iov_iter: Move iov_iter to uio.h
[linux-2.6-block.git] / mm / filemap.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
b95f1b31 12#include <linux/export.h>
1da177e4
LT
13#include <linux/compiler.h>
14#include <linux/fs.h>
c22ce143 15#include <linux/uaccess.h>
1da177e4 16#include <linux/aio.h>
c59ede7b 17#include <linux/capability.h>
1da177e4 18#include <linux/kernel_stat.h>
5a0e3ad6 19#include <linux/gfp.h>
1da177e4
LT
20#include <linux/mm.h>
21#include <linux/swap.h>
22#include <linux/mman.h>
23#include <linux/pagemap.h>
24#include <linux/file.h>
25#include <linux/uio.h>
26#include <linux/hash.h>
27#include <linux/writeback.h>
53253383 28#include <linux/backing-dev.h>
1da177e4
LT
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/security.h>
44110fe3 32#include <linux/cpuset.h>
2f718ffc 33#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
8a9f3ccd 34#include <linux/memcontrol.h>
c515e1fd 35#include <linux/cleancache.h>
0f8053a5
NP
36#include "internal.h"
37
fe0bfaaf
RJ
38#define CREATE_TRACE_POINTS
39#include <trace/events/filemap.h>
40
1da177e4 41/*
1da177e4
LT
42 * FIXME: remove all knowledge of the buffer layer from the core VM
43 */
148f948b 44#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 45
1da177e4
LT
46#include <asm/mman.h>
47
48/*
49 * Shared mappings implemented 30.11.1994. It's not fully working yet,
50 * though.
51 *
52 * Shared mappings now work. 15.8.1995 Bruno.
53 *
54 * finished 'unifying' the page and buffer cache and SMP-threaded the
55 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
56 *
57 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
58 */
59
60/*
61 * Lock ordering:
62 *
3d48ae45 63 * ->i_mmap_mutex (truncate_pagecache)
1da177e4 64 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91
HD
65 * ->swap_lock (exclusive_swap_page, others)
66 * ->mapping->tree_lock
1da177e4 67 *
1b1dcc1b 68 * ->i_mutex
3d48ae45 69 * ->i_mmap_mutex (truncate->unmap_mapping_range)
1da177e4
LT
70 *
71 * ->mmap_sem
3d48ae45 72 * ->i_mmap_mutex
b8072f09 73 * ->page_table_lock or pte_lock (various, mainly in memory.c)
1da177e4
LT
74 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
75 *
76 * ->mmap_sem
77 * ->lock_page (access_process_vm)
78 *
82591e6e
NP
79 * ->i_mutex (generic_file_buffered_write)
80 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
1da177e4 81 *
f758eeab 82 * bdi->wb.list_lock
a66979ab 83 * sb_lock (fs/fs-writeback.c)
1da177e4
LT
84 * ->mapping->tree_lock (__sync_single_inode)
85 *
3d48ae45 86 * ->i_mmap_mutex
1da177e4
LT
87 * ->anon_vma.lock (vma_adjust)
88 *
89 * ->anon_vma.lock
b8072f09 90 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 91 *
b8072f09 92 * ->page_table_lock or pte_lock
5d337b91 93 * ->swap_lock (try_to_unmap_one)
1da177e4
LT
94 * ->private_lock (try_to_unmap_one)
95 * ->tree_lock (try_to_unmap_one)
96 * ->zone.lru_lock (follow_page->mark_page_accessed)
053837fc 97 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
1da177e4
LT
98 * ->private_lock (page_remove_rmap->set_page_dirty)
99 * ->tree_lock (page_remove_rmap->set_page_dirty)
f758eeab 100 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
250df6ed 101 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
f758eeab 102 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 103 * ->inode->i_lock (zap_pte_range->set_page_dirty)
1da177e4
LT
104 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
105 *
9a3c531d
AK
106 * ->i_mmap_mutex
107 * ->tasklist_lock (memory_failure, collect_procs_ao)
1da177e4
LT
108 */
109
110/*
e64a782f 111 * Delete a page from the page cache and free it. Caller has to make
1da177e4 112 * sure the page is locked and that nobody else uses it - or that usage
19fd6231 113 * is safe. The caller must hold the mapping's tree_lock.
1da177e4 114 */
e64a782f 115void __delete_from_page_cache(struct page *page)
1da177e4
LT
116{
117 struct address_space *mapping = page->mapping;
118
fe0bfaaf 119 trace_mm_filemap_delete_from_page_cache(page);
c515e1fd
DM
120 /*
121 * if we're uptodate, flush out into the cleancache, otherwise
122 * invalidate any existing cleancache entries. We can't leave
123 * stale data around in the cleancache once our page is gone
124 */
125 if (PageUptodate(page) && PageMappedToDisk(page))
126 cleancache_put_page(page);
127 else
3167760f 128 cleancache_invalidate_page(mapping, page);
c515e1fd 129
1da177e4
LT
130 radix_tree_delete(&mapping->page_tree, page->index);
131 page->mapping = NULL;
b85e0eff 132 /* Leave page->index set: truncation lookup relies upon it */
1da177e4 133 mapping->nrpages--;
347ce434 134 __dec_zone_page_state(page, NR_FILE_PAGES);
4b02108a
KM
135 if (PageSwapBacked(page))
136 __dec_zone_page_state(page, NR_SHMEM);
45426812 137 BUG_ON(page_mapped(page));
3a692790
LT
138
139 /*
140 * Some filesystems seem to re-dirty the page even after
141 * the VM has canceled the dirty bit (eg ext3 journaling).
142 *
143 * Fix it up by doing a final dirty accounting check after
144 * having removed the page entirely.
145 */
146 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
147 dec_zone_page_state(page, NR_FILE_DIRTY);
148 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
149 }
1da177e4
LT
150}
151
702cfbf9
MK
152/**
153 * delete_from_page_cache - delete page from page cache
154 * @page: the page which the kernel is trying to remove from page cache
155 *
156 * This must be called only on pages that have been verified to be in the page
157 * cache and locked. It will never put the page into the free list, the caller
158 * has a reference on the page.
159 */
160void delete_from_page_cache(struct page *page)
1da177e4
LT
161{
162 struct address_space *mapping = page->mapping;
6072d13c 163 void (*freepage)(struct page *);
1da177e4 164
cd7619d6 165 BUG_ON(!PageLocked(page));
1da177e4 166
6072d13c 167 freepage = mapping->a_ops->freepage;
19fd6231 168 spin_lock_irq(&mapping->tree_lock);
e64a782f 169 __delete_from_page_cache(page);
19fd6231 170 spin_unlock_irq(&mapping->tree_lock);
e767e056 171 mem_cgroup_uncharge_cache_page(page);
6072d13c
LT
172
173 if (freepage)
174 freepage(page);
97cecb5a
MK
175 page_cache_release(page);
176}
177EXPORT_SYMBOL(delete_from_page_cache);
178
7eaceacc 179static int sleep_on_page(void *word)
1da177e4 180{
1da177e4
LT
181 io_schedule();
182 return 0;
183}
184
7eaceacc 185static int sleep_on_page_killable(void *word)
2687a356 186{
7eaceacc 187 sleep_on_page(word);
2687a356
MW
188 return fatal_signal_pending(current) ? -EINTR : 0;
189}
190
865ffef3
DM
191static int filemap_check_errors(struct address_space *mapping)
192{
193 int ret = 0;
194 /* Check for outstanding write errors */
195 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
196 ret = -ENOSPC;
197 if (test_and_clear_bit(AS_EIO, &mapping->flags))
198 ret = -EIO;
199 return ret;
200}
201
1da177e4 202/**
485bb99b 203 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
204 * @mapping: address space structure to write
205 * @start: offset in bytes where the range starts
469eb4d0 206 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 207 * @sync_mode: enable synchronous operation
1da177e4 208 *
485bb99b
RD
209 * Start writeback against all of a mapping's dirty pages that lie
210 * within the byte offsets <start, end> inclusive.
211 *
1da177e4 212 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 213 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
214 * these two operations is that if a dirty page/buffer is encountered, it must
215 * be waited upon, and not just skipped over.
216 */
ebcf28e1
AM
217int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
218 loff_t end, int sync_mode)
1da177e4
LT
219{
220 int ret;
221 struct writeback_control wbc = {
222 .sync_mode = sync_mode,
05fe478d 223 .nr_to_write = LONG_MAX,
111ebb6e
OH
224 .range_start = start,
225 .range_end = end,
1da177e4
LT
226 };
227
228 if (!mapping_cap_writeback_dirty(mapping))
229 return 0;
230
231 ret = do_writepages(mapping, &wbc);
232 return ret;
233}
234
235static inline int __filemap_fdatawrite(struct address_space *mapping,
236 int sync_mode)
237{
111ebb6e 238 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
239}
240
241int filemap_fdatawrite(struct address_space *mapping)
242{
243 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
244}
245EXPORT_SYMBOL(filemap_fdatawrite);
246
f4c0a0fd 247int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 248 loff_t end)
1da177e4
LT
249{
250 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
251}
f4c0a0fd 252EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 253
485bb99b
RD
254/**
255 * filemap_flush - mostly a non-blocking flush
256 * @mapping: target address_space
257 *
1da177e4
LT
258 * This is a mostly non-blocking flush. Not suitable for data-integrity
259 * purposes - I/O may not be started against all dirty pages.
260 */
261int filemap_flush(struct address_space *mapping)
262{
263 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
264}
265EXPORT_SYMBOL(filemap_flush);
266
485bb99b 267/**
94004ed7
CH
268 * filemap_fdatawait_range - wait for writeback to complete
269 * @mapping: address space structure to wait for
270 * @start_byte: offset in bytes where the range starts
271 * @end_byte: offset in bytes where the range ends (inclusive)
485bb99b 272 *
94004ed7
CH
273 * Walk the list of under-writeback pages of the given address space
274 * in the given range and wait for all of them.
1da177e4 275 */
94004ed7
CH
276int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
277 loff_t end_byte)
1da177e4 278{
94004ed7
CH
279 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
280 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
1da177e4
LT
281 struct pagevec pvec;
282 int nr_pages;
865ffef3 283 int ret2, ret = 0;
1da177e4 284
94004ed7 285 if (end_byte < start_byte)
865ffef3 286 goto out;
1da177e4
LT
287
288 pagevec_init(&pvec, 0);
1da177e4
LT
289 while ((index <= end) &&
290 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
291 PAGECACHE_TAG_WRITEBACK,
292 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
293 unsigned i;
294
295 for (i = 0; i < nr_pages; i++) {
296 struct page *page = pvec.pages[i];
297
298 /* until radix tree lookup accepts end_index */
299 if (page->index > end)
300 continue;
301
302 wait_on_page_writeback(page);
212260aa 303 if (TestClearPageError(page))
1da177e4
LT
304 ret = -EIO;
305 }
306 pagevec_release(&pvec);
307 cond_resched();
308 }
865ffef3
DM
309out:
310 ret2 = filemap_check_errors(mapping);
311 if (!ret)
312 ret = ret2;
1da177e4
LT
313
314 return ret;
315}
d3bccb6f
JK
316EXPORT_SYMBOL(filemap_fdatawait_range);
317
1da177e4 318/**
485bb99b 319 * filemap_fdatawait - wait for all under-writeback pages to complete
1da177e4 320 * @mapping: address space structure to wait for
485bb99b
RD
321 *
322 * Walk the list of under-writeback pages of the given address space
323 * and wait for all of them.
