mm: Use owner_priv bit for PageSwapCache, valid when PageSwapBacked
[linux-block.git] / mm / filemap.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
b95f1b31 12#include <linux/export.h>
1da177e4 13#include <linux/compiler.h>
f9fe48be 14#include <linux/dax.h>
1da177e4 15#include <linux/fs.h>
c22ce143 16#include <linux/uaccess.h>
c59ede7b 17#include <linux/capability.h>
1da177e4 18#include <linux/kernel_stat.h>
5a0e3ad6 19#include <linux/gfp.h>
1da177e4
LT
20#include <linux/mm.h>
21#include <linux/swap.h>
22#include <linux/mman.h>
23#include <linux/pagemap.h>
24#include <linux/file.h>
25#include <linux/uio.h>
26#include <linux/hash.h>
27#include <linux/writeback.h>
53253383 28#include <linux/backing-dev.h>
1da177e4
LT
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/security.h>
44110fe3 32#include <linux/cpuset.h>
2f718ffc 33#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
00501b53 34#include <linux/hugetlb.h>
8a9f3ccd 35#include <linux/memcontrol.h>
c515e1fd 36#include <linux/cleancache.h>
f1820361 37#include <linux/rmap.h>
0f8053a5
NP
38#include "internal.h"
39
fe0bfaaf
RJ
40#define CREATE_TRACE_POINTS
41#include <trace/events/filemap.h>
42
1da177e4 43/*
1da177e4
LT
44 * FIXME: remove all knowledge of the buffer layer from the core VM
45 */
148f948b 46#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 47
1da177e4
LT
48#include <asm/mman.h>
49
50/*
51 * Shared mappings implemented 30.11.1994. It's not fully working yet,
52 * though.
53 *
54 * Shared mappings now work. 15.8.1995 Bruno.
55 *
56 * finished 'unifying' the page and buffer cache and SMP-threaded the
57 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58 *
59 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60 */
61
62/*
63 * Lock ordering:
64 *
c8c06efa 65 * ->i_mmap_rwsem (truncate_pagecache)
1da177e4 66 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91
HD
67 * ->swap_lock (exclusive_swap_page, others)
68 * ->mapping->tree_lock
1da177e4 69 *
1b1dcc1b 70 * ->i_mutex
c8c06efa 71 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
1da177e4
LT
72 *
73 * ->mmap_sem
c8c06efa 74 * ->i_mmap_rwsem
b8072f09 75 * ->page_table_lock or pte_lock (various, mainly in memory.c)
1da177e4
LT
76 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
77 *
78 * ->mmap_sem
79 * ->lock_page (access_process_vm)
80 *
ccad2365 81 * ->i_mutex (generic_perform_write)
82591e6e 82 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
1da177e4 83 *
f758eeab 84 * bdi->wb.list_lock
a66979ab 85 * sb_lock (fs/fs-writeback.c)
1da177e4
LT
86 * ->mapping->tree_lock (__sync_single_inode)
87 *
c8c06efa 88 * ->i_mmap_rwsem
1da177e4
LT
89 * ->anon_vma.lock (vma_adjust)
90 *
91 * ->anon_vma.lock
b8072f09 92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 93 *
b8072f09 94 * ->page_table_lock or pte_lock
5d337b91 95 * ->swap_lock (try_to_unmap_one)
1da177e4
LT
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
a52633d8
MG
98 * ->zone_lru_lock(zone) (follow_page->mark_page_accessed)
99 * ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page)
1da177e4
LT
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
f758eeab 102 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
250df6ed 103 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
81f8c3a4 104 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
f758eeab 105 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 106 * ->inode->i_lock (zap_pte_range->set_page_dirty)
1da177e4
LT
107 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
108 *
c8c06efa 109 * ->i_mmap_rwsem
9a3c531d 110 * ->tasklist_lock (memory_failure, collect_procs_ao)
1da177e4
LT
111 */
112
22f2ac51
JW
113static int page_cache_tree_insert(struct address_space *mapping,
114 struct page *page, void **shadowp)
115{
116 struct radix_tree_node *node;
117 void **slot;
118 int error;
119
120 error = __radix_tree_create(&mapping->page_tree, page->index, 0,
121 &node, &slot);
122 if (error)
123 return error;
124 if (*slot) {
125 void *p;
126
127 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
128 if (!radix_tree_exceptional_entry(p))
129 return -EEXIST;
130
131 mapping->nrexceptional--;
132 if (!dax_mapping(mapping)) {
133 if (shadowp)
134 *shadowp = p;
22f2ac51
JW
135 } else {
136 /* DAX can replace empty locked entry with a hole */
137 WARN_ON_ONCE(p !=
642261ac 138 dax_radix_locked_entry(0, RADIX_DAX_EMPTY));
22f2ac51 139 /* Wakeup waiters for exceptional entry lock */
63e95b5c 140 dax_wake_mapping_entry_waiter(mapping, page->index, p,
22f2ac51
JW
141 false);
142 }
143 }
14b46879
JW
144 __radix_tree_replace(&mapping->page_tree, node, slot, page,
145 workingset_update_node, mapping);
22f2ac51 146 mapping->nrpages++;
22f2ac51
JW
147 return 0;
148}
149
91b0abe3
JW
150static void page_cache_tree_delete(struct address_space *mapping,
151 struct page *page, void *shadow)
152{
c70b647d
KS
153 int i, nr;
154
155 /* hugetlb pages are represented by one entry in the radix tree */
156 nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
91b0abe3 157
83929372
KS
158 VM_BUG_ON_PAGE(!PageLocked(page), page);
159 VM_BUG_ON_PAGE(PageTail(page), page);
160 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
449dd698 161
83929372 162 for (i = 0; i < nr; i++) {
d3798ae8
JW
163 struct radix_tree_node *node;
164 void **slot;
165
166 __radix_tree_lookup(&mapping->page_tree, page->index + i,
167 &node, &slot);
168
dbc446b8 169 VM_BUG_ON_PAGE(!node && nr != 1, page);
449dd698 170
14b46879
JW
171 radix_tree_clear_tags(&mapping->page_tree, node, slot);
172 __radix_tree_replace(&mapping->page_tree, node, slot, shadow,
173 workingset_update_node, mapping);
449dd698 174 }
d3798ae8
JW
175
176 if (shadow) {
177 mapping->nrexceptional += nr;
178 /*
179 * Make sure the nrexceptional update is committed before
180 * the nrpages update so that final truncate racing
181 * with reclaim does not see both counters 0 at the
182 * same time and miss a shadow entry.
183 */
184 smp_wmb();
185 }
186 mapping->nrpages -= nr;
91b0abe3
JW
187}
188
1da177e4 189/*
e64a782f 190 * Delete a page from the page cache and free it. Caller has to make
1da177e4 191 * sure the page is locked and that nobody else uses it - or that usage
fdf1cdb9 192 * is safe. The caller must hold the mapping's tree_lock.
1da177e4 193 */
62cccb8c 194void __delete_from_page_cache(struct page *page, void *shadow)
1da177e4
LT
195{
196 struct address_space *mapping = page->mapping;
83929372 197 int nr = hpage_nr_pages(page);
1da177e4 198
fe0bfaaf 199 trace_mm_filemap_delete_from_page_cache(page);
c515e1fd
DM
200 /*
201 * if we're uptodate, flush out into the cleancache, otherwise
202 * invalidate any existing cleancache entries. We can't leave
203 * stale data around in the cleancache once our page is gone
204 */
205 if (PageUptodate(page) && PageMappedToDisk(page))
206 cleancache_put_page(page);
207 else
3167760f 208 cleancache_invalidate_page(mapping, page);
c515e1fd 209
83929372 210 VM_BUG_ON_PAGE(PageTail(page), page);
06b241f3
HD
211 VM_BUG_ON_PAGE(page_mapped(page), page);
212 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
213 int mapcount;
214
215 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
216 current->comm, page_to_pfn(page));
217 dump_page(page, "still mapped when deleted");
218 dump_stack();
219 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
220
221 mapcount = page_mapcount(page);
222 if (mapping_exiting(mapping) &&
223 page_count(page) >= mapcount + 2) {
224 /*
225 * All vmas have already been torn down, so it's
226 * a good bet that actually the page is unmapped,
227 * and we'd prefer not to leak it: if we're wrong,
228 * some other bad page check should catch it later.
229 */
230 page_mapcount_reset(page);
6d061f9f 231 page_ref_sub(page, mapcount);
06b241f3
HD
232 }
233 }
234
91b0abe3
JW
235 page_cache_tree_delete(mapping, page, shadow);
236
1da177e4 237 page->mapping = NULL;
b85e0eff 238 /* Leave page->index set: truncation lookup relies upon it */
91b0abe3 239
4165b9b4
MH
240 /* hugetlb pages do not participate in page cache accounting. */
241 if (!PageHuge(page))
11fb9989 242 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
800d8c63 243 if (PageSwapBacked(page)) {
11fb9989 244 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
800d8c63 245 if (PageTransHuge(page))
11fb9989 246 __dec_node_page_state(page, NR_SHMEM_THPS);
800d8c63
KS
247 } else {
248 VM_BUG_ON_PAGE(PageTransHuge(page) && !PageHuge(page), page);
249 }
3a692790
LT
250
251 /*
b9ea2515
KK
252 * At this point page must be either written or cleaned by truncate.
253 * Dirty page here signals a bug and loss of unwritten data.
3a692790 254 *
b9ea2515
KK
255 * This fixes dirty accounting after removing the page entirely but
256 * leaves PageDirty set: it has no effect for truncated page and
257 * anyway will be cleared before returning page into buddy allocator.
3a692790 258 */
b9ea2515 259 if (WARN_ON_ONCE(PageDirty(page)))
62cccb8c 260 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
1da177e4
LT
261}
262
702cfbf9
MK
263/**
264 * delete_from_page_cache - delete page from page cache
265 * @page: the page which the kernel is trying to remove from page cache
266 *
267 * This must be called only on pages that have been verified to be in the page
268 * cache and locked. It will never put the page into the free list, the caller
269 * has a reference on the page.
270 */
271void delete_from_page_cache(struct page *page)
1da177e4 272{
83929372 273 struct address_space *mapping = page_mapping(page);
c4843a75 274 unsigned long flags;
6072d13c 275 void (*freepage)(struct page *);
1da177e4 276
cd7619d6 277 BUG_ON(!PageLocked(page));
1da177e4 278
6072d13c 279 freepage = mapping->a_ops->freepage;
c4843a75 280
c4843a75 281 spin_lock_irqsave(&mapping->tree_lock, flags);
62cccb8c 282 __delete_from_page_cache(page, NULL);
c4843a75 283 spin_unlock_irqrestore(&mapping->tree_lock, flags);
6072d13c
LT
284
285 if (freepage)
286 freepage(page);
83929372
KS
287
288 if (PageTransHuge(page) && !PageHuge(page)) {
289 page_ref_sub(page, HPAGE_PMD_NR);
290 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
291 } else {
292 put_page(page);
293 }
97cecb5a
MK
294}
295EXPORT_SYMBOL(delete_from_page_cache);
296
d72d9e2a 297int filemap_check_errors(struct address_space *mapping)
865ffef3
DM
298{
299 int ret = 0;
300 /* Check for outstanding write errors */
7fcbbaf1
JA
301 if (test_bit(AS_ENOSPC, &mapping->flags) &&
302 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
865ffef3 303 ret = -ENOSPC;
7fcbbaf1
JA
304 if (test_bit(AS_EIO, &mapping->flags) &&
305 test_and_clear_bit(AS_EIO, &mapping->flags))
865ffef3
DM
306 ret = -EIO;
307 return ret;
308}
d72d9e2a 309EXPORT_SYMBOL(filemap_check_errors);
865ffef3 310
1da177e4 311/**
485bb99b 312 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
313 * @mapping: address space structure to write
314 * @start: offset in bytes where the range starts
469eb4d0 315 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 316 * @sync_mode: enable synchronous operation
1da177e4 317 *
485bb99b
RD
318 * Start writeback against all of a mapping's dirty pages that lie
319 * within the byte offsets <start, end> inclusive.
320 *
1da177e4 321 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 322 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
323 * these two operations is that if a dirty page/buffer is encountered, it must
324 * be waited upon, and not just skipped over.
325 */
ebcf28e1
AM
326int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
327 loff_t end, int sync_mode)
1da177e4
LT
328{
329 int ret;
330 struct writeback_control wbc = {
331 .sync_mode = sync_mode,
05fe478d 332 .nr_to_write = LONG_MAX,
111ebb6e
OH
333 .range_start = start,
334 .range_end = end,
1da177e4
LT
335 };
336
337 if (!mapping_cap_writeback_dirty(mapping))
338 return 0;
339
b16b1deb 340 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
1da177e4 341 ret = do_writepages(mapping, &wbc);
b16b1deb 342 wbc_detach_inode(&wbc);
1da177e4
LT
343 return ret;
344}
345
346static inline int __filemap_fdatawrite(struct address_space *mapping,
347 int sync_mode)
348{
111ebb6e 349 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
350}
351
352int filemap_fdatawrite(struct address_space *mapping)
353{
354 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
355}
356EXPORT_SYMBOL(filemap_fdatawrite);
357
f4c0a0fd 358int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 359 loff_t end)
1da177e4
LT
360{
361 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
362}
f4c0a0fd 363EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 364
485bb99b
RD
365/**
366 * filemap_flush - mostly a non-blocking flush
367 * @mapping: target address_space
368 *
1da177e4
LT
369 * This is a mostly non-blocking flush. Not suitable for data-integrity
370 * purposes - I/O may not be started against all dirty pages.
