dax: Allow DAX code to replace exceptional entries
[linux-2.6-block.git] / mm / filemap.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
b95f1b31 12#include <linux/export.h>
1da177e4 13#include <linux/compiler.h>
f9fe48be 14#include <linux/dax.h>
1da177e4 15#include <linux/fs.h>
c22ce143 16#include <linux/uaccess.h>
c59ede7b 17#include <linux/capability.h>
1da177e4 18#include <linux/kernel_stat.h>
5a0e3ad6 19#include <linux/gfp.h>
1da177e4
LT
20#include <linux/mm.h>
21#include <linux/swap.h>
22#include <linux/mman.h>
23#include <linux/pagemap.h>
24#include <linux/file.h>
25#include <linux/uio.h>
26#include <linux/hash.h>
27#include <linux/writeback.h>
53253383 28#include <linux/backing-dev.h>
1da177e4
LT
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/security.h>
44110fe3 32#include <linux/cpuset.h>
2f718ffc 33#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
00501b53 34#include <linux/hugetlb.h>
8a9f3ccd 35#include <linux/memcontrol.h>
c515e1fd 36#include <linux/cleancache.h>
f1820361 37#include <linux/rmap.h>
0f8053a5
NP
38#include "internal.h"
39
fe0bfaaf
RJ
40#define CREATE_TRACE_POINTS
41#include <trace/events/filemap.h>
42
1da177e4 43/*
1da177e4
LT
44 * FIXME: remove all knowledge of the buffer layer from the core VM
45 */
148f948b 46#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 47
1da177e4
LT
48#include <asm/mman.h>
49
50/*
51 * Shared mappings implemented 30.11.1994. It's not fully working yet,
52 * though.
53 *
54 * Shared mappings now work. 15.8.1995 Bruno.
55 *
56 * finished 'unifying' the page and buffer cache and SMP-threaded the
57 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58 *
59 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60 */
61
62/*
63 * Lock ordering:
64 *
c8c06efa 65 * ->i_mmap_rwsem (truncate_pagecache)
1da177e4 66 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91
HD
67 * ->swap_lock (exclusive_swap_page, others)
68 * ->mapping->tree_lock
1da177e4 69 *
1b1dcc1b 70 * ->i_mutex
c8c06efa 71 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
1da177e4
LT
72 *
73 * ->mmap_sem
c8c06efa 74 * ->i_mmap_rwsem
b8072f09 75 * ->page_table_lock or pte_lock (various, mainly in memory.c)
1da177e4
LT
76 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
77 *
78 * ->mmap_sem
79 * ->lock_page (access_process_vm)
80 *
ccad2365 81 * ->i_mutex (generic_perform_write)
82591e6e 82 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
1da177e4 83 *
f758eeab 84 * bdi->wb.list_lock
a66979ab 85 * sb_lock (fs/fs-writeback.c)
1da177e4
LT
86 * ->mapping->tree_lock (__sync_single_inode)
87 *
c8c06efa 88 * ->i_mmap_rwsem
1da177e4
LT
89 * ->anon_vma.lock (vma_adjust)
90 *
91 * ->anon_vma.lock
b8072f09 92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 93 *
b8072f09 94 * ->page_table_lock or pte_lock
5d337b91 95 * ->swap_lock (try_to_unmap_one)
1da177e4
LT
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
98 * ->zone.lru_lock (follow_page->mark_page_accessed)
053837fc 99 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
1da177e4
LT
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
f758eeab 102 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
250df6ed 103 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
81f8c3a4 104 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
f758eeab 105 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 106 * ->inode->i_lock (zap_pte_range->set_page_dirty)
1da177e4
LT
107 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
108 *
c8c06efa 109 * ->i_mmap_rwsem
9a3c531d 110 * ->tasklist_lock (memory_failure, collect_procs_ao)
1da177e4
LT
111 */
112
91b0abe3
JW
113static void page_cache_tree_delete(struct address_space *mapping,
114 struct page *page, void *shadow)
115{
449dd698
JW
116 struct radix_tree_node *node;
117 unsigned long index;
118 unsigned int offset;
119 unsigned int tag;
120 void **slot;
91b0abe3 121
449dd698
JW
122 VM_BUG_ON(!PageLocked(page));
123
124 __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
125
126 if (shadow) {
f9fe48be 127 mapping->nrexceptional++;
91b0abe3 128 /*
f9fe48be 129 * Make sure the nrexceptional update is committed before
91b0abe3
JW
130 * the nrpages update so that final truncate racing
131 * with reclaim does not see both counters 0 at the
132 * same time and miss a shadow entry.
133 */
134 smp_wmb();
449dd698 135 }
91b0abe3 136 mapping->nrpages--;
449dd698
JW
137
138 if (!node) {
139 /* Clear direct pointer tags in root node */
140 mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
141 radix_tree_replace_slot(slot, shadow);
142 return;
143 }
144
145 /* Clear tree tags for the removed page */
146 index = page->index;
147 offset = index & RADIX_TREE_MAP_MASK;
148 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
149 if (test_bit(offset, node->tags[tag]))
150 radix_tree_tag_clear(&mapping->page_tree, index, tag);
151 }
152
153 /* Delete page, swap shadow entry */
154 radix_tree_replace_slot(slot, shadow);
155 workingset_node_pages_dec(node);
156 if (shadow)
157 workingset_node_shadows_inc(node);
158 else
159 if (__radix_tree_delete_node(&mapping->page_tree, node))
160 return;
161
162 /*
163 * Track node that only contains shadow entries.
164 *
165 * Avoid acquiring the list_lru lock if already tracked. The
166 * list_empty() test is safe as node->private_list is
167 * protected by mapping->tree_lock.
168 */
169 if (!workingset_node_pages(node) &&
170 list_empty(&node->private_list)) {
171 node->private_data = mapping;
172 list_lru_add(&workingset_shadow_nodes, &node->private_list);
173 }
91b0abe3
JW
174}
175
1da177e4 176/*
e64a782f 177 * Delete a page from the page cache and free it. Caller has to make
1da177e4 178 * sure the page is locked and that nobody else uses it - or that usage
fdf1cdb9 179 * is safe. The caller must hold the mapping's tree_lock.
1da177e4 180 */
62cccb8c 181void __delete_from_page_cache(struct page *page, void *shadow)
1da177e4
LT
182{
183 struct address_space *mapping = page->mapping;
184
fe0bfaaf 185 trace_mm_filemap_delete_from_page_cache(page);
c515e1fd
DM
186 /*
187 * if we're uptodate, flush out into the cleancache, otherwise
188 * invalidate any existing cleancache entries. We can't leave
189 * stale data around in the cleancache once our page is gone
190 */
191 if (PageUptodate(page) && PageMappedToDisk(page))
192 cleancache_put_page(page);
193 else
3167760f 194 cleancache_invalidate_page(mapping, page);
c515e1fd 195
06b241f3
HD
196 VM_BUG_ON_PAGE(page_mapped(page), page);
197 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
198 int mapcount;
199
200 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
201 current->comm, page_to_pfn(page));
202 dump_page(page, "still mapped when deleted");
203 dump_stack();
204 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
205
206 mapcount = page_mapcount(page);
207 if (mapping_exiting(mapping) &&
208 page_count(page) >= mapcount + 2) {
209 /*
210 * All vmas have already been torn down, so it's
211 * a good bet that actually the page is unmapped,
212 * and we'd prefer not to leak it: if we're wrong,
213 * some other bad page check should catch it later.
214 */
215 page_mapcount_reset(page);
216 atomic_sub(mapcount, &page->_count);
217 }
218 }
219
91b0abe3
JW
220 page_cache_tree_delete(mapping, page, shadow);
221
1da177e4 222 page->mapping = NULL;
b85e0eff 223 /* Leave page->index set: truncation lookup relies upon it */
91b0abe3 224
4165b9b4
MH
225 /* hugetlb pages do not participate in page cache accounting. */
226 if (!PageHuge(page))
227 __dec_zone_page_state(page, NR_FILE_PAGES);
4b02108a
KM
228 if (PageSwapBacked(page))
229 __dec_zone_page_state(page, NR_SHMEM);
3a692790
LT
230
231 /*
b9ea2515
KK
232 * At this point page must be either written or cleaned by truncate.
233 * Dirty page here signals a bug and loss of unwritten data.
3a692790 234 *
b9ea2515
KK
235 * This fixes dirty accounting after removing the page entirely but
236 * leaves PageDirty set: it has no effect for truncated page and
237 * anyway will be cleared before returning page into buddy allocator.
3a692790 238 */
b9ea2515 239 if (WARN_ON_ONCE(PageDirty(page)))
62cccb8c 240 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
1da177e4
LT
241}
242
702cfbf9
MK
243/**
244 * delete_from_page_cache - delete page from page cache
245 * @page: the page which the kernel is trying to remove from page cache
246 *
247 * This must be called only on pages that have been verified to be in the page
248 * cache and locked. It will never put the page into the free list, the caller
249 * has a reference on the page.
250 */
251void delete_from_page_cache(struct page *page)
1da177e4
LT
252{
253 struct address_space *mapping = page->mapping;
c4843a75
GT
254 unsigned long flags;
255
6072d13c 256 void (*freepage)(struct page *);
1da177e4 257
cd7619d6 258 BUG_ON(!PageLocked(page));
1da177e4 259
6072d13c 260 freepage = mapping->a_ops->freepage;
c4843a75 261
c4843a75 262 spin_lock_irqsave(&mapping->tree_lock, flags);
62cccb8c 263 __delete_from_page_cache(page, NULL);
c4843a75 264 spin_unlock_irqrestore(&mapping->tree_lock, flags);
6072d13c
LT
265
266 if (freepage)
267 freepage(page);
09cbfeaf 268 put_page(page);
97cecb5a
MK
269}
270EXPORT_SYMBOL(delete_from_page_cache);
271
865ffef3
DM
272static int filemap_check_errors(struct address_space *mapping)
273{
274 int ret = 0;
275 /* Check for outstanding write errors */
7fcbbaf1
JA
276 if (test_bit(AS_ENOSPC, &mapping->flags) &&
277 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
865ffef3 278 ret = -ENOSPC;
7fcbbaf1
JA
279 if (test_bit(AS_EIO, &mapping->flags) &&
280 test_and_clear_bit(AS_EIO, &mapping->flags))
865ffef3
DM
281 ret = -EIO;
282 return ret;
283}
284
1da177e4 285/**
485bb99b 286 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
287 * @mapping: address space structure to write
288 * @start: offset in bytes where the range starts
469eb4d0 289 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 290 * @sync_mode: enable synchronous operation
1da177e4 291 *
485bb99b
RD
292 * Start writeback against all of a mapping's dirty pages that lie
293 * within the byte offsets <start, end> inclusive.
294 *
1da177e4 295 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 296 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
297 * these two operations is that if a dirty page/buffer is encountered, it must
298 * be waited upon, and not just skipped over.
299 */
ebcf28e1
AM
300int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
301 loff_t end, int sync_mode)
1da177e4
LT
302{
303 int ret;
304 struct writeback_control wbc = {
305 .sync_mode = sync_mode,
05fe478d 306 .nr_to_write = LONG_MAX,
111ebb6e
OH
307 .range_start = start,
308 .range_end = end,
1da177e4
LT
309 };
310
311 if (!mapping_cap_writeback_dirty(mapping))
312 return 0;
313
b16b1deb 314 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
1da177e4 315 ret = do_writepages(mapping, &wbc);
b16b1deb 316 wbc_detach_inode(&wbc);
1da177e4
LT
317 return ret;
318}
319
320static inline int __filemap_fdatawrite(struct address_space *mapping,
321 int sync_mode)
322{
111ebb6e 323 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
324}
325
326int filemap_fdatawrite(struct address_space *mapping)
327{
328 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
329}
330EXPORT_SYMBOL(filemap_fdatawrite);
331
f4c0a0fd 332int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 333 loff_t end)
1da177e4
LT
334{
335 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
336}
f4c0a0fd 337EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 338
485bb99b
RD
339/**
340 * filemap_flush - mostly a non-blocking flush
341 * @mapping: target address_space
342 *
1da177e4
LT
343 * This is a mostly non-blocking flush. Not suitable for data-integrity
344 * purposes - I/O may not be started against all dirty pages.
345 */
346int filemap_flush(struct address_space *mapping)
347{
348 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
349}
350EXPORT_SYMBOL(filemap_flush);
351
aa750fd7
JN
352static int __filemap_fdatawait_range(struct address_space *mapping,
353 loff_t start_byte, loff_t end_byte)
1da177e4 354{
09cbfeaf
KS
355 pgoff_t index = start_byte >> PAGE_SHIFT;
356 pgoff_t end = end_byte >> PAGE_SHIFT;
1da177e4
LT
357 struct pagevec pvec;
358 int nr_pages;
aa750fd7 359 int ret = 0;
1da177e4 360
94004ed7 361 if (end_byte < start_byte)
865ffef3 362 goto out;
1da177e4
LT
363
364 pagevec_init(&pvec, 0);
1da177e4
LT
365 while ((index <= end) &&
366 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
367 PAGECACHE_TAG_WRITEBACK,
368 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
369 unsigned i;
370
371 for (i = 0; i < nr_pages; i++) {
372 struct page *page = pvec.pages[i];
373
374 /* until radix tree lookup accepts end_index */
375 if (page->index > end)
376 continue;
377
378 wait_on_page_writeback(page);
212260aa 379 if (TestClearPageError(page))
1da177e4
LT
380 ret = -EIO;
381 }
382 pagevec_release(&pvec);
383 cond_resched();
384 }
865ffef3 385out:
aa750fd7
JN
386 return ret;
387}
388
389/**
390 * filemap_fdatawait_range - wait for writeback to complete
391 * @mapping: address space structure to wait for
392 * @start_byte: offset in bytes where the range starts
393 * @end_byte: offset in bytes where the range ends (inclusive)
394 *
395 * Walk the list of under-writeback pages of the given address space
396 * in the given range and wait for all of them. Check error status of
397 * the address space and return it.
