mm/swap: Add folio_rotate_reclaimable()
[linux-block.git] / mm / filemap.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/filemap.c
4 *
5 * Copyright (C) 1994-1999 Linus Torvalds
6 */
7
8/*
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
12 */
b95f1b31 13#include <linux/export.h>
1da177e4 14#include <linux/compiler.h>
f9fe48be 15#include <linux/dax.h>
1da177e4 16#include <linux/fs.h>
3f07c014 17#include <linux/sched/signal.h>
c22ce143 18#include <linux/uaccess.h>
c59ede7b 19#include <linux/capability.h>
1da177e4 20#include <linux/kernel_stat.h>
5a0e3ad6 21#include <linux/gfp.h>
1da177e4
LT
22#include <linux/mm.h>
23#include <linux/swap.h>
24#include <linux/mman.h>
25#include <linux/pagemap.h>
26#include <linux/file.h>
27#include <linux/uio.h>
cfcbfb13 28#include <linux/error-injection.h>
1da177e4
LT
29#include <linux/hash.h>
30#include <linux/writeback.h>
53253383 31#include <linux/backing-dev.h>
1da177e4
LT
32#include <linux/pagevec.h>
33#include <linux/blkdev.h>
34#include <linux/security.h>
44110fe3 35#include <linux/cpuset.h>
00501b53 36#include <linux/hugetlb.h>
8a9f3ccd 37#include <linux/memcontrol.h>
c515e1fd 38#include <linux/cleancache.h>
c7df8ad2 39#include <linux/shmem_fs.h>
f1820361 40#include <linux/rmap.h>
b1d29ba8 41#include <linux/delayacct.h>
eb414681 42#include <linux/psi.h>
d0e6a582 43#include <linux/ramfs.h>
b9306a79 44#include <linux/page_idle.h>
f9ce0be7 45#include <asm/pgalloc.h>
de591a82 46#include <asm/tlbflush.h>
0f8053a5
NP
47#include "internal.h"
48
fe0bfaaf
RJ
49#define CREATE_TRACE_POINTS
50#include <trace/events/filemap.h>
51
1da177e4 52/*
1da177e4
LT
53 * FIXME: remove all knowledge of the buffer layer from the core VM
54 */
148f948b 55#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 56
1da177e4
LT
57#include <asm/mman.h>
58
59/*
60 * Shared mappings implemented 30.11.1994. It's not fully working yet,
61 * though.
62 *
63 * Shared mappings now work. 15.8.1995 Bruno.
64 *
65 * finished 'unifying' the page and buffer cache and SMP-threaded the
66 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
67 *
68 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
69 */
70
71/*
72 * Lock ordering:
73 *
c8c06efa 74 * ->i_mmap_rwsem (truncate_pagecache)
1da177e4 75 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91 76 * ->swap_lock (exclusive_swap_page, others)
b93b0163 77 * ->i_pages lock
1da177e4 78 *
9608703e 79 * ->i_rwsem
730633f0
JK
80 * ->invalidate_lock (acquired by fs in truncate path)
81 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
1da177e4 82 *
c1e8d7c6 83 * ->mmap_lock
c8c06efa 84 * ->i_mmap_rwsem
b8072f09 85 * ->page_table_lock or pte_lock (various, mainly in memory.c)
b93b0163 86 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
1da177e4 87 *
c1e8d7c6 88 * ->mmap_lock
730633f0
JK
89 * ->invalidate_lock (filemap_fault)
90 * ->lock_page (filemap_fault, access_process_vm)
1da177e4 91 *
9608703e 92 * ->i_rwsem (generic_perform_write)
c1e8d7c6 93 * ->mmap_lock (fault_in_pages_readable->do_page_fault)
1da177e4 94 *
f758eeab 95 * bdi->wb.list_lock
a66979ab 96 * sb_lock (fs/fs-writeback.c)
b93b0163 97 * ->i_pages lock (__sync_single_inode)
1da177e4 98 *
c8c06efa 99 * ->i_mmap_rwsem
1da177e4
LT
100 * ->anon_vma.lock (vma_adjust)
101 *
102 * ->anon_vma.lock
b8072f09 103 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 104 *
b8072f09 105 * ->page_table_lock or pte_lock
5d337b91 106 * ->swap_lock (try_to_unmap_one)
1da177e4 107 * ->private_lock (try_to_unmap_one)
b93b0163 108 * ->i_pages lock (try_to_unmap_one)
15b44736
HD
109 * ->lruvec->lru_lock (follow_page->mark_page_accessed)
110 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page)
1da177e4 111 * ->private_lock (page_remove_rmap->set_page_dirty)
b93b0163 112 * ->i_pages lock (page_remove_rmap->set_page_dirty)
f758eeab 113 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
250df6ed 114 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
81f8c3a4 115 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
f758eeab 116 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 117 * ->inode->i_lock (zap_pte_range->set_page_dirty)
1da177e4
LT
118 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
119 *
c8c06efa 120 * ->i_mmap_rwsem
9a3c531d 121 * ->tasklist_lock (memory_failure, collect_procs_ao)
1da177e4
LT
122 */
123
5c024e6a 124static void page_cache_delete(struct address_space *mapping,
91b0abe3
JW
125 struct page *page, void *shadow)
126{
5c024e6a
MW
127 XA_STATE(xas, &mapping->i_pages, page->index);
128 unsigned int nr = 1;
c70b647d 129
5c024e6a 130 mapping_set_update(&xas, mapping);
c70b647d 131
5c024e6a
MW
132 /* hugetlb pages are represented by a single entry in the xarray */
133 if (!PageHuge(page)) {
134 xas_set_order(&xas, page->index, compound_order(page));
d8c6546b 135 nr = compound_nr(page);
5c024e6a 136 }
91b0abe3 137
83929372
KS
138 VM_BUG_ON_PAGE(!PageLocked(page), page);
139 VM_BUG_ON_PAGE(PageTail(page), page);
140 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
449dd698 141
5c024e6a
MW
142 xas_store(&xas, shadow);
143 xas_init_marks(&xas);
d3798ae8 144
2300638b
JK
145 page->mapping = NULL;
146 /* Leave page->index set: truncation lookup relies upon it */
d3798ae8 147 mapping->nrpages -= nr;
91b0abe3
JW
148}
149
5ecc4d85
JK
150static void unaccount_page_cache_page(struct address_space *mapping,
151 struct page *page)
1da177e4 152{
5ecc4d85 153 int nr;
1da177e4 154
c515e1fd
DM
155 /*
156 * if we're uptodate, flush out into the cleancache, otherwise
157 * invalidate any existing cleancache entries. We can't leave
158 * stale data around in the cleancache once our page is gone
159 */
160 if (PageUptodate(page) && PageMappedToDisk(page))
161 cleancache_put_page(page);
162 else
3167760f 163 cleancache_invalidate_page(mapping, page);
c515e1fd 164
83929372 165 VM_BUG_ON_PAGE(PageTail(page), page);
06b241f3
HD
166 VM_BUG_ON_PAGE(page_mapped(page), page);
167 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
168 int mapcount;
169
170 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
171 current->comm, page_to_pfn(page));
172 dump_page(page, "still mapped when deleted");
173 dump_stack();
174 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
175
176 mapcount = page_mapcount(page);
177 if (mapping_exiting(mapping) &&
178 page_count(page) >= mapcount + 2) {
179 /*
180 * All vmas have already been torn down, so it's
181 * a good bet that actually the page is unmapped,
182 * and we'd prefer not to leak it: if we're wrong,
183 * some other bad page check should catch it later.
184 */
185 page_mapcount_reset(page);
6d061f9f 186 page_ref_sub(page, mapcount);
06b241f3
HD
187 }
188 }
189
4165b9b4 190 /* hugetlb pages do not participate in page cache accounting. */
5ecc4d85
JK
191 if (PageHuge(page))
192 return;
09612fa6 193
6c357848 194 nr = thp_nr_pages(page);
5ecc4d85 195
0d1c2072 196 __mod_lruvec_page_state(page, NR_FILE_PAGES, -nr);
5ecc4d85 197 if (PageSwapBacked(page)) {
0d1c2072 198 __mod_lruvec_page_state(page, NR_SHMEM, -nr);
5ecc4d85 199 if (PageTransHuge(page))
57b2847d 200 __mod_lruvec_page_state(page, NR_SHMEM_THPS, -nr);
99cb0dbd 201 } else if (PageTransHuge(page)) {
bf9ecead 202 __mod_lruvec_page_state(page, NR_FILE_THPS, -nr);
09d91cda 203 filemap_nr_thps_dec(mapping);
800d8c63 204 }
5ecc4d85
JK
205
206 /*
207 * At this point page must be either written or cleaned by
208 * truncate. Dirty page here signals a bug and loss of
209 * unwritten data.
210 *
211 * This fixes dirty accounting after removing the page entirely
212 * but leaves PageDirty set: it has no effect for truncated
213 * page and anyway will be cleared before returning page into
214 * buddy allocator.
215 */
216 if (WARN_ON_ONCE(PageDirty(page)))
217 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
218}
219
220/*
221 * Delete a page from the page cache and free it. Caller has to make
222 * sure the page is locked and that nobody else uses it - or that usage
b93b0163 223 * is safe. The caller must hold the i_pages lock.
5ecc4d85
JK
224 */
225void __delete_from_page_cache(struct page *page, void *shadow)
226{
227 struct address_space *mapping = page->mapping;
228
229 trace_mm_filemap_delete_from_page_cache(page);
230
231 unaccount_page_cache_page(mapping, page);
5c024e6a 232 page_cache_delete(mapping, page, shadow);
1da177e4
LT
233}
234
59c66c5f
JK
235static void page_cache_free_page(struct address_space *mapping,
236 struct page *page)
237{
238 void (*freepage)(struct page *);
239
240 freepage = mapping->a_ops->freepage;
241 if (freepage)
242 freepage(page);
243
244 if (PageTransHuge(page) && !PageHuge(page)) {
887b22c6 245 page_ref_sub(page, thp_nr_pages(page));
59c66c5f
JK
246 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
247 } else {
248 put_page(page);
249 }
250}
251
702cfbf9
MK
252/**
253 * delete_from_page_cache - delete page from page cache
254 * @page: the page which the kernel is trying to remove from page cache
255 *
256 * This must be called only on pages that have been verified to be in the page
257 * cache and locked. It will never put the page into the free list, the caller
258 * has a reference on the page.
259 */
260void delete_from_page_cache(struct page *page)
1da177e4 261{
83929372 262 struct address_space *mapping = page_mapping(page);
1da177e4 263
cd7619d6 264 BUG_ON(!PageLocked(page));
30472509 265 xa_lock_irq(&mapping->i_pages);
62cccb8c 266 __delete_from_page_cache(page, NULL);
30472509 267 xa_unlock_irq(&mapping->i_pages);
6072d13c 268
59c66c5f 269 page_cache_free_page(mapping, page);
97cecb5a
MK
270}
271EXPORT_SYMBOL(delete_from_page_cache);
272
aa65c29c 273/*
ef8e5717 274 * page_cache_delete_batch - delete several pages from page cache
aa65c29c
JK
275 * @mapping: the mapping to which pages belong
276 * @pvec: pagevec with pages to delete
277 *
b93b0163 278 * The function walks over mapping->i_pages and removes pages passed in @pvec
4101196b
MWO
279 * from the mapping. The function expects @pvec to be sorted by page index
280 * and is optimised for it to be dense.
b93b0163 281 * It tolerates holes in @pvec (mapping entries at those indices are not
aa65c29c 282 * modified). The function expects only THP head pages to be present in the
4101196b 283 * @pvec.
aa65c29c 284 *
b93b0163 285 * The function expects the i_pages lock to be held.
aa65c29c 286 */
ef8e5717 287static void page_cache_delete_batch(struct address_space *mapping,
aa65c29c
JK
288 struct pagevec *pvec)
289{
ef8e5717 290 XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
aa65c29c 291 int total_pages = 0;
4101196b 292 int i = 0;
aa65c29c 293 struct page *page;
aa65c29c 294
ef8e5717
MW
295 mapping_set_update(&xas, mapping);
296 xas_for_each(&xas, page, ULONG_MAX) {
4101196b 297 if (i >= pagevec_count(pvec))
aa65c29c 298 break;
4101196b
MWO
299
300 /* A swap/dax/shadow entry got inserted? Skip it. */
3159f943 301 if (xa_is_value(page))
aa65c29c 302 continue;
4101196b
MWO
303 /*
304 * A page got inserted in our range? Skip it. We have our
305 * pages locked so they are protected from being removed.
306 * If we see a page whose index is higher than ours, it
307 * means our page has been removed, which shouldn't be
308 * possible because we're holding the PageLock.
309 */
310 if (page != pvec->pages[i]) {
311 VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
312 page);
313 continue;
314 }
315
316 WARN_ON_ONCE(!PageLocked(page));
317
318 if (page->index == xas.xa_index)
aa65c29c 319 page->mapping = NULL;
4101196b
MWO
320 /* Leave page->index set: truncation lookup relies on it */
321
322 /*
323 * Move to the next page in the vector if this is a regular
324 * page or the index is of the last sub-page of this compound
325 * page.
326 */
327 if (page->index + compound_nr(page) - 1 == xas.xa_index)
aa65c29c 328 i++;
ef8e5717 329 xas_store(&xas, NULL);
aa65c29c
JK
330 total_pages++;
331 }
332 mapping->nrpages -= total_pages;
333}
334
335void delete_from_page_cache_batch(struct address_space *mapping,
336 struct pagevec *pvec)
337{
338 int i;
aa65c29c
JK
339
340 if (!pagevec_count(pvec))
341 return;
342
30472509 343 xa_lock_irq(&mapping->i_pages);
aa65c29c
JK
344 for (i = 0; i < pagevec_count(pvec); i++) {
345 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
346
347 unaccount_page_cache_page(mapping, pvec->pages[i]);
348 }
ef8e5717 349 page_cache_delete_batch(mapping, pvec);
30472509 350 xa_unlock_irq(&mapping->i_pages);
aa65c29c
JK
351
352 for (i = 0; i < pagevec_count(pvec); i++)
353 page_cache_free_page(mapping, pvec->pages[i]);
354}
355
d72d9e2a 356int filemap_check_errors(struct address_space *mapping)
865ffef3
DM
357{
358 int ret = 0;
359 /* Check for outstanding write errors */
7fcbbaf1
JA
360 if (test_bit(AS_ENOSPC, &mapping->flags) &&
361 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
865ffef3 362 ret = -ENOSPC;
7fcbbaf1
JA
363 if (test_bit(AS_EIO, &mapping->flags) &&
364 test_and_clear_bit(AS_EIO, &mapping->flags))
865ffef3
DM
365 ret = -EIO;
366 return ret;
367}
d72d9e2a 368EXPORT_SYMBOL(filemap_check_errors);
865ffef3 369
76341cab
JL
370static int filemap_check_and_keep_errors(struct address_space *mapping)
371{
372 /* Check for outstanding write errors */
373 if (test_bit(AS_EIO, &mapping->flags))
374 return -EIO;
375 if (test_bit(AS_ENOSPC, &mapping->flags))
376 return -ENOSPC;
377 return 0;
378}
379
5a798493
JB
380/**
381 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
382 * @mapping: address space structure to write
383 * @wbc: the writeback_control controlling the writeout
384 *
385 * Call writepages on the mapping using the provided wbc to control the
386 * writeout.
387 *
388 * Return: %0 on success, negative error code otherwise.
389 */
390int filemap_fdatawrite_wbc(struct address_space *mapping,
391 struct writeback_control *wbc)
392{
393 int ret;
394
395 if (!mapping_can_writeback(mapping) ||
396 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
397 return 0;
398
399 wbc_attach_fdatawrite_inode(wbc, mapping->host);
400 ret = do_writepages(mapping, wbc);
401 wbc_detach_inode(wbc);
402 return ret;
403}
404EXPORT_SYMBOL(filemap_fdatawrite_wbc);
405
1da177e4 406/**
485bb99b 407 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
408 * @mapping: address space structure to write
409 * @start: offset in bytes where the range starts
469eb4d0 410 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 411 * @sync_mode: enable synchronous operation
1da177e4 412 *
485bb99b
RD
413 * Start writeback against all of a mapping's dirty pages that lie
414 * within the byte offsets <start, end> inclusive.
415 *
1da177e4 416 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 417 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
418 * these two operations is that if a dirty page/buffer is encountered, it must
419 * be waited upon, and not just skipped over.
a862f68a
MR
420 *
421 * Return: %0 on success, negative error code otherwise.
1da177e4 422 */
ebcf28e1
AM
423int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
424 loff_t end, int sync_mode)
1da177e4 425{
1da177e4
LT
426 struct writeback_control wbc = {
427 .sync_mode = sync_mode,
05fe478d 428 .nr_to_write = LONG_MAX,
111ebb6e
OH
429 .range_start = start,
430 .range_end = end,
1da177e4
LT
431 };
432
5a798493 433 return filemap_fdatawrite_wbc(mapping, &wbc);
1da177e4
LT
434}
435
436static inline int __filemap_fdatawrite(struct address_space *mapping,
437 int sync_mode)
438{
111ebb6e 439 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
440}
441
442int filemap_fdatawrite(struct address_space *mapping)
443{
444 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
445}
446EXPORT_SYMBOL(filemap_fdatawrite);
447
f4c0a0fd 448int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 449 loff_t end)
1da177e4
LT
450{
451 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
452}
f4c0a0fd 453EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 454
485bb99b
RD
455/**
456 * filemap_flush - mostly a non-blocking flush
457 * @mapping: target address_space
458 *
1da177e4
LT
459 * This is a mostly non-blocking flush. Not suitable for data-integrity
460 * purposes - I/O may not be started against all dirty pages.
a862f68a
MR
461 *
462 * Return: %0 on success, negative error code otherwise.
1da177e4
LT
463 */
464int filemap_flush(struct address_space *mapping)
465{
466 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
467}
468EXPORT_SYMBOL(filemap_flush);
469
7fc9e472
GR
470/**
471 * filemap_range_has_page - check if a page exists in range.
472 * @mapping: address space within which to check
473 * @start_byte: offset in bytes where the range starts
474 * @end_byte: offset in bytes where the range ends (inclusive)
475 *
476 * Find at least one page in the range supplied, usually used to check if
477 * direct writing in this range will trigger a writeback.
a862f68a
MR
478 *
479 * Return: %true if at least one page exists in the specified range,
480 * %false otherwise.
7fc9e472
GR
481 */
482bool filemap_range_has_page(struct address_space *mapping,
483 loff_t start_byte, loff_t end_byte)
484{
f7b68046 485 struct page *page;
8fa8e538
MW
486 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
487 pgoff_t max = end_byte >> PAGE_SHIFT;
7fc9e472
GR
488
489 if (end_byte < start_byte)
490 return false;
491
8fa8e538
MW
492 rcu_read_lock();
493 for (;;) {
494 page = xas_find(&xas, max);
495 if (xas_retry(&xas, page))
496 continue;
497 /* Shadow entries don't count */
498 if (xa_is_value(page))
499 continue;
500 /*
501 * We don't need to try to pin this page; we're about to
502 * release the RCU lock anyway. It is enough to know that
503 * there was a page here recently.