371 */
372int filemap_flush(struct address_space *mapping)
373{
374 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
375}
376EXPORT_SYMBOL(filemap_flush);
377
aa750fd7
JN
378static int __filemap_fdatawait_range(struct address_space *mapping,
379 loff_t start_byte, loff_t end_byte)
1da177e4 380{
09cbfeaf
KS
381 pgoff_t index = start_byte >> PAGE_SHIFT;
382 pgoff_t end = end_byte >> PAGE_SHIFT;
1da177e4
LT
383 struct pagevec pvec;
384 int nr_pages;
aa750fd7 385 int ret = 0;
1da177e4 386
94004ed7 387 if (end_byte < start_byte)
865ffef3 388 goto out;
1da177e4
LT
389
390 pagevec_init(&pvec, 0);
1da177e4
LT
391 while ((index <= end) &&
392 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
393 PAGECACHE_TAG_WRITEBACK,
394 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
395 unsigned i;
396
397 for (i = 0; i < nr_pages; i++) {
398 struct page *page = pvec.pages[i];
399
400 /* until radix tree lookup accepts end_index */
401 if (page->index > end)
402 continue;
403
404 wait_on_page_writeback(page);
212260aa 405 if (TestClearPageError(page))
1da177e4
LT
406 ret = -EIO;
407 }
408 pagevec_release(&pvec);
409 cond_resched();
410 }
865ffef3 411out:
aa750fd7
JN
412 return ret;
413}
414
415/**
416 * filemap_fdatawait_range - wait for writeback to complete
417 * @mapping: address space structure to wait for
418 * @start_byte: offset in bytes where the range starts
419 * @end_byte: offset in bytes where the range ends (inclusive)
420 *
421 * Walk the list of under-writeback pages of the given address space
422 * in the given range and wait for all of them. Check error status of
423 * the address space and return it.
424 *
425 * Since the error status of the address space is cleared by this function,
426 * callers are responsible for checking the return value and handling and/or
427 * reporting the error.
428 */
429int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
430 loff_t end_byte)
431{
432 int ret, ret2;
433
434 ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
865ffef3
DM
435 ret2 = filemap_check_errors(mapping);
436 if (!ret)
437 ret = ret2;
1da177e4
LT
438
439 return ret;
440}
d3bccb6f
JK
441EXPORT_SYMBOL(filemap_fdatawait_range);
442
aa750fd7
JN
443/**
444 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
445 * @mapping: address space structure to wait for
446 *
447 * Walk the list of under-writeback pages of the given address space
448 * and wait for all of them. Unlike filemap_fdatawait(), this function
449 * does not clear error status of the address space.
450 *
451 * Use this function if callers don't handle errors themselves. Expected
452 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
453 * fsfreeze(8)
454 */
455void filemap_fdatawait_keep_errors(struct address_space *mapping)
456{
457 loff_t i_size = i_size_read(mapping->host);
458
459 if (i_size == 0)
460 return;
461
462 __filemap_fdatawait_range(mapping, 0, i_size - 1);
463}
464
1da177e4 465/**
485bb99b 466 * filemap_fdatawait - wait for all under-writeback pages to complete
1da177e4 467 * @mapping: address space structure to wait for
485bb99b
RD
468 *
469 * Walk the list of under-writeback pages of the given address space
aa750fd7
JN
470 * and wait for all of them. Check error status of the address space
471 * and return it.
472 *
473 * Since the error status of the address space is cleared by this function,
474 * callers are responsible for checking the return value and handling and/or
475 * reporting the error.
1da177e4
LT
476 */
477int filemap_fdatawait(struct address_space *mapping)
478{
479 loff_t i_size = i_size_read(mapping->host);
480
481 if (i_size == 0)
482 return 0;
483
94004ed7 484 return filemap_fdatawait_range(mapping, 0, i_size - 1);
1da177e4
LT
485}
486EXPORT_SYMBOL(filemap_fdatawait);
487
488int filemap_write_and_wait(struct address_space *mapping)
489{
28fd1298 490 int err = 0;
1da177e4 491
7f6d5b52
RZ
492 if ((!dax_mapping(mapping) && mapping->nrpages) ||
493 (dax_mapping(mapping) && mapping->nrexceptional)) {
28fd1298
OH
494 err = filemap_fdatawrite(mapping);
495 /*
496 * Even if the above returned error, the pages may be
497 * written partially (e.g. -ENOSPC), so we wait for it.
498 * But the -EIO is special case, it may indicate the worst
499 * thing (e.g. bug) happened, so we avoid waiting for it.
500 */
501 if (err != -EIO) {
502 int err2 = filemap_fdatawait(mapping);
503 if (!err)
504 err = err2;
505 }
865ffef3
DM
506 } else {
507 err = filemap_check_errors(mapping);
1da177e4 508 }
28fd1298 509 return err;
1da177e4 510}
28fd1298 511EXPORT_SYMBOL(filemap_write_and_wait);
1da177e4 512
485bb99b
RD
513/**
514 * filemap_write_and_wait_range - write out & wait on a file range
515 * @mapping: the address_space for the pages
516 * @lstart: offset in bytes where the range starts
517 * @lend: offset in bytes where the range ends (inclusive)
518 *
469eb4d0
AM
519 * Write out and wait upon file offsets lstart->lend, inclusive.
520 *
521 * Note that `lend' is inclusive (describes the last byte to be written) so
522 * that this function can be used to write to the very end-of-file (end = -1).
523 */
1da177e4
LT
524int filemap_write_and_wait_range(struct address_space *mapping,
525 loff_t lstart, loff_t lend)
526{
28fd1298 527 int err = 0;
1da177e4 528
7f6d5b52
RZ
529 if ((!dax_mapping(mapping) && mapping->nrpages) ||
530 (dax_mapping(mapping) && mapping->nrexceptional)) {
28fd1298
OH
531 err = __filemap_fdatawrite_range(mapping, lstart, lend,
532 WB_SYNC_ALL);
533 /* See comment of filemap_write_and_wait() */
534 if (err != -EIO) {
94004ed7
CH
535 int err2 = filemap_fdatawait_range(mapping,
536 lstart, lend);
28fd1298
OH
537 if (!err)
538 err = err2;
539 }
865ffef3
DM
540 } else {
541 err = filemap_check_errors(mapping);
1da177e4 542 }
28fd1298 543 return err;
1da177e4 544}
f6995585 545EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 546
ef6a3c63
MS
547/**
548 * replace_page_cache_page - replace a pagecache page with a new one
549 * @old: page to be replaced
550 * @new: page to replace with
551 * @gfp_mask: allocation mode
552 *
553 * This function replaces a page in the pagecache with a new one. On
554 * success it acquires the pagecache reference for the new page and
555 * drops it for the old page. Both the old and new pages must be
556 * locked. This function does not add the new page to the LRU, the
557 * caller must do that.
558 *
559 * The remove + add is atomic. The only way this function can fail is
560 * memory allocation failure.
561 */
562int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
563{
564 int error;
ef6a3c63 565
309381fe
SL
566 VM_BUG_ON_PAGE(!PageLocked(old), old);
567 VM_BUG_ON_PAGE(!PageLocked(new), new);
568 VM_BUG_ON_PAGE(new->mapping, new);
ef6a3c63 569
ef6a3c63
MS
570 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
571 if (!error) {
572 struct address_space *mapping = old->mapping;
573 void (*freepage)(struct page *);
c4843a75 574 unsigned long flags;
ef6a3c63
MS
575
576 pgoff_t offset = old->index;
577 freepage = mapping->a_ops->freepage;
578
09cbfeaf 579 get_page(new);
ef6a3c63
MS
580 new->mapping = mapping;
581 new->index = offset;
582
c4843a75 583 spin_lock_irqsave(&mapping->tree_lock, flags);
62cccb8c 584 __delete_from_page_cache(old, NULL);
22f2ac51 585 error = page_cache_tree_insert(mapping, new, NULL);
ef6a3c63 586 BUG_ON(error);
4165b9b4
MH
587
588 /*
589 * hugetlb pages do not participate in page cache accounting.
590 */
591 if (!PageHuge(new))
11fb9989 592 __inc_node_page_state(new, NR_FILE_PAGES);
ef6a3c63 593 if (PageSwapBacked(new))
11fb9989 594 __inc_node_page_state(new, NR_SHMEM);
c4843a75 595 spin_unlock_irqrestore(&mapping->tree_lock, flags);
6a93ca8f 596 mem_cgroup_migrate(old, new);
ef6a3c63
MS
597 radix_tree_preload_end();
598 if (freepage)
599 freepage(old);
09cbfeaf 600 put_page(old);
ef6a3c63
MS
601 }
602
603 return error;
604}
605EXPORT_SYMBOL_GPL(replace_page_cache_page);
606
a528910e
JW
607static int __add_to_page_cache_locked(struct page *page,
608 struct address_space *mapping,
609 pgoff_t offset, gfp_t gfp_mask,
610 void **shadowp)
1da177e4 611{
00501b53
JW
612 int huge = PageHuge(page);
613 struct mem_cgroup *memcg;
e286781d
NP
614 int error;
615
309381fe
SL
616 VM_BUG_ON_PAGE(!PageLocked(page), page);
617 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
e286781d 618
00501b53
JW
619 if (!huge) {
620 error = mem_cgroup_try_charge(page, current->mm,
f627c2f5 621 gfp_mask, &memcg, false);
00501b53
JW
622 if (error)
623 return error;
624 }
1da177e4 625
5e4c0d97 626 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
66a0c8ee 627 if (error) {
00501b53 628 if (!huge)
f627c2f5 629 mem_cgroup_cancel_charge(page, memcg, false);
66a0c8ee
KS
630 return error;
631 }
632
09cbfeaf 633 get_page(page);
66a0c8ee
KS
634 page->mapping = mapping;
635 page->index = offset;
636
637 spin_lock_irq(&mapping->tree_lock);
a528910e 638 error = page_cache_tree_insert(mapping, page, shadowp);
66a0c8ee
KS
639 radix_tree_preload_end();
640 if (unlikely(error))
641 goto err_insert;
4165b9b4
MH
642
643 /* hugetlb pages do not participate in page cache accounting. */
644 if (!huge)
11fb9989 645 __inc_node_page_state(page, NR_FILE_PAGES);
66a0c8ee 646 spin_unlock_irq(&mapping->tree_lock);
00501b53 647 if (!huge)
f627c2f5 648 mem_cgroup_commit_charge(page, memcg, false, false);
66a0c8ee
KS
649 trace_mm_filemap_add_to_page_cache(page);
650 return 0;
651err_insert:
652 page->mapping = NULL;
653 /* Leave page->index set: truncation relies upon it */
654 spin_unlock_irq(&mapping->tree_lock);
00501b53 655 if (!huge)
f627c2f5 656 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 657 put_page(page);
1da177e4
LT
658 return error;
659}
a528910e
JW
660
661/**
662 * add_to_page_cache_locked - add a locked page to the pagecache
663 * @page: page to add
664 * @mapping: the page's address_space
665 * @offset: page index
666 * @gfp_mask: page allocation mode
667 *
668 * This function is used to add a page to the pagecache. It must be locked.
669 * This function does not add the page to the LRU. The caller must do that.
670 */
671int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
672 pgoff_t offset, gfp_t gfp_mask)
673{
674 return __add_to_page_cache_locked(page, mapping, offset,
675 gfp_mask, NULL);
676}
e286781d 677EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4
LT
678
679int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 680 pgoff_t offset, gfp_t gfp_mask)
1da177e4 681{
a528910e 682 void *shadow = NULL;
4f98a2fe
RR
683 int ret;
684
48c935ad 685 __SetPageLocked(page);
a528910e
JW
686 ret = __add_to_page_cache_locked(page, mapping, offset,
687 gfp_mask, &shadow);
688 if (unlikely(ret))
48c935ad 689 __ClearPageLocked(page);
a528910e
JW
690 else {
691 /*
692 * The page might have been evicted from cache only
693 * recently, in which case it should be activated like
694 * any other repeatedly accessed page.
f0281a00
RR
695 * The exception is pages getting rewritten; evicting other
696 * data from the working set, only to cache data that will
697 * get overwritten with something else, is a waste of memory.
a528910e 698 */
f0281a00
RR
699 if (!(gfp_mask & __GFP_WRITE) &&
700 shadow && workingset_refault(shadow)) {
a528910e
JW
701 SetPageActive(page);
702 workingset_activation(page);
703 } else
704 ClearPageActive(page);
705 lru_cache_add(page);
706 }
1da177e4
LT
707 return ret;
708}
18bc0bbd 709EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1da177e4 710
44110fe3 711#ifdef CONFIG_NUMA
2ae88149 712struct page *__page_cache_alloc(gfp_t gfp)
44110fe3 713{
c0ff7453
MX
714 int n;
715 struct page *page;
716
44110fe3 717 if (cpuset_do_page_mem_spread()) {
cc9a6c87
MG
718 unsigned int cpuset_mems_cookie;
719 do {
d26914d1 720 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 721 n = cpuset_mem_spread_node();
96db800f 722 page = __alloc_pages_node(n, gfp, 0);
d26914d1 723 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
cc9a6c87 724
c0ff7453 725 return page;
44110fe3 726 }
2ae88149 727 return alloc_pages(gfp, 0);
44110fe3 728}
2ae88149 729EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
730#endif
731
1da177e4
LT
732/*
733 * In order to wait for pages to become available there must be
734 * waitqueues associated with pages. By using a hash table of
735 * waitqueues where the bucket discipline is to maintain all
736 * waiters on the same queue and wake all when any of the pages
737 * become available, and for the woken contexts to check to be
738 * sure the appropriate page became available, this saves space
739 * at a cost of "thundering herd" phenomena during rare hash
740 * collisions.