398 *
399 * Since the error status of the address space is cleared by this function,
400 * callers are responsible for checking the return value and handling and/or
401 * reporting the error.
402 */
403int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
404 loff_t end_byte)
405{
406 int ret, ret2;
407
408 ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
865ffef3
DM
409 ret2 = filemap_check_errors(mapping);
410 if (!ret)
411 ret = ret2;
1da177e4
LT
412
413 return ret;
414}
d3bccb6f
JK
415EXPORT_SYMBOL(filemap_fdatawait_range);
416
aa750fd7
JN
417/**
418 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
419 * @mapping: address space structure to wait for
420 *
421 * Walk the list of under-writeback pages of the given address space
422 * and wait for all of them. Unlike filemap_fdatawait(), this function
423 * does not clear error status of the address space.
424 *
425 * Use this function if callers don't handle errors themselves. Expected
426 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
427 * fsfreeze(8)
428 */
429void filemap_fdatawait_keep_errors(struct address_space *mapping)
430{
431 loff_t i_size = i_size_read(mapping->host);
432
433 if (i_size == 0)
434 return;
435
436 __filemap_fdatawait_range(mapping, 0, i_size - 1);
437}
438
1da177e4 439/**
485bb99b 440 * filemap_fdatawait - wait for all under-writeback pages to complete
1da177e4 441 * @mapping: address space structure to wait for
485bb99b
RD
442 *
443 * Walk the list of under-writeback pages of the given address space
aa750fd7
JN
444 * and wait for all of them. Check error status of the address space
445 * and return it.
446 *
447 * Since the error status of the address space is cleared by this function,
448 * callers are responsible for checking the return value and handling and/or
449 * reporting the error.
1da177e4
LT
450 */
451int filemap_fdatawait(struct address_space *mapping)
452{
453 loff_t i_size = i_size_read(mapping->host);
454
455 if (i_size == 0)
456 return 0;
457
94004ed7 458 return filemap_fdatawait_range(mapping, 0, i_size - 1);
1da177e4
LT
459}
460EXPORT_SYMBOL(filemap_fdatawait);
461
462int filemap_write_and_wait(struct address_space *mapping)
463{
28fd1298 464 int err = 0;
1da177e4 465
7f6d5b52
RZ
466 if ((!dax_mapping(mapping) && mapping->nrpages) ||
467 (dax_mapping(mapping) && mapping->nrexceptional)) {
28fd1298
OH
468 err = filemap_fdatawrite(mapping);
469 /*
470 * Even if the above returned error, the pages may be
471 * written partially (e.g. -ENOSPC), so we wait for it.
472 * But the -EIO is special case, it may indicate the worst
473 * thing (e.g. bug) happened, so we avoid waiting for it.
474 */
475 if (err != -EIO) {
476 int err2 = filemap_fdatawait(mapping);
477 if (!err)
478 err = err2;
479 }
865ffef3
DM
480 } else {
481 err = filemap_check_errors(mapping);
1da177e4 482 }
28fd1298 483 return err;
1da177e4 484}
28fd1298 485EXPORT_SYMBOL(filemap_write_and_wait);
1da177e4 486
485bb99b
RD
487/**
488 * filemap_write_and_wait_range - write out & wait on a file range
489 * @mapping: the address_space for the pages
490 * @lstart: offset in bytes where the range starts
491 * @lend: offset in bytes where the range ends (inclusive)
492 *
469eb4d0
AM
493 * Write out and wait upon file offsets lstart->lend, inclusive.
494 *
495 * Note that `lend' is inclusive (describes the last byte to be written) so
496 * that this function can be used to write to the very end-of-file (end = -1).
497 */
1da177e4
LT
498int filemap_write_and_wait_range(struct address_space *mapping,
499 loff_t lstart, loff_t lend)
500{
28fd1298 501 int err = 0;
1da177e4 502
7f6d5b52
RZ
503 if ((!dax_mapping(mapping) && mapping->nrpages) ||
504 (dax_mapping(mapping) && mapping->nrexceptional)) {
28fd1298
OH
505 err = __filemap_fdatawrite_range(mapping, lstart, lend,
506 WB_SYNC_ALL);
507 /* See comment of filemap_write_and_wait() */
508 if (err != -EIO) {
94004ed7
CH
509 int err2 = filemap_fdatawait_range(mapping,
510 lstart, lend);
28fd1298
OH
511 if (!err)
512 err = err2;
513 }
865ffef3
DM
514 } else {
515 err = filemap_check_errors(mapping);
1da177e4 516 }
28fd1298 517 return err;
1da177e4 518}
f6995585 519EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 520
ef6a3c63
MS
521/**
522 * replace_page_cache_page - replace a pagecache page with a new one
523 * @old: page to be replaced
524 * @new: page to replace with
525 * @gfp_mask: allocation mode
526 *
527 * This function replaces a page in the pagecache with a new one. On
528 * success it acquires the pagecache reference for the new page and
529 * drops it for the old page. Both the old and new pages must be
530 * locked. This function does not add the new page to the LRU, the
531 * caller must do that.
532 *
533 * The remove + add is atomic. The only way this function can fail is
534 * memory allocation failure.
535 */
536int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
537{
538 int error;
ef6a3c63 539
309381fe
SL
540 VM_BUG_ON_PAGE(!PageLocked(old), old);
541 VM_BUG_ON_PAGE(!PageLocked(new), new);
542 VM_BUG_ON_PAGE(new->mapping, new);
ef6a3c63 543
ef6a3c63
MS
544 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
545 if (!error) {
546 struct address_space *mapping = old->mapping;
547 void (*freepage)(struct page *);
c4843a75 548 unsigned long flags;
ef6a3c63
MS
549
550 pgoff_t offset = old->index;
551 freepage = mapping->a_ops->freepage;
552
09cbfeaf 553 get_page(new);
ef6a3c63
MS
554 new->mapping = mapping;
555 new->index = offset;
556
c4843a75 557 spin_lock_irqsave(&mapping->tree_lock, flags);
62cccb8c 558 __delete_from_page_cache(old, NULL);
ef6a3c63
MS
559 error = radix_tree_insert(&mapping->page_tree, offset, new);
560 BUG_ON(error);
561 mapping->nrpages++;
4165b9b4
MH
562
563 /*
564 * hugetlb pages do not participate in page cache accounting.
565 */
566 if (!PageHuge(new))
567 __inc_zone_page_state(new, NR_FILE_PAGES);
ef6a3c63
MS
568 if (PageSwapBacked(new))
569 __inc_zone_page_state(new, NR_SHMEM);
c4843a75 570 spin_unlock_irqrestore(&mapping->tree_lock, flags);
6a93ca8f 571 mem_cgroup_migrate(old, new);
ef6a3c63
MS
572 radix_tree_preload_end();
573 if (freepage)
574 freepage(old);
09cbfeaf 575 put_page(old);
ef6a3c63
MS
576 }
577
578 return error;
579}
580EXPORT_SYMBOL_GPL(replace_page_cache_page);
581
0cd6144a 582static int page_cache_tree_insert(struct address_space *mapping,
a528910e 583 struct page *page, void **shadowp)
0cd6144a 584{
449dd698 585 struct radix_tree_node *node;
0cd6144a
JW
586 void **slot;
587 int error;
588
e6145236 589 error = __radix_tree_create(&mapping->page_tree, page->index, 0,
449dd698
JW
590 &node, &slot);
591 if (error)
592 return error;
593 if (*slot) {
0cd6144a
JW
594 void *p;
595
596 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
597 if (!radix_tree_exceptional_entry(p))
598 return -EEXIST;
f9fe48be 599
f9fe48be 600 mapping->nrexceptional--;
4f622938
JK
601 if (!dax_mapping(mapping)) {
602 if (shadowp)
603 *shadowp = p;
604 if (node)
605 workingset_node_shadows_dec(node);
606 } else {
607 /* DAX can replace empty locked entry with a hole */
608 WARN_ON_ONCE(p !=
609 (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY |
610 RADIX_DAX_ENTRY_LOCK));
611 /* DAX accounts exceptional entries as normal pages */
612 if (node)
613 workingset_node_pages_dec(node);
614 }
0cd6144a 615 }
449dd698
JW
616 radix_tree_replace_slot(slot, page);
617 mapping->nrpages++;
618 if (node) {
619 workingset_node_pages_inc(node);
620 /*
621 * Don't track node that contains actual pages.
622 *
623 * Avoid acquiring the list_lru lock if already
624 * untracked. The list_empty() test is safe as
625 * node->private_list is protected by
626 * mapping->tree_lock.
627 */
628 if (!list_empty(&node->private_list))
629 list_lru_del(&workingset_shadow_nodes,
630 &node->private_list);
631 }
632 return 0;
0cd6144a
JW
633}
634
a528910e
JW
635static int __add_to_page_cache_locked(struct page *page,
636 struct address_space *mapping,
637 pgoff_t offset, gfp_t gfp_mask,
638 void **shadowp)
1da177e4 639{
00501b53
JW
640 int huge = PageHuge(page);
641 struct mem_cgroup *memcg;
e286781d
NP
642 int error;
643
309381fe
SL
644 VM_BUG_ON_PAGE(!PageLocked(page), page);
645 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
e286781d 646
00501b53
JW
647 if (!huge) {
648 error = mem_cgroup_try_charge(page, current->mm,
f627c2f5 649 gfp_mask, &memcg, false);
00501b53
JW
650 if (error)
651 return error;
652 }
1da177e4 653
5e4c0d97 654 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
66a0c8ee 655 if (error) {
00501b53 656 if (!huge)
f627c2f5 657 mem_cgroup_cancel_charge(page, memcg, false);
66a0c8ee
KS
658 return error;
659 }
660
09cbfeaf 661 get_page(page);
66a0c8ee
KS
662 page->mapping = mapping;
663 page->index = offset;
664
665 spin_lock_irq(&mapping->tree_lock);
a528910e 666 error = page_cache_tree_insert(mapping, page, shadowp);
66a0c8ee
KS
667 radix_tree_preload_end();
668 if (unlikely(error))
669 goto err_insert;
4165b9b4
MH
670
671 /* hugetlb pages do not participate in page cache accounting. */
672 if (!huge)
673 __inc_zone_page_state(page, NR_FILE_PAGES);
66a0c8ee 674 spin_unlock_irq(&mapping->tree_lock);
00501b53 675 if (!huge)
f627c2f5 676 mem_cgroup_commit_charge(page, memcg, false, false);
66a0c8ee
KS
677 trace_mm_filemap_add_to_page_cache(page);
678 return 0;
679err_insert:
680 page->mapping = NULL;
681 /* Leave page->index set: truncation relies upon it */
682 spin_unlock_irq(&mapping->tree_lock);
00501b53 683 if (!huge)
f627c2f5 684 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 685 put_page(page);
1da177e4
LT
686 return error;
687}
a528910e
JW
688
689/**
690 * add_to_page_cache_locked - add a locked page to the pagecache
691 * @page: page to add
692 * @mapping: the page's address_space
693 * @offset: page index
694 * @gfp_mask: page allocation mode
695 *
696 * This function is used to add a page to the pagecache. It must be locked.
697 * This function does not add the page to the LRU. The caller must do that.
698 */
699int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
700 pgoff_t offset, gfp_t gfp_mask)
701{
702 return __add_to_page_cache_locked(page, mapping, offset,
703 gfp_mask, NULL);
704}
e286781d 705EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4
LT
706
707int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 708 pgoff_t offset, gfp_t gfp_mask)
1da177e4 709{
a528910e 710 void *shadow = NULL;
4f98a2fe
RR
711 int ret;
712
48c935ad 713 __SetPageLocked(page);
a528910e
JW
714 ret = __add_to_page_cache_locked(page, mapping, offset,
715 gfp_mask, &shadow);
716 if (unlikely(ret))
48c935ad 717 __ClearPageLocked(page);
a528910e
JW
718 else {
719 /*
720 * The page might have been evicted from cache only
721 * recently, in which case it should be activated like
722 * any other repeatedly accessed page.