1da177e4
LT
324 */
325int filemap_fdatawait(struct address_space *mapping)
326{
327 loff_t i_size = i_size_read(mapping->host);
328
329 if (i_size == 0)
330 return 0;
331
94004ed7 332 return filemap_fdatawait_range(mapping, 0, i_size - 1);
1da177e4
LT
333}
334EXPORT_SYMBOL(filemap_fdatawait);
335
336int filemap_write_and_wait(struct address_space *mapping)
337{
28fd1298 338 int err = 0;
1da177e4
LT
339
340 if (mapping->nrpages) {
28fd1298
OH
341 err = filemap_fdatawrite(mapping);
342 /*
343 * Even if the above returned error, the pages may be
344 * written partially (e.g. -ENOSPC), so we wait for it.
345 * But the -EIO is special case, it may indicate the worst
346 * thing (e.g. bug) happened, so we avoid waiting for it.
347 */
348 if (err != -EIO) {
349 int err2 = filemap_fdatawait(mapping);
350 if (!err)
351 err = err2;
352 }
865ffef3
DM
353 } else {
354 err = filemap_check_errors(mapping);
1da177e4 355 }
28fd1298 356 return err;
1da177e4 357}
28fd1298 358EXPORT_SYMBOL(filemap_write_and_wait);
1da177e4 359
485bb99b
RD
360/**
361 * filemap_write_and_wait_range - write out & wait on a file range
362 * @mapping: the address_space for the pages
363 * @lstart: offset in bytes where the range starts
364 * @lend: offset in bytes where the range ends (inclusive)
365 *
469eb4d0
AM
366 * Write out and wait upon file offsets lstart->lend, inclusive.
367 *
368 * Note that `lend' is inclusive (describes the last byte to be written) so
369 * that this function can be used to write to the very end-of-file (end = -1).
370 */
1da177e4
LT
371int filemap_write_and_wait_range(struct address_space *mapping,
372 loff_t lstart, loff_t lend)
373{
28fd1298 374 int err = 0;
1da177e4
LT
375
376 if (mapping->nrpages) {
28fd1298
OH
377 err = __filemap_fdatawrite_range(mapping, lstart, lend,
378 WB_SYNC_ALL);
379 /* See comment of filemap_write_and_wait() */
380 if (err != -EIO) {
94004ed7
CH
381 int err2 = filemap_fdatawait_range(mapping,
382 lstart, lend);
28fd1298
OH
383 if (!err)
384 err = err2;
385 }
865ffef3
DM
386 } else {
387 err = filemap_check_errors(mapping);
1da177e4 388 }
28fd1298 389 return err;
1da177e4 390}
f6995585 391EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 392
ef6a3c63
MS
393/**
394 * replace_page_cache_page - replace a pagecache page with a new one
395 * @old: page to be replaced
396 * @new: page to replace with
397 * @gfp_mask: allocation mode
398 *
399 * This function replaces a page in the pagecache with a new one. On
400 * success it acquires the pagecache reference for the new page and
401 * drops it for the old page. Both the old and new pages must be
402 * locked. This function does not add the new page to the LRU, the
403 * caller must do that.
404 *
405 * The remove + add is atomic. The only way this function can fail is
406 * memory allocation failure.
407 */
408int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
409{
410 int error;
ef6a3c63 411
309381fe
SL
412 VM_BUG_ON_PAGE(!PageLocked(old), old);
413 VM_BUG_ON_PAGE(!PageLocked(new), new);
414 VM_BUG_ON_PAGE(new->mapping, new);
ef6a3c63 415
ef6a3c63
MS
416 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
417 if (!error) {
418 struct address_space *mapping = old->mapping;
419 void (*freepage)(struct page *);
420
421 pgoff_t offset = old->index;
422 freepage = mapping->a_ops->freepage;
423
424 page_cache_get(new);
425 new->mapping = mapping;
426 new->index = offset;
427
428 spin_lock_irq(&mapping->tree_lock);
e64a782f 429 __delete_from_page_cache(old);
ef6a3c63
MS
430 error = radix_tree_insert(&mapping->page_tree, offset, new);
431 BUG_ON(error);
432 mapping->nrpages++;
433 __inc_zone_page_state(new, NR_FILE_PAGES);
434 if (PageSwapBacked(new))
435 __inc_zone_page_state(new, NR_SHMEM);
436 spin_unlock_irq(&mapping->tree_lock);
ab936cbc
KH
437 /* mem_cgroup codes must not be called under tree_lock */
438 mem_cgroup_replace_page_cache(old, new);
ef6a3c63
MS
439 radix_tree_preload_end();
440 if (freepage)
441 freepage(old);
442 page_cache_release(old);
ef6a3c63
MS
443 }
444
445 return error;
446}
447EXPORT_SYMBOL_GPL(replace_page_cache_page);
448
485bb99b 449/**
e286781d 450 * add_to_page_cache_locked - add a locked page to the pagecache
485bb99b
RD
451 * @page: page to add
452 * @mapping: the page's address_space
453 * @offset: page index
454 * @gfp_mask: page allocation mode
455 *
e286781d 456 * This function is used to add a page to the pagecache. It must be locked.
1da177e4
LT
457 * This function does not add the page to the LRU. The caller must do that.
458 */
e286781d 459int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
6daa0e28 460 pgoff_t offset, gfp_t gfp_mask)
1da177e4 461{
e286781d
NP
462 int error;
463
309381fe
SL
464 VM_BUG_ON_PAGE(!PageLocked(page), page);
465 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
e286781d
NP
466
467 error = mem_cgroup_cache_charge(page, current->mm,
2c26fdd7 468 gfp_mask & GFP_RECLAIM_MASK);
35c754d7 469 if (error)
66a0c8ee 470 return error;
1da177e4 471
5e4c0d97 472 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
66a0c8ee 473 if (error) {
69029cd5 474 mem_cgroup_uncharge_cache_page(page);
66a0c8ee
KS
475 return error;
476 }
477
478 page_cache_get(page);
479 page->mapping = mapping;
480 page->index = offset;
481
482 spin_lock_irq(&mapping->tree_lock);
483 error = radix_tree_insert(&mapping->page_tree, offset, page);
484 radix_tree_preload_end();
485 if (unlikely(error))
486 goto err_insert;
487 mapping->nrpages++;
488 __inc_zone_page_state(page, NR_FILE_PAGES);
489 spin_unlock_irq(&mapping->tree_lock);
490 trace_mm_filemap_add_to_page_cache(page);
491 return 0;
492err_insert:
493 page->mapping = NULL;
494 /* Leave page->index set: truncation relies upon it */
495 spin_unlock_irq(&mapping->tree_lock);
496 mem_cgroup_uncharge_cache_page(page);
497 page_cache_release(page);
1da177e4
LT
498 return error;
499}
e286781d 500EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4
LT
501
502int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 503 pgoff_t offset, gfp_t gfp_mask)
1da177e4 504{
4f98a2fe
RR
505 int ret;
506
4f98a2fe 507 ret = add_to_page_cache(page, mapping, offset, gfp_mask);
31475dd6
HD
508 if (ret == 0)
509 lru_cache_add_file(page);
1da177e4
LT
510 return ret;
511}
18bc0bbd 512EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1da177e4 513
44110fe3 514#ifdef CONFIG_NUMA
2ae88149 515struct page *__page_cache_alloc(gfp_t gfp)
44110fe3 516{
c0ff7453
MX
517 int n;
518 struct page *page;
519
44110fe3 520 if (cpuset_do_page_mem_spread()) {
cc9a6c87
MG
521 unsigned int cpuset_mems_cookie;
522 do {
523 cpuset_mems_cookie = get_mems_allowed();
524 n = cpuset_mem_spread_node();
525 page = alloc_pages_exact_node(n, gfp, 0);
526 } while (!put_mems_allowed(cpuset_mems_cookie) && !page);
527
c0ff7453 528 return page;
44110fe3 529 }
2ae88149 530 return alloc_pages(gfp, 0);
44110fe3 531}
2ae88149 532EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
533#endif
534
1da177e4
LT
535/*
536 * In order to wait for pages to become available there must be
537 * waitqueues associated with pages. By using a hash table of
538 * waitqueues where the bucket discipline is to maintain all
539 * waiters on the same queue and wake all when any of the pages
540 * become available, and for the woken contexts to check to be
541 * sure the appropriate page became available, this saves space
542 * at a cost of "thundering herd" phenomena during rare hash
543 * collisions.
544 */
545static wait_queue_head_t *page_waitqueue(struct page *page)
546{
547 const struct zone *zone = page_zone(page);
548
549 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
550}
551
552static inline void wake_up_page(struct page *page, int bit)
553{
554 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
555}
556
920c7a5d 557void wait_on_page_bit(struct page *page, int bit_nr)
1da177e4
LT
558{
559 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
560
561 if (test_bit(bit_nr, &page->flags))
7eaceacc 562 __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
1da177e4
LT
563 TASK_UNINTERRUPTIBLE);
564}
565EXPORT_SYMBOL(wait_on_page_bit);
566
f62e00cc
KM
567int wait_on_page_bit_killable(struct page *page, int bit_nr)
568{
569 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
570
571 if (!test_bit(bit_nr, &page->flags))
572 return 0;
573
574 return __wait_on_bit(page_waitqueue(page), &wait,
575 sleep_on_page_killable, TASK_KILLABLE);
576}
577
385e1ca5
DH
578/**
579 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
697f619f
RD
580 * @page: Page defining the wait queue of interest
581 * @waiter: Waiter to add to the queue
385e1ca5
DH
582 *
583 * Add an arbitrary @waiter to the wait queue for the nominated @page.
584 */
585void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
586{
587 wait_queue_head_t *q = page_waitqueue(page);
588 unsigned long flags;
589
590 spin_lock_irqsave(&q->lock, flags);
591 __add_wait_queue(q, waiter);
592 spin_unlock_irqrestore(&q->lock, flags);
593}
594EXPORT_SYMBOL_GPL(add_page_wait_queue);
595
1da177e4 596/**
485bb99b 597 * unlock_page - unlock a locked page
1da177e4
LT
598 * @page: the page
599 *
600 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
601 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
602 * mechananism between PageLocked pages and PageWriteback pages is shared.
603 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
604 *
8413ac9d
NP
605 * The mb is necessary to enforce ordering between the clear_bit and the read
606 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
1da177e4 607 */
920c7a5d 608void unlock_page(struct page *page)
1da177e4 609{
309381fe 610 VM_BUG_ON_PAGE(!PageLocked(page), page);
8413ac9d
NP
611 clear_bit_unlock(PG_locked, &page->flags);
612 smp_mb__after_clear_bit();
1da177e4
LT
613 wake_up_page(page, PG_locked);
614}
615EXPORT_SYMBOL(unlock_page);
616
485bb99b
RD
617/**
618 * end_page_writeback - end writeback against a page
619 * @page: the page
1da177e4
LT
620 */
621void end_page_writeback(struct page *page)
622{
ac6aadb2
MS
623 if (TestClearPageReclaim(page))
624 rotate_reclaimable_page(page);
625
626 if (!test_clear_page_writeback(page))
627 BUG();
628
1da177e4
LT
629 smp_mb__after_clear_bit();
630 wake_up_page(page, PG_writeback);
631}
632EXPORT_SYMBOL(end_page_writeback);
633
485bb99b
RD
634/**
635 * __lock_page - get a lock on the page, assuming we need to sleep to get it
636 * @page: the page to lock
1da177e4 637 */
920c7a5d 638void __lock_page(struct page *page)
1da177e4
LT
639{
640 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
641
7eaceacc 642 __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
1da177e4
LT
643 TASK_UNINTERRUPTIBLE);
644}
645EXPORT_SYMBOL(__lock_page);
646
b5606c2d 647int __lock_page_killable(struct page *page)
2687a356
MW
648{
649 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
650
651 return __wait_on_bit_lock(page_waitqueue(page), &wait,
7eaceacc 652 sleep_on_page_killable, TASK_KILLABLE);
2687a356 653}
18bc0bbd 654EXPORT_SYMBOL_GPL(__lock_page_killable);
2687a356 655
d065bd81
ML
656int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
657 unsigned int flags)
658{
37b23e05
KM
659 if (flags & FAULT_FLAG_ALLOW_RETRY) {
660 /*
661 * CAUTION! In this case, mmap_sem is not released
662 * even though return 0.
