mm: use pmdp_get_lockless() without surplus barrier()
[linux-2.6-block.git] / mm / filemap.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/filemap.c
4 *
5 * Copyright (C) 1994-1999 Linus Torvalds
6 */
7
8/*
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
12 */
b95f1b31 13#include <linux/export.h>
1da177e4 14#include <linux/compiler.h>
f9fe48be 15#include <linux/dax.h>
1da177e4 16#include <linux/fs.h>
3f07c014 17#include <linux/sched/signal.h>
c22ce143 18#include <linux/uaccess.h>
c59ede7b 19#include <linux/capability.h>
1da177e4 20#include <linux/kernel_stat.h>
5a0e3ad6 21#include <linux/gfp.h>
1da177e4
LT
22#include <linux/mm.h>
23#include <linux/swap.h>
ffa65753 24#include <linux/swapops.h>
cf264e13 25#include <linux/syscalls.h>
1da177e4
LT
26#include <linux/mman.h>
27#include <linux/pagemap.h>
28#include <linux/file.h>
29#include <linux/uio.h>
cfcbfb13 30#include <linux/error-injection.h>
1da177e4
LT
31#include <linux/hash.h>
32#include <linux/writeback.h>
53253383 33#include <linux/backing-dev.h>
1da177e4 34#include <linux/pagevec.h>
1da177e4 35#include <linux/security.h>
44110fe3 36#include <linux/cpuset.h>
00501b53 37#include <linux/hugetlb.h>
8a9f3ccd 38#include <linux/memcontrol.h>
c7df8ad2 39#include <linux/shmem_fs.h>
f1820361 40#include <linux/rmap.h>
b1d29ba8 41#include <linux/delayacct.h>
eb414681 42#include <linux/psi.h>
d0e6a582 43#include <linux/ramfs.h>
b9306a79 44#include <linux/page_idle.h>
ffa65753 45#include <linux/migrate.h>
07073eb0
DH
46#include <linux/pipe_fs_i.h>
47#include <linux/splice.h>
f9ce0be7 48#include <asm/pgalloc.h>
de591a82 49#include <asm/tlbflush.h>
0f8053a5
NP
50#include "internal.h"
51
fe0bfaaf
RJ
52#define CREATE_TRACE_POINTS
53#include <trace/events/filemap.h>
54
1da177e4 55/*
1da177e4
LT
56 * FIXME: remove all knowledge of the buffer layer from the core VM
57 */
148f948b 58#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 59
1da177e4
LT
60#include <asm/mman.h>
61
cf264e13
NP
62#include "swap.h"
63
1da177e4
LT
64/*
65 * Shared mappings implemented 30.11.1994. It's not fully working yet,
66 * though.
67 *
68 * Shared mappings now work. 15.8.1995 Bruno.
69 *
70 * finished 'unifying' the page and buffer cache and SMP-threaded the
71 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
72 *
73 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
74 */
75
76/*
77 * Lock ordering:
78 *
c8c06efa 79 * ->i_mmap_rwsem (truncate_pagecache)
e621900a 80 * ->private_lock (__free_pte->block_dirty_folio)
5d337b91 81 * ->swap_lock (exclusive_swap_page, others)
b93b0163 82 * ->i_pages lock
1da177e4 83 *
9608703e 84 * ->i_rwsem
730633f0
JK
85 * ->invalidate_lock (acquired by fs in truncate path)
86 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
1da177e4 87 *
c1e8d7c6 88 * ->mmap_lock
c8c06efa 89 * ->i_mmap_rwsem
b8072f09 90 * ->page_table_lock or pte_lock (various, mainly in memory.c)
b93b0163 91 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
1da177e4 92 *
c1e8d7c6 93 * ->mmap_lock
730633f0
JK
94 * ->invalidate_lock (filemap_fault)
95 * ->lock_page (filemap_fault, access_process_vm)
1da177e4 96 *
9608703e 97 * ->i_rwsem (generic_perform_write)
bb523b40 98 * ->mmap_lock (fault_in_readable->do_page_fault)
1da177e4 99 *
f758eeab 100 * bdi->wb.list_lock
a66979ab 101 * sb_lock (fs/fs-writeback.c)
b93b0163 102 * ->i_pages lock (__sync_single_inode)
1da177e4 103 *
c8c06efa 104 * ->i_mmap_rwsem
0503ea8f 105 * ->anon_vma.lock (vma_merge)
1da177e4
LT
106 *
107 * ->anon_vma.lock
b8072f09 108 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 109 *
b8072f09 110 * ->page_table_lock or pte_lock
5d337b91 111 * ->swap_lock (try_to_unmap_one)
1da177e4 112 * ->private_lock (try_to_unmap_one)
b93b0163 113 * ->i_pages lock (try_to_unmap_one)
15b44736
HD
114 * ->lruvec->lru_lock (follow_page->mark_page_accessed)
115 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page)
1da177e4 116 * ->private_lock (page_remove_rmap->set_page_dirty)
b93b0163 117 * ->i_pages lock (page_remove_rmap->set_page_dirty)
f758eeab 118 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
250df6ed 119 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
81f8c3a4 120 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
f758eeab 121 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 122 * ->inode->i_lock (zap_pte_range->set_page_dirty)
e621900a 123 * ->private_lock (zap_pte_range->block_dirty_folio)
1da177e4 124 *
c8c06efa 125 * ->i_mmap_rwsem
9a3c531d 126 * ->tasklist_lock (memory_failure, collect_procs_ao)
1da177e4
LT
127 */
128
5c024e6a 129static void page_cache_delete(struct address_space *mapping,
a548b615 130 struct folio *folio, void *shadow)
91b0abe3 131{
a548b615
MWO
132 XA_STATE(xas, &mapping->i_pages, folio->index);
133 long nr = 1;
c70b647d 134
5c024e6a 135 mapping_set_update(&xas, mapping);
c70b647d 136
5c024e6a 137 /* hugetlb pages are represented by a single entry in the xarray */
a548b615
MWO
138 if (!folio_test_hugetlb(folio)) {
139 xas_set_order(&xas, folio->index, folio_order(folio));
140 nr = folio_nr_pages(folio);
5c024e6a 141 }
91b0abe3 142
a548b615 143 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
449dd698 144
5c024e6a
MW
145 xas_store(&xas, shadow);
146 xas_init_marks(&xas);
d3798ae8 147
a548b615 148 folio->mapping = NULL;
2300638b 149 /* Leave page->index set: truncation lookup relies upon it */
d3798ae8 150 mapping->nrpages -= nr;
91b0abe3
JW
151}
152
621db488
MWO
153static void filemap_unaccount_folio(struct address_space *mapping,
154 struct folio *folio)
1da177e4 155{
621db488 156 long nr;
1da177e4 157
621db488
MWO
158 VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
159 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
06b241f3 160 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
621db488
MWO
161 current->comm, folio_pfn(folio));
162 dump_page(&folio->page, "still mapped when deleted");
06b241f3
HD
163 dump_stack();
164 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
165
85207ad8
HD
166 if (mapping_exiting(mapping) && !folio_test_large(folio)) {
167 int mapcount = page_mapcount(&folio->page);
168
169 if (folio_ref_count(folio) >= mapcount + 2) {
170 /*
171 * All vmas have already been torn down, so it's
172 * a good bet that actually the page is unmapped
173 * and we'd rather not leak it: if we're wrong,
174 * another bad page check should catch it later.
175 */
176 page_mapcount_reset(&folio->page);
177 folio_ref_sub(folio, mapcount);
178 }
06b241f3
HD
179 }
180 }
181
621db488
MWO
182 /* hugetlb folios do not participate in page cache accounting. */
183 if (folio_test_hugetlb(folio))
5ecc4d85 184 return;
09612fa6 185
621db488 186 nr = folio_nr_pages(folio);
5ecc4d85 187
621db488
MWO
188 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
189 if (folio_test_swapbacked(folio)) {
190 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
191 if (folio_test_pmd_mappable(folio))
192 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
193 } else if (folio_test_pmd_mappable(folio)) {
194 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
09d91cda 195 filemap_nr_thps_dec(mapping);
800d8c63 196 }
5ecc4d85
JK
197
198 /*
621db488
MWO
199 * At this point folio must be either written or cleaned by
200 * truncate. Dirty folio here signals a bug and loss of
566d3362 201 * unwritten data - on ordinary filesystems.
5ecc4d85 202 *
566d3362
HD
203 * But it's harmless on in-memory filesystems like tmpfs; and can
204 * occur when a driver which did get_user_pages() sets page dirty
205 * before putting it, while the inode is being finally evicted.
206 *
207 * Below fixes dirty accounting after removing the folio entirely
621db488
MWO
208 * but leaves the dirty flag set: it has no effect for truncated
209 * folio and anyway will be cleared before returning folio to
5ecc4d85
JK
210 * buddy allocator.
211 */
566d3362
HD
212 if (WARN_ON_ONCE(folio_test_dirty(folio) &&
213 mapping_can_writeback(mapping)))
214 folio_account_cleaned(folio, inode_to_wb(mapping->host));
5ecc4d85
JK
215}
216
217/*
218 * Delete a page from the page cache and free it. Caller has to make
219 * sure the page is locked and that nobody else uses it - or that usage
b93b0163 220 * is safe. The caller must hold the i_pages lock.
5ecc4d85 221 */
452e9e69 222void __filemap_remove_folio(struct folio *folio, void *shadow)
5ecc4d85 223{
452e9e69 224 struct address_space *mapping = folio->mapping;
5ecc4d85 225
a0580c6f 226 trace_mm_filemap_delete_from_page_cache(folio);
621db488 227 filemap_unaccount_folio(mapping, folio);
a548b615 228 page_cache_delete(mapping, folio, shadow);
1da177e4
LT
229}
230
78f42660 231void filemap_free_folio(struct address_space *mapping, struct folio *folio)
59c66c5f 232{
d2329aa0 233 void (*free_folio)(struct folio *);
3abb28e2 234 int refs = 1;
59c66c5f 235
d2329aa0
MWO
236 free_folio = mapping->a_ops->free_folio;
237 if (free_folio)
238 free_folio(folio);
59c66c5f 239
3abb28e2
MWO
240 if (folio_test_large(folio) && !folio_test_hugetlb(folio))
241 refs = folio_nr_pages(folio);
242 folio_put_refs(folio, refs);
59c66c5f
JK
243}
244
702cfbf9 245/**
452e9e69
MWO
246 * filemap_remove_folio - Remove folio from page cache.
247 * @folio: The folio.
702cfbf9 248 *
452e9e69
MWO
249 * This must be called only on folios that are locked and have been
250 * verified to be in the page cache. It will never put the folio into
251 * the free list because the caller has a reference on the page.
702cfbf9 252 */
452e9e69 253void filemap_remove_folio(struct folio *folio)
1da177e4 254{
452e9e69 255 struct address_space *mapping = folio->mapping;
1da177e4 256
452e9e69 257 BUG_ON(!folio_test_locked(folio));
51b8c1fe 258 spin_lock(&mapping->host->i_lock);
30472509 259 xa_lock_irq(&mapping->i_pages);
452e9e69 260 __filemap_remove_folio(folio, NULL);
30472509 261 xa_unlock_irq(&mapping->i_pages);
51b8c1fe
JW
262 if (mapping_shrinkable(mapping))
263 inode_add_lru(mapping->host);
264 spin_unlock(&mapping->host->i_lock);
6072d13c 265
452e9e69 266 filemap_free_folio(mapping, folio);
97cecb5a 267}
97cecb5a 268
aa65c29c 269/*
51dcbdac
MWO
270 * page_cache_delete_batch - delete several folios from page cache
271 * @mapping: the mapping to which folios belong
272 * @fbatch: batch of folios to delete
aa65c29c 273 *
51dcbdac
MWO
274 * The function walks over mapping->i_pages and removes folios passed in
275 * @fbatch from the mapping. The function expects @fbatch to be sorted
276 * by page index and is optimised for it to be dense.
277 * It tolerates holes in @fbatch (mapping entries at those indices are not
278 * modified).
aa65c29c 279 *
b93b0163 280 * The function expects the i_pages lock to be held.
aa65c29c 281 */
ef8e5717 282static void page_cache_delete_batch(struct address_space *mapping,
51dcbdac 283 struct folio_batch *fbatch)
aa65c29c 284{
51dcbdac 285 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
6b24ca4a 286 long total_pages = 0;
4101196b 287 int i = 0;
1afd7ae5 288 struct folio *folio;
aa65c29c 289
ef8e5717 290 mapping_set_update(&xas, mapping);
1afd7ae5 291 xas_for_each(&xas, folio, ULONG_MAX) {
51dcbdac 292 if (i >= folio_batch_count(fbatch))
aa65c29c 293 break;
4101196b
MWO
294
295 /* A swap/dax/shadow entry got inserted? Skip it. */
1afd7ae5 296 if (xa_is_value(folio))
aa65c29c 297 continue;
4101196b
MWO
298 /*
299 * A page got inserted in our range? Skip it. We have our
300 * pages locked so they are protected from being removed.
301 * If we see a page whose index is higher than ours, it
302 * means our page has been removed, which shouldn't be
303 * possible because we're holding the PageLock.
304 */
51dcbdac 305 if (folio != fbatch->folios[i]) {
1afd7ae5 306 VM_BUG_ON_FOLIO(folio->index >
51dcbdac 307 fbatch->folios[i]->index, folio);
4101196b
MWO
308 continue;
309 }
310
1afd7ae5 311 WARN_ON_ONCE(!folio_test_locked(folio));
4101196b 312
6b24ca4a 313 folio->mapping = NULL;
51dcbdac 314 /* Leave folio->index set: truncation lookup relies on it */
4101196b 315
6b24ca4a 316 i++;
ef8e5717 317 xas_store(&xas, NULL);
6b24ca4a 318 total_pages += folio_nr_pages(folio);
aa65c29c
JK
319 }
320 mapping->nrpages -= total_pages;
321}
322
323void delete_from_page_cache_batch(struct address_space *mapping,
51dcbdac 324 struct folio_batch *fbatch)
aa65c29c
JK
325{
326 int i;
aa65c29c 327
51dcbdac 328 if (!folio_batch_count(fbatch))
aa65c29c
JK
329 return;
330
51b8c1fe 331 spin_lock(&mapping->host->i_lock);
30472509 332 xa_lock_irq(&mapping->i_pages);
51dcbdac
MWO
333 for (i = 0; i < folio_batch_count(fbatch); i++) {
334 struct folio *folio = fbatch->folios[i];
aa65c29c 335
a0580c6f
MWO
336 trace_mm_filemap_delete_from_page_cache(folio);
337 filemap_unaccount_folio(mapping, folio);
aa65c29c 338 }
51dcbdac 339 page_cache_delete_batch(mapping, fbatch);
30472509 340 xa_unlock_irq(&mapping->i_pages);
51b8c1fe
JW
341 if (mapping_shrinkable(mapping))
342 inode_add_lru(mapping->host);
343 spin_unlock(&mapping->host->i_lock);
aa65c29c 344
51dcbdac
MWO
345 for (i = 0; i < folio_batch_count(fbatch); i++)
346 filemap_free_folio(mapping, fbatch->folios[i]);
aa65c29c
JK
347}
348
d72d9e2a 349int filemap_check_errors(struct address_space *mapping)
865ffef3
DM
350{
351 int ret = 0;
352 /* Check for outstanding write errors */
7fcbbaf1
JA
353 if (test_bit(AS_ENOSPC, &mapping->flags) &&
354 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
865ffef3 355 ret = -ENOSPC;
7fcbbaf1
JA
356 if (test_bit(AS_EIO, &mapping->flags) &&
357 test_and_clear_bit(AS_EIO, &mapping->flags))
865ffef3
DM
358 ret = -EIO;
359 return ret;
360}
d72d9e2a 361EXPORT_SYMBOL(filemap_check_errors);
865ffef3 362
76341cab
JL
363static int filemap_check_and_keep_errors(struct address_space *mapping)
364{
365 /* Check for outstanding write errors */
366 if (test_bit(AS_EIO, &mapping->flags))
367 return -EIO;
368 if (test_bit(AS_ENOSPC, &mapping->flags))
369 return -ENOSPC;
370 return 0;
371}
372
5a798493
JB
373/**
374 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
375 * @mapping: address space structure to write
376 * @wbc: the writeback_control controlling the writeout
377 *
378 * Call writepages on the mapping using the provided wbc to control the
379 * writeout.
380 *
381 * Return: %0 on success, negative error code otherwise.
382 */
383int filemap_fdatawrite_wbc(struct address_space *mapping,
384 struct writeback_control *wbc)
385{
386 int ret;
387
388 if (!mapping_can_writeback(mapping) ||
389 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
390 return 0;
391
392 wbc_attach_fdatawrite_inode(wbc, mapping->host);
393 ret = do_writepages(mapping, wbc);
394 wbc_detach_inode(wbc);
395 return ret;
396}
397EXPORT_SYMBOL(filemap_fdatawrite_wbc);
398
1da177e4 399/**
485bb99b 400 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
401 * @mapping: address space structure to write
402 * @start: offset in bytes where the range starts
469eb4d0 403 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 404 * @sync_mode: enable synchronous operation
1da177e4 405 *
485bb99b
RD
406 * Start writeback against all of a mapping's dirty pages that lie
407 * within the byte offsets <start, end> inclusive.
408 *
1da177e4 409 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 410 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
411 * these two operations is that if a dirty page/buffer is encountered, it must
412 * be waited upon, and not just skipped over.
a862f68a
MR
413 *
414 * Return: %0 on success, negative error code otherwise.
1da177e4 415 */
ebcf28e1
AM
416int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
417 loff_t end, int sync_mode)
1da177e4 418{
1da177e4
LT
419 struct writeback_control wbc = {
420 .sync_mode = sync_mode,
05fe478d 421 .nr_to_write = LONG_MAX,
111ebb6e
OH
422 .range_start = start,
423 .range_end = end,
1da177e4
LT
424 };
425
5a798493 426 return filemap_fdatawrite_wbc(mapping, &wbc);
1da177e4
LT
427}
428
429static inline int __filemap_fdatawrite(struct address_space *mapping,
430 int sync_mode)
431{
111ebb6e 432 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
433}
434
435int filemap_fdatawrite(struct address_space *mapping)
436{
437 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
438}
439EXPORT_SYMBOL(filemap_fdatawrite);
440
f4c0a0fd 441int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 442 loff_t end)
1da177e4
LT
443{
444 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
445}
f4c0a0fd 446EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 447
485bb99b
RD
448/**
449 * filemap_flush - mostly a non-blocking flush
450 * @mapping: target address_space
451 *
1da177e4
LT
452 * This is a mostly non-blocking flush. Not suitable for data-integrity
453 * purposes - I/O may not be started against all dirty pages.
a862f68a
MR
454 *
455 * Return: %0 on success, negative error code otherwise.
1da177e4
LT
456 */
457int filemap_flush(struct address_space *mapping)
458{
459 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
460}
461EXPORT_SYMBOL(filemap_flush);
462
7fc9e472
GR
463/**
464 * filemap_range_has_page - check if a page exists in range.
465 * @mapping: address space within which to check
466 * @start_byte: offset in bytes where the range starts
467 * @end_byte: offset in bytes where the range ends (inclusive)
468 *
469 * Find at least one page in the range supplied, usually used to check if
470 * direct writing in this range will trigger a writeback.
a862f68a
MR
471 *
472 * Return: %true if at least one page exists in the specified range,
473 * %false otherwise.
7fc9e472
GR
474 */
475bool filemap_range_has_page(struct address_space *mapping,
476 loff_t start_byte, loff_t end_byte)
477{
eff3b364 478 struct folio *folio;
8fa8e538
MW
479 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
480 pgoff_t max = end_byte >> PAGE_SHIFT;
7fc9e472
GR
481
482 if (end_byte < start_byte)
483 return false;
484
8fa8e538
MW
485 rcu_read_lock();
486 for (;;) {
eff3b364
MWO
487 folio = xas_find(&xas, max);
488 if (xas_retry(&xas, folio))
8fa8e538
MW
489 continue;
490 /* Shadow entries don't count */
eff3b364 491 if (xa_is_value(folio))
8fa8e538
MW
492 continue;
493 /*
494 * We don't need to try to pin this page; we're about to
495 * release the RCU lock anyway. It is enough to know that
496 * there was a page here recently.
497 */
498 break;
499 }
500 rcu_read_unlock();
7fc9e472 501
eff3b364 502 return folio != NULL;
7fc9e472
GR
503}
504EXPORT_SYMBOL(filemap_range_has_page);
505
5e8fcc1a 506static void __filemap_fdatawait_range(struct address_space *mapping,
aa750fd7 507 loff_t start_byte, loff_t end_byte)
1da177e4 508{
09cbfeaf
KS
509 pgoff_t index = start_byte >> PAGE_SHIFT;
510 pgoff_t end = end_byte >> PAGE_SHIFT;
6817ef51
VMO
511 struct folio_batch fbatch;
512 unsigned nr_folios;
513
514 folio_batch_init(&fbatch);
1da177e4 515
312e9d2f 516 while (index <= end) {
1da177e4
LT
517 unsigned i;
518
6817ef51
VMO
519 nr_folios = filemap_get_folios_tag(mapping, &index, end,
520 PAGECACHE_TAG_WRITEBACK, &fbatch);
521
522 if (!nr_folios)
312e9d2f
JK
523 break;
524
6817ef51
VMO
525 for (i = 0; i < nr_folios; i++) {
526 struct folio *folio = fbatch.folios[i];
1da177e4 527
6817ef51
VMO
528 folio_wait_writeback(folio);
529 folio_clear_error(folio);
1da177e4 530 }
6817ef51 531 folio_batch_release(&fbatch);
1da177e4
LT
532 cond_resched();
533 }
aa750fd7
JN
534}
535
536/**
537 * filemap_fdatawait_range - wait for writeback to complete
538 * @mapping: address space structure to wait for
539 * @start_byte: offset in bytes where the range starts
540 * @end_byte: offset in bytes where the range ends (inclusive)
541 *
542 * Walk the list of under-writeback pages of the given address space
543 * in the given range and wait for all of them. Check error status of
544 * the address space and return it.
