struct file_ra_state *ra)
1987{
76d42bd9 1988 ra->ra_pages /= 4;
76d42bd9
WF
1989}
1990
485bb99b 1991/**
47c27bc4
CH
1992 * generic_file_buffered_read - generic file read routine
1993 * @iocb: the iocb to read
6e58e79d
AV
1994 * @iter: data destination
1995 * @written: already copied
485bb99b 1996 *
1da177e4 1997 * This is a generic file read routine, and uses the
485bb99b 1998 * mapping->a_ops->readpage() function for the actual low-level stuff.
1da177e4
LT
1999 *
2000 * This is really ugly. But the goto's actually try to clarify some
2001 * of the logic when it comes to error handling etc.
a862f68a
MR
2002 *
2003 * Return:
2004 * * total number of bytes copied, including those the were already @written
2005 * * negative error code if nothing was copied
1da177e4 2006 */
47c27bc4 2007static ssize_t generic_file_buffered_read(struct kiocb *iocb,
6e58e79d 2008 struct iov_iter *iter, ssize_t written)
1da177e4 2009{
47c27bc4 2010 struct file *filp = iocb->ki_filp;
36e78914 2011 struct address_space *mapping = filp->f_mapping;
1da177e4 2012 struct inode *inode = mapping->host;
36e78914 2013 struct file_ra_state *ra = &filp->f_ra;
47c27bc4 2014 loff_t *ppos = &iocb->ki_pos;
57f6b96c
FW
2015 pgoff_t index;
2016 pgoff_t last_index;
2017 pgoff_t prev_index;
2018 unsigned long offset; /* offset into pagecache page */
ec0f1637 2019 unsigned int prev_offset;
6e58e79d 2020 int error = 0;
1da177e4 2021
c2a9737f 2022 if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
d05c5f7b 2023 return 0;
c2a9737f
WF
2024 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2025
09cbfeaf
KS
2026 index = *ppos >> PAGE_SHIFT;
2027 prev_index = ra->prev_pos >> PAGE_SHIFT;
2028 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
2029 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2030 offset = *ppos & ~PAGE_MASK;
1da177e4 2031
1da177e4
LT
2032 for (;;) {
2033 struct page *page;
57f6b96c 2034 pgoff_t end_index;
a32ea1e1 2035 loff_t isize;
1da177e4
LT
2036 unsigned long nr, ret;
2037
1da177e4 2038 cond_resched();
1da177e4 2039find_page:
5abf186a
MH
2040 if (fatal_signal_pending(current)) {
2041 error = -EINTR;
2042 goto out;
2043 }
2044
1da177e4 2045 page = find_get_page(mapping, index);
3ea89ee8 2046 if (!page) {
3239d834
MT
2047 if (iocb->ki_flags & IOCB_NOWAIT)
2048 goto would_block;
cf914a7d 2049 page_cache_sync_readahead(mapping,
7ff81078 2050 ra, filp,
3ea89ee8
FW
2051 index, last_index - index);
2052 page = find_get_page(mapping, index);
2053 if (unlikely(page == NULL))
2054 goto no_cached_page;
2055 }
2056 if (PageReadahead(page)) {
cf914a7d 2057 page_cache_async_readahead(mapping,
7ff81078 2058 ra, filp, page,
3ea89ee8 2059 index, last_index - index);
1da177e4 2060 }
8ab22b9a 2061 if (!PageUptodate(page)) {
3239d834
MT
2062 if (iocb->ki_flags & IOCB_NOWAIT) {
2063 put_page(page);
2064 goto would_block;
2065 }
2066
ebded027
MG
2067 /*
2068 * See comment in do_read_cache_page on why
2069 * wait_on_page_locked is used to avoid unnecessarily
2070 * serialisations and why it's safe.
2071 */
c4b209a4
BVA
2072 error = wait_on_page_locked_killable(page);
2073 if (unlikely(error))
2074 goto readpage_error;
ebded027
MG
2075 if (PageUptodate(page))
2076 goto page_ok;
2077
09cbfeaf 2078 if (inode->i_blkbits == PAGE_SHIFT ||
8ab22b9a
HH
2079 !mapping->a_ops->is_partially_uptodate)
2080 goto page_not_up_to_date;
6d6d36bc 2081 /* pipes can't handle partially uptodate pages */
00e23707 2082 if (unlikely(iov_iter_is_pipe(iter)))
6d6d36bc 2083 goto page_not_up_to_date;
529ae9aa 2084 if (!trylock_page(page))
8ab22b9a 2085 goto page_not_up_to_date;
8d056cb9
DH
2086 /* Did it get truncated before we got the lock? */
2087 if (!page->mapping)
2088 goto page_not_up_to_date_locked;
8ab22b9a 2089 if (!mapping->a_ops->is_partially_uptodate(page,
6e58e79d 2090 offset, iter->count))
8ab22b9a
HH
2091 goto page_not_up_to_date_locked;
2092 unlock_page(page);
2093 }
1da177e4 2094page_ok:
a32ea1e1
N
2095 /*
2096 * i_size must be checked after we know the page is Uptodate.
2097 *
2098 * Checking i_size after the check allows us to calculate
2099 * the correct value for "nr", which means the zero-filled
2100 * part of the page is not copied back to userspace (unless
2101 * another truncate extends the file - this is desired though).
2102 */
2103
2104 isize = i_size_read(inode);
09cbfeaf 2105 end_index = (isize - 1) >> PAGE_SHIFT;
a32ea1e1 2106 if (unlikely(!isize || index > end_index)) {
09cbfeaf 2107 put_page(page);
a32ea1e1
N
2108 goto out;
2109 }
2110
2111 /* nr is the maximum number of bytes to copy from this page */
09cbfeaf 2112 nr = PAGE_SIZE;
a32ea1e1 2113 if (index == end_index) {
09cbfeaf 2114 nr = ((isize - 1) & ~PAGE_MASK) + 1;
a32ea1e1 2115 if (nr <= offset) {
09cbfeaf 2116 put_page(page);
a32ea1e1
N
2117 goto out;
2118 }
2119 }
2120 nr = nr - offset;
1da177e4
LT
2121
2122 /* If users can be writing to this page using arbitrary
2123 * virtual addresses, take care about potential aliasing
2124 * before reading the page on the kernel side.
2125 */
2126 if (mapping_writably_mapped(mapping))
2127 flush_dcache_page(page);
2128
2129 /*
ec0f1637
JK
2130 * When a sequential read accesses a page several times,
2131 * only mark it as accessed the first time.
1da177e4 2132 */
ec0f1637 2133 if (prev_index != index || offset != prev_offset)
1da177e4
LT
2134 mark_page_accessed(page);
2135 prev_index = index;
2136
2137 /*
2138 * Ok, we have the page, and it's up-to-date, so
2139 * now we can copy it to user space...
1da177e4 2140 */
6e58e79d
AV
2141
2142 ret = copy_page_to_iter(page, offset, nr, iter);
1da177e4 2143 offset += ret;
09cbfeaf
KS
2144 index += offset >> PAGE_SHIFT;
2145 offset &= ~PAGE_MASK;
6ce745ed 2146 prev_offset = offset;
1da177e4 2147
09cbfeaf 2148 put_page(page);
6e58e79d
AV
2149 written += ret;
2150 if (!iov_iter_count(iter))
2151 goto out;
2152 if (ret < nr) {
2153 error = -EFAULT;
2154 goto out;
2155 }
2156 continue;
1da177e4
LT
2157
2158page_not_up_to_date:
2159 /* Get exclusive access to the page ... */
85462323
ON
2160 error = lock_page_killable(page);
2161 if (unlikely(error))
2162 goto readpage_error;
1da177e4 2163
8ab22b9a 2164page_not_up_to_date_locked:
da6052f7 2165 /* Did it get truncated before we got the lock? */
1da177e4
LT
2166 if (!page->mapping) {
2167 unlock_page(page);
09cbfeaf 2168 put_page(page);
1da177e4
LT
2169 continue;
2170 }
2171
2172 /* Did somebody else fill it already? */
2173 if (PageUptodate(page)) {
2174 unlock_page(page);
2175 goto page_ok;
2176 }
2177
2178readpage:
91803b49
JM
2179 /*
2180 * A previous I/O error may have been due to temporary
2181 * failures, eg. multipath errors.