663 */
664 if (flags & FAULT_FLAG_RETRY_NOWAIT)
665 return 0;
666
667 up_read(&mm->mmap_sem);
668 if (flags & FAULT_FLAG_KILLABLE)
669 wait_on_page_locked_killable(page);
670 else
318b275f 671 wait_on_page_locked(page);
d065bd81 672 return 0;
37b23e05
KM
673 } else {
674 if (flags & FAULT_FLAG_KILLABLE) {
675 int ret;
676
677 ret = __lock_page_killable(page);
678 if (ret) {
679 up_read(&mm->mmap_sem);
680 return 0;
681 }
682 } else
683 __lock_page(page);
684 return 1;
d065bd81
ML
685 }
686}
687
485bb99b
RD
688/**
689 * find_get_page - find and get a page reference
690 * @mapping: the address_space to search
691 * @offset: the page index
692 *
da6052f7
NP
693 * Is there a pagecache struct page at the given (mapping, offset) tuple?
694 * If yes, increment its refcount and return it; if no, return NULL.
1da177e4 695 */
a60637c8 696struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
1da177e4 697{
a60637c8 698 void **pagep;
1da177e4
LT
699 struct page *page;
700
a60637c8
NP
701 rcu_read_lock();
702repeat:
703 page = NULL;
704 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
705 if (pagep) {
706 page = radix_tree_deref_slot(pagep);
27d20fdd
NP
707 if (unlikely(!page))
708 goto out;
a2c16d6c 709 if (radix_tree_exception(page)) {
8079b1c8
HD
710 if (radix_tree_deref_retry(page))
711 goto repeat;
712 /*
713 * Otherwise, shmem/tmpfs must be storing a swap entry
714 * here as an exceptional entry: so return it without
715 * attempting to raise page count.
716 */
717 goto out;
a2c16d6c 718 }
a60637c8
NP
719 if (!page_cache_get_speculative(page))
720 goto repeat;
721
722 /*
723 * Has the page moved?
724 * This is part of the lockless pagecache protocol. See
725 * include/linux/pagemap.h for details.
726 */
727 if (unlikely(page != *pagep)) {
728 page_cache_release(page);
729 goto repeat;
730 }
731 }
27d20fdd 732out:
a60637c8
NP
733 rcu_read_unlock();
734
1da177e4
LT
735 return page;
736}
1da177e4
LT
737EXPORT_SYMBOL(find_get_page);
738
1da177e4
LT
739/**
740 * find_lock_page - locate, pin and lock a pagecache page
67be2dd1
MW
741 * @mapping: the address_space to search
742 * @offset: the page index
1da177e4
LT
743 *
744 * Locates the desired pagecache page, locks it, increments its reference
745 * count and returns its address.
746 *
747 * Returns zero if the page was not present. find_lock_page() may sleep.
748 */
a60637c8 749struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
1da177e4
LT
750{
751 struct page *page;
752
1da177e4 753repeat:
a60637c8 754 page = find_get_page(mapping, offset);
a2c16d6c 755 if (page && !radix_tree_exception(page)) {
a60637c8
NP
756 lock_page(page);
757 /* Has the page been truncated? */
758 if (unlikely(page->mapping != mapping)) {
759 unlock_page(page);
760 page_cache_release(page);
761 goto repeat;
1da177e4 762 }
309381fe 763 VM_BUG_ON_PAGE(page->index != offset, page);
1da177e4 764 }
1da177e4
LT
765 return page;
766}
1da177e4
LT
767EXPORT_SYMBOL(find_lock_page);
768
769/**
770 * find_or_create_page - locate or add a pagecache page
67be2dd1
MW
771 * @mapping: the page's address_space
772 * @index: the page's index into the mapping
773 * @gfp_mask: page allocation mode
1da177e4
LT
774 *
775 * Locates a page in the pagecache. If the page is not present, a new page
776 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
777 * LRU list. The returned page is locked and has its reference count
778 * incremented.
779 *
780 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
781 * allocation!
782 *
783 * find_or_create_page() returns the desired page's address, or zero on
784 * memory exhaustion.
785 */
786struct page *find_or_create_page(struct address_space *mapping,
57f6b96c 787 pgoff_t index, gfp_t gfp_mask)
1da177e4 788{
eb2be189 789 struct page *page;
1da177e4
LT
790 int err;
791repeat:
792 page = find_lock_page(mapping, index);
793 if (!page) {
eb2be189
NP
794 page = __page_cache_alloc(gfp_mask);
795 if (!page)
796 return NULL;
67d58ac4
NP
797 /*
798 * We want a regular kernel memory (not highmem or DMA etc)
799 * allocation for the radix tree nodes, but we need to honour
800 * the context-specific requirements the caller has asked for.
801 * GFP_RECLAIM_MASK collects those requirements.
802 */
803 err = add_to_page_cache_lru(page, mapping, index,
804 (gfp_mask & GFP_RECLAIM_MASK));
eb2be189
NP
805 if (unlikely(err)) {
806 page_cache_release(page);
807 page = NULL;
808 if (err == -EEXIST)
809 goto repeat;
1da177e4 810 }
1da177e4 811 }
1da177e4
LT
812 return page;
813}
1da177e4
LT
814EXPORT_SYMBOL(find_or_create_page);
815
816/**
817 * find_get_pages - gang pagecache lookup
818 * @mapping: The address_space to search
819 * @start: The starting page index
820 * @nr_pages: The maximum number of pages
821 * @pages: Where the resulting pages are placed
822 *
823 * find_get_pages() will search for and return a group of up to
824 * @nr_pages pages in the mapping. The pages are placed at @pages.
825 * find_get_pages() takes a reference against the returned pages.
826 *
827 * The search returns a group of mapping-contiguous pages with ascending
828 * indexes. There may be holes in the indices due to not-present pages.
829 *
830 * find_get_pages() returns the number of pages which were found.
831 */
832unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
833 unsigned int nr_pages, struct page **pages)
834{
0fc9d104
KK
835 struct radix_tree_iter iter;
836 void **slot;
837 unsigned ret = 0;
838
839 if (unlikely(!nr_pages))
840 return 0;
a60637c8
NP
841
842 rcu_read_lock();
843restart:
0fc9d104 844 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
a60637c8
NP
845 struct page *page;
846repeat:
0fc9d104 847 page = radix_tree_deref_slot(slot);
a60637c8
NP
848 if (unlikely(!page))
849 continue;
9d8aa4ea 850
a2c16d6c 851 if (radix_tree_exception(page)) {
8079b1c8
HD
852 if (radix_tree_deref_retry(page)) {
853 /*
854 * Transient condition which can only trigger
855 * when entry at index 0 moves out of or back
856 * to root: none yet gotten, safe to restart.
857 */
0fc9d104 858 WARN_ON(iter.index);
8079b1c8
HD
859 goto restart;
860 }
a2c16d6c 861 /*
8079b1c8
HD
862 * Otherwise, shmem/tmpfs must be storing a swap entry
863 * here as an exceptional entry: so skip over it -
864 * we only reach this from invalidate_mapping_pages().
a2c16d6c 865 */
8079b1c8 866 continue;
27d20fdd 867 }
a60637c8
NP
868
869 if (!page_cache_get_speculative(page))
870 goto repeat;
871
872 /* Has the page moved? */
0fc9d104 873 if (unlikely(page != *slot)) {
a60637c8
NP
874 page_cache_release(page);
875 goto repeat;
876 }
1da177e4 877
a60637c8 878 pages[ret] = page;
0fc9d104
KK
879 if (++ret == nr_pages)
880 break;
a60637c8 881 }
5b280c0c 882
a60637c8 883 rcu_read_unlock();
1da177e4
LT
884 return ret;
885}
886
ebf43500
JA
887/**
888 * find_get_pages_contig - gang contiguous pagecache lookup
889 * @mapping: The address_space to search
890 * @index: The starting page index
891 * @nr_pages: The maximum number of pages
892 * @pages: Where the resulting pages are placed
893 *
894 * find_get_pages_contig() works exactly like find_get_pages(), except
895 * that the returned number of pages are guaranteed to be contiguous.
896 *
897 * find_get_pages_contig() returns the number of pages which were found.
898 */
899unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
900 unsigned int nr_pages, struct page **pages)
901{
0fc9d104
KK
902 struct radix_tree_iter iter;
903 void **slot;
904 unsigned int ret = 0;
905
906 if (unlikely(!nr_pages))
907 return 0;
a60637c8
NP
908
909 rcu_read_lock();
910restart:
0fc9d104 911 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
a60637c8
NP
912 struct page *page;
913repeat:
0fc9d104
KK
914 page = radix_tree_deref_slot(slot);
915 /* The hole, there no reason to continue */
a60637c8 916 if (unlikely(!page))
0fc9d104 917 break;
9d8aa4ea 918
a2c16d6c 919 if (radix_tree_exception(page)) {
8079b1c8
HD
920 if (radix_tree_deref_retry(page)) {
921 /*
922 * Transient condition which can only trigger
923 * when entry at index 0 moves out of or back
924 * to root: none yet gotten, safe to restart.
925 */
926 goto restart;
927 }
a2c16d6c 928 /*
8079b1c8
HD
929 * Otherwise, shmem/tmpfs must be storing a swap entry
930 * here as an exceptional entry: so stop looking for
931 * contiguous pages.
a2c16d6c 932 */
8079b1c8 933 break;
a2c16d6c 934 }
ebf43500 935
a60637c8
NP
936 if (!page_cache_get_speculative(page))
937 goto repeat;
938
939 /* Has the page moved? */
0fc9d104 940 if (unlikely(page != *slot)) {
a60637c8
NP
941 page_cache_release(page);
942 goto repeat;
943 }
944
9cbb4cb2
NP
945 /*
946 * must check mapping and index after taking the ref.
947 * otherwise we can get both false positives and false
948 * negatives, which is just confusing to the caller.
949 */
0fc9d104 950 if (page->mapping == NULL || page->index != iter.index) {
9cbb4cb2
NP
951 page_cache_release(page);
952 break;
953 }
954
a60637c8 955 pages[ret] = page;
0fc9d104
KK
956 if (++ret == nr_pages)
957 break;
ebf43500 958 }
a60637c8
NP
959 rcu_read_unlock();
960 return ret;
ebf43500 961}
ef71c15c 962EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 963
485bb99b
RD
964/**
965 * find_get_pages_tag - find and return pages that match @tag
966 * @mapping: the address_space to search
967 * @index: the starting page index
968 * @tag: the tag index
969 * @nr_pages: the maximum number of pages
970 * @pages: where the resulting pages are placed
971 *
1da177e4 972 * Like find_get_pages, except we only return pages which are tagged with
485bb99b 973 * @tag. We update @index to index the next page for the traversal.
1da177e4
LT
974 */
975unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
976 int tag, unsigned int nr_pages, struct page **pages)
977{
0fc9d104
KK
978 struct radix_tree_iter iter;
979 void **slot;
980 unsigned ret = 0;
981
982 if (unlikely(!nr_pages))
983 return 0;
a60637c8
NP
984
985 rcu_read_lock();
986restart:
0fc9d104
KK
987 radix_tree_for_each_tagged(slot, &mapping->page_tree,
988 &iter, *index, tag) {
a60637c8
NP
989 struct page *page;
990repeat:
0fc9d104 991 page = radix_tree_deref_slot(slot);
a60637c8
NP
992 if (unlikely(!page))
993 continue;
9d8aa4ea 994
a2c16d6c 995 if (radix_tree_exception(page)) {
8079b1c8
HD
996 if (radix_tree_deref_retry(page)) {
997 /*
998 * Transient condition which can only trigger
999 * when entry at index 0 moves out of or back
1000 * to root: none yet gotten, safe to restart.