741 */
a4796e37 742wait_queue_head_t *page_waitqueue(struct page *page)
1da177e4 743{
9dcb8b68 744 return bit_waitqueue(page, 0);
1da177e4 745}
a4796e37 746EXPORT_SYMBOL(page_waitqueue);
1da177e4 747
920c7a5d 748void wait_on_page_bit(struct page *page, int bit_nr)
1da177e4
LT
749{
750 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
751
752 if (test_bit(bit_nr, &page->flags))
74316201 753 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
1da177e4
LT
754 TASK_UNINTERRUPTIBLE);
755}
756EXPORT_SYMBOL(wait_on_page_bit);
757
f62e00cc
KM
758int wait_on_page_bit_killable(struct page *page, int bit_nr)
759{
760 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
761
762 if (!test_bit(bit_nr, &page->flags))
763 return 0;
764
765 return __wait_on_bit(page_waitqueue(page), &wait,
74316201 766 bit_wait_io, TASK_KILLABLE);
f62e00cc
KM
767}
768
cbbce822
N
769int wait_on_page_bit_killable_timeout(struct page *page,
770 int bit_nr, unsigned long timeout)
771{
772 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
773
774 wait.key.timeout = jiffies + timeout;
775 if (!test_bit(bit_nr, &page->flags))
776 return 0;
777 return __wait_on_bit(page_waitqueue(page), &wait,
778 bit_wait_io_timeout, TASK_KILLABLE);
779}
780EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
781
385e1ca5
DH
782/**
783 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
697f619f
RD
784 * @page: Page defining the wait queue of interest
785 * @waiter: Waiter to add to the queue
385e1ca5
DH
786 *
787 * Add an arbitrary @waiter to the wait queue for the nominated @page.
788 */
789void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
790{
791 wait_queue_head_t *q = page_waitqueue(page);
792 unsigned long flags;
793
794 spin_lock_irqsave(&q->lock, flags);
795 __add_wait_queue(q, waiter);
796 spin_unlock_irqrestore(&q->lock, flags);
797}
798EXPORT_SYMBOL_GPL(add_page_wait_queue);
799
1da177e4 800/**
485bb99b 801 * unlock_page - unlock a locked page
1da177e4
LT
802 * @page: the page
803 *
804 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
805 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
da3dae54 806 * mechanism between PageLocked pages and PageWriteback pages is shared.
1da177e4
LT
807 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
808 *
8413ac9d
NP
809 * The mb is necessary to enforce ordering between the clear_bit and the read
810 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
1da177e4 811 */
920c7a5d 812void unlock_page(struct page *page)
1da177e4 813{
48c935ad 814 page = compound_head(page);
309381fe 815 VM_BUG_ON_PAGE(!PageLocked(page), page);
8413ac9d 816 clear_bit_unlock(PG_locked, &page->flags);
4e857c58 817 smp_mb__after_atomic();
1da177e4
LT
818 wake_up_page(page, PG_locked);
819}
820EXPORT_SYMBOL(unlock_page);
821
485bb99b
RD
822/**
823 * end_page_writeback - end writeback against a page
824 * @page: the page
1da177e4
LT
825 */
826void end_page_writeback(struct page *page)
827{
888cf2db
MG
828 /*
829 * TestClearPageReclaim could be used here but it is an atomic
830 * operation and overkill in this particular case. Failing to
831 * shuffle a page marked for immediate reclaim is too mild to
832 * justify taking an atomic operation penalty at the end of
833 * ever page writeback.
834 */
835 if (PageReclaim(page)) {
836 ClearPageReclaim(page);
ac6aadb2 837 rotate_reclaimable_page(page);
888cf2db 838 }
ac6aadb2
MS
839
840 if (!test_clear_page_writeback(page))
841 BUG();
842
4e857c58 843 smp_mb__after_atomic();
1da177e4
LT
844 wake_up_page(page, PG_writeback);
845}
846EXPORT_SYMBOL(end_page_writeback);
847
57d99845
MW
848/*
849 * After completing I/O on a page, call this routine to update the page
850 * flags appropriately
851 */
c11f0c0b 852void page_endio(struct page *page, bool is_write, int err)
57d99845 853{
c11f0c0b 854 if (!is_write) {
57d99845
MW
855 if (!err) {
856 SetPageUptodate(page);
857 } else {
858 ClearPageUptodate(page);
859 SetPageError(page);
860 }
861 unlock_page(page);
abf54548 862 } else {
57d99845
MW
863 if (err) {
864 SetPageError(page);
865 if (page->mapping)
866 mapping_set_error(page->mapping, err);
867 }
868 end_page_writeback(page);
869 }
870}
871EXPORT_SYMBOL_GPL(page_endio);
872
485bb99b
RD
873/**
874 * __lock_page - get a lock on the page, assuming we need to sleep to get it
875 * @page: the page to lock
1da177e4 876 */
920c7a5d 877void __lock_page(struct page *page)
1da177e4 878{
48c935ad
KS
879 struct page *page_head = compound_head(page);
880 DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
1da177e4 881
48c935ad 882 __wait_on_bit_lock(page_waitqueue(page_head), &wait, bit_wait_io,
1da177e4
LT
883 TASK_UNINTERRUPTIBLE);
884}
885EXPORT_SYMBOL(__lock_page);
886
b5606c2d 887int __lock_page_killable(struct page *page)
2687a356 888{
48c935ad
KS
889 struct page *page_head = compound_head(page);
890 DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
2687a356 891
48c935ad 892 return __wait_on_bit_lock(page_waitqueue(page_head), &wait,
74316201 893 bit_wait_io, TASK_KILLABLE);
2687a356 894}
18bc0bbd 895EXPORT_SYMBOL_GPL(__lock_page_killable);
2687a356 896
9a95f3cf
PC
897/*
898 * Return values:
899 * 1 - page is locked; mmap_sem is still held.
900 * 0 - page is not locked.
901 * mmap_sem has been released (up_read()), unless flags had both
902 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
903 * which case mmap_sem is still held.
904 *
905 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
906 * with the page locked and the mmap_sem unperturbed.
907 */
d065bd81
ML
908int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
909 unsigned int flags)
910{
37b23e05
KM
911 if (flags & FAULT_FLAG_ALLOW_RETRY) {
912 /*
913 * CAUTION! In this case, mmap_sem is not released
914 * even though return 0.
915 */
916 if (flags & FAULT_FLAG_RETRY_NOWAIT)
917 return 0;
918
919 up_read(&mm->mmap_sem);
920 if (flags & FAULT_FLAG_KILLABLE)
921 wait_on_page_locked_killable(page);
922 else
318b275f 923 wait_on_page_locked(page);
d065bd81 924 return 0;
37b23e05
KM
925 } else {
926 if (flags & FAULT_FLAG_KILLABLE) {
927 int ret;
928
929 ret = __lock_page_killable(page);
930 if (ret) {
931 up_read(&mm->mmap_sem);
932 return 0;
933 }
934 } else
935 __lock_page(page);
936 return 1;
d065bd81
ML
937 }
938}
939
e7b563bb
JW
940/**
941 * page_cache_next_hole - find the next hole (not-present entry)
942 * @mapping: mapping
943 * @index: index
944 * @max_scan: maximum range to search
945 *
946 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
947 * lowest indexed hole.
948 *
949 * Returns: the index of the hole if found, otherwise returns an index
950 * outside of the set specified (in which case 'return - index >=
951 * max_scan' will be true). In rare cases of index wrap-around, 0 will
952 * be returned.
953 *
954 * page_cache_next_hole may be called under rcu_read_lock. However,
955 * like radix_tree_gang_lookup, this will not atomically search a
956 * snapshot of the tree at a single point in time. For example, if a
957 * hole is created at index 5, then subsequently a hole is created at
958 * index 10, page_cache_next_hole covering both indexes may return 10
959 * if called under rcu_read_lock.
960 */
961pgoff_t page_cache_next_hole(struct address_space *mapping,
962 pgoff_t index, unsigned long max_scan)
963{
964 unsigned long i;
965
966 for (i = 0; i < max_scan; i++) {
0cd6144a
JW
967 struct page *page;
968
969 page = radix_tree_lookup(&mapping->page_tree, index);
970 if (!page || radix_tree_exceptional_entry(page))
e7b563bb
JW
971 break;
972 index++;
973 if (index == 0)
974 break;
975 }
976
977 return index;
978}
979EXPORT_SYMBOL(page_cache_next_hole);
980
981/**
982 * page_cache_prev_hole - find the prev hole (not-present entry)
983 * @mapping: mapping
984 * @index: index
985 * @max_scan: maximum range to search
986 *
987 * Search backwards in the range [max(index-max_scan+1, 0), index] for
988 * the first hole.
989 *
990 * Returns: the index of the hole if found, otherwise returns an index
991 * outside of the set specified (in which case 'index - return >=
992 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
993 * will be returned.
994 *
995 * page_cache_prev_hole may be called under rcu_read_lock. However,
996 * like radix_tree_gang_lookup, this will not atomically search a
997 * snapshot of the tree at a single point in time. For example, if a
998 * hole is created at index 10, then subsequently a hole is created at
999 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1000 * called under rcu_read_lock.
1001 */
1002pgoff_t page_cache_prev_hole(struct address_space *mapping,
1003 pgoff_t index, unsigned long max_scan)
1004{
1005 unsigned long i;
1006
1007 for (i = 0; i < max_scan; i++) {
0cd6144a
JW
1008 struct page *page;
1009
1010 page = radix_tree_lookup(&mapping->page_tree, index);
1011 if (!page || radix_tree_exceptional_entry(page))
e7b563bb
JW
1012 break;
1013 index--;
1014 if (index == ULONG_MAX)
1015 break;
1016 }
1017
1018 return index;
1019}
1020EXPORT_SYMBOL(page_cache_prev_hole);
1021
485bb99b 1022/**
0cd6144a 1023 * find_get_entry - find and get a page cache entry
485bb99b 1024 * @mapping: the address_space to search
0cd6144a
JW
1025 * @offset: the page cache index
1026 *
1027 * Looks up the page cache slot at @mapping & @offset. If there is a
1028 * page cache page, it is returned with an increased refcount.
485bb99b 1029 *
139b6a6f
JW
1030 * If the slot holds a shadow entry of a previously evicted page, or a
1031 * swap entry from shmem/tmpfs, it is returned.
0cd6144a
JW
1032 *
1033 * Otherwise, %NULL is returned.
1da177e4 1034 */
0cd6144a 1035struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1da177e4 1036{
a60637c8 1037 void **pagep;
83929372 1038 struct page *head, *page;
1da177e4 1039
a60637c8
NP
1040 rcu_read_lock();
1041repeat:
1042 page = NULL;
1043 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1044 if (pagep) {
1045 page = radix_tree_deref_slot(pagep);
27d20fdd
NP
1046 if (unlikely(!page))
1047 goto out;
a2c16d6c 1048 if (radix_tree_exception(page)) {
8079b1c8
HD
1049 if (radix_tree_deref_retry(page))
1050 goto repeat;
1051 /*
139b6a6f
JW
1052 * A shadow entry of a recently evicted page,
1053 * or a swap entry from shmem/tmpfs. Return
1054 * it without attempting to raise page count.
8079b1c8
HD
1055 */
1056 goto out;
a2c16d6c 1057 }
83929372
KS
1058
1059 head = compound_head(page);
1060 if (!page_cache_get_speculative(head))
1061 goto repeat;
1062
1063 /* The page was split under us? */
1064 if (compound_head(page) != head) {
1065 put_page(head);
a60637c8 1066 goto repeat;
83929372 1067 }
a60637c8
NP
1068
1069 /*
1070 * Has the page moved?
1071 * This is part of the lockless pagecache protocol. See
1072 * include/linux/pagemap.h for details.
1073 */
1074 if (unlikely(page != *pagep)) {
83929372 1075 put_page(head);
a60637c8
NP
1076 goto repeat;
1077 }
1078 }
27d20fdd 1079out:
a60637c8
NP
1080 rcu_read_unlock();
1081
1da177e4
LT
1082 return page;
1083}
0cd6144a 1084EXPORT_SYMBOL(find_get_entry);
1da177e4 1085
0cd6144a
JW
1086/**
1087 * find_lock_entry - locate, pin and lock a page cache entry
1088 * @mapping: the address_space to search
1089 * @offset: the page cache index
1090 *
1091 * Looks up the page cache slot at @mapping & @offset. If there is a
1092 * page cache page, it is returned locked and with an increased
1093 * refcount.
1094 *
139b6a6f
JW
1095 * If the slot holds a shadow entry of a previously evicted page, or a
1096 * swap entry from shmem/tmpfs, it is returned.
0cd6144a
JW
1097 *
1098 * Otherwise, %NULL is returned.
1099 *
1100 * find_lock_entry() may sleep.
1101 */
1102struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1da177e4
LT
1103{
1104 struct page *page;
1105
1da177e4 1106repeat:
0cd6144a 1107 page = find_get_entry(mapping, offset);
a2c16d6c 1108 if (page && !radix_tree_exception(page)) {
a60637c8
NP
1109 lock_page(page);
1110 /* Has the page been truncated? */
83929372 1111 if (unlikely(page_mapping(page) != mapping)) {
a60637c8 1112 unlock_page(page);
09cbfeaf 1113 put_page(page);
a60637c8 1114 goto repeat;
1da177e4 1115 }
83929372 1116 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1da177e4 1117 }
1da177e4
LT
1118 return page;
1119}
0cd6144a
JW
1120EXPORT_SYMBOL(find_lock_entry);
1121
1122/**
2457aec6 1123 * pagecache_get_page - find and get a page reference
0cd6144a
JW
1124 * @mapping: the address_space to search
1125 * @offset: the page index
2457aec6 1126 * @fgp_flags: PCG flags
45f87de5 1127 * @gfp_mask: gfp mask to use for the page cache data page allocation
0cd6144a 1128 *
2457aec6 1129 * Looks up the page cache slot at @mapping & @offset.