723 */
724 if (shadow && workingset_refault(shadow)) {
725 SetPageActive(page);
726 workingset_activation(page);
727 } else
728 ClearPageActive(page);
729 lru_cache_add(page);
730 }
1da177e4
LT
731 return ret;
732}
18bc0bbd 733EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1da177e4 734
44110fe3 735#ifdef CONFIG_NUMA
2ae88149 736struct page *__page_cache_alloc(gfp_t gfp)
44110fe3 737{
c0ff7453
MX
738 int n;
739 struct page *page;
740
44110fe3 741 if (cpuset_do_page_mem_spread()) {
cc9a6c87
MG
742 unsigned int cpuset_mems_cookie;
743 do {
d26914d1 744 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 745 n = cpuset_mem_spread_node();
96db800f 746 page = __alloc_pages_node(n, gfp, 0);
d26914d1 747 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
cc9a6c87 748
c0ff7453 749 return page;
44110fe3 750 }
2ae88149 751 return alloc_pages(gfp, 0);
44110fe3 752}
2ae88149 753EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
754#endif
755
1da177e4
LT
756/*
757 * In order to wait for pages to become available there must be
758 * waitqueues associated with pages. By using a hash table of
759 * waitqueues where the bucket discipline is to maintain all
760 * waiters on the same queue and wake all when any of the pages
761 * become available, and for the woken contexts to check to be
762 * sure the appropriate page became available, this saves space
763 * at a cost of "thundering herd" phenomena during rare hash
764 * collisions.
765 */
a4796e37 766wait_queue_head_t *page_waitqueue(struct page *page)
1da177e4
LT
767{
768 const struct zone *zone = page_zone(page);
769
770 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
771}
a4796e37 772EXPORT_SYMBOL(page_waitqueue);
1da177e4 773
920c7a5d 774void wait_on_page_bit(struct page *page, int bit_nr)
1da177e4
LT
775{
776 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
777
778 if (test_bit(bit_nr, &page->flags))
74316201 779 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
1da177e4
LT
780 TASK_UNINTERRUPTIBLE);
781}
782EXPORT_SYMBOL(wait_on_page_bit);
783
f62e00cc
KM
784int wait_on_page_bit_killable(struct page *page, int bit_nr)
785{
786 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
787
788 if (!test_bit(bit_nr, &page->flags))
789 return 0;
790
791 return __wait_on_bit(page_waitqueue(page), &wait,
74316201 792 bit_wait_io, TASK_KILLABLE);
f62e00cc
KM
793}
794
cbbce822
N
795int wait_on_page_bit_killable_timeout(struct page *page,
796 int bit_nr, unsigned long timeout)
797{
798 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
799
800 wait.key.timeout = jiffies + timeout;
801 if (!test_bit(bit_nr, &page->flags))
802 return 0;
803 return __wait_on_bit(page_waitqueue(page), &wait,
804 bit_wait_io_timeout, TASK_KILLABLE);
805}
806EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
807
385e1ca5
DH
808/**
809 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
697f619f
RD
810 * @page: Page defining the wait queue of interest
811 * @waiter: Waiter to add to the queue
385e1ca5
DH
812 *
813 * Add an arbitrary @waiter to the wait queue for the nominated @page.
814 */
815void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
816{
817 wait_queue_head_t *q = page_waitqueue(page);
818 unsigned long flags;
819
820 spin_lock_irqsave(&q->lock, flags);
821 __add_wait_queue(q, waiter);
822 spin_unlock_irqrestore(&q->lock, flags);
823}
824EXPORT_SYMBOL_GPL(add_page_wait_queue);
825
1da177e4 826/**
485bb99b 827 * unlock_page - unlock a locked page
1da177e4
LT
828 * @page: the page
829 *
830 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
831 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
da3dae54 832 * mechanism between PageLocked pages and PageWriteback pages is shared.
1da177e4
LT
833 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
834 *
8413ac9d
NP
835 * The mb is necessary to enforce ordering between the clear_bit and the read
836 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
1da177e4 837 */
920c7a5d 838void unlock_page(struct page *page)
1da177e4 839{
48c935ad 840 page = compound_head(page);
309381fe 841 VM_BUG_ON_PAGE(!PageLocked(page), page);
8413ac9d 842 clear_bit_unlock(PG_locked, &page->flags);
4e857c58 843 smp_mb__after_atomic();
1da177e4
LT
844 wake_up_page(page, PG_locked);
845}
846EXPORT_SYMBOL(unlock_page);
847
485bb99b
RD
848/**
849 * end_page_writeback - end writeback against a page
850 * @page: the page
1da177e4
LT
851 */
852void end_page_writeback(struct page *page)
853{
888cf2db
MG
854 /*
855 * TestClearPageReclaim could be used here but it is an atomic
856 * operation and overkill in this particular case. Failing to
857 * shuffle a page marked for immediate reclaim is too mild to
858 * justify taking an atomic operation penalty at the end of
859 * ever page writeback.
860 */
861 if (PageReclaim(page)) {
862 ClearPageReclaim(page);
ac6aadb2 863 rotate_reclaimable_page(page);
888cf2db 864 }
ac6aadb2
MS
865
866 if (!test_clear_page_writeback(page))
867 BUG();
868
4e857c58 869 smp_mb__after_atomic();
1da177e4
LT
870 wake_up_page(page, PG_writeback);
871}
872EXPORT_SYMBOL(end_page_writeback);
873
57d99845
MW
874/*
875 * After completing I/O on a page, call this routine to update the page
876 * flags appropriately
877 */
878void page_endio(struct page *page, int rw, int err)
879{
880 if (rw == READ) {
881 if (!err) {
882 SetPageUptodate(page);
883 } else {
884 ClearPageUptodate(page);
885 SetPageError(page);
886 }
887 unlock_page(page);
888 } else { /* rw == WRITE */
889 if (err) {
890 SetPageError(page);
891 if (page->mapping)
892 mapping_set_error(page->mapping, err);
893 }
894 end_page_writeback(page);
895 }
896}
897EXPORT_SYMBOL_GPL(page_endio);
898
485bb99b
RD
899/**
900 * __lock_page - get a lock on the page, assuming we need to sleep to get it
901 * @page: the page to lock
1da177e4 902 */
920c7a5d 903void __lock_page(struct page *page)
1da177e4 904{
48c935ad
KS
905 struct page *page_head = compound_head(page);
906 DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
1da177e4 907
48c935ad 908 __wait_on_bit_lock(page_waitqueue(page_head), &wait, bit_wait_io,
1da177e4
LT
909 TASK_UNINTERRUPTIBLE);
910}
911EXPORT_SYMBOL(__lock_page);
912
b5606c2d 913int __lock_page_killable(struct page *page)
2687a356 914{
48c935ad
KS
915 struct page *page_head = compound_head(page);
916 DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
2687a356 917
48c935ad 918 return __wait_on_bit_lock(page_waitqueue(page_head), &wait,
74316201 919 bit_wait_io, TASK_KILLABLE);
2687a356 920}
18bc0bbd 921EXPORT_SYMBOL_GPL(__lock_page_killable);
2687a356 922
9a95f3cf
PC
923/*
924 * Return values:
925 * 1 - page is locked; mmap_sem is still held.
926 * 0 - page is not locked.
927 * mmap_sem has been released (up_read()), unless flags had both
928 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
929 * which case mmap_sem is still held.
930 *
931 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
932 * with the page locked and the mmap_sem unperturbed.
933 */
d065bd81
ML
934int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
935 unsigned int flags)
936{
37b23e05
KM
937 if (flags & FAULT_FLAG_ALLOW_RETRY) {
938 /*
939 * CAUTION! In this case, mmap_sem is not released
940 * even though return 0.
941 */
942 if (flags & FAULT_FLAG_RETRY_NOWAIT)
943 return 0;
944
945 up_read(&mm->mmap_sem);
946 if (flags & FAULT_FLAG_KILLABLE)
947 wait_on_page_locked_killable(page);
948 else
318b275f 949 wait_on_page_locked(page);
d065bd81 950 return 0;
37b23e05
KM
951 } else {
952 if (flags & FAULT_FLAG_KILLABLE) {
953 int ret;
954
955 ret = __lock_page_killable(page);
956 if (ret) {
957 up_read(&mm->mmap_sem);
958 return 0;
959 }
960 } else
961 __lock_page(page);
962 return 1;
d065bd81
ML
963 }
964}
965
e7b563bb
JW
966/**
967 * page_cache_next_hole - find the next hole (not-present entry)
968 * @mapping: mapping
969 * @index: index
970 * @max_scan: maximum range to search
971 *
972 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
973 * lowest indexed hole.
974 *
975 * Returns: the index of the hole if found, otherwise returns an index
976 * outside of the set specified (in which case 'return - index >=
977 * max_scan' will be true). In rare cases of index wrap-around, 0 will
978 * be returned.
979 *
980 * page_cache_next_hole may be called under rcu_read_lock. However,
981 * like radix_tree_gang_lookup, this will not atomically search a
982 * snapshot of the tree at a single point in time. For example, if a
983 * hole is created at index 5, then subsequently a hole is created at
984 * index 10, page_cache_next_hole covering both indexes may return 10
985 * if called under rcu_read_lock.
986 */
987pgoff_t page_cache_next_hole(struct address_space *mapping,
988 pgoff_t index, unsigned long max_scan)
989{
990 unsigned long i;
991
992 for (i = 0; i < max_scan; i++) {
0cd6144a
JW
993 struct page *page;
994
995 page = radix_tree_lookup(&mapping->page_tree, index);
996 if (!page || radix_tree_exceptional_entry(page))
e7b563bb
JW
997 break;
998 index++;
999 if (index == 0)
1000 break;
1001 }
1002
1003 return index;
1004}
1005EXPORT_SYMBOL(page_cache_next_hole);
1006
1007/**
1008 * page_cache_prev_hole - find the prev hole (not-present entry)
1009 * @mapping: mapping
1010 * @index: index
1011 * @max_scan: maximum range to search
1012 *
1013 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1014 * the first hole.
1015 *
1016 * Returns: the index of the hole if found, otherwise returns an index
1017 * outside of the set specified (in which case 'index - return >=
1018 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1019 * will be returned.
1020 *
1021 * page_cache_prev_hole may be called under rcu_read_lock. However,
1022 * like radix_tree_gang_lookup, this will not atomically search a
1023 * snapshot of the tree at a single point in time. For example, if a
1024 * hole is created at index 10, then subsequently a hole is created at
1025 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1026 * called under rcu_read_lock.
1027 */
1028pgoff_t page_cache_prev_hole(struct address_space *mapping,
1029 pgoff_t index, unsigned long max_scan)
1030{
1031 unsigned long i;
1032
1033 for (i = 0; i < max_scan; i++) {
0cd6144a
JW
1034 struct page *page;
1035
1036 page = radix_tree_lookup(&mapping->page_tree, index);
1037 if (!page || radix_tree_exceptional_entry(page))
e7b563bb
JW
1038 break;
1039 index--;
1040 if (index == ULONG_MAX)
1041 break;
1042 }
1043
1044 return index;
1045}
1046EXPORT_SYMBOL(page_cache_prev_hole);
1047
485bb99b 1048/**
0cd6144a 1049 * find_get_entry - find and get a page cache entry
485bb99b 1050 * @mapping: the address_space to search
0cd6144a
JW
1051 * @offset: the page cache index
1052 *
1053 * Looks up the page cache slot at @mapping & @offset. If there is a
1054 * page cache page, it is returned with an increased refcount.
485bb99b 1055 *
139b6a6f
JW
1056 * If the slot holds a shadow entry of a previously evicted page, or a
1057 * swap entry from shmem/tmpfs, it is returned.
0cd6144a
JW
1058 *
1059 * Otherwise, %NULL is returned.
1da177e4 1060 */
0cd6144a 1061struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1da177e4 1062{
a60637c8 1063 void **pagep;
1da177e4
LT
1064 struct page *page;
1065
a60637c8
NP
1066 rcu_read_lock();
1067repeat:
1068 page = NULL;
1069 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1070 if (pagep) {
1071 page = radix_tree_deref_slot(pagep);
27d20fdd
NP
1072 if (unlikely(!page))
1073 goto out;
a2c16d6c 1074 if (radix_tree_exception(page)) {
8079b1c8
HD
1075 if (radix_tree_deref_retry(page))
1076 goto repeat;
1077 /*
139b6a6f
JW
1078 * A shadow entry of a recently evicted page,
1079 * or a swap entry from shmem/tmpfs. Return
1080 * it without attempting to raise page count.
8079b1c8
HD
1081 */
1082 goto out;
a2c16d6c 1083 }
a60637c8
NP
1084 if (!page_cache_get_speculative(page))
1085 goto repeat;
1086
1087 /*
1088 * Has the page moved?
1089 * This is part of the lockless pagecache protocol. See
1090 * include/linux/pagemap.h for details.
1091 */
1092 if (unlikely(page != *pagep)) {
09cbfeaf 1093 put_page(page);
a60637c8
NP
1094 goto repeat;
1095 }
1096 }
27d20fdd 1097out:
a60637c8
NP
1098 rcu_read_unlock();
1099
1da177e4
LT
1100 return page;
1101}
0cd6144a 1102EXPORT_SYMBOL(find_get_entry);
1da177e4 1103
0cd6144a
JW
1104/**
1105 * find_lock_entry - locate, pin and lock a page cache entry
1106 * @mapping: the address_space to search
1107 * @offset: the page cache index
1108 *
1109 * Looks up the page cache slot at @mapping & @offset. If there is a
1110 * page cache page, it is returned locked and with an increased
1111 * refcount.
1112 *
139b6a6f
JW
1113 * If the slot holds a shadow entry of a previously evicted page, or a
1114 * swap entry from shmem/tmpfs, it is returned.
0cd6144a
JW
1115 *
1116 * Otherwise, %NULL is returned.
1117 *
1118 * find_lock_entry() may sleep.