1001 */
1002 goto restart;
1003 }
a2c16d6c 1004 /*
8079b1c8
HD
1005 * This function is never used on a shmem/tmpfs
1006 * mapping, so a swap entry won't be found here.
a2c16d6c 1007 */
8079b1c8 1008 BUG();
a2c16d6c 1009 }
a60637c8
NP
1010
1011 if (!page_cache_get_speculative(page))
1012 goto repeat;
1013
1014 /* Has the page moved? */
0fc9d104 1015 if (unlikely(page != *slot)) {
a60637c8
NP
1016 page_cache_release(page);
1017 goto repeat;
1018 }
1019
1020 pages[ret] = page;
0fc9d104
KK
1021 if (++ret == nr_pages)
1022 break;
a60637c8 1023 }
5b280c0c 1024
a60637c8 1025 rcu_read_unlock();
1da177e4 1026
1da177e4
LT
1027 if (ret)
1028 *index = pages[ret - 1]->index + 1;
a60637c8 1029
1da177e4
LT
1030 return ret;
1031}
ef71c15c 1032EXPORT_SYMBOL(find_get_pages_tag);
1da177e4 1033
485bb99b
RD
1034/**
1035 * grab_cache_page_nowait - returns locked page at given index in given cache
1036 * @mapping: target address_space
1037 * @index: the page index
1038 *
72fd4a35 1039 * Same as grab_cache_page(), but do not wait if the page is unavailable.
1da177e4
LT
1040 * This is intended for speculative data generators, where the data can
1041 * be regenerated if the page couldn't be grabbed. This routine should
1042 * be safe to call while holding the lock for another page.
1043 *
1044 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1045 * and deadlock against the caller's locked page.
1046 */
1047struct page *
57f6b96c 1048grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1da177e4
LT
1049{
1050 struct page *page = find_get_page(mapping, index);
1da177e4
LT
1051
1052 if (page) {
529ae9aa 1053 if (trylock_page(page))
1da177e4
LT
1054 return page;
1055 page_cache_release(page);
1056 return NULL;
1057 }
2ae88149 1058 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
67d58ac4 1059 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1da177e4
LT
1060 page_cache_release(page);
1061 page = NULL;
1062 }
1063 return page;
1064}
1da177e4
LT
1065EXPORT_SYMBOL(grab_cache_page_nowait);
1066
76d42bd9
WF
1067/*
1068 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1069 * a _large_ part of the i/o request. Imagine the worst scenario:
1070 *
1071 * ---R__________________________________________B__________
1072 * ^ reading here ^ bad block(assume 4k)
1073 *
1074 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1075 * => failing the whole request => read(R) => read(R+1) =>
1076 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1077 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1078 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1079 *
1080 * It is going insane. Fix it by quickly scaling down the readahead size.
1081 */
1082static void shrink_readahead_size_eio(struct file *filp,
1083 struct file_ra_state *ra)
1084{
76d42bd9 1085 ra->ra_pages /= 4;
76d42bd9
WF
1086}
1087
485bb99b 1088/**
36e78914 1089 * do_generic_file_read - generic file read routine
485bb99b
RD
1090 * @filp: the file to read
1091 * @ppos: current file position
1092 * @desc: read_descriptor
485bb99b 1093 *
1da177e4 1094 * This is a generic file read routine, and uses the
485bb99b 1095 * mapping->a_ops->readpage() function for the actual low-level stuff.
1da177e4
LT
1096 *
1097 * This is really ugly. But the goto's actually try to clarify some
1098 * of the logic when it comes to error handling etc.
1da177e4 1099 */
36e78914 1100static void do_generic_file_read(struct file *filp, loff_t *ppos,
b77d88d4 1101 read_descriptor_t *desc)
1da177e4 1102{
36e78914 1103 struct address_space *mapping = filp->f_mapping;
1da177e4 1104 struct inode *inode = mapping->host;
36e78914 1105 struct file_ra_state *ra = &filp->f_ra;
57f6b96c
FW
1106 pgoff_t index;
1107 pgoff_t last_index;
1108 pgoff_t prev_index;
1109 unsigned long offset; /* offset into pagecache page */
ec0f1637 1110 unsigned int prev_offset;
1da177e4 1111 int error;
1da177e4 1112
1da177e4 1113 index = *ppos >> PAGE_CACHE_SHIFT;
7ff81078
FW
1114 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1115 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1da177e4
LT
1116 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1117 offset = *ppos & ~PAGE_CACHE_MASK;
1118
1da177e4
LT
1119 for (;;) {
1120 struct page *page;
57f6b96c 1121 pgoff_t end_index;
a32ea1e1 1122 loff_t isize;
1da177e4
LT
1123 unsigned long nr, ret;
1124
1da177e4 1125 cond_resched();
1da177e4
LT
1126find_page:
1127 page = find_get_page(mapping, index);
3ea89ee8 1128 if (!page) {
cf914a7d 1129 page_cache_sync_readahead(mapping,
7ff81078 1130 ra, filp,
3ea89ee8
FW
1131 index, last_index - index);
1132 page = find_get_page(mapping, index);
1133 if (unlikely(page == NULL))
1134 goto no_cached_page;
1135 }
1136 if (PageReadahead(page)) {
cf914a7d 1137 page_cache_async_readahead(mapping,
7ff81078 1138 ra, filp, page,
3ea89ee8 1139 index, last_index - index);
1da177e4 1140 }
8ab22b9a
HH
1141 if (!PageUptodate(page)) {
1142 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1143 !mapping->a_ops->is_partially_uptodate)
1144 goto page_not_up_to_date;
529ae9aa 1145 if (!trylock_page(page))
8ab22b9a 1146 goto page_not_up_to_date;
8d056cb9
DH
1147 /* Did it get truncated before we got the lock? */
1148 if (!page->mapping)
1149 goto page_not_up_to_date_locked;
8ab22b9a 1150 if (!mapping->a_ops->is_partially_uptodate(page,
c186afb4 1151 offset, desc->count))
8ab22b9a
HH
1152 goto page_not_up_to_date_locked;
1153 unlock_page(page);
1154 }
1da177e4 1155page_ok:
a32ea1e1
N
1156 /*
1157 * i_size must be checked after we know the page is Uptodate.
1158 *
1159 * Checking i_size after the check allows us to calculate
1160 * the correct value for "nr", which means the zero-filled
1161 * part of the page is not copied back to userspace (unless
1162 * another truncate extends the file - this is desired though).
1163 */
1164
1165 isize = i_size_read(inode);
1166 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1167 if (unlikely(!isize || index > end_index)) {
1168 page_cache_release(page);
1169 goto out;
1170 }
1171
1172 /* nr is the maximum number of bytes to copy from this page */
1173 nr = PAGE_CACHE_SIZE;
1174 if (index == end_index) {
1175 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1176 if (nr <= offset) {
1177 page_cache_release(page);
1178 goto out;
1179 }
1180 }
1181 nr = nr - offset;
1da177e4
LT
1182
1183 /* If users can be writing to this page using arbitrary
1184 * virtual addresses, take care about potential aliasing
1185 * before reading the page on the kernel side.
1186 */
1187 if (mapping_writably_mapped(mapping))
1188 flush_dcache_page(page);
1189
1190 /*
ec0f1637
JK
1191 * When a sequential read accesses a page several times,
1192 * only mark it as accessed the first time.
1da177e4 1193 */
ec0f1637 1194 if (prev_index != index || offset != prev_offset)
1da177e4
LT
1195 mark_page_accessed(page);
1196 prev_index = index;
1197
1198 /*
1199 * Ok, we have the page, and it's up-to-date, so
1200 * now we can copy it to user space...
1201 *
b77d88d4
KS
1202 * The file_read_actor routine returns how many bytes were
1203 * actually used..
1da177e4
LT
1204 * NOTE! This may not be the same as how much of a user buffer
1205 * we filled up (we may be padding etc), so we can only update
1206 * "pos" here (the actor routine has to update the user buffer
1207 * pointers and the remaining count).
1208 */
b77d88d4 1209 ret = file_read_actor(desc, page, offset, nr);
1da177e4
LT
1210 offset += ret;
1211 index += offset >> PAGE_CACHE_SHIFT;
1212 offset &= ~PAGE_CACHE_MASK;
6ce745ed 1213 prev_offset = offset;
1da177e4
LT
1214
1215 page_cache_release(page);
1216 if (ret == nr && desc->count)
1217 continue;
1218 goto out;
1219
1220page_not_up_to_date:
1221 /* Get exclusive access to the page ... */
85462323
ON
1222 error = lock_page_killable(page);
1223 if (unlikely(error))
1224 goto readpage_error;
1da177e4 1225
8ab22b9a 1226page_not_up_to_date_locked:
da6052f7 1227 /* Did it get truncated before we got the lock? */
1da177e4
LT
1228 if (!page->mapping) {
1229 unlock_page(page);
1230 page_cache_release(page);
1231 continue;
1232 }
1233
1234 /* Did somebody else fill it already? */
1235 if (PageUptodate(page)) {
1236 unlock_page(page);
1237 goto page_ok;
1238 }
1239
1240readpage:
91803b49
JM
1241 /*
1242 * A previous I/O error may have been due to temporary
1243 * failures, eg. multipath errors.
1244 * PG_error will be set again if readpage fails.
1245 */
1246 ClearPageError(page);
1da177e4
LT
1247 /* Start the actual read. The read will unlock the page. */
1248 error = mapping->a_ops->readpage(filp, page);
1249
994fc28c
ZB
1250 if (unlikely(error)) {
1251 if (error == AOP_TRUNCATED_PAGE) {
1252 page_cache_release(page);
1253 goto find_page;
1254 }
1da177e4 1255 goto readpage_error;
994fc28c 1256 }
1da177e4
LT
1257
1258 if (!PageUptodate(page)) {
85462323
ON
1259 error = lock_page_killable(page);
1260 if (unlikely(error))
1261 goto readpage_error;
1da177e4
LT
1262 if (!PageUptodate(page)) {
1263 if (page->mapping == NULL) {
1264 /*
2ecdc82e 1265 * invalidate_mapping_pages got it
1da177e4
LT
1266 */
1267 unlock_page(page);
1268 page_cache_release(page);
1269 goto find_page;
1270 }
1271 unlock_page(page);
7ff81078 1272 shrink_readahead_size_eio(filp, ra);
85462323
ON
1273 error = -EIO;
1274 goto readpage_error;
1da177e4
LT
1275 }
1276 unlock_page(page);
1277 }
1278
1da177e4
LT
1279 goto page_ok;
1280
1281readpage_error:
1282 /* UHHUH! A synchronous read error occurred. Report it */
1283 desc->error = error;
1284 page_cache_release(page);
1285 goto out;
1286
1287no_cached_page:
1288 /*
1289 * Ok, it wasn't cached, so we need to create a new
1290 * page..
1291 */
eb2be189
NP
1292 page = page_cache_alloc_cold(mapping);
1293 if (!page) {
1294 desc->error = -ENOMEM;
1295 goto out;
1da177e4 1296 }
eb2be189 1297 error = add_to_page_cache_lru(page, mapping,
1da177e4
LT
1298 index, GFP_KERNEL);
1299 if (error) {
eb2be189 1300 page_cache_release(page);
1da177e4
LT
1301 if (error == -EEXIST)
1302 goto find_page;
1303 desc->error = error;
1304 goto out;
1305 }
1da177e4
LT
1306 goto readpage;
1307 }
1308
1309out:
7ff81078
FW
1310 ra->prev_pos = prev_index;
1311 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1312 ra->prev_pos |= prev_offset;
1da177e4 1313
f4e6b498 1314 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
0c6aa263 1315 file_accessed(filp);
1da177e4 1316}
1da177e4
LT
1317
1318int file_read_actor(read_descriptor_t *desc, struct page *page,
1319 unsigned long offset, unsigned long size)
1320{
1321 char *kaddr;
1322 unsigned long left, count = desc->count;
1323
1324 if (size > count)
1325 size = count;
1326
1327 /*
1328 * Faults on the destination of a read are common, so do it before
1329 * taking the kmap.