1da177e4 1130 *
75325189 1131 * PCG flags modify how the page is returned.
0cd6144a 1132 *
2457aec6
MG
1133 * FGP_ACCESSED: the page will be marked accessed
1134 * FGP_LOCK: Page is return locked
1135 * FGP_CREAT: If page is not present then a new page is allocated using
45f87de5
MH
1136 * @gfp_mask and added to the page cache and the VM's LRU
1137 * list. The page is returned locked and with an increased
1138 * refcount. Otherwise, %NULL is returned.
1da177e4 1139 *
2457aec6
MG
1140 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1141 * if the GFP flags specified for FGP_CREAT are atomic.
1da177e4 1142 *
2457aec6 1143 * If there is a page cache page, it is returned with an increased refcount.
1da177e4 1144 */
2457aec6 1145struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
45f87de5 1146 int fgp_flags, gfp_t gfp_mask)
1da177e4 1147{
eb2be189 1148 struct page *page;
2457aec6 1149
1da177e4 1150repeat:
2457aec6
MG
1151 page = find_get_entry(mapping, offset);
1152 if (radix_tree_exceptional_entry(page))
1153 page = NULL;
1154 if (!page)
1155 goto no_page;
1156
1157 if (fgp_flags & FGP_LOCK) {
1158 if (fgp_flags & FGP_NOWAIT) {
1159 if (!trylock_page(page)) {
09cbfeaf 1160 put_page(page);
2457aec6
MG
1161 return NULL;
1162 }
1163 } else {
1164 lock_page(page);
1165 }
1166
1167 /* Has the page been truncated? */
1168 if (unlikely(page->mapping != mapping)) {
1169 unlock_page(page);
09cbfeaf 1170 put_page(page);
2457aec6
MG
1171 goto repeat;
1172 }
1173 VM_BUG_ON_PAGE(page->index != offset, page);
1174 }
1175
1176 if (page && (fgp_flags & FGP_ACCESSED))
1177 mark_page_accessed(page);
1178
1179no_page:
1180 if (!page && (fgp_flags & FGP_CREAT)) {
1181 int err;
1182 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
45f87de5
MH
1183 gfp_mask |= __GFP_WRITE;
1184 if (fgp_flags & FGP_NOFS)
1185 gfp_mask &= ~__GFP_FS;
2457aec6 1186
45f87de5 1187 page = __page_cache_alloc(gfp_mask);
eb2be189
NP
1188 if (!page)
1189 return NULL;
2457aec6
MG
1190
1191 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1192 fgp_flags |= FGP_LOCK;
1193
eb39d618 1194 /* Init accessed so avoid atomic mark_page_accessed later */
2457aec6 1195 if (fgp_flags & FGP_ACCESSED)
eb39d618 1196 __SetPageReferenced(page);
2457aec6 1197
45f87de5
MH
1198 err = add_to_page_cache_lru(page, mapping, offset,
1199 gfp_mask & GFP_RECLAIM_MASK);
eb2be189 1200 if (unlikely(err)) {
09cbfeaf 1201 put_page(page);
eb2be189
NP
1202 page = NULL;
1203 if (err == -EEXIST)
1204 goto repeat;
1da177e4 1205 }
1da177e4 1206 }
2457aec6 1207
1da177e4
LT
1208 return page;
1209}
2457aec6 1210EXPORT_SYMBOL(pagecache_get_page);
1da177e4 1211
0cd6144a
JW
1212/**
1213 * find_get_entries - gang pagecache lookup
1214 * @mapping: The address_space to search
1215 * @start: The starting page cache index
1216 * @nr_entries: The maximum number of entries
1217 * @entries: Where the resulting entries are placed
1218 * @indices: The cache indices corresponding to the entries in @entries
1219 *
1220 * find_get_entries() will search for and return a group of up to
1221 * @nr_entries entries in the mapping. The entries are placed at
1222 * @entries. find_get_entries() takes a reference against any actual
1223 * pages it returns.
1224 *
1225 * The search returns a group of mapping-contiguous page cache entries
1226 * with ascending indexes. There may be holes in the indices due to
1227 * not-present pages.
1228 *
139b6a6f
JW
1229 * Any shadow entries of evicted pages, or swap entries from
1230 * shmem/tmpfs, are included in the returned array.
0cd6144a
JW
1231 *
1232 * find_get_entries() returns the number of pages and shadow entries
1233 * which were found.
1234 */
1235unsigned find_get_entries(struct address_space *mapping,
1236 pgoff_t start, unsigned int nr_entries,
1237 struct page **entries, pgoff_t *indices)
1238{
1239 void **slot;
1240 unsigned int ret = 0;
1241 struct radix_tree_iter iter;
1242
1243 if (!nr_entries)
1244 return 0;
1245
1246 rcu_read_lock();
0cd6144a 1247 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
83929372 1248 struct page *head, *page;
0cd6144a
JW
1249repeat:
1250 page = radix_tree_deref_slot(slot);
1251 if (unlikely(!page))
1252 continue;
1253 if (radix_tree_exception(page)) {
2cf938aa
MW
1254 if (radix_tree_deref_retry(page)) {
1255 slot = radix_tree_iter_retry(&iter);
1256 continue;
1257 }
0cd6144a 1258 /*
f9fe48be
RZ
1259 * A shadow entry of a recently evicted page, a swap
1260 * entry from shmem/tmpfs or a DAX entry. Return it
1261 * without attempting to raise page count.
0cd6144a
JW
1262 */
1263 goto export;
1264 }
83929372
KS
1265
1266 head = compound_head(page);
1267 if (!page_cache_get_speculative(head))
1268 goto repeat;
1269
1270 /* The page was split under us? */
1271 if (compound_head(page) != head) {
1272 put_page(head);
0cd6144a 1273 goto repeat;
83929372 1274 }
0cd6144a
JW
1275
1276 /* Has the page moved? */
1277 if (unlikely(page != *slot)) {
83929372 1278 put_page(head);
0cd6144a
JW
1279 goto repeat;
1280 }
1281export:
1282 indices[ret] = iter.index;
1283 entries[ret] = page;
1284 if (++ret == nr_entries)
1285 break;
1286 }
1287 rcu_read_unlock();
1288 return ret;
1289}
1290
1da177e4
LT
1291/**
1292 * find_get_pages - gang pagecache lookup
1293 * @mapping: The address_space to search
1294 * @start: The starting page index
1295 * @nr_pages: The maximum number of pages
1296 * @pages: Where the resulting pages are placed
1297 *
1298 * find_get_pages() will search for and return a group of up to
1299 * @nr_pages pages in the mapping. The pages are placed at @pages.
1300 * find_get_pages() takes a reference against the returned pages.
1301 *
1302 * The search returns a group of mapping-contiguous pages with ascending
1303 * indexes. There may be holes in the indices due to not-present pages.
1304 *
1305 * find_get_pages() returns the number of pages which were found.
1306 */
1307unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1308 unsigned int nr_pages, struct page **pages)
1309{
0fc9d104
KK
1310 struct radix_tree_iter iter;
1311 void **slot;
1312 unsigned ret = 0;
1313
1314 if (unlikely(!nr_pages))
1315 return 0;
a60637c8
NP
1316
1317 rcu_read_lock();
0fc9d104 1318 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
83929372 1319 struct page *head, *page;
a60637c8 1320repeat:
0fc9d104 1321 page = radix_tree_deref_slot(slot);
a60637c8
NP
1322 if (unlikely(!page))
1323 continue;
9d8aa4ea 1324
a2c16d6c 1325 if (radix_tree_exception(page)) {
8079b1c8 1326 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1327 slot = radix_tree_iter_retry(&iter);
1328 continue;
8079b1c8 1329 }
a2c16d6c 1330 /*
139b6a6f
JW
1331 * A shadow entry of a recently evicted page,
1332 * or a swap entry from shmem/tmpfs. Skip
1333 * over it.
a2c16d6c 1334 */
8079b1c8 1335 continue;
27d20fdd 1336 }
a60637c8 1337
83929372
KS
1338 head = compound_head(page);
1339 if (!page_cache_get_speculative(head))
1340 goto repeat;
1341
1342 /* The page was split under us? */
1343 if (compound_head(page) != head) {
1344 put_page(head);
a60637c8 1345 goto repeat;
83929372 1346 }
a60637c8
NP
1347
1348 /* Has the page moved? */
0fc9d104 1349 if (unlikely(page != *slot)) {
83929372 1350 put_page(head);
a60637c8
NP
1351 goto repeat;
1352 }
1da177e4 1353
a60637c8 1354 pages[ret] = page;
0fc9d104
KK
1355 if (++ret == nr_pages)
1356 break;
a60637c8 1357 }
5b280c0c 1358
a60637c8 1359 rcu_read_unlock();
1da177e4
LT
1360 return ret;
1361}
1362
ebf43500
JA
1363/**
1364 * find_get_pages_contig - gang contiguous pagecache lookup
1365 * @mapping: The address_space to search
1366 * @index: The starting page index
1367 * @nr_pages: The maximum number of pages
1368 * @pages: Where the resulting pages are placed
1369 *
1370 * find_get_pages_contig() works exactly like find_get_pages(), except
1371 * that the returned number of pages are guaranteed to be contiguous.
1372 *
1373 * find_get_pages_contig() returns the number of pages which were found.
1374 */
1375unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1376 unsigned int nr_pages, struct page **pages)
1377{
0fc9d104
KK
1378 struct radix_tree_iter iter;
1379 void **slot;
1380 unsigned int ret = 0;
1381
1382 if (unlikely(!nr_pages))
1383 return 0;
a60637c8
NP
1384
1385 rcu_read_lock();
0fc9d104 1386 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
83929372 1387 struct page *head, *page;
a60637c8 1388repeat:
0fc9d104
KK
1389 page = radix_tree_deref_slot(slot);
1390 /* The hole, there no reason to continue */
a60637c8 1391 if (unlikely(!page))
0fc9d104 1392 break;
9d8aa4ea 1393
a2c16d6c 1394 if (radix_tree_exception(page)) {
8079b1c8 1395 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1396 slot = radix_tree_iter_retry(&iter);
1397 continue;
8079b1c8 1398 }
a2c16d6c 1399 /*
139b6a6f
JW
1400 * A shadow entry of a recently evicted page,
1401 * or a swap entry from shmem/tmpfs. Stop
1402 * looking for contiguous pages.
a2c16d6c 1403 */
8079b1c8 1404 break;
a2c16d6c 1405 }
ebf43500 1406
83929372
KS
1407 head = compound_head(page);
1408 if (!page_cache_get_speculative(head))
1409 goto repeat;
1410
1411 /* The page was split under us? */
1412 if (compound_head(page) != head) {
1413 put_page(head);
a60637c8 1414 goto repeat;
83929372 1415 }
a60637c8
NP
1416
1417 /* Has the page moved? */
0fc9d104 1418 if (unlikely(page != *slot)) {
83929372 1419 put_page(head);
a60637c8
NP
1420 goto repeat;
1421 }
1422
9cbb4cb2
NP
1423 /*
1424 * must check mapping and index after taking the ref.
1425 * otherwise we can get both false positives and false
1426 * negatives, which is just confusing to the caller.
1427 */
83929372 1428 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
09cbfeaf 1429 put_page(page);
9cbb4cb2
NP
1430 break;
1431 }
1432
a60637c8 1433 pages[ret] = page;
0fc9d104
KK
1434 if (++ret == nr_pages)
1435 break;
ebf43500 1436 }
a60637c8
NP
1437 rcu_read_unlock();
1438 return ret;
ebf43500 1439}
ef71c15c 1440EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 1441
485bb99b
RD
1442/**
1443 * find_get_pages_tag - find and return pages that match @tag
1444 * @mapping: the address_space to search
1445 * @index: the starting page index
1446 * @tag: the tag index
1447 * @nr_pages: the maximum number of pages
1448 * @pages: where the resulting pages are placed
1449 *
1da177e4 1450 * Like find_get_pages, except we only return pages which are tagged with
485bb99b 1451 * @tag. We update @index to index the next page for the traversal.
1da177e4
LT
1452 */
1453unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1454 int tag, unsigned int nr_pages, struct page **pages)
1455{
0fc9d104
KK
1456 struct radix_tree_iter iter;
1457 void **slot;
1458 unsigned ret = 0;
1459
1460 if (unlikely(!nr_pages))
1461 return 0;
a60637c8
NP
1462
1463 rcu_read_lock();
0fc9d104
KK
1464 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1465 &iter, *index, tag) {
83929372 1466 struct page *head, *page;
a60637c8 1467repeat:
0fc9d104 1468 page = radix_tree_deref_slot(slot);
a60637c8
NP
1469 if (unlikely(!page))
1470 continue;
9d8aa4ea 1471
a2c16d6c 1472 if (radix_tree_exception(page)) {
8079b1c8 1473 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1474 slot = radix_tree_iter_retry(&iter);
1475 continue;
8079b1c8 1476 }
a2c16d6c 1477 /*
139b6a6f
JW
1478 * A shadow entry of a recently evicted page.
1479 *
1480 * Those entries should never be tagged, but
1481 * this tree walk is lockless and the tags are
1482 * looked up in bulk, one radix tree node at a
1483 * time, so there is a sizable window for page
1484 * reclaim to evict a page we saw tagged.