545 *
546 * Since the error status of the address space is cleared by this function,
547 * callers are responsible for checking the return value and handling and/or
548 * reporting the error.
a862f68a
MR
549 *
550 * Return: error status of the address space.
aa750fd7
JN
551 */
552int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
553 loff_t end_byte)
554{
5e8fcc1a
JL
555 __filemap_fdatawait_range(mapping, start_byte, end_byte);
556 return filemap_check_errors(mapping);
1da177e4 557}
d3bccb6f
JK
558EXPORT_SYMBOL(filemap_fdatawait_range);
559
aa0bfcd9
RZ
560/**
561 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
562 * @mapping: address space structure to wait for
563 * @start_byte: offset in bytes where the range starts
564 * @end_byte: offset in bytes where the range ends (inclusive)
565 *
566 * Walk the list of under-writeback pages of the given address space in the
567 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
568 * this function does not clear error status of the address space.
569 *
570 * Use this function if callers don't handle errors themselves. Expected
571 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
572 * fsfreeze(8)
573 */
574int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
575 loff_t start_byte, loff_t end_byte)
576{
577 __filemap_fdatawait_range(mapping, start_byte, end_byte);
578 return filemap_check_and_keep_errors(mapping);
579}
580EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
581
a823e458
JL
582/**
583 * file_fdatawait_range - wait for writeback to complete
584 * @file: file pointing to address space structure to wait for
585 * @start_byte: offset in bytes where the range starts
586 * @end_byte: offset in bytes where the range ends (inclusive)
587 *
588 * Walk the list of under-writeback pages of the address space that file
589 * refers to, in the given range and wait for all of them. Check error
590 * status of the address space vs. the file->f_wb_err cursor and return it.
591 *
592 * Since the error status of the file is advanced by this function,
593 * callers are responsible for checking the return value and handling and/or
594 * reporting the error.
a862f68a
MR
595 *
596 * Return: error status of the address space vs. the file->f_wb_err cursor.
a823e458
JL
597 */
598int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
599{
600 struct address_space *mapping = file->f_mapping;
601
602 __filemap_fdatawait_range(mapping, start_byte, end_byte);
603 return file_check_and_advance_wb_err(file);
604}
605EXPORT_SYMBOL(file_fdatawait_range);
d3bccb6f 606
aa750fd7
JN
607/**
608 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
609 * @mapping: address space structure to wait for
610 *
611 * Walk the list of under-writeback pages of the given address space
612 * and wait for all of them. Unlike filemap_fdatawait(), this function
613 * does not clear error status of the address space.
614 *
615 * Use this function if callers don't handle errors themselves. Expected
616 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
617 * fsfreeze(8)
a862f68a
MR
618 *
619 * Return: error status of the address space.
aa750fd7 620 */
76341cab 621int filemap_fdatawait_keep_errors(struct address_space *mapping)
aa750fd7 622{
ffb959bb 623 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
76341cab 624 return filemap_check_and_keep_errors(mapping);
aa750fd7 625}
76341cab 626EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
aa750fd7 627
875d91b1 628/* Returns true if writeback might be needed or already in progress. */
9326c9b2 629static bool mapping_needs_writeback(struct address_space *mapping)
1da177e4 630{
875d91b1 631 return mapping->nrpages;
1da177e4 632}
1da177e4 633
4bdcd1dd
JA
634bool filemap_range_has_writeback(struct address_space *mapping,
635 loff_t start_byte, loff_t end_byte)
f8ee8909
JA
636{
637 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
638 pgoff_t max = end_byte >> PAGE_SHIFT;
b05f41a1 639 struct folio *folio;
f8ee8909
JA
640
641 if (end_byte < start_byte)
642 return false;
643
644 rcu_read_lock();
b05f41a1
VMO
645 xas_for_each(&xas, folio, max) {
646 if (xas_retry(&xas, folio))
f8ee8909 647 continue;
b05f41a1 648 if (xa_is_value(folio))
f8ee8909 649 continue;
b05f41a1
VMO
650 if (folio_test_dirty(folio) || folio_test_locked(folio) ||
651 folio_test_writeback(folio))
f8ee8909
JA
652 break;
653 }
654 rcu_read_unlock();
b05f41a1 655 return folio != NULL;
63135aa3 656}
4bdcd1dd 657EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
63135aa3 658
485bb99b
RD
659/**
660 * filemap_write_and_wait_range - write out & wait on a file range
661 * @mapping: the address_space for the pages
662 * @lstart: offset in bytes where the range starts
663 * @lend: offset in bytes where the range ends (inclusive)
664 *
469eb4d0
AM
665 * Write out and wait upon file offsets lstart->lend, inclusive.
666 *
0e056eb5 667 * Note that @lend is inclusive (describes the last byte to be written) so
469eb4d0 668 * that this function can be used to write to the very end-of-file (end = -1).
a862f68a
MR
669 *
670 * Return: error status of the address space.
469eb4d0 671 */
1da177e4
LT
672int filemap_write_and_wait_range(struct address_space *mapping,
673 loff_t lstart, loff_t lend)
674{
ccac11da 675 int err = 0, err2;
1da177e4 676
feeb9b26
BF
677 if (lend < lstart)
678 return 0;
679
9326c9b2 680 if (mapping_needs_writeback(mapping)) {
28fd1298
OH
681 err = __filemap_fdatawrite_range(mapping, lstart, lend,
682 WB_SYNC_ALL);
ddf8f376
IW
683 /*
684 * Even if the above returned error, the pages may be
685 * written partially (e.g. -ENOSPC), so we wait for it.
686 * But the -EIO is special case, it may indicate the worst
687 * thing (e.g. bug) happened, so we avoid waiting for it.
688 */
ccac11da
ML
689 if (err != -EIO)
690 __filemap_fdatawait_range(mapping, lstart, lend);
1da177e4 691 }
ccac11da
ML
692 err2 = filemap_check_errors(mapping);
693 if (!err)
694 err = err2;
28fd1298 695 return err;
1da177e4 696}
f6995585 697EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 698
5660e13d
JL
699void __filemap_set_wb_err(struct address_space *mapping, int err)
700{
3acdfd28 701 errseq_t eseq = errseq_set(&mapping->wb_err, err);
5660e13d
JL
702
703 trace_filemap_set_wb_err(mapping, eseq);
704}
705EXPORT_SYMBOL(__filemap_set_wb_err);
706
707/**
708 * file_check_and_advance_wb_err - report wb error (if any) that was previously
709 * and advance wb_err to current one
710 * @file: struct file on which the error is being reported
711 *
712 * When userland calls fsync (or something like nfsd does the equivalent), we
713 * want to report any writeback errors that occurred since the last fsync (or
714 * since the file was opened if there haven't been any).
715 *
716 * Grab the wb_err from the mapping. If it matches what we have in the file,
717 * then just quickly return 0. The file is all caught up.
718 *
719 * If it doesn't match, then take the mapping value, set the "seen" flag in
720 * it and try to swap it into place. If it works, or another task beat us
721 * to it with the new value, then update the f_wb_err and return the error
722 * portion. The error at this point must be reported via proper channels
723 * (a'la fsync, or NFS COMMIT operation, etc.).
724 *
725 * While we handle mapping->wb_err with atomic operations, the f_wb_err
726 * value is protected by the f_lock since we must ensure that it reflects
727 * the latest value swapped in for this file descriptor.
a862f68a
MR
728 *
729 * Return: %0 on success, negative error code otherwise.
5660e13d
JL
730 */
731int file_check_and_advance_wb_err(struct file *file)
732{
733 int err = 0;
734 errseq_t old = READ_ONCE(file->f_wb_err);
735 struct address_space *mapping = file->f_mapping;
736
737 /* Locklessly handle the common case where nothing has changed */
738 if (errseq_check(&mapping->wb_err, old)) {
739 /* Something changed, must use slow path */
740 spin_lock(&file->f_lock);
741 old = file->f_wb_err;
742 err = errseq_check_and_advance(&mapping->wb_err,
743 &file->f_wb_err);
744 trace_file_check_and_advance_wb_err(file, old);
745 spin_unlock(&file->f_lock);
746 }
f4e222c5
JL
747
748 /*
749 * We're mostly using this function as a drop in replacement for
750 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
751 * that the legacy code would have had on these flags.
752 */
753 clear_bit(AS_EIO, &mapping->flags);
754 clear_bit(AS_ENOSPC, &mapping->flags);
5660e13d
JL
755 return err;
756}
757EXPORT_SYMBOL(file_check_and_advance_wb_err);
758
759/**
760 * file_write_and_wait_range - write out & wait on a file range
761 * @file: file pointing to address_space with pages
762 * @lstart: offset in bytes where the range starts
763 * @lend: offset in bytes where the range ends (inclusive)
764 *
765 * Write out and wait upon file offsets lstart->lend, inclusive.
766 *
767 * Note that @lend is inclusive (describes the last byte to be written) so
768 * that this function can be used to write to the very end-of-file (end = -1).
769 *
770 * After writing out and waiting on the data, we check and advance the
771 * f_wb_err cursor to the latest value, and return any errors detected there.
a862f68a
MR
772 *
773 * Return: %0 on success, negative error code otherwise.
5660e13d
JL
774 */
775int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
776{
777 int err = 0, err2;
778 struct address_space *mapping = file->f_mapping;
779
feeb9b26
BF
780 if (lend < lstart)
781 return 0;
782
9326c9b2 783 if (mapping_needs_writeback(mapping)) {
5660e13d
JL
784 err = __filemap_fdatawrite_range(mapping, lstart, lend,
785 WB_SYNC_ALL);
786 /* See comment of filemap_write_and_wait() */
787 if (err != -EIO)
788 __filemap_fdatawait_range(mapping, lstart, lend);
789 }
790 err2 = file_check_and_advance_wb_err(file);
791 if (!err)
792 err = err2;
793 return err;
794}
795EXPORT_SYMBOL(file_write_and_wait_range);
796
ef6a3c63 797/**
3720dd6d
VMO
798 * replace_page_cache_folio - replace a pagecache folio with a new one
799 * @old: folio to be replaced
800 * @new: folio to replace with
801 *
802 * This function replaces a folio in the pagecache with a new one. On
803 * success it acquires the pagecache reference for the new folio and
804 * drops it for the old folio. Both the old and new folios must be
805 * locked. This function does not add the new folio to the LRU, the
ef6a3c63
MS
806 * caller must do that.
807 *
74d60958 808 * The remove + add is atomic. This function cannot fail.
ef6a3c63 809 */
3720dd6d 810void replace_page_cache_folio(struct folio *old, struct folio *new)
ef6a3c63 811{
74d60958 812 struct address_space *mapping = old->mapping;
d2329aa0 813 void (*free_folio)(struct folio *) = mapping->a_ops->free_folio;
74d60958
MW
814 pgoff_t offset = old->index;
815 XA_STATE(xas, &mapping->i_pages, offset);
ef6a3c63 816
3720dd6d
VMO
817 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
818 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
819 VM_BUG_ON_FOLIO(new->mapping, new);
ef6a3c63 820
3720dd6d 821 folio_get(new);
74d60958
MW
822 new->mapping = mapping;
823 new->index = offset;
ef6a3c63 824
3720dd6d 825 mem_cgroup_migrate(old, new);
0d1c2072 826
30472509 827 xas_lock_irq(&xas);
74d60958 828 xas_store(&xas, new);
4165b9b4 829
74d60958
MW
830 old->mapping = NULL;
831 /* hugetlb pages do not participate in page cache accounting. */
3720dd6d
VMO
832 if (!folio_test_hugetlb(old))
833 __lruvec_stat_sub_folio(old, NR_FILE_PAGES);
834 if (!folio_test_hugetlb(new))
835 __lruvec_stat_add_folio(new, NR_FILE_PAGES);
836 if (folio_test_swapbacked(old))
837 __lruvec_stat_sub_folio(old, NR_SHMEM);
838 if (folio_test_swapbacked(new))
839 __lruvec_stat_add_folio(new, NR_SHMEM);
30472509 840 xas_unlock_irq(&xas);
d2329aa0 841 if (free_folio)
3720dd6d
VMO
842 free_folio(old);
843 folio_put(old);
ef6a3c63 844}
3720dd6d 845EXPORT_SYMBOL_GPL(replace_page_cache_folio);
ef6a3c63 846
9dd3d069
MWO
847noinline int __filemap_add_folio(struct address_space *mapping,
848 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
1da177e4 849{
9dd3d069
MWO
850 XA_STATE(xas, &mapping->i_pages, index);
851 int huge = folio_test_hugetlb(folio);
da74240e 852 bool charged = false;
d68eccad 853 long nr = 1;
e286781d 854
9dd3d069
MWO
855 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
856 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
74d60958 857 mapping_set_update(&xas, mapping);
e286781d 858
3fea5a49 859 if (!huge) {
d68eccad 860 int error = mem_cgroup_charge(folio, NULL, gfp);
9dd3d069 861 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
3fea5a49 862 if (error)
d68eccad 863 return error;
da74240e 864 charged = true;
d68eccad
MWO
865 xas_set_order(&xas, index, folio_order(folio));
866 nr = folio_nr_pages(folio);
3fea5a49
JW
867 }
868
198b62f8 869 gfp &= GFP_RECLAIM_MASK;
d68eccad
MWO
870 folio_ref_add(folio, nr);
871 folio->mapping = mapping;
872 folio->index = xas.xa_index;
198b62f8 873
74d60958 874 do {
198b62f8
MWO
875 unsigned int order = xa_get_order(xas.xa, xas.xa_index);
876 void *entry, *old = NULL;
877
9dd3d069 878 if (order > folio_order(folio))
198b62f8
MWO
879 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
880 order, gfp);
74d60958 881 xas_lock_irq(&xas);
198b62f8
MWO
882 xas_for_each_conflict(&xas, entry) {
883 old = entry;
884 if (!xa_is_value(entry)) {
885 xas_set_err(&xas, -EEXIST);
886 goto unlock;
887 }
888 }
889
890 if (old) {
891 if (shadowp)
892 *shadowp = old;
893 /* entry may have been split before we acquired lock */
894 order = xa_get_order(xas.xa, xas.xa_index);
9dd3d069 895 if (order > folio_order(folio)) {
d68eccad
MWO
896 /* How to handle large swap entries? */
897 BUG_ON(shmem_mapping(mapping));
198b62f8
MWO
898 xas_split(&xas, old, order);
899 xas_reset(&xas);
900 }
901 }
902
9dd3d069 903 xas_store(&xas, folio);
74d60958
MW
904 if (xas_error(&xas))
905 goto unlock;
906
d68eccad 907 mapping->nrpages += nr;
74d60958
MW
908
909 /* hugetlb pages do not participate in page cache accounting */
d68eccad
MWO
910 if (!huge) {
911 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
912 if (folio_test_pmd_mappable(folio))
913 __lruvec_stat_mod_folio(folio,
914 NR_FILE_THPS, nr);
915 }
74d60958
MW
916unlock:
917 xas_unlock_irq(&xas);
198b62f8 918 } while (xas_nomem(&xas, gfp));
74d60958 919
d68eccad 920 if (xas_error(&xas))
74d60958 921 goto error;
4165b9b4 922
a0580c6f 923 trace_mm_filemap_add_to_page_cache(folio);
66a0c8ee 924 return 0;
74d60958 925error:
d68eccad
MWO
926 if (charged)
927 mem_cgroup_uncharge(folio);
9dd3d069 928 folio->mapping = NULL;
66a0c8ee 929 /* Leave page->index set: truncation relies upon it */
d68eccad
MWO
930 folio_put_refs(folio, nr);
931 return xas_error(&xas);
1da177e4 932}
9dd3d069 933ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
a528910e 934
9dd3d069
MWO
935int filemap_add_folio(struct address_space *mapping, struct folio *folio,
936 pgoff_t index, gfp_t gfp)
1da177e4 937{
a528910e 938 void *shadow = NULL;
4f98a2fe
RR
939 int ret;
940
9dd3d069
MWO
941 __folio_set_locked(folio);
942 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
a528910e 943 if (unlikely(ret))
9dd3d069 944 __folio_clear_locked(folio);
a528910e
JW
945 else {
946 /*
9dd3d069 947 * The folio might have been evicted from cache only
a528910e 948 * recently, in which case it should be activated like
9dd3d069
MWO
949 * any other repeatedly accessed folio.
950 * The exception is folios getting rewritten; evicting other
f0281a00
RR
951 * data from the working set, only to cache data that will
952 * get overwritten with something else, is a waste of memory.
a528910e 953 */
9dd3d069
MWO
954 WARN_ON_ONCE(folio_test_active(folio));
955 if (!(gfp & __GFP_WRITE) && shadow)
956 workingset_refault(folio, shadow);
957 folio_add_lru(folio);
a528910e 958 }
1da177e4
LT
959 return ret;
960}
9dd3d069 961EXPORT_SYMBOL_GPL(filemap_add_folio);
1da177e4 962
44110fe3 963#ifdef CONFIG_NUMA
bb3c579e 964struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
44110fe3 965{
c0ff7453 966 int n;
bb3c579e 967 struct folio *folio;
c0ff7453 968
44110fe3 969 if (cpuset_do_page_mem_spread()) {
cc9a6c87
MG
970 unsigned int cpuset_mems_cookie;
971 do {
d26914d1 972 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 973 n = cpuset_mem_spread_node();
bb3c579e
MWO
974 folio = __folio_alloc_node(gfp, order, n);
975 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
cc9a6c87 976
bb3c579e 977 return folio;
44110fe3 978 }
bb3c579e 979 return folio_alloc(gfp, order);
44110fe3 980}
bb3c579e 981EXPORT_SYMBOL(filemap_alloc_folio);
44110fe3
PJ
982#endif
983
7506ae6a
JK
984/*
985 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
986 *
987 * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
988 *
989 * @mapping1: the first mapping to lock
990 * @mapping2: the second mapping to lock
991 */
992void filemap_invalidate_lock_two(struct address_space *mapping1,
993 struct address_space *mapping2)
994{
995 if (mapping1 > mapping2)
996 swap(mapping1, mapping2);
997 if (mapping1)
998 down_write(&mapping1->invalidate_lock);
999 if (mapping2 && mapping1 != mapping2)
1000 down_write_nested(&mapping2->invalidate_lock, 1);
1001}
1002EXPORT_SYMBOL(filemap_invalidate_lock_two);
1003
1004/*
1005 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1006 *
1007 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1008 *
1009 * @mapping1: the first mapping to unlock
1010 * @mapping2: the second mapping to unlock
1011 */
1012void filemap_invalidate_unlock_two(struct address_space *mapping1,
1013 struct address_space *mapping2)
1014{
1015 if (mapping1)
1016 up_write(&mapping1->invalidate_lock);
1017 if (mapping2 && mapping1 != mapping2)
1018 up_write(&mapping2->invalidate_lock);
1019}
1020EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1021
1da177e4
LT
1022/*
1023 * In order to wait for pages to become available there must be
1024 * waitqueues associated with pages. By using a hash table of
1025 * waitqueues where the bucket discipline is to maintain all
1026 * waiters on the same queue and wake all when any of the pages
1027 * become available, and for the woken contexts to check to be
1028 * sure the appropriate page became available, this saves space
1029 * at a cost of "thundering herd" phenomena during rare hash
1030 * collisions.
1031 */
62906027
NP
1032#define PAGE_WAIT_TABLE_BITS 8
1033#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
df4d4f12 1034static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
62906027 1035
df4d4f12 1036static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1da177e4 1037{
df4d4f12 1038 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1da177e4 1039}
1da177e4 1040
62906027 1041void __init pagecache_init(void)
1da177e4 1042{
62906027 1043 int i;
1da177e4 1044
62906027 1045 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
df4d4f12 1046 init_waitqueue_head(&folio_wait_table[i]);
62906027
NP
1047
1048 page_writeback_init();
1da177e4 1049}
1da177e4 1050
5ef64cc8
LT
1051/*
1052 * The page wait code treats the "wait->flags" somewhat unusually, because
5868ec26 1053 * we have multiple different kinds of waits, not just the usual "exclusive"
5ef64cc8
LT
1054 * one.
1055 *
1056 * We have:
1057 *
1058 * (a) no special bits set:
1059 *
1060 * We're just waiting for the bit to be released, and when a waker
1061 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1062 * and remove it from the wait queue.
1063 *
1064 * Simple and straightforward.
1065 *
1066 * (b) WQ_FLAG_EXCLUSIVE:
1067 *
1068 * The waiter is waiting to get the lock, and only one waiter should
1069 * be woken up to avoid any thundering herd behavior. We'll set the
1070 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1071 *
1072 * This is the traditional exclusive wait.
1073 *
5868ec26 1074 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
5ef64cc8
LT
1075 *
1076 * The waiter is waiting to get the bit, and additionally wants the
1077 * lock to be transferred to it for fair lock behavior. If the lock
1078 * cannot be taken, we stop walking the wait queue without waking
1079 * the waiter.
1080 *
1081 * This is the "fair lock handoff" case, and in addition to setting
1082 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1083 * that it now has the lock.
1084 */
ac6424b9 1085static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
f62e00cc 1086{
5ef64cc8 1087 unsigned int flags;
62906027
NP
1088 struct wait_page_key *key = arg;
1089 struct wait_page_queue *wait_page
1090 = container_of(wait, struct wait_page_queue, wait);
1091
cdc8fcb4 1092 if (!wake_page_match(wait_page, key))
62906027 1093 return 0;
3510ca20 1094
9a1ea439 1095 /*
5ef64cc8
LT
1096 * If it's a lock handoff wait, we get the bit for it, and
1097 * stop walking (and do not wake it up) if we can't.