2182 * PG_error will be set again if readpage fails.
2183 */
2184 ClearPageError(page);
1da177e4
LT
2185 /* Start the actual read. The read will unlock the page. */
2186 error = mapping->a_ops->readpage(filp, page);
2187
994fc28c
ZB
2188 if (unlikely(error)) {
2189 if (error == AOP_TRUNCATED_PAGE) {
09cbfeaf 2190 put_page(page);
6e58e79d 2191 error = 0;
994fc28c
ZB
2192 goto find_page;
2193 }
1da177e4 2194 goto readpage_error;
994fc28c 2195 }
1da177e4
LT
2196
2197 if (!PageUptodate(page)) {
85462323
ON
2198 error = lock_page_killable(page);
2199 if (unlikely(error))
2200 goto readpage_error;
1da177e4
LT
2201 if (!PageUptodate(page)) {
2202 if (page->mapping == NULL) {
2203 /*
2ecdc82e 2204 * invalidate_mapping_pages got it
1da177e4
LT
2205 */
2206 unlock_page(page);
09cbfeaf 2207 put_page(page);
1da177e4
LT
2208 goto find_page;
2209 }
2210 unlock_page(page);
7ff81078 2211 shrink_readahead_size_eio(filp, ra);
85462323
ON
2212 error = -EIO;
2213 goto readpage_error;
1da177e4
LT
2214 }
2215 unlock_page(page);
2216 }
2217
1da177e4
LT
2218 goto page_ok;
2219
2220readpage_error:
2221 /* UHHUH! A synchronous read error occurred. Report it */
09cbfeaf 2222 put_page(page);
1da177e4
LT
2223 goto out;
2224
2225no_cached_page:
2226 /*
2227 * Ok, it wasn't cached, so we need to create a new
2228 * page..
2229 */
453f85d4 2230 page = page_cache_alloc(mapping);
eb2be189 2231 if (!page) {
6e58e79d 2232 error = -ENOMEM;
eb2be189 2233 goto out;
1da177e4 2234 }
6afdb859 2235 error = add_to_page_cache_lru(page, mapping, index,
c62d2555 2236 mapping_gfp_constraint(mapping, GFP_KERNEL));
1da177e4 2237 if (error) {
09cbfeaf 2238 put_page(page);
6e58e79d
AV
2239 if (error == -EEXIST) {
2240 error = 0;
1da177e4 2241 goto find_page;
6e58e79d 2242 }
1da177e4
LT
2243 goto out;
2244 }
1da177e4
LT
2245 goto readpage;
2246 }
2247
3239d834
MT
2248would_block:
2249 error = -EAGAIN;
1da177e4 2250out:
7ff81078 2251 ra->prev_pos = prev_index;
09cbfeaf 2252 ra->prev_pos <<= PAGE_SHIFT;
7ff81078 2253 ra->prev_pos |= prev_offset;
1da177e4 2254
09cbfeaf 2255 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
0c6aa263 2256 file_accessed(filp);
6e58e79d 2257 return written ? written : error;
1da177e4
LT
2258}
2259
485bb99b 2260/**
6abd2322 2261 * generic_file_read_iter - generic filesystem read routine
485bb99b 2262 * @iocb: kernel I/O control block
6abd2322 2263 * @iter: destination for the data read
485bb99b 2264 *
6abd2322 2265 * This is the "read_iter()" routine for all filesystems
1da177e4 2266 * that can use the page cache directly.
a862f68a
MR
2267 * Return:
2268 * * number of bytes copied, even for partial reads
2269 * * negative error code if nothing was read
1da177e4
LT
2270 */
2271ssize_t
ed978a81 2272generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1da177e4 2273{
e7080a43 2274 size_t count = iov_iter_count(iter);
47c27bc4 2275 ssize_t retval = 0;
e7080a43
NS
2276
2277 if (!count)
2278 goto out; /* skip atime */
1da177e4 2279
2ba48ce5 2280 if (iocb->ki_flags & IOCB_DIRECT) {
47c27bc4 2281 struct file *file = iocb->ki_filp;
ed978a81
AV
2282 struct address_space *mapping = file->f_mapping;
2283 struct inode *inode = mapping->host;
543ade1f 2284 loff_t size;
1da177e4 2285
1da177e4 2286 size = i_size_read(inode);
6be96d3a
GR
2287 if (iocb->ki_flags & IOCB_NOWAIT) {
2288 if (filemap_range_has_page(mapping, iocb->ki_pos,
2289 iocb->ki_pos + count - 1))
2290 return -EAGAIN;
2291 } else {
2292 retval = filemap_write_and_wait_range(mapping,
2293 iocb->ki_pos,
2294 iocb->ki_pos + count - 1);
2295 if (retval < 0)
2296 goto out;
2297 }
d8d3d94b 2298
0d5b0cf2
CH
2299 file_accessed(file);
2300
5ecda137 2301 retval = mapping->a_ops->direct_IO(iocb, iter);
c3a69024 2302 if (retval >= 0) {
c64fb5c7 2303 iocb->ki_pos += retval;
5ecda137 2304 count -= retval;
9fe55eea 2305 }
5b47d59a 2306 iov_iter_revert(iter, count - iov_iter_count(iter));
66f998f6 2307
9fe55eea
SW
2308 /*
2309 * Btrfs can have a short DIO read if we encounter
2310 * compressed extents, so if there was an error, or if
2311 * we've already read everything we wanted to, or if
2312 * there was a short read because we hit EOF, go ahead
2313 * and return. Otherwise fallthrough to buffered io for
fbbbad4b
MW
2314 * the rest of the read. Buffered reads will not work for
2315 * DAX files, so don't bother trying.
9fe55eea 2316 */
5ecda137 2317 if (retval < 0 || !count || iocb->ki_pos >= size ||
0d5b0cf2 2318 IS_DAX(inode))
9fe55eea 2319 goto out;
1da177e4
LT
2320 }
2321
47c27bc4 2322 retval = generic_file_buffered_read(iocb, iter, retval);
1da177e4
LT
2323out:
2324 return retval;
2325}
ed978a81 2326EXPORT_SYMBOL(generic_file_read_iter);
1da177e4 2327
1da177e4 2328#ifdef CONFIG_MMU
1da177e4 2329#define MMAP_LOTSAMISS (100)
6b4c9f44
JB
2330static struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
2331 struct file *fpin)
2332{
2333 int flags = vmf->flags;
2334
2335 if (fpin)
2336 return fpin;
2337
2338 /*
2339 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
2340 * anything, so we only pin the file and drop the mmap_sem if only
2341 * FAULT_FLAG_ALLOW_RETRY is set.
2342 */
2343 if ((flags & (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT)) ==
2344 FAULT_FLAG_ALLOW_RETRY) {
2345 fpin = get_file(vmf->vma->vm_file);
2346 up_read(&vmf->vma->vm_mm->mmap_sem);
2347 }
2348 return fpin;
2349}
2350
2351/*
2352 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_sem
2353 * @vmf - the vm_fault for this fault.
2354 * @page - the page to lock.
2355 * @fpin - the pointer to the file we may pin (or is already pinned).
2356 *
2357 * This works similar to lock_page_or_retry in that it can drop the mmap_sem.
2358 * It differs in that it actually returns the page locked if it returns 1 and 0
2359 * if it couldn't lock the page. If we did have to drop the mmap_sem then fpin
2360 * will point to the pinned file and needs to be fput()'ed at a later point.
