page cache: Convert hole search to XArray
[linux-block.git] / mm / filemap.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
b95f1b31 12#include <linux/export.h>
1da177e4 13#include <linux/compiler.h>
f9fe48be 14#include <linux/dax.h>
1da177e4 15#include <linux/fs.h>
3f07c014 16#include <linux/sched/signal.h>
c22ce143 17#include <linux/uaccess.h>
c59ede7b 18#include <linux/capability.h>
1da177e4 19#include <linux/kernel_stat.h>
5a0e3ad6 20#include <linux/gfp.h>
1da177e4
LT
21#include <linux/mm.h>
22#include <linux/swap.h>
23#include <linux/mman.h>
24#include <linux/pagemap.h>
25#include <linux/file.h>
26#include <linux/uio.h>
27#include <linux/hash.h>
28#include <linux/writeback.h>
53253383 29#include <linux/backing-dev.h>
1da177e4
LT
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/security.h>
44110fe3 33#include <linux/cpuset.h>
00501b53 34#include <linux/hugetlb.h>
8a9f3ccd 35#include <linux/memcontrol.h>
c515e1fd 36#include <linux/cleancache.h>
c7df8ad2 37#include <linux/shmem_fs.h>
f1820361 38#include <linux/rmap.h>
0f8053a5
NP
39#include "internal.h"
40
fe0bfaaf
RJ
41#define CREATE_TRACE_POINTS
42#include <trace/events/filemap.h>
43
1da177e4 44/*
1da177e4
LT
45 * FIXME: remove all knowledge of the buffer layer from the core VM
46 */
148f948b 47#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 48
1da177e4
LT
49#include <asm/mman.h>
50
51/*
52 * Shared mappings implemented 30.11.1994. It's not fully working yet,
53 * though.
54 *
55 * Shared mappings now work. 15.8.1995 Bruno.
56 *
57 * finished 'unifying' the page and buffer cache and SMP-threaded the
58 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
59 *
60 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
61 */
62
63/*
64 * Lock ordering:
65 *
c8c06efa 66 * ->i_mmap_rwsem (truncate_pagecache)
1da177e4 67 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91 68 * ->swap_lock (exclusive_swap_page, others)
b93b0163 69 * ->i_pages lock
1da177e4 70 *
1b1dcc1b 71 * ->i_mutex
c8c06efa 72 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
1da177e4
LT
73 *
74 * ->mmap_sem
c8c06efa 75 * ->i_mmap_rwsem
b8072f09 76 * ->page_table_lock or pte_lock (various, mainly in memory.c)
b93b0163 77 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
1da177e4
LT
78 *
79 * ->mmap_sem
80 * ->lock_page (access_process_vm)
81 *
ccad2365 82 * ->i_mutex (generic_perform_write)
82591e6e 83 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
1da177e4 84 *
f758eeab 85 * bdi->wb.list_lock
a66979ab 86 * sb_lock (fs/fs-writeback.c)
b93b0163 87 * ->i_pages lock (__sync_single_inode)
1da177e4 88 *
c8c06efa 89 * ->i_mmap_rwsem
1da177e4
LT
90 * ->anon_vma.lock (vma_adjust)
91 *
92 * ->anon_vma.lock
b8072f09 93 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 94 *
b8072f09 95 * ->page_table_lock or pte_lock
5d337b91 96 * ->swap_lock (try_to_unmap_one)
1da177e4 97 * ->private_lock (try_to_unmap_one)
b93b0163 98 * ->i_pages lock (try_to_unmap_one)
a52633d8
MG
99 * ->zone_lru_lock(zone) (follow_page->mark_page_accessed)
100 * ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page)
1da177e4 101 * ->private_lock (page_remove_rmap->set_page_dirty)
b93b0163 102 * ->i_pages lock (page_remove_rmap->set_page_dirty)
f758eeab 103 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
250df6ed 104 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
81f8c3a4 105 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
f758eeab 106 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 107 * ->inode->i_lock (zap_pte_range->set_page_dirty)
1da177e4
LT
108 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
109 *