9a1ea439 1098 */
5ef64cc8
LT
1099 flags = wait->flags;
1100 if (flags & WQ_FLAG_EXCLUSIVE) {
df4d4f12 1101 if (test_bit(key->bit_nr, &key->folio->flags))
2a9127fc 1102 return -1;
5ef64cc8 1103 if (flags & WQ_FLAG_CUSTOM) {
df4d4f12 1104 if (test_and_set_bit(key->bit_nr, &key->folio->flags))
5ef64cc8
LT
1105 return -1;
1106 flags |= WQ_FLAG_DONE;
1107 }
2a9127fc 1108 }
f62e00cc 1109
5ef64cc8
LT
1110 /*
1111 * We are holding the wait-queue lock, but the waiter that
1112 * is waiting for this will be checking the flags without
1113 * any locking.
1114 *
1115 * So update the flags atomically, and wake up the waiter
1116 * afterwards to avoid any races. This store-release pairs
101c0bf6 1117 * with the load-acquire in folio_wait_bit_common().
5ef64cc8
LT
1118 */
1119 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
2a9127fc
LT
1120 wake_up_state(wait->private, mode);
1121
1122 /*
1123 * Ok, we have successfully done what we're waiting for,
1124 * and we can unconditionally remove the wait entry.
1125 *
5ef64cc8
LT
1126 * Note that this pairs with the "finish_wait()" in the
1127 * waiter, and has to be the absolute last thing we do.
1128 * After this list_del_init(&wait->entry) the wait entry
2a9127fc
LT
1129 * might be de-allocated and the process might even have
1130 * exited.
2a9127fc 1131 */
c6fe44d9 1132 list_del_init_careful(&wait->entry);
5ef64cc8 1133 return (flags & WQ_FLAG_EXCLUSIVE) != 0;
f62e00cc
KM
1134}
1135
6974d7c9 1136static void folio_wake_bit(struct folio *folio, int bit_nr)
cbbce822 1137{
df4d4f12 1138 wait_queue_head_t *q = folio_waitqueue(folio);
62906027
NP
1139 struct wait_page_key key;
1140 unsigned long flags;
11a19c7b 1141 wait_queue_entry_t bookmark;
cbbce822 1142
df4d4f12 1143 key.folio = folio;
62906027
NP
1144 key.bit_nr = bit_nr;
1145 key.page_match = 0;
1146
11a19c7b
TC
1147 bookmark.flags = 0;
1148 bookmark.private = NULL;
1149 bookmark.func = NULL;
1150 INIT_LIST_HEAD(&bookmark.entry);
1151
62906027 1152 spin_lock_irqsave(&q->lock, flags);
11a19c7b
TC
1153 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1154
1155 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1156 /*
1157 * Take a breather from holding the lock,
1158 * allow pages that finish wake up asynchronously
1159 * to acquire the lock and remove themselves
1160 * from wait queue
1161 */
1162 spin_unlock_irqrestore(&q->lock, flags);
1163 cpu_relax();
1164 spin_lock_irqsave(&q->lock, flags);
1165 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1166 }
1167
62906027 1168 /*
bb43b14b
HD
1169 * It's possible to miss clearing waiters here, when we woke our page
1170 * waiters, but the hashed waitqueue has waiters for other pages on it.
1171 * That's okay, it's a rare case. The next waker will clear it.
62906027 1172 *
bb43b14b
HD
1173 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1174 * other), the flag may be cleared in the course of freeing the page;
1175 * but that is not required for correctness.
62906027 1176 */
bb43b14b 1177 if (!waitqueue_active(q) || !key.page_match)
6974d7c9 1178 folio_clear_waiters(folio);
bb43b14b 1179
62906027
NP
1180 spin_unlock_irqrestore(&q->lock, flags);
1181}
74d81bfa 1182
4268b480 1183static void folio_wake(struct folio *folio, int bit)
74d81bfa 1184{
4268b480 1185 if (!folio_test_waiters(folio))
74d81bfa 1186 return;
6974d7c9 1187 folio_wake_bit(folio, bit);
74d81bfa 1188}
62906027 1189
9a1ea439 1190/*
101c0bf6 1191 * A choice of three behaviors for folio_wait_bit_common():
9a1ea439
HD
1192 */
1193enum behavior {
1194 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
7c23c782 1195 * __folio_lock() waiting on then setting PG_locked.
9a1ea439
HD
1196 */
1197 SHARED, /* Hold ref to page and check the bit when woken, like
9f2b04a2 1198 * folio_wait_writeback() waiting on PG_writeback.
9a1ea439
HD
1199 */
1200 DROP, /* Drop ref to page before wait, no check when woken,
9f2b04a2 1201 * like folio_put_wait_locked() on PG_locked.
9a1ea439
HD
1202 */
1203};
1204
2a9127fc 1205/*
101c0bf6 1206 * Attempt to check (or get) the folio flag, and mark us done
5ef64cc8 1207 * if successful.
2a9127fc 1208 */
101c0bf6 1209static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
2a9127fc
LT
1210 struct wait_queue_entry *wait)
1211{
1212 if (wait->flags & WQ_FLAG_EXCLUSIVE) {
101c0bf6 1213 if (test_and_set_bit(bit_nr, &folio->flags))
2a9127fc 1214 return false;
101c0bf6 1215 } else if (test_bit(bit_nr, &folio->flags))
2a9127fc
LT
1216 return false;
1217
5ef64cc8 1218 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
2a9127fc
LT
1219 return true;
1220}
1221
5ef64cc8
LT
1222/* How many times do we accept lock stealing from under a waiter? */
1223int sysctl_page_lock_unfairness = 5;
1224
101c0bf6
MWO
1225static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1226 int state, enum behavior behavior)
62906027 1227{
df4d4f12 1228 wait_queue_head_t *q = folio_waitqueue(folio);
5ef64cc8 1229 int unfairness = sysctl_page_lock_unfairness;
62906027 1230 struct wait_page_queue wait_page;
ac6424b9 1231 wait_queue_entry_t *wait = &wait_page.wait;
b1d29ba8 1232 bool thrashing = false;
eb414681 1233 unsigned long pflags;
aa1cf99b 1234 bool in_thrashing;
62906027 1235
eb414681 1236 if (bit_nr == PG_locked &&
101c0bf6 1237 !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
aa1cf99b 1238 delayacct_thrashing_start(&in_thrashing);
eb414681 1239 psi_memstall_enter(&pflags);
b1d29ba8
JW
1240 thrashing = true;
1241 }
1242
62906027
NP
1243 init_wait(wait);
1244 wait->func = wake_page_function;
df4d4f12 1245 wait_page.folio = folio;
62906027
NP
1246 wait_page.bit_nr = bit_nr;
1247
5ef64cc8
LT
1248repeat:
1249 wait->flags = 0;
1250 if (behavior == EXCLUSIVE) {
1251 wait->flags = WQ_FLAG_EXCLUSIVE;
1252 if (--unfairness < 0)
1253 wait->flags |= WQ_FLAG_CUSTOM;
1254 }
1255
2a9127fc
LT
1256 /*
1257 * Do one last check whether we can get the
1258 * page bit synchronously.
1259 *
101c0bf6 1260 * Do the folio_set_waiters() marking before that
2a9127fc
LT
1261 * to let any waker we _just_ missed know they
1262 * need to wake us up (otherwise they'll never
1263 * even go to the slow case that looks at the
1264 * page queue), and add ourselves to the wait
1265 * queue if we need to sleep.
1266 *
1267 * This part needs to be done under the queue
1268 * lock to avoid races.
1269 */
1270 spin_lock_irq(&q->lock);
101c0bf6
MWO
1271 folio_set_waiters(folio);
1272 if (!folio_trylock_flag(folio, bit_nr, wait))
2a9127fc
LT
1273 __add_wait_queue_entry_tail(q, wait);
1274 spin_unlock_irq(&q->lock);
62906027 1275
2a9127fc
LT
1276 /*
1277 * From now on, all the logic will be based on
5ef64cc8
LT
1278 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1279 * see whether the page bit testing has already
1280 * been done by the wake function.
2a9127fc 1281 *
101c0bf6 1282 * We can drop our reference to the folio.
2a9127fc
LT
1283 */
1284 if (behavior == DROP)
101c0bf6 1285 folio_put(folio);
62906027 1286
5ef64cc8
LT
1287 /*
1288 * Note that until the "finish_wait()", or until
1289 * we see the WQ_FLAG_WOKEN flag, we need to
1290 * be very careful with the 'wait->flags', because
1291 * we may race with a waker that sets them.
1292 */
2a9127fc 1293 for (;;) {
5ef64cc8
LT
1294 unsigned int flags;
1295
62906027
NP
1296 set_current_state(state);
1297
5ef64cc8
LT
1298 /* Loop until we've been woken or interrupted */
1299 flags = smp_load_acquire(&wait->flags);
1300 if (!(flags & WQ_FLAG_WOKEN)) {
1301 if (signal_pending_state(state, current))
1302 break;
1303
1304 io_schedule();
1305 continue;
1306 }
1307
1308 /* If we were non-exclusive, we're done */
1309 if (behavior != EXCLUSIVE)
a8b169af 1310 break;
9a1ea439 1311
5ef64cc8
LT
1312 /* If the waker got the lock for us, we're done */
1313 if (flags & WQ_FLAG_DONE)
9a1ea439 1314 break;
2a9127fc 1315
5ef64cc8
LT
1316 /*
1317 * Otherwise, if we're getting the lock, we need to
1318 * try to get it ourselves.
1319 *
1320 * And if that fails, we'll have to retry this all.
1321 */
101c0bf6 1322 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
5ef64cc8
LT
1323 goto repeat;
1324
1325 wait->flags |= WQ_FLAG_DONE;
1326 break;
62906027
NP
1327 }
1328
5ef64cc8
LT
1329 /*
1330 * If a signal happened, this 'finish_wait()' may remove the last
101c0bf6 1331 * waiter from the wait-queues, but the folio waiters bit will remain
5ef64cc8
LT
1332 * set. That's ok. The next wakeup will take care of it, and trying
1333 * to do it here would be difficult and prone to races.
1334 */
62906027
NP
1335 finish_wait(q, wait);
1336
eb414681 1337 if (thrashing) {
aa1cf99b 1338 delayacct_thrashing_end(&in_thrashing);
eb414681
JW
1339 psi_memstall_leave(&pflags);
1340 }
b1d29ba8 1341
62906027 1342 /*
5ef64cc8
LT
1343 * NOTE! The wait->flags weren't stable until we've done the
1344 * 'finish_wait()', and we could have exited the loop above due
1345 * to a signal, and had a wakeup event happen after the signal
1346 * test but before the 'finish_wait()'.
1347 *
1348 * So only after the finish_wait() can we reliably determine
1349 * if we got woken up or not, so we can now figure out the final
1350 * return value based on that state without races.
1351 *
1352 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1353 * waiter, but an exclusive one requires WQ_FLAG_DONE.
62906027 1354 */
5ef64cc8
LT
1355 if (behavior == EXCLUSIVE)
1356 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
62906027 1357
2a9127fc 1358 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
62906027
NP
1359}
1360
ffa65753
AP
1361#ifdef CONFIG_MIGRATION
1362/**
1363 * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1364 * @entry: migration swap entry.
1365 * @ptep: mapped pte pointer. Will return with the ptep unmapped. Only required
1366 * for pte entries, pass NULL for pmd entries.
1367 * @ptl: already locked ptl. This function will drop the lock.
1368 *
1369 * Wait for a migration entry referencing the given page to be removed. This is
1370 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except
1371 * this can be called without taking a reference on the page. Instead this
1372 * should be called while holding the ptl for the migration entry referencing
1373 * the page.
1374 *
1375 * Returns after unmapping and unlocking the pte/ptl with pte_unmap_unlock().
1376 *
1377 * This follows the same logic as folio_wait_bit_common() so see the comments
1378 * there.
1379 */
1380void migration_entry_wait_on_locked(swp_entry_t entry, pte_t *ptep,
1381 spinlock_t *ptl)
1382{
1383 struct wait_page_queue wait_page;
1384 wait_queue_entry_t *wait = &wait_page.wait;
1385 bool thrashing = false;
ffa65753 1386 unsigned long pflags;
aa1cf99b 1387 bool in_thrashing;
ffa65753
AP
1388 wait_queue_head_t *q;
1389 struct folio *folio = page_folio(pfn_swap_entry_to_page(entry));
1390
1391 q = folio_waitqueue(folio);
1392 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
aa1cf99b 1393 delayacct_thrashing_start(&in_thrashing);
ffa65753
AP
1394 psi_memstall_enter(&pflags);
1395 thrashing = true;
1396 }
1397
1398 init_wait(wait);
1399 wait->func = wake_page_function;
1400 wait_page.folio = folio;
1401 wait_page.bit_nr = PG_locked;
1402 wait->flags = 0;
1403
1404 spin_lock_irq(&q->lock);
1405 folio_set_waiters(folio);
1406 if (!folio_trylock_flag(folio, PG_locked, wait))
1407 __add_wait_queue_entry_tail(q, wait);
1408 spin_unlock_irq(&q->lock);
1409
1410 /*
1411 * If a migration entry exists for the page the migration path must hold
1412 * a valid reference to the page, and it must take the ptl to remove the
1413 * migration entry. So the page is valid until the ptl is dropped.
1414 */
1415 if (ptep)
1416 pte_unmap_unlock(ptep, ptl);
1417 else
1418 spin_unlock(ptl);
1419
1420 for (;;) {
1421 unsigned int flags;
1422
1423 set_current_state(TASK_UNINTERRUPTIBLE);
1424
1425 /* Loop until we've been woken or interrupted */
1426 flags = smp_load_acquire(&wait->flags);
1427 if (!(flags & WQ_FLAG_WOKEN)) {
1428 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1429 break;
1430
1431 io_schedule();
1432 continue;
1433 }
1434 break;
1435 }
1436
1437 finish_wait(q, wait);
1438
1439 if (thrashing) {
aa1cf99b 1440 delayacct_thrashing_end(&in_thrashing);
ffa65753
AP
1441 psi_memstall_leave(&pflags);
1442 }
1443}
1444#endif
1445
101c0bf6 1446void folio_wait_bit(struct folio *folio, int bit_nr)
62906027 1447{
101c0bf6 1448 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
62906027 1449}
101c0bf6 1450EXPORT_SYMBOL(folio_wait_bit);
62906027 1451
101c0bf6 1452int folio_wait_bit_killable(struct folio *folio, int bit_nr)
62906027 1453{
101c0bf6 1454 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
cbbce822 1455}
101c0bf6 1456EXPORT_SYMBOL(folio_wait_bit_killable);
cbbce822 1457
9a1ea439 1458/**
9f2b04a2
MWO
1459 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1460 * @folio: The folio to wait for.
48054625 1461 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
9a1ea439 1462 *
9f2b04a2 1463 * The caller should hold a reference on @folio. They expect the page to
9a1ea439 1464 * become unlocked relatively soon, but do not wish to hold up migration
9f2b04a2 1465 * (for example) by holding the reference while waiting for the folio to
9a1ea439 1466 * come unlocked. After this function returns, the caller should not
9f2b04a2 1467 * dereference @folio.
48054625 1468 *
9f2b04a2 1469 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
9a1ea439 1470 */
c195c321 1471static int folio_put_wait_locked(struct folio *folio, int state)
9a1ea439 1472{
9f2b04a2 1473 return folio_wait_bit_common(folio, PG_locked, state, DROP);
9a1ea439
HD
1474}
1475
385e1ca5 1476/**
df4d4f12
MWO
1477 * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1478 * @folio: Folio defining the wait queue of interest
697f619f 1479 * @waiter: Waiter to add to the queue
385e1ca5 1480 *
df4d4f12 1481 * Add an arbitrary @waiter to the wait queue for the nominated @folio.
385e1ca5 1482 */
df4d4f12 1483void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
385e1ca5 1484{
df4d4f12 1485 wait_queue_head_t *q = folio_waitqueue(folio);
385e1ca5
DH
1486 unsigned long flags;
1487
1488 spin_lock_irqsave(&q->lock, flags);
9c3a815f 1489 __add_wait_queue_entry_tail(q, waiter);
df4d4f12 1490 folio_set_waiters(folio);
385e1ca5
DH
1491 spin_unlock_irqrestore(&q->lock, flags);
1492}
df4d4f12 1493EXPORT_SYMBOL_GPL(folio_add_wait_queue);
385e1ca5 1494
b91e1302
LT
1495#ifndef clear_bit_unlock_is_negative_byte
1496
1497/*
1498 * PG_waiters is the high bit in the same byte as PG_lock.
1499 *
1500 * On x86 (and on many other architectures), we can clear PG_lock and
1501 * test the sign bit at the same time. But if the architecture does
1502 * not support that special operation, we just do this all by hand
1503 * instead.
1504 *
1505 * The read of PG_waiters has to be after (or concurrently with) PG_locked
ffceeb62 1506 * being cleared, but a memory barrier should be unnecessary since it is
b91e1302
LT
1507 * in the same byte as PG_locked.
1508 */
1509static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1510{
1511 clear_bit_unlock(nr, mem);
1512 /* smp_mb__after_atomic(); */
98473f9f 1513 return test_bit(PG_waiters, mem);
b91e1302
LT
1514}
1515
1516#endif
1517
1da177e4 1518/**
4e136428
MWO
1519 * folio_unlock - Unlock a locked folio.
1520 * @folio: The folio.
1521 *
1522 * Unlocks the folio and wakes up any thread sleeping on the page lock.
1523 *
1524 * Context: May be called from interrupt or process context. May not be
1525 * called from NMI context.
1da177e4 1526 */
4e136428 1527void folio_unlock(struct folio *folio)
1da177e4 1528{
4e136428 1529 /* Bit 7 allows x86 to check the byte's sign bit */
b91e1302 1530 BUILD_BUG_ON(PG_waiters != 7);
4e136428
MWO
1531 BUILD_BUG_ON(PG_locked > 7);
1532 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1533 if (clear_bit_unlock_is_negative_byte(PG_locked, folio_flags(folio, 0)))
6974d7c9 1534 folio_wake_bit(folio, PG_locked);
1da177e4 1535}
4e136428 1536EXPORT_SYMBOL(folio_unlock);
1da177e4 1537
73e10ded 1538/**
b47393f8
MWO
1539 * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1540 * @folio: The folio.
73e10ded 1541 *
b47393f8
MWO
1542 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1543 * it. The folio reference held for PG_private_2 being set is released.
73e10ded 1544 *
b47393f8
MWO
1545 * This is, for example, used when a netfs folio is being written to a local
1546 * disk cache, thereby allowing writes to the cache for the same folio to be
73e10ded
DH
1547 * serialised.
1548 */
b47393f8 1549void folio_end_private_2(struct folio *folio)
73e10ded 1550{
6974d7c9
MWO
1551 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1552 clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1553 folio_wake_bit(folio, PG_private_2);
1554 folio_put(folio);
73e10ded 1555}
b47393f8 1556EXPORT_SYMBOL(folio_end_private_2);
73e10ded
DH
1557
1558/**
b47393f8
MWO
1559 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1560 * @folio: The folio to wait on.
73e10ded 1561 *
b47393f8 1562 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio.
73e10ded 1563 */
b47393f8 1564void folio_wait_private_2(struct folio *folio)
73e10ded 1565{
101c0bf6
MWO
1566 while (folio_test_private_2(folio))
1567 folio_wait_bit(folio, PG_private_2);
73e10ded 1568}
b47393f8 1569EXPORT_SYMBOL(folio_wait_private_2);
73e10ded
DH
1570
1571/**
b47393f8
MWO
1572 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1573 * @folio: The folio to wait on.
73e10ded 1574 *
b47393f8 1575 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a
73e10ded
DH
1576 * fatal signal is received by the calling task.
1577 *
1578 * Return:
1579 * - 0 if successful.
1580 * - -EINTR if a fatal signal was encountered.
1581 */
b47393f8 1582int folio_wait_private_2_killable(struct folio *folio)
73e10ded
DH
1583{
1584 int ret = 0;
1585
101c0bf6
MWO
1586 while (folio_test_private_2(folio)) {
1587 ret = folio_wait_bit_killable(folio, PG_private_2);
73e10ded
DH
1588 if (ret < 0)
1589 break;
1590 }
1591
1592 return ret;
1593}
b47393f8 1594EXPORT_SYMBOL(folio_wait_private_2_killable);
73e10ded 1595
485bb99b 1596/**
4268b480
MWO
1597 * folio_end_writeback - End writeback against a folio.
1598 * @folio: The folio.
1da177e4 1599 */
4268b480 1600void folio_end_writeback(struct folio *folio)
1da177e4 1601{
888cf2db 1602 /*
4268b480
MWO
1603 * folio_test_clear_reclaim() could be used here but it is an
1604 * atomic operation and overkill in this particular case. Failing
1605 * to shuffle a folio marked for immediate reclaim is too mild
1606 * a gain to justify taking an atomic operation penalty at the
1607 * end of every folio writeback.
888cf2db 1608 */
4268b480
MWO
1609 if (folio_test_reclaim(folio)) {
1610 folio_clear_reclaim(folio);
575ced1c 1611 folio_rotate_reclaimable(folio);
888cf2db 1612 }
ac6aadb2 1613
073861ed 1614 /*
4268b480 1615 * Writeback does not hold a folio reference of its own, relying
073861ed 1616 * on truncation to wait for the clearing of PG_writeback.
4268b480
MWO
1617 * But here we must make sure that the folio is not freed and
1618 * reused before the folio_wake().