1119 */
1120struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1da177e4
LT
1121{
1122 struct page *page;
1123
1da177e4 1124repeat:
0cd6144a 1125 page = find_get_entry(mapping, offset);
a2c16d6c 1126 if (page && !radix_tree_exception(page)) {
a60637c8
NP
1127 lock_page(page);
1128 /* Has the page been truncated? */
1129 if (unlikely(page->mapping != mapping)) {
1130 unlock_page(page);
09cbfeaf 1131 put_page(page);
a60637c8 1132 goto repeat;
1da177e4 1133 }
309381fe 1134 VM_BUG_ON_PAGE(page->index != offset, page);
1da177e4 1135 }
1da177e4
LT
1136 return page;
1137}
0cd6144a
JW
1138EXPORT_SYMBOL(find_lock_entry);
1139
1140/**
2457aec6 1141 * pagecache_get_page - find and get a page reference
0cd6144a
JW
1142 * @mapping: the address_space to search
1143 * @offset: the page index
2457aec6 1144 * @fgp_flags: PCG flags
45f87de5 1145 * @gfp_mask: gfp mask to use for the page cache data page allocation
0cd6144a 1146 *
2457aec6 1147 * Looks up the page cache slot at @mapping & @offset.
1da177e4 1148 *
75325189 1149 * PCG flags modify how the page is returned.
0cd6144a 1150 *
2457aec6
MG
1151 * FGP_ACCESSED: the page will be marked accessed
1152 * FGP_LOCK: Page is return locked
1153 * FGP_CREAT: If page is not present then a new page is allocated using
45f87de5
MH
1154 * @gfp_mask and added to the page cache and the VM's LRU
1155 * list. The page is returned locked and with an increased
1156 * refcount. Otherwise, %NULL is returned.
1da177e4 1157 *
2457aec6
MG
1158 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1159 * if the GFP flags specified for FGP_CREAT are atomic.
1da177e4 1160 *
2457aec6 1161 * If there is a page cache page, it is returned with an increased refcount.
1da177e4 1162 */
2457aec6 1163struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
45f87de5 1164 int fgp_flags, gfp_t gfp_mask)
1da177e4 1165{
eb2be189 1166 struct page *page;
2457aec6 1167
1da177e4 1168repeat:
2457aec6
MG
1169 page = find_get_entry(mapping, offset);
1170 if (radix_tree_exceptional_entry(page))
1171 page = NULL;
1172 if (!page)
1173 goto no_page;
1174
1175 if (fgp_flags & FGP_LOCK) {
1176 if (fgp_flags & FGP_NOWAIT) {
1177 if (!trylock_page(page)) {
09cbfeaf 1178 put_page(page);
2457aec6
MG
1179 return NULL;
1180 }
1181 } else {
1182 lock_page(page);
1183 }
1184
1185 /* Has the page been truncated? */
1186 if (unlikely(page->mapping != mapping)) {
1187 unlock_page(page);
09cbfeaf 1188 put_page(page);
2457aec6
MG
1189 goto repeat;
1190 }
1191 VM_BUG_ON_PAGE(page->index != offset, page);
1192 }
1193
1194 if (page && (fgp_flags & FGP_ACCESSED))
1195 mark_page_accessed(page);
1196
1197no_page:
1198 if (!page && (fgp_flags & FGP_CREAT)) {
1199 int err;
1200 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
45f87de5
MH
1201 gfp_mask |= __GFP_WRITE;
1202 if (fgp_flags & FGP_NOFS)
1203 gfp_mask &= ~__GFP_FS;
2457aec6 1204
45f87de5 1205 page = __page_cache_alloc(gfp_mask);
eb2be189
NP
1206 if (!page)
1207 return NULL;
2457aec6
MG
1208
1209 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1210 fgp_flags |= FGP_LOCK;
1211
eb39d618 1212 /* Init accessed so avoid atomic mark_page_accessed later */
2457aec6 1213 if (fgp_flags & FGP_ACCESSED)
eb39d618 1214 __SetPageReferenced(page);
2457aec6 1215
45f87de5
MH
1216 err = add_to_page_cache_lru(page, mapping, offset,
1217 gfp_mask & GFP_RECLAIM_MASK);
eb2be189 1218 if (unlikely(err)) {
09cbfeaf 1219 put_page(page);
eb2be189
NP
1220 page = NULL;
1221 if (err == -EEXIST)
1222 goto repeat;
1da177e4 1223 }
1da177e4 1224 }
2457aec6 1225
1da177e4
LT
1226 return page;
1227}
2457aec6 1228EXPORT_SYMBOL(pagecache_get_page);
1da177e4 1229
0cd6144a
JW
1230/**
1231 * find_get_entries - gang pagecache lookup
1232 * @mapping: The address_space to search
1233 * @start: The starting page cache index
1234 * @nr_entries: The maximum number of entries
1235 * @entries: Where the resulting entries are placed
1236 * @indices: The cache indices corresponding to the entries in @entries
1237 *
1238 * find_get_entries() will search for and return a group of up to
1239 * @nr_entries entries in the mapping. The entries are placed at
1240 * @entries. find_get_entries() takes a reference against any actual
1241 * pages it returns.
1242 *
1243 * The search returns a group of mapping-contiguous page cache entries
1244 * with ascending indexes. There may be holes in the indices due to
1245 * not-present pages.
1246 *
139b6a6f
JW
1247 * Any shadow entries of evicted pages, or swap entries from
1248 * shmem/tmpfs, are included in the returned array.
0cd6144a
JW
1249 *
1250 * find_get_entries() returns the number of pages and shadow entries
1251 * which were found.
1252 */
1253unsigned find_get_entries(struct address_space *mapping,
1254 pgoff_t start, unsigned int nr_entries,
1255 struct page **entries, pgoff_t *indices)
1256{
1257 void **slot;
1258 unsigned int ret = 0;
1259 struct radix_tree_iter iter;
1260
1261 if (!nr_entries)
1262 return 0;
1263
1264 rcu_read_lock();
0cd6144a
JW
1265 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1266 struct page *page;
1267repeat:
1268 page = radix_tree_deref_slot(slot);
1269 if (unlikely(!page))
1270 continue;
1271 if (radix_tree_exception(page)) {
2cf938aa
MW
1272 if (radix_tree_deref_retry(page)) {
1273 slot = radix_tree_iter_retry(&iter);
1274 continue;
1275 }
0cd6144a 1276 /*
f9fe48be
RZ
1277 * A shadow entry of a recently evicted page, a swap
1278 * entry from shmem/tmpfs or a DAX entry. Return it
1279 * without attempting to raise page count.
0cd6144a
JW
1280 */
1281 goto export;
1282 }
1283 if (!page_cache_get_speculative(page))
1284 goto repeat;
1285
1286 /* Has the page moved? */
1287 if (unlikely(page != *slot)) {
09cbfeaf 1288 put_page(page);
0cd6144a
JW
1289 goto repeat;
1290 }
1291export:
1292 indices[ret] = iter.index;
1293 entries[ret] = page;
1294 if (++ret == nr_entries)
1295 break;
1296 }
1297 rcu_read_unlock();
1298 return ret;
1299}
1300
1da177e4
LT
1301/**
1302 * find_get_pages - gang pagecache lookup
1303 * @mapping: The address_space to search
1304 * @start: The starting page index
1305 * @nr_pages: The maximum number of pages
1306 * @pages: Where the resulting pages are placed
1307 *
1308 * find_get_pages() will search for and return a group of up to
1309 * @nr_pages pages in the mapping. The pages are placed at @pages.
1310 * find_get_pages() takes a reference against the returned pages.
1311 *
1312 * The search returns a group of mapping-contiguous pages with ascending
1313 * indexes. There may be holes in the indices due to not-present pages.
1314 *
1315 * find_get_pages() returns the number of pages which were found.
1316 */
1317unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1318 unsigned int nr_pages, struct page **pages)
1319{
0fc9d104
KK
1320 struct radix_tree_iter iter;
1321 void **slot;
1322 unsigned ret = 0;
1323
1324 if (unlikely(!nr_pages))
1325 return 0;
a60637c8
NP
1326
1327 rcu_read_lock();
0fc9d104 1328 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
a60637c8
NP
1329 struct page *page;
1330repeat:
0fc9d104 1331 page = radix_tree_deref_slot(slot);
a60637c8
NP
1332 if (unlikely(!page))
1333 continue;
9d8aa4ea 1334
a2c16d6c 1335 if (radix_tree_exception(page)) {
8079b1c8 1336 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1337 slot = radix_tree_iter_retry(&iter);
1338 continue;
8079b1c8 1339 }
a2c16d6c 1340 /*
139b6a6f
JW
1341 * A shadow entry of a recently evicted page,
1342 * or a swap entry from shmem/tmpfs. Skip
1343 * over it.
a2c16d6c 1344 */
8079b1c8 1345 continue;
27d20fdd 1346 }
a60637c8
NP
1347
1348 if (!page_cache_get_speculative(page))
1349 goto repeat;
1350
1351 /* Has the page moved? */
0fc9d104 1352 if (unlikely(page != *slot)) {
09cbfeaf 1353 put_page(page);
a60637c8
NP
1354 goto repeat;
1355 }
1da177e4 1356
a60637c8 1357 pages[ret] = page;
0fc9d104
KK
1358 if (++ret == nr_pages)
1359 break;
a60637c8 1360 }
5b280c0c 1361
a60637c8 1362 rcu_read_unlock();
1da177e4
LT
1363 return ret;
1364}
1365
ebf43500
JA
1366/**
1367 * find_get_pages_contig - gang contiguous pagecache lookup
1368 * @mapping: The address_space to search
1369 * @index: The starting page index
1370 * @nr_pages: The maximum number of pages
1371 * @pages: Where the resulting pages are placed
1372 *
1373 * find_get_pages_contig() works exactly like find_get_pages(), except
1374 * that the returned number of pages are guaranteed to be contiguous.
1375 *
1376 * find_get_pages_contig() returns the number of pages which were found.
1377 */
1378unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1379 unsigned int nr_pages, struct page **pages)
1380{
0fc9d104
KK
1381 struct radix_tree_iter iter;
1382 void **slot;
1383 unsigned int ret = 0;
1384
1385 if (unlikely(!nr_pages))
1386 return 0;
a60637c8
NP
1387
1388 rcu_read_lock();
0fc9d104 1389 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
a60637c8
NP
1390 struct page *page;
1391repeat:
0fc9d104
KK
1392 page = radix_tree_deref_slot(slot);
1393 /* The hole, there no reason to continue */
a60637c8 1394 if (unlikely(!page))
0fc9d104 1395 break;
9d8aa4ea 1396
a2c16d6c 1397 if (radix_tree_exception(page)) {
8079b1c8 1398 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1399 slot = radix_tree_iter_retry(&iter);
1400 continue;
8079b1c8 1401 }
a2c16d6c 1402 /*
139b6a6f
JW
1403 * A shadow entry of a recently evicted page,
1404 * or a swap entry from shmem/tmpfs. Stop
1405 * looking for contiguous pages.
a2c16d6c 1406 */
8079b1c8 1407 break;
a2c16d6c 1408 }
ebf43500 1409
a60637c8
NP
1410 if (!page_cache_get_speculative(page))
1411 goto repeat;
1412
1413 /* Has the page moved? */
0fc9d104 1414 if (unlikely(page != *slot)) {
09cbfeaf 1415 put_page(page);
a60637c8
NP
1416 goto repeat;
1417 }
1418
9cbb4cb2
NP
1419 /*
1420 * must check mapping and index after taking the ref.
1421 * otherwise we can get both false positives and false
1422 * negatives, which is just confusing to the caller.
1423 */
0fc9d104 1424 if (page->mapping == NULL || page->index != iter.index) {
09cbfeaf 1425 put_page(page);
9cbb4cb2
NP
1426 break;
1427 }
1428
a60637c8 1429 pages[ret] = page;
0fc9d104
KK
1430 if (++ret == nr_pages)
1431 break;
ebf43500 1432 }
a60637c8
NP
1433 rcu_read_unlock();
1434 return ret;
ebf43500 1435}
ef71c15c 1436EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 1437
485bb99b
RD
1438/**
1439 * find_get_pages_tag - find and return pages that match @tag
1440 * @mapping: the address_space to search
1441 * @index: the starting page index
1442 * @tag: the tag index
1443 * @nr_pages: the maximum number of pages
1444 * @pages: where the resulting pages are placed
1445 *
1da177e4 1446 * Like find_get_pages, except we only return pages which are tagged with
485bb99b 1447 * @tag. We update @index to index the next page for the traversal.
1da177e4
LT
1448 */
1449unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1450 int tag, unsigned int nr_pages, struct page **pages)
1451{
0fc9d104
KK
1452 struct radix_tree_iter iter;
1453 void **slot;
1454 unsigned ret = 0;
1455
1456 if (unlikely(!nr_pages))
1457 return 0;
a60637c8
NP
1458
1459 rcu_read_lock();
0fc9d104
KK
1460 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1461 &iter, *index, tag) {
a60637c8
NP
1462 struct page *page;
1463repeat:
0fc9d104 1464 page = radix_tree_deref_slot(slot);
a60637c8
NP
1465 if (unlikely(!page))
1466 continue;
9d8aa4ea 1467
a2c16d6c 1468 if (radix_tree_exception(page)) {
8079b1c8 1469 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1470 slot = radix_tree_iter_retry(&iter);
1471 continue;
8079b1c8 1472 }
a2c16d6c 1473 /*
139b6a6f
JW
1474 * A shadow entry of a recently evicted page.