1330 */
1331 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
9b04c5fe 1332 kaddr = kmap_atomic(page);
1da177e4
LT
1333 left = __copy_to_user_inatomic(desc->arg.buf,
1334 kaddr + offset, size);
9b04c5fe 1335 kunmap_atomic(kaddr);
1da177e4
LT
1336 if (left == 0)
1337 goto success;
1338 }
1339
1340 /* Do it the slow way */
1341 kaddr = kmap(page);
1342 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1343 kunmap(page);
1344
1345 if (left) {
1346 size -= left;
1347 desc->error = -EFAULT;
1348 }
1349success:
1350 desc->count = count - size;
1351 desc->written += size;
1352 desc->arg.buf += size;
1353 return size;
1354}
1355
0ceb3314
DM
1356/*
1357 * Performs necessary checks before doing a write
1358 * @iov: io vector request
1359 * @nr_segs: number of segments in the iovec
1360 * @count: number of bytes to write
1361 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1362 *
1363 * Adjust number of segments and amount of bytes to write (nr_segs should be
1364 * properly initialized first). Returns appropriate error code that caller
1365 * should return or zero in case that write should be allowed.
1366 */
1367int generic_segment_checks(const struct iovec *iov,
1368 unsigned long *nr_segs, size_t *count, int access_flags)
1369{
1370 unsigned long seg;
1371 size_t cnt = 0;
1372 for (seg = 0; seg < *nr_segs; seg++) {
1373 const struct iovec *iv = &iov[seg];
1374
1375 /*
1376 * If any segment has a negative length, or the cumulative
1377 * length ever wraps negative then return -EINVAL.
1378 */
1379 cnt += iv->iov_len;
1380 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1381 return -EINVAL;
1382 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1383 continue;
1384 if (seg == 0)
1385 return -EFAULT;
1386 *nr_segs = seg;
1387 cnt -= iv->iov_len; /* This segment is no good */
1388 break;
1389 }
1390 *count = cnt;
1391 return 0;
1392}
1393EXPORT_SYMBOL(generic_segment_checks);
1394
485bb99b 1395/**
b2abacf3 1396 * generic_file_aio_read - generic filesystem read routine
485bb99b
RD
1397 * @iocb: kernel I/O control block
1398 * @iov: io vector request
1399 * @nr_segs: number of segments in the iovec
b2abacf3 1400 * @pos: current file position
485bb99b 1401 *
1da177e4
LT
1402 * This is the "read()" routine for all filesystems
1403 * that can use the page cache directly.
1404 */
1405ssize_t
543ade1f
BP
1406generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1407 unsigned long nr_segs, loff_t pos)
1da177e4
LT
1408{
1409 struct file *filp = iocb->ki_filp;
1410 ssize_t retval;
66f998f6 1411 unsigned long seg = 0;
1da177e4 1412 size_t count;
543ade1f 1413 loff_t *ppos = &iocb->ki_pos;
1da177e4
LT
1414
1415 count = 0;
0ceb3314
DM
1416 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1417 if (retval)
1418 return retval;
1da177e4
LT
1419
1420 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1421 if (filp->f_flags & O_DIRECT) {
543ade1f 1422 loff_t size;
1da177e4
LT
1423 struct address_space *mapping;
1424 struct inode *inode;
1425
1426 mapping = filp->f_mapping;
1427 inode = mapping->host;
1da177e4
LT
1428 if (!count)
1429 goto out; /* skip atime */
1430 size = i_size_read(inode);
9fe55eea 1431 retval = filemap_write_and_wait_range(mapping, pos,
48b47c56 1432 pos + iov_length(iov, nr_segs) - 1);
9fe55eea
SW
1433 if (!retval) {
1434 retval = mapping->a_ops->direct_IO(READ, iocb,
1435 iov, pos, nr_segs);
1436 }
1437 if (retval > 0) {
1438 *ppos = pos + retval;
1439 count -= retval;
1440 }
66f998f6 1441
9fe55eea
SW
1442 /*
1443 * Btrfs can have a short DIO read if we encounter
1444 * compressed extents, so if there was an error, or if
1445 * we've already read everything we wanted to, or if
1446 * there was a short read because we hit EOF, go ahead
1447 * and return. Otherwise fallthrough to buffered io for
1448 * the rest of the read.
1449 */
1450 if (retval < 0 || !count || *ppos >= size) {
1451 file_accessed(filp);
1452 goto out;
0e0bcae3 1453 }
1da177e4
LT
1454 }
1455
66f998f6 1456 count = retval;
11fa977e
HD
1457 for (seg = 0; seg < nr_segs; seg++) {
1458 read_descriptor_t desc;
66f998f6
JB
1459 loff_t offset = 0;
1460
1461 /*
1462 * If we did a short DIO read we need to skip the section of the
1463 * iov that we've already read data into.
1464 */
1465 if (count) {
1466 if (count > iov[seg].iov_len) {
1467 count -= iov[seg].iov_len;
1468 continue;
1469 }
1470 offset = count;
1471 count = 0;
1472 }
1da177e4 1473
11fa977e 1474 desc.written = 0;
66f998f6
JB
1475 desc.arg.buf = iov[seg].iov_base + offset;
1476 desc.count = iov[seg].iov_len - offset;
11fa977e
HD
1477 if (desc.count == 0)
1478 continue;
1479 desc.error = 0;
b77d88d4 1480 do_generic_file_read(filp, ppos, &desc);
11fa977e
HD
1481 retval += desc.written;
1482 if (desc.error) {
1483 retval = retval ?: desc.error;
1484 break;
1da177e4 1485 }
11fa977e
HD
1486 if (desc.count > 0)
1487 break;
1da177e4
LT
1488 }
1489out:
1490 return retval;
1491}
1da177e4
LT
1492EXPORT_SYMBOL(generic_file_aio_read);
1493
1da177e4 1494#ifdef CONFIG_MMU
485bb99b
RD
1495/**
1496 * page_cache_read - adds requested page to the page cache if not already there
1497 * @file: file to read
1498 * @offset: page index
1499 *
1da177e4
LT
1500 * This adds the requested page to the page cache if it isn't already there,
1501 * and schedules an I/O to read in its contents from disk.
1502 */
920c7a5d 1503static int page_cache_read(struct file *file, pgoff_t offset)
1da177e4
LT
1504{
1505 struct address_space *mapping = file->f_mapping;
1506 struct page *page;
994fc28c 1507 int ret;
1da177e4 1508
994fc28c
ZB
1509 do {
1510 page = page_cache_alloc_cold(mapping);
1511 if (!page)
1512 return -ENOMEM;
1513
1514 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1515 if (ret == 0)
1516 ret = mapping->a_ops->readpage(file, page);
1517 else if (ret == -EEXIST)
1518 ret = 0; /* losing race to add is OK */
1da177e4 1519
1da177e4 1520 page_cache_release(page);
1da177e4 1521
994fc28c
ZB
1522 } while (ret == AOP_TRUNCATED_PAGE);
1523
1524 return ret;
1da177e4
LT
1525}
1526
1527#define MMAP_LOTSAMISS (100)
1528
ef00e08e
LT
1529/*
1530 * Synchronous readahead happens when we don't even find
1531 * a page in the page cache at all.
1532 */
1533static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1534 struct file_ra_state *ra,
1535 struct file *file,
1536 pgoff_t offset)
1537{
1538 unsigned long ra_pages;
1539 struct address_space *mapping = file->f_mapping;
1540
1541 /* If we don't want any read-ahead, don't bother */
64363aad 1542 if (vma->vm_flags & VM_RAND_READ)
ef00e08e 1543 return;
275b12bf
WF
1544 if (!ra->ra_pages)
1545 return;
ef00e08e 1546
64363aad 1547 if (vma->vm_flags & VM_SEQ_READ) {
7ffc59b4
WF
1548 page_cache_sync_readahead(mapping, ra, file, offset,
1549 ra->ra_pages);
ef00e08e
LT
1550 return;
1551 }
1552
207d04ba
AK
1553 /* Avoid banging the cache line if not needed */
1554 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
ef00e08e
LT
1555 ra->mmap_miss++;
1556
1557 /*
1558 * Do we miss much more than hit in this file? If so,
1559 * stop bothering with read-ahead. It will only hurt.
1560 */
1561 if (ra->mmap_miss > MMAP_LOTSAMISS)
1562 return;
1563
d30a1100
WF
1564 /*
1565 * mmap read-around
1566 */
ef00e08e 1567 ra_pages = max_sane_readahead(ra->ra_pages);
275b12bf
WF
1568 ra->start = max_t(long, 0, offset - ra_pages / 2);
1569 ra->size = ra_pages;
2cbea1d3 1570 ra->async_size = ra_pages / 4;
275b12bf 1571 ra_submit(ra, mapping, file);
ef00e08e
LT
1572}
1573
1574/*
1575 * Asynchronous readahead happens when we find the page and PG_readahead,
1576 * so we want to possibly extend the readahead further..
1577 */
1578static void do_async_mmap_readahead(struct vm_area_struct *vma,
1579 struct file_ra_state *ra,
1580 struct file *file,
1581 struct page *page,
1582 pgoff_t offset)
1583{
1584 struct address_space *mapping = file->f_mapping;
1585
1586 /* If we don't want any read-ahead, don't bother */
64363aad 1587 if (vma->vm_flags & VM_RAND_READ)
ef00e08e
LT
1588 return;
1589 if (ra->mmap_miss > 0)
1590 ra->mmap_miss--;
1591 if (PageReadahead(page))
2fad6f5d
WF
1592 page_cache_async_readahead(mapping, ra, file,
1593 page, offset, ra->ra_pages);
ef00e08e
LT
1594}
1595
485bb99b 1596/**
54cb8821 1597 * filemap_fault - read in file data for page fault handling
d0217ac0
NP
1598 * @vma: vma in which the fault was taken
1599 * @vmf: struct vm_fault containing details of the fault
485bb99b 1600 *
54cb8821 1601 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
1602 * mapped memory region to read in file data during a page fault.
1603 *
1604 * The goto's are kind of ugly, but this streamlines the normal case of having
1605 * it in the page cache, and handles the special cases reasonably without
1606 * having a lot of duplicated code.
1607 */
d0217ac0 1608int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
1609{
1610 int error;
54cb8821 1611 struct file *file = vma->vm_file;
1da177e4
LT
1612 struct address_space *mapping = file->f_mapping;
1613 struct file_ra_state *ra = &file->f_ra;
1614 struct inode *inode = mapping->host;
ef00e08e 1615 pgoff_t offset = vmf->pgoff;
1da177e4 1616 struct page *page;
2004dc8e 1617 pgoff_t size;
83c54070 1618 int ret = 0;
1da177e4 1619
1da177e4 1620 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
ef00e08e 1621 if (offset >= size)
5307cc1a 1622 return VM_FAULT_SIGBUS;
1da177e4 1623
1da177e4 1624 /*
49426420 1625 * Do we have something in the page cache already?
1da177e4 1626 */
ef00e08e 1627 page = find_get_page(mapping, offset);
45cac65b 1628 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1da177e4 1629 /*
ef00e08e
LT
1630 * We found the page, so try async readahead before
1631 * waiting for the lock.