073861ed 1619 */
4268b480 1620 folio_get(folio);
269ccca3 1621 if (!__folio_end_writeback(folio))
ac6aadb2
MS
1622 BUG();
1623
4e857c58 1624 smp_mb__after_atomic();
4268b480 1625 folio_wake(folio, PG_writeback);
512b7931 1626 acct_reclaim_writeback(folio);
4268b480 1627 folio_put(folio);
1da177e4 1628}
4268b480 1629EXPORT_SYMBOL(folio_end_writeback);
1da177e4 1630
485bb99b 1631/**
7c23c782
MWO
1632 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1633 * @folio: The folio to lock
1da177e4 1634 */
7c23c782 1635void __folio_lock(struct folio *folio)
1da177e4 1636{
101c0bf6 1637 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
9a1ea439 1638 EXCLUSIVE);
1da177e4 1639}
7c23c782 1640EXPORT_SYMBOL(__folio_lock);
1da177e4 1641
af7f29d9 1642int __folio_lock_killable(struct folio *folio)
2687a356 1643{
101c0bf6 1644 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
9a1ea439 1645 EXCLUSIVE);
2687a356 1646}
af7f29d9 1647EXPORT_SYMBOL_GPL(__folio_lock_killable);
2687a356 1648
ffdc8dab 1649static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
dd3e6d50 1650{
df4d4f12 1651 struct wait_queue_head *q = folio_waitqueue(folio);
f32b5dd7
MWO
1652 int ret = 0;
1653
df4d4f12 1654 wait->folio = folio;
f32b5dd7
MWO
1655 wait->bit_nr = PG_locked;
1656
1657 spin_lock_irq(&q->lock);
1658 __add_wait_queue_entry_tail(q, &wait->wait);
ffdc8dab
MWO
1659 folio_set_waiters(folio);
1660 ret = !folio_trylock(folio);
f32b5dd7
MWO
1661 /*
1662 * If we were successful now, we know we're still on the
1663 * waitqueue as we're still under the lock. This means it's
1664 * safe to remove and return success, we know the callback
1665 * isn't going to trigger.
1666 */
1667 if (!ret)
1668 __remove_wait_queue(q, &wait->wait);
1669 else
1670 ret = -EIOCBQUEUED;
1671 spin_unlock_irq(&q->lock);
1672 return ret;
dd3e6d50
JA
1673}
1674
9a95f3cf
PC
1675/*
1676 * Return values:
9138e47e
MWO
1677 * true - folio is locked; mmap_lock is still held.
1678 * false - folio is not locked.
3e4e28c5 1679 * mmap_lock has been released (mmap_read_unlock(), unless flags had both
9a95f3cf 1680 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
c1e8d7c6 1681 * which case mmap_lock is still held.
9a95f3cf 1682 *
9138e47e
MWO
1683 * If neither ALLOW_RETRY nor KILLABLE are set, will always return true
1684 * with the folio locked and the mmap_lock unperturbed.
9a95f3cf 1685 */
9138e47e 1686bool __folio_lock_or_retry(struct folio *folio, struct mm_struct *mm,
d065bd81
ML
1687 unsigned int flags)
1688{
4064b982 1689 if (fault_flag_allow_retry_first(flags)) {
37b23e05 1690 /*
c1e8d7c6 1691 * CAUTION! In this case, mmap_lock is not released
37b23e05
KM
1692 * even though return 0.
1693 */
1694 if (flags & FAULT_FLAG_RETRY_NOWAIT)
9138e47e 1695 return false;
37b23e05 1696
d8ed45c5 1697 mmap_read_unlock(mm);
37b23e05 1698 if (flags & FAULT_FLAG_KILLABLE)
6baa8d60 1699 folio_wait_locked_killable(folio);
37b23e05 1700 else
6baa8d60 1701 folio_wait_locked(folio);
9138e47e 1702 return false;
800bca7c
HL
1703 }
1704 if (flags & FAULT_FLAG_KILLABLE) {
9138e47e 1705 bool ret;
37b23e05 1706
af7f29d9 1707 ret = __folio_lock_killable(folio);
800bca7c
HL
1708 if (ret) {
1709 mmap_read_unlock(mm);
9138e47e 1710 return false;
800bca7c
HL
1711 }
1712 } else {
af7f29d9 1713 __folio_lock(folio);
d065bd81 1714 }
800bca7c 1715
9138e47e 1716 return true;
d065bd81
ML
1717}
1718
e7b563bb 1719/**
0d3f9296
MW
1720 * page_cache_next_miss() - Find the next gap in the page cache.
1721 * @mapping: Mapping.
1722 * @index: Index.
1723 * @max_scan: Maximum range to search.
e7b563bb 1724 *
0d3f9296
MW
1725 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1726 * gap with the lowest index.
e7b563bb 1727 *
0d3f9296
MW
1728 * This function may be called under the rcu_read_lock. However, this will
1729 * not atomically search a snapshot of the cache at a single point in time.
1730 * For example, if a gap is created at index 5, then subsequently a gap is
1731 * created at index 10, page_cache_next_miss covering both indices may
1732 * return 10 if called under the rcu_read_lock.
e7b563bb 1733 *
0d3f9296
MW
1734 * Return: The index of the gap if found, otherwise an index outside the
1735 * range specified (in which case 'return - index >= max_scan' will be true).
1736 * In the rare case of index wrap-around, 0 will be returned.
e7b563bb 1737 */
0d3f9296 1738pgoff_t page_cache_next_miss(struct address_space *mapping,
e7b563bb
JW
1739 pgoff_t index, unsigned long max_scan)
1740{
0d3f9296 1741 XA_STATE(xas, &mapping->i_pages, index);
e7b563bb 1742
0d3f9296
MW
1743 while (max_scan--) {
1744 void *entry = xas_next(&xas);
1745 if (!entry || xa_is_value(entry))
e7b563bb 1746 break;
0d3f9296 1747 if (xas.xa_index == 0)
e7b563bb
JW
1748 break;
1749 }
1750
0d3f9296 1751 return xas.xa_index;
e7b563bb 1752}
0d3f9296 1753EXPORT_SYMBOL(page_cache_next_miss);
e7b563bb
JW
1754
1755/**
2346a560 1756 * page_cache_prev_miss() - Find the previous gap in the page cache.
0d3f9296
MW
1757 * @mapping: Mapping.
1758 * @index: Index.
1759 * @max_scan: Maximum range to search.
e7b563bb 1760 *
0d3f9296
MW
1761 * Search the range [max(index - max_scan + 1, 0), index] for the
1762 * gap with the highest index.
e7b563bb 1763 *
0d3f9296
MW
1764 * This function may be called under the rcu_read_lock. However, this will
1765 * not atomically search a snapshot of the cache at a single point in time.
1766 * For example, if a gap is created at index 10, then subsequently a gap is
1767 * created at index 5, page_cache_prev_miss() covering both indices may
1768 * return 5 if called under the rcu_read_lock.
e7b563bb 1769 *
0d3f9296
MW
1770 * Return: The index of the gap if found, otherwise an index outside the
1771 * range specified (in which case 'index - return >= max_scan' will be true).
1772 * In the rare case of wrap-around, ULONG_MAX will be returned.
e7b563bb 1773 */
0d3f9296 1774pgoff_t page_cache_prev_miss(struct address_space *mapping,
e7b563bb
JW
1775 pgoff_t index, unsigned long max_scan)
1776{
0d3f9296 1777 XA_STATE(xas, &mapping->i_pages, index);
e7b563bb 1778
0d3f9296
MW
1779 while (max_scan--) {
1780 void *entry = xas_prev(&xas);
1781 if (!entry || xa_is_value(entry))
e7b563bb 1782 break;
0d3f9296 1783 if (xas.xa_index == ULONG_MAX)
e7b563bb
JW
1784 break;
1785 }
1786
0d3f9296 1787 return xas.xa_index;
e7b563bb 1788}
0d3f9296 1789EXPORT_SYMBOL(page_cache_prev_miss);
e7b563bb 1790
020853b6
MWO
1791/*
1792 * Lockless page cache protocol:
1793 * On the lookup side:
1794 * 1. Load the folio from i_pages
1795 * 2. Increment the refcount if it's not zero
1796 * 3. If the folio is not found by xas_reload(), put the refcount and retry
1797 *
1798 * On the removal side:
1799 * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1800 * B. Remove the page from i_pages
1801 * C. Return the page to the page allocator
1802 *
1803 * This means that any page may have its reference count temporarily
1804 * increased by a speculative page cache (or fast GUP) lookup as it can
1805 * be allocated by another user before the RCU grace period expires.
1806 * Because the refcount temporarily acquired here may end up being the
1807 * last refcount on the page, any page allocation must be freeable by
1808 * folio_put().
1809 */
1810
44835d20 1811/*
263e721e 1812 * filemap_get_entry - Get a page cache entry.
485bb99b 1813 * @mapping: the address_space to search
a6de4b48 1814 * @index: The page cache index.
0cd6144a 1815 *
bca65eea
MWO
1816 * Looks up the page cache entry at @mapping & @index. If it is a folio,
1817 * it is returned with an increased refcount. If it is a shadow entry
1818 * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1819 * it is returned without further action.
485bb99b 1820 *
bca65eea 1821 * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1da177e4 1822 */
263e721e 1823void *filemap_get_entry(struct address_space *mapping, pgoff_t index)
1da177e4 1824{
a6de4b48 1825 XA_STATE(xas, &mapping->i_pages, index);
bca65eea 1826 struct folio *folio;
1da177e4 1827
a60637c8
NP
1828 rcu_read_lock();
1829repeat:
4c7472c0 1830 xas_reset(&xas);
bca65eea
MWO
1831 folio = xas_load(&xas);
1832 if (xas_retry(&xas, folio))
4c7472c0
MW
1833 goto repeat;
1834 /*
1835 * A shadow entry of a recently evicted page, or a swap entry from
1836 * shmem/tmpfs. Return it without attempting to raise page count.
1837 */
bca65eea 1838 if (!folio || xa_is_value(folio))
4c7472c0 1839 goto out;
83929372 1840
bca65eea 1841 if (!folio_try_get_rcu(folio))
4c7472c0 1842 goto repeat;
83929372 1843
bca65eea
MWO
1844 if (unlikely(folio != xas_reload(&xas))) {
1845 folio_put(folio);
4c7472c0 1846 goto repeat;
a60637c8 1847 }
27d20fdd 1848out:
a60637c8
NP
1849 rcu_read_unlock();
1850
bca65eea 1851 return folio;
1da177e4 1852}
1da177e4 1853
0cd6144a 1854/**
3f0c6a07 1855 * __filemap_get_folio - Find and get a reference to a folio.
2294b32e
MWO
1856 * @mapping: The address_space to search.
1857 * @index: The page index.
3f0c6a07
MWO
1858 * @fgp_flags: %FGP flags modify how the folio is returned.
1859 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1da177e4 1860 *
2294b32e 1861 * Looks up the page cache entry at @mapping & @index.
0cd6144a 1862 *
2294b32e 1863 * @fgp_flags can be zero or more of these flags:
0e056eb5 1864 *
3f0c6a07
MWO
1865 * * %FGP_ACCESSED - The folio will be marked accessed.
1866 * * %FGP_LOCK - The folio is returned locked.
2294b32e 1867 * * %FGP_CREAT - If no page is present then a new page is allocated using
3f0c6a07 1868 * @gfp and added to the page cache and the VM's LRU list.
2294b32e
MWO
1869 * The page is returned locked and with an increased refcount.
1870 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1871 * page is already in cache. If the page was allocated, unlock it before
1872 * returning so the caller can do the same dance.
3f0c6a07
MWO
1873 * * %FGP_WRITE - The page will be written to by the caller.
1874 * * %FGP_NOFS - __GFP_FS will get cleared in gfp.
1875 * * %FGP_NOWAIT - Don't get blocked by page lock.
b27652d9 1876 * * %FGP_STABLE - Wait for the folio to be stable (finished writeback)
1da177e4 1877 *
2294b32e
MWO
1878 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1879 * if the %GFP flags specified for %FGP_CREAT are atomic.
1da177e4 1880 *
2457aec6 1881 * If there is a page cache page, it is returned with an increased refcount.
a862f68a 1882 *
66dabbb6 1883 * Return: The found folio or an ERR_PTR() otherwise.
1da177e4 1884 */
3f0c6a07
MWO
1885struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1886 int fgp_flags, gfp_t gfp)
1da177e4 1887{
3f0c6a07 1888 struct folio *folio;
2457aec6 1889
1da177e4 1890repeat:
263e721e 1891 folio = filemap_get_entry(mapping, index);
48c9d113 1892 if (xa_is_value(folio))
3f0c6a07 1893 folio = NULL;
3f0c6a07 1894 if (!folio)
2457aec6
MG
1895 goto no_page;
1896
1897 if (fgp_flags & FGP_LOCK) {
1898 if (fgp_flags & FGP_NOWAIT) {
3f0c6a07
MWO
1899 if (!folio_trylock(folio)) {
1900 folio_put(folio);
66dabbb6 1901 return ERR_PTR(-EAGAIN);
2457aec6
MG
1902 }
1903 } else {
3f0c6a07 1904 folio_lock(folio);
2457aec6
MG
1905 }
1906
1907 /* Has the page been truncated? */
3f0c6a07
MWO
1908 if (unlikely(folio->mapping != mapping)) {
1909 folio_unlock(folio);
1910 folio_put(folio);
2457aec6
MG
1911 goto repeat;
1912 }
3f0c6a07 1913 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
2457aec6
MG
1914 }
1915
c16eb000 1916 if (fgp_flags & FGP_ACCESSED)
3f0c6a07 1917 folio_mark_accessed(folio);
b9306a79
YS
1918 else if (fgp_flags & FGP_WRITE) {
1919 /* Clear idle flag for buffer write */
3f0c6a07
MWO
1920 if (folio_test_idle(folio))
1921 folio_clear_idle(folio);
b9306a79 1922 }
2457aec6 1923
b27652d9
MWO
1924 if (fgp_flags & FGP_STABLE)
1925 folio_wait_stable(folio);
2457aec6 1926no_page:
3f0c6a07 1927 if (!folio && (fgp_flags & FGP_CREAT)) {
2457aec6 1928 int err;
f56753ac 1929 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
3f0c6a07 1930 gfp |= __GFP_WRITE;
45f87de5 1931 if (fgp_flags & FGP_NOFS)
3f0c6a07 1932 gfp &= ~__GFP_FS;
0dd316ba
JA
1933 if (fgp_flags & FGP_NOWAIT) {
1934 gfp &= ~GFP_KERNEL;
1935 gfp |= GFP_NOWAIT | __GFP_NOWARN;
1936 }
2457aec6 1937
3f0c6a07
MWO
1938 folio = filemap_alloc_folio(gfp, 0);
1939 if (!folio)
66dabbb6 1940 return ERR_PTR(-ENOMEM);
2457aec6 1941
a75d4c33 1942 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
2457aec6
MG
1943 fgp_flags |= FGP_LOCK;
1944
eb39d618 1945 /* Init accessed so avoid atomic mark_page_accessed later */
2457aec6 1946 if (fgp_flags & FGP_ACCESSED)
3f0c6a07 1947 __folio_set_referenced(folio);
2457aec6 1948
3f0c6a07 1949 err = filemap_add_folio(mapping, folio, index, gfp);
eb2be189 1950 if (unlikely(err)) {
3f0c6a07
MWO
1951 folio_put(folio);
1952 folio = NULL;
eb2be189
NP
1953 if (err == -EEXIST)
1954 goto repeat;
1da177e4 1955 }
a75d4c33
JB
1956
1957 /*
3f0c6a07
MWO
1958 * filemap_add_folio locks the page, and for mmap
1959 * we expect an unlocked page.
a75d4c33 1960 */
3f0c6a07
MWO
1961 if (folio && (fgp_flags & FGP_FOR_MMAP))
1962 folio_unlock(folio);
1da177e4 1963 }
2457aec6 1964
66dabbb6
CH
1965 if (!folio)
1966 return ERR_PTR(-ENOENT);
3f0c6a07 1967 return folio;
1da177e4 1968}
3f0c6a07 1969EXPORT_SYMBOL(__filemap_get_folio);
1da177e4 1970
f5e6429a 1971static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
c7bad633
MWO
1972 xa_mark_t mark)
1973{
f5e6429a 1974 struct folio *folio;
c7bad633
MWO
1975
1976retry:
1977 if (mark == XA_PRESENT)
f5e6429a 1978 folio = xas_find(xas, max);
c7bad633 1979 else
f5e6429a 1980 folio = xas_find_marked(xas, max, mark);
c7bad633 1981
f5e6429a 1982 if (xas_retry(xas, folio))
c7bad633
MWO
1983 goto retry;
1984 /*
1985 * A shadow entry of a recently evicted page, a swap
1986 * entry from shmem/tmpfs or a DAX entry. Return it
1987 * without attempting to raise page count.
1988 */
f5e6429a
MWO
1989 if (!folio || xa_is_value(folio))
1990 return folio;
c7bad633 1991
f5e6429a 1992 if (!folio_try_get_rcu(folio))
c7bad633
MWO
1993 goto reset;
1994
f5e6429a
MWO
1995 if (unlikely(folio != xas_reload(xas))) {
1996 folio_put(folio);
c7bad633
MWO
1997 goto reset;
1998 }
1999
f5e6429a 2000 return folio;
c7bad633
MWO
2001reset:
2002 xas_reset(xas);
2003 goto retry;
2004}
2005
0cd6144a
JW
2006/**
2007 * find_get_entries - gang pagecache lookup
2008 * @mapping: The address_space to search
2009 * @start: The starting page cache index
ca122fe4 2010 * @end: The final page index (inclusive).
0e499ed3 2011 * @fbatch: Where the resulting entries are placed.
0cd6144a
JW
2012 * @indices: The cache indices corresponding to the entries in @entries
2013 *
cf2039af 2014 * find_get_entries() will search for and return a batch of entries in
0e499ed3
MWO
2015 * the mapping. The entries are placed in @fbatch. find_get_entries()
2016 * takes a reference on any actual folios it returns.
0cd6144a 2017 *
0e499ed3
MWO
2018 * The entries have ascending indexes. The indices may not be consecutive
2019 * due to not-present entries or large folios.
0cd6144a 2020 *
0e499ed3 2021 * Any shadow entries of evicted folios, or swap entries from
139b6a6f 2022 * shmem/tmpfs, are included in the returned array.
0cd6144a 2023 *
0e499ed3 2024 * Return: The number of entries which were found.
0cd6144a 2025 */
9fb6beea 2026unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
0e499ed3 2027 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
0cd6144a 2028{
9fb6beea 2029 XA_STATE(xas, &mapping->i_pages, *start);
f5e6429a 2030 struct folio *folio;
0cd6144a
JW
2031
2032 rcu_read_lock();
f5e6429a 2033 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
0e499ed3
MWO
2034 indices[fbatch->nr] = xas.xa_index;
2035 if (!folio_batch_add(fbatch, folio))
0cd6144a
JW
2036 break;
2037 }
2038 rcu_read_unlock();
cf2039af 2039
9fb6beea
VMO
2040 if (folio_batch_count(fbatch)) {
2041 unsigned long nr = 1;
2042 int idx = folio_batch_count(fbatch) - 1;
2043
2044 folio = fbatch->folios[idx];
2045 if (!xa_is_value(folio) && !folio_test_hugetlb(folio))
2046 nr = folio_nr_pages(folio);
2047 *start = indices[idx] + nr;
2048 }
0e499ed3 2049 return folio_batch_count(fbatch);
0cd6144a
JW
2050}
2051
5c211ba2
MWO
2052/**
2053 * find_lock_entries - Find a batch of pagecache entries.
2054 * @mapping: The address_space to search.
2055 * @start: The starting page cache index.
2056 * @end: The final page index (inclusive).
51dcbdac
MWO
2057 * @fbatch: Where the resulting entries are placed.
2058 * @indices: The cache indices of the entries in @fbatch.
5c211ba2
MWO
2059 *
2060 * find_lock_entries() will return a batch of entries from @mapping.
f5e6429a
MWO
2061 * Swap, shadow and DAX entries are included. Folios are returned
2062 * locked and with an incremented refcount. Folios which are locked
2063 * by somebody else or under writeback are skipped. Folios which are
2064 * partially outside the range are not returned.
5c211ba2
MWO
2065 *
2066 * The entries have ascending indexes. The indices may not be consecutive
f5e6429a
MWO
2067 * due to not-present entries, large folios, folios which could not be
2068 * locked or folios under writeback.
5c211ba2
MWO
2069 *
2070 * Return: The number of entries which were found.
2071 */
3392ca12 2072unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
51dcbdac 2073 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
5c211ba2 2074{
3392ca12 2075 XA_STATE(xas, &mapping->i_pages, *start);
f5e6429a 2076 struct folio *folio;
5c211ba2
MWO
2077
2078 rcu_read_lock();
f5e6429a
MWO
2079 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2080 if (!xa_is_value(folio)) {
3392ca12 2081 if (folio->index < *start)
5c211ba2 2082 goto put;
f5e6429a 2083 if (folio->index + folio_nr_pages(folio) - 1 > end)
5c211ba2 2084 goto put;
f5e6429a 2085 if (!folio_trylock(folio))
5c211ba2 2086 goto put;
f5e6429a
MWO
2087 if (folio->mapping != mapping ||
2088 folio_test_writeback(folio))
5c211ba2 2089 goto unlock;
f5e6429a
MWO
2090 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2091 folio);
5c211ba2 2092 }
51dcbdac
MWO
2093 indices[fbatch->nr] = xas.xa_index;
2094 if (!folio_batch_add(fbatch, folio))
5c211ba2 2095 break;
6b24ca4a 2096 continue;
5c211ba2 2097unlock:
f5e6429a 2098 folio_unlock(folio);
5c211ba2 2099put:
f5e6429a 2100 folio_put(folio);
5c211ba2
MWO
2101 }
2102 rcu_read_unlock();
2103
3392ca12
VMO
2104 if (folio_batch_count(fbatch)) {
2105 unsigned long nr = 1;
2106 int idx = folio_batch_count(fbatch) - 1;
2107
2108 folio = fbatch->folios[idx];
2109 if (!xa_is_value(folio) && !folio_test_hugetlb(folio))
2110 nr = folio_nr_pages(folio);
2111 *start = indices[idx] + nr;
2112 }
51dcbdac 2113 return folio_batch_count(fbatch);
5c211ba2
MWO
2114}
2115
1da177e4 2116/**
be0ced5e 2117 * filemap_get_folios - Get a batch of folios
1da177e4
LT
2118 * @mapping: The address_space to search
2119 * @start: The starting page index
b947cee4 2120 * @end: The final page index (inclusive)
be0ced5e 2121 * @fbatch: The batch to fill.