504 */
505 break;
506 }
507 rcu_read_unlock();
7fc9e472 508
8fa8e538 509 return page != NULL;
7fc9e472
GR
510}
511EXPORT_SYMBOL(filemap_range_has_page);
512
5e8fcc1a 513static void __filemap_fdatawait_range(struct address_space *mapping,
aa750fd7 514 loff_t start_byte, loff_t end_byte)
1da177e4 515{
09cbfeaf
KS
516 pgoff_t index = start_byte >> PAGE_SHIFT;
517 pgoff_t end = end_byte >> PAGE_SHIFT;
1da177e4
LT
518 struct pagevec pvec;
519 int nr_pages;
1da177e4 520
94004ed7 521 if (end_byte < start_byte)
5e8fcc1a 522 return;
1da177e4 523
86679820 524 pagevec_init(&pvec);
312e9d2f 525 while (index <= end) {
1da177e4
LT
526 unsigned i;
527
312e9d2f 528 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
67fd707f 529 end, PAGECACHE_TAG_WRITEBACK);
312e9d2f
JK
530 if (!nr_pages)
531 break;
532
1da177e4
LT
533 for (i = 0; i < nr_pages; i++) {
534 struct page *page = pvec.pages[i];
535
1da177e4 536 wait_on_page_writeback(page);
5e8fcc1a 537 ClearPageError(page);
1da177e4
LT
538 }
539 pagevec_release(&pvec);
540 cond_resched();
541 }
aa750fd7
JN
542}
543
544/**
545 * filemap_fdatawait_range - wait for writeback to complete
546 * @mapping: address space structure to wait for
547 * @start_byte: offset in bytes where the range starts
548 * @end_byte: offset in bytes where the range ends (inclusive)
549 *
550 * Walk the list of under-writeback pages of the given address space
551 * in the given range and wait for all of them. Check error status of
552 * the address space and return it.
553 *
554 * Since the error status of the address space is cleared by this function,
555 * callers are responsible for checking the return value and handling and/or
556 * reporting the error.
a862f68a
MR
557 *
558 * Return: error status of the address space.
aa750fd7
JN
559 */
560int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
561 loff_t end_byte)
562{
5e8fcc1a
JL
563 __filemap_fdatawait_range(mapping, start_byte, end_byte);
564 return filemap_check_errors(mapping);
1da177e4 565}
d3bccb6f
JK
566EXPORT_SYMBOL(filemap_fdatawait_range);
567
aa0bfcd9
RZ
568/**
569 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
570 * @mapping: address space structure to wait for
571 * @start_byte: offset in bytes where the range starts
572 * @end_byte: offset in bytes where the range ends (inclusive)
573 *
574 * Walk the list of under-writeback pages of the given address space in the
575 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
576 * this function does not clear error status of the address space.
577 *
578 * Use this function if callers don't handle errors themselves. Expected
579 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
580 * fsfreeze(8)
581 */
582int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
583 loff_t start_byte, loff_t end_byte)
584{
585 __filemap_fdatawait_range(mapping, start_byte, end_byte);
586 return filemap_check_and_keep_errors(mapping);
587}
588EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
589
a823e458
JL
590/**
591 * file_fdatawait_range - wait for writeback to complete
592 * @file: file pointing to address space structure to wait for
593 * @start_byte: offset in bytes where the range starts
594 * @end_byte: offset in bytes where the range ends (inclusive)
595 *
596 * Walk the list of under-writeback pages of the address space that file
597 * refers to, in the given range and wait for all of them. Check error
598 * status of the address space vs. the file->f_wb_err cursor and return it.
599 *
600 * Since the error status of the file is advanced by this function,
601 * callers are responsible for checking the return value and handling and/or
602 * reporting the error.
a862f68a
MR
603 *
604 * Return: error status of the address space vs. the file->f_wb_err cursor.
a823e458
JL
605 */
606int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
607{
608 struct address_space *mapping = file->f_mapping;
609
610 __filemap_fdatawait_range(mapping, start_byte, end_byte);
611 return file_check_and_advance_wb_err(file);
612}
613EXPORT_SYMBOL(file_fdatawait_range);
d3bccb6f 614
aa750fd7
JN
615/**
616 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
617 * @mapping: address space structure to wait for
618 *
619 * Walk the list of under-writeback pages of the given address space
620 * and wait for all of them. Unlike filemap_fdatawait(), this function
621 * does not clear error status of the address space.
622 *
623 * Use this function if callers don't handle errors themselves. Expected
624 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
625 * fsfreeze(8)
a862f68a
MR
626 *
627 * Return: error status of the address space.
aa750fd7 628 */
76341cab 629int filemap_fdatawait_keep_errors(struct address_space *mapping)
aa750fd7 630{
ffb959bb 631 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
76341cab 632 return filemap_check_and_keep_errors(mapping);
aa750fd7 633}
76341cab 634EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
aa750fd7 635
875d91b1 636/* Returns true if writeback might be needed or already in progress. */
9326c9b2 637static bool mapping_needs_writeback(struct address_space *mapping)
1da177e4 638{
875d91b1 639 return mapping->nrpages;
1da177e4 640}
1da177e4 641
63135aa3
JA
642/**
643 * filemap_range_needs_writeback - check if range potentially needs writeback
644 * @mapping: address space within which to check
645 * @start_byte: offset in bytes where the range starts
646 * @end_byte: offset in bytes where the range ends (inclusive)
647 *
648 * Find at least one page in the range supplied, usually used to check if
649 * direct writing in this range will trigger a writeback. Used by O_DIRECT
650 * read/write with IOCB_NOWAIT, to see if the caller needs to do
651 * filemap_write_and_wait_range() before proceeding.
652 *
653 * Return: %true if the caller should do filemap_write_and_wait_range() before
654 * doing O_DIRECT to a page in this range, %false otherwise.
655 */
656bool filemap_range_needs_writeback(struct address_space *mapping,
657 loff_t start_byte, loff_t end_byte)
658{
659 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
660 pgoff_t max = end_byte >> PAGE_SHIFT;
661 struct page *page;
662
663 if (!mapping_needs_writeback(mapping))
664 return false;
665 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
666 !mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
667 return false;
668 if (end_byte < start_byte)
669 return false;
670
671 rcu_read_lock();
672 xas_for_each(&xas, page, max) {
673 if (xas_retry(&xas, page))
674 continue;
675 if (xa_is_value(page))
676 continue;
677 if (PageDirty(page) || PageLocked(page) || PageWriteback(page))
678 break;
679 }
680 rcu_read_unlock();
681 return page != NULL;
682}
683EXPORT_SYMBOL_GPL(filemap_range_needs_writeback);
684
485bb99b
RD
685/**
686 * filemap_write_and_wait_range - write out & wait on a file range
687 * @mapping: the address_space for the pages
688 * @lstart: offset in bytes where the range starts
689 * @lend: offset in bytes where the range ends (inclusive)
690 *
469eb4d0
AM
691 * Write out and wait upon file offsets lstart->lend, inclusive.
692 *
0e056eb5 693 * Note that @lend is inclusive (describes the last byte to be written) so
469eb4d0 694 * that this function can be used to write to the very end-of-file (end = -1).
a862f68a
MR
695 *
696 * Return: error status of the address space.
469eb4d0 697 */
1da177e4
LT
698int filemap_write_and_wait_range(struct address_space *mapping,
699 loff_t lstart, loff_t lend)
700{
28fd1298 701 int err = 0;
1da177e4 702
9326c9b2 703 if (mapping_needs_writeback(mapping)) {
28fd1298
OH
704 err = __filemap_fdatawrite_range(mapping, lstart, lend,
705 WB_SYNC_ALL);
ddf8f376
IW
706 /*
707 * Even if the above returned error, the pages may be
708 * written partially (e.g. -ENOSPC), so we wait for it.
709 * But the -EIO is special case, it may indicate the worst
710 * thing (e.g. bug) happened, so we avoid waiting for it.
711 */
28fd1298 712 if (err != -EIO) {
94004ed7
CH
713 int err2 = filemap_fdatawait_range(mapping,
714 lstart, lend);
28fd1298
OH
715 if (!err)
716 err = err2;
cbeaf951
JL
717 } else {
718 /* Clear any previously stored errors */
719 filemap_check_errors(mapping);
28fd1298 720 }
865ffef3
DM
721 } else {
722 err = filemap_check_errors(mapping);
1da177e4 723 }
28fd1298 724 return err;
1da177e4 725}
f6995585 726EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 727
5660e13d
JL
728void __filemap_set_wb_err(struct address_space *mapping, int err)
729{
3acdfd28 730 errseq_t eseq = errseq_set(&mapping->wb_err, err);
5660e13d
JL
731
732 trace_filemap_set_wb_err(mapping, eseq);
733}
734EXPORT_SYMBOL(__filemap_set_wb_err);
735
736/**
737 * file_check_and_advance_wb_err - report wb error (if any) that was previously
738 * and advance wb_err to current one
739 * @file: struct file on which the error is being reported
740 *
741 * When userland calls fsync (or something like nfsd does the equivalent), we
742 * want to report any writeback errors that occurred since the last fsync (or
743 * since the file was opened if there haven't been any).
744 *
745 * Grab the wb_err from the mapping. If it matches what we have in the file,
746 * then just quickly return 0. The file is all caught up.
747 *
748 * If it doesn't match, then take the mapping value, set the "seen" flag in
749 * it and try to swap it into place. If it works, or another task beat us
750 * to it with the new value, then update the f_wb_err and return the error
751 * portion. The error at this point must be reported via proper channels
752 * (a'la fsync, or NFS COMMIT operation, etc.).
753 *
754 * While we handle mapping->wb_err with atomic operations, the f_wb_err
755 * value is protected by the f_lock since we must ensure that it reflects
756 * the latest value swapped in for this file descriptor.
a862f68a
MR
757 *
758 * Return: %0 on success, negative error code otherwise.
5660e13d
JL
759 */
760int file_check_and_advance_wb_err(struct file *file)
761{
762 int err = 0;
763 errseq_t old = READ_ONCE(file->f_wb_err);
764 struct address_space *mapping = file->f_mapping;
765
766 /* Locklessly handle the common case where nothing has changed */
767 if (errseq_check(&mapping->wb_err, old)) {
768 /* Something changed, must use slow path */
769 spin_lock(&file->f_lock);
770 old = file->f_wb_err;
771 err = errseq_check_and_advance(&mapping->wb_err,
772 &file->f_wb_err);
773 trace_file_check_and_advance_wb_err(file, old);
774 spin_unlock(&file->f_lock);
775 }
f4e222c5
JL
776
777 /*
778 * We're mostly using this function as a drop in replacement for
779 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
780 * that the legacy code would have had on these flags.
781 */
782 clear_bit(AS_EIO, &mapping->flags);
783 clear_bit(AS_ENOSPC, &mapping->flags);
5660e13d
JL
784 return err;
785}
786EXPORT_SYMBOL(file_check_and_advance_wb_err);
787
788/**
789 * file_write_and_wait_range - write out & wait on a file range
790 * @file: file pointing to address_space with pages
791 * @lstart: offset in bytes where the range starts
792 * @lend: offset in bytes where the range ends (inclusive)
793 *
794 * Write out and wait upon file offsets lstart->lend, inclusive.
795 *
796 * Note that @lend is inclusive (describes the last byte to be written) so
797 * that this function can be used to write to the very end-of-file (end = -1).
798 *
799 * After writing out and waiting on the data, we check and advance the
800 * f_wb_err cursor to the latest value, and return any errors detected there.
a862f68a
MR
801 *
802 * Return: %0 on success, negative error code otherwise.
5660e13d
JL
803 */
804int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
805{
806 int err = 0, err2;
807 struct address_space *mapping = file->f_mapping;
808
9326c9b2 809 if (mapping_needs_writeback(mapping)) {
5660e13d
JL
810 err = __filemap_fdatawrite_range(mapping, lstart, lend,
811 WB_SYNC_ALL);
812 /* See comment of filemap_write_and_wait() */
813 if (err != -EIO)
814 __filemap_fdatawait_range(mapping, lstart, lend);
815 }
816 err2 = file_check_and_advance_wb_err(file);
817 if (!err)
818 err = err2;
819 return err;
820}
821EXPORT_SYMBOL(file_write_and_wait_range);
822
ef6a3c63
MS
823/**
824 * replace_page_cache_page - replace a pagecache page with a new one
825 * @old: page to be replaced
826 * @new: page to replace with
ef6a3c63
MS
827 *
828 * This function replaces a page in the pagecache with a new one. On
829 * success it acquires the pagecache reference for the new page and
830 * drops it for the old page. Both the old and new pages must be
831 * locked. This function does not add the new page to the LRU, the
832 * caller must do that.
833 *
74d60958 834 * The remove + add is atomic. This function cannot fail.
ef6a3c63 835 */
1f7ef657 836void replace_page_cache_page(struct page *old, struct page *new)
ef6a3c63 837{
74d60958
MW
838 struct address_space *mapping = old->mapping;
839 void (*freepage)(struct page *) = mapping->a_ops->freepage;
840 pgoff_t offset = old->index;
841 XA_STATE(xas, &mapping->i_pages, offset);
ef6a3c63 842
309381fe
SL
843 VM_BUG_ON_PAGE(!PageLocked(old), old);
844 VM_BUG_ON_PAGE(!PageLocked(new), new);
845 VM_BUG_ON_PAGE(new->mapping, new);
ef6a3c63 846
74d60958
MW
847 get_page(new);
848 new->mapping = mapping;
849 new->index = offset;
ef6a3c63 850
0d1c2072
JW
851 mem_cgroup_migrate(old, new);
852
30472509 853 xas_lock_irq(&xas);
74d60958 854 xas_store(&xas, new);
4165b9b4 855
74d60958
MW
856 old->mapping = NULL;
857 /* hugetlb pages do not participate in page cache accounting. */
858 if (!PageHuge(old))
0d1c2072 859 __dec_lruvec_page_state(old, NR_FILE_PAGES);
74d60958 860 if (!PageHuge(new))
0d1c2072 861 __inc_lruvec_page_state(new, NR_FILE_PAGES);
74d60958 862 if (PageSwapBacked(old))
0d1c2072 863 __dec_lruvec_page_state(old, NR_SHMEM);
74d60958 864 if (PageSwapBacked(new))
0d1c2072 865 __inc_lruvec_page_state(new, NR_SHMEM);
30472509 866 xas_unlock_irq(&xas);
74d60958
MW
867 if (freepage)
868 freepage(old);
869 put_page(old);
ef6a3c63
MS
870}
871EXPORT_SYMBOL_GPL(replace_page_cache_page);
872
16c0cc0c 873noinline int __add_to_page_cache_locked(struct page *page,
76cd6173 874 struct address_space *mapping,
c4cf498d 875 pgoff_t offset, gfp_t gfp,
76cd6173 876 void **shadowp)
1da177e4 877{
74d60958 878 XA_STATE(xas, &mapping->i_pages, offset);
00501b53 879 int huge = PageHuge(page);
e286781d 880 int error;
da74240e 881 bool charged = false;
e286781d 882
309381fe
SL
883 VM_BUG_ON_PAGE(!PageLocked(page), page);
884 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
74d60958 885 mapping_set_update(&xas, mapping);
e286781d 886
09cbfeaf 887 get_page(page);
66a0c8ee
KS
888 page->mapping = mapping;
889 page->index = offset;
890
3fea5a49 891 if (!huge) {
04f94e3f 892 error = mem_cgroup_charge(page, NULL, gfp);
3fea5a49
JW
893 if (error)
894 goto error;
da74240e 895 charged = true;
3fea5a49
JW
896 }
897
198b62f8
MWO
898 gfp &= GFP_RECLAIM_MASK;
899
74d60958 900 do {
198b62f8
MWO
901 unsigned int order = xa_get_order(xas.xa, xas.xa_index);
902 void *entry, *old = NULL;
903
904 if (order > thp_order(page))
905 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
906 order, gfp);
74d60958 907 xas_lock_irq(&xas);
198b62f8
MWO
908 xas_for_each_conflict(&xas, entry) {
909 old = entry;
910 if (!xa_is_value(entry)) {
911 xas_set_err(&xas, -EEXIST);
912 goto unlock;
913 }
914 }
915
916 if (old) {
917 if (shadowp)
918 *shadowp = old;
919 /* entry may have been split before we acquired lock */
920 order = xa_get_order(xas.xa, xas.xa_index);
921 if (order > thp_order(page)) {
922 xas_split(&xas, old, order);
923 xas_reset(&xas);
924 }
925 }
926
74d60958
MW
927 xas_store(&xas, page);
928 if (xas_error(&xas))
929 goto unlock;
930
74d60958
MW
931 mapping->nrpages++;
932
933 /* hugetlb pages do not participate in page cache accounting */
934 if (!huge)
0d1c2072 935 __inc_lruvec_page_state(page, NR_FILE_PAGES);
74d60958
MW
936unlock:
937 xas_unlock_irq(&xas);
198b62f8 938 } while (xas_nomem(&xas, gfp));
74d60958 939
3fea5a49
JW
940 if (xas_error(&xas)) {
941 error = xas_error(&xas);
da74240e
WL
942 if (charged)
943 mem_cgroup_uncharge(page);
74d60958 944 goto error;
3fea5a49 945 }
4165b9b4 946
66a0c8ee
KS
947 trace_mm_filemap_add_to_page_cache(page);
948 return 0;
74d60958 949error:
66a0c8ee
KS
950 page->mapping = NULL;
951 /* Leave page->index set: truncation relies upon it */
09cbfeaf 952 put_page(page);
3fea5a49 953 return error;
1da177e4 954}
cfcbfb13 955ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
a528910e
JW
956
957/**
958 * add_to_page_cache_locked - add a locked page to the pagecache
959 * @page: page to add
960 * @mapping: the page's address_space
961 * @offset: page index
962 * @gfp_mask: page allocation mode
963 *
964 * This function is used to add a page to the pagecache. It must be locked.
965 * This function does not add the page to the LRU. The caller must do that.
a862f68a
MR
966 *
967 * Return: %0 on success, negative error code otherwise.
a528910e
JW
968 */
969int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
970 pgoff_t offset, gfp_t gfp_mask)
971{
972 return __add_to_page_cache_locked(page, mapping, offset,
973 gfp_mask, NULL);
974}
e286781d 975EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4
LT
976
977int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 978 pgoff_t offset, gfp_t gfp_mask)
1da177e4 979{
a528910e 980 void *shadow = NULL;
4f98a2fe
RR
981 int ret;
982
48c935ad 983 __SetPageLocked(page);
a528910e
JW
984 ret = __add_to_page_cache_locked(page, mapping, offset,
985 gfp_mask, &shadow);
986 if (unlikely(ret))
48c935ad 987 __ClearPageLocked(page);
a528910e
JW
988 else {
989 /*
990 * The page might have been evicted from cache only
991 * recently, in which case it should be activated like
992 * any other repeatedly accessed page.
f0281a00
RR
993 * The exception is pages getting rewritten; evicting other
994 * data from the working set, only to cache data that will
995 * get overwritten with something else, is a waste of memory.
a528910e 996 */
1899ad18
JW
997 WARN_ON_ONCE(PageActive(page));
998 if (!(gfp_mask & __GFP_WRITE) && shadow)
999 workingset_refault(page, shadow);
a528910e
JW
1000 lru_cache_add(page);
1001 }
1da177e4
LT
1002 return ret;
1003}
18bc0bbd 1004EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1da177e4 1005
44110fe3 1006#ifdef CONFIG_NUMA
2ae88149 1007struct page *__page_cache_alloc(gfp_t gfp)
44110fe3 1008{
c0ff7453
MX
1009 int n;
1010 struct page *page;
1011
44110fe3 1012 if (cpuset_do_page_mem_spread()) {
cc9a6c87
MG
1013 unsigned int cpuset_mems_cookie;
1014 do {
d26914d1 1015 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 1016 n = cpuset_mem_spread_node();
96db800f 1017 page = __alloc_pages_node(n, gfp, 0);
d26914d1 1018 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
cc9a6c87 1019
c0ff7453 1020 return page;
44110fe3 1021 }
2ae88149 1022 return alloc_pages(gfp, 0);
44110fe3 1023}
2ae88149 1024EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
1025#endif
1026
7506ae6a
JK
1027/*
1028 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
1029 *
1030 * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
1031 *
1032 * @mapping1: the first mapping to lock
1033 * @mapping2: the second mapping to lock
1034 */
1035void filemap_invalidate_lock_two(struct address_space *mapping1,
1036 struct address_space *mapping2)
1037{
1038 if (mapping1 > mapping2)
1039 swap(mapping1, mapping2);
1040 if (mapping1)
1041 down_write(&mapping1->invalidate_lock);
1042 if (mapping2 && mapping1 != mapping2)
1043 down_write_nested(&mapping2->invalidate_lock, 1);
1044}
1045EXPORT_SYMBOL(filemap_invalidate_lock_two);
1046
1047/*
1048 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1049 *
1050 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1051 *
1052 * @mapping1: the first mapping to unlock
1053 * @mapping2: the second mapping to unlock
1054 */
1055void filemap_invalidate_unlock_two(struct address_space *mapping1,
1056 struct address_space *mapping2)
1057{
1058 if (mapping1)
1059 up_write(&mapping1->invalidate_lock);
1060 if (mapping2 && mapping1 != mapping2)
1061 up_write(&mapping2->invalidate_lock);
1062}
1063EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1064
1da177e4
LT
1065/*
1066 * In order to wait for pages to become available there must be
1067 * waitqueues associated with pages. By using a hash table of
1068 * waitqueues where the bucket discipline is to maintain all
1069 * waiters on the same queue and wake all when any of the pages
1070 * become available, and for the woken contexts to check to be
1071 * sure the appropriate page became available, this saves space
1072 * at a cost of "thundering herd" phenomena during rare hash
1073 * collisions.