1485 *
1486 * Skip over it.
a2c16d6c 1487 */
139b6a6f 1488 continue;
a2c16d6c 1489 }
a60637c8 1490
83929372
KS
1491 head = compound_head(page);
1492 if (!page_cache_get_speculative(head))
a60637c8
NP
1493 goto repeat;
1494
83929372
KS
1495 /* The page was split under us? */
1496 if (compound_head(page) != head) {
1497 put_page(head);
1498 goto repeat;
1499 }
1500
a60637c8 1501 /* Has the page moved? */
0fc9d104 1502 if (unlikely(page != *slot)) {
83929372 1503 put_page(head);
a60637c8
NP
1504 goto repeat;
1505 }
1506
1507 pages[ret] = page;
0fc9d104
KK
1508 if (++ret == nr_pages)
1509 break;
a60637c8 1510 }
5b280c0c 1511
a60637c8 1512 rcu_read_unlock();
1da177e4 1513
1da177e4
LT
1514 if (ret)
1515 *index = pages[ret - 1]->index + 1;
a60637c8 1516
1da177e4
LT
1517 return ret;
1518}
ef71c15c 1519EXPORT_SYMBOL(find_get_pages_tag);
1da177e4 1520
7e7f7749
RZ
1521/**
1522 * find_get_entries_tag - find and return entries that match @tag
1523 * @mapping: the address_space to search
1524 * @start: the starting page cache index
1525 * @tag: the tag index
1526 * @nr_entries: the maximum number of entries
1527 * @entries: where the resulting entries are placed
1528 * @indices: the cache indices corresponding to the entries in @entries
1529 *
1530 * Like find_get_entries, except we only return entries which are tagged with
1531 * @tag.
1532 */
1533unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1534 int tag, unsigned int nr_entries,
1535 struct page **entries, pgoff_t *indices)
1536{
1537 void **slot;
1538 unsigned int ret = 0;
1539 struct radix_tree_iter iter;
1540
1541 if (!nr_entries)
1542 return 0;
1543
1544 rcu_read_lock();
7e7f7749
RZ
1545 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1546 &iter, start, tag) {
83929372 1547 struct page *head, *page;
7e7f7749
RZ
1548repeat:
1549 page = radix_tree_deref_slot(slot);
1550 if (unlikely(!page))
1551 continue;
1552 if (radix_tree_exception(page)) {
1553 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1554 slot = radix_tree_iter_retry(&iter);
1555 continue;
7e7f7749
RZ
1556 }
1557
1558 /*
1559 * A shadow entry of a recently evicted page, a swap
1560 * entry from shmem/tmpfs or a DAX entry. Return it
1561 * without attempting to raise page count.
1562 */
1563 goto export;
1564 }
83929372
KS
1565
1566 head = compound_head(page);
1567 if (!page_cache_get_speculative(head))
7e7f7749
RZ
1568 goto repeat;
1569
83929372
KS
1570 /* The page was split under us? */
1571 if (compound_head(page) != head) {
1572 put_page(head);
1573 goto repeat;
1574 }
1575
7e7f7749
RZ
1576 /* Has the page moved? */
1577 if (unlikely(page != *slot)) {
83929372 1578 put_page(head);
7e7f7749
RZ
1579 goto repeat;
1580 }
1581export:
1582 indices[ret] = iter.index;
1583 entries[ret] = page;
1584 if (++ret == nr_entries)
1585 break;
1586 }
1587 rcu_read_unlock();
1588 return ret;
1589}
1590EXPORT_SYMBOL(find_get_entries_tag);
1591
76d42bd9
WF
1592/*
1593 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1594 * a _large_ part of the i/o request. Imagine the worst scenario:
1595 *
1596 * ---R__________________________________________B__________
1597 * ^ reading here ^ bad block(assume 4k)
1598 *
1599 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1600 * => failing the whole request => read(R) => read(R+1) =>
1601 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1602 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1603 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1604 *
1605 * It is going insane. Fix it by quickly scaling down the readahead size.
1606 */
1607static void shrink_readahead_size_eio(struct file *filp,
1608 struct file_ra_state *ra)
1609{
76d42bd9 1610 ra->ra_pages /= 4;
76d42bd9
WF
1611}
1612
485bb99b 1613/**
36e78914 1614 * do_generic_file_read - generic file read routine
485bb99b
RD
1615 * @filp: the file to read
1616 * @ppos: current file position
6e58e79d
AV
1617 * @iter: data destination
1618 * @written: already copied
485bb99b 1619 *
1da177e4 1620 * This is a generic file read routine, and uses the
485bb99b 1621 * mapping->a_ops->readpage() function for the actual low-level stuff.
1da177e4
LT
1622 *
1623 * This is really ugly. But the goto's actually try to clarify some
1624 * of the logic when it comes to error handling etc.
1da177e4 1625 */
6e58e79d
AV
1626static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1627 struct iov_iter *iter, ssize_t written)
1da177e4 1628{
36e78914 1629 struct address_space *mapping = filp->f_mapping;
1da177e4 1630 struct inode *inode = mapping->host;
36e78914 1631 struct file_ra_state *ra = &filp->f_ra;
57f6b96c
FW
1632 pgoff_t index;
1633 pgoff_t last_index;
1634 pgoff_t prev_index;
1635 unsigned long offset; /* offset into pagecache page */
ec0f1637 1636 unsigned int prev_offset;
6e58e79d 1637 int error = 0;
1da177e4 1638
c2a9737f 1639 if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
d05c5f7b 1640 return 0;
c2a9737f
WF
1641 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
1642
09cbfeaf
KS
1643 index = *ppos >> PAGE_SHIFT;
1644 prev_index = ra->prev_pos >> PAGE_SHIFT;
1645 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1646 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1647 offset = *ppos & ~PAGE_MASK;
1da177e4 1648
1da177e4
LT
1649 for (;;) {
1650 struct page *page;
57f6b96c 1651 pgoff_t end_index;
a32ea1e1 1652 loff_t isize;
1da177e4
LT
1653 unsigned long nr, ret;
1654
1da177e4 1655 cond_resched();
1da177e4
LT
1656find_page:
1657 page = find_get_page(mapping, index);
3ea89ee8 1658 if (!page) {
cf914a7d 1659 page_cache_sync_readahead(mapping,
7ff81078 1660 ra, filp,
3ea89ee8
FW
1661 index, last_index - index);
1662 page = find_get_page(mapping, index);
1663 if (unlikely(page == NULL))
1664 goto no_cached_page;
1665 }
1666 if (PageReadahead(page)) {
cf914a7d 1667 page_cache_async_readahead(mapping,
7ff81078 1668 ra, filp, page,
3ea89ee8 1669 index, last_index - index);
1da177e4 1670 }
8ab22b9a 1671 if (!PageUptodate(page)) {
ebded027
MG
1672 /*
1673 * See comment in do_read_cache_page on why
1674 * wait_on_page_locked is used to avoid unnecessarily
1675 * serialisations and why it's safe.
1676 */
c4b209a4
BVA
1677 error = wait_on_page_locked_killable(page);
1678 if (unlikely(error))
1679 goto readpage_error;
ebded027
MG
1680 if (PageUptodate(page))
1681 goto page_ok;
1682
09cbfeaf 1683 if (inode->i_blkbits == PAGE_SHIFT ||
8ab22b9a
HH
1684 !mapping->a_ops->is_partially_uptodate)
1685 goto page_not_up_to_date;
6d6d36bc
EG
1686 /* pipes can't handle partially uptodate pages */
1687 if (unlikely(iter->type & ITER_PIPE))
1688 goto page_not_up_to_date;
529ae9aa 1689 if (!trylock_page(page))
8ab22b9a 1690 goto page_not_up_to_date;
8d056cb9
DH
1691 /* Did it get truncated before we got the lock? */
1692 if (!page->mapping)
1693 goto page_not_up_to_date_locked;
8ab22b9a 1694 if (!mapping->a_ops->is_partially_uptodate(page,
6e58e79d 1695 offset, iter->count))
8ab22b9a
HH
1696 goto page_not_up_to_date_locked;
1697 unlock_page(page);
1698 }
1da177e4 1699page_ok:
a32ea1e1
N
1700 /*
1701 * i_size must be checked after we know the page is Uptodate.
1702 *
1703 * Checking i_size after the check allows us to calculate
1704 * the correct value for "nr", which means the zero-filled
1705 * part of the page is not copied back to userspace (unless
1706 * another truncate extends the file - this is desired though).
1707 */
1708
1709 isize = i_size_read(inode);
09cbfeaf 1710 end_index = (isize - 1) >> PAGE_SHIFT;
a32ea1e1 1711 if (unlikely(!isize || index > end_index)) {
09cbfeaf 1712 put_page(page);
a32ea1e1
N
1713 goto out;
1714 }
1715
1716 /* nr is the maximum number of bytes to copy from this page */
09cbfeaf 1717 nr = PAGE_SIZE;
a32ea1e1 1718 if (index == end_index) {
09cbfeaf 1719 nr = ((isize - 1) & ~PAGE_MASK) + 1;
a32ea1e1 1720 if (nr <= offset) {
09cbfeaf 1721 put_page(page);
a32ea1e1
N
1722 goto out;
1723 }
1724 }
1725 nr = nr - offset;
1da177e4
LT
1726
1727 /* If users can be writing to this page using arbitrary
1728 * virtual addresses, take care about potential aliasing
1729 * before reading the page on the kernel side.
1730 */
1731 if (mapping_writably_mapped(mapping))
1732 flush_dcache_page(page);
1733
1734 /*
ec0f1637
JK
1735 * When a sequential read accesses a page several times,
1736 * only mark it as accessed the first time.
1da177e4 1737 */
ec0f1637 1738 if (prev_index != index || offset != prev_offset)
1da177e4
LT
1739 mark_page_accessed(page);
1740 prev_index = index;
1741
1742 /*
1743 * Ok, we have the page, and it's up-to-date, so
1744 * now we can copy it to user space...
1da177e4 1745 */
6e58e79d
AV
1746
1747 ret = copy_page_to_iter(page, offset, nr, iter);
1da177e4 1748 offset += ret;
09cbfeaf
KS
1749 index += offset >> PAGE_SHIFT;
1750 offset &= ~PAGE_MASK;
6ce745ed 1751 prev_offset = offset;
1da177e4 1752
09cbfeaf 1753 put_page(page);
6e58e79d
AV
1754 written += ret;
1755 if (!iov_iter_count(iter))
1756 goto out;
1757 if (ret < nr) {
1758 error = -EFAULT;
1759 goto out;
1760 }
1761 continue;
1da177e4
LT
1762
1763page_not_up_to_date:
1764 /* Get exclusive access to the page ... */
85462323
ON
1765 error = lock_page_killable(page);
1766 if (unlikely(error))
1767 goto readpage_error;
1da177e4 1768
8ab22b9a 1769page_not_up_to_date_locked:
da6052f7 1770 /* Did it get truncated before we got the lock? */
1da177e4
LT
1771 if (!page->mapping) {
1772 unlock_page(page);
09cbfeaf 1773 put_page(page);
1da177e4
LT
1774 continue;
1775 }
1776
1777 /* Did somebody else fill it already? */
1778 if (PageUptodate(page)) {
1779 unlock_page(page);
1780 goto page_ok;
1781 }
1782
1783readpage:
91803b49
JM
1784 /*
1785 * A previous I/O error may have been due to temporary
1786 * failures, eg. multipath errors.
1787 * PG_error will be set again if readpage fails.
1788 */
1789 ClearPageError(page);
1da177e4
LT
1790 /* Start the actual read. The read will unlock the page. */
1791 error = mapping->a_ops->readpage(filp, page);
1792
994fc28c
ZB
1793 if (unlikely(error)) {
1794 if (error == AOP_TRUNCATED_PAGE) {
09cbfeaf 1795 put_page(page);
6e58e79d 1796 error = 0;
994fc28c
ZB
1797 goto find_page;
1798 }
1da177e4 1799 goto readpage_error;
994fc28c 1800 }
1da177e4
LT
1801
1802 if (!PageUptodate(page)) {
85462323
ON
1803 error = lock_page_killable(page);
1804 if (unlikely(error))
1805 goto readpage_error;
1da177e4
LT
1806 if (!PageUptodate(page)) {
1807 if (page->mapping == NULL) {
1808 /*
2ecdc82e 1809 * invalidate_mapping_pages got it
1da177e4
LT
1810 */
1811 unlock_page(page);
09cbfeaf 1812 put_page(page);
1da177e4
LT
1813 goto find_page;
1814 }
1815 unlock_page(page);
7ff81078 1816 shrink_readahead_size_eio(filp, ra);
85462323
ON
1817 error = -EIO;
1818 goto readpage_error;
1da177e4
LT
1819 }
1820 unlock_page(page);
1821 }
1822
1da177e4
LT
1823 goto page_ok;
1824
1825readpage_error:
1826 /* UHHUH! A synchronous read error occurred. Report it */
09cbfeaf 1827 put_page(page);
1da177e4
LT
1828 goto out;
1829
1830no_cached_page:
1831 /*
1832 * Ok, it wasn't cached, so we need to create a new
1833 * page..