2361 */
2362static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2363 struct file **fpin)
2364{
2365 if (trylock_page(page))
2366 return 1;
2367
8b0f9fa2
LT
2368 /*
2369 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2370 * the mmap_sem still held. That's how FAULT_FLAG_RETRY_NOWAIT
2371 * is supposed to work. We have way too many special cases..
2372 */
6b4c9f44
JB
2373 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2374 return 0;
2375
2376 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2377 if (vmf->flags & FAULT_FLAG_KILLABLE) {
2378 if (__lock_page_killable(page)) {
2379 /*
2380 * We didn't have the right flags to drop the mmap_sem,
2381 * but all fault_handlers only check for fatal signals
2382 * if we return VM_FAULT_RETRY, so we need to drop the
2383 * mmap_sem here and return 0 if we don't have a fpin.
2384 */
2385 if (*fpin == NULL)
2386 up_read(&vmf->vma->vm_mm->mmap_sem);
2387 return 0;
2388 }
2389 } else
2390 __lock_page(page);
2391 return 1;
2392}
2393
1da177e4 2394
ef00e08e 2395/*
6b4c9f44
JB
2396 * Synchronous readahead happens when we don't even find a page in the page
2397 * cache at all. We don't want to perform IO under the mmap sem, so if we have
2398 * to drop the mmap sem we return the file that was pinned in order for us to do
2399 * that. If we didn't pin a file then we return NULL. The file that is
2400 * returned needs to be fput()'ed when we're done with it.
ef00e08e 2401 */
6b4c9f44 2402static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
ef00e08e 2403{
2a1180f1
JB
2404 struct file *file = vmf->vma->vm_file;
2405 struct file_ra_state *ra = &file->f_ra;
ef00e08e 2406 struct address_space *mapping = file->f_mapping;
6b4c9f44 2407 struct file *fpin = NULL;
2a1180f1 2408 pgoff_t offset = vmf->pgoff;
ef00e08e
LT
2409
2410 /* If we don't want any read-ahead, don't bother */
2a1180f1 2411 if (vmf->vma->vm_flags & VM_RAND_READ)
6b4c9f44 2412 return fpin;
275b12bf 2413 if (!ra->ra_pages)
6b4c9f44 2414 return fpin;
ef00e08e 2415
2a1180f1 2416 if (vmf->vma->vm_flags & VM_SEQ_READ) {
6b4c9f44 2417 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
7ffc59b4
WF
2418 page_cache_sync_readahead(mapping, ra, file, offset,
2419 ra->ra_pages);
6b4c9f44 2420 return fpin;
ef00e08e
LT
2421 }
2422
207d04ba
AK
2423 /* Avoid banging the cache line if not needed */
2424 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
ef00e08e
LT
2425 ra->mmap_miss++;
2426
2427 /*
2428 * Do we miss much more than hit in this file? If so,
2429 * stop bothering with read-ahead. It will only hurt.
2430 */
2431 if (ra->mmap_miss > MMAP_LOTSAMISS)
6b4c9f44 2432 return fpin;
ef00e08e 2433
d30a1100
WF
2434 /*
2435 * mmap read-around
2436 */
6b4c9f44 2437 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
600e19af
RG
2438 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2439 ra->size = ra->ra_pages;
2440 ra->async_size = ra->ra_pages / 4;
275b12bf 2441 ra_submit(ra, mapping, file);
6b4c9f44 2442 return fpin;
ef00e08e
LT
2443}
2444
2445/*
2446 * Asynchronous readahead happens when we find the page and PG_readahead,
6b4c9f44
JB
2447 * so we want to possibly extend the readahead further. We return the file that
2448 * was pinned if we have to drop the mmap_sem in order to do IO.
ef00e08e 2449 */
6b4c9f44
JB
2450static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2451 struct page *page)
ef00e08e 2452{
2a1180f1
JB
2453 struct file *file = vmf->vma->vm_file;
2454 struct file_ra_state *ra = &file->f_ra;
ef00e08e 2455 struct address_space *mapping = file->f_mapping;
6b4c9f44 2456 struct file *fpin = NULL;
2a1180f1 2457 pgoff_t offset = vmf->pgoff;
ef00e08e
LT
2458
2459 /* If we don't want any read-ahead, don't bother */
2a1180f1 2460 if (vmf->vma->vm_flags & VM_RAND_READ)
6b4c9f44 2461 return fpin;
ef00e08e
LT
2462 if (ra->mmap_miss > 0)
2463 ra->mmap_miss--;
6b4c9f44
JB
2464 if (PageReadahead(page)) {
2465 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2fad6f5d
WF
2466 page_cache_async_readahead(mapping, ra, file,
2467 page, offset, ra->ra_pages);
6b4c9f44
JB
2468 }
2469 return fpin;
ef00e08e
LT
2470}
2471
485bb99b 2472/**
54cb8821 2473 * filemap_fault - read in file data for page fault handling
d0217ac0 2474 * @vmf: struct vm_fault containing details of the fault
485bb99b 2475 *
54cb8821 2476 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
2477 * mapped memory region to read in file data during a page fault.
2478 *
2479 * The goto's are kind of ugly, but this streamlines the normal case of having
2480 * it in the page cache, and handles the special cases reasonably without
2481 * having a lot of duplicated code.
9a95f3cf
PC
2482 *
2483 * vma->vm_mm->mmap_sem must be held on entry.
2484 *
a4985833
YS
2485 * If our return value has VM_FAULT_RETRY set, it's because the mmap_sem
2486 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
9a95f3cf
PC
2487 *
2488 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2489 * has not been released.
2490 *
2491 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
a862f68a
MR
2492 *
2493 * Return: bitwise-OR of %VM_FAULT_ codes.
1da177e4 2494 */
2bcd6454 2495vm_fault_t filemap_fault(struct vm_fault *vmf)
1da177e4
LT
2496{
2497 int error;
11bac800 2498 struct file *file = vmf->vma->vm_file;
6b4c9f44 2499 struct file *fpin = NULL;
1da177e4
LT
2500 struct address_space *mapping = file->f_mapping;
2501 struct file_ra_state *ra = &file->f_ra;
2502 struct inode *inode = mapping->host;
ef00e08e 2503 pgoff_t offset = vmf->pgoff;
9ab2594f 2504 pgoff_t max_off;
1da177e4 2505 struct page *page;
2bcd6454 2506 vm_fault_t ret = 0;
1da177e4 2507
9ab2594f
MW
2508 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2509 if (unlikely(offset >= max_off))
5307cc1a 2510 return VM_FAULT_SIGBUS;
1da177e4 2511
1da177e4 2512 /*
49426420 2513 * Do we have something in the page cache already?
1da177e4 2514 */
ef00e08e 2515 page = find_get_page(mapping, offset);
45cac65b 2516 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1da177e4 2517 /*
ef00e08e
LT
2518 * We found the page, so try async readahead before
2519 * waiting for the lock.