1074 */
62906027
NP
1075#define PAGE_WAIT_TABLE_BITS 8
1076#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1077static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1078
1079static wait_queue_head_t *page_waitqueue(struct page *page)
1da177e4 1080{
62906027 1081 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
1da177e4 1082}
1da177e4 1083
62906027 1084void __init pagecache_init(void)
1da177e4 1085{
62906027 1086 int i;
1da177e4 1087
62906027
NP
1088 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1089 init_waitqueue_head(&page_wait_table[i]);
1090
1091 page_writeback_init();
1da177e4 1092}
1da177e4 1093
5ef64cc8
LT
1094/*
1095 * The page wait code treats the "wait->flags" somewhat unusually, because
5868ec26 1096 * we have multiple different kinds of waits, not just the usual "exclusive"
5ef64cc8
LT
1097 * one.
1098 *
1099 * We have:
1100 *
1101 * (a) no special bits set:
1102 *
1103 * We're just waiting for the bit to be released, and when a waker
1104 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1105 * and remove it from the wait queue.
1106 *
1107 * Simple and straightforward.
1108 *
1109 * (b) WQ_FLAG_EXCLUSIVE:
1110 *
1111 * The waiter is waiting to get the lock, and only one waiter should
1112 * be woken up to avoid any thundering herd behavior. We'll set the
1113 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1114 *
1115 * This is the traditional exclusive wait.
1116 *
5868ec26 1117 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
5ef64cc8
LT
1118 *
1119 * The waiter is waiting to get the bit, and additionally wants the
1120 * lock to be transferred to it for fair lock behavior. If the lock
1121 * cannot be taken, we stop walking the wait queue without waking
1122 * the waiter.
1123 *
1124 * This is the "fair lock handoff" case, and in addition to setting
1125 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1126 * that it now has the lock.
1127 */
ac6424b9 1128static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
f62e00cc 1129{
5ef64cc8 1130 unsigned int flags;
62906027
NP
1131 struct wait_page_key *key = arg;
1132 struct wait_page_queue *wait_page
1133 = container_of(wait, struct wait_page_queue, wait);
1134
cdc8fcb4 1135 if (!wake_page_match(wait_page, key))
62906027 1136 return 0;
3510ca20 1137
9a1ea439 1138 /*
5ef64cc8
LT
1139 * If it's a lock handoff wait, we get the bit for it, and
1140 * stop walking (and do not wake it up) if we can't.
9a1ea439 1141 */
5ef64cc8
LT
1142 flags = wait->flags;
1143 if (flags & WQ_FLAG_EXCLUSIVE) {
1144 if (test_bit(key->bit_nr, &key->page->flags))
2a9127fc 1145 return -1;
5ef64cc8
LT
1146 if (flags & WQ_FLAG_CUSTOM) {
1147 if (test_and_set_bit(key->bit_nr, &key->page->flags))
1148 return -1;
1149 flags |= WQ_FLAG_DONE;
1150 }
2a9127fc 1151 }
f62e00cc 1152
5ef64cc8
LT
1153 /*
1154 * We are holding the wait-queue lock, but the waiter that
1155 * is waiting for this will be checking the flags without
1156 * any locking.
1157 *
1158 * So update the flags atomically, and wake up the waiter
1159 * afterwards to avoid any races. This store-release pairs
1160 * with the load-acquire in wait_on_page_bit_common().
1161 */
1162 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
2a9127fc
LT
1163 wake_up_state(wait->private, mode);
1164
1165 /*
1166 * Ok, we have successfully done what we're waiting for,
1167 * and we can unconditionally remove the wait entry.
1168 *
5ef64cc8
LT
1169 * Note that this pairs with the "finish_wait()" in the
1170 * waiter, and has to be the absolute last thing we do.
1171 * After this list_del_init(&wait->entry) the wait entry
2a9127fc
LT
1172 * might be de-allocated and the process might even have
1173 * exited.
2a9127fc 1174 */
c6fe44d9 1175 list_del_init_careful(&wait->entry);
5ef64cc8 1176 return (flags & WQ_FLAG_EXCLUSIVE) != 0;
f62e00cc
KM
1177}
1178
74d81bfa 1179static void wake_up_page_bit(struct page *page, int bit_nr)
cbbce822 1180{
62906027
NP
1181 wait_queue_head_t *q = page_waitqueue(page);
1182 struct wait_page_key key;
1183 unsigned long flags;
11a19c7b 1184 wait_queue_entry_t bookmark;
cbbce822 1185
62906027
NP
1186 key.page = page;
1187 key.bit_nr = bit_nr;
1188 key.page_match = 0;
1189
11a19c7b
TC
1190 bookmark.flags = 0;
1191 bookmark.private = NULL;
1192 bookmark.func = NULL;
1193 INIT_LIST_HEAD(&bookmark.entry);
1194
62906027 1195 spin_lock_irqsave(&q->lock, flags);
11a19c7b
TC
1196 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1197
1198 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1199 /*
1200 * Take a breather from holding the lock,
1201 * allow pages that finish wake up asynchronously
1202 * to acquire the lock and remove themselves
1203 * from wait queue
1204 */
1205 spin_unlock_irqrestore(&q->lock, flags);
1206 cpu_relax();
1207 spin_lock_irqsave(&q->lock, flags);
1208 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1209 }
1210
62906027
NP
1211 /*
1212 * It is possible for other pages to have collided on the waitqueue
1213 * hash, so in that case check for a page match. That prevents a long-
1214 * term waiter
1215 *
1216 * It is still possible to miss a case here, when we woke page waiters
1217 * and removed them from the waitqueue, but there are still other
1218 * page waiters.
1219 */
1220 if (!waitqueue_active(q) || !key.page_match) {
1221 ClearPageWaiters(page);
1222 /*
1223 * It's possible to miss clearing Waiters here, when we woke
1224 * our page waiters, but the hashed waitqueue has waiters for
1225 * other pages on it.
1226 *
1227 * That's okay, it's a rare case. The next waker will clear it.
1228 */
1229 }
1230 spin_unlock_irqrestore(&q->lock, flags);
1231}
74d81bfa
NP
1232
1233static void wake_up_page(struct page *page, int bit)
1234{
1235 if (!PageWaiters(page))
1236 return;
1237 wake_up_page_bit(page, bit);
1238}
62906027 1239
9a1ea439
HD
1240/*
1241 * A choice of three behaviors for wait_on_page_bit_common():
1242 */
1243enum behavior {
1244 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
7c23c782 1245 * __folio_lock() waiting on then setting PG_locked.
9a1ea439
HD
1246 */
1247 SHARED, /* Hold ref to page and check the bit when woken, like
1248 * wait_on_page_writeback() waiting on PG_writeback.
1249 */
1250 DROP, /* Drop ref to page before wait, no check when woken,
1251 * like put_and_wait_on_page_locked() on PG_locked.
1252 */
1253};
1254
2a9127fc 1255/*
5ef64cc8
LT
1256 * Attempt to check (or get) the page bit, and mark us done
1257 * if successful.
2a9127fc
LT
1258 */
1259static inline bool trylock_page_bit_common(struct page *page, int bit_nr,
1260 struct wait_queue_entry *wait)
1261{
1262 if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1263 if (test_and_set_bit(bit_nr, &page->flags))
1264 return false;
1265 } else if (test_bit(bit_nr, &page->flags))
1266 return false;
1267
5ef64cc8 1268 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
2a9127fc
LT
1269 return true;
1270}
1271
5ef64cc8
LT
1272/* How many times do we accept lock stealing from under a waiter? */
1273int sysctl_page_lock_unfairness = 5;
1274
62906027 1275static inline int wait_on_page_bit_common(wait_queue_head_t *q,
9a1ea439 1276 struct page *page, int bit_nr, int state, enum behavior behavior)
62906027 1277{
5ef64cc8 1278 int unfairness = sysctl_page_lock_unfairness;
62906027 1279 struct wait_page_queue wait_page;
ac6424b9 1280 wait_queue_entry_t *wait = &wait_page.wait;
b1d29ba8 1281 bool thrashing = false;
9a1ea439 1282 bool delayacct = false;
eb414681 1283 unsigned long pflags;
62906027 1284
eb414681 1285 if (bit_nr == PG_locked &&
b1d29ba8 1286 !PageUptodate(page) && PageWorkingset(page)) {
9a1ea439 1287 if (!PageSwapBacked(page)) {
eb414681 1288 delayacct_thrashing_start();
9a1ea439
HD
1289 delayacct = true;
1290 }
eb414681 1291 psi_memstall_enter(&pflags);
b1d29ba8
JW
1292 thrashing = true;
1293 }
1294
62906027
NP
1295 init_wait(wait);
1296 wait->func = wake_page_function;
1297 wait_page.page = page;
1298 wait_page.bit_nr = bit_nr;
1299
5ef64cc8
LT
1300repeat:
1301 wait->flags = 0;
1302 if (behavior == EXCLUSIVE) {
1303 wait->flags = WQ_FLAG_EXCLUSIVE;
1304 if (--unfairness < 0)
1305 wait->flags |= WQ_FLAG_CUSTOM;
1306 }
1307
2a9127fc
LT
1308 /*
1309 * Do one last check whether we can get the
1310 * page bit synchronously.
1311 *
1312 * Do the SetPageWaiters() marking before that
1313 * to let any waker we _just_ missed know they
1314 * need to wake us up (otherwise they'll never
1315 * even go to the slow case that looks at the
1316 * page queue), and add ourselves to the wait
1317 * queue if we need to sleep.
1318 *
1319 * This part needs to be done under the queue
1320 * lock to avoid races.
1321 */
1322 spin_lock_irq(&q->lock);
1323 SetPageWaiters(page);
1324 if (!trylock_page_bit_common(page, bit_nr, wait))
1325 __add_wait_queue_entry_tail(q, wait);
1326 spin_unlock_irq(&q->lock);
62906027 1327
2a9127fc
LT
1328 /*
1329 * From now on, all the logic will be based on
5ef64cc8
LT
1330 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1331 * see whether the page bit testing has already
1332 * been done by the wake function.
2a9127fc
LT
1333 *
1334 * We can drop our reference to the page.
1335 */
1336 if (behavior == DROP)
1337 put_page(page);
62906027 1338
5ef64cc8
LT
1339 /*
1340 * Note that until the "finish_wait()", or until
1341 * we see the WQ_FLAG_WOKEN flag, we need to
1342 * be very careful with the 'wait->flags', because
1343 * we may race with a waker that sets them.
1344 */
2a9127fc 1345 for (;;) {
5ef64cc8
LT
1346 unsigned int flags;
1347
62906027
NP
1348 set_current_state(state);
1349
5ef64cc8
LT
1350 /* Loop until we've been woken or interrupted */
1351 flags = smp_load_acquire(&wait->flags);
1352 if (!(flags & WQ_FLAG_WOKEN)) {
1353 if (signal_pending_state(state, current))
1354 break;
1355
1356 io_schedule();
1357 continue;
1358 }
1359
1360 /* If we were non-exclusive, we're done */
1361 if (behavior != EXCLUSIVE)
a8b169af 1362 break;
9a1ea439 1363
5ef64cc8
LT
1364 /* If the waker got the lock for us, we're done */
1365 if (flags & WQ_FLAG_DONE)
9a1ea439 1366 break;
2a9127fc 1367
5ef64cc8
LT
1368 /*
1369 * Otherwise, if we're getting the lock, we need to
1370 * try to get it ourselves.
1371 *
1372 * And if that fails, we'll have to retry this all.
1373 */
1374 if (unlikely(test_and_set_bit(bit_nr, &page->flags)))
1375 goto repeat;
1376
1377 wait->flags |= WQ_FLAG_DONE;
1378 break;
62906027
NP
1379 }
1380
5ef64cc8
LT
1381 /*
1382 * If a signal happened, this 'finish_wait()' may remove the last
1383 * waiter from the wait-queues, but the PageWaiters bit will remain
1384 * set. That's ok. The next wakeup will take care of it, and trying
1385 * to do it here would be difficult and prone to races.
1386 */
62906027
NP
1387 finish_wait(q, wait);
1388
eb414681 1389 if (thrashing) {
9a1ea439 1390 if (delayacct)
eb414681
JW
1391 delayacct_thrashing_end();
1392 psi_memstall_leave(&pflags);
1393 }
b1d29ba8 1394
62906027 1395 /*
5ef64cc8
LT
1396 * NOTE! The wait->flags weren't stable until we've done the
1397 * 'finish_wait()', and we could have exited the loop above due
1398 * to a signal, and had a wakeup event happen after the signal
1399 * test but before the 'finish_wait()'.
1400 *
1401 * So only after the finish_wait() can we reliably determine
1402 * if we got woken up or not, so we can now figure out the final
1403 * return value based on that state without races.
1404 *
1405 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1406 * waiter, but an exclusive one requires WQ_FLAG_DONE.
62906027 1407 */
5ef64cc8
LT
1408 if (behavior == EXCLUSIVE)
1409 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
62906027 1410
2a9127fc 1411 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
62906027
NP
1412}
1413
1414void wait_on_page_bit(struct page *page, int bit_nr)
1415{
1416 wait_queue_head_t *q = page_waitqueue(page);
9a1ea439 1417 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
62906027
NP
1418}
1419EXPORT_SYMBOL(wait_on_page_bit);
1420
1421int wait_on_page_bit_killable(struct page *page, int bit_nr)
1422{
1423 wait_queue_head_t *q = page_waitqueue(page);
9a1ea439 1424 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
cbbce822 1425}
4343d008 1426EXPORT_SYMBOL(wait_on_page_bit_killable);
cbbce822 1427
9a1ea439
HD
1428/**
1429 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1430 * @page: The page to wait for.
48054625 1431 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
9a1ea439
HD
1432 *
1433 * The caller should hold a reference on @page. They expect the page to
1434 * become unlocked relatively soon, but do not wish to hold up migration
1435 * (for example) by holding the reference while waiting for the page to
1436 * come unlocked. After this function returns, the caller should not
1437 * dereference @page.
48054625
MWO
1438 *
1439 * Return: 0 if the page was unlocked or -EINTR if interrupted by a signal.
9a1ea439 1440 */
48054625 1441int put_and_wait_on_page_locked(struct page *page, int state)
9a1ea439
HD
1442{
1443 wait_queue_head_t *q;
1444
1445 page = compound_head(page);
1446 q = page_waitqueue(page);
48054625 1447 return wait_on_page_bit_common(q, page, PG_locked, state, DROP);
9a1ea439
HD
1448}
1449
385e1ca5
DH
1450/**
1451 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
697f619f
RD
1452 * @page: Page defining the wait queue of interest
1453 * @waiter: Waiter to add to the queue
385e1ca5
DH
1454 *
1455 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1456 */
ac6424b9 1457void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
385e1ca5
DH
1458{
1459 wait_queue_head_t *q = page_waitqueue(page);
1460 unsigned long flags;
1461
1462 spin_lock_irqsave(&q->lock, flags);
9c3a815f 1463 __add_wait_queue_entry_tail(q, waiter);
62906027 1464 SetPageWaiters(page);
385e1ca5
DH
1465 spin_unlock_irqrestore(&q->lock, flags);
1466}
1467EXPORT_SYMBOL_GPL(add_page_wait_queue);
1468
b91e1302
LT
1469#ifndef clear_bit_unlock_is_negative_byte
1470
1471/*
1472 * PG_waiters is the high bit in the same byte as PG_lock.
1473 *
1474 * On x86 (and on many other architectures), we can clear PG_lock and
1475 * test the sign bit at the same time. But if the architecture does
1476 * not support that special operation, we just do this all by hand
1477 * instead.
1478 *
1479 * The read of PG_waiters has to be after (or concurrently with) PG_locked
ffceeb62 1480 * being cleared, but a memory barrier should be unnecessary since it is
b91e1302
LT
1481 * in the same byte as PG_locked.
1482 */
1483static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1484{
1485 clear_bit_unlock(nr, mem);
1486 /* smp_mb__after_atomic(); */
98473f9f 1487 return test_bit(PG_waiters, mem);
b91e1302
LT
1488}
1489
1490#endif
1491
1da177e4 1492/**
4e136428
MWO
1493 * folio_unlock - Unlock a locked folio.
1494 * @folio: The folio.
1495 *
1496 * Unlocks the folio and wakes up any thread sleeping on the page lock.
1497 *
1498 * Context: May be called from interrupt or process context. May not be
1499 * called from NMI context.
1da177e4 1500 */
4e136428 1501void folio_unlock(struct folio *folio)
1da177e4 1502{
4e136428 1503 /* Bit 7 allows x86 to check the byte's sign bit */
b91e1302 1504 BUILD_BUG_ON(PG_waiters != 7);
4e136428
MWO
1505 BUILD_BUG_ON(PG_locked > 7);
1506 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1507 if (clear_bit_unlock_is_negative_byte(PG_locked, folio_flags(folio, 0)))
1508 wake_up_page_bit(&folio->page, PG_locked);
1da177e4 1509}
4e136428 1510EXPORT_SYMBOL(folio_unlock);
1da177e4 1511
73e10ded
DH
1512/**
1513 * end_page_private_2 - Clear PG_private_2 and release any waiters
1514 * @page: The page
1515 *
1516 * Clear the PG_private_2 bit on a page and wake up any sleepers waiting for
1517 * this. The page ref held for PG_private_2 being set is released.
1518 *
1519 * This is, for example, used when a netfs page is being written to a local
1520 * disk cache, thereby allowing writes to the cache for the same page to be
1521 * serialised.
1522 */
1523void end_page_private_2(struct page *page)
1524{
1525 page = compound_head(page);
1526 VM_BUG_ON_PAGE(!PagePrivate2(page), page);
1527 clear_bit_unlock(PG_private_2, &page->flags);
1528 wake_up_page_bit(page, PG_private_2);
1529 put_page(page);
1530}
1531EXPORT_SYMBOL(end_page_private_2);
1532
1533/**
1534 * wait_on_page_private_2 - Wait for PG_private_2 to be cleared on a page
1535 * @page: The page to wait on
1536 *
1537 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a page.
1538 */
1539void wait_on_page_private_2(struct page *page)
1540{
1541 page = compound_head(page);
1542 while (PagePrivate2(page))
1543 wait_on_page_bit(page, PG_private_2);
1544}
1545EXPORT_SYMBOL(wait_on_page_private_2);
1546
1547/**
1548 * wait_on_page_private_2_killable - Wait for PG_private_2 to be cleared on a page
1549 * @page: The page to wait on
1550 *
1551 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a page or until a
1552 * fatal signal is received by the calling task.
1553 *
1554 * Return:
1555 * - 0 if successful.
1556 * - -EINTR if a fatal signal was encountered.