c8c06efa 110 * ->i_mmap_rwsem
9a3c531d 111 * ->tasklist_lock (memory_failure, collect_procs_ao)
1da177e4
LT
112 */
113
22f2ac51
JW
114static int page_cache_tree_insert(struct address_space *mapping,
115 struct page *page, void **shadowp)
116{
117 struct radix_tree_node *node;
118 void **slot;
119 int error;
120
b93b0163 121 error = __radix_tree_create(&mapping->i_pages, page->index, 0,
22f2ac51
JW
122 &node, &slot);
123 if (error)
124 return error;
125 if (*slot) {
126 void *p;
127
b93b0163
MW
128 p = radix_tree_deref_slot_protected(slot,
129 &mapping->i_pages.xa_lock);
3159f943 130 if (!xa_is_value(p))
22f2ac51
JW
131 return -EEXIST;
132
133 mapping->nrexceptional--;
d01ad197
RZ
134 if (shadowp)
135 *shadowp = p;
22f2ac51 136 }
b93b0163 137 __radix_tree_replace(&mapping->i_pages, node, slot, page,
c7df8ad2 138 workingset_lookup_update(mapping));
22f2ac51 139 mapping->nrpages++;
22f2ac51
JW
140 return 0;
141}
142
91b0abe3
JW
143static void page_cache_tree_delete(struct address_space *mapping,
144 struct page *page, void *shadow)
145{
c70b647d
KS
146 int i, nr;
147
148 /* hugetlb pages are represented by one entry in the radix tree */
149 nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
91b0abe3 150
83929372
KS
151 VM_BUG_ON_PAGE(!PageLocked(page), page);
152 VM_BUG_ON_PAGE(PageTail(page), page);
153 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
449dd698 154
83929372 155 for (i = 0; i < nr; i++) {
d3798ae8
JW
156 struct radix_tree_node *node;
157 void **slot;
158
b93b0163 159 __radix_tree_lookup(&mapping->i_pages, page->index + i,
d3798ae8
JW
160 &node, &slot);
161
dbc446b8 162 VM_BUG_ON_PAGE(!node && nr != 1, page);
449dd698 163
b93b0163
MW
164 radix_tree_clear_tags(&mapping->i_pages, node, slot);
165 __radix_tree_replace(&mapping->i_pages, node, slot, shadow,
c7df8ad2 166 workingset_lookup_update(mapping));
449dd698 167 }
d3798ae8 168
2300638b
JK
169 page->mapping = NULL;
170 /* Leave page->index set: truncation lookup relies upon it */
171
d3798ae8
JW
172 if (shadow) {
173 mapping->nrexceptional += nr;
174 /*
175 * Make sure the nrexceptional update is committed before
176 * the nrpages update so that final truncate racing
177 * with reclaim does not see both counters 0 at the
178 * same time and miss a shadow entry.
179 */
180 smp_wmb();
181 }
182 mapping->nrpages -= nr;
91b0abe3
JW
183}
184
5ecc4d85
JK
185static void unaccount_page_cache_page(struct address_space *mapping,
186 struct page *page)
1da177e4 187{
5ecc4d85 188 int nr;
1da177e4 189
c515e1fd
DM
190 /*
191 * if we're uptodate, flush out into the cleancache, otherwise
192 * invalidate any existing cleancache entries. We can't leave
193 * stale data around in the cleancache once our page is gone
194 */
195 if (PageUptodate(page) && PageMappedToDisk(page))
196 cleancache_put_page(page);
197 else
3167760f 198 cleancache_invalidate_page(mapping, page);
c515e1fd 199
83929372 200 VM_BUG_ON_PAGE(PageTail(page), page);
06b241f3
HD
201 VM_BUG_ON_PAGE(page_mapped(page), page);
202 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
203 int mapcount;
204
205 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
206 current->comm, page_to_pfn(page));
207 dump_page(page, "still mapped when deleted");
208 dump_stack();
209 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
210
211 mapcount = page_mapcount(page);
212 if (mapping_exiting(mapping) &&
213 page_count(page) >= mapcount + 2) {
214 /*
215 * All vmas have already been torn down, so it's
216 * a good bet that actually the page is unmapped,
217 * and we'd prefer not to leak it: if we're wrong,
218 * some other bad page check should catch it later.
