mm: rewrite wait_on_page_bit_common() logic
[linux-block.git] / mm / filemap.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/filemap.c
4 *
5 * Copyright (C) 1994-1999 Linus Torvalds
6 */
7
8/*
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
12 */
b95f1b31 13#include <linux/export.h>
1da177e4 14#include <linux/compiler.h>
f9fe48be 15#include <linux/dax.h>
1da177e4 16#include <linux/fs.h>
3f07c014 17#include <linux/sched/signal.h>
c22ce143 18#include <linux/uaccess.h>
c59ede7b 19#include <linux/capability.h>
1da177e4 20#include <linux/kernel_stat.h>
5a0e3ad6 21#include <linux/gfp.h>
1da177e4
LT
22#include <linux/mm.h>
23#include <linux/swap.h>
24#include <linux/mman.h>
25#include <linux/pagemap.h>
26#include <linux/file.h>
27#include <linux/uio.h>
cfcbfb13 28#include <linux/error-injection.h>
1da177e4
LT
29#include <linux/hash.h>
30#include <linux/writeback.h>
53253383 31#include <linux/backing-dev.h>
1da177e4
LT
32#include <linux/pagevec.h>
33#include <linux/blkdev.h>
34#include <linux/security.h>
44110fe3 35#include <linux/cpuset.h>
00501b53 36#include <linux/hugetlb.h>
8a9f3ccd 37#include <linux/memcontrol.h>
c515e1fd 38#include <linux/cleancache.h>
c7df8ad2 39#include <linux/shmem_fs.h>
f1820361 40#include <linux/rmap.h>
b1d29ba8 41#include <linux/delayacct.h>
eb414681 42#include <linux/psi.h>
d0e6a582 43#include <linux/ramfs.h>
0f8053a5
NP
44#include "internal.h"
45
fe0bfaaf
RJ
46#define CREATE_TRACE_POINTS
47#include <trace/events/filemap.h>
48
1da177e4 49/*
1da177e4
LT
50 * FIXME: remove all knowledge of the buffer layer from the core VM
51 */
148f948b 52#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 53
1da177e4
LT
54#include <asm/mman.h>
55
56/*
57 * Shared mappings implemented 30.11.1994. It's not fully working yet,
58 * though.
59 *
60 * Shared mappings now work. 15.8.1995 Bruno.
61 *
62 * finished 'unifying' the page and buffer cache and SMP-threaded the
63 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
64 *
65 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
66 */
67
68/*
69 * Lock ordering:
70 *
c8c06efa 71 * ->i_mmap_rwsem (truncate_pagecache)
1da177e4 72 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91 73 * ->swap_lock (exclusive_swap_page, others)
b93b0163 74 * ->i_pages lock
1da177e4 75 *
1b1dcc1b 76 * ->i_mutex
c8c06efa 77 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
1da177e4 78 *
c1e8d7c6 79 * ->mmap_lock
c8c06efa 80 * ->i_mmap_rwsem
b8072f09 81 * ->page_table_lock or pte_lock (various, mainly in memory.c)
b93b0163 82 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
1da177e4 83 *
c1e8d7c6 84 * ->mmap_lock
1da177e4
LT
85 * ->lock_page (access_process_vm)
86 *
ccad2365 87 * ->i_mutex (generic_perform_write)
c1e8d7c6 88 * ->mmap_lock (fault_in_pages_readable->do_page_fault)
1da177e4 89 *
f758eeab 90 * bdi->wb.list_lock
a66979ab 91 * sb_lock (fs/fs-writeback.c)
b93b0163 92 * ->i_pages lock (__sync_single_inode)
1da177e4 93 *
c8c06efa 94 * ->i_mmap_rwsem
1da177e4
LT
95 * ->anon_vma.lock (vma_adjust)
96 *
97 * ->anon_vma.lock
b8072f09 98 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 99 *
b8072f09 100 * ->page_table_lock or pte_lock
5d337b91 101 * ->swap_lock (try_to_unmap_one)
1da177e4 102 * ->private_lock (try_to_unmap_one)
b93b0163 103 * ->i_pages lock (try_to_unmap_one)
f4b7e272
AR
104 * ->pgdat->lru_lock (follow_page->mark_page_accessed)
105 * ->pgdat->lru_lock (check_pte_range->isolate_lru_page)
1da177e4 106 * ->private_lock (page_remove_rmap->set_page_dirty)
b93b0163 107 * ->i_pages lock (page_remove_rmap->set_page_dirty)
f758eeab 108 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
250df6ed 109 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
81f8c3a4 110 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
f758eeab 111 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 112 * ->inode->i_lock (zap_pte_range->set_page_dirty)
1da177e4
LT
113 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
114 *
c8c06efa 115 * ->i_mmap_rwsem
9a3c531d 116 * ->tasklist_lock (memory_failure, collect_procs_ao)
1da177e4
LT
117 */
118
5c024e6a 119static void page_cache_delete(struct address_space *mapping,
91b0abe3
JW
120 struct page *page, void *shadow)
121{
5c024e6a
MW
122 XA_STATE(xas, &mapping->i_pages, page->index);
123 unsigned int nr = 1;
c70b647d 124
5c024e6a 125 mapping_set_update(&xas, mapping);
c70b647d 126
5c024e6a
MW
127 /* hugetlb pages are represented by a single entry in the xarray */
128 if (!PageHuge(page)) {
129 xas_set_order(&xas, page->index, compound_order(page));
d8c6546b 130 nr = compound_nr(page);
5c024e6a 131 }
91b0abe3 132
83929372
KS
133 VM_BUG_ON_PAGE(!PageLocked(page), page);
134 VM_BUG_ON_PAGE(PageTail(page), page);
135 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
449dd698 136
5c024e6a
MW
137 xas_store(&xas, shadow);
138 xas_init_marks(&xas);
d3798ae8 139
2300638b
JK
140 page->mapping = NULL;
141 /* Leave page->index set: truncation lookup relies upon it */
142
d3798ae8
JW
143 if (shadow) {
144 mapping->nrexceptional += nr;
145 /*
146 * Make sure the nrexceptional update is committed before
147 * the nrpages update so that final truncate racing
148 * with reclaim does not see both counters 0 at the
149 * same time and miss a shadow entry.
150 */
151 smp_wmb();
152 }
153 mapping->nrpages -= nr;
91b0abe3
JW
154}
155
5ecc4d85
JK
156static void unaccount_page_cache_page(struct address_space *mapping,
157 struct page *page)
1da177e4 158{
5ecc4d85 159 int nr;
1da177e4 160
c515e1fd
DM
161 /*
162 * if we're uptodate, flush out into the cleancache, otherwise
163 * invalidate any existing cleancache entries. We can't leave
164 * stale data around in the cleancache once our page is gone
165 */
166 if (PageUptodate(page) && PageMappedToDisk(page))
167 cleancache_put_page(page);
168 else
3167760f 169 cleancache_invalidate_page(mapping, page);
c515e1fd 170
83929372 171 VM_BUG_ON_PAGE(PageTail(page), page);
06b241f3
HD
172 VM_BUG_ON_PAGE(page_mapped(page), page);
173 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
174 int mapcount;
175
176 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
177 current->comm, page_to_pfn(page));
178 dump_page(page, "still mapped when deleted");
179 dump_stack();
180 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
181
182 mapcount = page_mapcount(page);
183 if (mapping_exiting(mapping) &&
184 page_count(page) >= mapcount + 2) {
185 /*
186 * All vmas have already been torn down, so it's
187 * a good bet that actually the page is unmapped,
188 * and we'd prefer not to leak it: if we're wrong,
189 * some other bad page check should catch it later.
190 */
191 page_mapcount_reset(page);
6d061f9f 192 page_ref_sub(page, mapcount);
06b241f3
HD
193 }
194 }
195
4165b9b4 196 /* hugetlb pages do not participate in page cache accounting. */
5ecc4d85
JK
197 if (PageHuge(page))
198 return;
09612fa6 199
5ecc4d85
JK
200 nr = hpage_nr_pages(page);
201
0d1c2072 202 __mod_lruvec_page_state(page, NR_FILE_PAGES, -nr);
5ecc4d85 203 if (PageSwapBacked(page)) {
0d1c2072 204 __mod_lruvec_page_state(page, NR_SHMEM, -nr);
5ecc4d85
JK
205 if (PageTransHuge(page))
206 __dec_node_page_state(page, NR_SHMEM_THPS);
99cb0dbd
SL
207 } else if (PageTransHuge(page)) {
208 __dec_node_page_state(page, NR_FILE_THPS);
09d91cda 209 filemap_nr_thps_dec(mapping);
800d8c63 210 }
5ecc4d85
JK
211
212 /*
213 * At this point page must be either written or cleaned by
214 * truncate. Dirty page here signals a bug and loss of
215 * unwritten data.
216 *
217 * This fixes dirty accounting after removing the page entirely
218 * but leaves PageDirty set: it has no effect for truncated
219 * page and anyway will be cleared before returning page into
220 * buddy allocator.
221 */
222 if (WARN_ON_ONCE(PageDirty(page)))
223 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
224}
225
226/*
227 * Delete a page from the page cache and free it. Caller has to make
228 * sure the page is locked and that nobody else uses it - or that usage
b93b0163 229 * is safe. The caller must hold the i_pages lock.
5ecc4d85
JK
230 */
231void __delete_from_page_cache(struct page *page, void *shadow)
232{
233 struct address_space *mapping = page->mapping;
234
235 trace_mm_filemap_delete_from_page_cache(page);
236
237 unaccount_page_cache_page(mapping, page);
5c024e6a 238 page_cache_delete(mapping, page, shadow);
1da177e4
LT
239}
240
59c66c5f
JK
241static void page_cache_free_page(struct address_space *mapping,
242 struct page *page)
243{
244 void (*freepage)(struct page *);
245
246 freepage = mapping->a_ops->freepage;
247 if (freepage)
248 freepage(page);
249
250 if (PageTransHuge(page) && !PageHuge(page)) {
251 page_ref_sub(page, HPAGE_PMD_NR);
252 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
253 } else {
254 put_page(page);
255 }
256}
257
702cfbf9
MK
258/**
259 * delete_from_page_cache - delete page from page cache
260 * @page: the page which the kernel is trying to remove from page cache
261 *
262 * This must be called only on pages that have been verified to be in the page
263 * cache and locked. It will never put the page into the free list, the caller
264 * has a reference on the page.
265 */
266void delete_from_page_cache(struct page *page)
1da177e4 267{
83929372 268 struct address_space *mapping = page_mapping(page);
c4843a75 269 unsigned long flags;
1da177e4 270
cd7619d6 271 BUG_ON(!PageLocked(page));
b93b0163 272 xa_lock_irqsave(&mapping->i_pages, flags);
62cccb8c 273 __delete_from_page_cache(page, NULL);
b93b0163 274 xa_unlock_irqrestore(&mapping->i_pages, flags);
6072d13c 275
59c66c5f 276 page_cache_free_page(mapping, page);
97cecb5a
MK
277}
278EXPORT_SYMBOL(delete_from_page_cache);
279
aa65c29c 280/*
ef8e5717 281 * page_cache_delete_batch - delete several pages from page cache
aa65c29c
JK
282 * @mapping: the mapping to which pages belong
283 * @pvec: pagevec with pages to delete
284 *
b93b0163 285 * The function walks over mapping->i_pages and removes pages passed in @pvec
4101196b
MWO
286 * from the mapping. The function expects @pvec to be sorted by page index
287 * and is optimised for it to be dense.
b93b0163 288 * It tolerates holes in @pvec (mapping entries at those indices are not
aa65c29c 289 * modified). The function expects only THP head pages to be present in the
4101196b 290 * @pvec.
aa65c29c 291 *
b93b0163 292 * The function expects the i_pages lock to be held.
aa65c29c 293 */
ef8e5717 294static void page_cache_delete_batch(struct address_space *mapping,
aa65c29c
JK
295 struct pagevec *pvec)
296{
ef8e5717 297 XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
aa65c29c 298 int total_pages = 0;
4101196b 299 int i = 0;
aa65c29c 300 struct page *page;
aa65c29c 301
ef8e5717
MW
302 mapping_set_update(&xas, mapping);
303 xas_for_each(&xas, page, ULONG_MAX) {
4101196b 304 if (i >= pagevec_count(pvec))
aa65c29c 305 break;
4101196b
MWO
306
307 /* A swap/dax/shadow entry got inserted? Skip it. */
3159f943 308 if (xa_is_value(page))
aa65c29c 309 continue;
4101196b
MWO
310 /*
311 * A page got inserted in our range? Skip it. We have our
312 * pages locked so they are protected from being removed.
313 * If we see a page whose index is higher than ours, it
314 * means our page has been removed, which shouldn't be
315 * possible because we're holding the PageLock.
316 */
317 if (page != pvec->pages[i]) {
318 VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
319 page);
320 continue;
321 }
322
323 WARN_ON_ONCE(!PageLocked(page));
324
325 if (page->index == xas.xa_index)
aa65c29c 326 page->mapping = NULL;
4101196b
MWO
327 /* Leave page->index set: truncation lookup relies on it */
328
329 /*
330 * Move to the next page in the vector if this is a regular
331 * page or the index is of the last sub-page of this compound
332 * page.
333 */
334 if (page->index + compound_nr(page) - 1 == xas.xa_index)
aa65c29c 335 i++;
ef8e5717 336 xas_store(&xas, NULL);
aa65c29c
JK
337 total_pages++;
338 }
339 mapping->nrpages -= total_pages;
340}
341
342void delete_from_page_cache_batch(struct address_space *mapping,
343 struct pagevec *pvec)
344{
345 int i;
346 unsigned long flags;
347
348 if (!pagevec_count(pvec))
349 return;
350
b93b0163 351 xa_lock_irqsave(&mapping->i_pages, flags);
aa65c29c
JK
352 for (i = 0; i < pagevec_count(pvec); i++) {
353 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
354
355 unaccount_page_cache_page(mapping, pvec->pages[i]);
356 }
ef8e5717 357 page_cache_delete_batch(mapping, pvec);
b93b0163 358 xa_unlock_irqrestore(&mapping->i_pages, flags);
aa65c29c
JK
359
360 for (i = 0; i < pagevec_count(pvec); i++)
361 page_cache_free_page(mapping, pvec->pages[i]);
362}
363
d72d9e2a 364int filemap_check_errors(struct address_space *mapping)
865ffef3
DM
365{
366 int ret = 0;
367 /* Check for outstanding write errors */
7fcbbaf1
JA
368 if (test_bit(AS_ENOSPC, &mapping->flags) &&
369 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
865ffef3 370 ret = -ENOSPC;
7fcbbaf1
JA
371 if (test_bit(AS_EIO, &mapping->flags) &&
372 test_and_clear_bit(AS_EIO, &mapping->flags))
865ffef3
DM
373 ret = -EIO;
374 return ret;
375}
d72d9e2a 376EXPORT_SYMBOL(filemap_check_errors);
865ffef3 377
76341cab
JL
378static int filemap_check_and_keep_errors(struct address_space *mapping)
379{
380 /* Check for outstanding write errors */
381 if (test_bit(AS_EIO, &mapping->flags))
382 return -EIO;
383 if (test_bit(AS_ENOSPC, &mapping->flags))
384 return -ENOSPC;
385 return 0;
386}
387
1da177e4 388/**
485bb99b 389 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
390 * @mapping: address space structure to write
391 * @start: offset in bytes where the range starts
469eb4d0 392 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 393 * @sync_mode: enable synchronous operation
1da177e4 394 *
485bb99b
RD
395 * Start writeback against all of a mapping's dirty pages that lie
396 * within the byte offsets <start, end> inclusive.
397 *
1da177e4 398 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 399 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
400 * these two operations is that if a dirty page/buffer is encountered, it must
401 * be waited upon, and not just skipped over.
a862f68a
MR
402 *
403 * Return: %0 on success, negative error code otherwise.
1da177e4 404 */
ebcf28e1
AM
405int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
406 loff_t end, int sync_mode)
1da177e4
LT
407{
408 int ret;
409 struct writeback_control wbc = {
410 .sync_mode = sync_mode,
05fe478d 411 .nr_to_write = LONG_MAX,
111ebb6e
OH
412 .range_start = start,
413 .range_end = end,
1da177e4
LT
414 };
415
c3aab9a0
KK
416 if (!mapping_cap_writeback_dirty(mapping) ||
417 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1da177e4
LT
418 return 0;
419
b16b1deb 420 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
1da177e4 421 ret = do_writepages(mapping, &wbc);
b16b1deb 422 wbc_detach_inode(&wbc);
1da177e4
LT
423 return ret;
424}
425
426static inline int __filemap_fdatawrite(struct address_space *mapping,
427 int sync_mode)
428{
111ebb6e 429 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
430}
431
432int filemap_fdatawrite(struct address_space *mapping)
433{
434 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
435}
436EXPORT_SYMBOL(filemap_fdatawrite);
437
f4c0a0fd 438int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 439 loff_t end)
1da177e4
LT
440{
441 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
442}
f4c0a0fd 443EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 444
485bb99b
RD
445/**
446 * filemap_flush - mostly a non-blocking flush
447 * @mapping: target address_space
448 *
1da177e4
LT
449 * This is a mostly non-blocking flush. Not suitable for data-integrity
450 * purposes - I/O may not be started against all dirty pages.
a862f68a
MR
451 *
452 * Return: %0 on success, negative error code otherwise.
1da177e4
LT
453 */
454int filemap_flush(struct address_space *mapping)
455{
456 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
457}
458EXPORT_SYMBOL(filemap_flush);
459
7fc9e472
GR
460/**
461 * filemap_range_has_page - check if a page exists in range.