1557 */
1558int wait_on_page_private_2_killable(struct page *page)
1559{
1560 int ret = 0;
1561
1562 page = compound_head(page);
1563 while (PagePrivate2(page)) {
1564 ret = wait_on_page_bit_killable(page, PG_private_2);
1565 if (ret < 0)
1566 break;
1567 }
1568
1569 return ret;
1570}
1571EXPORT_SYMBOL(wait_on_page_private_2_killable);
1572
485bb99b
RD
1573/**
1574 * end_page_writeback - end writeback against a page
1575 * @page: the page
1da177e4
LT
1576 */
1577void end_page_writeback(struct page *page)
1578{
888cf2db
MG
1579 /*
1580 * TestClearPageReclaim could be used here but it is an atomic
1581 * operation and overkill in this particular case. Failing to
1582 * shuffle a page marked for immediate reclaim is too mild to
1583 * justify taking an atomic operation penalty at the end of
1584 * ever page writeback.
1585 */
1586 if (PageReclaim(page)) {
575ced1c 1587 struct folio *folio = page_folio(page);
888cf2db 1588 ClearPageReclaim(page);
575ced1c 1589 folio_rotate_reclaimable(folio);
888cf2db 1590 }
ac6aadb2 1591
073861ed
HD
1592 /*
1593 * Writeback does not hold a page reference of its own, relying
1594 * on truncation to wait for the clearing of PG_writeback.
1595 * But here we must make sure that the page is not freed and
1596 * reused before the wake_up_page().
1597 */
1598 get_page(page);
ac6aadb2
MS
1599 if (!test_clear_page_writeback(page))
1600 BUG();
1601
4e857c58 1602 smp_mb__after_atomic();
1da177e4 1603 wake_up_page(page, PG_writeback);
073861ed 1604 put_page(page);
1da177e4
LT
1605}
1606EXPORT_SYMBOL(end_page_writeback);
1607
57d99845
MW
1608/*
1609 * After completing I/O on a page, call this routine to update the page
1610 * flags appropriately
1611 */
c11f0c0b 1612void page_endio(struct page *page, bool is_write, int err)
57d99845 1613{
c11f0c0b 1614 if (!is_write) {
57d99845
MW
1615 if (!err) {
1616 SetPageUptodate(page);
1617 } else {
1618 ClearPageUptodate(page);
1619 SetPageError(page);
1620 }
1621 unlock_page(page);
abf54548 1622 } else {
57d99845 1623 if (err) {
dd8416c4
MK
1624 struct address_space *mapping;
1625
57d99845 1626 SetPageError(page);
dd8416c4
MK
1627 mapping = page_mapping(page);
1628 if (mapping)
1629 mapping_set_error(mapping, err);
57d99845
MW
1630 }
1631 end_page_writeback(page);
1632 }
1633}
1634EXPORT_SYMBOL_GPL(page_endio);
1635
485bb99b 1636/**
7c23c782
MWO
1637 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1638 * @folio: The folio to lock
1da177e4 1639 */
7c23c782 1640void __folio_lock(struct folio *folio)
1da177e4 1641{
7c23c782
MWO
1642 wait_queue_head_t *q = page_waitqueue(&folio->page);
1643 wait_on_page_bit_common(q, &folio->page, PG_locked, TASK_UNINTERRUPTIBLE,
9a1ea439 1644 EXCLUSIVE);
1da177e4 1645}
7c23c782 1646EXPORT_SYMBOL(__folio_lock);
1da177e4 1647
af7f29d9 1648int __folio_lock_killable(struct folio *folio)
2687a356 1649{
af7f29d9
MWO
1650 wait_queue_head_t *q = page_waitqueue(&folio->page);
1651 return wait_on_page_bit_common(q, &folio->page, PG_locked, TASK_KILLABLE,
9a1ea439 1652 EXCLUSIVE);
2687a356 1653}
af7f29d9 1654EXPORT_SYMBOL_GPL(__folio_lock_killable);
2687a356 1655
ffdc8dab 1656static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
dd3e6d50 1657{
ffdc8dab 1658 struct wait_queue_head *q = page_waitqueue(&folio->page);
f32b5dd7
MWO
1659 int ret = 0;
1660
ffdc8dab 1661 wait->page = &folio->page;
f32b5dd7
MWO
1662 wait->bit_nr = PG_locked;
1663
1664 spin_lock_irq(&q->lock);
1665 __add_wait_queue_entry_tail(q, &wait->wait);
ffdc8dab
MWO
1666 folio_set_waiters(folio);
1667 ret = !folio_trylock(folio);
f32b5dd7
MWO
1668 /*
1669 * If we were successful now, we know we're still on the
1670 * waitqueue as we're still under the lock. This means it's
1671 * safe to remove and return success, we know the callback
1672 * isn't going to trigger.
1673 */
1674 if (!ret)
1675 __remove_wait_queue(q, &wait->wait);
1676 else
1677 ret = -EIOCBQUEUED;
1678 spin_unlock_irq(&q->lock);
1679 return ret;
dd3e6d50
JA
1680}
1681
9a95f3cf
PC
1682/*
1683 * Return values:
9138e47e
MWO
1684 * true - folio is locked; mmap_lock is still held.
1685 * false - folio is not locked.
3e4e28c5 1686 * mmap_lock has been released (mmap_read_unlock(), unless flags had both
9a95f3cf 1687 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
c1e8d7c6 1688 * which case mmap_lock is still held.
9a95f3cf 1689 *
9138e47e
MWO
1690 * If neither ALLOW_RETRY nor KILLABLE are set, will always return true
1691 * with the folio locked and the mmap_lock unperturbed.
9a95f3cf 1692 */
9138e47e 1693bool __folio_lock_or_retry(struct folio *folio, struct mm_struct *mm,
d065bd81
ML
1694 unsigned int flags)
1695{
4064b982 1696 if (fault_flag_allow_retry_first(flags)) {
37b23e05 1697 /*
c1e8d7c6 1698 * CAUTION! In this case, mmap_lock is not released
37b23e05
KM
1699 * even though return 0.
1700 */
1701 if (flags & FAULT_FLAG_RETRY_NOWAIT)
9138e47e 1702 return false;
37b23e05 1703
d8ed45c5 1704 mmap_read_unlock(mm);
37b23e05 1705 if (flags & FAULT_FLAG_KILLABLE)
6baa8d60 1706 folio_wait_locked_killable(folio);
37b23e05 1707 else
6baa8d60 1708 folio_wait_locked(folio);
9138e47e 1709 return false;
800bca7c
HL
1710 }
1711 if (flags & FAULT_FLAG_KILLABLE) {
9138e47e 1712 bool ret;
37b23e05 1713
af7f29d9 1714 ret = __folio_lock_killable(folio);
800bca7c
HL
1715 if (ret) {
1716 mmap_read_unlock(mm);
9138e47e 1717 return false;
800bca7c
HL
1718 }
1719 } else {
af7f29d9 1720 __folio_lock(folio);
d065bd81 1721 }
800bca7c 1722
9138e47e 1723 return true;
d065bd81
ML
1724}
1725
e7b563bb 1726/**
0d3f9296
MW
1727 * page_cache_next_miss() - Find the next gap in the page cache.
1728 * @mapping: Mapping.
1729 * @index: Index.
1730 * @max_scan: Maximum range to search.
e7b563bb 1731 *
0d3f9296
MW
1732 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1733 * gap with the lowest index.
e7b563bb 1734 *
0d3f9296
MW
1735 * This function may be called under the rcu_read_lock. However, this will
1736 * not atomically search a snapshot of the cache at a single point in time.
1737 * For example, if a gap is created at index 5, then subsequently a gap is
1738 * created at index 10, page_cache_next_miss covering both indices may
1739 * return 10 if called under the rcu_read_lock.
e7b563bb 1740 *
0d3f9296
MW
1741 * Return: The index of the gap if found, otherwise an index outside the
1742 * range specified (in which case 'return - index >= max_scan' will be true).
1743 * In the rare case of index wrap-around, 0 will be returned.
e7b563bb 1744 */
0d3f9296 1745pgoff_t page_cache_next_miss(struct address_space *mapping,
e7b563bb
JW
1746 pgoff_t index, unsigned long max_scan)
1747{
0d3f9296 1748 XA_STATE(xas, &mapping->i_pages, index);
e7b563bb 1749
0d3f9296
MW
1750 while (max_scan--) {
1751 void *entry = xas_next(&xas);
1752 if (!entry || xa_is_value(entry))
e7b563bb 1753 break;
0d3f9296 1754 if (xas.xa_index == 0)
e7b563bb
JW
1755 break;
1756 }
1757
0d3f9296 1758 return xas.xa_index;
e7b563bb 1759}
0d3f9296 1760EXPORT_SYMBOL(page_cache_next_miss);
e7b563bb
JW
1761
1762/**
2346a560 1763 * page_cache_prev_miss() - Find the previous gap in the page cache.
0d3f9296
MW
1764 * @mapping: Mapping.
1765 * @index: Index.
1766 * @max_scan: Maximum range to search.
e7b563bb 1767 *
0d3f9296
MW
1768 * Search the range [max(index - max_scan + 1, 0), index] for the
1769 * gap with the highest index.
e7b563bb 1770 *
0d3f9296
MW
1771 * This function may be called under the rcu_read_lock. However, this will
1772 * not atomically search a snapshot of the cache at a single point in time.
1773 * For example, if a gap is created at index 10, then subsequently a gap is
1774 * created at index 5, page_cache_prev_miss() covering both indices may
1775 * return 5 if called under the rcu_read_lock.
e7b563bb 1776 *
0d3f9296
MW
1777 * Return: The index of the gap if found, otherwise an index outside the
1778 * range specified (in which case 'index - return >= max_scan' will be true).
1779 * In the rare case of wrap-around, ULONG_MAX will be returned.
e7b563bb 1780 */
0d3f9296 1781pgoff_t page_cache_prev_miss(struct address_space *mapping,
e7b563bb
JW
1782 pgoff_t index, unsigned long max_scan)
1783{
0d3f9296 1784 XA_STATE(xas, &mapping->i_pages, index);
e7b563bb 1785
0d3f9296
MW
1786 while (max_scan--) {
1787 void *entry = xas_prev(&xas);
1788 if (!entry || xa_is_value(entry))
e7b563bb 1789 break;
0d3f9296 1790 if (xas.xa_index == ULONG_MAX)
e7b563bb
JW
1791 break;
1792 }
1793
0d3f9296 1794 return xas.xa_index;
e7b563bb 1795}
0d3f9296 1796EXPORT_SYMBOL(page_cache_prev_miss);
e7b563bb 1797
020853b6
MWO
1798/*
1799 * Lockless page cache protocol:
1800 * On the lookup side:
1801 * 1. Load the folio from i_pages
1802 * 2. Increment the refcount if it's not zero
1803 * 3. If the folio is not found by xas_reload(), put the refcount and retry
1804 *
1805 * On the removal side:
1806 * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1807 * B. Remove the page from i_pages
1808 * C. Return the page to the page allocator
1809 *
1810 * This means that any page may have its reference count temporarily
1811 * increased by a speculative page cache (or fast GUP) lookup as it can
1812 * be allocated by another user before the RCU grace period expires.
1813 * Because the refcount temporarily acquired here may end up being the
1814 * last refcount on the page, any page allocation must be freeable by
1815 * folio_put().
1816 */
1817
44835d20 1818/*
bc5a3011 1819 * mapping_get_entry - Get a page cache entry.
485bb99b 1820 * @mapping: the address_space to search
a6de4b48 1821 * @index: The page cache index.
0cd6144a 1822 *
4b17f030 1823 * Looks up the page cache slot at @mapping & @index. If there is a
a6de4b48 1824 * page cache page, the head page is returned with an increased refcount.
485bb99b 1825 *
139b6a6f
JW
1826 * If the slot holds a shadow entry of a previously evicted page, or a
1827 * swap entry from shmem/tmpfs, it is returned.
0cd6144a 1828 *
a6de4b48 1829 * Return: The head page or shadow entry, %NULL if nothing is found.
1da177e4 1830 */
bc5a3011
MWO
1831static struct page *mapping_get_entry(struct address_space *mapping,
1832 pgoff_t index)
1da177e4 1833{
a6de4b48 1834 XA_STATE(xas, &mapping->i_pages, index);
4101196b 1835 struct page *page;
1da177e4 1836
a60637c8
NP
1837 rcu_read_lock();
1838repeat:
4c7472c0
MW
1839 xas_reset(&xas);
1840 page = xas_load(&xas);
1841 if (xas_retry(&xas, page))
1842 goto repeat;
1843 /*
1844 * A shadow entry of a recently evicted page, or a swap entry from
1845 * shmem/tmpfs. Return it without attempting to raise page count.
1846 */
1847 if (!page || xa_is_value(page))
1848 goto out;
83929372 1849
4101196b 1850 if (!page_cache_get_speculative(page))
4c7472c0 1851 goto repeat;
83929372 1852
4c7472c0 1853 /*
4101196b 1854 * Has the page moved or been split?
4c7472c0
MW
1855 * This is part of the lockless pagecache protocol. See
1856 * include/linux/pagemap.h for details.
1857 */
1858 if (unlikely(page != xas_reload(&xas))) {
4101196b 1859 put_page(page);
4c7472c0 1860 goto repeat;
a60637c8 1861 }
27d20fdd 1862out:
a60637c8
NP
1863 rcu_read_unlock();
1864
1da177e4
LT
1865 return page;
1866}
1da177e4 1867
0cd6144a 1868/**
2294b32e
MWO
1869 * pagecache_get_page - Find and get a reference to a page.
1870 * @mapping: The address_space to search.
1871 * @index: The page index.
1872 * @fgp_flags: %FGP flags modify how the page is returned.
1873 * @gfp_mask: Memory allocation flags to use if %FGP_CREAT is specified.
1da177e4 1874 *
2294b32e 1875 * Looks up the page cache entry at @mapping & @index.
0cd6144a 1876 *
2294b32e 1877 * @fgp_flags can be zero or more of these flags:
0e056eb5 1878 *
2294b32e
MWO
1879 * * %FGP_ACCESSED - The page will be marked accessed.
1880 * * %FGP_LOCK - The page is returned locked.
a8cf7f27
MWO
1881 * * %FGP_HEAD - If the page is present and a THP, return the head page
1882 * rather than the exact page specified by the index.
44835d20
MWO
1883 * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it
1884 * instead of allocating a new page to replace it.
2294b32e
MWO
1885 * * %FGP_CREAT - If no page is present then a new page is allocated using
1886 * @gfp_mask and added to the page cache and the VM's LRU list.
1887 * The page is returned locked and with an increased refcount.
1888 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1889 * page is already in cache. If the page was allocated, unlock it before
1890 * returning so the caller can do the same dance.
605cad83
YS
1891 * * %FGP_WRITE - The page will be written
1892 * * %FGP_NOFS - __GFP_FS will get cleared in gfp mask
1893 * * %FGP_NOWAIT - Don't get blocked by page lock
1da177e4 1894 *
2294b32e
MWO
1895 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1896 * if the %GFP flags specified for %FGP_CREAT are atomic.
1da177e4 1897 *
2457aec6 1898 * If there is a page cache page, it is returned with an increased refcount.
a862f68a 1899 *
2294b32e 1900 * Return: The found page or %NULL otherwise.
1da177e4 1901 */
2294b32e
MWO
1902struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
1903 int fgp_flags, gfp_t gfp_mask)
1da177e4 1904{
eb2be189 1905 struct page *page;
2457aec6 1906
1da177e4 1907repeat:
bc5a3011 1908 page = mapping_get_entry(mapping, index);
44835d20
MWO
1909 if (xa_is_value(page)) {
1910 if (fgp_flags & FGP_ENTRY)
1911 return page;
2457aec6 1912 page = NULL;
44835d20 1913 }
2457aec6
MG
1914 if (!page)
1915 goto no_page;
1916
1917 if (fgp_flags & FGP_LOCK) {
1918 if (fgp_flags & FGP_NOWAIT) {
1919 if (!trylock_page(page)) {
09cbfeaf 1920 put_page(page);
2457aec6
MG
1921 return NULL;
1922 }
1923 } else {
1924 lock_page(page);
1925 }
1926
1927 /* Has the page been truncated? */
a8cf7f27 1928 if (unlikely(page->mapping != mapping)) {
2457aec6 1929 unlock_page(page);
09cbfeaf 1930 put_page(page);
2457aec6
MG
1931 goto repeat;
1932 }
a8cf7f27 1933 VM_BUG_ON_PAGE(!thp_contains(page, index), page);
2457aec6
MG
1934 }
1935
c16eb000 1936 if (fgp_flags & FGP_ACCESSED)
2457aec6 1937 mark_page_accessed(page);
b9306a79
YS
1938 else if (fgp_flags & FGP_WRITE) {
1939 /* Clear idle flag for buffer write */
1940 if (page_is_idle(page))
1941 clear_page_idle(page);
1942 }
a8cf7f27
MWO
1943 if (!(fgp_flags & FGP_HEAD))
1944 page = find_subpage(page, index);
2457aec6
MG
1945
1946no_page:
1947 if (!page && (fgp_flags & FGP_CREAT)) {
1948 int err;
f56753ac 1949 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
45f87de5
MH
1950 gfp_mask |= __GFP_WRITE;
1951 if (fgp_flags & FGP_NOFS)
1952 gfp_mask &= ~__GFP_FS;
2457aec6 1953
45f87de5 1954 page = __page_cache_alloc(gfp_mask);
eb2be189
NP
1955 if (!page)
1956 return NULL;
2457aec6 1957
a75d4c33 1958 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
2457aec6
MG
1959 fgp_flags |= FGP_LOCK;
1960
eb39d618 1961 /* Init accessed so avoid atomic mark_page_accessed later */
2457aec6 1962 if (fgp_flags & FGP_ACCESSED)
eb39d618 1963 __SetPageReferenced(page);
2457aec6 1964
2294b32e 1965 err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
eb2be189 1966 if (unlikely(err)) {
09cbfeaf 1967 put_page(page);
eb2be189
NP
1968 page = NULL;
1969 if (err == -EEXIST)
1970 goto repeat;
1da177e4 1971 }
a75d4c33
JB
1972
1973 /*
1974 * add_to_page_cache_lru locks the page, and for mmap we expect
1975 * an unlocked page.
1976 */
1977 if (page && (fgp_flags & FGP_FOR_MMAP))
1978 unlock_page(page);
1da177e4 1979 }
2457aec6 1980
1da177e4
LT
1981 return page;
1982}
2457aec6 1983EXPORT_SYMBOL(pagecache_get_page);
1da177e4 1984
c7bad633
MWO
1985static inline struct page *find_get_entry(struct xa_state *xas, pgoff_t max,
1986 xa_mark_t mark)
1987{
1988 struct page *page;
1989
1990retry:
1991 if (mark == XA_PRESENT)
1992 page = xas_find(xas, max);
1993 else
1994 page = xas_find_marked(xas, max, mark);
1995
1996 if (xas_retry(xas, page))
1997 goto retry;
1998 /*
1999 * A shadow entry of a recently evicted page, a swap
2000 * entry from shmem/tmpfs or a DAX entry. Return it
2001 * without attempting to raise page count.
2002 */
2003 if (!page || xa_is_value(page))
2004 return page;
2005
2006 if (!page_cache_get_speculative(page))
2007 goto reset;
2008
2009 /* Has the page moved or been split? */
2010 if (unlikely(page != xas_reload(xas))) {
2011 put_page(page);
2012 goto reset;
2013 }
2014
2015 return page;
2016reset:
2017 xas_reset(xas);
2018 goto retry;
2019}
2020
0cd6144a
JW
2021/**
2022 * find_get_entries - gang pagecache lookup
2023 * @mapping: The address_space to search
2024 * @start: The starting page cache index
ca122fe4 2025 * @end: The final page index (inclusive).
cf2039af 2026 * @pvec: Where the resulting entries are placed.