1475 *
1476 * Those entries should never be tagged, but
1477 * this tree walk is lockless and the tags are
1478 * looked up in bulk, one radix tree node at a
1479 * time, so there is a sizable window for page
1480 * reclaim to evict a page we saw tagged.
1481 *
1482 * Skip over it.
a2c16d6c 1483 */
139b6a6f 1484 continue;
a2c16d6c 1485 }
a60637c8
NP
1486
1487 if (!page_cache_get_speculative(page))
1488 goto repeat;
1489
1490 /* Has the page moved? */
0fc9d104 1491 if (unlikely(page != *slot)) {
09cbfeaf 1492 put_page(page);
a60637c8
NP
1493 goto repeat;
1494 }
1495
1496 pages[ret] = page;
0fc9d104
KK
1497 if (++ret == nr_pages)
1498 break;
a60637c8 1499 }
5b280c0c 1500
a60637c8 1501 rcu_read_unlock();
1da177e4 1502
1da177e4
LT
1503 if (ret)
1504 *index = pages[ret - 1]->index + 1;
a60637c8 1505
1da177e4
LT
1506 return ret;
1507}
ef71c15c 1508EXPORT_SYMBOL(find_get_pages_tag);
1da177e4 1509
7e7f7749
RZ
1510/**
1511 * find_get_entries_tag - find and return entries that match @tag
1512 * @mapping: the address_space to search
1513 * @start: the starting page cache index
1514 * @tag: the tag index
1515 * @nr_entries: the maximum number of entries
1516 * @entries: where the resulting entries are placed
1517 * @indices: the cache indices corresponding to the entries in @entries
1518 *
1519 * Like find_get_entries, except we only return entries which are tagged with
1520 * @tag.
1521 */
1522unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1523 int tag, unsigned int nr_entries,
1524 struct page **entries, pgoff_t *indices)
1525{
1526 void **slot;
1527 unsigned int ret = 0;
1528 struct radix_tree_iter iter;
1529
1530 if (!nr_entries)
1531 return 0;
1532
1533 rcu_read_lock();
7e7f7749
RZ
1534 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1535 &iter, start, tag) {
1536 struct page *page;
1537repeat:
1538 page = radix_tree_deref_slot(slot);
1539 if (unlikely(!page))
1540 continue;
1541 if (radix_tree_exception(page)) {
1542 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1543 slot = radix_tree_iter_retry(&iter);
1544 continue;
7e7f7749
RZ
1545 }
1546
1547 /*
1548 * A shadow entry of a recently evicted page, a swap
1549 * entry from shmem/tmpfs or a DAX entry. Return it
1550 * without attempting to raise page count.
1551 */
1552 goto export;
1553 }
1554 if (!page_cache_get_speculative(page))
1555 goto repeat;
1556
1557 /* Has the page moved? */
1558 if (unlikely(page != *slot)) {
09cbfeaf 1559 put_page(page);
7e7f7749
RZ
1560 goto repeat;
1561 }
1562export:
1563 indices[ret] = iter.index;
1564 entries[ret] = page;
1565 if (++ret == nr_entries)
1566 break;
1567 }
1568 rcu_read_unlock();
1569 return ret;
1570}
1571EXPORT_SYMBOL(find_get_entries_tag);
1572
76d42bd9
WF
1573/*
1574 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1575 * a _large_ part of the i/o request. Imagine the worst scenario:
1576 *
1577 * ---R__________________________________________B__________
1578 * ^ reading here ^ bad block(assume 4k)
1579 *
1580 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1581 * => failing the whole request => read(R) => read(R+1) =>
1582 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1583 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1584 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1585 *
1586 * It is going insane. Fix it by quickly scaling down the readahead size.
1587 */
1588static void shrink_readahead_size_eio(struct file *filp,
1589 struct file_ra_state *ra)
1590{
76d42bd9 1591 ra->ra_pages /= 4;
76d42bd9
WF
1592}
1593
485bb99b 1594/**
36e78914 1595 * do_generic_file_read - generic file read routine
485bb99b
RD
1596 * @filp: the file to read
1597 * @ppos: current file position
6e58e79d
AV
1598 * @iter: data destination
1599 * @written: already copied
485bb99b 1600 *
1da177e4 1601 * This is a generic file read routine, and uses the
485bb99b 1602 * mapping->a_ops->readpage() function for the actual low-level stuff.
1da177e4
LT
1603 *
1604 * This is really ugly. But the goto's actually try to clarify some
1605 * of the logic when it comes to error handling etc.
1da177e4 1606 */
6e58e79d
AV
1607static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1608 struct iov_iter *iter, ssize_t written)
1da177e4 1609{
36e78914 1610 struct address_space *mapping = filp->f_mapping;
1da177e4 1611 struct inode *inode = mapping->host;
36e78914 1612 struct file_ra_state *ra = &filp->f_ra;
57f6b96c
FW
1613 pgoff_t index;
1614 pgoff_t last_index;
1615 pgoff_t prev_index;
1616 unsigned long offset; /* offset into pagecache page */
ec0f1637 1617 unsigned int prev_offset;
6e58e79d 1618 int error = 0;
1da177e4 1619
09cbfeaf
KS
1620 index = *ppos >> PAGE_SHIFT;
1621 prev_index = ra->prev_pos >> PAGE_SHIFT;
1622 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1623 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1624 offset = *ppos & ~PAGE_MASK;
1da177e4 1625
1da177e4
LT
1626 for (;;) {
1627 struct page *page;
57f6b96c 1628 pgoff_t end_index;
a32ea1e1 1629 loff_t isize;
1da177e4
LT
1630 unsigned long nr, ret;
1631
1da177e4 1632 cond_resched();
1da177e4
LT
1633find_page:
1634 page = find_get_page(mapping, index);
3ea89ee8 1635 if (!page) {
cf914a7d 1636 page_cache_sync_readahead(mapping,
7ff81078 1637 ra, filp,
3ea89ee8
FW
1638 index, last_index - index);
1639 page = find_get_page(mapping, index);
1640 if (unlikely(page == NULL))
1641 goto no_cached_page;
1642 }
1643 if (PageReadahead(page)) {
cf914a7d 1644 page_cache_async_readahead(mapping,
7ff81078 1645 ra, filp, page,
3ea89ee8 1646 index, last_index - index);
1da177e4 1647 }
8ab22b9a 1648 if (!PageUptodate(page)) {
ebded027
MG
1649 /*
1650 * See comment in do_read_cache_page on why
1651 * wait_on_page_locked is used to avoid unnecessarily
1652 * serialisations and why it's safe.
1653 */
1654 wait_on_page_locked_killable(page);
1655 if (PageUptodate(page))
1656 goto page_ok;
1657
09cbfeaf 1658 if (inode->i_blkbits == PAGE_SHIFT ||
8ab22b9a
HH
1659 !mapping->a_ops->is_partially_uptodate)
1660 goto page_not_up_to_date;
529ae9aa 1661 if (!trylock_page(page))
8ab22b9a 1662 goto page_not_up_to_date;
8d056cb9
DH
1663 /* Did it get truncated before we got the lock? */
1664 if (!page->mapping)
1665 goto page_not_up_to_date_locked;
8ab22b9a 1666 if (!mapping->a_ops->is_partially_uptodate(page,
6e58e79d 1667 offset, iter->count))
8ab22b9a
HH
1668 goto page_not_up_to_date_locked;
1669 unlock_page(page);
1670 }
1da177e4 1671page_ok:
a32ea1e1
N
1672 /*
1673 * i_size must be checked after we know the page is Uptodate.
1674 *
1675 * Checking i_size after the check allows us to calculate
1676 * the correct value for "nr", which means the zero-filled
1677 * part of the page is not copied back to userspace (unless
1678 * another truncate extends the file - this is desired though).
1679 */
1680
1681 isize = i_size_read(inode);
09cbfeaf 1682 end_index = (isize - 1) >> PAGE_SHIFT;
a32ea1e1 1683 if (unlikely(!isize || index > end_index)) {
09cbfeaf 1684 put_page(page);
a32ea1e1
N
1685 goto out;
1686 }
1687
1688 /* nr is the maximum number of bytes to copy from this page */
09cbfeaf 1689 nr = PAGE_SIZE;
a32ea1e1 1690 if (index == end_index) {
09cbfeaf 1691 nr = ((isize - 1) & ~PAGE_MASK) + 1;
a32ea1e1 1692 if (nr <= offset) {
09cbfeaf 1693 put_page(page);
a32ea1e1
N
1694 goto out;
1695 }
1696 }
1697 nr = nr - offset;
1da177e4
LT
1698
1699 /* If users can be writing to this page using arbitrary
1700 * virtual addresses, take care about potential aliasing
1701 * before reading the page on the kernel side.
1702 */
1703 if (mapping_writably_mapped(mapping))
1704 flush_dcache_page(page);
1705
1706 /*
ec0f1637
JK
1707 * When a sequential read accesses a page several times,
1708 * only mark it as accessed the first time.
1da177e4 1709 */
ec0f1637 1710 if (prev_index != index || offset != prev_offset)
1da177e4
LT
1711 mark_page_accessed(page);
1712 prev_index = index;
1713
1714 /*
1715 * Ok, we have the page, and it's up-to-date, so
1716 * now we can copy it to user space...
1da177e4 1717 */
6e58e79d
AV
1718
1719 ret = copy_page_to_iter(page, offset, nr, iter);
1da177e4 1720 offset += ret;
09cbfeaf
KS
1721 index += offset >> PAGE_SHIFT;
1722 offset &= ~PAGE_MASK;
6ce745ed 1723 prev_offset = offset;
1da177e4 1724
09cbfeaf 1725 put_page(page);
6e58e79d
AV
1726 written += ret;
1727 if (!iov_iter_count(iter))
1728 goto out;
1729 if (ret < nr) {
1730 error = -EFAULT;
1731 goto out;
1732 }
1733 continue;
1da177e4
LT
1734
1735page_not_up_to_date:
1736 /* Get exclusive access to the page ... */
85462323
ON
1737 error = lock_page_killable(page);
1738 if (unlikely(error))
1739 goto readpage_error;
1da177e4 1740
8ab22b9a 1741page_not_up_to_date_locked:
da6052f7 1742 /* Did it get truncated before we got the lock? */
1da177e4
LT
1743 if (!page->mapping) {
1744 unlock_page(page);
09cbfeaf 1745 put_page(page);
1da177e4
LT
1746 continue;
1747 }
1748
1749 /* Did somebody else fill it already? */
1750 if (PageUptodate(page)) {
1751 unlock_page(page);
1752 goto page_ok;
1753 }
1754
1755readpage:
91803b49
JM
1756 /*
1757 * A previous I/O error may have been due to temporary
1758 * failures, eg. multipath errors.
1759 * PG_error will be set again if readpage fails.
1760 */
1761 ClearPageError(page);
1da177e4
LT
1762 /* Start the actual read. The read will unlock the page. */
1763 error = mapping->a_ops->readpage(filp, page);
1764
994fc28c
ZB
1765 if (unlikely(error)) {
1766 if (error == AOP_TRUNCATED_PAGE) {
09cbfeaf 1767 put_page(page);
6e58e79d 1768 error = 0;
994fc28c
ZB
1769 goto find_page;
1770 }
1da177e4 1771 goto readpage_error;
994fc28c 1772 }
1da177e4
LT
1773
1774 if (!PageUptodate(page)) {
85462323
ON
1775 error = lock_page_killable(page);
1776 if (unlikely(error))
1777 goto readpage_error;
1da177e4
LT
1778 if (!PageUptodate(page)) {
1779 if (page->mapping == NULL) {
1780 /*
2ecdc82e 1781 * invalidate_mapping_pages got it
1da177e4
LT
1782 */
1783 unlock_page(page);
09cbfeaf 1784 put_page(page);
1da177e4
LT
1785 goto find_page;
1786 }
1787 unlock_page(page);
7ff81078 1788 shrink_readahead_size_eio(filp, ra);
85462323
ON
1789 error = -EIO;
1790 goto readpage_error;
1da177e4
LT
1791 }
1792 unlock_page(page);
1793 }
1794
1da177e4
LT
1795 goto page_ok;
1796
1797readpage_error:
1798 /* UHHUH! A synchronous read error occurred. Report it */
09cbfeaf 1799 put_page(page);
1da177e4
LT
1800 goto out;
1801
1802no_cached_page:
1803 /*
1804 * Ok, it wasn't cached, so we need to create a new
1805 * page..
1806 */
eb2be189
NP
1807 page = page_cache_alloc_cold(mapping);
1808 if (!page) {
6e58e79d 1809 error = -ENOMEM;
eb2be189 1810 goto out;
1da177e4 1811 }
6afdb859 1812 error = add_to_page_cache_lru(page, mapping, index,
c62d2555 1813 mapping_gfp_constraint(mapping, GFP_KERNEL));
1da177e4 1814 if (error) {
09cbfeaf 1815 put_page(page);
6e58e79d
AV
1816 if (error == -EEXIST) {
1817 error = 0;
1da177e4 1818 goto find_page;
6e58e79d 1819 }
1da177e4
LT
1820 goto out;
1821 }
1da177e4
LT
1822 goto readpage;
1823 }
1824
1825out:
7ff81078 1826 ra->prev_pos = prev_index;
09cbfeaf 1827 ra->prev_pos <<= PAGE_SHIFT;
7ff81078 1828 ra->prev_pos |= prev_offset;
1da177e4 1829
09cbfeaf 1830 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
0c6aa263 1831 file_accessed(filp);
6e58e79d 1832 return written ? written : error;
1da177e4
LT
1833}
1834
485bb99b 1835/**
6abd2322 1836 * generic_file_read_iter - generic filesystem read routine
485bb99b 1837 * @iocb: kernel I/O control block
6abd2322 1838 * @iter: destination for the data read
485bb99b 1839 *
6abd2322 1840 * This is the "read_iter()" routine for all filesystems
1da177e4
LT
1841 * that can use the page cache directly.