462 * @mapping: address space within which to check
463 * @start_byte: offset in bytes where the range starts
464 * @end_byte: offset in bytes where the range ends (inclusive)
465 *
466 * Find at least one page in the range supplied, usually used to check if
467 * direct writing in this range will trigger a writeback.
a862f68a
MR
468 *
469 * Return: %true if at least one page exists in the specified range,
470 * %false otherwise.
7fc9e472
GR
471 */
472bool filemap_range_has_page(struct address_space *mapping,
473 loff_t start_byte, loff_t end_byte)
474{
f7b68046 475 struct page *page;
8fa8e538
MW
476 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
477 pgoff_t max = end_byte >> PAGE_SHIFT;
7fc9e472
GR
478
479 if (end_byte < start_byte)
480 return false;
481
8fa8e538
MW
482 rcu_read_lock();
483 for (;;) {
484 page = xas_find(&xas, max);
485 if (xas_retry(&xas, page))
486 continue;
487 /* Shadow entries don't count */
488 if (xa_is_value(page))
489 continue;
490 /*
491 * We don't need to try to pin this page; we're about to
492 * release the RCU lock anyway. It is enough to know that
493 * there was a page here recently.
494 */
495 break;
496 }
497 rcu_read_unlock();
7fc9e472 498
8fa8e538 499 return page != NULL;
7fc9e472
GR
500}
501EXPORT_SYMBOL(filemap_range_has_page);
502
5e8fcc1a 503static void __filemap_fdatawait_range(struct address_space *mapping,
aa750fd7 504 loff_t start_byte, loff_t end_byte)
1da177e4 505{
09cbfeaf
KS
506 pgoff_t index = start_byte >> PAGE_SHIFT;
507 pgoff_t end = end_byte >> PAGE_SHIFT;
1da177e4
LT
508 struct pagevec pvec;
509 int nr_pages;
1da177e4 510
94004ed7 511 if (end_byte < start_byte)
5e8fcc1a 512 return;
1da177e4 513
86679820 514 pagevec_init(&pvec);
312e9d2f 515 while (index <= end) {
1da177e4
LT
516 unsigned i;
517
312e9d2f 518 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
67fd707f 519 end, PAGECACHE_TAG_WRITEBACK);
312e9d2f
JK
520 if (!nr_pages)
521 break;
522
1da177e4
LT
523 for (i = 0; i < nr_pages; i++) {
524 struct page *page = pvec.pages[i];
525
1da177e4 526 wait_on_page_writeback(page);
5e8fcc1a 527 ClearPageError(page);
1da177e4
LT
528 }
529 pagevec_release(&pvec);
530 cond_resched();
531 }
aa750fd7
JN
532}
533
534/**
535 * filemap_fdatawait_range - wait for writeback to complete
536 * @mapping: address space structure to wait for
537 * @start_byte: offset in bytes where the range starts
538 * @end_byte: offset in bytes where the range ends (inclusive)
539 *
540 * Walk the list of under-writeback pages of the given address space
541 * in the given range and wait for all of them. Check error status of
542 * the address space and return it.
543 *
544 * Since the error status of the address space is cleared by this function,
545 * callers are responsible for checking the return value and handling and/or
546 * reporting the error.
a862f68a
MR
547 *
548 * Return: error status of the address space.
aa750fd7
JN
549 */
550int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
551 loff_t end_byte)
552{
5e8fcc1a
JL
553 __filemap_fdatawait_range(mapping, start_byte, end_byte);
554 return filemap_check_errors(mapping);
1da177e4 555}
d3bccb6f
JK
556EXPORT_SYMBOL(filemap_fdatawait_range);
557
aa0bfcd9
RZ
558/**
559 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
560 * @mapping: address space structure to wait for
561 * @start_byte: offset in bytes where the range starts
562 * @end_byte: offset in bytes where the range ends (inclusive)
563 *
564 * Walk the list of under-writeback pages of the given address space in the
565 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
566 * this function does not clear error status of the address space.
567 *
568 * Use this function if callers don't handle errors themselves. Expected
569 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
570 * fsfreeze(8)
571 */
572int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
573 loff_t start_byte, loff_t end_byte)
574{
575 __filemap_fdatawait_range(mapping, start_byte, end_byte);
576 return filemap_check_and_keep_errors(mapping);
577}
578EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
579
a823e458
JL
580/**
581 * file_fdatawait_range - wait for writeback to complete
582 * @file: file pointing to address space structure to wait for
583 * @start_byte: offset in bytes where the range starts
584 * @end_byte: offset in bytes where the range ends (inclusive)
585 *
586 * Walk the list of under-writeback pages of the address space that file
587 * refers to, in the given range and wait for all of them. Check error
588 * status of the address space vs. the file->f_wb_err cursor and return it.
589 *
590 * Since the error status of the file is advanced by this function,
591 * callers are responsible for checking the return value and handling and/or
592 * reporting the error.
a862f68a
MR
593 *
594 * Return: error status of the address space vs. the file->f_wb_err cursor.
a823e458
JL
595 */
596int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
597{
598 struct address_space *mapping = file->f_mapping;
599
600 __filemap_fdatawait_range(mapping, start_byte, end_byte);
601 return file_check_and_advance_wb_err(file);
602}
603EXPORT_SYMBOL(file_fdatawait_range);
d3bccb6f 604
aa750fd7
JN
605/**
606 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
607 * @mapping: address space structure to wait for
608 *
609 * Walk the list of under-writeback pages of the given address space
610 * and wait for all of them. Unlike filemap_fdatawait(), this function
611 * does not clear error status of the address space.
612 *
613 * Use this function if callers don't handle errors themselves. Expected
614 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
615 * fsfreeze(8)
a862f68a
MR
616 *
617 * Return: error status of the address space.
aa750fd7 618 */
76341cab 619int filemap_fdatawait_keep_errors(struct address_space *mapping)
aa750fd7 620{
ffb959bb 621 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
76341cab 622 return filemap_check_and_keep_errors(mapping);
aa750fd7 623}
76341cab 624EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
aa750fd7 625
875d91b1 626/* Returns true if writeback might be needed or already in progress. */
9326c9b2 627static bool mapping_needs_writeback(struct address_space *mapping)
1da177e4 628{
875d91b1
KK
629 if (dax_mapping(mapping))
630 return mapping->nrexceptional;
631
632 return mapping->nrpages;
1da177e4 633}
1da177e4 634
485bb99b
RD
635/**
636 * filemap_write_and_wait_range - write out & wait on a file range
637 * @mapping: the address_space for the pages
638 * @lstart: offset in bytes where the range starts
639 * @lend: offset in bytes where the range ends (inclusive)
640 *
469eb4d0
AM
641 * Write out and wait upon file offsets lstart->lend, inclusive.
642 *
0e056eb5 643 * Note that @lend is inclusive (describes the last byte to be written) so
469eb4d0 644 * that this function can be used to write to the very end-of-file (end = -1).
a862f68a
MR
645 *
646 * Return: error status of the address space.
469eb4d0 647 */
1da177e4
LT
648int filemap_write_and_wait_range(struct address_space *mapping,
649 loff_t lstart, loff_t lend)
650{
28fd1298 651 int err = 0;
1da177e4 652
9326c9b2 653 if (mapping_needs_writeback(mapping)) {
28fd1298
OH
654 err = __filemap_fdatawrite_range(mapping, lstart, lend,
655 WB_SYNC_ALL);
ddf8f376
IW
656 /*
657 * Even if the above returned error, the pages may be
658 * written partially (e.g. -ENOSPC), so we wait for it.
659 * But the -EIO is special case, it may indicate the worst
660 * thing (e.g. bug) happened, so we avoid waiting for it.
661 */
28fd1298 662 if (err != -EIO) {
94004ed7
CH
663 int err2 = filemap_fdatawait_range(mapping,
664 lstart, lend);
28fd1298
OH
665 if (!err)
666 err = err2;
cbeaf951
JL
667 } else {
668 /* Clear any previously stored errors */
669 filemap_check_errors(mapping);
28fd1298 670 }
865ffef3
DM
671 } else {
672 err = filemap_check_errors(mapping);
1da177e4 673 }
28fd1298 674 return err;
1da177e4 675}
f6995585 676EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 677
5660e13d
JL
678void __filemap_set_wb_err(struct address_space *mapping, int err)
679{
3acdfd28 680 errseq_t eseq = errseq_set(&mapping->wb_err, err);
5660e13d
JL
681
682 trace_filemap_set_wb_err(mapping, eseq);
683}
684EXPORT_SYMBOL(__filemap_set_wb_err);
685
686/**
687 * file_check_and_advance_wb_err - report wb error (if any) that was previously
688 * and advance wb_err to current one
689 * @file: struct file on which the error is being reported
690 *
691 * When userland calls fsync (or something like nfsd does the equivalent), we
692 * want to report any writeback errors that occurred since the last fsync (or
693 * since the file was opened if there haven't been any).
694 *
695 * Grab the wb_err from the mapping. If it matches what we have in the file,
696 * then just quickly return 0. The file is all caught up.
697 *
698 * If it doesn't match, then take the mapping value, set the "seen" flag in
699 * it and try to swap it into place. If it works, or another task beat us
700 * to it with the new value, then update the f_wb_err and return the error
701 * portion. The error at this point must be reported via proper channels
702 * (a'la fsync, or NFS COMMIT operation, etc.).
703 *
704 * While we handle mapping->wb_err with atomic operations, the f_wb_err
705 * value is protected by the f_lock since we must ensure that it reflects
706 * the latest value swapped in for this file descriptor.
a862f68a
MR
707 *
708 * Return: %0 on success, negative error code otherwise.
5660e13d
JL
709 */
710int file_check_and_advance_wb_err(struct file *file)
711{
712 int err = 0;
713 errseq_t old = READ_ONCE(file->f_wb_err);
714 struct address_space *mapping = file->f_mapping;
715
716 /* Locklessly handle the common case where nothing has changed */
717 if (errseq_check(&mapping->wb_err, old)) {
718 /* Something changed, must use slow path */
719 spin_lock(&file->f_lock);
720 old = file->f_wb_err;
721 err = errseq_check_and_advance(&mapping->wb_err,
722 &file->f_wb_err);
723 trace_file_check_and_advance_wb_err(file, old);
724 spin_unlock(&file->f_lock);
725 }
f4e222c5
JL
726
727 /*
728 * We're mostly using this function as a drop in replacement for
729 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
730 * that the legacy code would have had on these flags.
731 */
732 clear_bit(AS_EIO, &mapping->flags);
733 clear_bit(AS_ENOSPC, &mapping->flags);
5660e13d
JL
734 return err;
735}
736EXPORT_SYMBOL(file_check_and_advance_wb_err);
737
738/**
739 * file_write_and_wait_range - write out & wait on a file range
740 * @file: file pointing to address_space with pages
741 * @lstart: offset in bytes where the range starts
742 * @lend: offset in bytes where the range ends (inclusive)
743 *
744 * Write out and wait upon file offsets lstart->lend, inclusive.
745 *
746 * Note that @lend is inclusive (describes the last byte to be written) so
747 * that this function can be used to write to the very end-of-file (end = -1).
748 *
749 * After writing out and waiting on the data, we check and advance the
750 * f_wb_err cursor to the latest value, and return any errors detected there.
a862f68a
MR
751 *
752 * Return: %0 on success, negative error code otherwise.
5660e13d
JL
753 */
754int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
755{
756 int err = 0, err2;
757 struct address_space *mapping = file->f_mapping;
758
9326c9b2 759 if (mapping_needs_writeback(mapping)) {
5660e13d
JL
760 err = __filemap_fdatawrite_range(mapping, lstart, lend,
761 WB_SYNC_ALL);
762 /* See comment of filemap_write_and_wait() */
763 if (err != -EIO)
764 __filemap_fdatawait_range(mapping, lstart, lend);
765 }
766 err2 = file_check_and_advance_wb_err(file);
767 if (!err)
768 err = err2;
769 return err;
770}
771EXPORT_SYMBOL(file_write_and_wait_range);
772
ef6a3c63
MS
773/**
774 * replace_page_cache_page - replace a pagecache page with a new one
775 * @old: page to be replaced
776 * @new: page to replace with
777 * @gfp_mask: allocation mode
778 *
779 * This function replaces a page in the pagecache with a new one. On
780 * success it acquires the pagecache reference for the new page and
781 * drops it for the old page. Both the old and new pages must be
782 * locked. This function does not add the new page to the LRU, the
783 * caller must do that.
784 *
74d60958 785 * The remove + add is atomic. This function cannot fail.
a862f68a
MR
786 *
787 * Return: %0
ef6a3c63
MS
788 */
789int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
790{
74d60958
MW
791 struct address_space *mapping = old->mapping;
792 void (*freepage)(struct page *) = mapping->a_ops->freepage;
793 pgoff_t offset = old->index;
794 XA_STATE(xas, &mapping->i_pages, offset);
795 unsigned long flags;
ef6a3c63 796
309381fe
SL
797 VM_BUG_ON_PAGE(!PageLocked(old), old);
798 VM_BUG_ON_PAGE(!PageLocked(new), new);
799 VM_BUG_ON_PAGE(new->mapping, new);
ef6a3c63 800
74d60958
MW
801 get_page(new);
802 new->mapping = mapping;
803 new->index = offset;
ef6a3c63 804
0d1c2072
JW
805 mem_cgroup_migrate(old, new);
806
74d60958
MW
807 xas_lock_irqsave(&xas, flags);
808 xas_store(&xas, new);
4165b9b4 809
74d60958
MW
810 old->mapping = NULL;
811 /* hugetlb pages do not participate in page cache accounting. */
812 if (!PageHuge(old))
0d1c2072 813 __dec_lruvec_page_state(old, NR_FILE_PAGES);
74d60958 814 if (!PageHuge(new))
0d1c2072 815 __inc_lruvec_page_state(new, NR_FILE_PAGES);
74d60958 816 if (PageSwapBacked(old))
0d1c2072 817 __dec_lruvec_page_state(old, NR_SHMEM);
74d60958 818 if (PageSwapBacked(new))
0d1c2072 819 __inc_lruvec_page_state(new, NR_SHMEM);
74d60958 820 xas_unlock_irqrestore(&xas, flags);
74d60958
MW
821 if (freepage)
822 freepage(old);
823 put_page(old);
ef6a3c63 824
74d60958 825 return 0;
ef6a3c63
MS
826}
827EXPORT_SYMBOL_GPL(replace_page_cache_page);
828
a528910e
JW
829static int __add_to_page_cache_locked(struct page *page,
830 struct address_space *mapping,
831 pgoff_t offset, gfp_t gfp_mask,
832 void **shadowp)
1da177e4 833{
74d60958 834 XA_STATE(xas, &mapping->i_pages, offset);
00501b53 835 int huge = PageHuge(page);
e286781d 836 int error;
74d60958 837 void *old;
e286781d 838
309381fe
SL
839 VM_BUG_ON_PAGE(!PageLocked(page), page);
840 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
74d60958 841 mapping_set_update(&xas, mapping);
e286781d 842
09cbfeaf 843 get_page(page);
66a0c8ee
KS
844 page->mapping = mapping;
845 page->index = offset;
846
3fea5a49 847 if (!huge) {
d9eb1ea2 848 error = mem_cgroup_charge(page, current->mm, gfp_mask);
3fea5a49
JW
849 if (error)
850 goto error;
851 }
852
74d60958
MW
853 do {
854 xas_lock_irq(&xas);
855 old = xas_load(&xas);
856 if (old && !xa_is_value(old))
857 xas_set_err(&xas, -EEXIST);
858 xas_store(&xas, page);
859 if (xas_error(&xas))
860 goto unlock;
861
862 if (xa_is_value(old)) {
863 mapping->nrexceptional--;
864 if (shadowp)
865 *shadowp = old;
866 }
867 mapping->nrpages++;
868
869 /* hugetlb pages do not participate in page cache accounting */
870 if (!huge)
0d1c2072 871 __inc_lruvec_page_state(page, NR_FILE_PAGES);
74d60958
MW
872unlock:
873 xas_unlock_irq(&xas);
874 } while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK));
875
3fea5a49
JW
876 if (xas_error(&xas)) {
877 error = xas_error(&xas);
74d60958 878 goto error;
3fea5a49 879 }
4165b9b4 880
66a0c8ee
KS
881 trace_mm_filemap_add_to_page_cache(page);
882 return 0;
74d60958 883error:
66a0c8ee
KS
884 page->mapping = NULL;
885 /* Leave page->index set: truncation relies upon it */
09cbfeaf 886 put_page(page);
3fea5a49 887 return error;
1da177e4 888}
cfcbfb13 889ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
a528910e
JW
890
891/**
892 * add_to_page_cache_locked - add a locked page to the pagecache
893 * @page: page to add
894 * @mapping: the page's address_space
895 * @offset: page index
896 * @gfp_mask: page allocation mode
897 *
898 * This function is used to add a page to the pagecache. It must be locked.