0cd6144a
JW
2027 * @indices: The cache indices corresponding to the entries in @entries
2028 *
cf2039af
MWO
2029 * find_get_entries() will search for and return a batch of entries in
2030 * the mapping. The entries are placed in @pvec. find_get_entries()
2031 * takes a reference on any actual pages it returns.
0cd6144a
JW
2032 *
2033 * The search returns a group of mapping-contiguous page cache entries
2034 * with ascending indexes. There may be holes in the indices due to
2035 * not-present pages.
2036 *
139b6a6f
JW
2037 * Any shadow entries of evicted pages, or swap entries from
2038 * shmem/tmpfs, are included in the returned array.
0cd6144a 2039 *
71725ed1
HD
2040 * If it finds a Transparent Huge Page, head or tail, find_get_entries()
2041 * stops at that page: the caller is likely to have a better way to handle
2042 * the compound page as a whole, and then skip its extent, than repeatedly
2043 * calling find_get_entries() to return all its tails.
2044 *
a862f68a 2045 * Return: the number of pages and shadow entries which were found.
0cd6144a 2046 */
ca122fe4 2047unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
cf2039af 2048 pgoff_t end, struct pagevec *pvec, pgoff_t *indices)
0cd6144a 2049{
f280bf09
MW
2050 XA_STATE(xas, &mapping->i_pages, start);
2051 struct page *page;
0cd6144a 2052 unsigned int ret = 0;
cf2039af 2053 unsigned nr_entries = PAGEVEC_SIZE;
0cd6144a
JW
2054
2055 rcu_read_lock();
ca122fe4 2056 while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
71725ed1
HD
2057 /*
2058 * Terminate early on finding a THP, to allow the caller to
2059 * handle it all at once; but continue if this is hugetlbfs.
2060 */
c7bad633
MWO
2061 if (!xa_is_value(page) && PageTransHuge(page) &&
2062 !PageHuge(page)) {
71725ed1
HD
2063 page = find_subpage(page, xas.xa_index);
2064 nr_entries = ret + 1;
2065 }
c7bad633 2066
f280bf09 2067 indices[ret] = xas.xa_index;
cf2039af 2068 pvec->pages[ret] = page;
0cd6144a
JW
2069 if (++ret == nr_entries)
2070 break;
2071 }
2072 rcu_read_unlock();
cf2039af
MWO
2073
2074 pvec->nr = ret;
0cd6144a
JW
2075 return ret;
2076}
2077
5c211ba2
MWO
2078/**
2079 * find_lock_entries - Find a batch of pagecache entries.
2080 * @mapping: The address_space to search.
2081 * @start: The starting page cache index.
2082 * @end: The final page index (inclusive).
2083 * @pvec: Where the resulting entries are placed.
2084 * @indices: The cache indices of the entries in @pvec.
2085 *
2086 * find_lock_entries() will return a batch of entries from @mapping.
2087 * Swap, shadow and DAX entries are included. Pages are returned
2088 * locked and with an incremented refcount. Pages which are locked by
2089 * somebody else or under writeback are skipped. Only the head page of
2090 * a THP is returned. Pages which are partially outside the range are
2091 * not returned.
2092 *
2093 * The entries have ascending indexes. The indices may not be consecutive
2094 * due to not-present entries, THP pages, pages which could not be locked
2095 * or pages under writeback.
2096 *
2097 * Return: The number of entries which were found.
2098 */
2099unsigned find_lock_entries(struct address_space *mapping, pgoff_t start,
2100 pgoff_t end, struct pagevec *pvec, pgoff_t *indices)
2101{
2102 XA_STATE(xas, &mapping->i_pages, start);
2103 struct page *page;
2104
2105 rcu_read_lock();
2106 while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
2107 if (!xa_is_value(page)) {
2108 if (page->index < start)
2109 goto put;
2110 VM_BUG_ON_PAGE(page->index != xas.xa_index, page);
2111 if (page->index + thp_nr_pages(page) - 1 > end)
2112 goto put;
2113 if (!trylock_page(page))
2114 goto put;
2115 if (page->mapping != mapping || PageWriteback(page))
2116 goto unlock;
2117 VM_BUG_ON_PAGE(!thp_contains(page, xas.xa_index),
2118 page);
2119 }
2120 indices[pvec->nr] = xas.xa_index;
2121 if (!pagevec_add(pvec, page))
2122 break;
2123 goto next;
2124unlock:
2125 unlock_page(page);
2126put:
2127 put_page(page);
2128next:
2d11e738
HD
2129 if (!xa_is_value(page) && PageTransHuge(page)) {
2130 unsigned int nr_pages = thp_nr_pages(page);
2131
2132 /* Final THP may cross MAX_LFS_FILESIZE on 32-bit */
2133 xas_set(&xas, page->index + nr_pages);
2134 if (xas.xa_index < nr_pages)
2135 break;
2136 }
5c211ba2
MWO
2137 }
2138 rcu_read_unlock();
2139
2140 return pagevec_count(pvec);
2141}
2142
1da177e4 2143/**
b947cee4 2144 * find_get_pages_range - gang pagecache lookup
1da177e4
LT
2145 * @mapping: The address_space to search
2146 * @start: The starting page index
b947cee4 2147 * @end: The final page index (inclusive)
1da177e4
LT
2148 * @nr_pages: The maximum number of pages
2149 * @pages: Where the resulting pages are placed
2150 *
b947cee4
JK
2151 * find_get_pages_range() will search for and return a group of up to @nr_pages
2152 * pages in the mapping starting at index @start and up to index @end
2153 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes
2154 * a reference against the returned pages.
1da177e4
LT
2155 *
2156 * The search returns a group of mapping-contiguous pages with ascending
2157 * indexes. There may be holes in the indices due to not-present pages.
d72dc8a2 2158 * We also update @start to index the next page for the traversal.
1da177e4 2159 *
a862f68a
MR
2160 * Return: the number of pages which were found. If this number is
2161 * smaller than @nr_pages, the end of specified range has been
b947cee4 2162 * reached.
1da177e4 2163 */
b947cee4
JK
2164unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
2165 pgoff_t end, unsigned int nr_pages,
2166 struct page **pages)
1da177e4 2167{
fd1b3cee
MW
2168 XA_STATE(xas, &mapping->i_pages, *start);
2169 struct page *page;
0fc9d104
KK
2170 unsigned ret = 0;
2171
2172 if (unlikely(!nr_pages))
2173 return 0;
a60637c8
NP
2174
2175 rcu_read_lock();
c7bad633 2176 while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
fd1b3cee
MW
2177 /* Skip over shadow, swap and DAX entries */
2178 if (xa_is_value(page))
8079b1c8 2179 continue;
a60637c8 2180
4101196b 2181 pages[ret] = find_subpage(page, xas.xa_index);
b947cee4 2182 if (++ret == nr_pages) {
5d3ee42f 2183 *start = xas.xa_index + 1;
b947cee4
JK
2184 goto out;
2185 }
a60637c8 2186 }
5b280c0c 2187
b947cee4
JK
2188 /*
2189 * We come here when there is no page beyond @end. We take care to not
2190 * overflow the index @start as it confuses some of the callers. This
fd1b3cee 2191 * breaks the iteration when there is a page at index -1 but that is
b947cee4
JK
2192 * already broken anyway.
2193 */
2194 if (end == (pgoff_t)-1)
2195 *start = (pgoff_t)-1;
2196 else
2197 *start = end + 1;
2198out:
a60637c8 2199 rcu_read_unlock();
d72dc8a2 2200
1da177e4
LT
2201 return ret;
2202}
2203
ebf43500
JA
2204/**
2205 * find_get_pages_contig - gang contiguous pagecache lookup
2206 * @mapping: The address_space to search
2207 * @index: The starting page index
2208 * @nr_pages: The maximum number of pages
2209 * @pages: Where the resulting pages are placed
2210 *
2211 * find_get_pages_contig() works exactly like find_get_pages(), except
2212 * that the returned number of pages are guaranteed to be contiguous.
2213 *
a862f68a 2214 * Return: the number of pages which were found.
ebf43500
JA
2215 */
2216unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
2217 unsigned int nr_pages, struct page **pages)
2218{
3ece58a2
MW
2219 XA_STATE(xas, &mapping->i_pages, index);
2220 struct page *page;
0fc9d104
KK
2221 unsigned int ret = 0;
2222
2223 if (unlikely(!nr_pages))
2224 return 0;
a60637c8
NP
2225
2226 rcu_read_lock();
3ece58a2 2227 for (page = xas_load(&xas); page; page = xas_next(&xas)) {
3ece58a2
MW
2228 if (xas_retry(&xas, page))
2229 continue;
2230 /*
2231 * If the entry has been swapped out, we can stop looking.
2232 * No current caller is looking for DAX entries.
2233 */
2234 if (xa_is_value(page))
8079b1c8 2235 break;
ebf43500 2236
4101196b 2237 if (!page_cache_get_speculative(page))
3ece58a2 2238 goto retry;
83929372 2239
4101196b 2240 /* Has the page moved or been split? */
3ece58a2
MW
2241 if (unlikely(page != xas_reload(&xas)))
2242 goto put_page;
a60637c8 2243
4101196b 2244 pages[ret] = find_subpage(page, xas.xa_index);
0fc9d104
KK
2245 if (++ret == nr_pages)
2246 break;
3ece58a2
MW
2247 continue;
2248put_page:
4101196b 2249 put_page(page);
3ece58a2
MW
2250retry:
2251 xas_reset(&xas);
ebf43500 2252 }
a60637c8
NP
2253 rcu_read_unlock();
2254 return ret;
ebf43500 2255}
ef71c15c 2256EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 2257
485bb99b 2258/**
c49f50d1 2259 * find_get_pages_range_tag - Find and return head pages matching @tag.
485bb99b
RD
2260 * @mapping: the address_space to search
2261 * @index: the starting page index
72b045ae 2262 * @end: The final page index (inclusive)
485bb99b
RD
2263 * @tag: the tag index
2264 * @nr_pages: the maximum number of pages
2265 * @pages: where the resulting pages are placed
2266 *
c49f50d1
MWO
2267 * Like find_get_pages(), except we only return head pages which are tagged
2268 * with @tag. @index is updated to the index immediately after the last
2269 * page we return, ready for the next iteration.
a862f68a
MR
2270 *
2271 * Return: the number of pages which were found.
1da177e4 2272 */
72b045ae 2273unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
a6906972 2274 pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
72b045ae 2275 struct page **pages)
1da177e4 2276{
a6906972
MW
2277 XA_STATE(xas, &mapping->i_pages, *index);
2278 struct page *page;
0fc9d104
KK
2279 unsigned ret = 0;
2280
2281 if (unlikely(!nr_pages))
2282 return 0;
a60637c8
NP
2283
2284 rcu_read_lock();
c7bad633 2285 while ((page = find_get_entry(&xas, end, tag))) {
a6906972
MW
2286 /*
2287 * Shadow entries should never be tagged, but this iteration
2288 * is lockless so there is a window for page reclaim to evict
2289 * a page we saw tagged. Skip over it.
2290 */
2291 if (xa_is_value(page))
139b6a6f 2292 continue;
a60637c8 2293
c49f50d1 2294 pages[ret] = page;
72b045ae 2295 if (++ret == nr_pages) {
c49f50d1 2296 *index = page->index + thp_nr_pages(page);
72b045ae
JK
2297 goto out;
2298 }
a60637c8 2299 }
5b280c0c 2300
72b045ae 2301 /*
a6906972 2302 * We come here when we got to @end. We take care to not overflow the
72b045ae 2303 * index @index as it confuses some of the callers. This breaks the
a6906972
MW
2304 * iteration when there is a page at index -1 but that is already
2305 * broken anyway.
72b045ae
JK
2306 */
2307 if (end == (pgoff_t)-1)
2308 *index = (pgoff_t)-1;
2309 else
2310 *index = end + 1;
2311out:
a60637c8 2312 rcu_read_unlock();
1da177e4 2313
1da177e4
LT
2314 return ret;
2315}
72b045ae 2316EXPORT_SYMBOL(find_get_pages_range_tag);
1da177e4 2317
76d42bd9
WF
2318/*
2319 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2320 * a _large_ part of the i/o request. Imagine the worst scenario:
2321 *
2322 * ---R__________________________________________B__________
2323 * ^ reading here ^ bad block(assume 4k)
2324 *
2325 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2326 * => failing the whole request => read(R) => read(R+1) =>
2327 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2328 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2329 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2330 *
2331 * It is going insane. Fix it by quickly scaling down the readahead size.
2332 */
0f8e2db4 2333static void shrink_readahead_size_eio(struct file_ra_state *ra)
76d42bd9 2334{
76d42bd9 2335 ra->ra_pages /= 4;
76d42bd9
WF
2336}
2337
cbd59c48
MWO
2338/*
2339 * filemap_get_read_batch - Get a batch of pages for read
2340 *
2341 * Get a batch of pages which represent a contiguous range of bytes
2342 * in the file. No tail pages will be returned. If @index is in the
2343 * middle of a THP, the entire THP will be returned. The last page in
2344 * the batch may have Readahead set or be not Uptodate so that the
2345 * caller can take the appropriate action.
2346 */
2347static void filemap_get_read_batch(struct address_space *mapping,
2348 pgoff_t index, pgoff_t max, struct pagevec *pvec)
2349{
2350 XA_STATE(xas, &mapping->i_pages, index);
2351 struct page *head;
2352
2353 rcu_read_lock();
2354 for (head = xas_load(&xas); head; head = xas_next(&xas)) {
2355 if (xas_retry(&xas, head))
2356 continue;
2357 if (xas.xa_index > max || xa_is_value(head))
2358 break;
2359 if (!page_cache_get_speculative(head))
2360 goto retry;
2361
2362 /* Has the page moved or been split? */
2363 if (unlikely(head != xas_reload(&xas)))
2364 goto put_page;
2365
2366 if (!pagevec_add(pvec, head))
2367 break;
2368 if (!PageUptodate(head))
2369 break;
2370 if (PageReadahead(head))
2371 break;
2372 xas.xa_index = head->index + thp_nr_pages(head) - 1;
2373 xas.xa_offset = (xas.xa_index >> xas.xa_shift) & XA_CHUNK_MASK;
2374 continue;
2375put_page:
2376 put_page(head);
2377retry:
2378 xas_reset(&xas);
2379 }
2380 rcu_read_unlock();
2381}
2382
68430303
MWO
2383static int filemap_read_page(struct file *file, struct address_space *mapping,
2384 struct page *page)
723ef24b 2385{
723ef24b
KO
2386 int error;
2387
723ef24b 2388 /*
68430303
MWO
2389 * A previous I/O error may have been due to temporary failures,
2390 * eg. multipath errors. PG_error will be set again if readpage
2391 * fails.
723ef24b
KO
2392 */
2393 ClearPageError(page);
2394 /* Start the actual read. The read will unlock the page. */
68430303
MWO
2395 error = mapping->a_ops->readpage(file, page);
2396 if (error)
2397 return error;
723ef24b 2398
aa1ec2f6 2399 error = wait_on_page_locked_killable(page);
68430303
MWO
2400 if (error)
2401 return error;
aa1ec2f6
MWO
2402 if (PageUptodate(page))
2403 return 0;
aa1ec2f6
MWO
2404 shrink_readahead_size_eio(&file->f_ra);
2405 return -EIO;
723ef24b
KO
2406}
2407
fce70da3
MWO
2408static bool filemap_range_uptodate(struct address_space *mapping,
2409 loff_t pos, struct iov_iter *iter, struct page *page)
2410{
2411 int count;
2412
2413 if (PageUptodate(page))
2414 return true;
2415 /* pipes can't handle partially uptodate pages */
2416 if (iov_iter_is_pipe(iter))
2417 return false;
2418 if (!mapping->a_ops->is_partially_uptodate)
2419 return false;
2420 if (mapping->host->i_blkbits >= (PAGE_SHIFT + thp_order(page)))
2421 return false;
2422
2423 count = iter->count;
2424 if (page_offset(page) > pos) {
2425 count -= page_offset(page) - pos;
2426 pos = 0;
2427 } else {
2428 pos -= page_offset(page);
2429 }
2430
2431 return mapping->a_ops->is_partially_uptodate(page, pos, count);
2432}
2433
4612aeef
MWO
2434static int filemap_update_page(struct kiocb *iocb,
2435 struct address_space *mapping, struct iov_iter *iter,
fce70da3 2436 struct page *page)
723ef24b 2437{
ffdc8dab 2438 struct folio *folio = page_folio(page);
723ef24b
KO
2439 int error;
2440
730633f0
JK
2441 if (iocb->ki_flags & IOCB_NOWAIT) {
2442 if (!filemap_invalidate_trylock_shared(mapping))
2443 return -EAGAIN;
2444 } else {
2445 filemap_invalidate_lock_shared(mapping);
2446 }
2447
ffdc8dab 2448 if (!folio_trylock(folio)) {
730633f0 2449 error = -EAGAIN;
87d1d7b6 2450 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
730633f0 2451 goto unlock_mapping;
87d1d7b6 2452 if (!(iocb->ki_flags & IOCB_WAITQ)) {
730633f0 2453 filemap_invalidate_unlock_shared(mapping);
ffdc8dab 2454 put_and_wait_on_page_locked(&folio->page, TASK_KILLABLE);
4612aeef 2455 return AOP_TRUNCATED_PAGE;
bd8a1f36 2456 }
ffdc8dab 2457 error = __folio_lock_async(folio, iocb->ki_waitq);
87d1d7b6 2458 if (error)
730633f0 2459 goto unlock_mapping;
723ef24b 2460 }
723ef24b 2461
730633f0 2462 error = AOP_TRUNCATED_PAGE;
ffdc8dab 2463 if (!folio->mapping)
730633f0 2464 goto unlock;
723ef24b 2465
fce70da3 2466 error = 0;
ffdc8dab 2467 if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, &folio->page))
fce70da3
MWO
2468 goto unlock;
2469
2470 error = -EAGAIN;
2471 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2472 goto unlock;
2473
ffdc8dab 2474 error = filemap_read_page(iocb->ki_filp, mapping, &folio->page);
730633f0 2475 goto unlock_mapping;
fce70da3 2476unlock:
ffdc8dab 2477 folio_unlock(folio);
730633f0
JK
2478unlock_mapping:
2479 filemap_invalidate_unlock_shared(mapping);
2480 if (error == AOP_TRUNCATED_PAGE)
ffdc8dab 2481 folio_put(folio);
fce70da3 2482 return error;
723ef24b
KO
2483}
2484
f253e185
MWO
2485static int filemap_create_page(struct file *file,
2486 struct address_space *mapping, pgoff_t index,
2487 struct pagevec *pvec)
723ef24b 2488{
723ef24b
KO
2489 struct page *page;
2490 int error;
2491
723ef24b
KO
2492 page = page_cache_alloc(mapping);
2493 if (!page)
f253e185 2494 return -ENOMEM;
723ef24b 2495
730633f0
JK
2496 /*
2497 * Protect against truncate / hole punch. Grabbing invalidate_lock here
2498 * assures we cannot instantiate and bring uptodate new pagecache pages
2499 * after evicting page cache during truncate and before actually
2500 * freeing blocks. Note that we could release invalidate_lock after
2501 * inserting the page into page cache as the locked page would then be
2502 * enough to synchronize with hole punching. But there are code paths
2503 * such as filemap_update_page() filling in partially uptodate pages or
2504 * ->readpages() that need to hold invalidate_lock while mapping blocks
2505 * for IO so let's hold the lock here as well to keep locking rules
2506 * simple.