1da177e4 2520 */
6b4c9f44 2521 fpin = do_async_mmap_readahead(vmf, page);
45cac65b 2522 } else if (!page) {
ef00e08e 2523 /* No page in the page cache at all */
ef00e08e 2524 count_vm_event(PGMAJFAULT);
2262185c 2525 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
ef00e08e 2526 ret = VM_FAULT_MAJOR;
6b4c9f44 2527 fpin = do_sync_mmap_readahead(vmf);
ef00e08e 2528retry_find:
a75d4c33
JB
2529 page = pagecache_get_page(mapping, offset,
2530 FGP_CREAT|FGP_FOR_MMAP,
2531 vmf->gfp_mask);
6b4c9f44
JB
2532 if (!page) {
2533 if (fpin)
2534 goto out_retry;
a75d4c33 2535 return vmf_error(-ENOMEM);
6b4c9f44 2536 }
1da177e4
LT
2537 }
2538
6b4c9f44
JB
2539 if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
2540 goto out_retry;
b522c94d
ML
2541
2542 /* Did it get truncated? */
585e5a7b 2543 if (unlikely(compound_head(page)->mapping != mapping)) {
b522c94d
ML
2544 unlock_page(page);
2545 put_page(page);
2546 goto retry_find;
2547 }
520e5ba4 2548 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
b522c94d 2549
1da177e4 2550 /*
d00806b1
NP
2551 * We have a locked page in the page cache, now we need to check
2552 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 2553 */
d00806b1 2554 if (unlikely(!PageUptodate(page)))
1da177e4
LT
2555 goto page_not_uptodate;
2556
6b4c9f44
JB
2557 /*
2558 * We've made it this far and we had to drop our mmap_sem, now is the
2559 * time to return to the upper layer and have it re-find the vma and
2560 * redo the fault.
2561 */
2562 if (fpin) {
2563 unlock_page(page);
2564 goto out_retry;
2565 }
2566
ef00e08e
LT
2567 /*
2568 * Found the page and have a reference on it.
2569 * We must recheck i_size under page lock.
2570 */
9ab2594f
MW
2571 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2572 if (unlikely(offset >= max_off)) {
d00806b1 2573 unlock_page(page);
09cbfeaf 2574 put_page(page);
5307cc1a 2575 return VM_FAULT_SIGBUS;
d00806b1
NP
2576 }
2577
d0217ac0 2578 vmf->page = page;
83c54070 2579 return ret | VM_FAULT_LOCKED;
1da177e4 2580
1da177e4 2581page_not_uptodate:
1da177e4
LT
2582 /*
2583 * Umm, take care of errors if the page isn't up-to-date.
2584 * Try to re-read it _once_. We do this synchronously,
2585 * because there really aren't any performance issues here
2586 * and we need to check for errors.
2587 */
1da177e4 2588 ClearPageError(page);
6b4c9f44 2589 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
994fc28c 2590 error = mapping->a_ops->readpage(file, page);
3ef0f720
MS
2591 if (!error) {
2592 wait_on_page_locked(page);
2593 if (!PageUptodate(page))
2594 error = -EIO;
2595 }
6b4c9f44
JB
2596 if (fpin)
2597 goto out_retry;
09cbfeaf 2598 put_page(page);
d00806b1
NP
2599
2600 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 2601 goto retry_find;
1da177e4 2602
d00806b1 2603 /* Things didn't work out. Return zero to tell the mm layer so. */
76d42bd9 2604 shrink_readahead_size_eio(file, ra);
d0217ac0 2605 return VM_FAULT_SIGBUS;
6b4c9f44
JB
2606
2607out_retry:
2608 /*
2609 * We dropped the mmap_sem, we need to return to the fault handler to
2610 * re-find the vma and come back and find our hopefully still populated
2611 * page.
2612 */
2613 if (page)
2614 put_page(page);
2615 if (fpin)
2616 fput(fpin);
2617 return ret | VM_FAULT_RETRY;
54cb8821
NP
2618}
2619EXPORT_SYMBOL(filemap_fault);
2620
82b0f8c3 2621void filemap_map_pages(struct vm_fault *vmf,
bae473a4 2622 pgoff_t start_pgoff, pgoff_t end_pgoff)
f1820361 2623{
82b0f8c3 2624 struct file *file = vmf->vma->vm_file;
f1820361 2625 struct address_space *mapping = file->f_mapping;
bae473a4 2626 pgoff_t last_pgoff = start_pgoff;
9ab2594f 2627 unsigned long max_idx;
070e807c 2628 XA_STATE(xas, &mapping->i_pages, start_pgoff);
4101196b 2629 struct page *page;
f1820361
KS
2630
2631 rcu_read_lock();
070e807c
MW
2632 xas_for_each(&xas, page, end_pgoff) {
2633 if (xas_retry(&xas, page))
2634 continue;
2635 if (xa_is_value(page))
2cf938aa 2636 goto next;
f1820361 2637
e0975b2a
MH
2638 /*
2639 * Check for a locked page first, as a speculative
2640 * reference may adversely influence page migration.
2641 */
4101196b 2642 if (PageLocked(page))
e0975b2a 2643 goto next;
4101196b 2644 if (!page_cache_get_speculative(page))
070e807c 2645 goto next;
f1820361 2646
4101196b 2647 /* Has the page moved or been split? */
070e807c
MW
2648 if (unlikely(page != xas_reload(&xas)))
2649 goto skip;
4101196b 2650 page = find_subpage(page, xas.xa_index);
f1820361
KS
2651
2652 if (!PageUptodate(page) ||
2653 PageReadahead(page) ||
2654 PageHWPoison(page))
2655 goto skip;
2656 if (!trylock_page(page))
2657 goto skip;
2658
2659 if (page->mapping != mapping || !PageUptodate(page))
2660 goto unlock;
2661
9ab2594f
MW
2662 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2663 if (page->index >= max_idx)
f1820361
KS
2664 goto unlock;
2665
f1820361
KS
2666 if (file->f_ra.mmap_miss > 0)
2667 file->f_ra.mmap_miss--;
7267ec00 2668
070e807c 2669 vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
82b0f8c3 2670 if (vmf->pte)
070e807c
MW
2671 vmf->pte += xas.xa_index - last_pgoff;
2672 last_pgoff = xas.xa_index;
82b0f8c3 2673 if (alloc_set_pte(vmf, NULL, page))
7267ec00 2674 goto unlock;
f1820361
KS
2675 unlock_page(page);
2676 goto next;
2677unlock:
2678 unlock_page(page);
2679skip:
09cbfeaf 2680 put_page(page);
f1820361 2681next:
7267ec00 2682 /* Huge page is mapped? No need to proceed. */
82b0f8c3 2683 if (pmd_trans_huge(*vmf->pmd))
7267ec00 2684 break;
f1820361
KS
2685 }
2686 rcu_read_unlock();
2687}
2688EXPORT_SYMBOL(filemap_map_pages);
2689
2bcd6454 2690vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
4fcf1c62
JK
2691{
2692 struct page *page = vmf->page;
11bac800 2693 struct inode *inode = file_inode(vmf->vma->vm_file);
2bcd6454 2694 vm_fault_t ret = VM_FAULT_LOCKED;
4fcf1c62 2695
14da9200 2696 sb_start_pagefault(inode->i_sb);
11bac800 2697 file_update_time(vmf->vma->vm_file);
4fcf1c62
JK
2698 lock_page(page);
2699 if (page->mapping != inode->i_mapping) {
2700 unlock_page(page);
2701 ret = VM_FAULT_NOPAGE;
2702 goto out;
2703 }
14da9200
JK
2704 /*
2705 * We mark the page dirty already here so that when freeze is in
2706 * progress, we are guaranteed that writeback during freezing will
2707 * see the dirty page and writeprotect it again.
2708 */
2709 set_page_dirty(page);
1d1d1a76 2710 wait_for_stable_page(page);
4fcf1c62 2711out:
14da9200 2712 sb_end_pagefault(inode->i_sb);
4fcf1c62
JK
2713 return ret;
2714}
4fcf1c62 2715
f0f37e2f 2716const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 2717 .fault = filemap_fault,
f1820361 2718 .map_pages = filemap_map_pages,
4fcf1c62 2719 .page_mkwrite = filemap_page_mkwrite,
1da177e4
LT
2720};
2721
2722/* This is used for a general mmap of a disk file */
2723
2724int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2725{
2726 struct address_space *mapping = file->f_mapping;
2727
2728 if (!mapping->a_ops->readpage)
2729 return -ENOEXEC;
2730 file_accessed(file);
2731 vma->vm_ops = &generic_file_vm_ops;
2732 return 0;
2733}
1da177e4
LT
2734
2735/*
2736 * This is for filesystems which do not implement ->writepage.