899 * This function does not add the page to the LRU. The caller must do that.
a862f68a
MR
900 *
901 * Return: %0 on success, negative error code otherwise.
a528910e
JW
902 */
903int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
904 pgoff_t offset, gfp_t gfp_mask)
905{
906 return __add_to_page_cache_locked(page, mapping, offset,
907 gfp_mask, NULL);
908}
e286781d 909EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4
LT
910
911int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 912 pgoff_t offset, gfp_t gfp_mask)
1da177e4 913{
a528910e 914 void *shadow = NULL;
4f98a2fe
RR
915 int ret;
916
48c935ad 917 __SetPageLocked(page);
a528910e
JW
918 ret = __add_to_page_cache_locked(page, mapping, offset,
919 gfp_mask, &shadow);
920 if (unlikely(ret))
48c935ad 921 __ClearPageLocked(page);
a528910e
JW
922 else {
923 /*
924 * The page might have been evicted from cache only
925 * recently, in which case it should be activated like
926 * any other repeatedly accessed page.
f0281a00
RR
927 * The exception is pages getting rewritten; evicting other
928 * data from the working set, only to cache data that will
929 * get overwritten with something else, is a waste of memory.
a528910e 930 */
1899ad18
JW
931 WARN_ON_ONCE(PageActive(page));
932 if (!(gfp_mask & __GFP_WRITE) && shadow)
933 workingset_refault(page, shadow);
a528910e
JW
934 lru_cache_add(page);
935 }
1da177e4
LT
936 return ret;
937}
18bc0bbd 938EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1da177e4 939
44110fe3 940#ifdef CONFIG_NUMA
2ae88149 941struct page *__page_cache_alloc(gfp_t gfp)
44110fe3 942{
c0ff7453
MX
943 int n;
944 struct page *page;
945
44110fe3 946 if (cpuset_do_page_mem_spread()) {
cc9a6c87
MG
947 unsigned int cpuset_mems_cookie;
948 do {
d26914d1 949 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 950 n = cpuset_mem_spread_node();
96db800f 951 page = __alloc_pages_node(n, gfp, 0);
d26914d1 952 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
cc9a6c87 953
c0ff7453 954 return page;
44110fe3 955 }
2ae88149 956 return alloc_pages(gfp, 0);
44110fe3 957}
2ae88149 958EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
959#endif
960
1da177e4
LT
961/*
962 * In order to wait for pages to become available there must be
963 * waitqueues associated with pages. By using a hash table of
964 * waitqueues where the bucket discipline is to maintain all
965 * waiters on the same queue and wake all when any of the pages
966 * become available, and for the woken contexts to check to be
967 * sure the appropriate page became available, this saves space
968 * at a cost of "thundering herd" phenomena during rare hash
969 * collisions.
970 */
62906027
NP
971#define PAGE_WAIT_TABLE_BITS 8
972#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
973static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
974
975static wait_queue_head_t *page_waitqueue(struct page *page)
1da177e4 976{
62906027 977 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
1da177e4 978}
1da177e4 979
62906027 980void __init pagecache_init(void)
1da177e4 981{
62906027 982 int i;
1da177e4 983
62906027
NP
984 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
985 init_waitqueue_head(&page_wait_table[i]);
986
987 page_writeback_init();
1da177e4 988}
1da177e4 989
3510ca20 990/* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
62906027
NP
991struct wait_page_key {
992 struct page *page;
993 int bit_nr;
994 int page_match;
995};
996
997struct wait_page_queue {
998 struct page *page;
999 int bit_nr;
ac6424b9 1000 wait_queue_entry_t wait;
62906027
NP
1001};
1002
ac6424b9 1003static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
f62e00cc 1004{
2a9127fc 1005 int ret;
62906027
NP
1006 struct wait_page_key *key = arg;
1007 struct wait_page_queue *wait_page
1008 = container_of(wait, struct wait_page_queue, wait);
1009
1010 if (wait_page->page != key->page)
1011 return 0;
1012 key->page_match = 1;
f62e00cc 1013
62906027
NP
1014 if (wait_page->bit_nr != key->bit_nr)
1015 return 0;
3510ca20 1016
9a1ea439 1017 /*
2a9127fc
LT
1018 * If it's an exclusive wait, we get the bit for it, and
1019 * stop walking if we can't.
1020 *
1021 * If it's a non-exclusive wait, then the fact that this
1022 * wake function was called means that the bit already
1023 * was cleared, and we don't care if somebody then
1024 * re-took it.
9a1ea439 1025 */
2a9127fc
LT
1026 ret = 0;
1027 if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1028 if (test_and_set_bit(key->bit_nr, &key->page->flags))
1029 return -1;
1030 ret = 1;
1031 }
1032 wait->flags |= WQ_FLAG_WOKEN;
f62e00cc 1033
2a9127fc
LT
1034 wake_up_state(wait->private, mode);
1035
1036 /*
1037 * Ok, we have successfully done what we're waiting for,
1038 * and we can unconditionally remove the wait entry.
1039 *
1040 * Note that this has to be the absolute last thing we do,
1041 * since after list_del_init(&wait->entry) the wait entry
1042 * might be de-allocated and the process might even have
1043 * exited.
1044 *
1045 * We _really_ should have a "list_del_init_careful()" to
1046 * properly pair with the unlocked "list_empty_careful()"
1047 * in finish_wait().
1048 */
1049 smp_mb();
1050 list_del_init(&wait->entry);
1051 return ret;
f62e00cc
KM
1052}
1053
74d81bfa 1054static void wake_up_page_bit(struct page *page, int bit_nr)
cbbce822 1055{
62906027
NP
1056 wait_queue_head_t *q = page_waitqueue(page);
1057 struct wait_page_key key;
1058 unsigned long flags;
11a19c7b 1059 wait_queue_entry_t bookmark;
cbbce822 1060
62906027
NP
1061 key.page = page;
1062 key.bit_nr = bit_nr;
1063 key.page_match = 0;
1064
11a19c7b
TC
1065 bookmark.flags = 0;
1066 bookmark.private = NULL;
1067 bookmark.func = NULL;
1068 INIT_LIST_HEAD(&bookmark.entry);
1069
62906027 1070 spin_lock_irqsave(&q->lock, flags);
11a19c7b
TC
1071 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1072
1073 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1074 /*
1075 * Take a breather from holding the lock,
1076 * allow pages that finish wake up asynchronously
1077 * to acquire the lock and remove themselves
1078 * from wait queue
1079 */
1080 spin_unlock_irqrestore(&q->lock, flags);
1081 cpu_relax();
1082 spin_lock_irqsave(&q->lock, flags);
1083 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1084 }
1085
62906027
NP
1086 /*
1087 * It is possible for other pages to have collided on the waitqueue
1088 * hash, so in that case check for a page match. That prevents a long-
1089 * term waiter
1090 *
1091 * It is still possible to miss a case here, when we woke page waiters
1092 * and removed them from the waitqueue, but there are still other
1093 * page waiters.
1094 */
1095 if (!waitqueue_active(q) || !key.page_match) {
1096 ClearPageWaiters(page);
1097 /*
1098 * It's possible to miss clearing Waiters here, when we woke
1099 * our page waiters, but the hashed waitqueue has waiters for
1100 * other pages on it.
1101 *
1102 * That's okay, it's a rare case. The next waker will clear it.
1103 */
1104 }
1105 spin_unlock_irqrestore(&q->lock, flags);
1106}
74d81bfa
NP
1107
1108static void wake_up_page(struct page *page, int bit)
1109{
1110 if (!PageWaiters(page))
1111 return;
1112 wake_up_page_bit(page, bit);
1113}
62906027 1114
9a1ea439
HD
1115/*
1116 * A choice of three behaviors for wait_on_page_bit_common():
1117 */
1118enum behavior {
1119 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
1120 * __lock_page() waiting on then setting PG_locked.
1121 */
1122 SHARED, /* Hold ref to page and check the bit when woken, like
1123 * wait_on_page_writeback() waiting on PG_writeback.
1124 */
1125 DROP, /* Drop ref to page before wait, no check when woken,
1126 * like put_and_wait_on_page_locked() on PG_locked.
1127 */
1128};
1129
2a9127fc
LT
1130/*
1131 * Attempt to check (or get) the page bit, and mark the
1132 * waiter woken if successful.
1133 */
1134static inline bool trylock_page_bit_common(struct page *page, int bit_nr,
1135 struct wait_queue_entry *wait)
1136{
1137 if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1138 if (test_and_set_bit(bit_nr, &page->flags))
1139 return false;
1140 } else if (test_bit(bit_nr, &page->flags))
1141 return false;
1142
1143 wait->flags |= WQ_FLAG_WOKEN;
1144 return true;
1145}
1146
62906027 1147static inline int wait_on_page_bit_common(wait_queue_head_t *q,
9a1ea439 1148 struct page *page, int bit_nr, int state, enum behavior behavior)
62906027
NP
1149{
1150 struct wait_page_queue wait_page;
ac6424b9 1151 wait_queue_entry_t *wait = &wait_page.wait;
b1d29ba8 1152 bool thrashing = false;
9a1ea439 1153 bool delayacct = false;
eb414681 1154 unsigned long pflags;
62906027 1155
eb414681 1156 if (bit_nr == PG_locked &&
b1d29ba8 1157 !PageUptodate(page) && PageWorkingset(page)) {
9a1ea439 1158 if (!PageSwapBacked(page)) {
eb414681 1159 delayacct_thrashing_start();
9a1ea439
HD
1160 delayacct = true;
1161 }
eb414681 1162 psi_memstall_enter(&pflags);
b1d29ba8
JW
1163 thrashing = true;
1164 }
1165
62906027 1166 init_wait(wait);
9a1ea439 1167 wait->flags = behavior == EXCLUSIVE ? WQ_FLAG_EXCLUSIVE : 0;
62906027
NP
1168 wait->func = wake_page_function;
1169 wait_page.page = page;
1170 wait_page.bit_nr = bit_nr;
1171
2a9127fc
LT
1172 /*
1173 * Do one last check whether we can get the
1174 * page bit synchronously.
1175 *
1176 * Do the SetPageWaiters() marking before that
1177 * to let any waker we _just_ missed know they
1178 * need to wake us up (otherwise they'll never
1179 * even go to the slow case that looks at the
1180 * page queue), and add ourselves to the wait
1181 * queue if we need to sleep.
1182 *
1183 * This part needs to be done under the queue
1184 * lock to avoid races.
1185 */
1186 spin_lock_irq(&q->lock);
1187 SetPageWaiters(page);
1188 if (!trylock_page_bit_common(page, bit_nr, wait))
1189 __add_wait_queue_entry_tail(q, wait);
1190 spin_unlock_irq(&q->lock);
62906027 1191
2a9127fc
LT
1192 /*
1193 * From now on, all the logic will be based on
1194 * the WQ_FLAG_WOKEN flag, and the and the page
1195 * bit testing (and setting) will be - or has
1196 * already been - done by the wake function.
1197 *
1198 * We can drop our reference to the page.
1199 */
1200 if (behavior == DROP)
1201 put_page(page);
62906027 1202
2a9127fc 1203 for (;;) {
62906027
NP
1204 set_current_state(state);
1205
2a9127fc 1206 if (signal_pending_state(state, current))
a8b169af 1207 break;
9a1ea439 1208
2a9127fc 1209 if (wait->flags & WQ_FLAG_WOKEN)
9a1ea439 1210 break;
2a9127fc
LT
1211
1212 io_schedule();
62906027
NP
1213 }
1214
1215 finish_wait(q, wait);
1216
eb414681 1217 if (thrashing) {
9a1ea439 1218 if (delayacct)
eb414681
JW
1219 delayacct_thrashing_end();
1220 psi_memstall_leave(&pflags);
1221 }
b1d29ba8 1222
62906027
NP
1223 /*
1224 * A signal could leave PageWaiters set. Clearing it here if
1225 * !waitqueue_active would be possible (by open-coding finish_wait),
1226 * but still fail to catch it in the case of wait hash collision. We
1227 * already can fail to clear wait hash collision cases, so don't
1228 * bother with signals either.
1229 */
1230
2a9127fc 1231 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
62906027
NP
1232}
1233
1234void wait_on_page_bit(struct page *page, int bit_nr)
1235{
1236 wait_queue_head_t *q = page_waitqueue(page);
9a1ea439 1237 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
62906027
NP
1238}
1239EXPORT_SYMBOL(wait_on_page_bit);
1240
1241int wait_on_page_bit_killable(struct page *page, int bit_nr)
1242{
1243 wait_queue_head_t *q = page_waitqueue(page);
9a1ea439 1244 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
cbbce822 1245}
4343d008 1246EXPORT_SYMBOL(wait_on_page_bit_killable);
cbbce822 1247
9a1ea439
HD
1248/**
1249 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1250 * @page: The page to wait for.
1251 *
1252 * The caller should hold a reference on @page. They expect the page to
1253 * become unlocked relatively soon, but do not wish to hold up migration
1254 * (for example) by holding the reference while waiting for the page to
1255 * come unlocked. After this function returns, the caller should not
1256 * dereference @page.
1257 */
1258void put_and_wait_on_page_locked(struct page *page)
1259{
1260 wait_queue_head_t *q;
1261
1262 page = compound_head(page);
1263 q = page_waitqueue(page);
1264 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP);
1265}
1266
385e1ca5
DH
1267/**
1268 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
697f619f
RD
1269 * @page: Page defining the wait queue of interest
1270 * @waiter: Waiter to add to the queue
385e1ca5
DH
1271 *
1272 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1273 */
ac6424b9 1274void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
385e1ca5
DH
1275{
1276 wait_queue_head_t *q = page_waitqueue(page);
1277 unsigned long flags;
1278
1279 spin_lock_irqsave(&q->lock, flags);
9c3a815f 1280 __add_wait_queue_entry_tail(q, waiter);
62906027 1281 SetPageWaiters(page);
385e1ca5
DH
1282 spin_unlock_irqrestore(&q->lock, flags);
1283}
1284EXPORT_SYMBOL_GPL(add_page_wait_queue);
1285
b91e1302
LT
1286#ifndef clear_bit_unlock_is_negative_byte
1287
1288/*
1289 * PG_waiters is the high bit in the same byte as PG_lock.
1290 *
1291 * On x86 (and on many other architectures), we can clear PG_lock and
1292 * test the sign bit at the same time. But if the architecture does
1293 * not support that special operation, we just do this all by hand
1294 * instead.
1295 *
1296 * The read of PG_waiters has to be after (or concurrently with) PG_locked
ffceeb62 1297 * being cleared, but a memory barrier should be unnecessary since it is
b91e1302
LT
1298 * in the same byte as PG_locked.
1299 */
1300static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1301{
1302 clear_bit_unlock(nr, mem);
1303 /* smp_mb__after_atomic(); */
98473f9f 1304 return test_bit(PG_waiters, mem);
b91e1302
LT
1305}
1306
1307#endif
1308
1da177e4 1309/**
485bb99b 1310 * unlock_page - unlock a locked page
1da177e4
LT
1311 * @page: the page
1312 *
1313 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1314 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
da3dae54 1315 * mechanism between PageLocked pages and PageWriteback pages is shared.
1da177e4
LT
1316 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1317 *
b91e1302
LT
1318 * Note that this depends on PG_waiters being the sign bit in the byte
1319 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1320 * clear the PG_locked bit and test PG_waiters at the same time fairly
1321 * portably (architectures that do LL/SC can test any bit, while x86 can
1322 * test the sign bit).
1da177e4 1323 */
920c7a5d 1324void unlock_page(struct page *page)
1da177e4 1325{
b91e1302 1326 BUILD_BUG_ON(PG_waiters != 7);
48c935ad 1327 page = compound_head(page);
309381fe 1328 VM_BUG_ON_PAGE(!PageLocked(page), page);
b91e1302
LT
1329 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1330 wake_up_page_bit(page, PG_locked);
1da177e4
LT
1331}
1332EXPORT_SYMBOL(unlock_page);
1333
485bb99b
RD
1334/**
1335 * end_page_writeback - end writeback against a page
1336 * @page: the page
1da177e4
LT
1337 */
1338void end_page_writeback(struct page *page)
1339{
888cf2db
MG
1340 /*
1341 * TestClearPageReclaim could be used here but it is an atomic
1342 * operation and overkill in this particular case. Failing to
1343 * shuffle a page marked for immediate reclaim is too mild to
1344 * justify taking an atomic operation penalty at the end of
1345 * ever page writeback.
1346 */
1347 if (PageReclaim(page)) {
1348 ClearPageReclaim(page);
ac6aadb2 1349 rotate_reclaimable_page(page);
888cf2db 1350 }
ac6aadb2
MS
1351
1352 if (!test_clear_page_writeback(page))
1353 BUG();
1354
4e857c58 1355 smp_mb__after_atomic();
1da177e4
LT
1356 wake_up_page(page, PG_writeback);
1357}
1358EXPORT_SYMBOL(end_page_writeback);
1359
57d99845
MW
1360/*
1361 * After completing I/O on a page, call this routine to update the page
1362 * flags appropriately
1363 */
c11f0c0b 1364void page_endio(struct page *page, bool is_write, int err)
57d99845 1365{
c11f0c0b 1366 if (!is_write) {
57d99845
MW
1367 if (!err) {
1368 SetPageUptodate(page);
1369 } else {
1370 ClearPageUptodate(page);
1371 SetPageError(page);
1372 }
1373 unlock_page(page);
abf54548 1374 } else {
57d99845 1375 if (err) {
dd8416c4
MK
1376 struct address_space *mapping;
1377
57d99845 1378 SetPageError(page);
dd8416c4
MK
1379 mapping = page_mapping(page);
1380 if (mapping)
1381 mapping_set_error(mapping, err);
57d99845
MW
1382 }
1383 end_page_writeback(page);
1384 }
1385}
1386EXPORT_SYMBOL_GPL(page_endio);
1387
485bb99b
RD
1388/**
1389 * __lock_page - get a lock on the page, assuming we need to sleep to get it
87066755 1390 * @__page: the page to lock
1da177e4 1391 */
62906027 1392void __lock_page(struct page *__page)
1da177e4 1393{
62906027
NP
1394 struct page *page = compound_head(__page);
1395 wait_queue_head_t *q = page_waitqueue(page);
9a1ea439
HD
1396 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1397 EXCLUSIVE);
1da177e4
LT
1398}
1399EXPORT_SYMBOL(__lock_page);
1400
62906027 1401int __lock_page_killable(struct page *__page)
2687a356 1402{
62906027
NP
1403 struct page *page = compound_head(__page);
1404 wait_queue_head_t *q = page_waitqueue(page);
9a1ea439
HD
1405 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1406 EXCLUSIVE);
2687a356 1407}
18bc0bbd 1408EXPORT_SYMBOL_GPL(__lock_page_killable);
2687a356 1409
9a95f3cf
PC
1410/*
1411 * Return values:
c1e8d7c6 1412 * 1 - page is locked; mmap_lock is still held.