1834 */
eb2be189
NP
1835 page = page_cache_alloc_cold(mapping);
1836 if (!page) {
6e58e79d 1837 error = -ENOMEM;
eb2be189 1838 goto out;
1da177e4 1839 }
6afdb859 1840 error = add_to_page_cache_lru(page, mapping, index,
c62d2555 1841 mapping_gfp_constraint(mapping, GFP_KERNEL));
1da177e4 1842 if (error) {
09cbfeaf 1843 put_page(page);
6e58e79d
AV
1844 if (error == -EEXIST) {
1845 error = 0;
1da177e4 1846 goto find_page;
6e58e79d 1847 }
1da177e4
LT
1848 goto out;
1849 }
1da177e4
LT
1850 goto readpage;
1851 }
1852
1853out:
7ff81078 1854 ra->prev_pos = prev_index;
09cbfeaf 1855 ra->prev_pos <<= PAGE_SHIFT;
7ff81078 1856 ra->prev_pos |= prev_offset;
1da177e4 1857
09cbfeaf 1858 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
0c6aa263 1859 file_accessed(filp);
6e58e79d 1860 return written ? written : error;
1da177e4
LT
1861}
1862
485bb99b 1863/**
6abd2322 1864 * generic_file_read_iter - generic filesystem read routine
485bb99b 1865 * @iocb: kernel I/O control block
6abd2322 1866 * @iter: destination for the data read
485bb99b 1867 *
6abd2322 1868 * This is the "read_iter()" routine for all filesystems
1da177e4
LT
1869 * that can use the page cache directly.
1870 */
1871ssize_t
ed978a81 1872generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1da177e4 1873{
ed978a81 1874 struct file *file = iocb->ki_filp;
cb66a7a1 1875 ssize_t retval = 0;
e7080a43
NS
1876 size_t count = iov_iter_count(iter);
1877
1878 if (!count)
1879 goto out; /* skip atime */
1da177e4 1880
2ba48ce5 1881 if (iocb->ki_flags & IOCB_DIRECT) {
ed978a81
AV
1882 struct address_space *mapping = file->f_mapping;
1883 struct inode *inode = mapping->host;
0d5b0cf2 1884 struct iov_iter data = *iter;
543ade1f 1885 loff_t size;
1da177e4 1886
1da177e4 1887 size = i_size_read(inode);
c64fb5c7
CH
1888 retval = filemap_write_and_wait_range(mapping, iocb->ki_pos,
1889 iocb->ki_pos + count - 1);
0d5b0cf2
CH
1890 if (retval < 0)
1891 goto out;
d8d3d94b 1892
0d5b0cf2
CH
1893 file_accessed(file);
1894
1895 retval = mapping->a_ops->direct_IO(iocb, &data);
c3a69024 1896 if (retval >= 0) {
c64fb5c7 1897 iocb->ki_pos += retval;
ed978a81 1898 iov_iter_advance(iter, retval);
9fe55eea 1899 }
66f998f6 1900
9fe55eea
SW
1901 /*
1902 * Btrfs can have a short DIO read if we encounter
1903 * compressed extents, so if there was an error, or if
1904 * we've already read everything we wanted to, or if
1905 * there was a short read because we hit EOF, go ahead
1906 * and return. Otherwise fallthrough to buffered io for
fbbbad4b
MW
1907 * the rest of the read. Buffered reads will not work for
1908 * DAX files, so don't bother trying.
9fe55eea 1909 */
c64fb5c7 1910 if (retval < 0 || !iov_iter_count(iter) || iocb->ki_pos >= size ||
0d5b0cf2 1911 IS_DAX(inode))
9fe55eea 1912 goto out;
1da177e4
LT
1913 }
1914
c64fb5c7 1915 retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
1da177e4
LT
1916out:
1917 return retval;
1918}
ed978a81 1919EXPORT_SYMBOL(generic_file_read_iter);
1da177e4 1920
1da177e4 1921#ifdef CONFIG_MMU
485bb99b
RD
1922/**
1923 * page_cache_read - adds requested page to the page cache if not already there
1924 * @file: file to read
1925 * @offset: page index
62eb320a 1926 * @gfp_mask: memory allocation flags
485bb99b 1927 *
1da177e4
LT
1928 * This adds the requested page to the page cache if it isn't already there,
1929 * and schedules an I/O to read in its contents from disk.
1930 */
c20cd45e 1931static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1da177e4
LT
1932{
1933 struct address_space *mapping = file->f_mapping;
99dadfdd 1934 struct page *page;
994fc28c 1935 int ret;
1da177e4 1936
994fc28c 1937 do {
c20cd45e 1938 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
994fc28c
ZB
1939 if (!page)
1940 return -ENOMEM;
1941
c20cd45e 1942 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
994fc28c
ZB
1943 if (ret == 0)
1944 ret = mapping->a_ops->readpage(file, page);
1945 else if (ret == -EEXIST)
1946 ret = 0; /* losing race to add is OK */
1da177e4 1947
09cbfeaf 1948 put_page(page);
1da177e4 1949
994fc28c 1950 } while (ret == AOP_TRUNCATED_PAGE);
99dadfdd 1951
994fc28c 1952 return ret;
1da177e4
LT
1953}
1954
1955#define MMAP_LOTSAMISS (100)
1956
ef00e08e
LT
1957/*
1958 * Synchronous readahead happens when we don't even find
1959 * a page in the page cache at all.
1960 */
1961static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1962 struct file_ra_state *ra,
1963 struct file *file,
1964 pgoff_t offset)
1965{
ef00e08e
LT
1966 struct address_space *mapping = file->f_mapping;
1967
1968 /* If we don't want any read-ahead, don't bother */
64363aad 1969 if (vma->vm_flags & VM_RAND_READ)
ef00e08e 1970 return;
275b12bf
WF
1971 if (!ra->ra_pages)
1972 return;
ef00e08e 1973
64363aad 1974 if (vma->vm_flags & VM_SEQ_READ) {
7ffc59b4
WF
1975 page_cache_sync_readahead(mapping, ra, file, offset,
1976 ra->ra_pages);
ef00e08e
LT
1977 return;
1978 }
1979
207d04ba
AK
1980 /* Avoid banging the cache line if not needed */
1981 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
ef00e08e
LT
1982 ra->mmap_miss++;
1983
1984 /*
1985 * Do we miss much more than hit in this file? If so,
1986 * stop bothering with read-ahead. It will only hurt.
1987 */
1988 if (ra->mmap_miss > MMAP_LOTSAMISS)
1989 return;
1990
d30a1100
WF
1991 /*
1992 * mmap read-around
1993 */
600e19af
RG
1994 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
1995 ra->size = ra->ra_pages;
1996 ra->async_size = ra->ra_pages / 4;
275b12bf 1997 ra_submit(ra, mapping, file);
ef00e08e
LT
1998}
1999
2000/*
2001 * Asynchronous readahead happens when we find the page and PG_readahead,
2002 * so we want to possibly extend the readahead further..
2003 */
2004static void do_async_mmap_readahead(struct vm_area_struct *vma,
2005 struct file_ra_state *ra,
2006 struct file *file,
2007 struct page *page,
2008 pgoff_t offset)
2009{
2010 struct address_space *mapping = file->f_mapping;
2011
2012 /* If we don't want any read-ahead, don't bother */
64363aad 2013 if (vma->vm_flags & VM_RAND_READ)
ef00e08e
LT
2014 return;
2015 if (ra->mmap_miss > 0)
2016 ra->mmap_miss--;
2017 if (PageReadahead(page))
2fad6f5d
WF
2018 page_cache_async_readahead(mapping, ra, file,
2019 page, offset, ra->ra_pages);
ef00e08e
LT
2020}
2021
485bb99b 2022/**
54cb8821 2023 * filemap_fault - read in file data for page fault handling
d0217ac0
NP
2024 * @vma: vma in which the fault was taken
2025 * @vmf: struct vm_fault containing details of the fault
485bb99b 2026 *
54cb8821 2027 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
2028 * mapped memory region to read in file data during a page fault.
2029 *
2030 * The goto's are kind of ugly, but this streamlines the normal case of having
2031 * it in the page cache, and handles the special cases reasonably without
2032 * having a lot of duplicated code.
9a95f3cf
PC
2033 *
2034 * vma->vm_mm->mmap_sem must be held on entry.
2035 *
2036 * If our return value has VM_FAULT_RETRY set, it's because
2037 * lock_page_or_retry() returned 0.
2038 * The mmap_sem has usually been released in this case.
2039 * See __lock_page_or_retry() for the exception.
2040 *
2041 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2042 * has not been released.
2043 *
2044 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
1da177e4 2045 */
d0217ac0 2046int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
2047{
2048 int error;
54cb8821 2049 struct file *file = vma->vm_file;
1da177e4
LT
2050 struct address_space *mapping = file->f_mapping;
2051 struct file_ra_state *ra = &file->f_ra;
2052 struct inode *inode = mapping->host;
ef00e08e 2053 pgoff_t offset = vmf->pgoff;
1da177e4 2054 struct page *page;
99e3e53f 2055 loff_t size;
83c54070 2056 int ret = 0;
1da177e4 2057
09cbfeaf
KS
2058 size = round_up(i_size_read(inode), PAGE_SIZE);
2059 if (offset >= size >> PAGE_SHIFT)
5307cc1a 2060 return VM_FAULT_SIGBUS;
1da177e4 2061
1da177e4 2062 /*
49426420 2063 * Do we have something in the page cache already?
1da177e4 2064 */
ef00e08e 2065 page = find_get_page(mapping, offset);
45cac65b 2066 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1da177e4 2067 /*
ef00e08e
LT
2068 * We found the page, so try async readahead before
2069 * waiting for the lock.
1da177e4 2070 */
ef00e08e 2071 do_async_mmap_readahead(vma, ra, file, page, offset);
45cac65b 2072 } else if (!page) {
ef00e08e
LT
2073 /* No page in the page cache at all */
2074 do_sync_mmap_readahead(vma, ra, file, offset);
2075 count_vm_event(PGMAJFAULT);
456f998e 2076 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
ef00e08e
LT
2077 ret = VM_FAULT_MAJOR;
2078retry_find:
b522c94d 2079 page = find_get_page(mapping, offset);
1da177e4
LT
2080 if (!page)
2081 goto no_cached_page;
2082 }
2083
d88c0922 2084 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
09cbfeaf 2085 put_page(page);
d065bd81 2086 return ret | VM_FAULT_RETRY;
d88c0922 2087 }
b522c94d
ML
2088
2089 /* Did it get truncated? */
2090 if (unlikely(page->mapping != mapping)) {
2091 unlock_page(page);
2092 put_page(page);
2093 goto retry_find;
2094 }
309381fe 2095 VM_BUG_ON_PAGE(page->index != offset, page);
b522c94d 2096
1da177e4 2097 /*
d00806b1
NP
2098 * We have a locked page in the page cache, now we need to check
2099 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 2100 */
d00806b1 2101 if (unlikely(!PageUptodate(page)))
1da177e4
LT
2102 goto page_not_uptodate;
2103
ef00e08e
LT
2104 /*
2105 * Found the page and have a reference on it.
2106 * We must recheck i_size under page lock.
2107 */
09cbfeaf
KS
2108 size = round_up(i_size_read(inode), PAGE_SIZE);
2109 if (unlikely(offset >= size >> PAGE_SHIFT)) {
d00806b1 2110 unlock_page(page);
09cbfeaf 2111 put_page(page);
5307cc1a 2112 return VM_FAULT_SIGBUS;
d00806b1
NP
2113 }
2114
d0217ac0 2115 vmf->page = page;
83c54070 2116 return ret | VM_FAULT_LOCKED;
1da177e4 2117
1da177e4
LT
2118no_cached_page:
2119 /*
2120 * We're only likely to ever get here if MADV_RANDOM is in
2121 * effect.
2122 */
c20cd45e 2123 error = page_cache_read(file, offset, vmf->gfp_mask);
1da177e4
LT
2124
2125 /*
2126 * The page we want has now been added to the page cache.
2127 * In the unlikely event that someone removed it in the
2128 * meantime, we'll just come back here and read it again.
2129 */
2130 if (error >= 0)
2131 goto retry_find;
2132
2133 /*
2134 * An error return from page_cache_read can result if the
2135 * system is low on memory, or a problem occurs while trying
2136 * to schedule I/O.
2137 */
2138 if (error == -ENOMEM)
d0217ac0
NP
2139 return VM_FAULT_OOM;
2140 return VM_FAULT_SIGBUS;
1da177e4
LT
2141
2142page_not_uptodate:
1da177e4
LT
2143 /*
2144 * Umm, take care of errors if the page isn't up-to-date.
2145 * Try to re-read it _once_. We do this synchronously,
2146 * because there really aren't any performance issues here
2147 * and we need to check for errors.