2737 */
2738int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2739{
2740 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2741 return -EINVAL;
2742 return generic_file_mmap(file, vma);
2743}
2744#else
4b96a37d 2745vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
45397228 2746{
4b96a37d 2747 return VM_FAULT_SIGBUS;
45397228 2748}
1da177e4
LT
2749int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2750{
2751 return -ENOSYS;
2752}
2753int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2754{
2755 return -ENOSYS;
2756}
2757#endif /* CONFIG_MMU */
2758
45397228 2759EXPORT_SYMBOL(filemap_page_mkwrite);
1da177e4
LT
2760EXPORT_SYMBOL(generic_file_mmap);
2761EXPORT_SYMBOL(generic_file_readonly_mmap);
2762
67f9fd91
SL
2763static struct page *wait_on_page_read(struct page *page)
2764{
2765 if (!IS_ERR(page)) {
2766 wait_on_page_locked(page);
2767 if (!PageUptodate(page)) {
09cbfeaf 2768 put_page(page);
67f9fd91
SL
2769 page = ERR_PTR(-EIO);
2770 }
2771 }
2772 return page;
2773}
2774
32b63529 2775static struct page *do_read_cache_page(struct address_space *mapping,
57f6b96c 2776 pgoff_t index,
5e5358e7 2777 int (*filler)(void *, struct page *),
0531b2aa
LT
2778 void *data,
2779 gfp_t gfp)
1da177e4 2780{
eb2be189 2781 struct page *page;
1da177e4
LT
2782 int err;
2783repeat:
2784 page = find_get_page(mapping, index);
2785 if (!page) {
453f85d4 2786 page = __page_cache_alloc(gfp);
eb2be189
NP
2787 if (!page)
2788 return ERR_PTR(-ENOMEM);
e6f67b8c 2789 err = add_to_page_cache_lru(page, mapping, index, gfp);
eb2be189 2790 if (unlikely(err)) {
09cbfeaf 2791 put_page(page);
eb2be189
NP
2792 if (err == -EEXIST)
2793 goto repeat;
22ecdb4f 2794 /* Presumably ENOMEM for xarray node */
1da177e4
LT
2795 return ERR_PTR(err);
2796 }
32b63529
MG
2797
2798filler:
6c45b454
CH
2799 if (filler)
2800 err = filler(data, page);
2801 else
2802 err = mapping->a_ops->readpage(data, page);
2803
1da177e4 2804 if (err < 0) {
09cbfeaf 2805 put_page(page);
32b63529 2806 return ERR_PTR(err);
1da177e4 2807 }
1da177e4 2808
32b63529
MG
2809 page = wait_on_page_read(page);
2810 if (IS_ERR(page))
2811 return page;
2812 goto out;
2813 }
1da177e4
LT
2814 if (PageUptodate(page))
2815 goto out;
2816
ebded027
MG
2817 /*
2818 * Page is not up to date and may be locked due one of the following
2819 * case a: Page is being filled and the page lock is held
2820 * case b: Read/write error clearing the page uptodate status
2821 * case c: Truncation in progress (page locked)
2822 * case d: Reclaim in progress
2823 *
2824 * Case a, the page will be up to date when the page is unlocked.
2825 * There is no need to serialise on the page lock here as the page
2826 * is pinned so the lock gives no additional protection. Even if the
2827 * the page is truncated, the data is still valid if PageUptodate as
2828 * it's a race vs truncate race.
2829 * Case b, the page will not be up to date
2830 * Case c, the page may be truncated but in itself, the data may still
2831 * be valid after IO completes as it's a read vs truncate race. The
2832 * operation must restart if the page is not uptodate on unlock but
2833 * otherwise serialising on page lock to stabilise the mapping gives
2834 * no additional guarantees to the caller as the page lock is
2835 * released before return.
2836 * Case d, similar to truncation. If reclaim holds the page lock, it
2837 * will be a race with remove_mapping that determines if the mapping
2838 * is valid on unlock but otherwise the data is valid and there is
2839 * no need to serialise with page lock.
2840 *
2841 * As the page lock gives no additional guarantee, we optimistically
2842 * wait on the page to be unlocked and check if it's up to date and
2843 * use the page if it is. Otherwise, the page lock is required to
2844 * distinguish between the different cases. The motivation is that we
2845 * avoid spurious serialisations and wakeups when multiple processes
2846 * wait on the same page for IO to complete.
2847 */
2848 wait_on_page_locked(page);
2849 if (PageUptodate(page))
2850 goto out;
2851
2852 /* Distinguish between all the cases under the safety of the lock */
1da177e4 2853 lock_page(page);
ebded027
MG
2854
2855 /* Case c or d, restart the operation */
1da177e4
LT
2856 if (!page->mapping) {
2857 unlock_page(page);
09cbfeaf 2858 put_page(page);
32b63529 2859 goto repeat;
1da177e4 2860 }
ebded027
MG
2861
2862 /* Someone else locked and filled the page in a very small window */
1da177e4
LT
2863 if (PageUptodate(page)) {
2864 unlock_page(page);
2865 goto out;
2866 }
32b63529
MG
2867 goto filler;
2868
c855ff37 2869out:
6fe6900e
NP
2870 mark_page_accessed(page);
2871 return page;
2872}
0531b2aa
LT
2873
2874/**
67f9fd91 2875 * read_cache_page - read into page cache, fill it if needed
0531b2aa
LT
2876 * @mapping: the page's address_space
2877 * @index: the page index
2878 * @filler: function to perform the read
5e5358e7 2879 * @data: first arg to filler(data, page) function, often left as NULL
0531b2aa 2880 *
0531b2aa 2881 * Read into the page cache. If a page already exists, and PageUptodate() is
67f9fd91 2882 * not set, try to fill the page and wait for it to become unlocked.
0531b2aa
LT
2883 *
2884 * If the page does not get brought uptodate, return -EIO.
a862f68a
MR
2885 *
2886 * Return: up to date page on success, ERR_PTR() on failure.
0531b2aa 2887 */
67f9fd91 2888struct page *read_cache_page(struct address_space *mapping,
0531b2aa 2889 pgoff_t index,
5e5358e7 2890 int (*filler)(void *, struct page *),
0531b2aa
LT
2891 void *data)
2892{
d322a8e5
CH
2893 return do_read_cache_page(mapping, index, filler, data,
2894 mapping_gfp_mask(mapping));
0531b2aa 2895}
67f9fd91 2896EXPORT_SYMBOL(read_cache_page);
0531b2aa
LT
2897
2898/**
2899 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2900 * @mapping: the page's address_space
2901 * @index: the page index
2902 * @gfp: the page allocator flags to use if allocating
2903 *
2904 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
e6f67b8c 2905 * any new page allocations done using the specified allocation flags.
0531b2aa
LT
2906 *
2907 * If the page does not get brought uptodate, return -EIO.
a862f68a
MR
2908 *
2909 * Return: up to date page on success, ERR_PTR() on failure.
0531b2aa
LT
2910 */
2911struct page *read_cache_page_gfp(struct address_space *mapping,
2912 pgoff_t index,
2913 gfp_t gfp)
2914{
6c45b454 2915 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
0531b2aa
LT
2916}
2917EXPORT_SYMBOL(read_cache_page_gfp);
2918
9fd91a90
DW
2919/*
2920 * Don't operate on ranges the page cache doesn't support, and don't exceed the
2921 * LFS limits. If pos is under the limit it becomes a short access. If it
2922 * exceeds the limit we return -EFBIG.