9a95f3cf 1413 * 0 - page is not locked.
3e4e28c5 1414 * mmap_lock has been released (mmap_read_unlock(), unless flags had both
9a95f3cf 1415 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
c1e8d7c6 1416 * which case mmap_lock is still held.
9a95f3cf
PC
1417 *
1418 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
c1e8d7c6 1419 * with the page locked and the mmap_lock unperturbed.
9a95f3cf 1420 */
d065bd81
ML
1421int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1422 unsigned int flags)
1423{
4064b982 1424 if (fault_flag_allow_retry_first(flags)) {
37b23e05 1425 /*
c1e8d7c6 1426 * CAUTION! In this case, mmap_lock is not released
37b23e05
KM
1427 * even though return 0.
1428 */
1429 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1430 return 0;
1431
d8ed45c5 1432 mmap_read_unlock(mm);
37b23e05
KM
1433 if (flags & FAULT_FLAG_KILLABLE)
1434 wait_on_page_locked_killable(page);
1435 else
318b275f 1436 wait_on_page_locked(page);
d065bd81 1437 return 0;
37b23e05
KM
1438 } else {
1439 if (flags & FAULT_FLAG_KILLABLE) {
1440 int ret;
1441
1442 ret = __lock_page_killable(page);
1443 if (ret) {
d8ed45c5 1444 mmap_read_unlock(mm);
37b23e05
KM
1445 return 0;
1446 }
1447 } else
1448 __lock_page(page);
1449 return 1;
d065bd81
ML
1450 }
1451}
1452
e7b563bb 1453/**
0d3f9296
MW
1454 * page_cache_next_miss() - Find the next gap in the page cache.
1455 * @mapping: Mapping.
1456 * @index: Index.
1457 * @max_scan: Maximum range to search.
e7b563bb 1458 *
0d3f9296
MW
1459 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1460 * gap with the lowest index.
e7b563bb 1461 *
0d3f9296
MW
1462 * This function may be called under the rcu_read_lock. However, this will
1463 * not atomically search a snapshot of the cache at a single point in time.
1464 * For example, if a gap is created at index 5, then subsequently a gap is
1465 * created at index 10, page_cache_next_miss covering both indices may
1466 * return 10 if called under the rcu_read_lock.
e7b563bb 1467 *
0d3f9296
MW
1468 * Return: The index of the gap if found, otherwise an index outside the
1469 * range specified (in which case 'return - index >= max_scan' will be true).
1470 * In the rare case of index wrap-around, 0 will be returned.
e7b563bb 1471 */
0d3f9296 1472pgoff_t page_cache_next_miss(struct address_space *mapping,
e7b563bb
JW
1473 pgoff_t index, unsigned long max_scan)
1474{
0d3f9296 1475 XA_STATE(xas, &mapping->i_pages, index);
e7b563bb 1476
0d3f9296
MW
1477 while (max_scan--) {
1478 void *entry = xas_next(&xas);
1479 if (!entry || xa_is_value(entry))
e7b563bb 1480 break;
0d3f9296 1481 if (xas.xa_index == 0)
e7b563bb
JW
1482 break;
1483 }
1484
0d3f9296 1485 return xas.xa_index;
e7b563bb 1486}
0d3f9296 1487EXPORT_SYMBOL(page_cache_next_miss);
e7b563bb
JW
1488
1489/**
2346a560 1490 * page_cache_prev_miss() - Find the previous gap in the page cache.
0d3f9296
MW
1491 * @mapping: Mapping.
1492 * @index: Index.
1493 * @max_scan: Maximum range to search.
e7b563bb 1494 *
0d3f9296
MW
1495 * Search the range [max(index - max_scan + 1, 0), index] for the
1496 * gap with the highest index.
e7b563bb 1497 *
0d3f9296
MW
1498 * This function may be called under the rcu_read_lock. However, this will
1499 * not atomically search a snapshot of the cache at a single point in time.
1500 * For example, if a gap is created at index 10, then subsequently a gap is
1501 * created at index 5, page_cache_prev_miss() covering both indices may
1502 * return 5 if called under the rcu_read_lock.
e7b563bb 1503 *
0d3f9296
MW
1504 * Return: The index of the gap if found, otherwise an index outside the
1505 * range specified (in which case 'index - return >= max_scan' will be true).
1506 * In the rare case of wrap-around, ULONG_MAX will be returned.
e7b563bb 1507 */
0d3f9296 1508pgoff_t page_cache_prev_miss(struct address_space *mapping,
e7b563bb
JW
1509 pgoff_t index, unsigned long max_scan)
1510{
0d3f9296 1511 XA_STATE(xas, &mapping->i_pages, index);
e7b563bb 1512
0d3f9296
MW
1513 while (max_scan--) {
1514 void *entry = xas_prev(&xas);
1515 if (!entry || xa_is_value(entry))
e7b563bb 1516 break;
0d3f9296 1517 if (xas.xa_index == ULONG_MAX)
e7b563bb
JW
1518 break;
1519 }
1520
0d3f9296 1521 return xas.xa_index;
e7b563bb 1522}
0d3f9296 1523EXPORT_SYMBOL(page_cache_prev_miss);
e7b563bb 1524
485bb99b 1525/**
0cd6144a 1526 * find_get_entry - find and get a page cache entry
485bb99b 1527 * @mapping: the address_space to search
0cd6144a
JW
1528 * @offset: the page cache index
1529 *
1530 * Looks up the page cache slot at @mapping & @offset. If there is a
1531 * page cache page, it is returned with an increased refcount.
485bb99b 1532 *
139b6a6f
JW
1533 * If the slot holds a shadow entry of a previously evicted page, or a
1534 * swap entry from shmem/tmpfs, it is returned.
0cd6144a 1535 *
a862f68a 1536 * Return: the found page or shadow entry, %NULL if nothing is found.
1da177e4 1537 */
0cd6144a 1538struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1da177e4 1539{
4c7472c0 1540 XA_STATE(xas, &mapping->i_pages, offset);
4101196b 1541 struct page *page;
1da177e4 1542
a60637c8
NP
1543 rcu_read_lock();
1544repeat:
4c7472c0
MW
1545 xas_reset(&xas);
1546 page = xas_load(&xas);
1547 if (xas_retry(&xas, page))
1548 goto repeat;
1549 /*
1550 * A shadow entry of a recently evicted page, or a swap entry from
1551 * shmem/tmpfs. Return it without attempting to raise page count.
1552 */
1553 if (!page || xa_is_value(page))
1554 goto out;
83929372 1555
4101196b 1556 if (!page_cache_get_speculative(page))
4c7472c0 1557 goto repeat;
83929372 1558
4c7472c0 1559 /*
4101196b 1560 * Has the page moved or been split?
4c7472c0
MW
1561 * This is part of the lockless pagecache protocol. See
1562 * include/linux/pagemap.h for details.
1563 */
1564 if (unlikely(page != xas_reload(&xas))) {
4101196b 1565 put_page(page);
4c7472c0 1566 goto repeat;
a60637c8 1567 }
4101196b 1568 page = find_subpage(page, offset);
27d20fdd 1569out:
a60637c8
NP
1570 rcu_read_unlock();
1571
1da177e4
LT
1572 return page;
1573}
1da177e4 1574
0cd6144a
JW
1575/**
1576 * find_lock_entry - locate, pin and lock a page cache entry
1577 * @mapping: the address_space to search
1578 * @offset: the page cache index
1579 *
1580 * Looks up the page cache slot at @mapping & @offset. If there is a
1581 * page cache page, it is returned locked and with an increased
1582 * refcount.
1583 *
139b6a6f
JW
1584 * If the slot holds a shadow entry of a previously evicted page, or a
1585 * swap entry from shmem/tmpfs, it is returned.
0cd6144a 1586 *
0cd6144a 1587 * find_lock_entry() may sleep.
a862f68a
MR
1588 *
1589 * Return: the found page or shadow entry, %NULL if nothing is found.
0cd6144a
JW
1590 */
1591struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1da177e4
LT
1592{
1593 struct page *page;
1594
1da177e4 1595repeat:
0cd6144a 1596 page = find_get_entry(mapping, offset);
4c7472c0 1597 if (page && !xa_is_value(page)) {
a60637c8
NP
1598 lock_page(page);
1599 /* Has the page been truncated? */
83929372 1600 if (unlikely(page_mapping(page) != mapping)) {
a60637c8 1601 unlock_page(page);
09cbfeaf 1602 put_page(page);
a60637c8 1603 goto repeat;
1da177e4 1604 }
83929372 1605 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1da177e4 1606 }
1da177e4
LT
1607 return page;
1608}
0cd6144a
JW
1609EXPORT_SYMBOL(find_lock_entry);
1610
1611/**
2294b32e
MWO
1612 * pagecache_get_page - Find and get a reference to a page.
1613 * @mapping: The address_space to search.
1614 * @index: The page index.
1615 * @fgp_flags: %FGP flags modify how the page is returned.
1616 * @gfp_mask: Memory allocation flags to use if %FGP_CREAT is specified.
1da177e4 1617 *
2294b32e 1618 * Looks up the page cache entry at @mapping & @index.
0cd6144a 1619 *
2294b32e 1620 * @fgp_flags can be zero or more of these flags:
0e056eb5 1621 *
2294b32e
MWO
1622 * * %FGP_ACCESSED - The page will be marked accessed.
1623 * * %FGP_LOCK - The page is returned locked.
1624 * * %FGP_CREAT - If no page is present then a new page is allocated using
1625 * @gfp_mask and added to the page cache and the VM's LRU list.
1626 * The page is returned locked and with an increased refcount.
1627 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1628 * page is already in cache. If the page was allocated, unlock it before
1629 * returning so the caller can do the same dance.
1da177e4 1630 *
2294b32e
MWO
1631 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1632 * if the %GFP flags specified for %FGP_CREAT are atomic.
1da177e4 1633 *
2457aec6 1634 * If there is a page cache page, it is returned with an increased refcount.
a862f68a 1635 *
2294b32e 1636 * Return: The found page or %NULL otherwise.
1da177e4 1637 */
2294b32e
MWO
1638struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
1639 int fgp_flags, gfp_t gfp_mask)
1da177e4 1640{
eb2be189 1641 struct page *page;
2457aec6 1642
1da177e4 1643repeat:
2294b32e 1644 page = find_get_entry(mapping, index);
3159f943 1645 if (xa_is_value(page))
2457aec6
MG
1646 page = NULL;
1647 if (!page)
1648 goto no_page;
1649
1650 if (fgp_flags & FGP_LOCK) {
1651 if (fgp_flags & FGP_NOWAIT) {
1652 if (!trylock_page(page)) {
09cbfeaf 1653 put_page(page);
2457aec6
MG
1654 return NULL;
1655 }
1656 } else {
1657 lock_page(page);
1658 }
1659
1660 /* Has the page been truncated? */
31895438 1661 if (unlikely(compound_head(page)->mapping != mapping)) {
2457aec6 1662 unlock_page(page);
09cbfeaf 1663 put_page(page);
2457aec6
MG
1664 goto repeat;
1665 }
2294b32e 1666 VM_BUG_ON_PAGE(page->index != index, page);
2457aec6
MG
1667 }
1668
c16eb000 1669 if (fgp_flags & FGP_ACCESSED)
2457aec6
MG
1670 mark_page_accessed(page);
1671
1672no_page:
1673 if (!page && (fgp_flags & FGP_CREAT)) {
1674 int err;
1675 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
45f87de5
MH
1676 gfp_mask |= __GFP_WRITE;
1677 if (fgp_flags & FGP_NOFS)
1678 gfp_mask &= ~__GFP_FS;
2457aec6 1679
45f87de5 1680 page = __page_cache_alloc(gfp_mask);
eb2be189
NP
1681 if (!page)
1682 return NULL;
2457aec6 1683
a75d4c33 1684 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
2457aec6
MG
1685 fgp_flags |= FGP_LOCK;
1686
eb39d618 1687 /* Init accessed so avoid atomic mark_page_accessed later */
2457aec6 1688 if (fgp_flags & FGP_ACCESSED)
eb39d618 1689 __SetPageReferenced(page);
2457aec6 1690
2294b32e 1691 err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
eb2be189 1692 if (unlikely(err)) {
09cbfeaf 1693 put_page(page);
eb2be189
NP
1694 page = NULL;
1695 if (err == -EEXIST)
1696 goto repeat;
1da177e4 1697 }
a75d4c33
JB
1698
1699 /*
1700 * add_to_page_cache_lru locks the page, and for mmap we expect
1701 * an unlocked page.
1702 */
1703 if (page && (fgp_flags & FGP_FOR_MMAP))
1704 unlock_page(page);
1da177e4 1705 }
2457aec6 1706
1da177e4
LT
1707 return page;
1708}
2457aec6 1709EXPORT_SYMBOL(pagecache_get_page);
1da177e4 1710
0cd6144a
JW
1711/**
1712 * find_get_entries - gang pagecache lookup
1713 * @mapping: The address_space to search
1714 * @start: The starting page cache index
1715 * @nr_entries: The maximum number of entries
1716 * @entries: Where the resulting entries are placed
1717 * @indices: The cache indices corresponding to the entries in @entries
1718 *
1719 * find_get_entries() will search for and return a group of up to
1720 * @nr_entries entries in the mapping. The entries are placed at
1721 * @entries. find_get_entries() takes a reference against any actual
1722 * pages it returns.
1723 *
1724 * The search returns a group of mapping-contiguous page cache entries
1725 * with ascending indexes. There may be holes in the indices due to
1726 * not-present pages.
1727 *
139b6a6f
JW
1728 * Any shadow entries of evicted pages, or swap entries from
1729 * shmem/tmpfs, are included in the returned array.
0cd6144a 1730 *
71725ed1
HD
1731 * If it finds a Transparent Huge Page, head or tail, find_get_entries()
1732 * stops at that page: the caller is likely to have a better way to handle
1733 * the compound page as a whole, and then skip its extent, than repeatedly
1734 * calling find_get_entries() to return all its tails.
1735 *
a862f68a 1736 * Return: the number of pages and shadow entries which were found.
0cd6144a
JW
1737 */
1738unsigned find_get_entries(struct address_space *mapping,
1739 pgoff_t start, unsigned int nr_entries,
1740 struct page **entries, pgoff_t *indices)
1741{
f280bf09
MW
1742 XA_STATE(xas, &mapping->i_pages, start);
1743 struct page *page;
0cd6144a 1744 unsigned int ret = 0;
0cd6144a
JW
1745
1746 if (!nr_entries)
1747 return 0;
1748
1749 rcu_read_lock();
f280bf09 1750 xas_for_each(&xas, page, ULONG_MAX) {
f280bf09 1751 if (xas_retry(&xas, page))
0cd6144a 1752 continue;
f280bf09
MW
1753 /*
1754 * A shadow entry of a recently evicted page, a swap
1755 * entry from shmem/tmpfs or a DAX entry. Return it
1756 * without attempting to raise page count.
1757 */
1758 if (xa_is_value(page))
0cd6144a 1759 goto export;
83929372 1760
4101196b 1761 if (!page_cache_get_speculative(page))
f280bf09 1762 goto retry;
83929372 1763
4101196b 1764 /* Has the page moved or been split? */
f280bf09
MW
1765 if (unlikely(page != xas_reload(&xas)))
1766 goto put_page;
1767
71725ed1
HD
1768 /*
1769 * Terminate early on finding a THP, to allow the caller to
1770 * handle it all at once; but continue if this is hugetlbfs.
1771 */
1772 if (PageTransHuge(page) && !PageHuge(page)) {
1773 page = find_subpage(page, xas.xa_index);
1774 nr_entries = ret + 1;
1775 }
0cd6144a 1776export:
f280bf09 1777 indices[ret] = xas.xa_index;
0cd6144a
JW
1778 entries[ret] = page;
1779 if (++ret == nr_entries)
1780 break;
f280bf09
MW
1781 continue;
1782put_page:
4101196b 1783 put_page(page);
f280bf09
MW
1784retry:
1785 xas_reset(&xas);
0cd6144a
JW
1786 }
1787 rcu_read_unlock();
1788 return ret;
1789}
1790
1da177e4 1791/**
b947cee4 1792 * find_get_pages_range - gang pagecache lookup
1da177e4
LT
1793 * @mapping: The address_space to search
1794 * @start: The starting page index
b947cee4 1795 * @end: The final page index (inclusive)
1da177e4
LT
1796 * @nr_pages: The maximum number of pages
1797 * @pages: Where the resulting pages are placed
1798 *
b947cee4
JK
1799 * find_get_pages_range() will search for and return a group of up to @nr_pages
1800 * pages in the mapping starting at index @start and up to index @end
1801 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes
1802 * a reference against the returned pages.
1da177e4
LT
1803 *
1804 * The search returns a group of mapping-contiguous pages with ascending
1805 * indexes. There may be holes in the indices due to not-present pages.
d72dc8a2 1806 * We also update @start to index the next page for the traversal.
1da177e4 1807 *
a862f68a
MR
1808 * Return: the number of pages which were found. If this number is
1809 * smaller than @nr_pages, the end of specified range has been
b947cee4 1810 * reached.