1842 */
1843ssize_t
ed978a81 1844generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1da177e4 1845{
ed978a81 1846 struct file *file = iocb->ki_filp;
cb66a7a1 1847 ssize_t retval = 0;
543ade1f 1848 loff_t *ppos = &iocb->ki_pos;
ed978a81 1849 loff_t pos = *ppos;
e7080a43
NS
1850 size_t count = iov_iter_count(iter);
1851
1852 if (!count)
1853 goto out; /* skip atime */
1da177e4 1854
2ba48ce5 1855 if (iocb->ki_flags & IOCB_DIRECT) {
ed978a81
AV
1856 struct address_space *mapping = file->f_mapping;
1857 struct inode *inode = mapping->host;
543ade1f 1858 loff_t size;
1da177e4 1859
1da177e4 1860 size = i_size_read(inode);
9fe55eea 1861 retval = filemap_write_and_wait_range(mapping, pos,
a6cbcd4a 1862 pos + count - 1);
9fe55eea 1863 if (!retval) {
ed978a81 1864 struct iov_iter data = *iter;
22c6186e 1865 retval = mapping->a_ops->direct_IO(iocb, &data, pos);
9fe55eea 1866 }
d8d3d94b 1867
9fe55eea
SW
1868 if (retval > 0) {
1869 *ppos = pos + retval;
ed978a81 1870 iov_iter_advance(iter, retval);
9fe55eea 1871 }
66f998f6 1872
9fe55eea
SW
1873 /*
1874 * Btrfs can have a short DIO read if we encounter
1875 * compressed extents, so if there was an error, or if
1876 * we've already read everything we wanted to, or if
1877 * there was a short read because we hit EOF, go ahead
1878 * and return. Otherwise fallthrough to buffered io for
fbbbad4b
MW
1879 * the rest of the read. Buffered reads will not work for
1880 * DAX files, so don't bother trying.
9fe55eea 1881 */
fbbbad4b
MW
1882 if (retval < 0 || !iov_iter_count(iter) || *ppos >= size ||
1883 IS_DAX(inode)) {
ed978a81 1884 file_accessed(file);
9fe55eea 1885 goto out;
0e0bcae3 1886 }
1da177e4
LT
1887 }
1888
ed978a81 1889 retval = do_generic_file_read(file, ppos, iter, retval);
1da177e4
LT
1890out:
1891 return retval;
1892}
ed978a81 1893EXPORT_SYMBOL(generic_file_read_iter);
1da177e4 1894
1da177e4 1895#ifdef CONFIG_MMU
485bb99b
RD
1896/**
1897 * page_cache_read - adds requested page to the page cache if not already there
1898 * @file: file to read
1899 * @offset: page index
62eb320a 1900 * @gfp_mask: memory allocation flags
485bb99b 1901 *
1da177e4
LT
1902 * This adds the requested page to the page cache if it isn't already there,
1903 * and schedules an I/O to read in its contents from disk.
1904 */
c20cd45e 1905static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1da177e4
LT
1906{
1907 struct address_space *mapping = file->f_mapping;
99dadfdd 1908 struct page *page;
994fc28c 1909 int ret;
1da177e4 1910
994fc28c 1911 do {
c20cd45e 1912 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
994fc28c
ZB
1913 if (!page)
1914 return -ENOMEM;
1915
c20cd45e 1916 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
994fc28c
ZB
1917 if (ret == 0)
1918 ret = mapping->a_ops->readpage(file, page);
1919 else if (ret == -EEXIST)
1920 ret = 0; /* losing race to add is OK */
1da177e4 1921
09cbfeaf 1922 put_page(page);
1da177e4 1923
994fc28c 1924 } while (ret == AOP_TRUNCATED_PAGE);
99dadfdd 1925
994fc28c 1926 return ret;
1da177e4
LT
1927}
1928
1929#define MMAP_LOTSAMISS (100)
1930
ef00e08e
LT
1931/*
1932 * Synchronous readahead happens when we don't even find
1933 * a page in the page cache at all.
1934 */
1935static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1936 struct file_ra_state *ra,
1937 struct file *file,
1938 pgoff_t offset)
1939{
ef00e08e
LT
1940 struct address_space *mapping = file->f_mapping;
1941
1942 /* If we don't want any read-ahead, don't bother */
64363aad 1943 if (vma->vm_flags & VM_RAND_READ)
ef00e08e 1944 return;
275b12bf
WF
1945 if (!ra->ra_pages)
1946 return;
ef00e08e 1947
64363aad 1948 if (vma->vm_flags & VM_SEQ_READ) {
7ffc59b4
WF
1949 page_cache_sync_readahead(mapping, ra, file, offset,
1950 ra->ra_pages);
ef00e08e
LT
1951 return;
1952 }
1953
207d04ba
AK
1954 /* Avoid banging the cache line if not needed */
1955 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
ef00e08e
LT
1956 ra->mmap_miss++;
1957
1958 /*
1959 * Do we miss much more than hit in this file? If so,
1960 * stop bothering with read-ahead. It will only hurt.
1961 */
1962 if (ra->mmap_miss > MMAP_LOTSAMISS)
1963 return;
1964
d30a1100
WF
1965 /*
1966 * mmap read-around
1967 */
600e19af
RG
1968 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
1969 ra->size = ra->ra_pages;
1970 ra->async_size = ra->ra_pages / 4;
275b12bf 1971 ra_submit(ra, mapping, file);
ef00e08e
LT
1972}
1973
1974/*
1975 * Asynchronous readahead happens when we find the page and PG_readahead,
1976 * so we want to possibly extend the readahead further..
1977 */
1978static void do_async_mmap_readahead(struct vm_area_struct *vma,
1979 struct file_ra_state *ra,
1980 struct file *file,
1981 struct page *page,
1982 pgoff_t offset)
1983{
1984 struct address_space *mapping = file->f_mapping;
1985
1986 /* If we don't want any read-ahead, don't bother */
64363aad 1987 if (vma->vm_flags & VM_RAND_READ)
ef00e08e
LT
1988 return;
1989 if (ra->mmap_miss > 0)
1990 ra->mmap_miss--;
1991 if (PageReadahead(page))
2fad6f5d
WF
1992 page_cache_async_readahead(mapping, ra, file,
1993 page, offset, ra->ra_pages);
ef00e08e
LT
1994}
1995
485bb99b 1996/**
54cb8821 1997 * filemap_fault - read in file data for page fault handling
d0217ac0
NP
1998 * @vma: vma in which the fault was taken
1999 * @vmf: struct vm_fault containing details of the fault
485bb99b 2000 *
54cb8821 2001 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
2002 * mapped memory region to read in file data during a page fault.
2003 *
2004 * The goto's are kind of ugly, but this streamlines the normal case of having
2005 * it in the page cache, and handles the special cases reasonably without
2006 * having a lot of duplicated code.
9a95f3cf
PC
2007 *
2008 * vma->vm_mm->mmap_sem must be held on entry.
2009 *
2010 * If our return value has VM_FAULT_RETRY set, it's because
2011 * lock_page_or_retry() returned 0.
2012 * The mmap_sem has usually been released in this case.
2013 * See __lock_page_or_retry() for the exception.
2014 *
2015 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2016 * has not been released.
2017 *
2018 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
1da177e4 2019 */
d0217ac0 2020int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
2021{
2022 int error;
54cb8821 2023 struct file *file = vma->vm_file;
1da177e4
LT
2024 struct address_space *mapping = file->f_mapping;
2025 struct file_ra_state *ra = &file->f_ra;
2026 struct inode *inode = mapping->host;
ef00e08e 2027 pgoff_t offset = vmf->pgoff;
1da177e4 2028 struct page *page;
99e3e53f 2029 loff_t size;
83c54070 2030 int ret = 0;
1da177e4 2031
09cbfeaf
KS
2032 size = round_up(i_size_read(inode), PAGE_SIZE);
2033 if (offset >= size >> PAGE_SHIFT)
5307cc1a 2034 return VM_FAULT_SIGBUS;
1da177e4 2035
1da177e4 2036 /*
49426420 2037 * Do we have something in the page cache already?
1da177e4 2038 */
ef00e08e 2039 page = find_get_page(mapping, offset);
45cac65b 2040 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1da177e4 2041 /*
ef00e08e
LT
2042 * We found the page, so try async readahead before
2043 * waiting for the lock.
1da177e4 2044 */
ef00e08e 2045 do_async_mmap_readahead(vma, ra, file, page, offset);
45cac65b 2046 } else if (!page) {
ef00e08e
LT
2047 /* No page in the page cache at all */
2048 do_sync_mmap_readahead(vma, ra, file, offset);
2049 count_vm_event(PGMAJFAULT);
456f998e 2050 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
ef00e08e
LT
2051 ret = VM_FAULT_MAJOR;
2052retry_find:
b522c94d 2053 page = find_get_page(mapping, offset);
1da177e4
LT
2054 if (!page)
2055 goto no_cached_page;
2056 }
2057
d88c0922 2058 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
09cbfeaf 2059 put_page(page);
d065bd81 2060 return ret | VM_FAULT_RETRY;
d88c0922 2061 }
b522c94d
ML
2062
2063 /* Did it get truncated? */
2064 if (unlikely(page->mapping != mapping)) {
2065 unlock_page(page);
2066 put_page(page);
2067 goto retry_find;
2068 }
309381fe 2069 VM_BUG_ON_PAGE(page->index != offset, page);
b522c94d 2070
1da177e4 2071 /*
d00806b1
NP
2072 * We have a locked page in the page cache, now we need to check
2073 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 2074 */
d00806b1 2075 if (unlikely(!PageUptodate(page)))
1da177e4
LT
2076 goto page_not_uptodate;
2077
ef00e08e
LT
2078 /*
2079 * Found the page and have a reference on it.
2080 * We must recheck i_size under page lock.
2081 */
09cbfeaf
KS
2082 size = round_up(i_size_read(inode), PAGE_SIZE);
2083 if (unlikely(offset >= size >> PAGE_SHIFT)) {
d00806b1 2084 unlock_page(page);
09cbfeaf 2085 put_page(page);
5307cc1a 2086 return VM_FAULT_SIGBUS;
d00806b1
NP
2087 }
2088
d0217ac0 2089 vmf->page = page;
83c54070 2090 return ret | VM_FAULT_LOCKED;
1da177e4 2091
1da177e4
LT
2092no_cached_page:
2093 /*
2094 * We're only likely to ever get here if MADV_RANDOM is in
2095 * effect.
2096 */
c20cd45e 2097 error = page_cache_read(file, offset, vmf->gfp_mask);
1da177e4
LT
2098
2099 /*
2100 * The page we want has now been added to the page cache.
2101 * In the unlikely event that someone removed it in the
2102 * meantime, we'll just come back here and read it again.
2103 */
2104 if (error >= 0)
2105 goto retry_find;
2106
2107 /*
2108 * An error return from page_cache_read can result if the
2109 * system is low on memory, or a problem occurs while trying
2110 * to schedule I/O.
2111 */
2112 if (error == -ENOMEM)
d0217ac0
NP
2113 return VM_FAULT_OOM;
2114 return VM_FAULT_SIGBUS;
1da177e4
LT
2115
2116page_not_uptodate:
1da177e4
LT
2117 /*
2118 * Umm, take care of errors if the page isn't up-to-date.
2119 * Try to re-read it _once_. We do this synchronously,
2120 * because there really aren't any performance issues here
2121 * and we need to check for errors.