1da177e4 2122 *
be0ced5e
MWO
2123 * Search for and return a batch of folios in the mapping starting at
2124 * index @start and up to index @end (inclusive). The folios are returned
2125 * in @fbatch with an elevated reference count.
1da177e4 2126 *
be0ced5e
MWO
2127 * The first folio may start before @start; if it does, it will contain
2128 * @start. The final folio may extend beyond @end; if it does, it will
2129 * contain @end. The folios have ascending indices. There may be gaps
2130 * between the folios if there are indices which have no folio in the
2131 * page cache. If folios are added to or removed from the page cache
2132 * while this is running, they may or may not be found by this call.
1da177e4 2133 *
be0ced5e
MWO
2134 * Return: The number of folios which were found.
2135 * We also update @start to index the next folio for the traversal.
1da177e4 2136 */
be0ced5e
MWO
2137unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
2138 pgoff_t end, struct folio_batch *fbatch)
1da177e4 2139{
fd1b3cee 2140 XA_STATE(xas, &mapping->i_pages, *start);
f5e6429a 2141 struct folio *folio;
a60637c8
NP
2142
2143 rcu_read_lock();
be0ced5e 2144 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
fd1b3cee 2145 /* Skip over shadow, swap and DAX entries */
f5e6429a 2146 if (xa_is_value(folio))
8079b1c8 2147 continue;
be0ced5e
MWO
2148 if (!folio_batch_add(fbatch, folio)) {
2149 unsigned long nr = folio_nr_pages(folio);
a60637c8 2150
be0ced5e
MWO
2151 if (folio_test_hugetlb(folio))
2152 nr = 1;
2153 *start = folio->index + nr;
b947cee4
JK
2154 goto out;
2155 }
a60637c8 2156 }
5b280c0c 2157
b947cee4
JK
2158 /*
2159 * We come here when there is no page beyond @end. We take care to not
2160 * overflow the index @start as it confuses some of the callers. This
fd1b3cee 2161 * breaks the iteration when there is a page at index -1 but that is
b947cee4
JK
2162 * already broken anyway.
2163 */
2164 if (end == (pgoff_t)-1)
2165 *start = (pgoff_t)-1;
2166 else
2167 *start = end + 1;
2168out:
a60637c8 2169 rcu_read_unlock();
d72dc8a2 2170
be0ced5e
MWO
2171 return folio_batch_count(fbatch);
2172}
2173EXPORT_SYMBOL(filemap_get_folios);
2174
6b24ca4a
MWO
2175static inline
2176bool folio_more_pages(struct folio *folio, pgoff_t index, pgoff_t max)
2177{
2178 if (!folio_test_large(folio) || folio_test_hugetlb(folio))
2179 return false;
2180 if (index >= max)
2181 return false;
2182 return index < folio->index + folio_nr_pages(folio) - 1;
1da177e4
LT
2183}
2184
ebf43500 2185/**
35b47146 2186 * filemap_get_folios_contig - Get a batch of contiguous folios
ebf43500 2187 * @mapping: The address_space to search
35b47146
VMO
2188 * @start: The starting page index
2189 * @end: The final page index (inclusive)
2190 * @fbatch: The batch to fill
ebf43500 2191 *
35b47146
VMO
2192 * filemap_get_folios_contig() works exactly like filemap_get_folios(),
2193 * except the returned folios are guaranteed to be contiguous. This may
2194 * not return all contiguous folios if the batch gets filled up.
ebf43500 2195 *
35b47146
VMO
2196 * Return: The number of folios found.
2197 * Also update @start to be positioned for traversal of the next folio.
ebf43500 2198 */
35b47146
VMO
2199
2200unsigned filemap_get_folios_contig(struct address_space *mapping,
2201 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch)
ebf43500 2202{
35b47146
VMO
2203 XA_STATE(xas, &mapping->i_pages, *start);
2204 unsigned long nr;
e1c37722 2205 struct folio *folio;
a60637c8
NP
2206
2207 rcu_read_lock();
35b47146
VMO
2208
2209 for (folio = xas_load(&xas); folio && xas.xa_index <= end;
2210 folio = xas_next(&xas)) {
e1c37722 2211 if (xas_retry(&xas, folio))
3ece58a2
MW
2212 continue;
2213 /*
2214 * If the entry has been swapped out, we can stop looking.
2215 * No current caller is looking for DAX entries.
2216 */
e1c37722 2217 if (xa_is_value(folio))
35b47146 2218 goto update_start;
ebf43500 2219
e1c37722 2220 if (!folio_try_get_rcu(folio))
3ece58a2 2221 goto retry;
83929372 2222
e1c37722 2223 if (unlikely(folio != xas_reload(&xas)))
35b47146 2224 goto put_folio;
a60637c8 2225
35b47146
VMO
2226 if (!folio_batch_add(fbatch, folio)) {
2227 nr = folio_nr_pages(folio);
2228
2229 if (folio_test_hugetlb(folio))
2230 nr = 1;
2231 *start = folio->index + nr;
2232 goto out;
6b24ca4a 2233 }
3ece58a2 2234 continue;
35b47146 2235put_folio:
e1c37722 2236 folio_put(folio);
35b47146 2237
3ece58a2
MW
2238retry:
2239 xas_reset(&xas);
ebf43500 2240 }
35b47146
VMO
2241
2242update_start:
2243 nr = folio_batch_count(fbatch);
2244
2245 if (nr) {
2246 folio = fbatch->folios[nr - 1];
2247 if (folio_test_hugetlb(folio))
2248 *start = folio->index + 1;
2249 else
2250 *start = folio->index + folio_nr_pages(folio);
2251 }
2252out:
a60637c8 2253 rcu_read_unlock();
35b47146 2254 return folio_batch_count(fbatch);
ebf43500 2255}
35b47146 2256EXPORT_SYMBOL(filemap_get_folios_contig);
ebf43500 2257
485bb99b 2258/**
247f9e1f
VMO
2259 * filemap_get_folios_tag - Get a batch of folios matching @tag
2260 * @mapping: The address_space to search
2261 * @start: The starting page index
2262 * @end: The final page index (inclusive)
2263 * @tag: The tag index
2264 * @fbatch: The batch to fill
485bb99b 2265 *
247f9e1f 2266 * Same as filemap_get_folios(), but only returning folios tagged with @tag.
a862f68a 2267 *
247f9e1f
VMO
2268 * Return: The number of folios found.
2269 * Also update @start to index the next folio for traversal.
1da177e4 2270 */
247f9e1f
VMO
2271unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
2272 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch)
1da177e4 2273{
247f9e1f 2274 XA_STATE(xas, &mapping->i_pages, *start);
f5e6429a 2275 struct folio *folio;
a60637c8
NP
2276
2277 rcu_read_lock();
247f9e1f 2278 while ((folio = find_get_entry(&xas, end, tag)) != NULL) {
a6906972
MW
2279 /*
2280 * Shadow entries should never be tagged, but this iteration
2281 * is lockless so there is a window for page reclaim to evict
247f9e1f 2282 * a page we saw tagged. Skip over it.
a6906972 2283 */
f5e6429a 2284 if (xa_is_value(folio))
139b6a6f 2285 continue;
247f9e1f
VMO
2286 if (!folio_batch_add(fbatch, folio)) {
2287 unsigned long nr = folio_nr_pages(folio);
a60637c8 2288
247f9e1f
VMO
2289 if (folio_test_hugetlb(folio))
2290 nr = 1;
2291 *start = folio->index + nr;
72b045ae
JK
2292 goto out;
2293 }
a60637c8 2294 }
72b045ae 2295 /*
247f9e1f
VMO
2296 * We come here when there is no page beyond @end. We take care to not
2297 * overflow the index @start as it confuses some of the callers. This
2298 * breaks the iteration when there is a page at index -1 but that is
2299 * already broke anyway.
72b045ae
JK
2300 */
2301 if (end == (pgoff_t)-1)
247f9e1f 2302 *start = (pgoff_t)-1;
72b045ae 2303 else
247f9e1f 2304 *start = end + 1;
72b045ae 2305out:
a60637c8 2306 rcu_read_unlock();
1da177e4 2307
247f9e1f 2308 return folio_batch_count(fbatch);
1da177e4 2309}
247f9e1f 2310EXPORT_SYMBOL(filemap_get_folios_tag);
1da177e4 2311
76d42bd9
WF
2312/*
2313 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2314 * a _large_ part of the i/o request. Imagine the worst scenario:
2315 *
2316 * ---R__________________________________________B__________
2317 * ^ reading here ^ bad block(assume 4k)
2318 *
2319 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2320 * => failing the whole request => read(R) => read(R+1) =>
2321 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2322 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2323 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2324 *
2325 * It is going insane. Fix it by quickly scaling down the readahead size.
2326 */
0f8e2db4 2327static void shrink_readahead_size_eio(struct file_ra_state *ra)
76d42bd9 2328{
76d42bd9 2329 ra->ra_pages /= 4;
76d42bd9
WF
2330}
2331
cbd59c48 2332/*
25d6a23e 2333 * filemap_get_read_batch - Get a batch of folios for read
cbd59c48 2334 *
25d6a23e
MWO
2335 * Get a batch of folios which represent a contiguous range of bytes in
2336 * the file. No exceptional entries will be returned. If @index is in
2337 * the middle of a folio, the entire folio will be returned. The last
2338 * folio in the batch may have the readahead flag set or the uptodate flag
2339 * clear so that the caller can take the appropriate action.
cbd59c48
MWO
2340 */
2341static void filemap_get_read_batch(struct address_space *mapping,
25d6a23e 2342 pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
cbd59c48
MWO
2343{
2344 XA_STATE(xas, &mapping->i_pages, index);
bdb72932 2345 struct folio *folio;
cbd59c48
MWO
2346
2347 rcu_read_lock();
bdb72932
MWO
2348 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2349 if (xas_retry(&xas, folio))
cbd59c48 2350 continue;
bdb72932 2351 if (xas.xa_index > max || xa_is_value(folio))
cbd59c48 2352 break;
cb995f4e
MWO
2353 if (xa_is_sibling(folio))
2354 break;
bdb72932 2355 if (!folio_try_get_rcu(folio))
cbd59c48
MWO
2356 goto retry;
2357
bdb72932 2358 if (unlikely(folio != xas_reload(&xas)))
25d6a23e 2359 goto put_folio;
cbd59c48 2360
25d6a23e 2361 if (!folio_batch_add(fbatch, folio))
cbd59c48 2362 break;
bdb72932 2363 if (!folio_test_uptodate(folio))
cbd59c48 2364 break;
bdb72932 2365 if (folio_test_readahead(folio))
cbd59c48 2366 break;
6b24ca4a 2367 xas_advance(&xas, folio->index + folio_nr_pages(folio) - 1);
cbd59c48 2368 continue;
25d6a23e 2369put_folio:
bdb72932 2370 folio_put(folio);
cbd59c48
MWO
2371retry:
2372 xas_reset(&xas);
2373 }
2374 rcu_read_unlock();
2375}
2376
290e1a32 2377static int filemap_read_folio(struct file *file, filler_t filler,
9d427b4e 2378 struct folio *folio)
723ef24b 2379{
17604240
CH
2380 bool workingset = folio_test_workingset(folio);
2381 unsigned long pflags;
723ef24b
KO
2382 int error;
2383
723ef24b 2384 /*
68430303 2385 * A previous I/O error may have been due to temporary failures,
7e0a1265 2386 * eg. multipath errors. PG_error will be set again if read_folio
68430303 2387 * fails.
723ef24b 2388 */
9d427b4e 2389 folio_clear_error(folio);
17604240 2390
723ef24b 2391 /* Start the actual read. The read will unlock the page. */
17604240
CH
2392 if (unlikely(workingset))
2393 psi_memstall_enter(&pflags);
290e1a32 2394 error = filler(file, folio);
17604240
CH
2395 if (unlikely(workingset))
2396 psi_memstall_leave(&pflags);
68430303
MWO
2397 if (error)
2398 return error;
723ef24b 2399
9d427b4e 2400 error = folio_wait_locked_killable(folio);
68430303
MWO
2401 if (error)
2402 return error;
9d427b4e 2403 if (folio_test_uptodate(folio))
aa1ec2f6 2404 return 0;
290e1a32
MWO
2405 if (file)
2406 shrink_readahead_size_eio(&file->f_ra);
aa1ec2f6 2407 return -EIO;
723ef24b
KO
2408}
2409
fce70da3 2410static bool filemap_range_uptodate(struct address_space *mapping,
dd5b9d00
DH
2411 loff_t pos, size_t count, struct folio *folio,
2412 bool need_uptodate)
fce70da3 2413{
2fa4eeb8 2414 if (folio_test_uptodate(folio))
fce70da3
MWO
2415 return true;
2416 /* pipes can't handle partially uptodate pages */
dd5b9d00 2417 if (need_uptodate)
fce70da3
MWO
2418 return false;
2419 if (!mapping->a_ops->is_partially_uptodate)
2420 return false;
2fa4eeb8 2421 if (mapping->host->i_blkbits >= folio_shift(folio))
fce70da3
MWO
2422 return false;
2423
2fa4eeb8
MWO
2424 if (folio_pos(folio) > pos) {
2425 count -= folio_pos(folio) - pos;
fce70da3
MWO
2426 pos = 0;
2427 } else {
2fa4eeb8 2428 pos -= folio_pos(folio);
fce70da3
MWO
2429 }
2430
2e7e80f7 2431 return mapping->a_ops->is_partially_uptodate(folio, pos, count);
fce70da3
MWO
2432}
2433
4612aeef 2434static int filemap_update_page(struct kiocb *iocb,
dd5b9d00
DH
2435 struct address_space *mapping, size_t count,
2436 struct folio *folio, bool need_uptodate)
723ef24b 2437{
723ef24b
KO
2438 int error;
2439
730633f0
JK
2440 if (iocb->ki_flags & IOCB_NOWAIT) {
2441 if (!filemap_invalidate_trylock_shared(mapping))
2442 return -EAGAIN;
2443 } else {
2444 filemap_invalidate_lock_shared(mapping);
2445 }
2446
ffdc8dab 2447 if (!folio_trylock(folio)) {
730633f0 2448 error = -EAGAIN;
87d1d7b6 2449 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
730633f0 2450 goto unlock_mapping;
87d1d7b6 2451 if (!(iocb->ki_flags & IOCB_WAITQ)) {
730633f0 2452 filemap_invalidate_unlock_shared(mapping);
9f2b04a2
MWO
2453 /*
2454 * This is where we usually end up waiting for a
2455 * previously submitted readahead to finish.
2456 */
2457 folio_put_wait_locked(folio, TASK_KILLABLE);
4612aeef 2458 return AOP_TRUNCATED_PAGE;
bd8a1f36 2459 }
ffdc8dab 2460 error = __folio_lock_async(folio, iocb->ki_waitq);
87d1d7b6 2461 if (error)
730633f0 2462 goto unlock_mapping;
723ef24b 2463 }
723ef24b 2464
730633f0 2465 error = AOP_TRUNCATED_PAGE;
ffdc8dab 2466 if (!folio->mapping)
730633f0 2467 goto unlock;
723ef24b 2468
fce70da3 2469 error = 0;
dd5b9d00
DH
2470 if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio,
2471 need_uptodate))
fce70da3
MWO
2472 goto unlock;
2473
2474 error = -EAGAIN;
2475 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2476 goto unlock;
2477
290e1a32
MWO
2478 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2479 folio);
730633f0 2480 goto unlock_mapping;
fce70da3 2481unlock:
ffdc8dab 2482 folio_unlock(folio);
730633f0
JK
2483unlock_mapping:
2484 filemap_invalidate_unlock_shared(mapping);
2485 if (error == AOP_TRUNCATED_PAGE)
ffdc8dab 2486 folio_put(folio);
fce70da3 2487 return error;
723ef24b
KO
2488}
2489
a5d4ad09 2490static int filemap_create_folio(struct file *file,
f253e185 2491 struct address_space *mapping, pgoff_t index,
25d6a23e 2492 struct folio_batch *fbatch)
723ef24b 2493{
a5d4ad09 2494 struct folio *folio;
723ef24b
KO
2495 int error;
2496
a5d4ad09
MWO
2497 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0);
2498 if (!folio)
f253e185 2499 return -ENOMEM;
723ef24b 2500
730633f0 2501 /*
a5d4ad09
MWO
2502 * Protect against truncate / hole punch. Grabbing invalidate_lock
2503 * here assures we cannot instantiate and bring uptodate new
2504 * pagecache folios after evicting page cache during truncate
2505 * and before actually freeing blocks. Note that we could
2506 * release invalidate_lock after inserting the folio into
2507 * the page cache as the locked folio would then be enough to
2508 * synchronize with hole punching. But there are code paths
2509 * such as filemap_update_page() filling in partially uptodate
704528d8 2510 * pages or ->readahead() that need to hold invalidate_lock
a5d4ad09
MWO
2511 * while mapping blocks for IO so let's hold the lock here as
2512 * well to keep locking rules simple.
730633f0
JK
2513 */
2514 filemap_invalidate_lock_shared(mapping);
a5d4ad09 2515 error = filemap_add_folio(mapping, folio, index,
f253e185
MWO
2516 mapping_gfp_constraint(mapping, GFP_KERNEL));
2517 if (error == -EEXIST)
2518 error = AOP_TRUNCATED_PAGE;
2519 if (error)
2520 goto error;
2521
290e1a32 2522 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
f253e185
MWO
2523 if (error)
2524 goto error;
2525
730633f0 2526 filemap_invalidate_unlock_shared(mapping);
25d6a23e 2527 folio_batch_add(fbatch, folio);
f253e185
MWO
2528 return 0;
2529error:
730633f0 2530 filemap_invalidate_unlock_shared(mapping);
a5d4ad09 2531 folio_put(folio);
f253e185 2532 return error;
723ef24b
KO
2533}
2534
5963fe03 2535static int filemap_readahead(struct kiocb *iocb, struct file *file,
65bca53b 2536 struct address_space *mapping, struct folio *folio,
5963fe03
MWO
2537 pgoff_t last_index)
2538{
65bca53b
MWO
2539 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2540
5963fe03
MWO
2541 if (iocb->ki_flags & IOCB_NOIO)
2542 return -EAGAIN;
65bca53b 2543 page_cache_async_ra(&ractl, folio, last_index - folio->index);
5963fe03
MWO
2544 return 0;
2545}
2546
dd5b9d00
DH
2547static int filemap_get_pages(struct kiocb *iocb, size_t count,
2548 struct folio_batch *fbatch, bool need_uptodate)
06c04442
KO
2549{
2550 struct file *filp = iocb->ki_filp;
2551 struct address_space *mapping = filp->f_mapping;
2552 struct file_ra_state *ra = &filp->f_ra;
2553 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
cbd59c48 2554 pgoff_t last_index;
65bca53b 2555 struct folio *folio;
cbd59c48 2556 int err = 0;
06c04442 2557
5956592c 2558 /* "last_index" is the index of the page beyond the end of the read */
dd5b9d00 2559 last_index = DIV_ROUND_UP(iocb->ki_pos + count, PAGE_SIZE);
2642fca6 2560retry:
06c04442
KO
2561 if (fatal_signal_pending(current))
2562 return -EINTR;
2563
5956592c 2564 filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
25d6a23e 2565 if (!folio_batch_count(fbatch)) {
2642fca6
MWO
2566 if (iocb->ki_flags & IOCB_NOIO)
2567 return -EAGAIN;
2568 page_cache_sync_readahead(mapping, ra, filp, index,
2569 last_index - index);
5956592c 2570 filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2642fca6 2571 }
25d6a23e 2572 if (!folio_batch_count(fbatch)) {
f253e185
MWO
2573 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2574 return -EAGAIN;
a5d4ad09 2575 err = filemap_create_folio(filp, mapping,
25d6a23e 2576 iocb->ki_pos >> PAGE_SHIFT, fbatch);
f253e185 2577 if (err == AOP_TRUNCATED_PAGE)
2642fca6 2578 goto retry;
f253e185
MWO
2579 return err;
2580 }
06c04442 2581
25d6a23e 2582 folio = fbatch->folios[folio_batch_count(fbatch) - 1];
65bca53b
MWO
2583 if (folio_test_readahead(folio)) {
2584 err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2642fca6
MWO
2585 if (err)
2586 goto err;
2587 }
65bca53b 2588 if (!folio_test_uptodate(folio)) {
25d6a23e
MWO
2589 if ((iocb->ki_flags & IOCB_WAITQ) &&
2590 folio_batch_count(fbatch) > 1)
2642fca6 2591 iocb->ki_flags |= IOCB_NOWAIT;
dd5b9d00
DH
2592 err = filemap_update_page(iocb, mapping, count, folio,
2593 need_uptodate);
2642fca6
MWO
2594 if (err)
2595 goto err;
06c04442
KO
2596 }
2597
2642fca6 2598 return 0;
cbd59c48 2599err:
2642fca6 2600 if (err < 0)
65bca53b 2601 folio_put(folio);
25d6a23e 2602 if (likely(--fbatch->nr))
ff993ba1 2603 return 0;
4612aeef 2604 if (err == AOP_TRUNCATED_PAGE)
2642fca6
MWO
2605 goto retry;
2606 return err;
06c04442
KO
2607}
2608
5ccc944d
MWO
2609static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio)
2610{
2611 unsigned int shift = folio_shift(folio);
2612
2613 return (pos1 >> shift == pos2 >> shift);
2614}
2615
485bb99b 2616/**
87fa0f3e
CH
2617 * filemap_read - Read data from the page cache.
2618 * @iocb: The iocb to read.
2619 * @iter: Destination for the data.
2620 * @already_read: Number of bytes already read by the caller.
485bb99b 2621 *
87fa0f3e 2622 * Copies data from the page cache. If the data is not currently present,
7e0a1265 2623 * uses the readahead and read_folio address_space operations to fetch it.
1da177e4 2624 *
87fa0f3e
CH
2625 * Return: Total number of bytes copied, including those already read by
2626 * the caller. If an error happens before any bytes are copied, returns
2627 * a negative error number.