219 */
220 page_mapcount_reset(page);
6d061f9f 221 page_ref_sub(page, mapcount);
06b241f3
HD
222 }
223 }
224
4165b9b4 225 /* hugetlb pages do not participate in page cache accounting. */
5ecc4d85
JK
226 if (PageHuge(page))
227 return;
09612fa6 228
5ecc4d85
JK
229 nr = hpage_nr_pages(page);
230
231 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
232 if (PageSwapBacked(page)) {
233 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
234 if (PageTransHuge(page))
235 __dec_node_page_state(page, NR_SHMEM_THPS);
236 } else {
237 VM_BUG_ON_PAGE(PageTransHuge(page), page);
800d8c63 238 }
5ecc4d85
JK
239
240 /*
241 * At this point page must be either written or cleaned by
242 * truncate. Dirty page here signals a bug and loss of
243 * unwritten data.
244 *
245 * This fixes dirty accounting after removing the page entirely
246 * but leaves PageDirty set: it has no effect for truncated
247 * page and anyway will be cleared before returning page into
248 * buddy allocator.
249 */
250 if (WARN_ON_ONCE(PageDirty(page)))
251 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
252}
253
254/*
255 * Delete a page from the page cache and free it. Caller has to make
256 * sure the page is locked and that nobody else uses it - or that usage
b93b0163 257 * is safe. The caller must hold the i_pages lock.
5ecc4d85
JK
258 */
259void __delete_from_page_cache(struct page *page, void *shadow)
260{
261 struct address_space *mapping = page->mapping;
262
263 trace_mm_filemap_delete_from_page_cache(page);
264
265 unaccount_page_cache_page(mapping, page);
76253fbc 266 page_cache_tree_delete(mapping, page, shadow);
1da177e4
LT
267}
268
59c66c5f
JK
269static void page_cache_free_page(struct address_space *mapping,
270 struct page *page)
271{
272 void (*freepage)(struct page *);
273
274 freepage = mapping->a_ops->freepage;
275 if (freepage)
276 freepage(page);
277
278 if (PageTransHuge(page) && !PageHuge(page)) {
279 page_ref_sub(page, HPAGE_PMD_NR);
280 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
281 } else {
282 put_page(page);
283 }
284}
285
702cfbf9
MK
286/**
287 * delete_from_page_cache - delete page from page cache
288 * @page: the page which the kernel is trying to remove from page cache
289 *
290 * This must be called only on pages that have been verified to be in the page
291 * cache and locked. It will never put the page into the free list, the caller
292 * has a reference on the page.
293 */
294void delete_from_page_cache(struct page *page)
1da177e4 295{
83929372 296 struct address_space *mapping = page_mapping(page);
c4843a75 297 unsigned long flags;
1da177e4 298
cd7619d6 299 BUG_ON(!PageLocked(page));
b93b0163 300 xa_lock_irqsave(&mapping->i_pages, flags);
62cccb8c 301 __delete_from_page_cache(page, NULL);
b93b0163 302 xa_unlock_irqrestore(&mapping->i_pages, flags);
6072d13c 303
59c66c5f 304 page_cache_free_page(mapping, page);
97cecb5a
MK
305}
306EXPORT_SYMBOL(delete_from_page_cache);
307
aa65c29c
JK
308/*
309 * page_cache_tree_delete_batch - delete several pages from page cache
310 * @mapping: the mapping to which pages belong
311 * @pvec: pagevec with pages to delete
312 *
b93b0163
MW
313 * The function walks over mapping->i_pages and removes pages passed in @pvec
314 * from the mapping. The function expects @pvec to be sorted by page index.
315 * It tolerates holes in @pvec (mapping entries at those indices are not
aa65c29c 316 * modified). The function expects only THP head pages to be present in the
b93b0163
MW
317 * @pvec and takes care to delete all corresponding tail pages from the
318 * mapping as well.
aa65c29c 319 *
b93b0163 320 * The function expects the i_pages lock to be held.
aa65c29c
JK
321 */
322static void
323page_cache_tree_delete_batch(struct address_space *mapping,
324 struct pagevec *pvec)
325{
326 struct radix_tree_iter iter;
327 void **slot;
328 int total_pages = 0;
329 int i = 0, tail_pages = 0;
330 struct page *page;
331 pgoff_t start;
332
333 start = pvec->pages[0]->index;
b93b0163 334 radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
aa65c29c
JK
335 if (i >= pagevec_count(pvec) && !tail_pages)
336 break;
337 page = radix_tree_deref_slot_protected(slot,
b93b0163 338 &mapping->i_pages.xa_lock);
3159f943 339 if (xa_is_value(page))
aa65c29c
JK
340 continue;
341 if (!tail_pages) {
342 /*
343 * Some page got inserted in our range? Skip it. We
344 * have our pages locked so they are protected from
345 * being removed.