2507 */
2508 filemap_invalidate_lock_shared(mapping);
723ef24b 2509 error = add_to_page_cache_lru(page, mapping, index,
f253e185
MWO
2510 mapping_gfp_constraint(mapping, GFP_KERNEL));
2511 if (error == -EEXIST)
2512 error = AOP_TRUNCATED_PAGE;
2513 if (error)
2514 goto error;
2515
2516 error = filemap_read_page(file, mapping, page);
2517 if (error)
2518 goto error;
2519
730633f0 2520 filemap_invalidate_unlock_shared(mapping);
f253e185
MWO
2521 pagevec_add(pvec, page);
2522 return 0;
2523error:
730633f0 2524 filemap_invalidate_unlock_shared(mapping);
68430303 2525 put_page(page);
f253e185 2526 return error;
723ef24b
KO
2527}
2528
5963fe03
MWO
2529static int filemap_readahead(struct kiocb *iocb, struct file *file,
2530 struct address_space *mapping, struct page *page,
2531 pgoff_t last_index)
2532{
2533 if (iocb->ki_flags & IOCB_NOIO)
2534 return -EAGAIN;
2535 page_cache_async_readahead(mapping, &file->f_ra, file, page,
2536 page->index, last_index - page->index);
2537 return 0;
2538}
2539
3a6bae48 2540static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter,
ff993ba1 2541 struct pagevec *pvec)
06c04442
KO
2542{
2543 struct file *filp = iocb->ki_filp;
2544 struct address_space *mapping = filp->f_mapping;
2545 struct file_ra_state *ra = &filp->f_ra;
2546 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
cbd59c48 2547 pgoff_t last_index;
2642fca6 2548 struct page *page;
cbd59c48 2549 int err = 0;
06c04442 2550
cbd59c48 2551 last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE);
2642fca6 2552retry:
06c04442
KO
2553 if (fatal_signal_pending(current))
2554 return -EINTR;
2555
cbd59c48 2556 filemap_get_read_batch(mapping, index, last_index, pvec);
2642fca6
MWO
2557 if (!pagevec_count(pvec)) {
2558 if (iocb->ki_flags & IOCB_NOIO)
2559 return -EAGAIN;
2560 page_cache_sync_readahead(mapping, ra, filp, index,
2561 last_index - index);
2562 filemap_get_read_batch(mapping, index, last_index, pvec);
2563 }
f253e185
MWO
2564 if (!pagevec_count(pvec)) {
2565 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2566 return -EAGAIN;
2567 err = filemap_create_page(filp, mapping,
2568 iocb->ki_pos >> PAGE_SHIFT, pvec);
2569 if (err == AOP_TRUNCATED_PAGE)
2642fca6 2570 goto retry;
f253e185
MWO
2571 return err;
2572 }
06c04442 2573
2642fca6
MWO
2574 page = pvec->pages[pagevec_count(pvec) - 1];
2575 if (PageReadahead(page)) {
2576 err = filemap_readahead(iocb, filp, mapping, page, last_index);
2577 if (err)
2578 goto err;
2579 }
2580 if (!PageUptodate(page)) {
2581 if ((iocb->ki_flags & IOCB_WAITQ) && pagevec_count(pvec) > 1)
2582 iocb->ki_flags |= IOCB_NOWAIT;
2583 err = filemap_update_page(iocb, mapping, iter, page);
2584 if (err)
2585 goto err;
06c04442
KO
2586 }
2587
2642fca6 2588 return 0;
cbd59c48 2589err:
2642fca6
MWO
2590 if (err < 0)
2591 put_page(page);
2592 if (likely(--pvec->nr))
ff993ba1 2593 return 0;
4612aeef 2594 if (err == AOP_TRUNCATED_PAGE)
2642fca6
MWO
2595 goto retry;
2596 return err;
06c04442
KO
2597}
2598
485bb99b 2599/**
87fa0f3e
CH
2600 * filemap_read - Read data from the page cache.
2601 * @iocb: The iocb to read.
2602 * @iter: Destination for the data.
2603 * @already_read: Number of bytes already read by the caller.
485bb99b 2604 *
87fa0f3e
CH
2605 * Copies data from the page cache. If the data is not currently present,
2606 * uses the readahead and readpage address_space operations to fetch it.
1da177e4 2607 *
87fa0f3e
CH
2608 * Return: Total number of bytes copied, including those already read by
2609 * the caller. If an error happens before any bytes are copied, returns
2610 * a negative error number.
1da177e4 2611 */
87fa0f3e
CH
2612ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2613 ssize_t already_read)
1da177e4 2614{
47c27bc4 2615 struct file *filp = iocb->ki_filp;
06c04442 2616 struct file_ra_state *ra = &filp->f_ra;
36e78914 2617 struct address_space *mapping = filp->f_mapping;
1da177e4 2618 struct inode *inode = mapping->host;
ff993ba1
MWO
2619 struct pagevec pvec;
2620 int i, error = 0;
06c04442
KO
2621 bool writably_mapped;
2622 loff_t isize, end_offset;
1da177e4 2623
723ef24b 2624 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
d05c5f7b 2625 return 0;
3644e2d2
KO
2626 if (unlikely(!iov_iter_count(iter)))
2627 return 0;
2628
c2a9737f 2629 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
cbd59c48 2630 pagevec_init(&pvec);
c2a9737f 2631
06c04442 2632 do {
1da177e4 2633 cond_resched();
5abf186a 2634
723ef24b 2635 /*
06c04442
KO
2636 * If we've already successfully copied some data, then we
2637 * can no longer safely return -EIOCBQUEUED. Hence mark
2638 * an async read NOWAIT at that point.
723ef24b 2639 */
87fa0f3e 2640 if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
723ef24b
KO
2641 iocb->ki_flags |= IOCB_NOWAIT;
2642
ff993ba1
MWO
2643 error = filemap_get_pages(iocb, iter, &pvec);
2644 if (error < 0)
06c04442 2645 break;
1da177e4 2646
06c04442
KO
2647 /*
2648 * i_size must be checked after we know the pages are Uptodate.
2649 *
2650 * Checking i_size after the check allows us to calculate
2651 * the correct value for "nr", which means the zero-filled
2652 * part of the page is not copied back to userspace (unless
2653 * another truncate extends the file - this is desired though).
2654 */
2655 isize = i_size_read(inode);
2656 if (unlikely(iocb->ki_pos >= isize))
2657 goto put_pages;
06c04442
KO
2658 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2659
06c04442
KO
2660 /*
2661 * Once we start copying data, we don't want to be touching any
2662 * cachelines that might be contended:
2663 */
2664 writably_mapped = mapping_writably_mapped(mapping);
2665
2666 /*
2667 * When a sequential read accesses a page several times, only
2668 * mark it as accessed the first time.
2669 */
2670 if (iocb->ki_pos >> PAGE_SHIFT !=
2671 ra->prev_pos >> PAGE_SHIFT)
ff993ba1 2672 mark_page_accessed(pvec.pages[0]);
06c04442 2673
ff993ba1 2674 for (i = 0; i < pagevec_count(&pvec); i++) {
cbd59c48
MWO
2675 struct page *page = pvec.pages[i];
2676 size_t page_size = thp_size(page);
2677 size_t offset = iocb->ki_pos & (page_size - 1);
2678 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2679 page_size - offset);
2680 size_t copied;
06c04442 2681
cbd59c48
MWO
2682 if (end_offset < page_offset(page))
2683 break;
2684 if (i > 0)
2685 mark_page_accessed(page);
06c04442
KO
2686 /*
2687 * If users can be writing to this page using arbitrary
2688 * virtual addresses, take care about potential aliasing
2689 * before reading the page on the kernel side.
2690 */
cbd59c48
MWO
2691 if (writably_mapped) {
2692 int j;
2693
2694 for (j = 0; j < thp_nr_pages(page); j++)
2695 flush_dcache_page(page + j);
2696 }
06c04442 2697
cbd59c48 2698 copied = copy_page_to_iter(page, offset, bytes, iter);
06c04442 2699
87fa0f3e 2700 already_read += copied;
06c04442
KO
2701 iocb->ki_pos += copied;
2702 ra->prev_pos = iocb->ki_pos;
2703
2704 if (copied < bytes) {
2705 error = -EFAULT;
2706 break;
2707 }
1da177e4 2708 }
06c04442 2709put_pages:
ff993ba1
MWO
2710 for (i = 0; i < pagevec_count(&pvec); i++)
2711 put_page(pvec.pages[i]);
cbd59c48 2712 pagevec_reinit(&pvec);
06c04442 2713 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
1da177e4 2714
0c6aa263 2715 file_accessed(filp);
06c04442 2716
87fa0f3e 2717 return already_read ? already_read : error;
1da177e4 2718}
87fa0f3e 2719EXPORT_SYMBOL_GPL(filemap_read);
1da177e4 2720
485bb99b 2721/**
6abd2322 2722 * generic_file_read_iter - generic filesystem read routine
485bb99b 2723 * @iocb: kernel I/O control block
6abd2322 2724 * @iter: destination for the data read
485bb99b 2725 *
6abd2322 2726 * This is the "read_iter()" routine for all filesystems
1da177e4 2727 * that can use the page cache directly.
41da51bc
AG
2728 *
2729 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2730 * be returned when no data can be read without waiting for I/O requests
2731 * to complete; it doesn't prevent readahead.
2732 *
2733 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2734 * requests shall be made for the read or for readahead. When no data
2735 * can be read, -EAGAIN shall be returned. When readahead would be
2736 * triggered, a partial, possibly empty read shall be returned.
2737 *
a862f68a
MR
2738 * Return:
2739 * * number of bytes copied, even for partial reads
41da51bc 2740 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
1da177e4
LT
2741 */
2742ssize_t
ed978a81 2743generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1da177e4 2744{
e7080a43 2745 size_t count = iov_iter_count(iter);
47c27bc4 2746 ssize_t retval = 0;
e7080a43
NS
2747
2748 if (!count)
826ea860 2749 return 0; /* skip atime */
1da177e4 2750
2ba48ce5 2751 if (iocb->ki_flags & IOCB_DIRECT) {
47c27bc4 2752 struct file *file = iocb->ki_filp;
ed978a81
AV
2753 struct address_space *mapping = file->f_mapping;
2754 struct inode *inode = mapping->host;
543ade1f 2755 loff_t size;
1da177e4 2756
1da177e4 2757 size = i_size_read(inode);
6be96d3a 2758 if (iocb->ki_flags & IOCB_NOWAIT) {
7a60d6d7
JA
2759 if (filemap_range_needs_writeback(mapping, iocb->ki_pos,
2760 iocb->ki_pos + count - 1))
6be96d3a
GR
2761 return -EAGAIN;
2762 } else {
2763 retval = filemap_write_and_wait_range(mapping,
2764 iocb->ki_pos,
2765 iocb->ki_pos + count - 1);
2766 if (retval < 0)
826ea860 2767 return retval;
6be96d3a 2768 }
d8d3d94b 2769
0d5b0cf2
CH
2770 file_accessed(file);
2771
5ecda137 2772 retval = mapping->a_ops->direct_IO(iocb, iter);
c3a69024 2773 if (retval >= 0) {
c64fb5c7 2774 iocb->ki_pos += retval;
5ecda137 2775 count -= retval;
9fe55eea 2776 }
ab2125df
PB
2777 if (retval != -EIOCBQUEUED)
2778 iov_iter_revert(iter, count - iov_iter_count(iter));
66f998f6 2779
9fe55eea
SW
2780 /*
2781 * Btrfs can have a short DIO read if we encounter
2782 * compressed extents, so if there was an error, or if
2783 * we've already read everything we wanted to, or if
2784 * there was a short read because we hit EOF, go ahead
2785 * and return. Otherwise fallthrough to buffered io for
fbbbad4b
MW
2786 * the rest of the read. Buffered reads will not work for
2787 * DAX files, so don't bother trying.
9fe55eea 2788 */
5ecda137 2789 if (retval < 0 || !count || iocb->ki_pos >= size ||
0d5b0cf2 2790 IS_DAX(inode))
826ea860 2791 return retval;
1da177e4
LT
2792 }
2793
826ea860 2794 return filemap_read(iocb, iter, retval);
1da177e4 2795}
ed978a81 2796EXPORT_SYMBOL(generic_file_read_iter);
1da177e4 2797
54fa39ac
MWO
2798static inline loff_t page_seek_hole_data(struct xa_state *xas,
2799 struct address_space *mapping, struct page *page,
2800 loff_t start, loff_t end, bool seek_data)
41139aa4 2801{
54fa39ac
MWO
2802 const struct address_space_operations *ops = mapping->a_ops;
2803 size_t offset, bsz = i_blocksize(mapping->host);
2804
41139aa4 2805 if (xa_is_value(page) || PageUptodate(page))
54fa39ac
MWO
2806 return seek_data ? start : end;
2807 if (!ops->is_partially_uptodate)
2808 return seek_data ? end : start;
2809
2810 xas_pause(xas);
2811 rcu_read_unlock();
2812 lock_page(page);
2813 if (unlikely(page->mapping != mapping))
2814 goto unlock;
2815
2816 offset = offset_in_thp(page, start) & ~(bsz - 1);
2817
2818 do {
2819 if (ops->is_partially_uptodate(page, offset, bsz) == seek_data)
2820 break;
2821 start = (start + bsz) & ~(bsz - 1);
2822 offset += bsz;
2823 } while (offset < thp_size(page));
2824unlock:
2825 unlock_page(page);
2826 rcu_read_lock();
2827 return start;
41139aa4
MWO
2828}
2829
2830static inline
2831unsigned int seek_page_size(struct xa_state *xas, struct page *page)
2832{
2833 if (xa_is_value(page))
2834 return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
2835 return thp_size(page);
2836}
2837
2838/**
2839 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
2840 * @mapping: Address space to search.
2841 * @start: First byte to consider.
2842 * @end: Limit of search (exclusive).
2843 * @whence: Either SEEK_HOLE or SEEK_DATA.
2844 *
2845 * If the page cache knows which blocks contain holes and which blocks
2846 * contain data, your filesystem can use this function to implement
2847 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are
2848 * entirely memory-based such as tmpfs, and filesystems which support
2849 * unwritten extents.
2850 *
f0953a1b 2851 * Return: The requested offset on success, or -ENXIO if @whence specifies
41139aa4
MWO
2852 * SEEK_DATA and there is no data after @start. There is an implicit hole
2853 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
2854 * and @end contain data.
2855 */
2856loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
2857 loff_t end, int whence)
2858{
2859 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
ed98b015 2860 pgoff_t max = (end - 1) >> PAGE_SHIFT;
41139aa4
MWO
2861 bool seek_data = (whence == SEEK_DATA);
2862 struct page *page;
2863
2864 if (end <= start)
2865 return -ENXIO;
2866
2867 rcu_read_lock();
2868 while ((page = find_get_entry(&xas, max, XA_PRESENT))) {
ed98b015
HD
2869 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
2870 unsigned int seek_size;
41139aa4
MWO
2871
2872 if (start < pos) {
2873 if (!seek_data)
2874 goto unlock;
2875 start = pos;
2876 }
2877
ed98b015
HD
2878 seek_size = seek_page_size(&xas, page);
2879 pos = round_up(pos + 1, seek_size);
54fa39ac
MWO
2880 start = page_seek_hole_data(&xas, mapping, page, start, pos,
2881 seek_data);
2882 if (start < pos)
41139aa4 2883 goto unlock;
ed98b015
HD
2884 if (start >= end)
2885 break;
2886 if (seek_size > PAGE_SIZE)
2887 xas_set(&xas, pos >> PAGE_SHIFT);
41139aa4
MWO
2888 if (!xa_is_value(page))
2889 put_page(page);
2890 }
41139aa4 2891 if (seek_data)
ed98b015 2892 start = -ENXIO;
41139aa4
MWO
2893unlock:
2894 rcu_read_unlock();
ed98b015 2895 if (page && !xa_is_value(page))
41139aa4 2896 put_page(page);
41139aa4
MWO
2897 if (start > end)
2898 return end;
2899 return start;
2900}
2901
1da177e4 2902#ifdef CONFIG_MMU
1da177e4 2903#define MMAP_LOTSAMISS (100)
6b4c9f44 2904/*
c1e8d7c6 2905 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
6b4c9f44
JB
2906 * @vmf - the vm_fault for this fault.
2907 * @page - the page to lock.
2908 * @fpin - the pointer to the file we may pin (or is already pinned).
2909 *
c1e8d7c6 2910 * This works similar to lock_page_or_retry in that it can drop the mmap_lock.
6b4c9f44 2911 * It differs in that it actually returns the page locked if it returns 1 and 0
c1e8d7c6 2912 * if it couldn't lock the page. If we did have to drop the mmap_lock then fpin
6b4c9f44
JB
2913 * will point to the pinned file and needs to be fput()'ed at a later point.
2914 */
2915static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2916 struct file **fpin)
2917{
7c23c782
MWO
2918 struct folio *folio = page_folio(page);
2919
2920 if (folio_trylock(folio))
6b4c9f44
JB
2921 return 1;
2922
8b0f9fa2
LT
2923 /*
2924 * NOTE! This will make us return with VM_FAULT_RETRY, but with
c1e8d7c6 2925 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
8b0f9fa2
LT
2926 * is supposed to work. We have way too many special cases..
2927 */
6b4c9f44
JB
2928 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2929 return 0;
2930
2931 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2932 if (vmf->flags & FAULT_FLAG_KILLABLE) {
af7f29d9 2933 if (__folio_lock_killable(folio)) {
6b4c9f44 2934 /*
c1e8d7c6 2935 * We didn't have the right flags to drop the mmap_lock,
6b4c9f44
JB
2936 * but all fault_handlers only check for fatal signals
2937 * if we return VM_FAULT_RETRY, so we need to drop the
c1e8d7c6 2938 * mmap_lock here and return 0 if we don't have a fpin.
6b4c9f44
JB
2939 */
2940 if (*fpin == NULL)
d8ed45c5 2941 mmap_read_unlock(vmf->vma->vm_mm);
6b4c9f44
JB
2942 return 0;
2943 }
2944 } else
7c23c782
MWO
2945 __folio_lock(folio);
2946
6b4c9f44
JB
2947 return 1;
2948}
2949
ef00e08e 2950/*
6b4c9f44
JB
2951 * Synchronous readahead happens when we don't even find a page in the page
2952 * cache at all. We don't want to perform IO under the mmap sem, so if we have
2953 * to drop the mmap sem we return the file that was pinned in order for us to do
2954 * that. If we didn't pin a file then we return NULL. The file that is
2955 * returned needs to be fput()'ed when we're done with it.
ef00e08e 2956 */
6b4c9f44 2957static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
ef00e08e 2958{
2a1180f1
JB
2959 struct file *file = vmf->vma->vm_file;
2960 struct file_ra_state *ra = &file->f_ra;
ef00e08e 2961 struct address_space *mapping = file->f_mapping;
fcd9ae4f 2962 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
6b4c9f44 2963 struct file *fpin = NULL;
e630bfac 2964 unsigned int mmap_miss;
ef00e08e
LT
2965
2966 /* If we don't want any read-ahead, don't bother */
2a1180f1 2967 if (vmf->vma->vm_flags & VM_RAND_READ)
6b4c9f44 2968 return fpin;
275b12bf 2969 if (!ra->ra_pages)
6b4c9f44 2970 return fpin;
ef00e08e 2971
2a1180f1 2972 if (vmf->vma->vm_flags & VM_SEQ_READ) {
6b4c9f44 2973 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
fcd9ae4f 2974 page_cache_sync_ra(&ractl, ra->ra_pages);
6b4c9f44 2975 return fpin;
ef00e08e
LT
2976 }
2977
207d04ba 2978 /* Avoid banging the cache line if not needed */
e630bfac
KS
2979 mmap_miss = READ_ONCE(ra->mmap_miss);
2980 if (mmap_miss < MMAP_LOTSAMISS * 10)
2981 WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
ef00e08e
LT
2982
2983 /*
2984 * Do we miss much more than hit in this file? If so,
2985 * stop bothering with read-ahead. It will only hurt.