1da177e4 1811 */
b947cee4
JK
1812unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1813 pgoff_t end, unsigned int nr_pages,
1814 struct page **pages)
1da177e4 1815{
fd1b3cee
MW
1816 XA_STATE(xas, &mapping->i_pages, *start);
1817 struct page *page;
0fc9d104
KK
1818 unsigned ret = 0;
1819
1820 if (unlikely(!nr_pages))
1821 return 0;
a60637c8
NP
1822
1823 rcu_read_lock();
fd1b3cee 1824 xas_for_each(&xas, page, end) {
fd1b3cee 1825 if (xas_retry(&xas, page))
a60637c8 1826 continue;
fd1b3cee
MW
1827 /* Skip over shadow, swap and DAX entries */
1828 if (xa_is_value(page))
8079b1c8 1829 continue;
a60637c8 1830
4101196b 1831 if (!page_cache_get_speculative(page))
fd1b3cee 1832 goto retry;
83929372 1833
4101196b 1834 /* Has the page moved or been split? */
fd1b3cee
MW
1835 if (unlikely(page != xas_reload(&xas)))
1836 goto put_page;
1da177e4 1837
4101196b 1838 pages[ret] = find_subpage(page, xas.xa_index);
b947cee4 1839 if (++ret == nr_pages) {
5d3ee42f 1840 *start = xas.xa_index + 1;
b947cee4
JK
1841 goto out;
1842 }
fd1b3cee
MW
1843 continue;
1844put_page:
4101196b 1845 put_page(page);
fd1b3cee
MW
1846retry:
1847 xas_reset(&xas);
a60637c8 1848 }
5b280c0c 1849
b947cee4
JK
1850 /*
1851 * We come here when there is no page beyond @end. We take care to not
1852 * overflow the index @start as it confuses some of the callers. This
fd1b3cee 1853 * breaks the iteration when there is a page at index -1 but that is
b947cee4
JK
1854 * already broken anyway.
1855 */
1856 if (end == (pgoff_t)-1)
1857 *start = (pgoff_t)-1;
1858 else
1859 *start = end + 1;
1860out:
a60637c8 1861 rcu_read_unlock();
d72dc8a2 1862
1da177e4
LT
1863 return ret;
1864}
1865
ebf43500
JA
1866/**
1867 * find_get_pages_contig - gang contiguous pagecache lookup
1868 * @mapping: The address_space to search
1869 * @index: The starting page index
1870 * @nr_pages: The maximum number of pages
1871 * @pages: Where the resulting pages are placed
1872 *
1873 * find_get_pages_contig() works exactly like find_get_pages(), except
1874 * that the returned number of pages are guaranteed to be contiguous.
1875 *
a862f68a 1876 * Return: the number of pages which were found.
ebf43500
JA
1877 */
1878unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1879 unsigned int nr_pages, struct page **pages)
1880{
3ece58a2
MW
1881 XA_STATE(xas, &mapping->i_pages, index);
1882 struct page *page;
0fc9d104
KK
1883 unsigned int ret = 0;
1884
1885 if (unlikely(!nr_pages))
1886 return 0;
a60637c8
NP
1887
1888 rcu_read_lock();
3ece58a2 1889 for (page = xas_load(&xas); page; page = xas_next(&xas)) {
3ece58a2
MW
1890 if (xas_retry(&xas, page))
1891 continue;
1892 /*
1893 * If the entry has been swapped out, we can stop looking.
1894 * No current caller is looking for DAX entries.
1895 */
1896 if (xa_is_value(page))
8079b1c8 1897 break;
ebf43500 1898
4101196b 1899 if (!page_cache_get_speculative(page))
3ece58a2 1900 goto retry;
83929372 1901
4101196b 1902 /* Has the page moved or been split? */
3ece58a2
MW
1903 if (unlikely(page != xas_reload(&xas)))
1904 goto put_page;
a60637c8 1905
4101196b 1906 pages[ret] = find_subpage(page, xas.xa_index);
0fc9d104
KK
1907 if (++ret == nr_pages)
1908 break;
3ece58a2
MW
1909 continue;
1910put_page:
4101196b 1911 put_page(page);
3ece58a2
MW
1912retry:
1913 xas_reset(&xas);
ebf43500 1914 }
a60637c8
NP
1915 rcu_read_unlock();
1916 return ret;
ebf43500 1917}
ef71c15c 1918EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 1919
485bb99b 1920/**
72b045ae 1921 * find_get_pages_range_tag - find and return pages in given range matching @tag
485bb99b
RD
1922 * @mapping: the address_space to search
1923 * @index: the starting page index
72b045ae 1924 * @end: The final page index (inclusive)
485bb99b
RD
1925 * @tag: the tag index
1926 * @nr_pages: the maximum number of pages
1927 * @pages: where the resulting pages are placed
1928 *
1da177e4 1929 * Like find_get_pages, except we only return pages which are tagged with
485bb99b 1930 * @tag. We update @index to index the next page for the traversal.
a862f68a
MR
1931 *
1932 * Return: the number of pages which were found.
1da177e4 1933 */
72b045ae 1934unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
a6906972 1935 pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
72b045ae 1936 struct page **pages)
1da177e4 1937{
a6906972
MW
1938 XA_STATE(xas, &mapping->i_pages, *index);
1939 struct page *page;
0fc9d104
KK
1940 unsigned ret = 0;
1941
1942 if (unlikely(!nr_pages))
1943 return 0;
a60637c8
NP
1944
1945 rcu_read_lock();
a6906972 1946 xas_for_each_marked(&xas, page, end, tag) {
a6906972 1947 if (xas_retry(&xas, page))
a60637c8 1948 continue;
a6906972
MW
1949 /*
1950 * Shadow entries should never be tagged, but this iteration
1951 * is lockless so there is a window for page reclaim to evict
1952 * a page we saw tagged. Skip over it.
1953 */
1954 if (xa_is_value(page))
139b6a6f 1955 continue;
a60637c8 1956
4101196b 1957 if (!page_cache_get_speculative(page))
a6906972 1958 goto retry;
a60637c8 1959
4101196b 1960 /* Has the page moved or been split? */
a6906972
MW
1961 if (unlikely(page != xas_reload(&xas)))
1962 goto put_page;
a60637c8 1963
4101196b 1964 pages[ret] = find_subpage(page, xas.xa_index);
72b045ae 1965 if (++ret == nr_pages) {
5d3ee42f 1966 *index = xas.xa_index + 1;
72b045ae
JK
1967 goto out;
1968 }
a6906972
MW
1969 continue;
1970put_page:
4101196b 1971 put_page(page);
a6906972
MW
1972retry:
1973 xas_reset(&xas);
a60637c8 1974 }
5b280c0c 1975
72b045ae 1976 /*
a6906972 1977 * We come here when we got to @end. We take care to not overflow the
72b045ae 1978 * index @index as it confuses some of the callers. This breaks the
a6906972
MW
1979 * iteration when there is a page at index -1 but that is already
1980 * broken anyway.
72b045ae
JK
1981 */
1982 if (end == (pgoff_t)-1)
1983 *index = (pgoff_t)-1;
1984 else
1985 *index = end + 1;
1986out:
a60637c8 1987 rcu_read_unlock();
1da177e4 1988
1da177e4
LT
1989 return ret;
1990}
72b045ae 1991EXPORT_SYMBOL(find_get_pages_range_tag);
1da177e4 1992
76d42bd9
WF
1993/*
1994 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1995 * a _large_ part of the i/o request. Imagine the worst scenario:
1996 *
1997 * ---R__________________________________________B__________
1998 * ^ reading here ^ bad block(assume 4k)
1999 *
2000 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2001 * => failing the whole request => read(R) => read(R+1) =>
2002 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2003 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2004 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2005 *
2006 * It is going insane. Fix it by quickly scaling down the readahead size.
2007 */
0f8e2db4 2008static void shrink_readahead_size_eio(struct file_ra_state *ra)
76d42bd9 2009{
76d42bd9 2010 ra->ra_pages /= 4;
76d42bd9
WF
2011}
2012
485bb99b 2013/**
47c27bc4
CH
2014 * generic_file_buffered_read - generic file read routine
2015 * @iocb: the iocb to read
6e58e79d
AV
2016 * @iter: data destination
2017 * @written: already copied
485bb99b 2018 *
1da177e4 2019 * This is a generic file read routine, and uses the
485bb99b 2020 * mapping->a_ops->readpage() function for the actual low-level stuff.
1da177e4
LT
2021 *
2022 * This is really ugly. But the goto's actually try to clarify some
2023 * of the logic when it comes to error handling etc.
a862f68a
MR
2024 *
2025 * Return:
2026 * * total number of bytes copied, including those the were already @written
2027 * * negative error code if nothing was copied
1da177e4 2028 */
d85dc2e1 2029ssize_t generic_file_buffered_read(struct kiocb *iocb,
6e58e79d 2030 struct iov_iter *iter, ssize_t written)
1da177e4 2031{
47c27bc4 2032 struct file *filp = iocb->ki_filp;
36e78914 2033 struct address_space *mapping = filp->f_mapping;
1da177e4 2034 struct inode *inode = mapping->host;
36e78914 2035 struct file_ra_state *ra = &filp->f_ra;
47c27bc4 2036 loff_t *ppos = &iocb->ki_pos;
57f6b96c
FW
2037 pgoff_t index;
2038 pgoff_t last_index;
2039 pgoff_t prev_index;
2040 unsigned long offset; /* offset into pagecache page */
ec0f1637 2041 unsigned int prev_offset;
6e58e79d 2042 int error = 0;
1da177e4 2043
c2a9737f 2044 if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
d05c5f7b 2045 return 0;
c2a9737f
WF
2046 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2047
09cbfeaf
KS
2048 index = *ppos >> PAGE_SHIFT;
2049 prev_index = ra->prev_pos >> PAGE_SHIFT;
2050 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
2051 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2052 offset = *ppos & ~PAGE_MASK;
1da177e4 2053
1da177e4
LT
2054 for (;;) {
2055 struct page *page;
57f6b96c 2056 pgoff_t end_index;
a32ea1e1 2057 loff_t isize;
1da177e4
LT
2058 unsigned long nr, ret;
2059
1da177e4 2060 cond_resched();
1da177e4 2061find_page:
5abf186a
MH
2062 if (fatal_signal_pending(current)) {
2063 error = -EINTR;
2064 goto out;
2065 }
2066
1da177e4 2067 page = find_get_page(mapping, index);
3ea89ee8 2068 if (!page) {
41da51bc 2069 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
3239d834 2070 goto would_block;
cf914a7d 2071 page_cache_sync_readahead(mapping,
7ff81078 2072 ra, filp,
3ea89ee8
FW
2073 index, last_index - index);
2074 page = find_get_page(mapping, index);
2075 if (unlikely(page == NULL))
2076 goto no_cached_page;
2077 }
2078 if (PageReadahead(page)) {
41da51bc
AG
2079 if (iocb->ki_flags & IOCB_NOIO) {
2080 put_page(page);
2081 goto out;
2082 }
cf914a7d 2083 page_cache_async_readahead(mapping,
7ff81078 2084 ra, filp, page,
3ea89ee8 2085 index, last_index - index);
1da177e4 2086 }
8ab22b9a 2087 if (!PageUptodate(page)) {
3239d834
MT
2088 if (iocb->ki_flags & IOCB_NOWAIT) {
2089 put_page(page);
2090 goto would_block;
2091 }
2092
ebded027
MG
2093 /*
2094 * See comment in do_read_cache_page on why
2095 * wait_on_page_locked is used to avoid unnecessarily
2096 * serialisations and why it's safe.
2097 */
c4b209a4
BVA
2098 error = wait_on_page_locked_killable(page);
2099 if (unlikely(error))
2100 goto readpage_error;
ebded027
MG
2101 if (PageUptodate(page))
2102 goto page_ok;
2103
09cbfeaf 2104 if (inode->i_blkbits == PAGE_SHIFT ||
8ab22b9a
HH
2105 !mapping->a_ops->is_partially_uptodate)
2106 goto page_not_up_to_date;
6d6d36bc 2107 /* pipes can't handle partially uptodate pages */
00e23707 2108 if (unlikely(iov_iter_is_pipe(iter)))
6d6d36bc 2109 goto page_not_up_to_date;
529ae9aa 2110 if (!trylock_page(page))
8ab22b9a 2111 goto page_not_up_to_date;
8d056cb9
DH
2112 /* Did it get truncated before we got the lock? */
2113 if (!page->mapping)
2114 goto page_not_up_to_date_locked;
8ab22b9a 2115 if (!mapping->a_ops->is_partially_uptodate(page,
6e58e79d 2116 offset, iter->count))
8ab22b9a
HH
2117 goto page_not_up_to_date_locked;
2118 unlock_page(page);
2119 }
1da177e4 2120page_ok:
a32ea1e1
N
2121 /*
2122 * i_size must be checked after we know the page is Uptodate.
2123 *
2124 * Checking i_size after the check allows us to calculate
2125 * the correct value for "nr", which means the zero-filled
2126 * part of the page is not copied back to userspace (unless
2127 * another truncate extends the file - this is desired though).
2128 */
2129
2130 isize = i_size_read(inode);
09cbfeaf 2131 end_index = (isize - 1) >> PAGE_SHIFT;
a32ea1e1 2132 if (unlikely(!isize || index > end_index)) {
09cbfeaf 2133 put_page(page);
a32ea1e1
N
2134 goto out;
2135 }
2136
2137 /* nr is the maximum number of bytes to copy from this page */
09cbfeaf 2138 nr = PAGE_SIZE;
a32ea1e1 2139 if (index == end_index) {
09cbfeaf 2140 nr = ((isize - 1) & ~PAGE_MASK) + 1;
a32ea1e1 2141 if (nr <= offset) {
09cbfeaf 2142 put_page(page);
a32ea1e1
N
2143 goto out;
2144 }
2145 }
2146 nr = nr - offset;
1da177e4
LT
2147
2148 /* If users can be writing to this page using arbitrary
2149 * virtual addresses, take care about potential aliasing
2150 * before reading the page on the kernel side.
2151 */
2152 if (mapping_writably_mapped(mapping))
2153 flush_dcache_page(page);
2154
2155 /*
ec0f1637
JK
2156 * When a sequential read accesses a page several times,
2157 * only mark it as accessed the first time.
1da177e4 2158 */
ec0f1637 2159 if (prev_index != index || offset != prev_offset)
1da177e4
LT
2160 mark_page_accessed(page);
2161 prev_index = index;
2162
2163 /*
2164 * Ok, we have the page, and it's up-to-date, so
2165 * now we can copy it to user space...
1da177e4 2166 */
6e58e79d
AV
2167
2168 ret = copy_page_to_iter(page, offset, nr, iter);
1da177e4 2169 offset += ret;
09cbfeaf
KS
2170 index += offset >> PAGE_SHIFT;
2171 offset &= ~PAGE_MASK;
6ce745ed 2172 prev_offset = offset;
1da177e4 2173
09cbfeaf 2174 put_page(page);
6e58e79d
AV
2175 written += ret;
2176 if (!iov_iter_count(iter))
2177 goto out;
2178 if (ret < nr) {
2179 error = -EFAULT;
2180 goto out;
2181 }
2182 continue;
1da177e4
LT
2183
2184page_not_up_to_date:
2185 /* Get exclusive access to the page ... */
85462323
ON
2186 error = lock_page_killable(page);
2187 if (unlikely(error))
2188 goto readpage_error;
1da177e4 2189
8ab22b9a 2190page_not_up_to_date_locked:
da6052f7 2191 /* Did it get truncated before we got the lock? */
1da177e4
LT
2192 if (!page->mapping) {
2193 unlock_page(page);
09cbfeaf 2194 put_page(page);
1da177e4
LT
2195 continue;
2196 }
2197
2198 /* Did somebody else fill it already? */
2199 if (PageUptodate(page)) {
2200 unlock_page(page);
2201 goto page_ok;
2202 }
2203
2204readpage:
41da51bc
AG
2205 if (iocb->ki_flags & IOCB_NOIO) {
2206 unlock_page(page);
2207 put_page(page);
2208 goto would_block;
2209 }
91803b49
JM
2210 /*
2211 * A previous I/O error may have been due to temporary
2212 * failures, eg. multipath errors.
2213 * PG_error will be set again if readpage fails.
2214 */
2215 ClearPageError(page);
1da177e4
LT
2216 /* Start the actual read. The read will unlock the page. */
2217 error = mapping->a_ops->readpage(filp, page);
2218
994fc28c
ZB
2219 if (unlikely(error)) {
2220 if (error == AOP_TRUNCATED_PAGE) {
09cbfeaf 2221 put_page(page);
6e58e79d 2222 error = 0;
994fc28c
ZB
2223 goto find_page;
2224 }
1da177e4 2225 goto readpage_error;
994fc28c 2226 }
1da177e4
LT
2227
2228 if (!PageUptodate(page)) {
85462323
ON
2229 error = lock_page_killable(page);
2230 if (unlikely(error))
2231 goto readpage_error;
1da177e4
LT
2232 if (!PageUptodate(page)) {
2233 if (page->mapping == NULL) {
2234 /*
2ecdc82e 2235 * invalidate_mapping_pages got it
1da177e4
LT
2236 */
2237 unlock_page(page);
09cbfeaf 2238 put_page(page);
1da177e4
LT
2239 goto find_page;
2240 }
2241 unlock_page(page);
0f8e2db4 2242 shrink_readahead_size_eio(ra);
85462323
ON
2243 error = -EIO;
2244 goto readpage_error;
1da177e4
LT
2245 }
2246 unlock_page(page);
2247 }
2248
1da177e4
LT
2249 goto page_ok;
2250
2251readpage_error:
2252 /* UHHUH! A synchronous read error occurred. Report it */
09cbfeaf 2253 put_page(page);
1da177e4
LT
2254 goto out;
2255
2256no_cached_page:
2257 /*
2258 * Ok, it wasn't cached, so we need to create a new
2259 * page..