2923 */
9fd91a90
DW
2924static int generic_write_check_limits(struct file *file, loff_t pos,
2925 loff_t *count)
2926{
646955cd
AG
2927 struct inode *inode = file->f_mapping->host;
2928 loff_t max_size = inode->i_sb->s_maxbytes;
9fd91a90
DW
2929 loff_t limit = rlimit(RLIMIT_FSIZE);
2930
2931 if (limit != RLIM_INFINITY) {
2932 if (pos >= limit) {
2933 send_sig(SIGXFSZ, current, 0);
2934 return -EFBIG;
2935 }
2936 *count = min(*count, limit - pos);
2937 }
2938
646955cd
AG
2939 if (!(file->f_flags & O_LARGEFILE))
2940 max_size = MAX_NON_LFS;
2941
2942 if (unlikely(pos >= max_size))
2943 return -EFBIG;
2944
2945 *count = min(*count, max_size - pos);
2946
2947 return 0;
9fd91a90
DW
2948}
2949
1da177e4
LT
2950/*
2951 * Performs necessary checks before doing a write
2952 *
485bb99b 2953 * Can adjust writing position or amount of bytes to write.
1da177e4
LT
2954 * Returns appropriate error code that caller should return or
2955 * zero in case that write should be allowed.
2956 */
3309dd04 2957inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
1da177e4 2958{
3309dd04 2959 struct file *file = iocb->ki_filp;
1da177e4 2960 struct inode *inode = file->f_mapping->host;
9fd91a90
DW
2961 loff_t count;
2962 int ret;
1da177e4 2963
dc617f29
DW
2964 if (IS_SWAPFILE(inode))
2965 return -ETXTBSY;
2966
3309dd04
AV
2967 if (!iov_iter_count(from))
2968 return 0;
1da177e4 2969
0fa6b005 2970 /* FIXME: this is for backwards compatibility with 2.4 */
2ba48ce5 2971 if (iocb->ki_flags & IOCB_APPEND)
3309dd04 2972 iocb->ki_pos = i_size_read(inode);
1da177e4 2973
6be96d3a
GR
2974 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2975 return -EINVAL;
2976
9fd91a90
DW
2977 count = iov_iter_count(from);
2978 ret = generic_write_check_limits(file, iocb->ki_pos, &count);
2979 if (ret)
2980 return ret;
1da177e4 2981
9fd91a90 2982 iov_iter_truncate(from, count);
3309dd04 2983 return iov_iter_count(from);
1da177e4
LT
2984}
2985EXPORT_SYMBOL(generic_write_checks);
2986
1383a7ed
DW
2987/*
2988 * Performs necessary checks before doing a clone.
2989 *
646955cd 2990 * Can adjust amount of bytes to clone via @req_count argument.
1383a7ed
DW
2991 * Returns appropriate error code that caller should return or
2992 * zero in case the clone should be allowed.
2993 */
2994int generic_remap_checks(struct file *file_in, loff_t pos_in,
2995 struct file *file_out, loff_t pos_out,
42ec3d4c 2996 loff_t *req_count, unsigned int remap_flags)
1383a7ed
DW
2997{
2998 struct inode *inode_in = file_in->f_mapping->host;
2999 struct inode *inode_out = file_out->f_mapping->host;
3000 uint64_t count = *req_count;
3001 uint64_t bcount;
3002 loff_t size_in, size_out;
3003 loff_t bs = inode_out->i_sb->s_blocksize;
9fd91a90 3004 int ret;
1383a7ed
DW
3005
3006 /* The start of both ranges must be aligned to an fs block. */
3007 if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs))
3008 return -EINVAL;
3009
3010 /* Ensure offsets don't wrap. */
3011 if (pos_in + count < pos_in || pos_out + count < pos_out)
3012 return -EINVAL;
3013
3014 size_in = i_size_read(inode_in);
3015 size_out = i_size_read(inode_out);
3016
3017 /* Dedupe requires both ranges to be within EOF. */
3d28193e 3018 if ((remap_flags & REMAP_FILE_DEDUP) &&
1383a7ed
DW
3019 (pos_in >= size_in || pos_in + count > size_in ||
3020 pos_out >= size_out || pos_out + count > size_out))
3021 return -EINVAL;
3022
3023 /* Ensure the infile range is within the infile. */
3024 if (pos_in >= size_in)
3025 return -EINVAL;
3026 count = min(count, size_in - (uint64_t)pos_in);
3027
9fd91a90
DW
3028 ret = generic_write_check_limits(file_out, pos_out, &count);
3029 if (ret)
3030 return ret;
1da177e4
LT
3031
3032 /*
1383a7ed
DW
3033 * If the user wanted us to link to the infile's EOF, round up to the
3034 * next block boundary for this check.
3035 *
3036 * Otherwise, make sure the count is also block-aligned, having
3037 * already confirmed the starting offsets' block alignment.
1da177e4 3038 */
1383a7ed
DW
3039 if (pos_in + count == size_in) {
3040 bcount = ALIGN(size_in, bs) - pos_in;
3041 } else {
3042 if (!IS_ALIGNED(count, bs))
eca3654e 3043 count = ALIGN_DOWN(count, bs);
1383a7ed 3044 bcount = count;
1da177e4
LT
3045 }
3046
1383a7ed
DW
3047 /* Don't allow overlapped cloning within the same file. */
3048 if (inode_in == inode_out &&
3049 pos_out + bcount > pos_in &&
3050 pos_out < pos_in + bcount)
3051 return -EINVAL;
3052
1da177e4 3053 /*
eca3654e
DW
3054 * We shortened the request but the caller can't deal with that, so
3055 * bounce the request back to userspace.
1da177e4 3056 */
eca3654e 3057 if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN))
1383a7ed 3058 return -EINVAL;
1da177e4 3059
eca3654e 3060 *req_count = count;
1383a7ed 3061 return 0;
1da177e4 3062}
1da177e4 3063
a3171351
AG
3064
3065/*
3066 * Performs common checks before doing a file copy/clone
3067 * from @file_in to @file_out.
3068 */
3069int generic_file_rw_checks(struct file *file_in, struct file *file_out)
3070{
3071 struct inode *inode_in = file_inode(file_in);
3072 struct inode *inode_out = file_inode(file_out);
3073
3074 /* Don't copy dirs, pipes, sockets... */
3075 if (S_ISDIR(inode_in->i_mode) || S_ISDIR(inode_out->i_mode))
3076 return -EISDIR;
3077 if (!S_ISREG(inode_in->i_mode) || !S_ISREG(inode_out->i_mode))
3078 return -EINVAL;
3079
3080 if (!(file_in->f_mode & FMODE_READ) ||
3081 !(file_out->f_mode & FMODE_WRITE) ||
3082 (file_out->f_flags & O_APPEND))
3083 return -EBADF;
3084
3085 return 0;
3086}
3087
96e6e8f4
AG
3088/*
3089 * Performs necessary checks before doing a file copy
3090 *
3091 * Can adjust amount of bytes to copy via @req_count argument.
3092 * Returns appropriate error code that caller should return or
3093 * zero in case the copy should be allowed.