1da177e4 1632 */
ef00e08e 1633 do_async_mmap_readahead(vma, ra, file, page, offset);
45cac65b 1634 } else if (!page) {
ef00e08e
LT
1635 /* No page in the page cache at all */
1636 do_sync_mmap_readahead(vma, ra, file, offset);
1637 count_vm_event(PGMAJFAULT);
456f998e 1638 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
ef00e08e
LT
1639 ret = VM_FAULT_MAJOR;
1640retry_find:
b522c94d 1641 page = find_get_page(mapping, offset);
1da177e4
LT
1642 if (!page)
1643 goto no_cached_page;
1644 }
1645
d88c0922
ML
1646 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1647 page_cache_release(page);
d065bd81 1648 return ret | VM_FAULT_RETRY;
d88c0922 1649 }
b522c94d
ML
1650
1651 /* Did it get truncated? */
1652 if (unlikely(page->mapping != mapping)) {
1653 unlock_page(page);
1654 put_page(page);
1655 goto retry_find;
1656 }
309381fe 1657 VM_BUG_ON_PAGE(page->index != offset, page);
b522c94d 1658
1da177e4 1659 /*
d00806b1
NP
1660 * We have a locked page in the page cache, now we need to check
1661 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 1662 */
d00806b1 1663 if (unlikely(!PageUptodate(page)))
1da177e4
LT
1664 goto page_not_uptodate;
1665
ef00e08e
LT
1666 /*
1667 * Found the page and have a reference on it.
1668 * We must recheck i_size under page lock.
1669 */
d00806b1 1670 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
ef00e08e 1671 if (unlikely(offset >= size)) {
d00806b1 1672 unlock_page(page);
745ad48e 1673 page_cache_release(page);
5307cc1a 1674 return VM_FAULT_SIGBUS;
d00806b1
NP
1675 }
1676
d0217ac0 1677 vmf->page = page;
83c54070 1678 return ret | VM_FAULT_LOCKED;
1da177e4 1679
1da177e4
LT
1680no_cached_page:
1681 /*
1682 * We're only likely to ever get here if MADV_RANDOM is in
1683 * effect.
1684 */
ef00e08e 1685 error = page_cache_read(file, offset);
1da177e4
LT
1686
1687 /*
1688 * The page we want has now been added to the page cache.
1689 * In the unlikely event that someone removed it in the
1690 * meantime, we'll just come back here and read it again.
1691 */
1692 if (error >= 0)
1693 goto retry_find;
1694
1695 /*
1696 * An error return from page_cache_read can result if the
1697 * system is low on memory, or a problem occurs while trying
1698 * to schedule I/O.
1699 */
1700 if (error == -ENOMEM)
d0217ac0
NP
1701 return VM_FAULT_OOM;
1702 return VM_FAULT_SIGBUS;
1da177e4
LT
1703
1704page_not_uptodate:
1da177e4
LT
1705 /*
1706 * Umm, take care of errors if the page isn't up-to-date.
1707 * Try to re-read it _once_. We do this synchronously,
1708 * because there really aren't any performance issues here
1709 * and we need to check for errors.
1710 */
1da177e4 1711 ClearPageError(page);
994fc28c 1712 error = mapping->a_ops->readpage(file, page);
3ef0f720
MS
1713 if (!error) {
1714 wait_on_page_locked(page);
1715 if (!PageUptodate(page))
1716 error = -EIO;
1717 }
d00806b1
NP
1718 page_cache_release(page);
1719
1720 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 1721 goto retry_find;
1da177e4 1722
d00806b1 1723 /* Things didn't work out. Return zero to tell the mm layer so. */
76d42bd9 1724 shrink_readahead_size_eio(file, ra);
d0217ac0 1725 return VM_FAULT_SIGBUS;
54cb8821
NP
1726}
1727EXPORT_SYMBOL(filemap_fault);
1728
4fcf1c62
JK
1729int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
1730{
1731 struct page *page = vmf->page;
496ad9aa 1732 struct inode *inode = file_inode(vma->vm_file);
4fcf1c62
JK
1733 int ret = VM_FAULT_LOCKED;
1734
14da9200 1735 sb_start_pagefault(inode->i_sb);
4fcf1c62
JK
1736 file_update_time(vma->vm_file);
1737 lock_page(page);
1738 if (page->mapping != inode->i_mapping) {
1739 unlock_page(page);
1740 ret = VM_FAULT_NOPAGE;
1741 goto out;
1742 }
14da9200
JK
1743 /*
1744 * We mark the page dirty already here so that when freeze is in
1745 * progress, we are guaranteed that writeback during freezing will
1746 * see the dirty page and writeprotect it again.
1747 */
1748 set_page_dirty(page);
1d1d1a76 1749 wait_for_stable_page(page);
4fcf1c62 1750out:
14da9200 1751 sb_end_pagefault(inode->i_sb);
4fcf1c62
JK
1752 return ret;
1753}
1754EXPORT_SYMBOL(filemap_page_mkwrite);
1755
f0f37e2f 1756const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 1757 .fault = filemap_fault,
4fcf1c62 1758 .page_mkwrite = filemap_page_mkwrite,
0b173bc4 1759 .remap_pages = generic_file_remap_pages,
1da177e4
LT
1760};
1761
1762/* This is used for a general mmap of a disk file */
1763
1764int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1765{
1766 struct address_space *mapping = file->f_mapping;
1767
1768 if (!mapping->a_ops->readpage)
1769 return -ENOEXEC;
1770 file_accessed(file);
1771 vma->vm_ops = &generic_file_vm_ops;
1772 return 0;
1773}
1da177e4
LT
1774
1775/*
1776 * This is for filesystems which do not implement ->writepage.
1777 */
1778int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1779{
1780 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1781 return -EINVAL;
1782 return generic_file_mmap(file, vma);
1783}
1784#else
1785int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1786{
1787 return -ENOSYS;
1788}
1789int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1790{
1791 return -ENOSYS;
1792}
1793#endif /* CONFIG_MMU */
1794
1795EXPORT_SYMBOL(generic_file_mmap);
1796EXPORT_SYMBOL(generic_file_readonly_mmap);
1797
6fe6900e 1798static struct page *__read_cache_page(struct address_space *mapping,
57f6b96c 1799 pgoff_t index,
5e5358e7 1800 int (*filler)(void *, struct page *),
0531b2aa
LT
1801 void *data,
1802 gfp_t gfp)
1da177e4 1803{
eb2be189 1804 struct page *page;
1da177e4
LT
1805 int err;
1806repeat:
1807 page = find_get_page(mapping, index);
1808 if (!page) {
0531b2aa 1809 page = __page_cache_alloc(gfp | __GFP_COLD);
eb2be189
NP
1810 if (!page)
1811 return ERR_PTR(-ENOMEM);
e6f67b8c 1812 err = add_to_page_cache_lru(page, mapping, index, gfp);
eb2be189
NP
1813 if (unlikely(err)) {
1814 page_cache_release(page);
1815 if (err == -EEXIST)
1816 goto repeat;
1da177e4 1817 /* Presumably ENOMEM for radix tree node */
1da177e4
LT
1818 return ERR_PTR(err);
1819 }
1da177e4
LT
1820 err = filler(data, page);
1821 if (err < 0) {
1822 page_cache_release(page);
1823 page = ERR_PTR(err);
1824 }
1825 }
1da177e4
LT
1826 return page;
1827}
1828
0531b2aa 1829static struct page *do_read_cache_page(struct address_space *mapping,
57f6b96c 1830 pgoff_t index,
5e5358e7 1831 int (*filler)(void *, struct page *),
0531b2aa
LT
1832 void *data,
1833 gfp_t gfp)
1834
1da177e4
LT
1835{
1836 struct page *page;
1837 int err;
1838
1839retry:
0531b2aa 1840 page = __read_cache_page(mapping, index, filler, data, gfp);
1da177e4 1841 if (IS_ERR(page))
c855ff37 1842 return page;
1da177e4
LT
1843 if (PageUptodate(page))
1844 goto out;
1845
1846 lock_page(page);
1847 if (!page->mapping) {
1848 unlock_page(page);
1849 page_cache_release(page);
1850 goto retry;
1851 }
1852 if (PageUptodate(page)) {
1853 unlock_page(page);
1854 goto out;
1855 }
1856 err = filler(data, page);
1857 if (err < 0) {
1858 page_cache_release(page);
c855ff37 1859 return ERR_PTR(err);
1da177e4 1860 }
c855ff37 1861out:
6fe6900e
NP
1862 mark_page_accessed(page);
1863 return page;
1864}
0531b2aa
LT
1865
1866/**
1867 * read_cache_page_async - read into page cache, fill it if needed
1868 * @mapping: the page's address_space
1869 * @index: the page index
1870 * @filler: function to perform the read
5e5358e7 1871 * @data: first arg to filler(data, page) function, often left as NULL
0531b2aa
LT
1872 *
1873 * Same as read_cache_page, but don't wait for page to become unlocked
1874 * after submitting it to the filler.
1875 *
1876 * Read into the page cache. If a page already exists, and PageUptodate() is
1877 * not set, try to fill the page but don't wait for it to become unlocked.
1878 *
1879 * If the page does not get brought uptodate, return -EIO.
1880 */
1881struct page *read_cache_page_async(struct address_space *mapping,
1882 pgoff_t index,
5e5358e7 1883 int (*filler)(void *, struct page *),
0531b2aa
LT
1884 void *data)
1885{
1886 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1887}
6fe6900e
NP
1888EXPORT_SYMBOL(read_cache_page_async);
1889
0531b2aa
LT
1890static struct page *wait_on_page_read(struct page *page)
1891{
1892 if (!IS_ERR(page)) {
1893 wait_on_page_locked(page);
1894 if (!PageUptodate(page)) {
1895 page_cache_release(page);
1896 page = ERR_PTR(-EIO);
1897 }
1898 }
1899 return page;
1900}
1901
1902/**
1903 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1904 * @mapping: the page's address_space
1905 * @index: the page index
1906 * @gfp: the page allocator flags to use if allocating
1907 *
1908 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
e6f67b8c 1909 * any new page allocations done using the specified allocation flags.
0531b2aa
LT
1910 *
1911 * If the page does not get brought uptodate, return -EIO.
1912 */
1913struct page *read_cache_page_gfp(struct address_space *mapping,
1914 pgoff_t index,
1915 gfp_t gfp)
1916{
1917 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1918
1919 return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1920}
1921EXPORT_SYMBOL(read_cache_page_gfp);
1922
6fe6900e
NP
1923/**
1924 * read_cache_page - read into page cache, fill it if needed
1925 * @mapping: the page's address_space
1926 * @index: the page index
1927 * @filler: function to perform the read
5e5358e7 1928 * @data: first arg to filler(data, page) function, often left as NULL
6fe6900e
NP
1929 *
1930 * Read into the page cache. If a page already exists, and PageUptodate() is
1931 * not set, try to fill the page then wait for it to become unlocked.
1932 *
1933 * If the page does not get brought uptodate, return -EIO.
1934 */
1935struct page *read_cache_page(struct address_space *mapping,
57f6b96c 1936 pgoff_t index,
5e5358e7 1937 int (*filler)(void *, struct page *),
6fe6900e
NP
1938 void *data)
1939{
0531b2aa 1940 return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1da177e4 1941}
1da177e4
LT
1942EXPORT_SYMBOL(read_cache_page);
1943
2f718ffc 1944static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1da177e4
LT
1945 const struct iovec *iov, size_t base, size_t bytes)
1946{
f1800536 1947 size_t copied = 0, left = 0;
1da177e4
LT
1948
1949 while (bytes) {
1950 char __user *buf = iov->iov_base + base;
1951 int copy = min(bytes, iov->iov_len - base);
1952
1953 base = 0;
f1800536 1954 left = __copy_from_user_inatomic(vaddr, buf, copy);
1da177e4
LT
1955 copied += copy;
1956 bytes -= copy;
1957 vaddr += copy;
1958 iov++;
1959
01408c49 1960 if (unlikely(left))
1da177e4 1961 break;
1da177e4
LT
1962 }
1963 return copied - left;
1964}
1965
2f718ffc
NP
1966/*
1967 * Copy as much as we can into the page and return the number of bytes which
af901ca1 1968 * were successfully copied. If a fault is encountered then return the number of
2f718ffc
NP
1969 * bytes which were copied.