1da177e4 2628 */
87fa0f3e
CH
2629ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2630 ssize_t already_read)
1da177e4 2631{
47c27bc4 2632 struct file *filp = iocb->ki_filp;
06c04442 2633 struct file_ra_state *ra = &filp->f_ra;
36e78914 2634 struct address_space *mapping = filp->f_mapping;
1da177e4 2635 struct inode *inode = mapping->host;
25d6a23e 2636 struct folio_batch fbatch;
ff993ba1 2637 int i, error = 0;
06c04442
KO
2638 bool writably_mapped;
2639 loff_t isize, end_offset;
1da177e4 2640
723ef24b 2641 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
d05c5f7b 2642 return 0;
3644e2d2
KO
2643 if (unlikely(!iov_iter_count(iter)))
2644 return 0;
2645
c2a9737f 2646 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
25d6a23e 2647 folio_batch_init(&fbatch);
c2a9737f 2648
06c04442 2649 do {
1da177e4 2650 cond_resched();
5abf186a 2651
723ef24b 2652 /*
06c04442
KO
2653 * If we've already successfully copied some data, then we
2654 * can no longer safely return -EIOCBQUEUED. Hence mark
2655 * an async read NOWAIT at that point.
723ef24b 2656 */
87fa0f3e 2657 if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
723ef24b
KO
2658 iocb->ki_flags |= IOCB_NOWAIT;
2659
8c8387ee
DH
2660 if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2661 break;
2662
dd5b9d00
DH
2663 error = filemap_get_pages(iocb, iter->count, &fbatch,
2664 iov_iter_is_pipe(iter));
ff993ba1 2665 if (error < 0)
06c04442 2666 break;
1da177e4 2667
06c04442
KO
2668 /*
2669 * i_size must be checked after we know the pages are Uptodate.
2670 *
2671 * Checking i_size after the check allows us to calculate
2672 * the correct value for "nr", which means the zero-filled
2673 * part of the page is not copied back to userspace (unless
2674 * another truncate extends the file - this is desired though).
2675 */
2676 isize = i_size_read(inode);
2677 if (unlikely(iocb->ki_pos >= isize))
25d6a23e 2678 goto put_folios;
06c04442
KO
2679 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2680
06c04442
KO
2681 /*
2682 * Once we start copying data, we don't want to be touching any
2683 * cachelines that might be contended:
2684 */
2685 writably_mapped = mapping_writably_mapped(mapping);
2686
2687 /*
5ccc944d 2688 * When a read accesses the same folio several times, only
06c04442
KO
2689 * mark it as accessed the first time.
2690 */
5ccc944d
MWO
2691 if (!pos_same_folio(iocb->ki_pos, ra->prev_pos - 1,
2692 fbatch.folios[0]))
25d6a23e 2693 folio_mark_accessed(fbatch.folios[0]);
06c04442 2694
25d6a23e
MWO
2695 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2696 struct folio *folio = fbatch.folios[i];
d996fc7f
MWO
2697 size_t fsize = folio_size(folio);
2698 size_t offset = iocb->ki_pos & (fsize - 1);
cbd59c48 2699 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
d996fc7f 2700 fsize - offset);
cbd59c48 2701 size_t copied;
06c04442 2702
d996fc7f 2703 if (end_offset < folio_pos(folio))
cbd59c48
MWO
2704 break;
2705 if (i > 0)
d996fc7f 2706 folio_mark_accessed(folio);
06c04442 2707 /*
d996fc7f
MWO
2708 * If users can be writing to this folio using arbitrary
2709 * virtual addresses, take care of potential aliasing
2710 * before reading the folio on the kernel side.
06c04442 2711 */
d996fc7f
MWO
2712 if (writably_mapped)
2713 flush_dcache_folio(folio);
06c04442 2714
d996fc7f 2715 copied = copy_folio_to_iter(folio, offset, bytes, iter);
06c04442 2716
87fa0f3e 2717 already_read += copied;
06c04442
KO
2718 iocb->ki_pos += copied;
2719 ra->prev_pos = iocb->ki_pos;
2720
2721 if (copied < bytes) {
2722 error = -EFAULT;
2723 break;
2724 }
1da177e4 2725 }
25d6a23e
MWO
2726put_folios:
2727 for (i = 0; i < folio_batch_count(&fbatch); i++)
2728 folio_put(fbatch.folios[i]);
2729 folio_batch_init(&fbatch);
06c04442 2730 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
1da177e4 2731
0c6aa263 2732 file_accessed(filp);
06c04442 2733
87fa0f3e 2734 return already_read ? already_read : error;
1da177e4 2735}
87fa0f3e 2736EXPORT_SYMBOL_GPL(filemap_read);
1da177e4 2737
3c435a0f
CH
2738int kiocb_write_and_wait(struct kiocb *iocb, size_t count)
2739{
2740 struct address_space *mapping = iocb->ki_filp->f_mapping;
2741 loff_t pos = iocb->ki_pos;
2742 loff_t end = pos + count - 1;
2743
2744 if (iocb->ki_flags & IOCB_NOWAIT) {
2745 if (filemap_range_needs_writeback(mapping, pos, end))
2746 return -EAGAIN;
2747 return 0;
2748 }
2749
2750 return filemap_write_and_wait_range(mapping, pos, end);
2751}
2752
e003f74a
CH
2753int kiocb_invalidate_pages(struct kiocb *iocb, size_t count)
2754{
2755 struct address_space *mapping = iocb->ki_filp->f_mapping;
2756 loff_t pos = iocb->ki_pos;
2757 loff_t end = pos + count - 1;
2758 int ret;
2759
2760 if (iocb->ki_flags & IOCB_NOWAIT) {
2761 /* we could block if there are any pages in the range */
2762 if (filemap_range_has_page(mapping, pos, end))
2763 return -EAGAIN;
2764 } else {
2765 ret = filemap_write_and_wait_range(mapping, pos, end);
2766 if (ret)
2767 return ret;
2768 }
2769
2770 /*
2771 * After a write we want buffered reads to be sure to go to disk to get
2772 * the new data. We invalidate clean cached page from the region we're
2773 * about to write. We do this *before* the write so that we can return
2774 * without clobbering -EIOCBQUEUED from ->direct_IO().
2775 */
2776 return invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT,
2777 end >> PAGE_SHIFT);
2778}
2779
485bb99b 2780/**
6abd2322 2781 * generic_file_read_iter - generic filesystem read routine
485bb99b 2782 * @iocb: kernel I/O control block
6abd2322 2783 * @iter: destination for the data read
485bb99b 2784 *
6abd2322 2785 * This is the "read_iter()" routine for all filesystems
1da177e4 2786 * that can use the page cache directly.
41da51bc
AG
2787 *
2788 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2789 * be returned when no data can be read without waiting for I/O requests
2790 * to complete; it doesn't prevent readahead.
2791 *
2792 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2793 * requests shall be made for the read or for readahead. When no data
2794 * can be read, -EAGAIN shall be returned. When readahead would be
2795 * triggered, a partial, possibly empty read shall be returned.
2796 *
a862f68a
MR
2797 * Return:
2798 * * number of bytes copied, even for partial reads
41da51bc 2799 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
1da177e4
LT
2800 */
2801ssize_t
ed978a81 2802generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1da177e4 2803{
e7080a43 2804 size_t count = iov_iter_count(iter);
47c27bc4 2805 ssize_t retval = 0;
e7080a43
NS
2806
2807 if (!count)
826ea860 2808 return 0; /* skip atime */
1da177e4 2809
2ba48ce5 2810 if (iocb->ki_flags & IOCB_DIRECT) {
47c27bc4 2811 struct file *file = iocb->ki_filp;
ed978a81
AV
2812 struct address_space *mapping = file->f_mapping;
2813 struct inode *inode = mapping->host;
1da177e4 2814
3c435a0f
CH
2815 retval = kiocb_write_and_wait(iocb, count);
2816 if (retval < 0)
2817 return retval;
0d5b0cf2
CH
2818 file_accessed(file);
2819
5ecda137 2820 retval = mapping->a_ops->direct_IO(iocb, iter);
c3a69024 2821 if (retval >= 0) {
c64fb5c7 2822 iocb->ki_pos += retval;
5ecda137 2823 count -= retval;
9fe55eea 2824 }
ab2125df
PB
2825 if (retval != -EIOCBQUEUED)
2826 iov_iter_revert(iter, count - iov_iter_count(iter));
66f998f6 2827
9fe55eea
SW
2828 /*
2829 * Btrfs can have a short DIO read if we encounter
2830 * compressed extents, so if there was an error, or if
2831 * we've already read everything we wanted to, or if
2832 * there was a short read because we hit EOF, go ahead
2833 * and return. Otherwise fallthrough to buffered io for
fbbbad4b
MW
2834 * the rest of the read. Buffered reads will not work for
2835 * DAX files, so don't bother trying.
9fe55eea 2836 */
61d0017e
JA
2837 if (retval < 0 || !count || IS_DAX(inode))
2838 return retval;
2839 if (iocb->ki_pos >= i_size_read(inode))
826ea860 2840 return retval;
1da177e4
LT
2841 }
2842
826ea860 2843 return filemap_read(iocb, iter, retval);
1da177e4 2844}
ed978a81 2845EXPORT_SYMBOL(generic_file_read_iter);
1da177e4 2846
07073eb0
DH
2847/*
2848 * Splice subpages from a folio into a pipe.
2849 */
2850size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
2851 struct folio *folio, loff_t fpos, size_t size)
2852{
2853 struct page *page;
2854 size_t spliced = 0, offset = offset_in_folio(folio, fpos);
2855
2856 page = folio_page(folio, offset / PAGE_SIZE);
2857 size = min(size, folio_size(folio) - offset);
2858 offset %= PAGE_SIZE;
2859
2860 while (spliced < size &&
2861 !pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
2862 struct pipe_buffer *buf = pipe_head_buf(pipe);
2863 size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced);
2864
2865 *buf = (struct pipe_buffer) {
2866 .ops = &page_cache_pipe_buf_ops,
2867 .page = page,
2868 .offset = offset,
2869 .len = part,
2870 };
2871 folio_get(folio);
2872 pipe->head++;
2873 page++;
2874 spliced += part;
2875 offset = 0;
2876 }
2877
2878 return spliced;
2879}
2880
2881/*
2882 * Splice folios from the pagecache of a buffered (ie. non-O_DIRECT) file into
2883 * a pipe.
2884 */
2885ssize_t filemap_splice_read(struct file *in, loff_t *ppos,
2886 struct pipe_inode_info *pipe,
2887 size_t len, unsigned int flags)
2888{
2889 struct folio_batch fbatch;
2890 struct kiocb iocb;
2891 size_t total_spliced = 0, used, npages;
2892 loff_t isize, end_offset;
2893 bool writably_mapped;
2894 int i, error = 0;
2895
2896 init_sync_kiocb(&iocb, in);
2897 iocb.ki_pos = *ppos;
2898
2899 /* Work out how much data we can actually add into the pipe */
2900 used = pipe_occupancy(pipe->head, pipe->tail);
2901 npages = max_t(ssize_t, pipe->max_usage - used, 0);
2902 len = min_t(size_t, len, npages * PAGE_SIZE);
2903
2904 folio_batch_init(&fbatch);
2905
2906 do {
2907 cond_resched();
2908
2909 if (*ppos >= i_size_read(file_inode(in)))
2910 break;
2911
2912 iocb.ki_pos = *ppos;
2913 error = filemap_get_pages(&iocb, len, &fbatch, true);
2914 if (error < 0)
2915 break;
2916
2917 /*
2918 * i_size must be checked after we know the pages are Uptodate.
2919 *
2920 * Checking i_size after the check allows us to calculate
2921 * the correct value for "nr", which means the zero-filled
2922 * part of the page is not copied back to userspace (unless
2923 * another truncate extends the file - this is desired though).
2924 */
2925 isize = i_size_read(file_inode(in));
2926 if (unlikely(*ppos >= isize))
2927 break;
2928 end_offset = min_t(loff_t, isize, *ppos + len);
2929
2930 /*
2931 * Once we start copying data, we don't want to be touching any
2932 * cachelines that might be contended:
2933 */
2934 writably_mapped = mapping_writably_mapped(in->f_mapping);
2935
2936 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2937 struct folio *folio = fbatch.folios[i];
2938 size_t n;
2939
2940 if (folio_pos(folio) >= end_offset)
2941 goto out;
2942 folio_mark_accessed(folio);
2943
2944 /*
2945 * If users can be writing to this folio using arbitrary
2946 * virtual addresses, take care of potential aliasing
2947 * before reading the folio on the kernel side.
2948 */
2949 if (writably_mapped)
2950 flush_dcache_folio(folio);
2951
2952 n = min_t(loff_t, len, isize - *ppos);
2953 n = splice_folio_into_pipe(pipe, folio, *ppos, n);
2954 if (!n)
2955 goto out;
2956 len -= n;
2957 total_spliced += n;
2958 *ppos += n;
2959 in->f_ra.prev_pos = *ppos;
2960 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
2961 goto out;
2962 }
2963
2964 folio_batch_release(&fbatch);
2965 } while (len);
2966
2967out:
2968 folio_batch_release(&fbatch);
2969 file_accessed(in);
2970
2971 return total_spliced ? total_spliced : error;
2972}
7c8e01eb 2973EXPORT_SYMBOL(filemap_splice_read);
07073eb0 2974
f5e6429a
MWO
2975static inline loff_t folio_seek_hole_data(struct xa_state *xas,
2976 struct address_space *mapping, struct folio *folio,
54fa39ac 2977 loff_t start, loff_t end, bool seek_data)
41139aa4 2978{
54fa39ac
MWO
2979 const struct address_space_operations *ops = mapping->a_ops;
2980 size_t offset, bsz = i_blocksize(mapping->host);
2981
f5e6429a 2982 if (xa_is_value(folio) || folio_test_uptodate(folio))
54fa39ac
MWO
2983 return seek_data ? start : end;
2984 if (!ops->is_partially_uptodate)
2985 return seek_data ? end : start;
2986
2987 xas_pause(xas);
2988 rcu_read_unlock();
f5e6429a
MWO
2989 folio_lock(folio);
2990 if (unlikely(folio->mapping != mapping))
54fa39ac
MWO
2991 goto unlock;
2992
f5e6429a 2993 offset = offset_in_folio(folio, start) & ~(bsz - 1);
54fa39ac
MWO
2994
2995 do {
2e7e80f7 2996 if (ops->is_partially_uptodate(folio, offset, bsz) ==
f5e6429a 2997 seek_data)
54fa39ac
MWO
2998 break;
2999 start = (start + bsz) & ~(bsz - 1);
3000 offset += bsz;
f5e6429a 3001 } while (offset < folio_size(folio));
54fa39ac 3002unlock:
f5e6429a 3003 folio_unlock(folio);
54fa39ac
MWO
3004 rcu_read_lock();
3005 return start;
41139aa4
MWO
3006}
3007
f5e6429a 3008static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
41139aa4 3009{
f5e6429a 3010 if (xa_is_value(folio))
41139aa4 3011 return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
f5e6429a 3012 return folio_size(folio);
41139aa4
MWO
3013}
3014
3015/**
3016 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
3017 * @mapping: Address space to search.
3018 * @start: First byte to consider.
3019 * @end: Limit of search (exclusive).
3020 * @whence: Either SEEK_HOLE or SEEK_DATA.
3021 *
3022 * If the page cache knows which blocks contain holes and which blocks
3023 * contain data, your filesystem can use this function to implement
3024 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are
3025 * entirely memory-based such as tmpfs, and filesystems which support
3026 * unwritten extents.
3027 *
f0953a1b 3028 * Return: The requested offset on success, or -ENXIO if @whence specifies
41139aa4
MWO
3029 * SEEK_DATA and there is no data after @start. There is an implicit hole
3030 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
3031 * and @end contain data.
3032 */
3033loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
3034 loff_t end, int whence)
3035{
3036 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
ed98b015 3037 pgoff_t max = (end - 1) >> PAGE_SHIFT;
41139aa4 3038 bool seek_data = (whence == SEEK_DATA);
f5e6429a 3039 struct folio *folio;
41139aa4
MWO
3040
3041 if (end <= start)
3042 return -ENXIO;
3043
3044 rcu_read_lock();
f5e6429a 3045 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
ed98b015 3046 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
f5e6429a 3047 size_t seek_size;
41139aa4
MWO
3048
3049 if (start < pos) {
3050 if (!seek_data)
3051 goto unlock;
3052 start = pos;
3053 }
3054
f5e6429a
MWO
3055 seek_size = seek_folio_size(&xas, folio);
3056 pos = round_up((u64)pos + 1, seek_size);
3057 start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
54fa39ac
MWO
3058 seek_data);
3059 if (start < pos)
41139aa4 3060 goto unlock;
ed98b015
HD
3061 if (start >= end)
3062 break;
3063 if (seek_size > PAGE_SIZE)
3064 xas_set(&xas, pos >> PAGE_SHIFT);
f5e6429a
MWO
3065 if (!xa_is_value(folio))
3066 folio_put(folio);
41139aa4 3067 }
41139aa4 3068 if (seek_data)
ed98b015 3069 start = -ENXIO;
41139aa4
MWO
3070unlock:
3071 rcu_read_unlock();
f5e6429a
MWO
3072 if (folio && !xa_is_value(folio))
3073 folio_put(folio);
41139aa4
MWO
3074 if (start > end)
3075 return end;
3076 return start;
3077}
3078
1da177e4 3079#ifdef CONFIG_MMU
1da177e4 3080#define MMAP_LOTSAMISS (100)
6b4c9f44 3081/*
e292e6d6 3082 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
6b4c9f44 3083 * @vmf - the vm_fault for this fault.
e292e6d6 3084 * @folio - the folio to lock.
6b4c9f44
JB
3085 * @fpin - the pointer to the file we may pin (or is already pinned).
3086 *
e292e6d6
MWO
3087 * This works similar to lock_folio_or_retry in that it can drop the
3088 * mmap_lock. It differs in that it actually returns the folio locked
3089 * if it returns 1 and 0 if it couldn't lock the folio. If we did have
3090 * to drop the mmap_lock then fpin will point to the pinned file and
3091 * needs to be fput()'ed at a later point.
6b4c9f44 3092 */
e292e6d6 3093static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
6b4c9f44
JB
3094 struct file **fpin)
3095{
7c23c782 3096 if (folio_trylock(folio))
6b4c9f44
JB
3097 return 1;
3098
8b0f9fa2
LT
3099 /*
3100 * NOTE! This will make us return with VM_FAULT_RETRY, but with
c1e8d7c6 3101 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
8b0f9fa2
LT
3102 * is supposed to work. We have way too many special cases..
3103 */
6b4c9f44
JB
3104 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
3105 return 0;
3106
3107 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
3108 if (vmf->flags & FAULT_FLAG_KILLABLE) {
af7f29d9 3109 if (__folio_lock_killable(folio)) {
6b4c9f44 3110 /*
c1e8d7c6 3111 * We didn't have the right flags to drop the mmap_lock,
6b4c9f44
JB
3112 * but all fault_handlers only check for fatal signals
3113 * if we return VM_FAULT_RETRY, so we need to drop the
c1e8d7c6 3114 * mmap_lock here and return 0 if we don't have a fpin.
6b4c9f44
JB
3115 */
3116 if (*fpin == NULL)
d8ed45c5 3117 mmap_read_unlock(vmf->vma->vm_mm);
6b4c9f44
JB
3118 return 0;
3119 }
3120 } else
7c23c782
MWO
3121 __folio_lock(folio);
3122
6b4c9f44
JB
3123 return 1;
3124}
3125
ef00e08e 3126/*
6b4c9f44
JB
3127 * Synchronous readahead happens when we don't even find a page in the page
3128 * cache at all. We don't want to perform IO under the mmap sem, so if we have
3129 * to drop the mmap sem we return the file that was pinned in order for us to do
3130 * that. If we didn't pin a file then we return NULL. The file that is
3131 * returned needs to be fput()'ed when we're done with it.
ef00e08e 3132 */
6b4c9f44 3133static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
ef00e08e 3134{
2a1180f1
JB
3135 struct file *file = vmf->vma->vm_file;
3136 struct file_ra_state *ra = &file->f_ra;
ef00e08e 3137 struct address_space *mapping = file->f_mapping;
fcd9ae4f 3138 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
6b4c9f44 3139 struct file *fpin = NULL;
dcfa24ba 3140 unsigned long vm_flags = vmf->vma->vm_flags;
e630bfac 3141 unsigned int mmap_miss;
ef00e08e 3142
4687fdbb
MWO
3143#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3144 /* Use the readahead code, even if readahead is disabled */
dcfa24ba 3145 if (vm_flags & VM_HUGEPAGE) {
4687fdbb
MWO
3146 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3147 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
3148 ra->size = HPAGE_PMD_NR;
3149 /*
3150 * Fetch two PMD folios, so we get the chance to actually
3151 * readahead, unless we've been told not to.
3152 */
dcfa24ba 3153 if (!(vm_flags & VM_RAND_READ))
4687fdbb
MWO
3154 ra->size *= 2;
3155 ra->async_size = HPAGE_PMD_NR;
3156 page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER);
3157 return fpin;
3158 }
3159#endif
3160
ef00e08e 3161 /* If we don't want any read-ahead, don't bother */
dcfa24ba 3162 if (vm_flags & VM_RAND_READ)
6b4c9f44 3163 return fpin;
275b12bf 3164 if (!ra->ra_pages)
6b4c9f44 3165 return fpin;
ef00e08e 3166
dcfa24ba 3167 if (vm_flags & VM_SEQ_READ) {
6b4c9f44 3168 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
fcd9ae4f 3169 page_cache_sync_ra(&ractl, ra->ra_pages);
6b4c9f44 3170 return fpin;
ef00e08e
LT
3171 }
3172
207d04ba 3173 /* Avoid banging the cache line if not needed */
e630bfac
KS
3174 mmap_miss = READ_ONCE(ra->mmap_miss);
3175 if (mmap_miss < MMAP_LOTSAMISS * 10)
3176 WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
ef00e08e
LT
3177
3178 /*
3179 * Do we miss much more than hit in this file? If so,
3180 * stop bothering with read-ahead. It will only hurt.