2148 */
1da177e4 2149 ClearPageError(page);
994fc28c 2150 error = mapping->a_ops->readpage(file, page);
3ef0f720
MS
2151 if (!error) {
2152 wait_on_page_locked(page);
2153 if (!PageUptodate(page))
2154 error = -EIO;
2155 }
09cbfeaf 2156 put_page(page);
d00806b1
NP
2157
2158 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 2159 goto retry_find;
1da177e4 2160
d00806b1 2161 /* Things didn't work out. Return zero to tell the mm layer so. */
76d42bd9 2162 shrink_readahead_size_eio(file, ra);
d0217ac0 2163 return VM_FAULT_SIGBUS;
54cb8821
NP
2164}
2165EXPORT_SYMBOL(filemap_fault);
2166
82b0f8c3 2167void filemap_map_pages(struct vm_fault *vmf,
bae473a4 2168 pgoff_t start_pgoff, pgoff_t end_pgoff)
f1820361
KS
2169{
2170 struct radix_tree_iter iter;
2171 void **slot;
82b0f8c3 2172 struct file *file = vmf->vma->vm_file;
f1820361 2173 struct address_space *mapping = file->f_mapping;
bae473a4 2174 pgoff_t last_pgoff = start_pgoff;
f1820361 2175 loff_t size;
83929372 2176 struct page *head, *page;
f1820361
KS
2177
2178 rcu_read_lock();
bae473a4
KS
2179 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2180 start_pgoff) {
2181 if (iter.index > end_pgoff)
f1820361
KS
2182 break;
2183repeat:
2184 page = radix_tree_deref_slot(slot);
2185 if (unlikely(!page))
2186 goto next;
2187 if (radix_tree_exception(page)) {
2cf938aa
MW
2188 if (radix_tree_deref_retry(page)) {
2189 slot = radix_tree_iter_retry(&iter);
2190 continue;
2191 }
2192 goto next;
f1820361
KS
2193 }
2194
83929372
KS
2195 head = compound_head(page);
2196 if (!page_cache_get_speculative(head))
f1820361
KS
2197 goto repeat;
2198
83929372
KS
2199 /* The page was split under us? */
2200 if (compound_head(page) != head) {
2201 put_page(head);
2202 goto repeat;
2203 }
2204
f1820361
KS
2205 /* Has the page moved? */
2206 if (unlikely(page != *slot)) {
83929372 2207 put_page(head);
f1820361
KS
2208 goto repeat;
2209 }
2210
2211 if (!PageUptodate(page) ||
2212 PageReadahead(page) ||
2213 PageHWPoison(page))
2214 goto skip;
2215 if (!trylock_page(page))
2216 goto skip;
2217
2218 if (page->mapping != mapping || !PageUptodate(page))
2219 goto unlock;
2220
09cbfeaf
KS
2221 size = round_up(i_size_read(mapping->host), PAGE_SIZE);
2222 if (page->index >= size >> PAGE_SHIFT)
f1820361
KS
2223 goto unlock;
2224
f1820361
KS
2225 if (file->f_ra.mmap_miss > 0)
2226 file->f_ra.mmap_miss--;
7267ec00 2227
82b0f8c3
JK
2228 vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2229 if (vmf->pte)
2230 vmf->pte += iter.index - last_pgoff;
7267ec00 2231 last_pgoff = iter.index;
82b0f8c3 2232 if (alloc_set_pte(vmf, NULL, page))
7267ec00 2233 goto unlock;
f1820361
KS
2234 unlock_page(page);
2235 goto next;
2236unlock:
2237 unlock_page(page);
2238skip:
09cbfeaf 2239 put_page(page);
f1820361 2240next:
7267ec00 2241 /* Huge page is mapped? No need to proceed. */
82b0f8c3 2242 if (pmd_trans_huge(*vmf->pmd))
7267ec00 2243 break;
bae473a4 2244 if (iter.index == end_pgoff)
f1820361
KS
2245 break;
2246 }
2247 rcu_read_unlock();
2248}
2249EXPORT_SYMBOL(filemap_map_pages);
2250
4fcf1c62
JK
2251int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2252{
2253 struct page *page = vmf->page;
496ad9aa 2254 struct inode *inode = file_inode(vma->vm_file);
4fcf1c62
JK
2255 int ret = VM_FAULT_LOCKED;
2256
14da9200 2257 sb_start_pagefault(inode->i_sb);
4fcf1c62
JK
2258 file_update_time(vma->vm_file);
2259 lock_page(page);
2260 if (page->mapping != inode->i_mapping) {
2261 unlock_page(page);
2262 ret = VM_FAULT_NOPAGE;
2263 goto out;
2264 }
14da9200
JK
2265 /*
2266 * We mark the page dirty already here so that when freeze is in
2267 * progress, we are guaranteed that writeback during freezing will
2268 * see the dirty page and writeprotect it again.
2269 */
2270 set_page_dirty(page);
1d1d1a76 2271 wait_for_stable_page(page);
4fcf1c62 2272out:
14da9200 2273 sb_end_pagefault(inode->i_sb);
4fcf1c62
JK
2274 return ret;
2275}
2276EXPORT_SYMBOL(filemap_page_mkwrite);
2277
f0f37e2f 2278const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 2279 .fault = filemap_fault,
f1820361 2280 .map_pages = filemap_map_pages,
4fcf1c62 2281 .page_mkwrite = filemap_page_mkwrite,
1da177e4
LT
2282};
2283
2284/* This is used for a general mmap of a disk file */
2285
2286int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2287{
2288 struct address_space *mapping = file->f_mapping;
2289
2290 if (!mapping->a_ops->readpage)
2291 return -ENOEXEC;
2292 file_accessed(file);
2293 vma->vm_ops = &generic_file_vm_ops;
2294 return 0;
2295}
1da177e4
LT
2296
2297/*
2298 * This is for filesystems which do not implement ->writepage.
2299 */
2300int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2301{
2302 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2303 return -EINVAL;
2304 return generic_file_mmap(file, vma);
2305}
2306#else
2307int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2308{
2309 return -ENOSYS;
2310}
2311int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2312{
2313 return -ENOSYS;
2314}
2315#endif /* CONFIG_MMU */
2316
2317EXPORT_SYMBOL(generic_file_mmap);
2318EXPORT_SYMBOL(generic_file_readonly_mmap);
2319
67f9fd91
SL
2320static struct page *wait_on_page_read(struct page *page)
2321{
2322 if (!IS_ERR(page)) {
2323 wait_on_page_locked(page);
2324 if (!PageUptodate(page)) {
09cbfeaf 2325 put_page(page);
67f9fd91
SL
2326 page = ERR_PTR(-EIO);
2327 }
2328 }
2329 return page;
2330}
2331
32b63529 2332static struct page *do_read_cache_page(struct address_space *mapping,
57f6b96c 2333 pgoff_t index,
5e5358e7 2334 int (*filler)(void *, struct page *),
0531b2aa
LT
2335 void *data,
2336 gfp_t gfp)
1da177e4 2337{
eb2be189 2338 struct page *page;
1da177e4
LT
2339 int err;
2340repeat:
2341 page = find_get_page(mapping, index);
2342 if (!page) {
0531b2aa 2343 page = __page_cache_alloc(gfp | __GFP_COLD);
eb2be189
NP
2344 if (!page)
2345 return ERR_PTR(-ENOMEM);
e6f67b8c 2346 err = add_to_page_cache_lru(page, mapping, index, gfp);
eb2be189 2347 if (unlikely(err)) {
09cbfeaf 2348 put_page(page);
eb2be189
NP
2349 if (err == -EEXIST)
2350 goto repeat;
1da177e4 2351 /* Presumably ENOMEM for radix tree node */
1da177e4
LT
2352 return ERR_PTR(err);
2353 }
32b63529
MG
2354
2355filler:
1da177e4
LT
2356 err = filler(data, page);
2357 if (err < 0) {
09cbfeaf 2358 put_page(page);
32b63529 2359 return ERR_PTR(err);
1da177e4 2360 }
1da177e4 2361
32b63529
MG
2362 page = wait_on_page_read(page);
2363 if (IS_ERR(page))
2364 return page;
2365 goto out;
2366 }
1da177e4
LT
2367 if (PageUptodate(page))
2368 goto out;
2369
ebded027
MG
2370 /*
2371 * Page is not up to date and may be locked due one of the following
2372 * case a: Page is being filled and the page lock is held
2373 * case b: Read/write error clearing the page uptodate status
2374 * case c: Truncation in progress (page locked)
2375 * case d: Reclaim in progress
2376 *
2377 * Case a, the page will be up to date when the page is unlocked.
2378 * There is no need to serialise on the page lock here as the page
2379 * is pinned so the lock gives no additional protection. Even if the
2380 * the page is truncated, the data is still valid if PageUptodate as
2381 * it's a race vs truncate race.
2382 * Case b, the page will not be up to date
2383 * Case c, the page may be truncated but in itself, the data may still
2384 * be valid after IO completes as it's a read vs truncate race. The
2385 * operation must restart if the page is not uptodate on unlock but
2386 * otherwise serialising on page lock to stabilise the mapping gives
2387 * no additional guarantees to the caller as the page lock is
2388 * released before return.
2389 * Case d, similar to truncation. If reclaim holds the page lock, it
2390 * will be a race with remove_mapping that determines if the mapping
2391 * is valid on unlock but otherwise the data is valid and there is
2392 * no need to serialise with page lock.
2393 *
2394 * As the page lock gives no additional guarantee, we optimistically
2395 * wait on the page to be unlocked and check if it's up to date and
2396 * use the page if it is. Otherwise, the page lock is required to
2397 * distinguish between the different cases. The motivation is that we
2398 * avoid spurious serialisations and wakeups when multiple processes
2399 * wait on the same page for IO to complete.
2400 */
2401 wait_on_page_locked(page);
2402 if (PageUptodate(page))
2403 goto out;
2404
2405 /* Distinguish between all the cases under the safety of the lock */
1da177e4 2406 lock_page(page);
ebded027
MG
2407
2408 /* Case c or d, restart the operation */
1da177e4
LT
2409 if (!page->mapping) {
2410 unlock_page(page);
09cbfeaf 2411 put_page(page);
32b63529 2412 goto repeat;
1da177e4 2413 }
ebded027
MG
2414
2415 /* Someone else locked and filled the page in a very small window */
1da177e4
LT
2416 if (PageUptodate(page)) {
2417 unlock_page(page);
2418 goto out;
2419 }
32b63529
MG
2420 goto filler;
2421
c855ff37 2422out:
6fe6900e
NP
2423 mark_page_accessed(page);
2424 return page;
2425}
0531b2aa
LT
2426
2427/**
67f9fd91 2428 * read_cache_page - read into page cache, fill it if needed
0531b2aa
LT
2429 * @mapping: the page's address_space
2430 * @index: the page index
2431 * @filler: function to perform the read
5e5358e7 2432 * @data: first arg to filler(data, page) function, often left as NULL
0531b2aa 2433 *
0531b2aa 2434 * Read into the page cache. If a page already exists, and PageUptodate() is
67f9fd91 2435 * not set, try to fill the page and wait for it to become unlocked.
0531b2aa
LT
2436 *
2437 * If the page does not get brought uptodate, return -EIO.
2438 */
67f9fd91 2439struct page *read_cache_page(struct address_space *mapping,
0531b2aa 2440 pgoff_t index,
5e5358e7 2441 int (*filler)(void *, struct page *),
0531b2aa
LT
2442 void *data)
2443{
2444 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2445}
67f9fd91 2446EXPORT_SYMBOL(read_cache_page);
0531b2aa
LT
2447
2448/**
2449 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2450 * @mapping: the page's address_space
2451 * @index: the page index
2452 * @gfp: the page allocator flags to use if allocating
2453 *
2454 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
e6f67b8c 2455 * any new page allocations done using the specified allocation flags.
0531b2aa
LT
2456 *
2457 * If the page does not get brought uptodate, return -EIO.
2458 */
2459struct page *read_cache_page_gfp(struct address_space *mapping,
2460 pgoff_t index,
2461 gfp_t gfp)
2462{
2463 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2464
67f9fd91 2465 return do_read_cache_page(mapping, index, filler, NULL, gfp);
0531b2aa
LT
2466}
2467EXPORT_SYMBOL(read_cache_page_gfp);
2468
1da177e4
LT
2469/*
2470 * Performs necessary checks before doing a write
2471 *
485bb99b 2472 * Can adjust writing position or amount of bytes to write.
1da177e4
LT
2473 * Returns appropriate error code that caller should return or
2474 * zero in case that write should be allowed.
2475 */
3309dd04 2476inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
1da177e4 2477{
3309dd04 2478 struct file *file = iocb->ki_filp;
1da177e4 2479 struct inode *inode = file->f_mapping->host;
59e99e5b 2480 unsigned long limit = rlimit(RLIMIT_FSIZE);
3309dd04 2481 loff_t pos;
1da177e4 2482
3309dd04
AV
2483 if (!iov_iter_count(from))
2484 return 0;
1da177e4 2485
0fa6b005 2486 /* FIXME: this is for backwards compatibility with 2.4 */
2ba48ce5 2487 if (iocb->ki_flags & IOCB_APPEND)
3309dd04 2488 iocb->ki_pos = i_size_read(inode);
1da177e4 2489
3309dd04 2490 pos = iocb->ki_pos;
1da177e4 2491
0fa6b005 2492 if (limit != RLIM_INFINITY) {
3309dd04 2493 if (iocb->ki_pos >= limit) {
0fa6b005
AV
2494 send_sig(SIGXFSZ, current, 0);
2495 return -EFBIG;
1da177e4 2496 }
3309dd04 2497 iov_iter_truncate(from, limit - (unsigned long)pos);
1da177e4
LT
2498 }
2499
2500 /*
2501 * LFS rule
2502 */
3309dd04 2503 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
1da177e4 2504 !(file->f_flags & O_LARGEFILE))) {
3309dd04 2505 if (pos >= MAX_NON_LFS)
1da177e4 2506 return -EFBIG;
3309dd04 2507 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
1da177e4
LT
2508 }
2509
2510 /*
2511 * Are we about to exceed the fs block limit ?
2512 *
2513 * If we have written data it becomes a short write. If we have
2514 * exceeded without writing data we send a signal and return EFBIG.
2515 * Linus frestrict idea will clean these up nicely..