2122 */
1da177e4 2123 ClearPageError(page);
994fc28c 2124 error = mapping->a_ops->readpage(file, page);
3ef0f720
MS
2125 if (!error) {
2126 wait_on_page_locked(page);
2127 if (!PageUptodate(page))
2128 error = -EIO;
2129 }
09cbfeaf 2130 put_page(page);
d00806b1
NP
2131
2132 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 2133 goto retry_find;
1da177e4 2134
d00806b1 2135 /* Things didn't work out. Return zero to tell the mm layer so. */
76d42bd9 2136 shrink_readahead_size_eio(file, ra);
d0217ac0 2137 return VM_FAULT_SIGBUS;
54cb8821
NP
2138}
2139EXPORT_SYMBOL(filemap_fault);
2140
f1820361
KS
2141void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
2142{
2143 struct radix_tree_iter iter;
2144 void **slot;
2145 struct file *file = vma->vm_file;
2146 struct address_space *mapping = file->f_mapping;
2147 loff_t size;
2148 struct page *page;
2149 unsigned long address = (unsigned long) vmf->virtual_address;
2150 unsigned long addr;
2151 pte_t *pte;
2152
2153 rcu_read_lock();
2154 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
2155 if (iter.index > vmf->max_pgoff)
2156 break;
2157repeat:
2158 page = radix_tree_deref_slot(slot);
2159 if (unlikely(!page))
2160 goto next;
2161 if (radix_tree_exception(page)) {
2cf938aa
MW
2162 if (radix_tree_deref_retry(page)) {
2163 slot = radix_tree_iter_retry(&iter);
2164 continue;
2165 }
2166 goto next;
f1820361
KS
2167 }
2168
2169 if (!page_cache_get_speculative(page))
2170 goto repeat;
2171
2172 /* Has the page moved? */
2173 if (unlikely(page != *slot)) {
09cbfeaf 2174 put_page(page);
f1820361
KS
2175 goto repeat;
2176 }
2177
2178 if (!PageUptodate(page) ||
2179 PageReadahead(page) ||
2180 PageHWPoison(page))
2181 goto skip;
2182 if (!trylock_page(page))
2183 goto skip;
2184
2185 if (page->mapping != mapping || !PageUptodate(page))
2186 goto unlock;
2187
09cbfeaf
KS
2188 size = round_up(i_size_read(mapping->host), PAGE_SIZE);
2189 if (page->index >= size >> PAGE_SHIFT)
f1820361
KS
2190 goto unlock;
2191
2192 pte = vmf->pte + page->index - vmf->pgoff;
2193 if (!pte_none(*pte))
2194 goto unlock;
2195
2196 if (file->f_ra.mmap_miss > 0)
2197 file->f_ra.mmap_miss--;
2198 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2199 do_set_pte(vma, addr, page, pte, false, false);
2200 unlock_page(page);
2201 goto next;
2202unlock:
2203 unlock_page(page);
2204skip:
09cbfeaf 2205 put_page(page);
f1820361
KS
2206next:
2207 if (iter.index == vmf->max_pgoff)
2208 break;
2209 }
2210 rcu_read_unlock();
2211}
2212EXPORT_SYMBOL(filemap_map_pages);
2213
4fcf1c62
JK
2214int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2215{
2216 struct page *page = vmf->page;
496ad9aa 2217 struct inode *inode = file_inode(vma->vm_file);
4fcf1c62
JK
2218 int ret = VM_FAULT_LOCKED;
2219
14da9200 2220 sb_start_pagefault(inode->i_sb);
4fcf1c62
JK
2221 file_update_time(vma->vm_file);
2222 lock_page(page);
2223 if (page->mapping != inode->i_mapping) {
2224 unlock_page(page);
2225 ret = VM_FAULT_NOPAGE;
2226 goto out;
2227 }
14da9200
JK
2228 /*
2229 * We mark the page dirty already here so that when freeze is in
2230 * progress, we are guaranteed that writeback during freezing will
2231 * see the dirty page and writeprotect it again.
2232 */
2233 set_page_dirty(page);
1d1d1a76 2234 wait_for_stable_page(page);
4fcf1c62 2235out:
14da9200 2236 sb_end_pagefault(inode->i_sb);
4fcf1c62
JK
2237 return ret;
2238}
2239EXPORT_SYMBOL(filemap_page_mkwrite);
2240
f0f37e2f 2241const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 2242 .fault = filemap_fault,
f1820361 2243 .map_pages = filemap_map_pages,
4fcf1c62 2244 .page_mkwrite = filemap_page_mkwrite,
1da177e4
LT
2245};
2246
2247/* This is used for a general mmap of a disk file */
2248
2249int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2250{
2251 struct address_space *mapping = file->f_mapping;
2252
2253 if (!mapping->a_ops->readpage)
2254 return -ENOEXEC;
2255 file_accessed(file);
2256 vma->vm_ops = &generic_file_vm_ops;
2257 return 0;
2258}
1da177e4
LT
2259
2260/*
2261 * This is for filesystems which do not implement ->writepage.
2262 */
2263int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2264{
2265 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2266 return -EINVAL;
2267 return generic_file_mmap(file, vma);
2268}
2269#else
2270int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2271{
2272 return -ENOSYS;
2273}
2274int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2275{
2276 return -ENOSYS;
2277}
2278#endif /* CONFIG_MMU */
2279
2280EXPORT_SYMBOL(generic_file_mmap);
2281EXPORT_SYMBOL(generic_file_readonly_mmap);
2282
67f9fd91
SL
2283static struct page *wait_on_page_read(struct page *page)
2284{
2285 if (!IS_ERR(page)) {
2286 wait_on_page_locked(page);
2287 if (!PageUptodate(page)) {
09cbfeaf 2288 put_page(page);
67f9fd91
SL
2289 page = ERR_PTR(-EIO);
2290 }
2291 }
2292 return page;
2293}
2294
32b63529 2295static struct page *do_read_cache_page(struct address_space *mapping,
57f6b96c 2296 pgoff_t index,
5e5358e7 2297 int (*filler)(void *, struct page *),
0531b2aa
LT
2298 void *data,
2299 gfp_t gfp)
1da177e4 2300{
eb2be189 2301 struct page *page;
1da177e4
LT
2302 int err;
2303repeat:
2304 page = find_get_page(mapping, index);
2305 if (!page) {
0531b2aa 2306 page = __page_cache_alloc(gfp | __GFP_COLD);
eb2be189
NP
2307 if (!page)
2308 return ERR_PTR(-ENOMEM);
e6f67b8c 2309 err = add_to_page_cache_lru(page, mapping, index, gfp);
eb2be189 2310 if (unlikely(err)) {
09cbfeaf 2311 put_page(page);
eb2be189
NP
2312 if (err == -EEXIST)
2313 goto repeat;
1da177e4 2314 /* Presumably ENOMEM for radix tree node */
1da177e4
LT
2315 return ERR_PTR(err);
2316 }
32b63529
MG
2317
2318filler:
1da177e4
LT
2319 err = filler(data, page);
2320 if (err < 0) {
09cbfeaf 2321 put_page(page);
32b63529 2322 return ERR_PTR(err);
1da177e4 2323 }
1da177e4 2324
32b63529
MG
2325 page = wait_on_page_read(page);
2326 if (IS_ERR(page))
2327 return page;
2328 goto out;
2329 }
1da177e4
LT
2330 if (PageUptodate(page))
2331 goto out;
2332
ebded027
MG
2333 /*
2334 * Page is not up to date and may be locked due one of the following
2335 * case a: Page is being filled and the page lock is held
2336 * case b: Read/write error clearing the page uptodate status
2337 * case c: Truncation in progress (page locked)
2338 * case d: Reclaim in progress
2339 *
2340 * Case a, the page will be up to date when the page is unlocked.
2341 * There is no need to serialise on the page lock here as the page
2342 * is pinned so the lock gives no additional protection. Even if the
2343 * the page is truncated, the data is still valid if PageUptodate as
2344 * it's a race vs truncate race.
2345 * Case b, the page will not be up to date
2346 * Case c, the page may be truncated but in itself, the data may still
2347 * be valid after IO completes as it's a read vs truncate race. The
2348 * operation must restart if the page is not uptodate on unlock but
2349 * otherwise serialising on page lock to stabilise the mapping gives
2350 * no additional guarantees to the caller as the page lock is
2351 * released before return.
2352 * Case d, similar to truncation. If reclaim holds the page lock, it
2353 * will be a race with remove_mapping that determines if the mapping
2354 * is valid on unlock but otherwise the data is valid and there is
2355 * no need to serialise with page lock.
2356 *
2357 * As the page lock gives no additional guarantee, we optimistically
2358 * wait on the page to be unlocked and check if it's up to date and
2359 * use the page if it is. Otherwise, the page lock is required to
2360 * distinguish between the different cases. The motivation is that we
2361 * avoid spurious serialisations and wakeups when multiple processes
2362 * wait on the same page for IO to complete.
2363 */
2364 wait_on_page_locked(page);
2365 if (PageUptodate(page))
2366 goto out;
2367
2368 /* Distinguish between all the cases under the safety of the lock */
1da177e4 2369 lock_page(page);
ebded027
MG
2370
2371 /* Case c or d, restart the operation */
1da177e4
LT
2372 if (!page->mapping) {
2373 unlock_page(page);
09cbfeaf 2374 put_page(page);
32b63529 2375 goto repeat;
1da177e4 2376 }
ebded027
MG
2377
2378 /* Someone else locked and filled the page in a very small window */
1da177e4
LT
2379 if (PageUptodate(page)) {
2380 unlock_page(page);
2381 goto out;
2382 }
32b63529
MG
2383 goto filler;
2384
c855ff37 2385out:
6fe6900e
NP
2386 mark_page_accessed(page);
2387 return page;
2388}
0531b2aa
LT
2389
2390/**
67f9fd91 2391 * read_cache_page - read into page cache, fill it if needed
0531b2aa
LT
2392 * @mapping: the page's address_space
2393 * @index: the page index
2394 * @filler: function to perform the read
5e5358e7 2395 * @data: first arg to filler(data, page) function, often left as NULL
0531b2aa 2396 *
0531b2aa 2397 * Read into the page cache. If a page already exists, and PageUptodate() is
67f9fd91 2398 * not set, try to fill the page and wait for it to become unlocked.
0531b2aa
LT
2399 *
2400 * If the page does not get brought uptodate, return -EIO.
2401 */
67f9fd91 2402struct page *read_cache_page(struct address_space *mapping,
0531b2aa 2403 pgoff_t index,
5e5358e7 2404 int (*filler)(void *, struct page *),
0531b2aa
LT
2405 void *data)
2406{
2407 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2408}
67f9fd91 2409EXPORT_SYMBOL(read_cache_page);
0531b2aa
LT
2410
2411/**
2412 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2413 * @mapping: the page's address_space
2414 * @index: the page index
2415 * @gfp: the page allocator flags to use if allocating
2416 *
2417 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
e6f67b8c 2418 * any new page allocations done using the specified allocation flags.
0531b2aa
LT
2419 *
2420 * If the page does not get brought uptodate, return -EIO.
2421 */
2422struct page *read_cache_page_gfp(struct address_space *mapping,
2423 pgoff_t index,
2424 gfp_t gfp)
2425{
2426 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2427
67f9fd91 2428 return do_read_cache_page(mapping, index, filler, NULL, gfp);
0531b2aa
LT
2429}
2430EXPORT_SYMBOL(read_cache_page_gfp);
2431
1da177e4
LT
2432/*
2433 * Performs necessary checks before doing a write
2434 *
485bb99b 2435 * Can adjust writing position or amount of bytes to write.
1da177e4
LT
2436 * Returns appropriate error code that caller should return or
2437 * zero in case that write should be allowed.
2438 */
3309dd04 2439inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
1da177e4 2440{
3309dd04 2441 struct file *file = iocb->ki_filp;
1da177e4 2442 struct inode *inode = file->f_mapping->host;
59e99e5b 2443 unsigned long limit = rlimit(RLIMIT_FSIZE);
3309dd04 2444 loff_t pos;
1da177e4 2445
3309dd04
AV
2446 if (!iov_iter_count(from))
2447 return 0;
1da177e4 2448
0fa6b005 2449 /* FIXME: this is for backwards compatibility with 2.4 */
2ba48ce5 2450 if (iocb->ki_flags & IOCB_APPEND)
3309dd04 2451 iocb->ki_pos = i_size_read(inode);
1da177e4 2452
3309dd04 2453 pos = iocb->ki_pos;
1da177e4 2454
0fa6b005 2455 if (limit != RLIM_INFINITY) {
3309dd04 2456 if (iocb->ki_pos >= limit) {
0fa6b005
AV
2457 send_sig(SIGXFSZ, current, 0);
2458 return -EFBIG;
1da177e4 2459 }
3309dd04 2460 iov_iter_truncate(from, limit - (unsigned long)pos);
1da177e4
LT
2461 }
2462
2463 /*
2464 * LFS rule
2465 */
3309dd04 2466 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
1da177e4 2467 !(file->f_flags & O_LARGEFILE))) {
3309dd04 2468 if (pos >= MAX_NON_LFS)
1da177e4 2469 return -EFBIG;
3309dd04 2470 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
1da177e4
LT
2471 }
2472
2473 /*
2474 * Are we about to exceed the fs block limit ?
2475 *
2476 * If we have written data it becomes a short write. If we have
2477 * exceeded without writing data we send a signal and return EFBIG.
2478 * Linus frestrict idea will clean these up nicely..