2260 */
453f85d4 2261 page = page_cache_alloc(mapping);
eb2be189 2262 if (!page) {
6e58e79d 2263 error = -ENOMEM;
eb2be189 2264 goto out;
1da177e4 2265 }
6afdb859 2266 error = add_to_page_cache_lru(page, mapping, index,
c62d2555 2267 mapping_gfp_constraint(mapping, GFP_KERNEL));
1da177e4 2268 if (error) {
09cbfeaf 2269 put_page(page);
6e58e79d
AV
2270 if (error == -EEXIST) {
2271 error = 0;
1da177e4 2272 goto find_page;
6e58e79d 2273 }
1da177e4
LT
2274 goto out;
2275 }
1da177e4
LT
2276 goto readpage;
2277 }
2278
3239d834
MT
2279would_block:
2280 error = -EAGAIN;
1da177e4 2281out:
7ff81078 2282 ra->prev_pos = prev_index;
09cbfeaf 2283 ra->prev_pos <<= PAGE_SHIFT;
7ff81078 2284 ra->prev_pos |= prev_offset;
1da177e4 2285
09cbfeaf 2286 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
0c6aa263 2287 file_accessed(filp);
6e58e79d 2288 return written ? written : error;
1da177e4 2289}
d85dc2e1 2290EXPORT_SYMBOL_GPL(generic_file_buffered_read);
1da177e4 2291
485bb99b 2292/**
6abd2322 2293 * generic_file_read_iter - generic filesystem read routine
485bb99b 2294 * @iocb: kernel I/O control block
6abd2322 2295 * @iter: destination for the data read
485bb99b 2296 *
6abd2322 2297 * This is the "read_iter()" routine for all filesystems
1da177e4 2298 * that can use the page cache directly.
41da51bc
AG
2299 *
2300 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2301 * be returned when no data can be read without waiting for I/O requests
2302 * to complete; it doesn't prevent readahead.
2303 *
2304 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2305 * requests shall be made for the read or for readahead. When no data
2306 * can be read, -EAGAIN shall be returned. When readahead would be
2307 * triggered, a partial, possibly empty read shall be returned.
2308 *
a862f68a
MR
2309 * Return:
2310 * * number of bytes copied, even for partial reads
41da51bc 2311 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
1da177e4
LT
2312 */
2313ssize_t
ed978a81 2314generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1da177e4 2315{
e7080a43 2316 size_t count = iov_iter_count(iter);
47c27bc4 2317 ssize_t retval = 0;
e7080a43
NS
2318
2319 if (!count)
2320 goto out; /* skip atime */
1da177e4 2321
2ba48ce5 2322 if (iocb->ki_flags & IOCB_DIRECT) {
47c27bc4 2323 struct file *file = iocb->ki_filp;
ed978a81
AV
2324 struct address_space *mapping = file->f_mapping;
2325 struct inode *inode = mapping->host;
543ade1f 2326 loff_t size;
1da177e4 2327
1da177e4 2328 size = i_size_read(inode);
6be96d3a
GR
2329 if (iocb->ki_flags & IOCB_NOWAIT) {
2330 if (filemap_range_has_page(mapping, iocb->ki_pos,
2331 iocb->ki_pos + count - 1))
2332 return -EAGAIN;
2333 } else {
2334 retval = filemap_write_and_wait_range(mapping,
2335 iocb->ki_pos,
2336 iocb->ki_pos + count - 1);
2337 if (retval < 0)
2338 goto out;
2339 }
d8d3d94b 2340
0d5b0cf2
CH
2341 file_accessed(file);
2342
5ecda137 2343 retval = mapping->a_ops->direct_IO(iocb, iter);
c3a69024 2344 if (retval >= 0) {
c64fb5c7 2345 iocb->ki_pos += retval;
5ecda137 2346 count -= retval;
9fe55eea 2347 }
5b47d59a 2348 iov_iter_revert(iter, count - iov_iter_count(iter));
66f998f6 2349
9fe55eea
SW
2350 /*
2351 * Btrfs can have a short DIO read if we encounter
2352 * compressed extents, so if there was an error, or if
2353 * we've already read everything we wanted to, or if
2354 * there was a short read because we hit EOF, go ahead
2355 * and return. Otherwise fallthrough to buffered io for
fbbbad4b
MW
2356 * the rest of the read. Buffered reads will not work for
2357 * DAX files, so don't bother trying.
9fe55eea 2358 */
5ecda137 2359 if (retval < 0 || !count || iocb->ki_pos >= size ||
0d5b0cf2 2360 IS_DAX(inode))
9fe55eea 2361 goto out;
1da177e4
LT
2362 }
2363
47c27bc4 2364 retval = generic_file_buffered_read(iocb, iter, retval);
1da177e4
LT
2365out:
2366 return retval;
2367}
ed978a81 2368EXPORT_SYMBOL(generic_file_read_iter);
1da177e4 2369
1da177e4 2370#ifdef CONFIG_MMU
1da177e4 2371#define MMAP_LOTSAMISS (100)
6b4c9f44 2372/*
c1e8d7c6 2373 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
6b4c9f44
JB
2374 * @vmf - the vm_fault for this fault.
2375 * @page - the page to lock.
2376 * @fpin - the pointer to the file we may pin (or is already pinned).
2377 *
c1e8d7c6 2378 * This works similar to lock_page_or_retry in that it can drop the mmap_lock.
6b4c9f44 2379 * It differs in that it actually returns the page locked if it returns 1 and 0
c1e8d7c6 2380 * if it couldn't lock the page. If we did have to drop the mmap_lock then fpin
6b4c9f44
JB
2381 * will point to the pinned file and needs to be fput()'ed at a later point.
2382 */
2383static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2384 struct file **fpin)
2385{
2386 if (trylock_page(page))
2387 return 1;
2388
8b0f9fa2
LT
2389 /*
2390 * NOTE! This will make us return with VM_FAULT_RETRY, but with
c1e8d7c6 2391 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
8b0f9fa2
LT
2392 * is supposed to work. We have way too many special cases..
2393 */
6b4c9f44
JB
2394 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2395 return 0;
2396
2397 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2398 if (vmf->flags & FAULT_FLAG_KILLABLE) {
2399 if (__lock_page_killable(page)) {
2400 /*
c1e8d7c6 2401 * We didn't have the right flags to drop the mmap_lock,
6b4c9f44
JB
2402 * but all fault_handlers only check for fatal signals
2403 * if we return VM_FAULT_RETRY, so we need to drop the
c1e8d7c6 2404 * mmap_lock here and return 0 if we don't have a fpin.
6b4c9f44
JB
2405 */
2406 if (*fpin == NULL)
d8ed45c5 2407 mmap_read_unlock(vmf->vma->vm_mm);
6b4c9f44
JB
2408 return 0;
2409 }
2410 } else
2411 __lock_page(page);
2412 return 1;
2413}
2414
1da177e4 2415
ef00e08e 2416/*
6b4c9f44
JB
2417 * Synchronous readahead happens when we don't even find a page in the page
2418 * cache at all. We don't want to perform IO under the mmap sem, so if we have
2419 * to drop the mmap sem we return the file that was pinned in order for us to do
2420 * that. If we didn't pin a file then we return NULL. The file that is
2421 * returned needs to be fput()'ed when we're done with it.
ef00e08e 2422 */
6b4c9f44 2423static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
ef00e08e 2424{
2a1180f1
JB
2425 struct file *file = vmf->vma->vm_file;
2426 struct file_ra_state *ra = &file->f_ra;
ef00e08e 2427 struct address_space *mapping = file->f_mapping;
6b4c9f44 2428 struct file *fpin = NULL;
2a1180f1 2429 pgoff_t offset = vmf->pgoff;
ef00e08e
LT
2430
2431 /* If we don't want any read-ahead, don't bother */
2a1180f1 2432 if (vmf->vma->vm_flags & VM_RAND_READ)
6b4c9f44 2433 return fpin;
275b12bf 2434 if (!ra->ra_pages)
6b4c9f44 2435 return fpin;
ef00e08e 2436
2a1180f1 2437 if (vmf->vma->vm_flags & VM_SEQ_READ) {
6b4c9f44 2438 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
7ffc59b4
WF
2439 page_cache_sync_readahead(mapping, ra, file, offset,
2440 ra->ra_pages);
6b4c9f44 2441 return fpin;
ef00e08e
LT
2442 }
2443
207d04ba
AK
2444 /* Avoid banging the cache line if not needed */
2445 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
ef00e08e
LT
2446 ra->mmap_miss++;
2447
2448 /*
2449 * Do we miss much more than hit in this file? If so,
2450 * stop bothering with read-ahead. It will only hurt.
2451 */
2452 if (ra->mmap_miss > MMAP_LOTSAMISS)
6b4c9f44 2453 return fpin;
ef00e08e 2454
d30a1100
WF
2455 /*
2456 * mmap read-around
2457 */
6b4c9f44 2458 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
600e19af
RG
2459 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2460 ra->size = ra->ra_pages;
2461 ra->async_size = ra->ra_pages / 4;
275b12bf 2462 ra_submit(ra, mapping, file);
6b4c9f44 2463 return fpin;
ef00e08e
LT
2464}
2465
2466/*
2467 * Asynchronous readahead happens when we find the page and PG_readahead,
6b4c9f44 2468 * so we want to possibly extend the readahead further. We return the file that
c1e8d7c6 2469 * was pinned if we have to drop the mmap_lock in order to do IO.
ef00e08e 2470 */
6b4c9f44
JB
2471static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2472 struct page *page)
ef00e08e 2473{
2a1180f1
JB
2474 struct file *file = vmf->vma->vm_file;
2475 struct file_ra_state *ra = &file->f_ra;
ef00e08e 2476 struct address_space *mapping = file->f_mapping;
6b4c9f44 2477 struct file *fpin = NULL;
2a1180f1 2478 pgoff_t offset = vmf->pgoff;
ef00e08e
LT
2479
2480 /* If we don't want any read-ahead, don't bother */
5c72feee 2481 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
6b4c9f44 2482 return fpin;
ef00e08e
LT
2483 if (ra->mmap_miss > 0)
2484 ra->mmap_miss--;
6b4c9f44
JB
2485 if (PageReadahead(page)) {
2486 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2fad6f5d
WF
2487 page_cache_async_readahead(mapping, ra, file,
2488 page, offset, ra->ra_pages);
6b4c9f44
JB
2489 }
2490 return fpin;
ef00e08e
LT
2491}
2492
485bb99b 2493/**
54cb8821 2494 * filemap_fault - read in file data for page fault handling
d0217ac0 2495 * @vmf: struct vm_fault containing details of the fault
485bb99b 2496 *
54cb8821 2497 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
2498 * mapped memory region to read in file data during a page fault.
2499 *
2500 * The goto's are kind of ugly, but this streamlines the normal case of having
2501 * it in the page cache, and handles the special cases reasonably without
2502 * having a lot of duplicated code.
9a95f3cf 2503 *
c1e8d7c6 2504 * vma->vm_mm->mmap_lock must be held on entry.
9a95f3cf 2505 *
c1e8d7c6 2506 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
a4985833 2507 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
9a95f3cf 2508 *
c1e8d7c6 2509 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
9a95f3cf
PC
2510 * has not been released.
2511 *
2512 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
a862f68a
MR
2513 *
2514 * Return: bitwise-OR of %VM_FAULT_ codes.
1da177e4 2515 */
2bcd6454 2516vm_fault_t filemap_fault(struct vm_fault *vmf)
1da177e4
LT
2517{
2518 int error;
11bac800 2519 struct file *file = vmf->vma->vm_file;
6b4c9f44 2520 struct file *fpin = NULL;
1da177e4
LT
2521 struct address_space *mapping = file->f_mapping;
2522 struct file_ra_state *ra = &file->f_ra;
2523 struct inode *inode = mapping->host;
ef00e08e 2524 pgoff_t offset = vmf->pgoff;
9ab2594f 2525 pgoff_t max_off;
1da177e4 2526 struct page *page;
2bcd6454 2527 vm_fault_t ret = 0;
1da177e4 2528
9ab2594f
MW
2529 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2530 if (unlikely(offset >= max_off))
5307cc1a 2531 return VM_FAULT_SIGBUS;
1da177e4 2532
1da177e4 2533 /*
49426420 2534 * Do we have something in the page cache already?
1da177e4 2535 */
ef00e08e 2536 page = find_get_page(mapping, offset);
45cac65b 2537 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1da177e4 2538 /*
ef00e08e
LT
2539 * We found the page, so try async readahead before
2540 * waiting for the lock.
1da177e4 2541 */
6b4c9f44 2542 fpin = do_async_mmap_readahead(vmf, page);
45cac65b 2543 } else if (!page) {
ef00e08e 2544 /* No page in the page cache at all */
ef00e08e 2545 count_vm_event(PGMAJFAULT);
2262185c 2546 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
ef00e08e 2547 ret = VM_FAULT_MAJOR;
6b4c9f44 2548 fpin = do_sync_mmap_readahead(vmf);
ef00e08e 2549retry_find:
a75d4c33
JB
2550 page = pagecache_get_page(mapping, offset,
2551 FGP_CREAT|FGP_FOR_MMAP,
2552 vmf->gfp_mask);
6b4c9f44
JB
2553 if (!page) {
2554 if (fpin)
2555 goto out_retry;
e520e932 2556 return VM_FAULT_OOM;
6b4c9f44 2557 }
1da177e4
LT
2558 }
2559
6b4c9f44
JB
2560 if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
2561 goto out_retry;
b522c94d
ML
2562
2563 /* Did it get truncated? */
585e5a7b 2564 if (unlikely(compound_head(page)->mapping != mapping)) {
b522c94d
ML
2565 unlock_page(page);
2566 put_page(page);
2567 goto retry_find;
2568 }
520e5ba4 2569 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
b522c94d 2570
1da177e4 2571 /*
d00806b1
NP
2572 * We have a locked page in the page cache, now we need to check
2573 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 2574 */
d00806b1 2575 if (unlikely(!PageUptodate(page)))
1da177e4
LT
2576 goto page_not_uptodate;
2577
6b4c9f44 2578 /*
c1e8d7c6 2579 * We've made it this far and we had to drop our mmap_lock, now is the
6b4c9f44
JB
2580 * time to return to the upper layer and have it re-find the vma and
2581 * redo the fault.
2582 */
2583 if (fpin) {
2584 unlock_page(page);
2585 goto out_retry;
2586 }
2587
ef00e08e
LT
2588 /*
2589 * Found the page and have a reference on it.
2590 * We must recheck i_size under page lock.
2591 */
9ab2594f
MW
2592 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2593 if (unlikely(offset >= max_off)) {
d00806b1 2594 unlock_page(page);
09cbfeaf 2595 put_page(page);
5307cc1a 2596 return VM_FAULT_SIGBUS;
d00806b1
NP
2597 }
2598
d0217ac0 2599 vmf->page = page;
83c54070 2600 return ret | VM_FAULT_LOCKED;
1da177e4 2601
1da177e4 2602page_not_uptodate:
1da177e4
LT
2603 /*
2604 * Umm, take care of errors if the page isn't up-to-date.
2605 * Try to re-read it _once_. We do this synchronously,
2606 * because there really aren't any performance issues here
2607 * and we need to check for errors.
2608 */
1da177e4 2609 ClearPageError(page);
6b4c9f44 2610 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
994fc28c 2611 error = mapping->a_ops->readpage(file, page);
3ef0f720
MS
2612 if (!error) {
2613 wait_on_page_locked(page);
2614 if (!PageUptodate(page))
2615 error = -EIO;
2616 }
6b4c9f44
JB
2617 if (fpin)
2618 goto out_retry;
09cbfeaf 2619 put_page(page);
d00806b1
NP
2620
2621 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 2622 goto retry_find;
1da177e4 2623
0f8e2db4 2624 shrink_readahead_size_eio(ra);
d0217ac0 2625 return VM_FAULT_SIGBUS;
6b4c9f44
JB
2626
2627out_retry:
2628 /*
c1e8d7c6 2629 * We dropped the mmap_lock, we need to return to the fault handler to
6b4c9f44
JB
2630 * re-find the vma and come back and find our hopefully still populated
2631 * page.
2632 */
2633 if (page)
2634 put_page(page);
2635 if (fpin)
2636 fput(fpin);
2637 return ret | VM_FAULT_RETRY;
54cb8821
NP
2638}
2639EXPORT_SYMBOL(filemap_fault);
2640
82b0f8c3 2641void filemap_map_pages(struct vm_fault *vmf,
bae473a4 2642 pgoff_t start_pgoff, pgoff_t end_pgoff)
f1820361 2643{
82b0f8c3 2644 struct file *file = vmf->vma->vm_file;
f1820361 2645 struct address_space *mapping = file->f_mapping;
bae473a4 2646 pgoff_t last_pgoff = start_pgoff;
9ab2594f 2647 unsigned long max_idx;
070e807c 2648 XA_STATE(xas, &mapping->i_pages, start_pgoff);
4101196b 2649 struct page *page;
f1820361
KS
2650
2651 rcu_read_lock();
070e807c
MW
2652 xas_for_each(&xas, page, end_pgoff) {
2653 if (xas_retry(&xas, page))
2654 continue;
2655 if (xa_is_value(page))
2cf938aa 2656 goto next;
f1820361 2657
e0975b2a
MH
2658 /*
2659 * Check for a locked page first, as a speculative
2660 * reference may adversely influence page migration.