1970 */
1971size_t iov_iter_copy_from_user_atomic(struct page *page,
1972 struct iov_iter *i, unsigned long offset, size_t bytes)
1973{
1974 char *kaddr;
1975 size_t copied;
1976
9b04c5fe 1977 kaddr = kmap_atomic(page);
2f718ffc
NP
1978 if (likely(i->nr_segs == 1)) {
1979 int left;
1980 char __user *buf = i->iov->iov_base + i->iov_offset;
f1800536 1981 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
2f718ffc
NP
1982 copied = bytes - left;
1983 } else {
1984 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1985 i->iov, i->iov_offset, bytes);
1986 }
9b04c5fe 1987 kunmap_atomic(kaddr);
2f718ffc
NP
1988
1989 return copied;
1990}
89e10787 1991EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
2f718ffc
NP
1992
1993/*
1994 * This has the same sideeffects and return value as
1995 * iov_iter_copy_from_user_atomic().
1996 * The difference is that it attempts to resolve faults.
1997 * Page must not be locked.
1998 */
1999size_t iov_iter_copy_from_user(struct page *page,
2000 struct iov_iter *i, unsigned long offset, size_t bytes)
2001{
2002 char *kaddr;
2003 size_t copied;
2004
2005 kaddr = kmap(page);
2006 if (likely(i->nr_segs == 1)) {
2007 int left;
2008 char __user *buf = i->iov->iov_base + i->iov_offset;
f1800536 2009 left = __copy_from_user(kaddr + offset, buf, bytes);
2f718ffc
NP
2010 copied = bytes - left;
2011 } else {
2012 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2013 i->iov, i->iov_offset, bytes);
2014 }
2015 kunmap(page);
2016 return copied;
2017}
89e10787 2018EXPORT_SYMBOL(iov_iter_copy_from_user);
2f718ffc 2019
f7009264 2020void iov_iter_advance(struct iov_iter *i, size_t bytes)
2f718ffc 2021{
f7009264
NP
2022 BUG_ON(i->count < bytes);
2023
2f718ffc
NP
2024 if (likely(i->nr_segs == 1)) {
2025 i->iov_offset += bytes;
f7009264 2026 i->count -= bytes;
2f718ffc
NP
2027 } else {
2028 const struct iovec *iov = i->iov;
2029 size_t base = i->iov_offset;
39be79c1 2030 unsigned long nr_segs = i->nr_segs;
2f718ffc 2031
124d3b70
NP
2032 /*
2033 * The !iov->iov_len check ensures we skip over unlikely
f7009264 2034 * zero-length segments (without overruning the iovec).
124d3b70 2035 */
94ad374a 2036 while (bytes || unlikely(i->count && !iov->iov_len)) {
f7009264 2037 int copy;
2f718ffc 2038
f7009264
NP
2039 copy = min(bytes, iov->iov_len - base);
2040 BUG_ON(!i->count || i->count < copy);
2041 i->count -= copy;
2f718ffc
NP
2042 bytes -= copy;
2043 base += copy;
2044 if (iov->iov_len == base) {
2045 iov++;
39be79c1 2046 nr_segs--;
2f718ffc
NP
2047 base = 0;
2048 }
2049 }
2050 i->iov = iov;
2051 i->iov_offset = base;
39be79c1 2052 i->nr_segs = nr_segs;
2f718ffc
NP
2053 }
2054}
89e10787 2055EXPORT_SYMBOL(iov_iter_advance);
2f718ffc 2056
afddba49
NP
2057/*
2058 * Fault in the first iovec of the given iov_iter, to a maximum length
2059 * of bytes. Returns 0 on success, or non-zero if the memory could not be
2060 * accessed (ie. because it is an invalid address).
2061 *
2062 * writev-intensive code may want this to prefault several iovecs -- that
2063 * would be possible (callers must not rely on the fact that _only_ the
2064 * first iovec will be faulted with the current implementation).
2065 */
2066int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2f718ffc 2067{
2f718ffc 2068 char __user *buf = i->iov->iov_base + i->iov_offset;
afddba49
NP
2069 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2070 return fault_in_pages_readable(buf, bytes);
2f718ffc 2071}
89e10787 2072EXPORT_SYMBOL(iov_iter_fault_in_readable);
2f718ffc
NP
2073
2074/*
2075 * Return the count of just the current iov_iter segment.
2076 */
d28574e0 2077size_t iov_iter_single_seg_count(const struct iov_iter *i)
2f718ffc
NP
2078{
2079 const struct iovec *iov = i->iov;
2080 if (i->nr_segs == 1)
2081 return i->count;
2082 else
2083 return min(i->count, iov->iov_len - i->iov_offset);
2084}
89e10787 2085EXPORT_SYMBOL(iov_iter_single_seg_count);
2f718ffc 2086
1da177e4
LT
2087/*
2088 * Performs necessary checks before doing a write
2089 *
485bb99b 2090 * Can adjust writing position or amount of bytes to write.
1da177e4
LT
2091 * Returns appropriate error code that caller should return or
2092 * zero in case that write should be allowed.
2093 */
2094inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2095{
2096 struct inode *inode = file->f_mapping->host;
59e99e5b 2097 unsigned long limit = rlimit(RLIMIT_FSIZE);
1da177e4
LT
2098
2099 if (unlikely(*pos < 0))
2100 return -EINVAL;
2101
1da177e4
LT
2102 if (!isblk) {
2103 /* FIXME: this is for backwards compatibility with 2.4 */
2104 if (file->f_flags & O_APPEND)
2105 *pos = i_size_read(inode);
2106
2107 if (limit != RLIM_INFINITY) {
2108 if (*pos >= limit) {
2109 send_sig(SIGXFSZ, current, 0);
2110 return -EFBIG;
2111 }
2112 if (*count > limit - (typeof(limit))*pos) {
2113 *count = limit - (typeof(limit))*pos;
2114 }
2115 }
2116 }
2117
2118 /*
2119 * LFS rule
2120 */
2121 if (unlikely(*pos + *count > MAX_NON_LFS &&
2122 !(file->f_flags & O_LARGEFILE))) {
2123 if (*pos >= MAX_NON_LFS) {
1da177e4
LT
2124 return -EFBIG;
2125 }
2126 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2127 *count = MAX_NON_LFS - (unsigned long)*pos;
2128 }
2129 }
2130
2131 /*
2132 * Are we about to exceed the fs block limit ?
2133 *
2134 * If we have written data it becomes a short write. If we have
2135 * exceeded without writing data we send a signal and return EFBIG.
2136 * Linus frestrict idea will clean these up nicely..
2137 */
2138 if (likely(!isblk)) {
2139 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2140 if (*count || *pos > inode->i_sb->s_maxbytes) {
1da177e4
LT
2141 return -EFBIG;
2142 }
2143 /* zero-length writes at ->s_maxbytes are OK */
2144 }
2145
2146 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2147 *count = inode->i_sb->s_maxbytes - *pos;
2148 } else {
9361401e 2149#ifdef CONFIG_BLOCK
1da177e4
LT
2150 loff_t isize;
2151 if (bdev_read_only(I_BDEV(inode)))
2152 return -EPERM;
2153 isize = i_size_read(inode);
2154 if (*pos >= isize) {
2155 if (*count || *pos > isize)
2156 return -ENOSPC;
2157 }
2158
2159 if (*pos + *count > isize)
2160 *count = isize - *pos;
9361401e
DH
2161#else
2162 return -EPERM;
2163#endif
1da177e4
LT
2164 }
2165 return 0;
2166}
2167EXPORT_SYMBOL(generic_write_checks);
2168
afddba49
NP
2169int pagecache_write_begin(struct file *file, struct address_space *mapping,
2170 loff_t pos, unsigned len, unsigned flags,
2171 struct page **pagep, void **fsdata)
2172{
2173 const struct address_space_operations *aops = mapping->a_ops;
2174
4e02ed4b 2175 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 2176 pagep, fsdata);
afddba49
NP
2177}
2178EXPORT_SYMBOL(pagecache_write_begin);
2179
2180int pagecache_write_end(struct file *file, struct address_space *mapping,
2181 loff_t pos, unsigned len, unsigned copied,
2182 struct page *page, void *fsdata)
2183{
2184 const struct address_space_operations *aops = mapping->a_ops;
afddba49 2185
4e02ed4b
NP
2186 mark_page_accessed(page);
2187 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
2188}
2189EXPORT_SYMBOL(pagecache_write_end);
2190
1da177e4
LT
2191ssize_t
2192generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2193 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2194 size_t count, size_t ocount)
2195{
2196 struct file *file = iocb->ki_filp;
2197 struct address_space *mapping = file->f_mapping;
2198 struct inode *inode = mapping->host;
2199 ssize_t written;
a969e903
CH
2200 size_t write_len;
2201 pgoff_t end;
1da177e4
LT
2202
2203 if (count != ocount)
2204 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2205
a969e903
CH
2206 write_len = iov_length(iov, *nr_segs);
2207 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
a969e903 2208
48b47c56 2209 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
a969e903
CH
2210 if (written)
2211 goto out;
2212
2213 /*
2214 * After a write we want buffered reads to be sure to go to disk to get
2215 * the new data. We invalidate clean cached page from the region we're
2216 * about to write. We do this *before* the write so that we can return
6ccfa806 2217 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903
CH
2218 */
2219 if (mapping->nrpages) {
2220 written = invalidate_inode_pages2_range(mapping,
2221 pos >> PAGE_CACHE_SHIFT, end);
6ccfa806
HH
2222 /*
2223 * If a page can not be invalidated, return 0 to fall back
2224 * to buffered write.
2225 */
2226 if (written) {
2227 if (written == -EBUSY)
2228 return 0;
a969e903 2229 goto out;
6ccfa806 2230 }
a969e903
CH
2231 }
2232
2233 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2234
2235 /*
2236 * Finally, try again to invalidate clean pages which might have been
2237 * cached by non-direct readahead, or faulted in by get_user_pages()
2238 * if the source of the write was an mmap'ed region of the file
2239 * we're writing. Either one is a pretty crazy thing to do,
2240 * so we don't support it 100%. If this invalidation
2241 * fails, tough, the write still worked...
2242 */
2243 if (mapping->nrpages) {
2244 invalidate_inode_pages2_range(mapping,
2245 pos >> PAGE_CACHE_SHIFT, end);
2246 }
2247
1da177e4 2248 if (written > 0) {
0116651c
NK
2249 pos += written;
2250 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2251 i_size_write(inode, pos);
1da177e4
LT
2252 mark_inode_dirty(inode);
2253 }
0116651c 2254 *ppos = pos;
1da177e4 2255 }
a969e903 2256out:
1da177e4
LT
2257 return written;
2258}
2259EXPORT_SYMBOL(generic_file_direct_write);
2260
eb2be189
NP
2261/*
2262 * Find or create a page at the given pagecache position. Return the locked
2263 * page. This function is specifically for buffered writes.