2479 */
3309dd04
AV
2480 if (unlikely(pos >= inode->i_sb->s_maxbytes))
2481 return -EFBIG;
1da177e4 2482
3309dd04
AV
2483 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2484 return iov_iter_count(from);
1da177e4
LT
2485}
2486EXPORT_SYMBOL(generic_write_checks);
2487
afddba49
NP
2488int pagecache_write_begin(struct file *file, struct address_space *mapping,
2489 loff_t pos, unsigned len, unsigned flags,
2490 struct page **pagep, void **fsdata)
2491{
2492 const struct address_space_operations *aops = mapping->a_ops;
2493
4e02ed4b 2494 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 2495 pagep, fsdata);
afddba49
NP
2496}
2497EXPORT_SYMBOL(pagecache_write_begin);
2498
2499int pagecache_write_end(struct file *file, struct address_space *mapping,
2500 loff_t pos, unsigned len, unsigned copied,
2501 struct page *page, void *fsdata)
2502{
2503 const struct address_space_operations *aops = mapping->a_ops;
afddba49 2504
4e02ed4b 2505 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
2506}
2507EXPORT_SYMBOL(pagecache_write_end);
2508
1da177e4 2509ssize_t
0c949334 2510generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos)
1da177e4
LT
2511{
2512 struct file *file = iocb->ki_filp;
2513 struct address_space *mapping = file->f_mapping;
2514 struct inode *inode = mapping->host;
2515 ssize_t written;
a969e903
CH
2516 size_t write_len;
2517 pgoff_t end;
26978b8b 2518 struct iov_iter data;
1da177e4 2519
0c949334 2520 write_len = iov_iter_count(from);
09cbfeaf 2521 end = (pos + write_len - 1) >> PAGE_SHIFT;
a969e903 2522
48b47c56 2523 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
a969e903
CH
2524 if (written)
2525 goto out;
2526
2527 /*
2528 * After a write we want buffered reads to be sure to go to disk to get
2529 * the new data. We invalidate clean cached page from the region we're
2530 * about to write. We do this *before* the write so that we can return
6ccfa806 2531 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903
CH
2532 */
2533 if (mapping->nrpages) {
2534 written = invalidate_inode_pages2_range(mapping,
09cbfeaf 2535 pos >> PAGE_SHIFT, end);
6ccfa806
HH
2536 /*
2537 * If a page can not be invalidated, return 0 to fall back
2538 * to buffered write.
2539 */
2540 if (written) {
2541 if (written == -EBUSY)
2542 return 0;
a969e903 2543 goto out;
6ccfa806 2544 }
a969e903
CH
2545 }
2546
26978b8b 2547 data = *from;
22c6186e 2548 written = mapping->a_ops->direct_IO(iocb, &data, pos);
a969e903
CH
2549
2550 /*
2551 * Finally, try again to invalidate clean pages which might have been
2552 * cached by non-direct readahead, or faulted in by get_user_pages()
2553 * if the source of the write was an mmap'ed region of the file
2554 * we're writing. Either one is a pretty crazy thing to do,
2555 * so we don't support it 100%. If this invalidation
2556 * fails, tough, the write still worked...
2557 */
2558 if (mapping->nrpages) {
2559 invalidate_inode_pages2_range(mapping,
09cbfeaf 2560 pos >> PAGE_SHIFT, end);
a969e903
CH
2561 }
2562
1da177e4 2563 if (written > 0) {
0116651c 2564 pos += written;
f8579f86 2565 iov_iter_advance(from, written);
0116651c
NK
2566 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2567 i_size_write(inode, pos);
1da177e4
LT
2568 mark_inode_dirty(inode);
2569 }
5cb6c6c7 2570 iocb->ki_pos = pos;
1da177e4 2571 }
a969e903 2572out:
1da177e4
LT
2573 return written;
2574}
2575EXPORT_SYMBOL(generic_file_direct_write);
2576
eb2be189
NP
2577/*
2578 * Find or create a page at the given pagecache position. Return the locked
2579 * page. This function is specifically for buffered writes.
2580 */
54566b2c
NP
2581struct page *grab_cache_page_write_begin(struct address_space *mapping,
2582 pgoff_t index, unsigned flags)
eb2be189 2583{
eb2be189 2584 struct page *page;
2457aec6 2585 int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
0faa70cb 2586
54566b2c 2587 if (flags & AOP_FLAG_NOFS)
2457aec6
MG
2588 fgp_flags |= FGP_NOFS;
2589
2590 page = pagecache_get_page(mapping, index, fgp_flags,
45f87de5 2591 mapping_gfp_mask(mapping));
c585a267 2592 if (page)
2457aec6 2593 wait_for_stable_page(page);
eb2be189 2594
eb2be189
NP
2595 return page;
2596}
54566b2c 2597EXPORT_SYMBOL(grab_cache_page_write_begin);
eb2be189 2598
3b93f911 2599ssize_t generic_perform_write(struct file *file,
afddba49
NP
2600 struct iov_iter *i, loff_t pos)
2601{
2602 struct address_space *mapping = file->f_mapping;
2603 const struct address_space_operations *a_ops = mapping->a_ops;
2604 long status = 0;
2605 ssize_t written = 0;
674b892e
NP
2606 unsigned int flags = 0;
2607
2608 /*
2609 * Copies from kernel address space cannot fail (NFSD is a big user).
2610 */
777eda2c 2611 if (!iter_is_iovec(i))
674b892e 2612 flags |= AOP_FLAG_UNINTERRUPTIBLE;
afddba49
NP
2613
2614 do {
2615 struct page *page;
afddba49
NP
2616 unsigned long offset; /* Offset into pagecache page */
2617 unsigned long bytes; /* Bytes to write to page */
2618 size_t copied; /* Bytes copied from user */
2619 void *fsdata;
2620
09cbfeaf
KS
2621 offset = (pos & (PAGE_SIZE - 1));
2622 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
2623 iov_iter_count(i));
2624
2625again:
00a3d660
LT
2626 /*
2627 * Bring in the user page that we will copy from _first_.
2628 * Otherwise there's a nasty deadlock on copying from the
2629 * same page as we're writing to, without it being marked
2630 * up-to-date.
2631 *
2632 * Not only is this an optimisation, but it is also required
2633 * to check that the address is actually valid, when atomic
2634 * usercopies are used, below.
2635 */
2636 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2637 status = -EFAULT;
2638 break;
2639 }
2640
296291cd
JK
2641 if (fatal_signal_pending(current)) {
2642 status = -EINTR;
2643 break;
2644 }
2645
674b892e 2646 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49 2647 &page, &fsdata);
2457aec6 2648 if (unlikely(status < 0))
afddba49
NP
2649 break;
2650
931e80e4 2651 if (mapping_writably_mapped(mapping))
2652 flush_dcache_page(page);
00a3d660 2653
afddba49 2654 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
afddba49
NP
2655 flush_dcache_page(page);
2656
2657 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2658 page, fsdata);
2659 if (unlikely(status < 0))
2660 break;
2661 copied = status;
2662
2663 cond_resched();
2664
124d3b70 2665 iov_iter_advance(i, copied);
afddba49
NP
2666 if (unlikely(copied == 0)) {
2667 /*
2668 * If we were unable to copy any data at all, we must
2669 * fall back to a single segment length write.
2670 *
2671 * If we didn't fallback here, we could livelock
2672 * because not all segments in the iov can be copied at
2673 * once without a pagefault.
2674 */
09cbfeaf 2675 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
2676 iov_iter_single_seg_count(i));
2677 goto again;
2678 }
afddba49
NP
2679 pos += copied;
2680 written += copied;
2681
2682 balance_dirty_pages_ratelimited(mapping);
afddba49
NP
2683 } while (iov_iter_count(i));
2684
2685 return written ? written : status;
2686}
3b93f911 2687EXPORT_SYMBOL(generic_perform_write);
1da177e4 2688
e4dd9de3 2689/**
8174202b 2690 * __generic_file_write_iter - write data to a file
e4dd9de3 2691 * @iocb: IO state structure (file, offset, etc.)
8174202b 2692 * @from: iov_iter with data to write
e4dd9de3
JK
2693 *
2694 * This function does all the work needed for actually writing data to a
2695 * file. It does all basic checks, removes SUID from the file, updates
2696 * modification times and calls proper subroutines depending on whether we
2697 * do direct IO or a standard buffered write.
2698 *
2699 * It expects i_mutex to be grabbed unless we work on a block device or similar
2700 * object which does not need locking at all.
2701 *
2702 * This function does *not* take care of syncing data in case of O_SYNC write.
2703 * A caller has to handle it. This is mainly due to the fact that we want to
2704 * avoid syncing under i_mutex.
2705 */
8174202b 2706ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
2707{
2708 struct file *file = iocb->ki_filp;
fb5527e6 2709 struct address_space * mapping = file->f_mapping;
1da177e4 2710 struct inode *inode = mapping->host;
3b93f911 2711 ssize_t written = 0;
1da177e4 2712 ssize_t err;
3b93f911 2713 ssize_t status;
1da177e4 2714
1da177e4 2715 /* We can write back this queue in page reclaim */
de1414a6 2716 current->backing_dev_info = inode_to_bdi(inode);
5fa8e0a1 2717 err = file_remove_privs(file);
1da177e4
LT
2718 if (err)
2719 goto out;
2720
c3b2da31
JB
2721 err = file_update_time(file);
2722 if (err)
2723 goto out;
1da177e4 2724
2ba48ce5 2725 if (iocb->ki_flags & IOCB_DIRECT) {
0b8def9d 2726 loff_t pos, endbyte;
fb5527e6 2727
0b8def9d 2728 written = generic_file_direct_write(iocb, from, iocb->ki_pos);
1da177e4 2729 /*
fbbbad4b
MW
2730 * If the write stopped short of completing, fall back to
2731 * buffered writes. Some filesystems do this for writes to
2732 * holes, for example. For DAX files, a buffered write will
2733 * not succeed (even if it did, DAX does not handle dirty
2734 * page-cache pages correctly).
1da177e4 2735 */
0b8def9d 2736 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
fbbbad4b
MW
2737 goto out;
2738
0b8def9d 2739 status = generic_perform_write(file, from, pos = iocb->ki_pos);
fb5527e6 2740 /*
3b93f911 2741 * If generic_perform_write() returned a synchronous error
fb5527e6
JM
2742 * then we want to return the number of bytes which were
2743 * direct-written, or the error code if that was zero. Note
2744 * that this differs from normal direct-io semantics, which
2745 * will return -EFOO even if some bytes were written.
2746 */
60bb4529 2747 if (unlikely(status < 0)) {
3b93f911 2748 err = status;
fb5527e6
JM
2749 goto out;
2750 }
fb5527e6
JM
2751 /*
2752 * We need to ensure that the page cache pages are written to
2753 * disk and invalidated to preserve the expected O_DIRECT
2754 * semantics.
2755 */
3b93f911 2756 endbyte = pos + status - 1;
0b8def9d 2757 err = filemap_write_and_wait_range(mapping, pos, endbyte);
fb5527e6 2758 if (err == 0) {
0b8def9d 2759 iocb->ki_pos = endbyte + 1;
3b93f911 2760 written += status;
fb5527e6 2761 invalidate_mapping_pages(mapping,
09cbfeaf
KS
2762 pos >> PAGE_SHIFT,
2763 endbyte >> PAGE_SHIFT);
fb5527e6
JM
2764 } else {
2765 /*
2766 * We don't know how much we wrote, so just return
2767 * the number of bytes which were direct-written
2768 */
2769 }
2770 } else {
0b8def9d
AV
2771 written = generic_perform_write(file, from, iocb->ki_pos);
2772 if (likely(written > 0))
2773 iocb->ki_pos += written;
fb5527e6 2774 }
1da177e4
LT
2775out:
2776 current->backing_dev_info = NULL;
2777 return written ? written : err;
2778}
8174202b 2779EXPORT_SYMBOL(__generic_file_write_iter);
e4dd9de3 2780
e4dd9de3 2781/**
8174202b 2782 * generic_file_write_iter - write data to a file
e4dd9de3 2783 * @iocb: IO state structure
8174202b 2784 * @from: iov_iter with data to write
e4dd9de3 2785 *
8174202b 2786 * This is a wrapper around __generic_file_write_iter() to be used by most
e4dd9de3
JK
2787 * filesystems. It takes care of syncing the file in case of O_SYNC file
2788 * and acquires i_mutex as needed.
2789 */
8174202b 2790ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
2791{
2792 struct file *file = iocb->ki_filp;
148f948b 2793 struct inode *inode = file->f_mapping->host;
1da177e4 2794 ssize_t ret;
1da177e4 2795
5955102c 2796 inode_lock(inode);
3309dd04
AV
2797 ret = generic_write_checks(iocb, from);
2798 if (ret > 0)
5f380c7f 2799 ret = __generic_file_write_iter(iocb, from);
5955102c 2800 inode_unlock(inode);
1da177e4 2801
02afc27f 2802 if (ret > 0) {
1da177e4
LT
2803 ssize_t err;
2804
d311d79d
AV
2805 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2806 if (err < 0)
1da177e4
LT
2807 ret = err;
2808 }
2809 return ret;
2810}
8174202b 2811EXPORT_SYMBOL(generic_file_write_iter);
1da177e4 2812
cf9a2ae8
DH
2813/**
2814 * try_to_release_page() - release old fs-specific metadata on a page
2815 *
2816 * @page: the page which the kernel is trying to free
2817 * @gfp_mask: memory allocation flags (and I/O mode)
2818 *
2819 * The address_space is to try to release any data against the page
2820 * (presumably at page->private). If the release was successful, return `1'.
2821 * Otherwise return zero.
2822 *
266cf658
DH
2823 * This may also be called if PG_fscache is set on a page, indicating that the
2824 * page is known to the local caching routines.
2825 *
cf9a2ae8 2826 * The @gfp_mask argument specifies whether I/O may be performed to release
71baba4b 2827 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
cf9a2ae8 2828 *
cf9a2ae8
DH
2829 */
2830int try_to_release_page(struct page *page, gfp_t gfp_mask)
2831{
2832 struct address_space * const mapping = page->mapping;
2833
2834 BUG_ON(!PageLocked(page));
2835 if (PageWriteback(page))
2836 return 0;
2837
2838 if (mapping && mapping->a_ops->releasepage)
2839 return mapping->a_ops->releasepage(page, gfp_mask);
2840 return try_to_free_buffers(page);
2841}
2842
2843EXPORT_SYMBOL(try_to_release_page);