3094 */
3095int generic_copy_file_checks(struct file *file_in, loff_t pos_in,
3096 struct file *file_out, loff_t pos_out,
3097 size_t *req_count, unsigned int flags)
3098{
3099 struct inode *inode_in = file_inode(file_in);
3100 struct inode *inode_out = file_inode(file_out);
3101 uint64_t count = *req_count;
3102 loff_t size_in;
3103 int ret;
3104
3105 ret = generic_file_rw_checks(file_in, file_out);
3106 if (ret)
3107 return ret;
3108
3109 /* Don't touch certain kinds of inodes */
3110 if (IS_IMMUTABLE(inode_out))
3111 return -EPERM;
3112
3113 if (IS_SWAPFILE(inode_in) || IS_SWAPFILE(inode_out))
3114 return -ETXTBSY;
3115
3116 /* Ensure offsets don't wrap. */
3117 if (pos_in + count < pos_in || pos_out + count < pos_out)
3118 return -EOVERFLOW;
3119
3120 /* Shorten the copy to EOF */
3121 size_in = i_size_read(inode_in);
3122 if (pos_in >= size_in)
3123 count = 0;
3124 else
3125 count = min(count, size_in - (uint64_t)pos_in);
3126
3127 ret = generic_write_check_limits(file_out, pos_out, &count);
3128 if (ret)
3129 return ret;
3130
3131 /* Don't allow overlapped copying within the same file. */
3132 if (inode_in == inode_out &&
3133 pos_out + count > pos_in &&
3134 pos_out < pos_in + count)
3135 return -EINVAL;
3136
3137 *req_count = count;
3138 return 0;
3139}
3140
afddba49
NP
3141int pagecache_write_begin(struct file *file, struct address_space *mapping,
3142 loff_t pos, unsigned len, unsigned flags,
3143 struct page **pagep, void **fsdata)
3144{
3145 const struct address_space_operations *aops = mapping->a_ops;
3146
4e02ed4b 3147 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 3148 pagep, fsdata);
afddba49
NP
3149}
3150EXPORT_SYMBOL(pagecache_write_begin);
3151
3152int pagecache_write_end(struct file *file, struct address_space *mapping,
3153 loff_t pos, unsigned len, unsigned copied,
3154 struct page *page, void *fsdata)
3155{
3156 const struct address_space_operations *aops = mapping->a_ops;
afddba49 3157
4e02ed4b 3158 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
3159}
3160EXPORT_SYMBOL(pagecache_write_end);
3161
1da177e4 3162ssize_t
1af5bb49 3163generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3164{
3165 struct file *file = iocb->ki_filp;
3166 struct address_space *mapping = file->f_mapping;
3167 struct inode *inode = mapping->host;
1af5bb49 3168 loff_t pos = iocb->ki_pos;
1da177e4 3169 ssize_t written;
a969e903
CH
3170 size_t write_len;
3171 pgoff_t end;
1da177e4 3172
0c949334 3173 write_len = iov_iter_count(from);
09cbfeaf 3174 end = (pos + write_len - 1) >> PAGE_SHIFT;
a969e903 3175
6be96d3a
GR
3176 if (iocb->ki_flags & IOCB_NOWAIT) {
3177 /* If there are pages to writeback, return */
3178 if (filemap_range_has_page(inode->i_mapping, pos,
35f12f0f 3179 pos + write_len - 1))
6be96d3a
GR
3180 return -EAGAIN;
3181 } else {
3182 written = filemap_write_and_wait_range(mapping, pos,
3183 pos + write_len - 1);
3184 if (written)
3185 goto out;
3186 }
a969e903
CH
3187
3188 /*
3189 * After a write we want buffered reads to be sure to go to disk to get
3190 * the new data. We invalidate clean cached page from the region we're
3191 * about to write. We do this *before* the write so that we can return
6ccfa806 3192 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903 3193 */
55635ba7 3194 written = invalidate_inode_pages2_range(mapping,
09cbfeaf 3195 pos >> PAGE_SHIFT, end);
55635ba7
AR
3196 /*
3197 * If a page can not be invalidated, return 0 to fall back
3198 * to buffered write.
3199 */
3200 if (written) {
3201 if (written == -EBUSY)
3202 return 0;
3203 goto out;
a969e903
CH
3204 }
3205
639a93a5 3206 written = mapping->a_ops->direct_IO(iocb, from);
a969e903
CH
3207
3208 /*
3209 * Finally, try again to invalidate clean pages which might have been
3210 * cached by non-direct readahead, or faulted in by get_user_pages()
3211 * if the source of the write was an mmap'ed region of the file
3212 * we're writing. Either one is a pretty crazy thing to do,
3213 * so we don't support it 100%. If this invalidation
3214 * fails, tough, the write still worked...
332391a9
LC
3215 *
3216 * Most of the time we do not need this since dio_complete() will do
3217 * the invalidation for us. However there are some file systems that
3218 * do not end up with dio_complete() being called, so let's not break
3219 * them by removing it completely
a969e903 3220 */
332391a9
LC
3221 if (mapping->nrpages)
3222 invalidate_inode_pages2_range(mapping,
3223 pos >> PAGE_SHIFT, end);
a969e903 3224
1da177e4 3225 if (written > 0) {
0116651c 3226 pos += written;
639a93a5 3227 write_len -= written;
0116651c
NK
3228 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3229 i_size_write(inode, pos);
1da177e4
LT
3230 mark_inode_dirty(inode);
3231 }
5cb6c6c7 3232 iocb->ki_pos = pos;
1da177e4 3233 }
639a93a5 3234 iov_iter_revert(from, write_len - iov_iter_count(from));
a969e903 3235out:
1da177e4
LT
3236 return written;
3237}
3238EXPORT_SYMBOL(generic_file_direct_write);
3239
eb2be189
NP
3240/*
3241 * Find or create a page at the given pagecache position. Return the locked
3242 * page. This function is specifically for buffered writes.
3243 */
54566b2c
NP
3244struct page *grab_cache_page_write_begin(struct address_space *mapping,
3245 pgoff_t index, unsigned flags)
eb2be189 3246{
eb2be189 3247 struct page *page;
bbddabe2 3248 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
0faa70cb 3249
54566b2c 3250 if (flags & AOP_FLAG_NOFS)
2457aec6
MG
3251 fgp_flags |= FGP_NOFS;
3252
3253 page = pagecache_get_page(mapping, index, fgp_flags,
45f87de5 3254 mapping_gfp_mask(mapping));
c585a267 3255 if (page)
2457aec6 3256 wait_for_stable_page(page);
eb2be189 3257
eb2be189
NP
3258 return page;
3259}
54566b2c 3260EXPORT_SYMBOL(grab_cache_page_write_begin);
eb2be189 3261
3b93f911 3262ssize_t generic_perform_write(struct file *file,
afddba49
NP
3263 struct iov_iter *i, loff_t pos)
3264{
3265 struct address_space *mapping = file->f_mapping;
3266 const struct address_space_operations *a_ops = mapping->a_ops;
3267 long status = 0;
3268 ssize_t written = 0;
674b892e
NP
3269 unsigned int flags = 0;
3270
afddba49
NP
3271 do {
3272 struct page *page;
afddba49
NP
3273 unsigned long offset; /* Offset into pagecache page */
3274 unsigned long bytes; /* Bytes to write to page */
3275 size_t copied; /* Bytes copied from user */
3276 void *fsdata;
3277
09cbfeaf
KS
3278 offset = (pos & (PAGE_SIZE - 1));
3279 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
3280 iov_iter_count(i));
3281
3282again:
00a3d660
LT
3283 /*
3284 * Bring in the user page that we will copy from _first_.
3285 * Otherwise there's a nasty deadlock on copying from the
3286 * same page as we're writing to, without it being marked
3287 * up-to-date.
3288 *
3289 * Not only is this an optimisation, but it is also required
3290 * to check that the address is actually valid, when atomic
3291 * usercopies are used, below.
3292 */
3293 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3294 status = -EFAULT;
3295 break;
3296 }
3297
296291cd
JK
3298 if (fatal_signal_pending(current)) {
3299 status = -EINTR;
3300 break;
3301 }
3302
674b892e 3303 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49 3304 &page, &fsdata);
2457aec6 3305 if (unlikely(status < 0))
afddba49
NP
3306 break;
3307
931e80e4 3308 if (mapping_writably_mapped(mapping))
3309 flush_dcache_page(page);
00a3d660 3310
afddba49 3311 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
afddba49
NP
3312 flush_dcache_page(page);
3313
3314 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3315 page, fsdata);
3316 if (unlikely(status < 0))
3317 break;
3318 copied = status;
3319
3320 cond_resched();
3321
124d3b70 3322 iov_iter_advance(i, copied);
afddba49
NP
3323 if (unlikely(copied == 0)) {
3324 /*
3325 * If we were unable to copy any data at all, we must
3326 * fall back to a single segment length write.