2661 */
4101196b 2662 if (PageLocked(page))
e0975b2a 2663 goto next;
4101196b 2664 if (!page_cache_get_speculative(page))
070e807c 2665 goto next;
f1820361 2666
4101196b 2667 /* Has the page moved or been split? */
070e807c
MW
2668 if (unlikely(page != xas_reload(&xas)))
2669 goto skip;
4101196b 2670 page = find_subpage(page, xas.xa_index);
f1820361
KS
2671
2672 if (!PageUptodate(page) ||
2673 PageReadahead(page) ||
2674 PageHWPoison(page))
2675 goto skip;
2676 if (!trylock_page(page))
2677 goto skip;
2678
2679 if (page->mapping != mapping || !PageUptodate(page))
2680 goto unlock;
2681
9ab2594f
MW
2682 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2683 if (page->index >= max_idx)
f1820361
KS
2684 goto unlock;
2685
f1820361
KS
2686 if (file->f_ra.mmap_miss > 0)
2687 file->f_ra.mmap_miss--;
7267ec00 2688
070e807c 2689 vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
82b0f8c3 2690 if (vmf->pte)
070e807c
MW
2691 vmf->pte += xas.xa_index - last_pgoff;
2692 last_pgoff = xas.xa_index;
9d82c694 2693 if (alloc_set_pte(vmf, page))
7267ec00 2694 goto unlock;
f1820361
KS
2695 unlock_page(page);
2696 goto next;
2697unlock:
2698 unlock_page(page);
2699skip:
09cbfeaf 2700 put_page(page);
f1820361 2701next:
7267ec00 2702 /* Huge page is mapped? No need to proceed. */
82b0f8c3 2703 if (pmd_trans_huge(*vmf->pmd))
7267ec00 2704 break;
f1820361
KS
2705 }
2706 rcu_read_unlock();
2707}
2708EXPORT_SYMBOL(filemap_map_pages);
2709
2bcd6454 2710vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
4fcf1c62
JK
2711{
2712 struct page *page = vmf->page;
11bac800 2713 struct inode *inode = file_inode(vmf->vma->vm_file);
2bcd6454 2714 vm_fault_t ret = VM_FAULT_LOCKED;
4fcf1c62 2715
14da9200 2716 sb_start_pagefault(inode->i_sb);
11bac800 2717 file_update_time(vmf->vma->vm_file);
4fcf1c62
JK
2718 lock_page(page);
2719 if (page->mapping != inode->i_mapping) {
2720 unlock_page(page);
2721 ret = VM_FAULT_NOPAGE;
2722 goto out;
2723 }
14da9200
JK
2724 /*
2725 * We mark the page dirty already here so that when freeze is in
2726 * progress, we are guaranteed that writeback during freezing will
2727 * see the dirty page and writeprotect it again.
2728 */
2729 set_page_dirty(page);
1d1d1a76 2730 wait_for_stable_page(page);
4fcf1c62 2731out:
14da9200 2732 sb_end_pagefault(inode->i_sb);
4fcf1c62
JK
2733 return ret;
2734}
4fcf1c62 2735
f0f37e2f 2736const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 2737 .fault = filemap_fault,
f1820361 2738 .map_pages = filemap_map_pages,
4fcf1c62 2739 .page_mkwrite = filemap_page_mkwrite,
1da177e4
LT
2740};
2741
2742/* This is used for a general mmap of a disk file */
2743
2744int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2745{
2746 struct address_space *mapping = file->f_mapping;
2747
2748 if (!mapping->a_ops->readpage)
2749 return -ENOEXEC;
2750 file_accessed(file);
2751 vma->vm_ops = &generic_file_vm_ops;
2752 return 0;
2753}
1da177e4
LT
2754
2755/*
2756 * This is for filesystems which do not implement ->writepage.
2757 */
2758int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2759{
2760 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2761 return -EINVAL;
2762 return generic_file_mmap(file, vma);
2763}
2764#else
4b96a37d 2765vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
45397228 2766{
4b96a37d 2767 return VM_FAULT_SIGBUS;
45397228 2768}
1da177e4
LT
2769int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2770{
2771 return -ENOSYS;
2772}
2773int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2774{
2775 return -ENOSYS;
2776}
2777#endif /* CONFIG_MMU */
2778
45397228 2779EXPORT_SYMBOL(filemap_page_mkwrite);
1da177e4
LT
2780EXPORT_SYMBOL(generic_file_mmap);
2781EXPORT_SYMBOL(generic_file_readonly_mmap);
2782
67f9fd91
SL
2783static struct page *wait_on_page_read(struct page *page)
2784{
2785 if (!IS_ERR(page)) {
2786 wait_on_page_locked(page);
2787 if (!PageUptodate(page)) {
09cbfeaf 2788 put_page(page);
67f9fd91
SL
2789 page = ERR_PTR(-EIO);
2790 }
2791 }
2792 return page;
2793}
2794
32b63529 2795static struct page *do_read_cache_page(struct address_space *mapping,
57f6b96c 2796 pgoff_t index,
5e5358e7 2797 int (*filler)(void *, struct page *),
0531b2aa
LT
2798 void *data,
2799 gfp_t gfp)
1da177e4 2800{
eb2be189 2801 struct page *page;
1da177e4
LT
2802 int err;
2803repeat:
2804 page = find_get_page(mapping, index);
2805 if (!page) {
453f85d4 2806 page = __page_cache_alloc(gfp);
eb2be189
NP
2807 if (!page)
2808 return ERR_PTR(-ENOMEM);
e6f67b8c 2809 err = add_to_page_cache_lru(page, mapping, index, gfp);
eb2be189 2810 if (unlikely(err)) {
09cbfeaf 2811 put_page(page);
eb2be189
NP
2812 if (err == -EEXIST)
2813 goto repeat;
22ecdb4f 2814 /* Presumably ENOMEM for xarray node */
1da177e4
LT
2815 return ERR_PTR(err);
2816 }
32b63529
MG
2817
2818filler:
6c45b454
CH
2819 if (filler)
2820 err = filler(data, page);
2821 else
2822 err = mapping->a_ops->readpage(data, page);
2823
1da177e4 2824 if (err < 0) {
09cbfeaf 2825 put_page(page);
32b63529 2826 return ERR_PTR(err);
1da177e4 2827 }
1da177e4 2828
32b63529
MG
2829 page = wait_on_page_read(page);
2830 if (IS_ERR(page))
2831 return page;
2832 goto out;
2833 }
1da177e4
LT
2834 if (PageUptodate(page))
2835 goto out;
2836
ebded027
MG
2837 /*
2838 * Page is not up to date and may be locked due one of the following
2839 * case a: Page is being filled and the page lock is held
2840 * case b: Read/write error clearing the page uptodate status
2841 * case c: Truncation in progress (page locked)
2842 * case d: Reclaim in progress
2843 *
2844 * Case a, the page will be up to date when the page is unlocked.
2845 * There is no need to serialise on the page lock here as the page
2846 * is pinned so the lock gives no additional protection. Even if the
2847 * the page is truncated, the data is still valid if PageUptodate as
2848 * it's a race vs truncate race.
2849 * Case b, the page will not be up to date
2850 * Case c, the page may be truncated but in itself, the data may still
2851 * be valid after IO completes as it's a read vs truncate race. The
2852 * operation must restart if the page is not uptodate on unlock but
2853 * otherwise serialising on page lock to stabilise the mapping gives
2854 * no additional guarantees to the caller as the page lock is
2855 * released before return.
2856 * Case d, similar to truncation. If reclaim holds the page lock, it
2857 * will be a race with remove_mapping that determines if the mapping
2858 * is valid on unlock but otherwise the data is valid and there is
2859 * no need to serialise with page lock.
2860 *
2861 * As the page lock gives no additional guarantee, we optimistically
2862 * wait on the page to be unlocked and check if it's up to date and
2863 * use the page if it is. Otherwise, the page lock is required to
2864 * distinguish between the different cases. The motivation is that we
2865 * avoid spurious serialisations and wakeups when multiple processes
2866 * wait on the same page for IO to complete.
2867 */
2868 wait_on_page_locked(page);
2869 if (PageUptodate(page))
2870 goto out;
2871
2872 /* Distinguish between all the cases under the safety of the lock */
1da177e4 2873 lock_page(page);
ebded027
MG
2874
2875 /* Case c or d, restart the operation */
1da177e4
LT
2876 if (!page->mapping) {
2877 unlock_page(page);
09cbfeaf 2878 put_page(page);
32b63529 2879 goto repeat;
1da177e4 2880 }
ebded027
MG
2881
2882 /* Someone else locked and filled the page in a very small window */
1da177e4
LT
2883 if (PageUptodate(page)) {
2884 unlock_page(page);
2885 goto out;
2886 }
faffdfa0
XT
2887
2888 /*
2889 * A previous I/O error may have been due to temporary
2890 * failures.
2891 * Clear page error before actual read, PG_error will be
2892 * set again if read page fails.
2893 */
2894 ClearPageError(page);
32b63529
MG
2895 goto filler;
2896
c855ff37 2897out:
6fe6900e
NP
2898 mark_page_accessed(page);
2899 return page;
2900}
0531b2aa
LT
2901
2902/**
67f9fd91 2903 * read_cache_page - read into page cache, fill it if needed
0531b2aa
LT
2904 * @mapping: the page's address_space
2905 * @index: the page index
2906 * @filler: function to perform the read
5e5358e7 2907 * @data: first arg to filler(data, page) function, often left as NULL
0531b2aa 2908 *
0531b2aa 2909 * Read into the page cache. If a page already exists, and PageUptodate() is
67f9fd91 2910 * not set, try to fill the page and wait for it to become unlocked.
0531b2aa
LT
2911 *
2912 * If the page does not get brought uptodate, return -EIO.
a862f68a
MR
2913 *
2914 * Return: up to date page on success, ERR_PTR() on failure.
0531b2aa 2915 */
67f9fd91 2916struct page *read_cache_page(struct address_space *mapping,
0531b2aa 2917 pgoff_t index,
5e5358e7 2918 int (*filler)(void *, struct page *),
0531b2aa
LT
2919 void *data)
2920{
d322a8e5
CH
2921 return do_read_cache_page(mapping, index, filler, data,
2922 mapping_gfp_mask(mapping));
0531b2aa 2923}
67f9fd91 2924EXPORT_SYMBOL(read_cache_page);
0531b2aa
LT
2925
2926/**
2927 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2928 * @mapping: the page's address_space
2929 * @index: the page index
2930 * @gfp: the page allocator flags to use if allocating
2931 *
2932 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
e6f67b8c 2933 * any new page allocations done using the specified allocation flags.
0531b2aa
LT
2934 *
2935 * If the page does not get brought uptodate, return -EIO.
a862f68a
MR
2936 *
2937 * Return: up to date page on success, ERR_PTR() on failure.
0531b2aa
LT
2938 */
2939struct page *read_cache_page_gfp(struct address_space *mapping,
2940 pgoff_t index,
2941 gfp_t gfp)
2942{
6c45b454 2943 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
0531b2aa
LT
2944}
2945EXPORT_SYMBOL(read_cache_page_gfp);
2946
9fd91a90
DW
2947/*
2948 * Don't operate on ranges the page cache doesn't support, and don't exceed the
2949 * LFS limits. If pos is under the limit it becomes a short access. If it
2950 * exceeds the limit we return -EFBIG.
2951 */
9fd91a90
DW
2952static int generic_write_check_limits(struct file *file, loff_t pos,
2953 loff_t *count)
2954{
646955cd
AG
2955 struct inode *inode = file->f_mapping->host;
2956 loff_t max_size = inode->i_sb->s_maxbytes;
9fd91a90
DW
2957 loff_t limit = rlimit(RLIMIT_FSIZE);
2958
2959 if (limit != RLIM_INFINITY) {
2960 if (pos >= limit) {
2961 send_sig(SIGXFSZ, current, 0);
2962 return -EFBIG;
2963 }
2964 *count = min(*count, limit - pos);
2965 }
2966
646955cd
AG
2967 if (!(file->f_flags & O_LARGEFILE))
2968 max_size = MAX_NON_LFS;
2969
2970 if (unlikely(pos >= max_size))
2971 return -EFBIG;
2972
2973 *count = min(*count, max_size - pos);
2974
2975 return 0;
9fd91a90
DW
2976}
2977
1da177e4
LT
2978/*
2979 * Performs necessary checks before doing a write
2980 *
485bb99b 2981 * Can adjust writing position or amount of bytes to write.
1da177e4
LT
2982 * Returns appropriate error code that caller should return or
2983 * zero in case that write should be allowed.
2984 */
3309dd04 2985inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
1da177e4 2986{
3309dd04 2987 struct file *file = iocb->ki_filp;
1da177e4 2988 struct inode *inode = file->f_mapping->host;
9fd91a90
DW
2989 loff_t count;
2990 int ret;
1da177e4 2991
dc617f29
DW
2992 if (IS_SWAPFILE(inode))
2993 return -ETXTBSY;
2994
3309dd04
AV
2995 if (!iov_iter_count(from))
2996 return 0;
1da177e4 2997
0fa6b005 2998 /* FIXME: this is for backwards compatibility with 2.4 */
2ba48ce5 2999 if (iocb->ki_flags & IOCB_APPEND)
3309dd04 3000 iocb->ki_pos = i_size_read(inode);
1da177e4 3001
6be96d3a
GR
3002 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
3003 return -EINVAL;
3004
9fd91a90
DW
3005 count = iov_iter_count(from);
3006 ret = generic_write_check_limits(file, iocb->ki_pos, &count);
3007 if (ret)
3008 return ret;
1da177e4 3009
9fd91a90 3010 iov_iter_truncate(from, count);
3309dd04 3011 return iov_iter_count(from);
1da177e4
LT
3012}
3013EXPORT_SYMBOL(generic_write_checks);
3014
1383a7ed
DW
3015/*
3016 * Performs necessary checks before doing a clone.
3017 *
646955cd 3018 * Can adjust amount of bytes to clone via @req_count argument.
1383a7ed
DW
3019 * Returns appropriate error code that caller should return or
3020 * zero in case the clone should be allowed.
3021 */
3022int generic_remap_checks(struct file *file_in, loff_t pos_in,
3023 struct file *file_out, loff_t pos_out,
42ec3d4c 3024 loff_t *req_count, unsigned int remap_flags)
1383a7ed
DW
3025{
3026 struct inode *inode_in = file_in->f_mapping->host;
3027 struct inode *inode_out = file_out->f_mapping->host;
3028 uint64_t count = *req_count;
3029 uint64_t bcount;
3030 loff_t size_in, size_out;
3031 loff_t bs = inode_out->i_sb->s_blocksize;
9fd91a90 3032 int ret;
1383a7ed
DW
3033
3034 /* The start of both ranges must be aligned to an fs block. */
3035 if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs))
3036 return -EINVAL;
3037
3038 /* Ensure offsets don't wrap. */
3039 if (pos_in + count < pos_in || pos_out + count < pos_out)
3040 return -EINVAL;
3041
3042 size_in = i_size_read(inode_in);
3043 size_out = i_size_read(inode_out);
3044
3045 /* Dedupe requires both ranges to be within EOF. */
3d28193e 3046 if ((remap_flags & REMAP_FILE_DEDUP) &&
1383a7ed
DW
3047 (pos_in >= size_in || pos_in + count > size_in ||
3048 pos_out >= size_out || pos_out + count > size_out))
3049 return -EINVAL;
3050
3051 /* Ensure the infile range is within the infile. */
3052 if (pos_in >= size_in)
3053 return -EINVAL;
3054 count = min(count, size_in - (uint64_t)pos_in);
3055
9fd91a90
DW
3056 ret = generic_write_check_limits(file_out, pos_out, &count);
3057 if (ret)
3058 return ret;
1da177e4
LT
3059
3060 /*
1383a7ed
DW
3061 * If the user wanted us to link to the infile's EOF, round up to the
3062 * next block boundary for this check.
3063 *
3064 * Otherwise, make sure the count is also block-aligned, having
3065 * already confirmed the starting offsets' block alignment.
1da177e4 3066 */
1383a7ed
DW
3067 if (pos_in + count == size_in) {
3068 bcount = ALIGN(size_in, bs) - pos_in;
3069 } else {
3070 if (!IS_ALIGNED(count, bs))
eca3654e 3071 count = ALIGN_DOWN(count, bs);
1383a7ed 3072 bcount = count;
1da177e4
LT
3073 }
3074
1383a7ed
DW
3075 /* Don't allow overlapped cloning within the same file. */
3076 if (inode_in == inode_out &&
3077 pos_out + bcount > pos_in &&
3078 pos_out < pos_in + bcount)
3079 return -EINVAL;
3080
1da177e4 3081 /*
eca3654e
DW
3082 * We shortened the request but the caller can't deal with that, so
3083 * bounce the request back to userspace.
1da177e4 3084 */
eca3654e 3085 if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN))
1383a7ed 3086 return -EINVAL;
1da177e4 3087
eca3654e 3088 *req_count = count;
1383a7ed 3089 return 0;
1da177e4 3090}
1da177e4 3091
a3171351
AG
3092
3093/*
3094 * Performs common checks before doing a file copy/clone
3095 * from @file_in to @file_out.
3096 */
3097int generic_file_rw_checks(struct file *file_in, struct file *file_out)
3098{
3099 struct inode *inode_in = file_inode(file_in);
3100 struct inode *inode_out = file_inode(file_out);
3101
3102 /* Don't copy dirs, pipes, sockets... */
3103 if (S_ISDIR(inode_in->i_mode) || S_ISDIR(inode_out->i_mode))
3104 return -EISDIR;
3105 if (!S_ISREG(inode_in->i_mode) || !S_ISREG(inode_out->i_mode))
3106 return -EINVAL;
3107
3108 if (!(file_in->f_mode & FMODE_READ) ||
3109 !(file_out->f_mode & FMODE_WRITE) ||
3110 (file_out->f_flags & O_APPEND))
3111 return -EBADF;
3112
3113 return 0;
3114}
3115
96e6e8f4
AG
3116/*
3117 * Performs necessary checks before doing a file copy
3118 *
3119 * Can adjust amount of bytes to copy via @req_count argument.