3181 */
e630bfac 3182 if (mmap_miss > MMAP_LOTSAMISS)
6b4c9f44 3183 return fpin;
ef00e08e 3184
d30a1100
WF
3185 /*
3186 * mmap read-around
3187 */
6b4c9f44 3188 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
db660d46 3189 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
600e19af
RG
3190 ra->size = ra->ra_pages;
3191 ra->async_size = ra->ra_pages / 4;
db660d46 3192 ractl._index = ra->start;
56a4d67c 3193 page_cache_ra_order(&ractl, ra, 0);
6b4c9f44 3194 return fpin;
ef00e08e
LT
3195}
3196
3197/*
3198 * Asynchronous readahead happens when we find the page and PG_readahead,
6b4c9f44 3199 * so we want to possibly extend the readahead further. We return the file that
c1e8d7c6 3200 * was pinned if we have to drop the mmap_lock in order to do IO.
ef00e08e 3201 */
6b4c9f44 3202static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
79598ced 3203 struct folio *folio)
ef00e08e 3204{
2a1180f1
JB
3205 struct file *file = vmf->vma->vm_file;
3206 struct file_ra_state *ra = &file->f_ra;
79598ced 3207 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
6b4c9f44 3208 struct file *fpin = NULL;
e630bfac 3209 unsigned int mmap_miss;
ef00e08e
LT
3210
3211 /* If we don't want any read-ahead, don't bother */
5c72feee 3212 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
6b4c9f44 3213 return fpin;
79598ced 3214
e630bfac
KS
3215 mmap_miss = READ_ONCE(ra->mmap_miss);
3216 if (mmap_miss)
3217 WRITE_ONCE(ra->mmap_miss, --mmap_miss);
79598ced
MWO
3218
3219 if (folio_test_readahead(folio)) {
6b4c9f44 3220 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
79598ced 3221 page_cache_async_ra(&ractl, folio, ra->ra_pages);
6b4c9f44
JB
3222 }
3223 return fpin;
ef00e08e
LT
3224}
3225
485bb99b 3226/**
54cb8821 3227 * filemap_fault - read in file data for page fault handling
d0217ac0 3228 * @vmf: struct vm_fault containing details of the fault
485bb99b 3229 *
54cb8821 3230 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
3231 * mapped memory region to read in file data during a page fault.
3232 *
3233 * The goto's are kind of ugly, but this streamlines the normal case of having
3234 * it in the page cache, and handles the special cases reasonably without
3235 * having a lot of duplicated code.
9a95f3cf 3236 *
c1e8d7c6 3237 * vma->vm_mm->mmap_lock must be held on entry.
9a95f3cf 3238 *
c1e8d7c6 3239 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
e292e6d6 3240 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
9a95f3cf 3241 *
c1e8d7c6 3242 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
9a95f3cf
PC
3243 * has not been released.
3244 *
3245 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
a862f68a
MR
3246 *
3247 * Return: bitwise-OR of %VM_FAULT_ codes.
1da177e4 3248 */
2bcd6454 3249vm_fault_t filemap_fault(struct vm_fault *vmf)
1da177e4
LT
3250{
3251 int error;
11bac800 3252 struct file *file = vmf->vma->vm_file;
6b4c9f44 3253 struct file *fpin = NULL;
1da177e4 3254 struct address_space *mapping = file->f_mapping;
1da177e4 3255 struct inode *inode = mapping->host;
e292e6d6
MWO
3256 pgoff_t max_idx, index = vmf->pgoff;
3257 struct folio *folio;
2bcd6454 3258 vm_fault_t ret = 0;
730633f0 3259 bool mapping_locked = false;
1da177e4 3260
e292e6d6
MWO
3261 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3262 if (unlikely(index >= max_idx))
5307cc1a 3263 return VM_FAULT_SIGBUS;
1da177e4 3264
1da177e4 3265 /*
49426420 3266 * Do we have something in the page cache already?
1da177e4 3267 */
e292e6d6 3268 folio = filemap_get_folio(mapping, index);
66dabbb6 3269 if (likely(!IS_ERR(folio))) {
1da177e4 3270 /*
730633f0
JK
3271 * We found the page, so try async readahead before waiting for
3272 * the lock.
1da177e4 3273 */
730633f0 3274 if (!(vmf->flags & FAULT_FLAG_TRIED))
79598ced 3275 fpin = do_async_mmap_readahead(vmf, folio);
e292e6d6 3276 if (unlikely(!folio_test_uptodate(folio))) {
730633f0
JK
3277 filemap_invalidate_lock_shared(mapping);
3278 mapping_locked = true;
3279 }
3280 } else {
ef00e08e 3281 /* No page in the page cache at all */
ef00e08e 3282 count_vm_event(PGMAJFAULT);
2262185c 3283 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
ef00e08e 3284 ret = VM_FAULT_MAJOR;
6b4c9f44 3285 fpin = do_sync_mmap_readahead(vmf);
ef00e08e 3286retry_find:
730633f0 3287 /*
e292e6d6 3288 * See comment in filemap_create_folio() why we need
730633f0
JK
3289 * invalidate_lock
3290 */
3291 if (!mapping_locked) {
3292 filemap_invalidate_lock_shared(mapping);
3293 mapping_locked = true;
3294 }
e292e6d6 3295 folio = __filemap_get_folio(mapping, index,
a75d4c33
JB
3296 FGP_CREAT|FGP_FOR_MMAP,
3297 vmf->gfp_mask);
66dabbb6 3298 if (IS_ERR(folio)) {
6b4c9f44
JB
3299 if (fpin)
3300 goto out_retry;
730633f0 3301 filemap_invalidate_unlock_shared(mapping);
e520e932 3302 return VM_FAULT_OOM;
6b4c9f44 3303 }
1da177e4
LT
3304 }
3305
e292e6d6 3306 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
6b4c9f44 3307 goto out_retry;
b522c94d
ML
3308
3309 /* Did it get truncated? */
e292e6d6
MWO
3310 if (unlikely(folio->mapping != mapping)) {
3311 folio_unlock(folio);
3312 folio_put(folio);
b522c94d
ML
3313 goto retry_find;
3314 }
e292e6d6 3315 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
b522c94d 3316
1da177e4 3317 /*
d00806b1
NP
3318 * We have a locked page in the page cache, now we need to check
3319 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 3320 */
e292e6d6 3321 if (unlikely(!folio_test_uptodate(folio))) {
730633f0
JK
3322 /*
3323 * The page was in cache and uptodate and now it is not.
3324 * Strange but possible since we didn't hold the page lock all
3325 * the time. Let's drop everything get the invalidate lock and
3326 * try again.
3327 */
3328 if (!mapping_locked) {
e292e6d6
MWO
3329 folio_unlock(folio);
3330 folio_put(folio);
730633f0
JK
3331 goto retry_find;
3332 }
1da177e4 3333 goto page_not_uptodate;
730633f0 3334 }
1da177e4 3335
6b4c9f44 3336 /*
c1e8d7c6 3337 * We've made it this far and we had to drop our mmap_lock, now is the
6b4c9f44
JB
3338 * time to return to the upper layer and have it re-find the vma and
3339 * redo the fault.
3340 */
3341 if (fpin) {
e292e6d6 3342 folio_unlock(folio);
6b4c9f44
JB
3343 goto out_retry;
3344 }
730633f0
JK
3345 if (mapping_locked)
3346 filemap_invalidate_unlock_shared(mapping);
6b4c9f44 3347
ef00e08e
LT
3348 /*
3349 * Found the page and have a reference on it.
3350 * We must recheck i_size under page lock.
3351 */
e292e6d6
MWO
3352 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3353 if (unlikely(index >= max_idx)) {
3354 folio_unlock(folio);
3355 folio_put(folio);
5307cc1a 3356 return VM_FAULT_SIGBUS;
d00806b1
NP
3357 }
3358
e292e6d6 3359 vmf->page = folio_file_page(folio, index);
83c54070 3360 return ret | VM_FAULT_LOCKED;
1da177e4 3361
1da177e4 3362page_not_uptodate:
1da177e4
LT
3363 /*
3364 * Umm, take care of errors if the page isn't up-to-date.
3365 * Try to re-read it _once_. We do this synchronously,
3366 * because there really aren't any performance issues here
3367 * and we need to check for errors.
3368 */
6b4c9f44 3369 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
290e1a32 3370 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
6b4c9f44
JB
3371 if (fpin)
3372 goto out_retry;
e292e6d6 3373 folio_put(folio);
d00806b1
NP
3374
3375 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 3376 goto retry_find;
730633f0 3377 filemap_invalidate_unlock_shared(mapping);
1da177e4 3378
d0217ac0 3379 return VM_FAULT_SIGBUS;
6b4c9f44
JB
3380
3381out_retry:
3382 /*
c1e8d7c6 3383 * We dropped the mmap_lock, we need to return to the fault handler to
6b4c9f44
JB
3384 * re-find the vma and come back and find our hopefully still populated
3385 * page.
3386 */
38a55db9 3387 if (!IS_ERR(folio))
e292e6d6 3388 folio_put(folio);
730633f0
JK
3389 if (mapping_locked)
3390 filemap_invalidate_unlock_shared(mapping);
6b4c9f44
JB
3391 if (fpin)
3392 fput(fpin);
3393 return ret | VM_FAULT_RETRY;
54cb8821
NP
3394}
3395EXPORT_SYMBOL(filemap_fault);
3396
8808ecab
MWO
3397static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio,
3398 pgoff_t start)
f1820361 3399{
f9ce0be7
KS
3400 struct mm_struct *mm = vmf->vma->vm_mm;
3401
3402 /* Huge page is mapped? No need to proceed. */
3403 if (pmd_trans_huge(*vmf->pmd)) {
8808ecab
MWO
3404 folio_unlock(folio);
3405 folio_put(folio);
f9ce0be7
KS
3406 return true;
3407 }
3408
8808ecab
MWO
3409 if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) {
3410 struct page *page = folio_file_page(folio, start);
e0f43fa5
YS
3411 vm_fault_t ret = do_set_pmd(vmf, page);
3412 if (!ret) {
3413 /* The page is mapped successfully, reference consumed. */
8808ecab 3414 folio_unlock(folio);
e0f43fa5 3415 return true;
f9ce0be7 3416 }
f9ce0be7
KS
3417 }
3418
03c4f204
QZ
3419 if (pmd_none(*vmf->pmd))
3420 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
f9ce0be7
KS
3421
3422 /* See comment in handle_pte_fault() */
3423 if (pmd_devmap_trans_unstable(vmf->pmd)) {
8808ecab
MWO
3424 folio_unlock(folio);
3425 folio_put(folio);
f9ce0be7
KS
3426 return true;
3427 }
3428
3429 return false;
3430}
3431
820b05e9 3432static struct folio *next_uptodate_page(struct folio *folio,
f9ce0be7
KS
3433 struct address_space *mapping,
3434 struct xa_state *xas, pgoff_t end_pgoff)
3435{
3436 unsigned long max_idx;
3437
3438 do {
9184a307 3439 if (!folio)
f9ce0be7 3440 return NULL;
9184a307 3441 if (xas_retry(xas, folio))
f9ce0be7 3442 continue;
9184a307 3443 if (xa_is_value(folio))
f9ce0be7 3444 continue;
9184a307 3445 if (folio_test_locked(folio))
f9ce0be7 3446 continue;
9184a307 3447 if (!folio_try_get_rcu(folio))
f9ce0be7
KS
3448 continue;
3449 /* Has the page moved or been split? */
9184a307 3450 if (unlikely(folio != xas_reload(xas)))
f9ce0be7 3451 goto skip;
9184a307 3452 if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
f9ce0be7 3453 goto skip;
9184a307 3454 if (!folio_trylock(folio))
f9ce0be7 3455 goto skip;
9184a307 3456 if (folio->mapping != mapping)
f9ce0be7 3457 goto unlock;
9184a307 3458 if (!folio_test_uptodate(folio))
f9ce0be7
KS
3459 goto unlock;
3460 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3461 if (xas->xa_index >= max_idx)
3462 goto unlock;
820b05e9 3463 return folio;
f9ce0be7 3464unlock:
9184a307 3465 folio_unlock(folio);
f9ce0be7 3466skip:
9184a307
MWO
3467 folio_put(folio);
3468 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
f9ce0be7
KS
3469
3470 return NULL;
3471}
3472
820b05e9 3473static inline struct folio *first_map_page(struct address_space *mapping,
f9ce0be7
KS
3474 struct xa_state *xas,
3475 pgoff_t end_pgoff)
3476{
3477 return next_uptodate_page(xas_find(xas, end_pgoff),
3478 mapping, xas, end_pgoff);
3479}
3480
820b05e9 3481static inline struct folio *next_map_page(struct address_space *mapping,
f9ce0be7
KS
3482 struct xa_state *xas,
3483 pgoff_t end_pgoff)
3484{
3485 return next_uptodate_page(xas_next_entry(xas, end_pgoff),
3486 mapping, xas, end_pgoff);
3487}
3488
3489vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3490 pgoff_t start_pgoff, pgoff_t end_pgoff)
3491{
3492 struct vm_area_struct *vma = vmf->vma;
3493 struct file *file = vma->vm_file;
f1820361 3494 struct address_space *mapping = file->f_mapping;
bae473a4 3495 pgoff_t last_pgoff = start_pgoff;
9d3af4b4 3496 unsigned long addr;
070e807c 3497 XA_STATE(xas, &mapping->i_pages, start_pgoff);
820b05e9
MWO
3498 struct folio *folio;
3499 struct page *page;
e630bfac 3500 unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
f9ce0be7 3501 vm_fault_t ret = 0;
f1820361
KS
3502
3503 rcu_read_lock();
820b05e9
MWO
3504 folio = first_map_page(mapping, &xas, end_pgoff);
3505 if (!folio)
f9ce0be7 3506 goto out;
f1820361 3507
8808ecab 3508 if (filemap_map_pmd(vmf, folio, start_pgoff)) {
f9ce0be7
KS
3509 ret = VM_FAULT_NOPAGE;
3510 goto out;
3511 }
f1820361 3512
9d3af4b4
WD
3513 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3514 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
f9ce0be7 3515 do {
6b24ca4a 3516again:
820b05e9 3517 page = folio_file_page(folio, xas.xa_index);
f9ce0be7 3518 if (PageHWPoison(page))
f1820361
KS
3519 goto unlock;
3520
e630bfac
KS
3521 if (mmap_miss > 0)
3522 mmap_miss--;
7267ec00 3523
9d3af4b4 3524 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
f9ce0be7 3525 vmf->pte += xas.xa_index - last_pgoff;
070e807c 3526 last_pgoff = xas.xa_index;
f9ce0be7 3527
5c041f5d
PX
3528 /*
3529 * NOTE: If there're PTE markers, we'll leave them to be
3530 * handled in the specific fault path, and it'll prohibit the
3531 * fault-around logic.
3532 */
f9ce0be7 3533 if (!pte_none(*vmf->pte))
7267ec00 3534 goto unlock;
f9ce0be7 3535
46bdb427 3536 /* We're about to handle the fault */
9d3af4b4 3537 if (vmf->address == addr)
46bdb427 3538 ret = VM_FAULT_NOPAGE;
46bdb427 3539
9d3af4b4 3540 do_set_pte(vmf, page, addr);
f9ce0be7 3541 /* no need to invalidate: a not-present page won't be cached */
9d3af4b4 3542 update_mmu_cache(vma, addr, vmf->pte);
6b24ca4a
MWO
3543 if (folio_more_pages(folio, xas.xa_index, end_pgoff)) {
3544 xas.xa_index++;
3545 folio_ref_inc(folio);
3546 goto again;
3547 }
820b05e9 3548 folio_unlock(folio);
f9ce0be7 3549 continue;
f1820361 3550unlock:
6b24ca4a
MWO
3551 if (folio_more_pages(folio, xas.xa_index, end_pgoff)) {
3552 xas.xa_index++;
3553 goto again;
3554 }
820b05e9
MWO
3555 folio_unlock(folio);
3556 folio_put(folio);
3557 } while ((folio = next_map_page(mapping, &xas, end_pgoff)) != NULL);
f9ce0be7
KS
3558 pte_unmap_unlock(vmf->pte, vmf->ptl);
3559out:
f1820361 3560 rcu_read_unlock();
e630bfac 3561 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
f9ce0be7 3562 return ret;
f1820361
KS
3563}
3564EXPORT_SYMBOL(filemap_map_pages);
3565
2bcd6454 3566vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
4fcf1c62 3567{
5df1a672 3568 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
960ea971 3569 struct folio *folio = page_folio(vmf->page);
2bcd6454 3570 vm_fault_t ret = VM_FAULT_LOCKED;
4fcf1c62 3571
5df1a672 3572 sb_start_pagefault(mapping->host->i_sb);
11bac800 3573 file_update_time(vmf->vma->vm_file);
960ea971
MWO
3574 folio_lock(folio);
3575 if (folio->mapping != mapping) {
3576 folio_unlock(folio);
4fcf1c62
JK
3577 ret = VM_FAULT_NOPAGE;
3578 goto out;
3579 }
14da9200 3580 /*
960ea971 3581 * We mark the folio dirty already here so that when freeze is in
14da9200 3582 * progress, we are guaranteed that writeback during freezing will
960ea971 3583 * see the dirty folio and writeprotect it again.
14da9200 3584 */
960ea971
MWO
3585 folio_mark_dirty(folio);
3586 folio_wait_stable(folio);
4fcf1c62 3587out:
5df1a672 3588 sb_end_pagefault(mapping->host->i_sb);
4fcf1c62
JK
3589 return ret;
3590}
4fcf1c62 3591
f0f37e2f 3592const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 3593 .fault = filemap_fault,
f1820361 3594 .map_pages = filemap_map_pages,
4fcf1c62 3595 .page_mkwrite = filemap_page_mkwrite,
1da177e4
LT
3596};
3597
3598/* This is used for a general mmap of a disk file */
3599
68d68ff6 3600int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
3601{
3602 struct address_space *mapping = file->f_mapping;
3603
7e0a1265 3604 if (!mapping->a_ops->read_folio)
1da177e4
LT
3605 return -ENOEXEC;
3606 file_accessed(file);
3607 vma->vm_ops = &generic_file_vm_ops;
3608 return 0;
3609}
1da177e4
LT
3610
3611/*
3612 * This is for filesystems which do not implement ->writepage.
3613 */
3614int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3615{
3616 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3617 return -EINVAL;
3618 return generic_file_mmap(file, vma);
3619}
3620#else
4b96a37d 3621vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
45397228 3622{
4b96a37d 3623 return VM_FAULT_SIGBUS;
45397228 3624}
68d68ff6 3625int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
3626{
3627 return -ENOSYS;
3628}
68d68ff6 3629int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
3630{
3631 return -ENOSYS;
3632}
3633#endif /* CONFIG_MMU */
3634
45397228 3635EXPORT_SYMBOL(filemap_page_mkwrite);
1da177e4
LT
3636EXPORT_SYMBOL(generic_file_mmap);
3637EXPORT_SYMBOL(generic_file_readonly_mmap);
3638
539a3322 3639static struct folio *do_read_cache_folio(struct address_space *mapping,
e9b5b23e 3640 pgoff_t index, filler_t filler, struct file *file, gfp_t gfp)
67f9fd91 3641{
539a3322 3642 struct folio *folio;
1da177e4 3643 int err;
07950008
MWO
3644
3645 if (!filler)
3646 filler = mapping->a_ops->read_folio;
1da177e4 3647repeat:
539a3322 3648 folio = filemap_get_folio(mapping, index);
66dabbb6 3649 if (IS_ERR(folio)) {
539a3322
MWO
3650 folio = filemap_alloc_folio(gfp, 0);
3651 if (!folio)
eb2be189 3652 return ERR_PTR(-ENOMEM);
539a3322 3653 err = filemap_add_folio(mapping, folio, index, gfp);
eb2be189 3654 if (unlikely(err)) {
539a3322 3655 folio_put(folio);
eb2be189
NP
3656 if (err == -EEXIST)
3657 goto repeat;
22ecdb4f 3658 /* Presumably ENOMEM for xarray node */
1da177e4
LT
3659 return ERR_PTR(err);
3660 }
32b63529 3661
9bc3e869 3662 goto filler;
32b63529 3663 }
539a3322 3664 if (folio_test_uptodate(folio))
1da177e4
LT
3665 goto out;
3666
81f4c03b
MWO
3667 if (!folio_trylock(folio)) {
3668 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3669 goto repeat;
3670 }
ebded027 3671
81f4c03b 3672 /* Folio was truncated from mapping */
539a3322
MWO
3673 if (!folio->mapping) {
3674 folio_unlock(folio);
3675 folio_put(folio);
32b63529 3676 goto repeat;
1da177e4 3677 }
ebded027
MG
3678
3679 /* Someone else locked and filled the page in a very small window */
539a3322
MWO
3680 if (folio_test_uptodate(folio)) {
3681 folio_unlock(folio);
1da177e4
LT
3682 goto out;
3683 }
faffdfa0 3684
9bc3e869 3685filler:
290e1a32 3686 err = filemap_read_folio(file, filler, folio);
1dfa24a4 3687 if (err) {
9bc3e869 3688 folio_put(folio);
1dfa24a4
MWO
3689 if (err == AOP_TRUNCATED_PAGE)
3690 goto repeat;
9bc3e869
MWO
3691 return ERR_PTR(err);
3692 }
32b63529 3693
c855ff37 3694out:
539a3322
MWO
3695 folio_mark_accessed(folio);
3696 return folio;
6fe6900e 3697}
0531b2aa
LT
3698
3699/**
e9b5b23e
MWO
3700 * read_cache_folio - Read into page cache, fill it if needed.
3701 * @mapping: The address_space to read from.
3702 * @index: The index to read.
3703 * @filler: Function to perform the read, or NULL to use aops->read_folio().
3704 * @file: Passed to filler function, may be NULL if not required.