2264 */
54566b2c
NP
2265struct page *grab_cache_page_write_begin(struct address_space *mapping,
2266 pgoff_t index, unsigned flags)
eb2be189
NP
2267{
2268 int status;
0faa70cb 2269 gfp_t gfp_mask;
eb2be189 2270 struct page *page;
54566b2c 2271 gfp_t gfp_notmask = 0;
0faa70cb 2272
1010bb1b
FW
2273 gfp_mask = mapping_gfp_mask(mapping);
2274 if (mapping_cap_account_dirty(mapping))
2275 gfp_mask |= __GFP_WRITE;
54566b2c
NP
2276 if (flags & AOP_FLAG_NOFS)
2277 gfp_notmask = __GFP_FS;
eb2be189
NP
2278repeat:
2279 page = find_lock_page(mapping, index);
c585a267 2280 if (page)
3d08bcc8 2281 goto found;
eb2be189 2282
0faa70cb 2283 page = __page_cache_alloc(gfp_mask & ~gfp_notmask);
eb2be189
NP
2284 if (!page)
2285 return NULL;
54566b2c
NP
2286 status = add_to_page_cache_lru(page, mapping, index,
2287 GFP_KERNEL & ~gfp_notmask);
eb2be189
NP
2288 if (unlikely(status)) {
2289 page_cache_release(page);
2290 if (status == -EEXIST)
2291 goto repeat;
2292 return NULL;
2293 }
3d08bcc8 2294found:
1d1d1a76 2295 wait_for_stable_page(page);
eb2be189
NP
2296 return page;
2297}
54566b2c 2298EXPORT_SYMBOL(grab_cache_page_write_begin);
eb2be189 2299
afddba49
NP
2300static ssize_t generic_perform_write(struct file *file,
2301 struct iov_iter *i, loff_t pos)
2302{
2303 struct address_space *mapping = file->f_mapping;
2304 const struct address_space_operations *a_ops = mapping->a_ops;
2305 long status = 0;
2306 ssize_t written = 0;
674b892e
NP
2307 unsigned int flags = 0;
2308
2309 /*
2310 * Copies from kernel address space cannot fail (NFSD is a big user).
2311 */
2312 if (segment_eq(get_fs(), KERNEL_DS))
2313 flags |= AOP_FLAG_UNINTERRUPTIBLE;
afddba49
NP
2314
2315 do {
2316 struct page *page;
afddba49
NP
2317 unsigned long offset; /* Offset into pagecache page */
2318 unsigned long bytes; /* Bytes to write to page */
2319 size_t copied; /* Bytes copied from user */
2320 void *fsdata;
2321
2322 offset = (pos & (PAGE_CACHE_SIZE - 1));
afddba49
NP
2323 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2324 iov_iter_count(i));
2325
2326again:
afddba49
NP
2327 /*
2328 * Bring in the user page that we will copy from _first_.
2329 * Otherwise there's a nasty deadlock on copying from the
2330 * same page as we're writing to, without it being marked
2331 * up-to-date.
2332 *
2333 * Not only is this an optimisation, but it is also required
2334 * to check that the address is actually valid, when atomic
2335 * usercopies are used, below.
2336 */
2337 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2338 status = -EFAULT;
2339 break;
2340 }
2341
674b892e 2342 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49
NP
2343 &page, &fsdata);
2344 if (unlikely(status))
2345 break;
2346
931e80e4 2347 if (mapping_writably_mapped(mapping))
2348 flush_dcache_page(page);
2349
afddba49 2350 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
afddba49
NP
2351 flush_dcache_page(page);
2352
c8236db9 2353 mark_page_accessed(page);
afddba49
NP
2354 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2355 page, fsdata);
2356 if (unlikely(status < 0))
2357 break;
2358 copied = status;
2359
2360 cond_resched();
2361
124d3b70 2362 iov_iter_advance(i, copied);
afddba49
NP
2363 if (unlikely(copied == 0)) {
2364 /*
2365 * If we were unable to copy any data at all, we must
2366 * fall back to a single segment length write.
2367 *
2368 * If we didn't fallback here, we could livelock
2369 * because not all segments in the iov can be copied at
2370 * once without a pagefault.
2371 */
2372 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2373 iov_iter_single_seg_count(i));
2374 goto again;
2375 }
afddba49
NP
2376 pos += copied;
2377 written += copied;
2378
2379 balance_dirty_pages_ratelimited(mapping);
a50527b1
JK
2380 if (fatal_signal_pending(current)) {
2381 status = -EINTR;
2382 break;
2383 }
afddba49
NP
2384 } while (iov_iter_count(i));
2385
2386 return written ? written : status;
2387}
2388
2389ssize_t
2390generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2391 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2392 size_t count, ssize_t written)
2393{
2394 struct file *file = iocb->ki_filp;
afddba49
NP
2395 ssize_t status;
2396 struct iov_iter i;
2397
2398 iov_iter_init(&i, iov, nr_segs, count, written);
4e02ed4b 2399 status = generic_perform_write(file, &i, pos);
1da177e4 2400
1da177e4 2401 if (likely(status >= 0)) {
afddba49
NP
2402 written += status;
2403 *ppos = pos + status;
1da177e4
LT
2404 }
2405
1da177e4
LT
2406 return written ? written : status;
2407}
2408EXPORT_SYMBOL(generic_file_buffered_write);
2409
e4dd9de3
JK
2410/**
2411 * __generic_file_aio_write - write data to a file
2412 * @iocb: IO state structure (file, offset, etc.)
2413 * @iov: vector with data to write
2414 * @nr_segs: number of segments in the vector
2415 * @ppos: position where to write
2416 *
2417 * This function does all the work needed for actually writing data to a
2418 * file. It does all basic checks, removes SUID from the file, updates
2419 * modification times and calls proper subroutines depending on whether we
2420 * do direct IO or a standard buffered write.
2421 *
2422 * It expects i_mutex to be grabbed unless we work on a block device or similar
2423 * object which does not need locking at all.
2424 *
2425 * This function does *not* take care of syncing data in case of O_SYNC write.
2426 * A caller has to handle it. This is mainly due to the fact that we want to
2427 * avoid syncing under i_mutex.
2428 */
2429ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2430 unsigned long nr_segs, loff_t *ppos)
1da177e4
LT
2431{
2432 struct file *file = iocb->ki_filp;
fb5527e6 2433 struct address_space * mapping = file->f_mapping;
1da177e4
LT
2434 size_t ocount; /* original count */
2435 size_t count; /* after file limit checks */
2436 struct inode *inode = mapping->host;
1da177e4
LT
2437 loff_t pos;
2438 ssize_t written;
2439 ssize_t err;
2440
2441 ocount = 0;
0ceb3314
DM
2442 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2443 if (err)
2444 return err;
1da177e4
LT
2445
2446 count = ocount;
2447 pos = *ppos;
2448
1da177e4
LT
2449 /* We can write back this queue in page reclaim */
2450 current->backing_dev_info = mapping->backing_dev_info;
2451 written = 0;
2452
2453 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2454 if (err)
2455 goto out;
2456
2457 if (count == 0)
2458 goto out;
2459
2f1936b8 2460 err = file_remove_suid(file);
1da177e4
LT
2461 if (err)
2462 goto out;
2463
c3b2da31
JB
2464 err = file_update_time(file);
2465 if (err)
2466 goto out;
1da177e4
LT
2467
2468 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2469 if (unlikely(file->f_flags & O_DIRECT)) {
fb5527e6
JM
2470 loff_t endbyte;
2471 ssize_t written_buffered;
2472
2473 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2474 ppos, count, ocount);
1da177e4
LT
2475 if (written < 0 || written == count)
2476 goto out;
2477 /*
2478 * direct-io write to a hole: fall through to buffered I/O
2479 * for completing the rest of the request.
2480 */
2481 pos += written;
2482 count -= written;
fb5527e6
JM
2483 written_buffered = generic_file_buffered_write(iocb, iov,
2484 nr_segs, pos, ppos, count,
2485 written);
2486 /*
2487 * If generic_file_buffered_write() retuned a synchronous error
2488 * then we want to return the number of bytes which were
2489 * direct-written, or the error code if that was zero. Note
2490 * that this differs from normal direct-io semantics, which
2491 * will return -EFOO even if some bytes were written.
2492 */
2493 if (written_buffered < 0) {
2494 err = written_buffered;
2495 goto out;
2496 }
1da177e4 2497
fb5527e6
JM
2498 /*
2499 * We need to ensure that the page cache pages are written to
2500 * disk and invalidated to preserve the expected O_DIRECT
2501 * semantics.
2502 */
2503 endbyte = pos + written_buffered - written - 1;
c05c4edd 2504 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
fb5527e6
JM
2505 if (err == 0) {
2506 written = written_buffered;
2507 invalidate_mapping_pages(mapping,
2508 pos >> PAGE_CACHE_SHIFT,
2509 endbyte >> PAGE_CACHE_SHIFT);
2510 } else {
2511 /*
2512 * We don't know how much we wrote, so just return
2513 * the number of bytes which were direct-written
2514 */
2515 }
2516 } else {
2517 written = generic_file_buffered_write(iocb, iov, nr_segs,
2518 pos, ppos, count, written);
2519 }
1da177e4
LT
2520out:
2521 current->backing_dev_info = NULL;
2522 return written ? written : err;
2523}
e4dd9de3
JK
2524EXPORT_SYMBOL(__generic_file_aio_write);
2525
e4dd9de3
JK
2526/**
2527 * generic_file_aio_write - write data to a file
2528 * @iocb: IO state structure
2529 * @iov: vector with data to write
2530 * @nr_segs: number of segments in the vector
2531 * @pos: position in file where to write
2532 *
2533 * This is a wrapper around __generic_file_aio_write() to be used by most
2534 * filesystems. It takes care of syncing the file in case of O_SYNC file
2535 * and acquires i_mutex as needed.
2536 */
027445c3
BP
2537ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2538 unsigned long nr_segs, loff_t pos)
1da177e4
LT
2539{
2540 struct file *file = iocb->ki_filp;
148f948b 2541 struct inode *inode = file->f_mapping->host;
1da177e4 2542 ssize_t ret;
1da177e4
LT
2543
2544 BUG_ON(iocb->ki_pos != pos);
2545
1b1dcc1b 2546 mutex_lock(&inode->i_mutex);
e4dd9de3 2547 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
1b1dcc1b 2548 mutex_unlock(&inode->i_mutex);
1da177e4 2549
02afc27f 2550 if (ret > 0) {
1da177e4
LT
2551 ssize_t err;
2552
d311d79d
AV
2553 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2554 if (err < 0)
1da177e4
LT
2555 ret = err;
2556 }
2557 return ret;
2558}
2559EXPORT_SYMBOL(generic_file_aio_write);
2560
cf9a2ae8
DH
2561/**
2562 * try_to_release_page() - release old fs-specific metadata on a page
2563 *
2564 * @page: the page which the kernel is trying to free
2565 * @gfp_mask: memory allocation flags (and I/O mode)
2566 *
2567 * The address_space is to try to release any data against the page
2568 * (presumably at page->private). If the release was successful, return `1'.
2569 * Otherwise return zero.
2570 *
266cf658
DH
2571 * This may also be called if PG_fscache is set on a page, indicating that the
2572 * page is known to the local caching routines.
2573 *
cf9a2ae8 2574 * The @gfp_mask argument specifies whether I/O may be performed to release
3f31fddf 2575 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
cf9a2ae8 2576 *
cf9a2ae8
DH
2577 */
2578int try_to_release_page(struct page *page, gfp_t gfp_mask)
2579{
2580 struct address_space * const mapping = page->mapping;
2581
2582 BUG_ON(!PageLocked(page));
2583 if (PageWriteback(page))
2584 return 0;
2585
2586 if (mapping && mapping->a_ops->releasepage)
2587 return mapping->a_ops->releasepage(page, gfp_mask);
2588 return try_to_free_buffers(page);
2589}
2590
2591EXPORT_SYMBOL(try_to_release_page);