2986 */
e630bfac 2987 if (mmap_miss > MMAP_LOTSAMISS)
6b4c9f44 2988 return fpin;
ef00e08e 2989
d30a1100
WF
2990 /*
2991 * mmap read-around
2992 */
6b4c9f44 2993 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
db660d46 2994 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
600e19af
RG
2995 ra->size = ra->ra_pages;
2996 ra->async_size = ra->ra_pages / 4;
db660d46
DH
2997 ractl._index = ra->start;
2998 do_page_cache_ra(&ractl, ra->size, ra->async_size);
6b4c9f44 2999 return fpin;
ef00e08e
LT
3000}
3001
3002/*
3003 * Asynchronous readahead happens when we find the page and PG_readahead,
6b4c9f44 3004 * so we want to possibly extend the readahead further. We return the file that
c1e8d7c6 3005 * was pinned if we have to drop the mmap_lock in order to do IO.
ef00e08e 3006 */
6b4c9f44
JB
3007static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3008 struct page *page)
ef00e08e 3009{
2a1180f1
JB
3010 struct file *file = vmf->vma->vm_file;
3011 struct file_ra_state *ra = &file->f_ra;
ef00e08e 3012 struct address_space *mapping = file->f_mapping;
6b4c9f44 3013 struct file *fpin = NULL;
e630bfac 3014 unsigned int mmap_miss;
2a1180f1 3015 pgoff_t offset = vmf->pgoff;
ef00e08e
LT
3016
3017 /* If we don't want any read-ahead, don't bother */
5c72feee 3018 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
6b4c9f44 3019 return fpin;
e630bfac
KS
3020 mmap_miss = READ_ONCE(ra->mmap_miss);
3021 if (mmap_miss)
3022 WRITE_ONCE(ra->mmap_miss, --mmap_miss);
6b4c9f44
JB
3023 if (PageReadahead(page)) {
3024 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2fad6f5d
WF
3025 page_cache_async_readahead(mapping, ra, file,
3026 page, offset, ra->ra_pages);
6b4c9f44
JB
3027 }
3028 return fpin;
ef00e08e
LT
3029}
3030
485bb99b 3031/**
54cb8821 3032 * filemap_fault - read in file data for page fault handling
d0217ac0 3033 * @vmf: struct vm_fault containing details of the fault
485bb99b 3034 *
54cb8821 3035 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
3036 * mapped memory region to read in file data during a page fault.
3037 *
3038 * The goto's are kind of ugly, but this streamlines the normal case of having
3039 * it in the page cache, and handles the special cases reasonably without
3040 * having a lot of duplicated code.
9a95f3cf 3041 *
c1e8d7c6 3042 * vma->vm_mm->mmap_lock must be held on entry.
9a95f3cf 3043 *
c1e8d7c6 3044 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
a4985833 3045 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
9a95f3cf 3046 *
c1e8d7c6 3047 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
9a95f3cf
PC
3048 * has not been released.
3049 *
3050 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
a862f68a
MR
3051 *
3052 * Return: bitwise-OR of %VM_FAULT_ codes.
1da177e4 3053 */
2bcd6454 3054vm_fault_t filemap_fault(struct vm_fault *vmf)
1da177e4
LT
3055{
3056 int error;
11bac800 3057 struct file *file = vmf->vma->vm_file;
6b4c9f44 3058 struct file *fpin = NULL;
1da177e4 3059 struct address_space *mapping = file->f_mapping;
1da177e4 3060 struct inode *inode = mapping->host;
ef00e08e 3061 pgoff_t offset = vmf->pgoff;
9ab2594f 3062 pgoff_t max_off;
1da177e4 3063 struct page *page;
2bcd6454 3064 vm_fault_t ret = 0;
730633f0 3065 bool mapping_locked = false;
1da177e4 3066
9ab2594f
MW
3067 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3068 if (unlikely(offset >= max_off))
5307cc1a 3069 return VM_FAULT_SIGBUS;
1da177e4 3070
1da177e4 3071 /*
49426420 3072 * Do we have something in the page cache already?
1da177e4 3073 */
ef00e08e 3074 page = find_get_page(mapping, offset);
730633f0 3075 if (likely(page)) {
1da177e4 3076 /*
730633f0
JK
3077 * We found the page, so try async readahead before waiting for
3078 * the lock.
1da177e4 3079 */
730633f0
JK
3080 if (!(vmf->flags & FAULT_FLAG_TRIED))
3081 fpin = do_async_mmap_readahead(vmf, page);
3082 if (unlikely(!PageUptodate(page))) {
3083 filemap_invalidate_lock_shared(mapping);
3084 mapping_locked = true;
3085 }
3086 } else {
ef00e08e 3087 /* No page in the page cache at all */
ef00e08e 3088 count_vm_event(PGMAJFAULT);
2262185c 3089 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
ef00e08e 3090 ret = VM_FAULT_MAJOR;
6b4c9f44 3091 fpin = do_sync_mmap_readahead(vmf);
ef00e08e 3092retry_find:
730633f0
JK
3093 /*
3094 * See comment in filemap_create_page() why we need
3095 * invalidate_lock
3096 */
3097 if (!mapping_locked) {
3098 filemap_invalidate_lock_shared(mapping);
3099 mapping_locked = true;
3100 }
a75d4c33
JB
3101 page = pagecache_get_page(mapping, offset,
3102 FGP_CREAT|FGP_FOR_MMAP,
3103 vmf->gfp_mask);
6b4c9f44
JB
3104 if (!page) {
3105 if (fpin)
3106 goto out_retry;
730633f0 3107 filemap_invalidate_unlock_shared(mapping);
e520e932 3108 return VM_FAULT_OOM;
6b4c9f44 3109 }
1da177e4
LT
3110 }
3111
6b4c9f44
JB
3112 if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
3113 goto out_retry;
b522c94d
ML
3114
3115 /* Did it get truncated? */
585e5a7b 3116 if (unlikely(compound_head(page)->mapping != mapping)) {
b522c94d
ML
3117 unlock_page(page);
3118 put_page(page);
3119 goto retry_find;
3120 }
520e5ba4 3121 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
b522c94d 3122
1da177e4 3123 /*
d00806b1
NP
3124 * We have a locked page in the page cache, now we need to check
3125 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 3126 */
730633f0
JK
3127 if (unlikely(!PageUptodate(page))) {
3128 /*
3129 * The page was in cache and uptodate and now it is not.
3130 * Strange but possible since we didn't hold the page lock all
3131 * the time. Let's drop everything get the invalidate lock and
3132 * try again.
3133 */
3134 if (!mapping_locked) {
3135 unlock_page(page);
3136 put_page(page);
3137 goto retry_find;
3138 }
1da177e4 3139 goto page_not_uptodate;
730633f0 3140 }
1da177e4 3141
6b4c9f44 3142 /*
c1e8d7c6 3143 * We've made it this far and we had to drop our mmap_lock, now is the
6b4c9f44
JB
3144 * time to return to the upper layer and have it re-find the vma and
3145 * redo the fault.
3146 */
3147 if (fpin) {
3148 unlock_page(page);
3149 goto out_retry;
3150 }
730633f0
JK
3151 if (mapping_locked)
3152 filemap_invalidate_unlock_shared(mapping);
6b4c9f44 3153
ef00e08e
LT
3154 /*
3155 * Found the page and have a reference on it.
3156 * We must recheck i_size under page lock.
3157 */
9ab2594f
MW
3158 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3159 if (unlikely(offset >= max_off)) {
d00806b1 3160 unlock_page(page);
09cbfeaf 3161 put_page(page);
5307cc1a 3162 return VM_FAULT_SIGBUS;
d00806b1
NP
3163 }
3164
d0217ac0 3165 vmf->page = page;
83c54070 3166 return ret | VM_FAULT_LOCKED;
1da177e4 3167
1da177e4 3168page_not_uptodate:
1da177e4
LT
3169 /*
3170 * Umm, take care of errors if the page isn't up-to-date.
3171 * Try to re-read it _once_. We do this synchronously,
3172 * because there really aren't any performance issues here
3173 * and we need to check for errors.
3174 */
6b4c9f44 3175 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
d31fa86a 3176 error = filemap_read_page(file, mapping, page);
6b4c9f44
JB
3177 if (fpin)
3178 goto out_retry;
09cbfeaf 3179 put_page(page);
d00806b1
NP
3180
3181 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 3182 goto retry_find;
730633f0 3183 filemap_invalidate_unlock_shared(mapping);
1da177e4 3184
d0217ac0 3185 return VM_FAULT_SIGBUS;
6b4c9f44
JB
3186
3187out_retry:
3188 /*
c1e8d7c6 3189 * We dropped the mmap_lock, we need to return to the fault handler to
6b4c9f44
JB
3190 * re-find the vma and come back and find our hopefully still populated
3191 * page.
3192 */
3193 if (page)
3194 put_page(page);
730633f0
JK
3195 if (mapping_locked)
3196 filemap_invalidate_unlock_shared(mapping);
6b4c9f44
JB
3197 if (fpin)
3198 fput(fpin);
3199 return ret | VM_FAULT_RETRY;
54cb8821
NP
3200}
3201EXPORT_SYMBOL(filemap_fault);
3202
f9ce0be7 3203static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page)
f1820361 3204{
f9ce0be7
KS
3205 struct mm_struct *mm = vmf->vma->vm_mm;
3206
3207 /* Huge page is mapped? No need to proceed. */
3208 if (pmd_trans_huge(*vmf->pmd)) {
3209 unlock_page(page);
3210 put_page(page);
3211 return true;
3212 }
3213
3214 if (pmd_none(*vmf->pmd) && PageTransHuge(page)) {
3215 vm_fault_t ret = do_set_pmd(vmf, page);
3216 if (!ret) {
3217 /* The page is mapped successfully, reference consumed. */
3218 unlock_page(page);
3219 return true;
3220 }
3221 }
3222
3223 if (pmd_none(*vmf->pmd)) {
3224 vmf->ptl = pmd_lock(mm, vmf->pmd);
3225 if (likely(pmd_none(*vmf->pmd))) {
3226 mm_inc_nr_ptes(mm);
3227 pmd_populate(mm, vmf->pmd, vmf->prealloc_pte);
3228 vmf->prealloc_pte = NULL;
3229 }
3230 spin_unlock(vmf->ptl);
3231 }
3232
3233 /* See comment in handle_pte_fault() */
3234 if (pmd_devmap_trans_unstable(vmf->pmd)) {
3235 unlock_page(page);
3236 put_page(page);
3237 return true;
3238 }
3239
3240 return false;
3241}
3242
3243static struct page *next_uptodate_page(struct page *page,
3244 struct address_space *mapping,
3245 struct xa_state *xas, pgoff_t end_pgoff)
3246{
3247 unsigned long max_idx;
3248
3249 do {
3250 if (!page)
3251 return NULL;
3252 if (xas_retry(xas, page))
3253 continue;
3254 if (xa_is_value(page))
3255 continue;
3256 if (PageLocked(page))
3257 continue;
3258 if (!page_cache_get_speculative(page))
3259 continue;
3260 /* Has the page moved or been split? */
3261 if (unlikely(page != xas_reload(xas)))
3262 goto skip;
3263 if (!PageUptodate(page) || PageReadahead(page))
3264 goto skip;
3265 if (PageHWPoison(page))
3266 goto skip;
3267 if (!trylock_page(page))
3268 goto skip;
3269 if (page->mapping != mapping)
3270 goto unlock;
3271 if (!PageUptodate(page))
3272 goto unlock;
3273 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3274 if (xas->xa_index >= max_idx)
3275 goto unlock;
3276 return page;
3277unlock:
3278 unlock_page(page);
3279skip:
3280 put_page(page);
3281 } while ((page = xas_next_entry(xas, end_pgoff)) != NULL);
3282
3283 return NULL;
3284}
3285
3286static inline struct page *first_map_page(struct address_space *mapping,
3287 struct xa_state *xas,
3288 pgoff_t end_pgoff)
3289{
3290 return next_uptodate_page(xas_find(xas, end_pgoff),
3291 mapping, xas, end_pgoff);
3292}
3293
3294static inline struct page *next_map_page(struct address_space *mapping,
3295 struct xa_state *xas,
3296 pgoff_t end_pgoff)
3297{
3298 return next_uptodate_page(xas_next_entry(xas, end_pgoff),
3299 mapping, xas, end_pgoff);
3300}
3301
3302vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3303 pgoff_t start_pgoff, pgoff_t end_pgoff)
3304{
3305 struct vm_area_struct *vma = vmf->vma;
3306 struct file *file = vma->vm_file;
f1820361 3307 struct address_space *mapping = file->f_mapping;
bae473a4 3308 pgoff_t last_pgoff = start_pgoff;
9d3af4b4 3309 unsigned long addr;
070e807c 3310 XA_STATE(xas, &mapping->i_pages, start_pgoff);
27a83a60 3311 struct page *head, *page;
e630bfac 3312 unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
f9ce0be7 3313 vm_fault_t ret = 0;
f1820361
KS
3314
3315 rcu_read_lock();
f9ce0be7
KS
3316 head = first_map_page(mapping, &xas, end_pgoff);
3317 if (!head)
3318 goto out;
f1820361 3319
f9ce0be7
KS
3320 if (filemap_map_pmd(vmf, head)) {
3321 ret = VM_FAULT_NOPAGE;
3322 goto out;
3323 }
f1820361 3324
9d3af4b4
WD
3325 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3326 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
f9ce0be7 3327 do {
27a83a60 3328 page = find_subpage(head, xas.xa_index);
f9ce0be7 3329 if (PageHWPoison(page))
f1820361
KS
3330 goto unlock;
3331
e630bfac
KS
3332 if (mmap_miss > 0)
3333 mmap_miss--;
7267ec00 3334
9d3af4b4 3335 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
f9ce0be7 3336 vmf->pte += xas.xa_index - last_pgoff;
070e807c 3337 last_pgoff = xas.xa_index;
f9ce0be7
KS
3338
3339 if (!pte_none(*vmf->pte))
7267ec00 3340 goto unlock;
f9ce0be7 3341
46bdb427 3342 /* We're about to handle the fault */
9d3af4b4 3343 if (vmf->address == addr)
46bdb427 3344 ret = VM_FAULT_NOPAGE;
46bdb427 3345
9d3af4b4 3346 do_set_pte(vmf, page, addr);
f9ce0be7 3347 /* no need to invalidate: a not-present page won't be cached */
9d3af4b4 3348 update_mmu_cache(vma, addr, vmf->pte);
27a83a60 3349 unlock_page(head);
f9ce0be7 3350 continue;
f1820361 3351unlock:
27a83a60 3352 unlock_page(head);
27a83a60 3353 put_page(head);
f9ce0be7
KS
3354 } while ((head = next_map_page(mapping, &xas, end_pgoff)) != NULL);
3355 pte_unmap_unlock(vmf->pte, vmf->ptl);
3356out:
f1820361 3357 rcu_read_unlock();
e630bfac 3358 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
f9ce0be7 3359 return ret;
f1820361
KS
3360}
3361EXPORT_SYMBOL(filemap_map_pages);
3362
2bcd6454 3363vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
4fcf1c62 3364{
5df1a672 3365 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
4fcf1c62 3366 struct page *page = vmf->page;
2bcd6454 3367 vm_fault_t ret = VM_FAULT_LOCKED;
4fcf1c62 3368
5df1a672 3369 sb_start_pagefault(mapping->host->i_sb);
11bac800 3370 file_update_time(vmf->vma->vm_file);
4fcf1c62 3371 lock_page(page);
5df1a672 3372 if (page->mapping != mapping) {
4fcf1c62
JK
3373 unlock_page(page);
3374 ret = VM_FAULT_NOPAGE;
3375 goto out;
3376 }
14da9200
JK
3377 /*
3378 * We mark the page dirty already here so that when freeze is in
3379 * progress, we are guaranteed that writeback during freezing will
3380 * see the dirty page and writeprotect it again.
3381 */
3382 set_page_dirty(page);
1d1d1a76 3383 wait_for_stable_page(page);
4fcf1c62 3384out:
5df1a672 3385 sb_end_pagefault(mapping->host->i_sb);
4fcf1c62
JK
3386 return ret;
3387}
4fcf1c62 3388
f0f37e2f 3389const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 3390 .fault = filemap_fault,
f1820361 3391 .map_pages = filemap_map_pages,
4fcf1c62 3392 .page_mkwrite = filemap_page_mkwrite,
1da177e4
LT
3393};
3394
3395/* This is used for a general mmap of a disk file */
3396
68d68ff6 3397int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
3398{
3399 struct address_space *mapping = file->f_mapping;
3400
3401 if (!mapping->a_ops->readpage)
3402 return -ENOEXEC;
3403 file_accessed(file);
3404 vma->vm_ops = &generic_file_vm_ops;
3405 return 0;
3406}
1da177e4
LT
3407
3408/*
3409 * This is for filesystems which do not implement ->writepage.
3410 */
3411int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3412{
3413 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3414 return -EINVAL;
3415 return generic_file_mmap(file, vma);
3416}
3417#else
4b96a37d 3418vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
45397228 3419{
4b96a37d 3420 return VM_FAULT_SIGBUS;
45397228 3421}
68d68ff6 3422int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
3423{
3424 return -ENOSYS;
3425}
68d68ff6 3426int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
3427{
3428 return -ENOSYS;
3429}
3430#endif /* CONFIG_MMU */
3431
45397228 3432EXPORT_SYMBOL(filemap_page_mkwrite);
1da177e4
LT
3433EXPORT_SYMBOL(generic_file_mmap);
3434EXPORT_SYMBOL(generic_file_readonly_mmap);
3435
67f9fd91
SL
3436static struct page *wait_on_page_read(struct page *page)
3437{
3438 if (!IS_ERR(page)) {
3439 wait_on_page_locked(page);
3440 if (!PageUptodate(page)) {
09cbfeaf 3441 put_page(page);
67f9fd91
SL
3442 page = ERR_PTR(-EIO);
3443 }
3444 }
3445 return page;
3446}
3447
32b63529 3448static struct page *do_read_cache_page(struct address_space *mapping,
57f6b96c 3449 pgoff_t index,
5e5358e7 3450 int (*filler)(void *, struct page *),
0531b2aa
LT
3451 void *data,
3452 gfp_t gfp)
1da177e4 3453{
eb2be189 3454 struct page *page;
1da177e4
LT
3455 int err;
3456repeat:
3457 page = find_get_page(mapping, index);
3458 if (!page) {
453f85d4 3459 page = __page_cache_alloc(gfp);
eb2be189
NP
3460 if (!page)
3461 return ERR_PTR(-ENOMEM);
e6f67b8c 3462 err = add_to_page_cache_lru(page, mapping, index, gfp);
eb2be189 3463 if (unlikely(err)) {
09cbfeaf 3464 put_page(page);
eb2be189
NP
3465 if (err == -EEXIST)
3466 goto repeat;
22ecdb4f 3467 /* Presumably ENOMEM for xarray node */
1da177e4
LT
3468 return ERR_PTR(err);
3469 }
32b63529
MG
3470
3471filler:
6c45b454
CH
3472 if (filler)
3473 err = filler(data, page);
3474 else
3475 err = mapping->a_ops->readpage(data, page);
3476
1da177e4 3477 if (err < 0) {
09cbfeaf 3478 put_page(page);
32b63529 3479 return ERR_PTR(err);
1da177e4 3480 }
1da177e4 3481
32b63529
MG
3482 page = wait_on_page_read(page);
3483 if (IS_ERR(page))
3484 return page;
3485 goto out;
3486 }
1da177e4
LT
3487 if (PageUptodate(page))
3488 goto out;
3489
ebded027 3490 /*
0e9aa675 3491 * Page is not up to date and may be locked due to one of the following
ebded027
MG
3492 * case a: Page is being filled and the page lock is held
3493 * case b: Read/write error clearing the page uptodate status
3494 * case c: Truncation in progress (page locked)
3495 * case d: Reclaim in progress
3496 *
3497 * Case a, the page will be up to date when the page is unlocked.
3498 * There is no need to serialise on the page lock here as the page
3499 * is pinned so the lock gives no additional protection. Even if the
ce89fddf 3500 * page is truncated, the data is still valid if PageUptodate as
ebded027
MG
3501 * it's a race vs truncate race.