0531b2aa 3705 *
e9b5b23e
MWO
3706 * Read one page into the page cache. If it succeeds, the folio returned
3707 * will contain @index, but it may not be the first page of the folio.
a862f68a 3708 *
e9b5b23e
MWO
3709 * If the filler function returns an error, it will be returned to the
3710 * caller.
730633f0 3711 *
e9b5b23e
MWO
3712 * Context: May sleep. Expects mapping->invalidate_lock to be held.
3713 * Return: An uptodate folio on success, ERR_PTR() on failure.
0531b2aa 3714 */
539a3322 3715struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
e9b5b23e 3716 filler_t filler, struct file *file)
539a3322 3717{
e9b5b23e 3718 return do_read_cache_folio(mapping, index, filler, file,
539a3322
MWO
3719 mapping_gfp_mask(mapping));
3720}
3721EXPORT_SYMBOL(read_cache_folio);
3722
3e629597
MWO
3723/**
3724 * mapping_read_folio_gfp - Read into page cache, using specified allocation flags.
3725 * @mapping: The address_space for the folio.
3726 * @index: The index that the allocated folio will contain.
3727 * @gfp: The page allocator flags to use if allocating.
3728 *
3729 * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with
3730 * any new memory allocations done using the specified allocation flags.
3731 *
3732 * The most likely error from this function is EIO, but ENOMEM is
3733 * possible and so is EINTR. If ->read_folio returns another error,
3734 * that will be returned to the caller.
3735 *
3736 * The function expects mapping->invalidate_lock to be already held.
3737 *
3738 * Return: Uptodate folio on success, ERR_PTR() on failure.
3739 */
3740struct folio *mapping_read_folio_gfp(struct address_space *mapping,
3741 pgoff_t index, gfp_t gfp)
3742{
3743 return do_read_cache_folio(mapping, index, NULL, NULL, gfp);
3744}
3745EXPORT_SYMBOL(mapping_read_folio_gfp);
3746
539a3322 3747static struct page *do_read_cache_page(struct address_space *mapping,
e9b5b23e 3748 pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp)
539a3322
MWO
3749{
3750 struct folio *folio;
3751
e9b5b23e 3752 folio = do_read_cache_folio(mapping, index, filler, file, gfp);
539a3322
MWO
3753 if (IS_ERR(folio))
3754 return &folio->page;
3755 return folio_file_page(folio, index);
3756}
3757
67f9fd91 3758struct page *read_cache_page(struct address_space *mapping,
e9b5b23e 3759 pgoff_t index, filler_t *filler, struct file *file)
0531b2aa 3760{
e9b5b23e 3761 return do_read_cache_page(mapping, index, filler, file,
d322a8e5 3762 mapping_gfp_mask(mapping));
0531b2aa 3763}
67f9fd91 3764EXPORT_SYMBOL(read_cache_page);
0531b2aa
LT
3765
3766/**
3767 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3768 * @mapping: the page's address_space
3769 * @index: the page index
3770 * @gfp: the page allocator flags to use if allocating
3771 *
3772 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
e6f67b8c 3773 * any new page allocations done using the specified allocation flags.
0531b2aa
LT
3774 *
3775 * If the page does not get brought uptodate, return -EIO.
a862f68a 3776 *
730633f0
JK
3777 * The function expects mapping->invalidate_lock to be already held.
3778 *
a862f68a 3779 * Return: up to date page on success, ERR_PTR() on failure.
0531b2aa
LT
3780 */
3781struct page *read_cache_page_gfp(struct address_space *mapping,
3782 pgoff_t index,
3783 gfp_t gfp)
3784{
6c45b454 3785 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
0531b2aa
LT
3786}
3787EXPORT_SYMBOL(read_cache_page_gfp);
3788
a92853b6
KK
3789/*
3790 * Warn about a page cache invalidation failure during a direct I/O write.
3791 */
c402a9a9 3792static void dio_warn_stale_pagecache(struct file *filp)
a92853b6
KK
3793{
3794 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3795 char pathname[128];
a92853b6
KK
3796 char *path;
3797
5df1a672 3798 errseq_set(&filp->f_mapping->wb_err, -EIO);
a92853b6
KK
3799 if (__ratelimit(&_rs)) {
3800 path = file_path(filp, pathname, sizeof(pathname));
3801 if (IS_ERR(path))
3802 path = "(unknown)";
3803 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
3804 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3805 current->comm);
3806 }
3807}
3808
c402a9a9
CH
3809void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count)
3810{
3811 struct address_space *mapping = iocb->ki_filp->f_mapping;
3812
3813 if (mapping->nrpages &&
3814 invalidate_inode_pages2_range(mapping,
3815 iocb->ki_pos >> PAGE_SHIFT,
3816 (iocb->ki_pos + count - 1) >> PAGE_SHIFT))
3817 dio_warn_stale_pagecache(iocb->ki_filp);
3818}
3819
1da177e4 3820ssize_t
1af5bb49 3821generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
1da177e4 3822{
c402a9a9
CH
3823 struct address_space *mapping = iocb->ki_filp->f_mapping;
3824 size_t write_len = iov_iter_count(from);
3825 ssize_t written;
a969e903 3826
55635ba7
AR
3827 /*
3828 * If a page can not be invalidated, return 0 to fall back
3829 * to buffered write.
3830 */
e003f74a 3831 written = kiocb_invalidate_pages(iocb, write_len);
55635ba7
AR
3832 if (written) {
3833 if (written == -EBUSY)
3834 return 0;
c402a9a9 3835 return written;
a969e903
CH
3836 }
3837
639a93a5 3838 written = mapping->a_ops->direct_IO(iocb, from);
a969e903
CH
3839
3840 /*
3841 * Finally, try again to invalidate clean pages which might have been
3842 * cached by non-direct readahead, or faulted in by get_user_pages()
3843 * if the source of the write was an mmap'ed region of the file
3844 * we're writing. Either one is a pretty crazy thing to do,
3845 * so we don't support it 100%. If this invalidation
3846 * fails, tough, the write still worked...
332391a9
LC
3847 *
3848 * Most of the time we do not need this since dio_complete() will do
3849 * the invalidation for us. However there are some file systems that
3850 * do not end up with dio_complete() being called, so let's not break
80c1fe90
KK
3851 * them by removing it completely.
3852 *
9266a140
KK
3853 * Noticeable example is a blkdev_direct_IO().
3854 *
80c1fe90 3855 * Skip invalidation for async writes or if mapping has no pages.
a969e903 3856 */
1da177e4 3857 if (written > 0) {
c402a9a9
CH
3858 struct inode *inode = mapping->host;
3859 loff_t pos = iocb->ki_pos;
3860
3861 kiocb_invalidate_post_direct_write(iocb, written);
0116651c 3862 pos += written;
639a93a5 3863 write_len -= written;
0116651c
NK
3864 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3865 i_size_write(inode, pos);
1da177e4
LT
3866 mark_inode_dirty(inode);
3867 }
5cb6c6c7 3868 iocb->ki_pos = pos;
1da177e4 3869 }
ab2125df
PB
3870 if (written != -EIOCBQUEUED)
3871 iov_iter_revert(from, write_len - iov_iter_count(from));
1da177e4
LT
3872 return written;
3873}
3874EXPORT_SYMBOL(generic_file_direct_write);
3875
800ba295 3876ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
afddba49 3877{
800ba295
MWO
3878 struct file *file = iocb->ki_filp;
3879 loff_t pos = iocb->ki_pos;
afddba49
NP
3880 struct address_space *mapping = file->f_mapping;
3881 const struct address_space_operations *a_ops = mapping->a_ops;
3882 long status = 0;
3883 ssize_t written = 0;
674b892e 3884
afddba49
NP
3885 do {
3886 struct page *page;
afddba49
NP
3887 unsigned long offset; /* Offset into pagecache page */
3888 unsigned long bytes; /* Bytes to write to page */
3889 size_t copied; /* Bytes copied from user */
1468c6f4 3890 void *fsdata = NULL;
afddba49 3891
09cbfeaf
KS
3892 offset = (pos & (PAGE_SIZE - 1));
3893 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
3894 iov_iter_count(i));
3895
3896again:
00a3d660
LT
3897 /*
3898 * Bring in the user page that we will copy from _first_.
3899 * Otherwise there's a nasty deadlock on copying from the
3900 * same page as we're writing to, without it being marked
3901 * up-to-date.
00a3d660 3902 */
631f871f 3903 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
00a3d660
LT
3904 status = -EFAULT;
3905 break;
3906 }
3907
296291cd
JK
3908 if (fatal_signal_pending(current)) {
3909 status = -EINTR;
3910 break;
3911 }
3912
9d6b0cd7 3913 status = a_ops->write_begin(file, mapping, pos, bytes,
afddba49 3914 &page, &fsdata);
2457aec6 3915 if (unlikely(status < 0))
afddba49
NP
3916 break;
3917
931e80e4 3918 if (mapping_writably_mapped(mapping))
3919 flush_dcache_page(page);
00a3d660 3920
f0b65f39 3921 copied = copy_page_from_iter_atomic(page, offset, bytes, i);
afddba49
NP
3922 flush_dcache_page(page);
3923
3924 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3925 page, fsdata);
f0b65f39
AV
3926 if (unlikely(status != copied)) {
3927 iov_iter_revert(i, copied - max(status, 0L));
3928 if (unlikely(status < 0))
3929 break;
3930 }
afddba49
NP
3931 cond_resched();
3932
bc1bb416 3933 if (unlikely(status == 0)) {
afddba49 3934 /*
bc1bb416
AV
3935 * A short copy made ->write_end() reject the
3936 * thing entirely. Might be memory poisoning
3937 * halfway through, might be a race with munmap,
3938 * might be severe memory pressure.
afddba49 3939 */
bc1bb416
AV
3940 if (copied)
3941 bytes = copied;
afddba49
NP
3942 goto again;
3943 }
f0b65f39
AV
3944 pos += status;
3945 written += status;
afddba49
NP
3946
3947 balance_dirty_pages_ratelimited(mapping);
afddba49
NP
3948 } while (iov_iter_count(i));
3949
182c25e9
CH
3950 if (!written)
3951 return status;
3952 iocb->ki_pos += written;
3953 return written;
afddba49 3954}
3b93f911 3955EXPORT_SYMBOL(generic_perform_write);
1da177e4 3956
e4dd9de3 3957/**
8174202b 3958 * __generic_file_write_iter - write data to a file
e4dd9de3 3959 * @iocb: IO state structure (file, offset, etc.)
8174202b 3960 * @from: iov_iter with data to write
e4dd9de3
JK
3961 *
3962 * This function does all the work needed for actually writing data to a
3963 * file. It does all basic checks, removes SUID from the file, updates
3964 * modification times and calls proper subroutines depending on whether we
3965 * do direct IO or a standard buffered write.
3966 *
9608703e 3967 * It expects i_rwsem to be grabbed unless we work on a block device or similar
e4dd9de3
JK
3968 * object which does not need locking at all.
3969 *
3970 * This function does *not* take care of syncing data in case of O_SYNC write.
3971 * A caller has to handle it. This is mainly due to the fact that we want to
9608703e 3972 * avoid syncing under i_rwsem.
a862f68a
MR
3973 *
3974 * Return:
3975 * * number of bytes written, even for truncated writes
3976 * * negative error code if no data has been written at all
e4dd9de3 3977 */
8174202b 3978ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3979{
3980 struct file *file = iocb->ki_filp;
68d68ff6 3981 struct address_space *mapping = file->f_mapping;
44fff0fa
CH
3982 struct inode *inode = mapping->host;
3983 ssize_t ret;
1da177e4 3984
44fff0fa
CH
3985 ret = file_remove_privs(file);
3986 if (ret)
3987 return ret;
1da177e4 3988
44fff0fa
CH
3989 ret = file_update_time(file);
3990 if (ret)
3991 return ret;
1da177e4 3992
2ba48ce5 3993 if (iocb->ki_flags & IOCB_DIRECT) {
44fff0fa 3994 ret = generic_file_direct_write(iocb, from);
1da177e4 3995 /*
fbbbad4b
MW
3996 * If the write stopped short of completing, fall back to
3997 * buffered writes. Some filesystems do this for writes to
3998 * holes, for example. For DAX files, a buffered write will
3999 * not succeed (even if it did, DAX does not handle dirty
4000 * page-cache pages correctly).
1da177e4 4001 */
44fff0fa
CH
4002 if (ret < 0 || !iov_iter_count(from) || IS_DAX(inode))
4003 return ret;
4004 return direct_write_fallback(iocb, from, ret,
4005 generic_perform_write(iocb, from));
fb5527e6 4006 }
44fff0fa
CH
4007
4008 return generic_perform_write(iocb, from);
1da177e4 4009}
8174202b 4010EXPORT_SYMBOL(__generic_file_write_iter);
e4dd9de3 4011
e4dd9de3 4012/**
8174202b 4013 * generic_file_write_iter - write data to a file
e4dd9de3 4014 * @iocb: IO state structure
8174202b 4015 * @from: iov_iter with data to write
e4dd9de3 4016 *
8174202b 4017 * This is a wrapper around __generic_file_write_iter() to be used by most
e4dd9de3 4018 * filesystems. It takes care of syncing the file in case of O_SYNC file
9608703e 4019 * and acquires i_rwsem as needed.
a862f68a
MR
4020 * Return:
4021 * * negative error code if no data has been written at all of
4022 * vfs_fsync_range() failed for a synchronous write
4023 * * number of bytes written, even for truncated writes
e4dd9de3 4024 */
8174202b 4025ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
4026{
4027 struct file *file = iocb->ki_filp;
148f948b 4028 struct inode *inode = file->f_mapping->host;
1da177e4 4029 ssize_t ret;
1da177e4 4030
5955102c 4031 inode_lock(inode);
3309dd04
AV
4032 ret = generic_write_checks(iocb, from);
4033 if (ret > 0)
5f380c7f 4034 ret = __generic_file_write_iter(iocb, from);
5955102c 4035 inode_unlock(inode);
1da177e4 4036
e2592217
CH
4037 if (ret > 0)
4038 ret = generic_write_sync(iocb, ret);
1da177e4
LT
4039 return ret;
4040}
8174202b 4041EXPORT_SYMBOL(generic_file_write_iter);
1da177e4 4042
cf9a2ae8 4043/**
82c50f8b
MWO
4044 * filemap_release_folio() - Release fs-specific metadata on a folio.
4045 * @folio: The folio which the kernel is trying to free.
4046 * @gfp: Memory allocation flags (and I/O mode).
cf9a2ae8 4047 *
82c50f8b
MWO
4048 * The address_space is trying to release any data attached to a folio
4049 * (presumably at folio->private).
cf9a2ae8 4050 *
82c50f8b
MWO
4051 * This will also be called if the private_2 flag is set on a page,
4052 * indicating that the folio has other metadata associated with it.
266cf658 4053 *
82c50f8b
MWO
4054 * The @gfp argument specifies whether I/O may be performed to release
4055 * this page (__GFP_IO), and whether the call may block
4056 * (__GFP_RECLAIM & __GFP_FS).
cf9a2ae8 4057 *
82c50f8b 4058 * Return: %true if the release was successful, otherwise %false.
cf9a2ae8 4059 */
82c50f8b 4060bool filemap_release_folio(struct folio *folio, gfp_t gfp)
cf9a2ae8 4061{
82c50f8b 4062 struct address_space * const mapping = folio->mapping;
cf9a2ae8 4063
82c50f8b
MWO
4064 BUG_ON(!folio_test_locked(folio));
4065 if (folio_test_writeback(folio))
4066 return false;
cf9a2ae8 4067
fa29000b
MWO
4068 if (mapping && mapping->a_ops->release_folio)
4069 return mapping->a_ops->release_folio(folio, gfp);
68189fef 4070 return try_to_free_buffers(folio);
cf9a2ae8 4071}
82c50f8b 4072EXPORT_SYMBOL(filemap_release_folio);
cf264e13
NP
4073
4074#ifdef CONFIG_CACHESTAT_SYSCALL
4075/**
4076 * filemap_cachestat() - compute the page cache statistics of a mapping
4077 * @mapping: The mapping to compute the statistics for.
4078 * @first_index: The starting page cache index.
4079 * @last_index: The final page index (inclusive).
4080 * @cs: the cachestat struct to write the result to.
4081 *
4082 * This will query the page cache statistics of a mapping in the
4083 * page range of [first_index, last_index] (inclusive). The statistics
4084 * queried include: number of dirty pages, number of pages marked for
4085 * writeback, and the number of (recently) evicted pages.
4086 */
4087static void filemap_cachestat(struct address_space *mapping,
4088 pgoff_t first_index, pgoff_t last_index, struct cachestat *cs)
4089{
4090 XA_STATE(xas, &mapping->i_pages, first_index);
4091 struct folio *folio;
4092
4093 rcu_read_lock();
4094 xas_for_each(&xas, folio, last_index) {
4095 unsigned long nr_pages;
4096 pgoff_t folio_first_index, folio_last_index;
4097
4098 if (xas_retry(&xas, folio))
4099 continue;
4100
4101 if (xa_is_value(folio)) {
4102 /* page is evicted */
4103 void *shadow = (void *)folio;
4104 bool workingset; /* not used */
4105 int order = xa_get_order(xas.xa, xas.xa_index);
4106
4107 nr_pages = 1 << order;
4108 folio_first_index = round_down(xas.xa_index, 1 << order);
4109 folio_last_index = folio_first_index + nr_pages - 1;
4110
4111 /* Folios might straddle the range boundaries, only count covered pages */
4112 if (folio_first_index < first_index)
4113 nr_pages -= first_index - folio_first_index;
4114
4115 if (folio_last_index > last_index)
4116 nr_pages -= folio_last_index - last_index;
4117
4118 cs->nr_evicted += nr_pages;
4119
4120#ifdef CONFIG_SWAP /* implies CONFIG_MMU */
4121 if (shmem_mapping(mapping)) {
4122 /* shmem file - in swap cache */
4123 swp_entry_t swp = radix_to_swp_entry(folio);
4124
4125 shadow = get_shadow_from_swap_cache(swp);
4126 }
4127#endif
4128 if (workingset_test_recent(shadow, true, &workingset))
4129 cs->nr_recently_evicted += nr_pages;
4130
4131 goto resched;
4132 }
4133
4134 nr_pages = folio_nr_pages(folio);
4135 folio_first_index = folio_pgoff(folio);
4136 folio_last_index = folio_first_index + nr_pages - 1;
4137
4138 /* Folios might straddle the range boundaries, only count covered pages */
4139 if (folio_first_index < first_index)
4140 nr_pages -= first_index - folio_first_index;
4141
4142 if (folio_last_index > last_index)
4143 nr_pages -= folio_last_index - last_index;
4144
4145 /* page is in cache */
4146 cs->nr_cache += nr_pages;
4147
4148 if (folio_test_dirty(folio))
4149 cs->nr_dirty += nr_pages;
4150
4151 if (folio_test_writeback(folio))
4152 cs->nr_writeback += nr_pages;
4153
4154resched:
4155 if (need_resched()) {
4156 xas_pause(&xas);
4157 cond_resched_rcu();
4158 }
4159 }
4160 rcu_read_unlock();
4161}
4162
4163/*
4164 * The cachestat(2) system call.
4165 *
4166 * cachestat() returns the page cache statistics of a file in the
4167 * bytes range specified by `off` and `len`: number of cached pages,
4168 * number of dirty pages, number of pages marked for writeback,
4169 * number of evicted pages, and number of recently evicted pages.
4170 *
4171 * An evicted page is a page that is previously in the page cache
4172 * but has been evicted since. A page is recently evicted if its last
4173 * eviction was recent enough that its reentry to the cache would
4174 * indicate that it is actively being used by the system, and that
4175 * there is memory pressure on the system.
4176 *
4177 * `off` and `len` must be non-negative integers. If `len` > 0,
4178 * the queried range is [`off`, `off` + `len`]. If `len` == 0,
4179 * we will query in the range from `off` to the end of the file.
4180 *
4181 * The `flags` argument is unused for now, but is included for future
4182 * extensibility. User should pass 0 (i.e no flag specified).
4183 *
4184 * Currently, hugetlbfs is not supported.
4185 *
4186 * Because the status of a page can change after cachestat() checks it
4187 * but before it returns to the application, the returned values may
4188 * contain stale information.
4189 *
4190 * return values:
4191 * zero - success
4192 * -EFAULT - cstat or cstat_range points to an illegal address
4193 * -EINVAL - invalid flags
4194 * -EBADF - invalid file descriptor
4195 * -EOPNOTSUPP - file descriptor is of a hugetlbfs file
4196 */
4197SYSCALL_DEFINE4(cachestat, unsigned int, fd,
4198 struct cachestat_range __user *, cstat_range,
4199 struct cachestat __user *, cstat, unsigned int, flags)
4200{
4201 struct fd f = fdget(fd);
4202 struct address_space *mapping;
4203 struct cachestat_range csr;
4204 struct cachestat cs;
4205 pgoff_t first_index, last_index;
4206
4207 if (!f.file)
4208 return -EBADF;
4209
4210 if (copy_from_user(&csr, cstat_range,
4211 sizeof(struct cachestat_range))) {
4212 fdput(f);
4213 return -EFAULT;
4214 }
4215
4216 /* hugetlbfs is not supported */
4217 if (is_file_hugepages(f.file)) {
4218 fdput(f);
4219 return -EOPNOTSUPP;
4220 }
4221
4222 if (flags != 0) {
4223 fdput(f);
4224 return -EINVAL;
4225 }
4226
4227 first_index = csr.off >> PAGE_SHIFT;
4228 last_index =
4229 csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT;
4230 memset(&cs, 0, sizeof(struct cachestat));
4231 mapping = f.file->f_mapping;
4232 filemap_cachestat(mapping, first_index, last_index, &cs);
4233 fdput(f);
4234
4235 if (copy_to_user(cstat, &cs, sizeof(struct cachestat)))
4236 return -EFAULT;
4237
4238 return 0;
4239}
4240#endif /* CONFIG_CACHESTAT_SYSCALL */