346 */
347 if (page != pvec->pages[i])
348 continue;
349 WARN_ON_ONCE(!PageLocked(page));
350 if (PageTransHuge(page) && !PageHuge(page))
351 tail_pages = HPAGE_PMD_NR - 1;
352 page->mapping = NULL;
353 /*
354 * Leave page->index set: truncation lookup relies
355 * upon it
356 */
357 i++;
358 } else {
359 tail_pages--;
360 }
b93b0163
MW
361 radix_tree_clear_tags(&mapping->i_pages, iter.node, slot);
362 __radix_tree_replace(&mapping->i_pages, iter.node, slot, NULL,
c7df8ad2 363 workingset_lookup_update(mapping));
aa65c29c
JK
364 total_pages++;
365 }
366 mapping->nrpages -= total_pages;
367}
368
369void delete_from_page_cache_batch(struct address_space *mapping,
370 struct pagevec *pvec)
371{
372 int i;
373 unsigned long flags;
374
375 if (!pagevec_count(pvec))
376 return;
377
b93b0163 378 xa_lock_irqsave(&mapping->i_pages, flags);
aa65c29c
JK
379 for (i = 0; i < pagevec_count(pvec); i++) {
380 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
381
382 unaccount_page_cache_page(mapping, pvec->pages[i]);
383 }
384 page_cache_tree_delete_batch(mapping, pvec);
b93b0163 385 xa_unlock_irqrestore(&mapping->i_pages, flags);
aa65c29c
JK
386
387 for (i = 0; i < pagevec_count(pvec); i++)
388 page_cache_free_page(mapping, pvec->pages[i]);
389}
390
d72d9e2a 391int filemap_check_errors(struct address_space *mapping)
865ffef3
DM
392{
393 int ret = 0;
394 /* Check for outstanding write errors */
7fcbbaf1
JA
395 if (test_bit(AS_ENOSPC, &mapping->flags) &&
396 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
865ffef3 397 ret = -ENOSPC;
7fcbbaf1
JA
398 if (test_bit(AS_EIO, &mapping->flags) &&
399 test_and_clear_bit(AS_EIO, &mapping->flags))
865ffef3
DM
400 ret = -EIO;
401 return ret;
402}
d72d9e2a 403EXPORT_SYMBOL(filemap_check_errors);
865ffef3 404
76341cab
JL
405static int filemap_check_and_keep_errors(struct address_space *mapping)
406{
407 /* Check for outstanding write errors */
408 if (test_bit(AS_EIO, &mapping->flags))
409 return -EIO;
410 if (test_bit(AS_ENOSPC, &mapping->flags))
411 return -ENOSPC;
412 return 0;
413}
414
1da177e4 415/**
485bb99b 416 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
417 * @mapping: address space structure to write
418 * @start: offset in bytes where the range starts
469eb4d0 419 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 420 * @sync_mode: enable synchronous operation
1da177e4 421 *
485bb99b
RD
422 * Start writeback against all of a mapping's dirty pages that lie
423 * within the byte offsets <start, end> inclusive.
424 *
1da177e4 425 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 426 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
427 * these two operations is that if a dirty page/buffer is encountered, it must
428 * be waited upon, and not just skipped over.
429 */
ebcf28e1
AM
430int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
431 loff_t end, int sync_mode)
1da177e4
LT
432{
433 int ret;
434 struct writeback_control wbc = {
435 .sync_mode = sync_mode,
05fe478d 436 .nr_to_write = LONG_MAX,
111ebb6e
OH
437 .range_start = start,
438 .range_end = end,
1da177e4
LT
439 };
440
441 if (!mapping_cap_writeback_dirty(mapping))
442 return 0;
443
b16b1deb 444 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
1da177e4 445 ret = do_writepages(mapping, &wbc);
b16b1deb 446 wbc_detach_inode(&wbc);
1da177e4
LT
447 return ret;
448}
449
450static inline int __filemap_fdatawrite(struct address_space *mapping,
451 int sync_mode)
452{
111ebb6e 453 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
454}
455
456int filemap_fdatawrite(struct address_space *mapping)
457{
458 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
459}
460EXPORT_SYMBOL(filemap_fdatawrite);
461
f4c0a0fd 462int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 463 loff_t end)
1da177e4
LT
464{
465 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
466}
f4c0a0fd 467EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 468
485bb99b
RD
469/**
470 * filemap_flush - mostly a non-blocking flush
471 * @mapping: target address_space
472 *
1da177e4
LT
473 * This is a mostly non-blocking flush. Not suitable for data-integrity
474 * purposes - I/O may not be started against all dirty pages.