3502 * Case b, the page will not be up to date
3503 * Case c, the page may be truncated but in itself, the data may still
3504 * be valid after IO completes as it's a read vs truncate race. The
3505 * operation must restart if the page is not uptodate on unlock but
3506 * otherwise serialising on page lock to stabilise the mapping gives
3507 * no additional guarantees to the caller as the page lock is
3508 * released before return.
3509 * Case d, similar to truncation. If reclaim holds the page lock, it
3510 * will be a race with remove_mapping that determines if the mapping
3511 * is valid on unlock but otherwise the data is valid and there is
3512 * no need to serialise with page lock.
3513 *
3514 * As the page lock gives no additional guarantee, we optimistically
3515 * wait on the page to be unlocked and check if it's up to date and
3516 * use the page if it is. Otherwise, the page lock is required to
3517 * distinguish between the different cases. The motivation is that we
3518 * avoid spurious serialisations and wakeups when multiple processes
3519 * wait on the same page for IO to complete.
3520 */
3521 wait_on_page_locked(page);
3522 if (PageUptodate(page))
3523 goto out;
3524
3525 /* Distinguish between all the cases under the safety of the lock */
1da177e4 3526 lock_page(page);
ebded027
MG
3527
3528 /* Case c or d, restart the operation */
1da177e4
LT
3529 if (!page->mapping) {
3530 unlock_page(page);
09cbfeaf 3531 put_page(page);
32b63529 3532 goto repeat;
1da177e4 3533 }
ebded027
MG
3534
3535 /* Someone else locked and filled the page in a very small window */
1da177e4
LT
3536 if (PageUptodate(page)) {
3537 unlock_page(page);
3538 goto out;
3539 }
faffdfa0
XT
3540
3541 /*
3542 * A previous I/O error may have been due to temporary
3543 * failures.
3544 * Clear page error before actual read, PG_error will be
3545 * set again if read page fails.
3546 */
3547 ClearPageError(page);
32b63529
MG
3548 goto filler;
3549
c855ff37 3550out:
6fe6900e
NP
3551 mark_page_accessed(page);
3552 return page;
3553}
0531b2aa
LT
3554
3555/**
67f9fd91 3556 * read_cache_page - read into page cache, fill it if needed
0531b2aa
LT
3557 * @mapping: the page's address_space
3558 * @index: the page index
3559 * @filler: function to perform the read
5e5358e7 3560 * @data: first arg to filler(data, page) function, often left as NULL
0531b2aa 3561 *
0531b2aa 3562 * Read into the page cache. If a page already exists, and PageUptodate() is
67f9fd91 3563 * not set, try to fill the page and wait for it to become unlocked.
0531b2aa
LT
3564 *
3565 * If the page does not get brought uptodate, return -EIO.
a862f68a 3566 *
730633f0
JK
3567 * The function expects mapping->invalidate_lock to be already held.
3568 *
a862f68a 3569 * Return: up to date page on success, ERR_PTR() on failure.
0531b2aa 3570 */
67f9fd91 3571struct page *read_cache_page(struct address_space *mapping,
0531b2aa 3572 pgoff_t index,
5e5358e7 3573 int (*filler)(void *, struct page *),
0531b2aa
LT
3574 void *data)
3575{
d322a8e5
CH
3576 return do_read_cache_page(mapping, index, filler, data,
3577 mapping_gfp_mask(mapping));
0531b2aa 3578}
67f9fd91 3579EXPORT_SYMBOL(read_cache_page);
0531b2aa
LT
3580
3581/**
3582 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3583 * @mapping: the page's address_space
3584 * @index: the page index
3585 * @gfp: the page allocator flags to use if allocating
3586 *
3587 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
e6f67b8c 3588 * any new page allocations done using the specified allocation flags.
0531b2aa
LT
3589 *
3590 * If the page does not get brought uptodate, return -EIO.
a862f68a 3591 *
730633f0
JK
3592 * The function expects mapping->invalidate_lock to be already held.
3593 *
a862f68a 3594 * Return: up to date page on success, ERR_PTR() on failure.
0531b2aa
LT
3595 */
3596struct page *read_cache_page_gfp(struct address_space *mapping,
3597 pgoff_t index,
3598 gfp_t gfp)
3599{
6c45b454 3600 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
0531b2aa
LT
3601}
3602EXPORT_SYMBOL(read_cache_page_gfp);
3603
afddba49
NP
3604int pagecache_write_begin(struct file *file, struct address_space *mapping,
3605 loff_t pos, unsigned len, unsigned flags,
3606 struct page **pagep, void **fsdata)
3607{
3608 const struct address_space_operations *aops = mapping->a_ops;
3609
4e02ed4b 3610 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 3611 pagep, fsdata);
afddba49
NP
3612}
3613EXPORT_SYMBOL(pagecache_write_begin);
3614
3615int pagecache_write_end(struct file *file, struct address_space *mapping,
3616 loff_t pos, unsigned len, unsigned copied,
3617 struct page *page, void *fsdata)
3618{
3619 const struct address_space_operations *aops = mapping->a_ops;
afddba49 3620
4e02ed4b 3621 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
3622}
3623EXPORT_SYMBOL(pagecache_write_end);
3624
a92853b6
KK
3625/*
3626 * Warn about a page cache invalidation failure during a direct I/O write.
3627 */
3628void dio_warn_stale_pagecache(struct file *filp)
3629{
3630 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3631 char pathname[128];
a92853b6
KK
3632 char *path;
3633
5df1a672 3634 errseq_set(&filp->f_mapping->wb_err, -EIO);
a92853b6
KK
3635 if (__ratelimit(&_rs)) {
3636 path = file_path(filp, pathname, sizeof(pathname));
3637 if (IS_ERR(path))
3638 path = "(unknown)";
3639 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
3640 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3641 current->comm);
3642 }
3643}
3644
1da177e4 3645ssize_t
1af5bb49 3646generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3647{
3648 struct file *file = iocb->ki_filp;
3649 struct address_space *mapping = file->f_mapping;
3650 struct inode *inode = mapping->host;
1af5bb49 3651 loff_t pos = iocb->ki_pos;
1da177e4 3652 ssize_t written;
a969e903
CH
3653 size_t write_len;
3654 pgoff_t end;
1da177e4 3655
0c949334 3656 write_len = iov_iter_count(from);
09cbfeaf 3657 end = (pos + write_len - 1) >> PAGE_SHIFT;
a969e903 3658
6be96d3a
GR
3659 if (iocb->ki_flags & IOCB_NOWAIT) {
3660 /* If there are pages to writeback, return */
5df1a672 3661 if (filemap_range_has_page(file->f_mapping, pos,
35f12f0f 3662 pos + write_len - 1))
6be96d3a
GR
3663 return -EAGAIN;
3664 } else {
3665 written = filemap_write_and_wait_range(mapping, pos,
3666 pos + write_len - 1);
3667 if (written)
3668 goto out;
3669 }
a969e903
CH
3670
3671 /*
3672 * After a write we want buffered reads to be sure to go to disk to get
3673 * the new data. We invalidate clean cached page from the region we're
3674 * about to write. We do this *before* the write so that we can return
6ccfa806 3675 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903 3676 */
55635ba7 3677 written = invalidate_inode_pages2_range(mapping,
09cbfeaf 3678 pos >> PAGE_SHIFT, end);
55635ba7
AR
3679 /*
3680 * If a page can not be invalidated, return 0 to fall back
3681 * to buffered write.
3682 */
3683 if (written) {
3684 if (written == -EBUSY)
3685 return 0;
3686 goto out;
a969e903
CH
3687 }
3688
639a93a5 3689 written = mapping->a_ops->direct_IO(iocb, from);
a969e903
CH
3690
3691 /*
3692 * Finally, try again to invalidate clean pages which might have been
3693 * cached by non-direct readahead, or faulted in by get_user_pages()
3694 * if the source of the write was an mmap'ed region of the file
3695 * we're writing. Either one is a pretty crazy thing to do,
3696 * so we don't support it 100%. If this invalidation
3697 * fails, tough, the write still worked...
332391a9
LC
3698 *
3699 * Most of the time we do not need this since dio_complete() will do
3700 * the invalidation for us. However there are some file systems that
3701 * do not end up with dio_complete() being called, so let's not break
80c1fe90
KK
3702 * them by removing it completely.
3703 *
9266a140
KK
3704 * Noticeable example is a blkdev_direct_IO().
3705 *
80c1fe90 3706 * Skip invalidation for async writes or if mapping has no pages.
a969e903 3707 */
9266a140
KK
3708 if (written > 0 && mapping->nrpages &&
3709 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3710 dio_warn_stale_pagecache(file);
a969e903 3711
1da177e4 3712 if (written > 0) {
0116651c 3713 pos += written;
639a93a5 3714 write_len -= written;
0116651c
NK
3715 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3716 i_size_write(inode, pos);
1da177e4
LT
3717 mark_inode_dirty(inode);
3718 }
5cb6c6c7 3719 iocb->ki_pos = pos;
1da177e4 3720 }
ab2125df
PB
3721 if (written != -EIOCBQUEUED)
3722 iov_iter_revert(from, write_len - iov_iter_count(from));
a969e903 3723out:
1da177e4
LT
3724 return written;
3725}
3726EXPORT_SYMBOL(generic_file_direct_write);
3727
eb2be189
NP
3728/*
3729 * Find or create a page at the given pagecache position. Return the locked
3730 * page. This function is specifically for buffered writes.
3731 */
54566b2c
NP
3732struct page *grab_cache_page_write_begin(struct address_space *mapping,
3733 pgoff_t index, unsigned flags)
eb2be189 3734{
eb2be189 3735 struct page *page;
bbddabe2 3736 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
0faa70cb 3737
54566b2c 3738 if (flags & AOP_FLAG_NOFS)
2457aec6
MG
3739 fgp_flags |= FGP_NOFS;
3740
3741 page = pagecache_get_page(mapping, index, fgp_flags,
45f87de5 3742 mapping_gfp_mask(mapping));
c585a267 3743 if (page)
2457aec6 3744 wait_for_stable_page(page);
eb2be189 3745
eb2be189
NP
3746 return page;
3747}
54566b2c 3748EXPORT_SYMBOL(grab_cache_page_write_begin);
eb2be189 3749
3b93f911 3750ssize_t generic_perform_write(struct file *file,
afddba49
NP
3751 struct iov_iter *i, loff_t pos)
3752{
3753 struct address_space *mapping = file->f_mapping;
3754 const struct address_space_operations *a_ops = mapping->a_ops;
3755 long status = 0;
3756 ssize_t written = 0;
674b892e
NP
3757 unsigned int flags = 0;
3758
afddba49
NP
3759 do {
3760 struct page *page;
afddba49
NP
3761 unsigned long offset; /* Offset into pagecache page */
3762 unsigned long bytes; /* Bytes to write to page */
3763 size_t copied; /* Bytes copied from user */
3764 void *fsdata;
3765
09cbfeaf
KS
3766 offset = (pos & (PAGE_SIZE - 1));
3767 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
3768 iov_iter_count(i));
3769
3770again:
00a3d660
LT
3771 /*
3772 * Bring in the user page that we will copy from _first_.
3773 * Otherwise there's a nasty deadlock on copying from the
3774 * same page as we're writing to, without it being marked
3775 * up-to-date.
00a3d660
LT
3776 */
3777 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3778 status = -EFAULT;
3779 break;
3780 }
3781
296291cd
JK
3782 if (fatal_signal_pending(current)) {
3783 status = -EINTR;
3784 break;
3785 }
3786
674b892e 3787 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49 3788 &page, &fsdata);
2457aec6 3789 if (unlikely(status < 0))
afddba49
NP
3790 break;
3791
931e80e4 3792 if (mapping_writably_mapped(mapping))
3793 flush_dcache_page(page);
00a3d660 3794
f0b65f39 3795 copied = copy_page_from_iter_atomic(page, offset, bytes, i);
afddba49
NP
3796 flush_dcache_page(page);
3797
3798 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3799 page, fsdata);
f0b65f39
AV
3800 if (unlikely(status != copied)) {
3801 iov_iter_revert(i, copied - max(status, 0L));
3802 if (unlikely(status < 0))
3803 break;
3804 }
afddba49
NP
3805 cond_resched();
3806
bc1bb416 3807 if (unlikely(status == 0)) {
afddba49 3808 /*
bc1bb416
AV
3809 * A short copy made ->write_end() reject the
3810 * thing entirely. Might be memory poisoning
3811 * halfway through, might be a race with munmap,
3812 * might be severe memory pressure.
afddba49 3813 */
bc1bb416
AV
3814 if (copied)
3815 bytes = copied;
afddba49
NP
3816 goto again;
3817 }
f0b65f39
AV
3818 pos += status;
3819 written += status;
afddba49
NP
3820
3821 balance_dirty_pages_ratelimited(mapping);
afddba49
NP
3822 } while (iov_iter_count(i));
3823
3824 return written ? written : status;
3825}
3b93f911 3826EXPORT_SYMBOL(generic_perform_write);
1da177e4 3827
e4dd9de3 3828/**
8174202b 3829 * __generic_file_write_iter - write data to a file
e4dd9de3 3830 * @iocb: IO state structure (file, offset, etc.)
8174202b 3831 * @from: iov_iter with data to write
e4dd9de3
JK
3832 *
3833 * This function does all the work needed for actually writing data to a
3834 * file. It does all basic checks, removes SUID from the file, updates
3835 * modification times and calls proper subroutines depending on whether we
3836 * do direct IO or a standard buffered write.
3837 *
9608703e 3838 * It expects i_rwsem to be grabbed unless we work on a block device or similar
e4dd9de3
JK
3839 * object which does not need locking at all.
3840 *
3841 * This function does *not* take care of syncing data in case of O_SYNC write.
3842 * A caller has to handle it. This is mainly due to the fact that we want to
9608703e 3843 * avoid syncing under i_rwsem.
a862f68a
MR
3844 *
3845 * Return:
3846 * * number of bytes written, even for truncated writes
3847 * * negative error code if no data has been written at all
e4dd9de3 3848 */
8174202b 3849ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3850{
3851 struct file *file = iocb->ki_filp;
68d68ff6 3852 struct address_space *mapping = file->f_mapping;
1da177e4 3853 struct inode *inode = mapping->host;
3b93f911 3854 ssize_t written = 0;
1da177e4 3855 ssize_t err;
3b93f911 3856 ssize_t status;
1da177e4 3857
1da177e4 3858 /* We can write back this queue in page reclaim */
de1414a6 3859 current->backing_dev_info = inode_to_bdi(inode);
5fa8e0a1 3860 err = file_remove_privs(file);
1da177e4
LT
3861 if (err)
3862 goto out;
3863
c3b2da31
JB
3864 err = file_update_time(file);
3865 if (err)
3866 goto out;
1da177e4 3867
2ba48ce5 3868 if (iocb->ki_flags & IOCB_DIRECT) {
0b8def9d 3869 loff_t pos, endbyte;
fb5527e6 3870
1af5bb49 3871 written = generic_file_direct_write(iocb, from);
1da177e4 3872 /*
fbbbad4b
MW
3873 * If the write stopped short of completing, fall back to
3874 * buffered writes. Some filesystems do this for writes to
3875 * holes, for example. For DAX files, a buffered write will
3876 * not succeed (even if it did, DAX does not handle dirty
3877 * page-cache pages correctly).
1da177e4 3878 */
0b8def9d 3879 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
fbbbad4b
MW
3880 goto out;
3881
0b8def9d 3882 status = generic_perform_write(file, from, pos = iocb->ki_pos);
fb5527e6 3883 /*
3b93f911 3884 * If generic_perform_write() returned a synchronous error
fb5527e6
JM
3885 * then we want to return the number of bytes which were
3886 * direct-written, or the error code if that was zero. Note
3887 * that this differs from normal direct-io semantics, which
3888 * will return -EFOO even if some bytes were written.
3889 */
60bb4529 3890 if (unlikely(status < 0)) {
3b93f911 3891 err = status;
fb5527e6
JM
3892 goto out;
3893 }
fb5527e6
JM
3894 /*
3895 * We need to ensure that the page cache pages are written to
3896 * disk and invalidated to preserve the expected O_DIRECT
3897 * semantics.
3898 */
3b93f911 3899 endbyte = pos + status - 1;
0b8def9d 3900 err = filemap_write_and_wait_range(mapping, pos, endbyte);
fb5527e6 3901 if (err == 0) {
0b8def9d 3902 iocb->ki_pos = endbyte + 1;
3b93f911 3903 written += status;
fb5527e6 3904 invalidate_mapping_pages(mapping,
09cbfeaf
KS
3905 pos >> PAGE_SHIFT,
3906 endbyte >> PAGE_SHIFT);
fb5527e6
JM
3907 } else {
3908 /*
3909 * We don't know how much we wrote, so just return
3910 * the number of bytes which were direct-written
3911 */
3912 }
3913 } else {
0b8def9d
AV
3914 written = generic_perform_write(file, from, iocb->ki_pos);
3915 if (likely(written > 0))
3916 iocb->ki_pos += written;
fb5527e6 3917 }
1da177e4
LT
3918out:
3919 current->backing_dev_info = NULL;
3920 return written ? written : err;
3921}
8174202b 3922EXPORT_SYMBOL(__generic_file_write_iter);
e4dd9de3 3923
e4dd9de3 3924/**
8174202b 3925 * generic_file_write_iter - write data to a file
e4dd9de3 3926 * @iocb: IO state structure
8174202b 3927 * @from: iov_iter with data to write
e4dd9de3 3928 *
8174202b 3929 * This is a wrapper around __generic_file_write_iter() to be used by most
e4dd9de3 3930 * filesystems. It takes care of syncing the file in case of O_SYNC file
9608703e 3931 * and acquires i_rwsem as needed.
a862f68a
MR
3932 * Return:
3933 * * negative error code if no data has been written at all of
3934 * vfs_fsync_range() failed for a synchronous write
3935 * * number of bytes written, even for truncated writes
e4dd9de3 3936 */
8174202b 3937ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3938{
3939 struct file *file = iocb->ki_filp;
148f948b 3940 struct inode *inode = file->f_mapping->host;
1da177e4 3941 ssize_t ret;
1da177e4 3942
5955102c 3943 inode_lock(inode);
3309dd04
AV
3944 ret = generic_write_checks(iocb, from);
3945 if (ret > 0)
5f380c7f 3946 ret = __generic_file_write_iter(iocb, from);
5955102c 3947 inode_unlock(inode);
1da177e4 3948
e2592217
CH
3949 if (ret > 0)
3950 ret = generic_write_sync(iocb, ret);
1da177e4
LT
3951 return ret;
3952}
8174202b 3953EXPORT_SYMBOL(generic_file_write_iter);
1da177e4 3954
cf9a2ae8
DH
3955/**
3956 * try_to_release_page() - release old fs-specific metadata on a page
3957 *
3958 * @page: the page which the kernel is trying to free
3959 * @gfp_mask: memory allocation flags (and I/O mode)
3960 *
3961 * The address_space is to try to release any data against the page
a862f68a 3962 * (presumably at page->private).
cf9a2ae8 3963 *
266cf658
DH
3964 * This may also be called if PG_fscache is set on a page, indicating that the
3965 * page is known to the local caching routines.
3966 *
cf9a2ae8 3967 * The @gfp_mask argument specifies whether I/O may be performed to release
71baba4b 3968 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
cf9a2ae8 3969 *
a862f68a 3970 * Return: %1 if the release was successful, otherwise return zero.
cf9a2ae8
DH
3971 */
3972int try_to_release_page(struct page *page, gfp_t gfp_mask)
3973{
3974 struct address_space * const mapping = page->mapping;
3975
3976 BUG_ON(!PageLocked(page));
3977 if (PageWriteback(page))
3978 return 0;
3979
3980 if (mapping && mapping->a_ops->releasepage)
3981 return mapping->a_ops->releasepage(page, gfp_mask);
3982 return try_to_free_buffers(page);
3983}
3984
3985EXPORT_SYMBOL(try_to_release_page);