2516 */
3309dd04
AV
2517 if (unlikely(pos >= inode->i_sb->s_maxbytes))
2518 return -EFBIG;
1da177e4 2519
3309dd04
AV
2520 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2521 return iov_iter_count(from);
1da177e4
LT
2522}
2523EXPORT_SYMBOL(generic_write_checks);
2524
afddba49
NP
2525int pagecache_write_begin(struct file *file, struct address_space *mapping,
2526 loff_t pos, unsigned len, unsigned flags,
2527 struct page **pagep, void **fsdata)
2528{
2529 const struct address_space_operations *aops = mapping->a_ops;
2530
4e02ed4b 2531 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 2532 pagep, fsdata);
afddba49
NP
2533}
2534EXPORT_SYMBOL(pagecache_write_begin);
2535
2536int pagecache_write_end(struct file *file, struct address_space *mapping,
2537 loff_t pos, unsigned len, unsigned copied,
2538 struct page *page, void *fsdata)
2539{
2540 const struct address_space_operations *aops = mapping->a_ops;
afddba49 2541
4e02ed4b 2542 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
2543}
2544EXPORT_SYMBOL(pagecache_write_end);
2545
1da177e4 2546ssize_t
1af5bb49 2547generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
2548{
2549 struct file *file = iocb->ki_filp;
2550 struct address_space *mapping = file->f_mapping;
2551 struct inode *inode = mapping->host;
1af5bb49 2552 loff_t pos = iocb->ki_pos;
1da177e4 2553 ssize_t written;
a969e903
CH
2554 size_t write_len;
2555 pgoff_t end;
26978b8b 2556 struct iov_iter data;
1da177e4 2557
0c949334 2558 write_len = iov_iter_count(from);
09cbfeaf 2559 end = (pos + write_len - 1) >> PAGE_SHIFT;
a969e903 2560
48b47c56 2561 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
a969e903
CH
2562 if (written)
2563 goto out;
2564
2565 /*
2566 * After a write we want buffered reads to be sure to go to disk to get
2567 * the new data. We invalidate clean cached page from the region we're
2568 * about to write. We do this *before* the write so that we can return
6ccfa806 2569 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903
CH
2570 */
2571 if (mapping->nrpages) {
2572 written = invalidate_inode_pages2_range(mapping,
09cbfeaf 2573 pos >> PAGE_SHIFT, end);
6ccfa806
HH
2574 /*
2575 * If a page can not be invalidated, return 0 to fall back
2576 * to buffered write.
2577 */
2578 if (written) {
2579 if (written == -EBUSY)
2580 return 0;
a969e903 2581 goto out;
6ccfa806 2582 }
a969e903
CH
2583 }
2584
26978b8b 2585 data = *from;
c8b8e32d 2586 written = mapping->a_ops->direct_IO(iocb, &data);
a969e903
CH
2587
2588 /*
2589 * Finally, try again to invalidate clean pages which might have been
2590 * cached by non-direct readahead, or faulted in by get_user_pages()
2591 * if the source of the write was an mmap'ed region of the file
2592 * we're writing. Either one is a pretty crazy thing to do,
2593 * so we don't support it 100%. If this invalidation
2594 * fails, tough, the write still worked...
2595 */
2596 if (mapping->nrpages) {
2597 invalidate_inode_pages2_range(mapping,
09cbfeaf 2598 pos >> PAGE_SHIFT, end);
a969e903
CH
2599 }
2600
1da177e4 2601 if (written > 0) {
0116651c 2602 pos += written;
f8579f86 2603 iov_iter_advance(from, written);
0116651c
NK
2604 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2605 i_size_write(inode, pos);
1da177e4
LT
2606 mark_inode_dirty(inode);
2607 }
5cb6c6c7 2608 iocb->ki_pos = pos;
1da177e4 2609 }
a969e903 2610out:
1da177e4
LT
2611 return written;
2612}
2613EXPORT_SYMBOL(generic_file_direct_write);
2614
eb2be189
NP
2615/*
2616 * Find or create a page at the given pagecache position. Return the locked
2617 * page. This function is specifically for buffered writes.
2618 */
54566b2c
NP
2619struct page *grab_cache_page_write_begin(struct address_space *mapping,
2620 pgoff_t index, unsigned flags)
eb2be189 2621{
eb2be189 2622 struct page *page;
bbddabe2 2623 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
0faa70cb 2624
54566b2c 2625 if (flags & AOP_FLAG_NOFS)
2457aec6
MG
2626 fgp_flags |= FGP_NOFS;
2627
2628 page = pagecache_get_page(mapping, index, fgp_flags,
45f87de5 2629 mapping_gfp_mask(mapping));
c585a267 2630 if (page)
2457aec6 2631 wait_for_stable_page(page);
eb2be189 2632
eb2be189
NP
2633 return page;
2634}
54566b2c 2635EXPORT_SYMBOL(grab_cache_page_write_begin);
eb2be189 2636
3b93f911 2637ssize_t generic_perform_write(struct file *file,
afddba49
NP
2638 struct iov_iter *i, loff_t pos)
2639{
2640 struct address_space *mapping = file->f_mapping;
2641 const struct address_space_operations *a_ops = mapping->a_ops;
2642 long status = 0;
2643 ssize_t written = 0;
674b892e
NP
2644 unsigned int flags = 0;
2645
2646 /*
2647 * Copies from kernel address space cannot fail (NFSD is a big user).
2648 */
777eda2c 2649 if (!iter_is_iovec(i))
674b892e 2650 flags |= AOP_FLAG_UNINTERRUPTIBLE;
afddba49
NP
2651
2652 do {
2653 struct page *page;
afddba49
NP
2654 unsigned long offset; /* Offset into pagecache page */
2655 unsigned long bytes; /* Bytes to write to page */
2656 size_t copied; /* Bytes copied from user */
2657 void *fsdata;
2658
09cbfeaf
KS
2659 offset = (pos & (PAGE_SIZE - 1));
2660 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
2661 iov_iter_count(i));
2662
2663again:
00a3d660
LT
2664 /*
2665 * Bring in the user page that we will copy from _first_.
2666 * Otherwise there's a nasty deadlock on copying from the
2667 * same page as we're writing to, without it being marked
2668 * up-to-date.
2669 *
2670 * Not only is this an optimisation, but it is also required
2671 * to check that the address is actually valid, when atomic
2672 * usercopies are used, below.
2673 */
2674 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2675 status = -EFAULT;
2676 break;
2677 }
2678
296291cd
JK
2679 if (fatal_signal_pending(current)) {
2680 status = -EINTR;
2681 break;
2682 }
2683
674b892e 2684 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49 2685 &page, &fsdata);
2457aec6 2686 if (unlikely(status < 0))
afddba49
NP
2687 break;
2688
931e80e4 2689 if (mapping_writably_mapped(mapping))
2690 flush_dcache_page(page);
00a3d660 2691
afddba49 2692 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
afddba49
NP
2693 flush_dcache_page(page);
2694
2695 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2696 page, fsdata);
2697 if (unlikely(status < 0))
2698 break;
2699 copied = status;
2700
2701 cond_resched();
2702
124d3b70 2703 iov_iter_advance(i, copied);
afddba49
NP
2704 if (unlikely(copied == 0)) {
2705 /*
2706 * If we were unable to copy any data at all, we must
2707 * fall back to a single segment length write.
2708 *
2709 * If we didn't fallback here, we could livelock
2710 * because not all segments in the iov can be copied at
2711 * once without a pagefault.
2712 */
09cbfeaf 2713 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
2714 iov_iter_single_seg_count(i));
2715 goto again;
2716 }
afddba49
NP
2717 pos += copied;
2718 written += copied;
2719
2720 balance_dirty_pages_ratelimited(mapping);
afddba49
NP
2721 } while (iov_iter_count(i));
2722
2723 return written ? written : status;
2724}
3b93f911 2725EXPORT_SYMBOL(generic_perform_write);
1da177e4 2726
e4dd9de3 2727/**
8174202b 2728 * __generic_file_write_iter - write data to a file
e4dd9de3 2729 * @iocb: IO state structure (file, offset, etc.)
8174202b 2730 * @from: iov_iter with data to write
e4dd9de3
JK
2731 *
2732 * This function does all the work needed for actually writing data to a
2733 * file. It does all basic checks, removes SUID from the file, updates
2734 * modification times and calls proper subroutines depending on whether we
2735 * do direct IO or a standard buffered write.
2736 *
2737 * It expects i_mutex to be grabbed unless we work on a block device or similar
2738 * object which does not need locking at all.
2739 *
2740 * This function does *not* take care of syncing data in case of O_SYNC write.
2741 * A caller has to handle it. This is mainly due to the fact that we want to
2742 * avoid syncing under i_mutex.
2743 */
8174202b 2744ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
2745{
2746 struct file *file = iocb->ki_filp;
fb5527e6 2747 struct address_space * mapping = file->f_mapping;
1da177e4 2748 struct inode *inode = mapping->host;
3b93f911 2749 ssize_t written = 0;
1da177e4 2750 ssize_t err;
3b93f911 2751 ssize_t status;
1da177e4 2752
1da177e4 2753 /* We can write back this queue in page reclaim */
de1414a6 2754 current->backing_dev_info = inode_to_bdi(inode);
5fa8e0a1 2755 err = file_remove_privs(file);
1da177e4
LT
2756 if (err)
2757 goto out;
2758
c3b2da31
JB
2759 err = file_update_time(file);
2760 if (err)
2761 goto out;
1da177e4 2762
2ba48ce5 2763 if (iocb->ki_flags & IOCB_DIRECT) {
0b8def9d 2764 loff_t pos, endbyte;
fb5527e6 2765
1af5bb49 2766 written = generic_file_direct_write(iocb, from);
1da177e4 2767 /*
fbbbad4b
MW
2768 * If the write stopped short of completing, fall back to
2769 * buffered writes. Some filesystems do this for writes to
2770 * holes, for example. For DAX files, a buffered write will
2771 * not succeed (even if it did, DAX does not handle dirty
2772 * page-cache pages correctly).
1da177e4 2773 */
0b8def9d 2774 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
fbbbad4b
MW
2775 goto out;
2776
0b8def9d 2777 status = generic_perform_write(file, from, pos = iocb->ki_pos);
fb5527e6 2778 /*
3b93f911 2779 * If generic_perform_write() returned a synchronous error
fb5527e6
JM
2780 * then we want to return the number of bytes which were
2781 * direct-written, or the error code if that was zero. Note
2782 * that this differs from normal direct-io semantics, which
2783 * will return -EFOO even if some bytes were written.
2784 */
60bb4529 2785 if (unlikely(status < 0)) {
3b93f911 2786 err = status;
fb5527e6
JM
2787 goto out;
2788 }
fb5527e6
JM
2789 /*
2790 * We need to ensure that the page cache pages are written to
2791 * disk and invalidated to preserve the expected O_DIRECT
2792 * semantics.
2793 */
3b93f911 2794 endbyte = pos + status - 1;
0b8def9d 2795 err = filemap_write_and_wait_range(mapping, pos, endbyte);
fb5527e6 2796 if (err == 0) {
0b8def9d 2797 iocb->ki_pos = endbyte + 1;
3b93f911 2798 written += status;
fb5527e6 2799 invalidate_mapping_pages(mapping,
09cbfeaf
KS
2800 pos >> PAGE_SHIFT,
2801 endbyte >> PAGE_SHIFT);
fb5527e6
JM
2802 } else {
2803 /*
2804 * We don't know how much we wrote, so just return
2805 * the number of bytes which were direct-written
2806 */
2807 }
2808 } else {
0b8def9d
AV
2809 written = generic_perform_write(file, from, iocb->ki_pos);
2810 if (likely(written > 0))
2811 iocb->ki_pos += written;
fb5527e6 2812 }
1da177e4
LT
2813out:
2814 current->backing_dev_info = NULL;
2815 return written ? written : err;
2816}
8174202b 2817EXPORT_SYMBOL(__generic_file_write_iter);
e4dd9de3 2818
e4dd9de3 2819/**
8174202b 2820 * generic_file_write_iter - write data to a file
e4dd9de3 2821 * @iocb: IO state structure
8174202b 2822 * @from: iov_iter with data to write
e4dd9de3 2823 *
8174202b 2824 * This is a wrapper around __generic_file_write_iter() to be used by most
e4dd9de3
JK
2825 * filesystems. It takes care of syncing the file in case of O_SYNC file
2826 * and acquires i_mutex as needed.
2827 */
8174202b 2828ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
2829{
2830 struct file *file = iocb->ki_filp;
148f948b 2831 struct inode *inode = file->f_mapping->host;
1da177e4 2832 ssize_t ret;
1da177e4 2833
5955102c 2834 inode_lock(inode);
3309dd04
AV
2835 ret = generic_write_checks(iocb, from);
2836 if (ret > 0)
5f380c7f 2837 ret = __generic_file_write_iter(iocb, from);
5955102c 2838 inode_unlock(inode);
1da177e4 2839
e2592217
CH
2840 if (ret > 0)
2841 ret = generic_write_sync(iocb, ret);
1da177e4
LT
2842 return ret;
2843}
8174202b 2844EXPORT_SYMBOL(generic_file_write_iter);
1da177e4 2845
cf9a2ae8
DH
2846/**
2847 * try_to_release_page() - release old fs-specific metadata on a page
2848 *
2849 * @page: the page which the kernel is trying to free
2850 * @gfp_mask: memory allocation flags (and I/O mode)
2851 *
2852 * The address_space is to try to release any data against the page
2853 * (presumably at page->private). If the release was successful, return `1'.
2854 * Otherwise return zero.
2855 *
266cf658
DH
2856 * This may also be called if PG_fscache is set on a page, indicating that the
2857 * page is known to the local caching routines.
2858 *
cf9a2ae8 2859 * The @gfp_mask argument specifies whether I/O may be performed to release
71baba4b 2860 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
cf9a2ae8 2861 *
cf9a2ae8
DH
2862 */
2863int try_to_release_page(struct page *page, gfp_t gfp_mask)
2864{
2865 struct address_space * const mapping = page->mapping;
2866
2867 BUG_ON(!PageLocked(page));
2868 if (PageWriteback(page))
2869 return 0;
2870
2871 if (mapping && mapping->a_ops->releasepage)
2872 return mapping->a_ops->releasepage(page, gfp_mask);
2873 return try_to_free_buffers(page);
2874}
2875
2876EXPORT_SYMBOL(try_to_release_page);