475 */
476int filemap_flush(struct address_space *mapping)
477{
478 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
479}
480EXPORT_SYMBOL(filemap_flush);
481
7fc9e472
GR
482/**
483 * filemap_range_has_page - check if a page exists in range.
484 * @mapping: address space within which to check
485 * @start_byte: offset in bytes where the range starts
486 * @end_byte: offset in bytes where the range ends (inclusive)
487 *
488 * Find at least one page in the range supplied, usually used to check if
489 * direct writing in this range will trigger a writeback.
490 */
491bool filemap_range_has_page(struct address_space *mapping,
492 loff_t start_byte, loff_t end_byte)
493{
494 pgoff_t index = start_byte >> PAGE_SHIFT;
495 pgoff_t end = end_byte >> PAGE_SHIFT;
f7b68046 496 struct page *page;
7fc9e472
GR
497
498 if (end_byte < start_byte)
499 return false;
500
501 if (mapping->nrpages == 0)
502 return false;
503
f7b68046 504 if (!find_get_pages_range(mapping, &index, end, 1, &page))
7fc9e472 505 return false;
f7b68046
JK
506 put_page(page);
507 return true;
7fc9e472
GR
508}
509EXPORT_SYMBOL(filemap_range_has_page);
510
5e8fcc1a 511static void __filemap_fdatawait_range(struct address_space *mapping,
aa750fd7 512 loff_t start_byte, loff_t end_byte)
1da177e4 513{
09cbfeaf
KS
514 pgoff_t index = start_byte >> PAGE_SHIFT;
515 pgoff_t end = end_byte >> PAGE_SHIFT;
1da177e4
LT
516 struct pagevec pvec;
517 int nr_pages;
1da177e4 518
94004ed7 519 if (end_byte < start_byte)
5e8fcc1a 520 return;
1da177e4 521
86679820 522 pagevec_init(&pvec);
312e9d2f 523 while (index <= end) {
1da177e4
LT
524 unsigned i;
525
312e9d2f 526 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
67fd707f 527 end, PAGECACHE_TAG_WRITEBACK);
312e9d2f
JK
528 if (!nr_pages)
529 break;
530
1da177e4
LT
531 for (i = 0; i < nr_pages; i++) {
532 struct page *page = pvec.pages[i];
533
1da177e4 534 wait_on_page_writeback(page);
5e8fcc1a 535 ClearPageError(page);
1da177e4
LT
536 }
537 pagevec_release(&pvec);
538 cond_resched();
539 }
aa750fd7
JN
540}
541
542/**
543 * filemap_fdatawait_range - wait for writeback to complete
544 * @mapping: address space structure to wait for
545 * @start_byte: offset in bytes where the range starts
546 * @end_byte: offset in bytes where the range ends (inclusive)
547 *
548 * Walk the list of under-writeback pages of the given address space
549 * in the given range and wait for all of them. Check error status of
550 * the address space and return it.
551 *
552 * Since the error status of the address space is cleared by this function,
553 * callers are responsible for checking the return value and handling and/or
554 * reporting the error.
555 */
556int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
557 loff_t end_byte)
558{
5e8fcc1a
JL
559 __filemap_fdatawait_range(mapping, start_byte, end_byte);
560 return filemap_check_errors(mapping);
1da177e4 561}
d3bccb6f
JK
562EXPORT_SYMBOL(filemap_fdatawait_range);
563
a823e458
JL
564/**
565 * file_fdatawait_range - wait for writeback to complete
566 * @file: file pointing to address space structure to wait for
567 * @start_byte: offset in bytes where the range starts
568 * @end_byte: offset in bytes where the range ends (inclusive)
569 *
570 * Walk the list of under-writeback pages of the address space that file
571 * refers to, in the given range and wait for all of them. Check error
572 * status of the address space vs. the file->f_wb_err cursor and return it.