3327 *
3328 * If we didn't fallback here, we could livelock
3329 * because not all segments in the iov can be copied at
3330 * once without a pagefault.
3331 */
09cbfeaf 3332 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
3333 iov_iter_single_seg_count(i));
3334 goto again;
3335 }
afddba49
NP
3336 pos += copied;
3337 written += copied;
3338
3339 balance_dirty_pages_ratelimited(mapping);
afddba49
NP
3340 } while (iov_iter_count(i));
3341
3342 return written ? written : status;
3343}
3b93f911 3344EXPORT_SYMBOL(generic_perform_write);
1da177e4 3345
e4dd9de3 3346/**
8174202b 3347 * __generic_file_write_iter - write data to a file
e4dd9de3 3348 * @iocb: IO state structure (file, offset, etc.)
8174202b 3349 * @from: iov_iter with data to write
e4dd9de3
JK
3350 *
3351 * This function does all the work needed for actually writing data to a
3352 * file. It does all basic checks, removes SUID from the file, updates
3353 * modification times and calls proper subroutines depending on whether we
3354 * do direct IO or a standard buffered write.
3355 *
3356 * It expects i_mutex to be grabbed unless we work on a block device or similar
3357 * object which does not need locking at all.
3358 *
3359 * This function does *not* take care of syncing data in case of O_SYNC write.
3360 * A caller has to handle it. This is mainly due to the fact that we want to
3361 * avoid syncing under i_mutex.
a862f68a
MR
3362 *
3363 * Return:
3364 * * number of bytes written, even for truncated writes
3365 * * negative error code if no data has been written at all
e4dd9de3 3366 */
8174202b 3367ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3368{
3369 struct file *file = iocb->ki_filp;
fb5527e6 3370 struct address_space * mapping = file->f_mapping;
1da177e4 3371 struct inode *inode = mapping->host;
3b93f911 3372 ssize_t written = 0;
1da177e4 3373 ssize_t err;
3b93f911 3374 ssize_t status;
1da177e4 3375
1da177e4 3376 /* We can write back this queue in page reclaim */
de1414a6 3377 current->backing_dev_info = inode_to_bdi(inode);
5fa8e0a1 3378 err = file_remove_privs(file);
1da177e4
LT
3379 if (err)
3380 goto out;
3381
c3b2da31
JB
3382 err = file_update_time(file);
3383 if (err)
3384 goto out;
1da177e4 3385
2ba48ce5 3386 if (iocb->ki_flags & IOCB_DIRECT) {
0b8def9d 3387 loff_t pos, endbyte;
fb5527e6 3388
1af5bb49 3389 written = generic_file_direct_write(iocb, from);
1da177e4 3390 /*
fbbbad4b
MW
3391 * If the write stopped short of completing, fall back to
3392 * buffered writes. Some filesystems do this for writes to
3393 * holes, for example. For DAX files, a buffered write will
3394 * not succeed (even if it did, DAX does not handle dirty
3395 * page-cache pages correctly).
1da177e4 3396 */
0b8def9d 3397 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
fbbbad4b
MW
3398 goto out;
3399
0b8def9d 3400 status = generic_perform_write(file, from, pos = iocb->ki_pos);
fb5527e6 3401 /*
3b93f911 3402 * If generic_perform_write() returned a synchronous error
fb5527e6
JM
3403 * then we want to return the number of bytes which were
3404 * direct-written, or the error code if that was zero. Note
3405 * that this differs from normal direct-io semantics, which
3406 * will return -EFOO even if some bytes were written.
3407 */
60bb4529 3408 if (unlikely(status < 0)) {
3b93f911 3409 err = status;
fb5527e6
JM
3410 goto out;
3411 }
fb5527e6
JM
3412 /*
3413 * We need to ensure that the page cache pages are written to
3414 * disk and invalidated to preserve the expected O_DIRECT
3415 * semantics.
3416 */
3b93f911 3417 endbyte = pos + status - 1;
0b8def9d 3418 err = filemap_write_and_wait_range(mapping, pos, endbyte);
fb5527e6 3419 if (err == 0) {
0b8def9d 3420 iocb->ki_pos = endbyte + 1;
3b93f911 3421 written += status;
fb5527e6 3422 invalidate_mapping_pages(mapping,
09cbfeaf
KS
3423 pos >> PAGE_SHIFT,
3424 endbyte >> PAGE_SHIFT);
fb5527e6
JM
3425 } else {
3426 /*
3427 * We don't know how much we wrote, so just return
3428 * the number of bytes which were direct-written
3429 */
3430 }
3431 } else {
0b8def9d
AV
3432 written = generic_perform_write(file, from, iocb->ki_pos);
3433 if (likely(written > 0))
3434 iocb->ki_pos += written;
fb5527e6 3435 }
1da177e4
LT
3436out:
3437 current->backing_dev_info = NULL;
3438 return written ? written : err;
3439}
8174202b 3440EXPORT_SYMBOL(__generic_file_write_iter);
e4dd9de3 3441
e4dd9de3 3442/**
8174202b 3443 * generic_file_write_iter - write data to a file
e4dd9de3 3444 * @iocb: IO state structure
8174202b 3445 * @from: iov_iter with data to write
e4dd9de3 3446 *
8174202b 3447 * This is a wrapper around __generic_file_write_iter() to be used by most
e4dd9de3
JK
3448 * filesystems. It takes care of syncing the file in case of O_SYNC file
3449 * and acquires i_mutex as needed.
a862f68a
MR
3450 * Return:
3451 * * negative error code if no data has been written at all of
3452 * vfs_fsync_range() failed for a synchronous write
3453 * * number of bytes written, even for truncated writes
e4dd9de3 3454 */
8174202b 3455ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3456{
3457 struct file *file = iocb->ki_filp;
148f948b 3458 struct inode *inode = file->f_mapping->host;
1da177e4 3459 ssize_t ret;
1da177e4 3460
5955102c 3461 inode_lock(inode);
3309dd04
AV
3462 ret = generic_write_checks(iocb, from);
3463 if (ret > 0)
5f380c7f 3464 ret = __generic_file_write_iter(iocb, from);
5955102c 3465 inode_unlock(inode);
1da177e4 3466
e2592217
CH
3467 if (ret > 0)
3468 ret = generic_write_sync(iocb, ret);
1da177e4
LT
3469 return ret;
3470}
8174202b 3471EXPORT_SYMBOL(generic_file_write_iter);
1da177e4 3472
cf9a2ae8
DH
3473/**
3474 * try_to_release_page() - release old fs-specific metadata on a page
3475 *
3476 * @page: the page which the kernel is trying to free
3477 * @gfp_mask: memory allocation flags (and I/O mode)
3478 *
3479 * The address_space is to try to release any data against the page
a862f68a 3480 * (presumably at page->private).
cf9a2ae8 3481 *
266cf658
DH
3482 * This may also be called if PG_fscache is set on a page, indicating that the
3483 * page is known to the local caching routines.
3484 *
cf9a2ae8 3485 * The @gfp_mask argument specifies whether I/O may be performed to release
71baba4b 3486 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
cf9a2ae8 3487 *
a862f68a 3488 * Return: %1 if the release was successful, otherwise return zero.
cf9a2ae8
DH
3489 */
3490int try_to_release_page(struct page *page, gfp_t gfp_mask)
3491{
3492 struct address_space * const mapping = page->mapping;
3493
3494 BUG_ON(!PageLocked(page));
3495 if (PageWriteback(page))
3496 return 0;
3497
3498 if (mapping && mapping->a_ops->releasepage)
3499 return mapping->a_ops->releasepage(page, gfp_mask);
3500 return try_to_free_buffers(page);
3501}
3502
3503EXPORT_SYMBOL(try_to_release_page);