3120 * Returns appropriate error code that caller should return or
3121 * zero in case the copy should be allowed.
3122 */
3123int generic_copy_file_checks(struct file *file_in, loff_t pos_in,
3124 struct file *file_out, loff_t pos_out,
3125 size_t *req_count, unsigned int flags)
3126{
3127 struct inode *inode_in = file_inode(file_in);
3128 struct inode *inode_out = file_inode(file_out);
3129 uint64_t count = *req_count;
3130 loff_t size_in;
3131 int ret;
3132
3133 ret = generic_file_rw_checks(file_in, file_out);
3134 if (ret)
3135 return ret;
3136
3137 /* Don't touch certain kinds of inodes */
3138 if (IS_IMMUTABLE(inode_out))
3139 return -EPERM;
3140
3141 if (IS_SWAPFILE(inode_in) || IS_SWAPFILE(inode_out))
3142 return -ETXTBSY;
3143
3144 /* Ensure offsets don't wrap. */
3145 if (pos_in + count < pos_in || pos_out + count < pos_out)
3146 return -EOVERFLOW;
3147
3148 /* Shorten the copy to EOF */
3149 size_in = i_size_read(inode_in);
3150 if (pos_in >= size_in)
3151 count = 0;
3152 else
3153 count = min(count, size_in - (uint64_t)pos_in);
3154
3155 ret = generic_write_check_limits(file_out, pos_out, &count);
3156 if (ret)
3157 return ret;
3158
3159 /* Don't allow overlapped copying within the same file. */
3160 if (inode_in == inode_out &&
3161 pos_out + count > pos_in &&
3162 pos_out < pos_in + count)
3163 return -EINVAL;
3164
3165 *req_count = count;
3166 return 0;
3167}
3168
afddba49
NP
3169int pagecache_write_begin(struct file *file, struct address_space *mapping,
3170 loff_t pos, unsigned len, unsigned flags,
3171 struct page **pagep, void **fsdata)
3172{
3173 const struct address_space_operations *aops = mapping->a_ops;
3174
4e02ed4b 3175 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 3176 pagep, fsdata);
afddba49
NP
3177}
3178EXPORT_SYMBOL(pagecache_write_begin);
3179
3180int pagecache_write_end(struct file *file, struct address_space *mapping,
3181 loff_t pos, unsigned len, unsigned copied,
3182 struct page *page, void *fsdata)
3183{
3184 const struct address_space_operations *aops = mapping->a_ops;
afddba49 3185
4e02ed4b 3186 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
3187}
3188EXPORT_SYMBOL(pagecache_write_end);
3189
a92853b6
KK
3190/*
3191 * Warn about a page cache invalidation failure during a direct I/O write.
3192 */
3193void dio_warn_stale_pagecache(struct file *filp)
3194{
3195 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3196 char pathname[128];
3197 struct inode *inode = file_inode(filp);
3198 char *path;
3199
3200 errseq_set(&inode->i_mapping->wb_err, -EIO);
3201 if (__ratelimit(&_rs)) {
3202 path = file_path(filp, pathname, sizeof(pathname));
3203 if (IS_ERR(path))
3204 path = "(unknown)";
3205 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
3206 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3207 current->comm);
3208 }
3209}
3210
1da177e4 3211ssize_t
1af5bb49 3212generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3213{
3214 struct file *file = iocb->ki_filp;
3215 struct address_space *mapping = file->f_mapping;
3216 struct inode *inode = mapping->host;
1af5bb49 3217 loff_t pos = iocb->ki_pos;
1da177e4 3218 ssize_t written;
a969e903
CH
3219 size_t write_len;
3220 pgoff_t end;
1da177e4 3221
0c949334 3222 write_len = iov_iter_count(from);
09cbfeaf 3223 end = (pos + write_len - 1) >> PAGE_SHIFT;
a969e903 3224
6be96d3a
GR
3225 if (iocb->ki_flags & IOCB_NOWAIT) {
3226 /* If there are pages to writeback, return */
3227 if (filemap_range_has_page(inode->i_mapping, pos,
35f12f0f 3228 pos + write_len - 1))
6be96d3a
GR
3229 return -EAGAIN;
3230 } else {
3231 written = filemap_write_and_wait_range(mapping, pos,
3232 pos + write_len - 1);
3233 if (written)
3234 goto out;
3235 }
a969e903
CH
3236
3237 /*
3238 * After a write we want buffered reads to be sure to go to disk to get
3239 * the new data. We invalidate clean cached page from the region we're
3240 * about to write. We do this *before* the write so that we can return
6ccfa806 3241 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903 3242 */
55635ba7 3243 written = invalidate_inode_pages2_range(mapping,
09cbfeaf 3244 pos >> PAGE_SHIFT, end);
55635ba7
AR
3245 /*
3246 * If a page can not be invalidated, return 0 to fall back
3247 * to buffered write.
3248 */
3249 if (written) {
3250 if (written == -EBUSY)
3251 return 0;
3252 goto out;
a969e903
CH
3253 }
3254
639a93a5 3255 written = mapping->a_ops->direct_IO(iocb, from);
a969e903
CH
3256
3257 /*
3258 * Finally, try again to invalidate clean pages which might have been
3259 * cached by non-direct readahead, or faulted in by get_user_pages()
3260 * if the source of the write was an mmap'ed region of the file
3261 * we're writing. Either one is a pretty crazy thing to do,
3262 * so we don't support it 100%. If this invalidation
3263 * fails, tough, the write still worked...
332391a9
LC
3264 *
3265 * Most of the time we do not need this since dio_complete() will do
3266 * the invalidation for us. However there are some file systems that
3267 * do not end up with dio_complete() being called, so let's not break
80c1fe90
KK
3268 * them by removing it completely.
3269 *
9266a140
KK
3270 * Noticeable example is a blkdev_direct_IO().
3271 *
80c1fe90 3272 * Skip invalidation for async writes or if mapping has no pages.
a969e903 3273 */
9266a140
KK
3274 if (written > 0 && mapping->nrpages &&
3275 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3276 dio_warn_stale_pagecache(file);
a969e903 3277
1da177e4 3278 if (written > 0) {
0116651c 3279 pos += written;
639a93a5 3280 write_len -= written;
0116651c
NK
3281 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3282 i_size_write(inode, pos);
1da177e4
LT
3283 mark_inode_dirty(inode);
3284 }
5cb6c6c7 3285 iocb->ki_pos = pos;
1da177e4 3286 }
639a93a5 3287 iov_iter_revert(from, write_len - iov_iter_count(from));
a969e903 3288out:
1da177e4
LT
3289 return written;
3290}
3291EXPORT_SYMBOL(generic_file_direct_write);
3292
eb2be189
NP
3293/*
3294 * Find or create a page at the given pagecache position. Return the locked
3295 * page. This function is specifically for buffered writes.
3296 */
54566b2c
NP
3297struct page *grab_cache_page_write_begin(struct address_space *mapping,
3298 pgoff_t index, unsigned flags)
eb2be189 3299{
eb2be189 3300 struct page *page;
bbddabe2 3301 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
0faa70cb 3302
54566b2c 3303 if (flags & AOP_FLAG_NOFS)
2457aec6
MG
3304 fgp_flags |= FGP_NOFS;
3305
3306 page = pagecache_get_page(mapping, index, fgp_flags,
45f87de5 3307 mapping_gfp_mask(mapping));
c585a267 3308 if (page)
2457aec6 3309 wait_for_stable_page(page);
eb2be189 3310
eb2be189
NP
3311 return page;
3312}
54566b2c 3313EXPORT_SYMBOL(grab_cache_page_write_begin);
eb2be189 3314
3b93f911 3315ssize_t generic_perform_write(struct file *file,
afddba49
NP
3316 struct iov_iter *i, loff_t pos)
3317{
3318 struct address_space *mapping = file->f_mapping;
3319 const struct address_space_operations *a_ops = mapping->a_ops;
3320 long status = 0;
3321 ssize_t written = 0;
674b892e
NP
3322 unsigned int flags = 0;
3323
afddba49
NP
3324 do {
3325 struct page *page;
afddba49
NP
3326 unsigned long offset; /* Offset into pagecache page */
3327 unsigned long bytes; /* Bytes to write to page */
3328 size_t copied; /* Bytes copied from user */
3329 void *fsdata;
3330
09cbfeaf
KS
3331 offset = (pos & (PAGE_SIZE - 1));
3332 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
3333 iov_iter_count(i));
3334
3335again:
00a3d660
LT
3336 /*
3337 * Bring in the user page that we will copy from _first_.
3338 * Otherwise there's a nasty deadlock on copying from the
3339 * same page as we're writing to, without it being marked
3340 * up-to-date.
3341 *
3342 * Not only is this an optimisation, but it is also required
3343 * to check that the address is actually valid, when atomic
3344 * usercopies are used, below.
3345 */
3346 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3347 status = -EFAULT;
3348 break;
3349 }
3350
296291cd
JK
3351 if (fatal_signal_pending(current)) {
3352 status = -EINTR;
3353 break;
3354 }
3355
674b892e 3356 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49 3357 &page, &fsdata);
2457aec6 3358 if (unlikely(status < 0))
afddba49
NP
3359 break;
3360
931e80e4 3361 if (mapping_writably_mapped(mapping))
3362 flush_dcache_page(page);
00a3d660 3363
afddba49 3364 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
afddba49
NP
3365 flush_dcache_page(page);
3366
3367 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3368 page, fsdata);
3369 if (unlikely(status < 0))
3370 break;
3371 copied = status;
3372
3373 cond_resched();
3374
124d3b70 3375 iov_iter_advance(i, copied);
afddba49
NP
3376 if (unlikely(copied == 0)) {
3377 /*
3378 * If we were unable to copy any data at all, we must
3379 * fall back to a single segment length write.
3380 *
3381 * If we didn't fallback here, we could livelock
3382 * because not all segments in the iov can be copied at
3383 * once without a pagefault.
3384 */
09cbfeaf 3385 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
3386 iov_iter_single_seg_count(i));
3387 goto again;
3388 }
afddba49
NP
3389 pos += copied;
3390 written += copied;
3391
3392 balance_dirty_pages_ratelimited(mapping);
afddba49
NP
3393 } while (iov_iter_count(i));
3394
3395 return written ? written : status;
3396}
3b93f911 3397EXPORT_SYMBOL(generic_perform_write);
1da177e4 3398
e4dd9de3 3399/**
8174202b 3400 * __generic_file_write_iter - write data to a file
e4dd9de3 3401 * @iocb: IO state structure (file, offset, etc.)
8174202b 3402 * @from: iov_iter with data to write
e4dd9de3
JK
3403 *
3404 * This function does all the work needed for actually writing data to a
3405 * file. It does all basic checks, removes SUID from the file, updates
3406 * modification times and calls proper subroutines depending on whether we
3407 * do direct IO or a standard buffered write.
3408 *
3409 * It expects i_mutex to be grabbed unless we work on a block device or similar
3410 * object which does not need locking at all.
3411 *
3412 * This function does *not* take care of syncing data in case of O_SYNC write.
3413 * A caller has to handle it. This is mainly due to the fact that we want to
3414 * avoid syncing under i_mutex.
a862f68a
MR
3415 *
3416 * Return:
3417 * * number of bytes written, even for truncated writes
3418 * * negative error code if no data has been written at all
e4dd9de3 3419 */
8174202b 3420ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3421{
3422 struct file *file = iocb->ki_filp;
fb5527e6 3423 struct address_space * mapping = file->f_mapping;
1da177e4 3424 struct inode *inode = mapping->host;
3b93f911 3425 ssize_t written = 0;
1da177e4 3426 ssize_t err;
3b93f911 3427 ssize_t status;
1da177e4 3428
1da177e4 3429 /* We can write back this queue in page reclaim */
de1414a6 3430 current->backing_dev_info = inode_to_bdi(inode);
5fa8e0a1 3431 err = file_remove_privs(file);
1da177e4
LT
3432 if (err)
3433 goto out;
3434
c3b2da31
JB
3435 err = file_update_time(file);
3436 if (err)
3437 goto out;
1da177e4 3438
2ba48ce5 3439 if (iocb->ki_flags & IOCB_DIRECT) {
0b8def9d 3440 loff_t pos, endbyte;
fb5527e6 3441
1af5bb49 3442 written = generic_file_direct_write(iocb, from);
1da177e4 3443 /*
fbbbad4b
MW
3444 * If the write stopped short of completing, fall back to
3445 * buffered writes. Some filesystems do this for writes to
3446 * holes, for example. For DAX files, a buffered write will
3447 * not succeed (even if it did, DAX does not handle dirty
3448 * page-cache pages correctly).
1da177e4 3449 */
0b8def9d 3450 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
fbbbad4b
MW
3451 goto out;
3452
0b8def9d 3453 status = generic_perform_write(file, from, pos = iocb->ki_pos);
fb5527e6 3454 /*
3b93f911 3455 * If generic_perform_write() returned a synchronous error
fb5527e6
JM
3456 * then we want to return the number of bytes which were
3457 * direct-written, or the error code if that was zero. Note
3458 * that this differs from normal direct-io semantics, which
3459 * will return -EFOO even if some bytes were written.
3460 */
60bb4529 3461 if (unlikely(status < 0)) {
3b93f911 3462 err = status;
fb5527e6
JM
3463 goto out;
3464 }
fb5527e6
JM
3465 /*
3466 * We need to ensure that the page cache pages are written to
3467 * disk and invalidated to preserve the expected O_DIRECT
3468 * semantics.
3469 */
3b93f911 3470 endbyte = pos + status - 1;
0b8def9d 3471 err = filemap_write_and_wait_range(mapping, pos, endbyte);
fb5527e6 3472 if (err == 0) {
0b8def9d 3473 iocb->ki_pos = endbyte + 1;
3b93f911 3474 written += status;
fb5527e6 3475 invalidate_mapping_pages(mapping,
09cbfeaf
KS
3476 pos >> PAGE_SHIFT,
3477 endbyte >> PAGE_SHIFT);
fb5527e6
JM
3478 } else {
3479 /*
3480 * We don't know how much we wrote, so just return
3481 * the number of bytes which were direct-written
3482 */
3483 }
3484 } else {
0b8def9d
AV
3485 written = generic_perform_write(file, from, iocb->ki_pos);
3486 if (likely(written > 0))
3487 iocb->ki_pos += written;
fb5527e6 3488 }
1da177e4
LT
3489out:
3490 current->backing_dev_info = NULL;
3491 return written ? written : err;
3492}
8174202b 3493EXPORT_SYMBOL(__generic_file_write_iter);
e4dd9de3 3494
e4dd9de3 3495/**
8174202b 3496 * generic_file_write_iter - write data to a file
e4dd9de3 3497 * @iocb: IO state structure
8174202b 3498 * @from: iov_iter with data to write
e4dd9de3 3499 *
8174202b 3500 * This is a wrapper around __generic_file_write_iter() to be used by most
e4dd9de3
JK
3501 * filesystems. It takes care of syncing the file in case of O_SYNC file
3502 * and acquires i_mutex as needed.
a862f68a
MR
3503 * Return:
3504 * * negative error code if no data has been written at all of
3505 * vfs_fsync_range() failed for a synchronous write
3506 * * number of bytes written, even for truncated writes
e4dd9de3 3507 */
8174202b 3508ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3509{
3510 struct file *file = iocb->ki_filp;
148f948b 3511 struct inode *inode = file->f_mapping->host;
1da177e4 3512 ssize_t ret;
1da177e4 3513
5955102c 3514 inode_lock(inode);
3309dd04
AV
3515 ret = generic_write_checks(iocb, from);
3516 if (ret > 0)
5f380c7f 3517 ret = __generic_file_write_iter(iocb, from);
5955102c 3518 inode_unlock(inode);
1da177e4 3519
e2592217
CH
3520 if (ret > 0)
3521 ret = generic_write_sync(iocb, ret);
1da177e4
LT
3522 return ret;
3523}
8174202b 3524EXPORT_SYMBOL(generic_file_write_iter);
1da177e4 3525
cf9a2ae8
DH
3526/**
3527 * try_to_release_page() - release old fs-specific metadata on a page
3528 *
3529 * @page: the page which the kernel is trying to free
3530 * @gfp_mask: memory allocation flags (and I/O mode)
3531 *
3532 * The address_space is to try to release any data against the page
a862f68a 3533 * (presumably at page->private).
cf9a2ae8 3534 *
266cf658
DH
3535 * This may also be called if PG_fscache is set on a page, indicating that the
3536 * page is known to the local caching routines.
3537 *
cf9a2ae8 3538 * The @gfp_mask argument specifies whether I/O may be performed to release
71baba4b 3539 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
cf9a2ae8 3540 *
a862f68a 3541 * Return: %1 if the release was successful, otherwise return zero.
cf9a2ae8
DH
3542 */
3543int try_to_release_page(struct page *page, gfp_t gfp_mask)
3544{
3545 struct address_space * const mapping = page->mapping;
3546
3547 BUG_ON(!PageLocked(page));
3548 if (PageWriteback(page))
3549 return 0;
3550
3551 if (mapping && mapping->a_ops->releasepage)
3552 return mapping->a_ops->releasepage(page, gfp_mask);
3553 return try_to_free_buffers(page);
3554}
3555
3556EXPORT_SYMBOL(try_to_release_page);