573 *
574 * Since the error status of the file is advanced by this function,
575 * callers are responsible for checking the return value and handling and/or
576 * reporting the error.
577 */
578int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
579{
580 struct address_space *mapping = file->f_mapping;
581
582 __filemap_fdatawait_range(mapping, start_byte, end_byte);
583 return file_check_and_advance_wb_err(file);
584}
585EXPORT_SYMBOL(file_fdatawait_range);
d3bccb6f 586
aa750fd7
JN
587/**
588 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
589 * @mapping: address space structure to wait for
590 *
591 * Walk the list of under-writeback pages of the given address space
592 * and wait for all of them. Unlike filemap_fdatawait(), this function
593 * does not clear error status of the address space.
594 *
595 * Use this function if callers don't handle errors themselves. Expected
596 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
597 * fsfreeze(8)
598 */
76341cab 599int filemap_fdatawait_keep_errors(struct address_space *mapping)
aa750fd7 600{
ffb959bb 601 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
76341cab 602 return filemap_check_and_keep_errors(mapping);
aa750fd7 603}
76341cab 604EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
aa750fd7 605
9326c9b2 606static bool mapping_needs_writeback(struct address_space *mapping)
1da177e4 607{
9326c9b2
JL
608 return (!dax_mapping(mapping) && mapping->nrpages) ||
609 (dax_mapping(mapping) && mapping->nrexceptional);
1da177e4 610}
1da177e4
LT
611
612int filemap_write_and_wait(struct address_space *mapping)
613{
28fd1298 614 int err = 0;
1da177e4 615
9326c9b2 616 if (mapping_needs_writeback(mapping)) {
28fd1298
OH
617 err = filemap_fdatawrite(mapping);
618 /*
619 * Even if the above returned error, the pages may be
620 * written partially (e.g. -ENOSPC), so we wait for it.
621 * But the -EIO is special case, it may indicate the worst
622 * thing (e.g. bug) happened, so we avoid waiting for it.
623 */
624 if (err != -EIO) {
625 int err2 = filemap_fdatawait(mapping);
626 if (!err)
627 err = err2;
cbeaf951
JL
628 } else {
629 /* Clear any previously stored errors */
630 filemap_check_errors(mapping);
28fd1298 631 }
865ffef3
DM
632 } else {
633 err = filemap_check_errors(mapping);
1da177e4 634 }
28fd1298 635 return err;
1da177e4 636}
28fd1298 637EXPORT_SYMBOL(filemap_write_and_wait);
1da177e4 638
485bb99b
RD
639/**
640 * filemap_write_and_wait_range - write out & wait on a file range
641 * @mapping: the address_space for the pages
642 * @lstart: offset in bytes where the range starts
643 * @lend: offset in bytes where the range ends (inclusive)
644 *
469eb4d0
AM
645 * Write out and wait upon file offsets lstart->lend, inclusive.
646 *
0e056eb5 647 * Note that @lend is inclusive (describes the last byte to be written) so
469eb4d0
AM
648 * that this function can be used to write to the very end-of-file (end = -1).
649 */
1da177e4
LT
650int filemap_write_and_wait_range(struct address_space *mapping,
651 loff_t lstart, loff_t lend)
652{
28fd1298 653 int err = 0;
1da177e4 654
9326c9b2 655 if (mapping_needs_writeback(mapping)) {
28fd1298
OH
656 err = __filemap_fdatawrite_range(mapping, lstart, lend,
657 WB_SYNC_ALL);
658 /* See comment of filemap_write_and_wait() */
659 if (err != -EIO) {
94004ed7
CH
660 int err2 = filemap_fdatawait_range(mapping,
661 lstart, lend);
28fd1298
OH
662 if (!err)
663 err = err2;
cbeaf951
JL
664 } else {
665 /* Clear any previously stored errors */
666 filemap_check_errors(mapping);
28fd1298 667 }
865ffef3
DM
668 } else {
669 err = filemap_check_errors(mapping);
1da177e4 670 }
28fd1298 671 return err;
1da177e4 672}
f6995585 673EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 674
5660e13d
JL
675void __filemap_set_wb_err(struct address_space *mapping, int err)
676{
3acdfd28 677 errseq_t eseq = errseq_set(&mapping->wb_err, err);
5660e13d
JL
678
679 trace_filemap_set_wb_err(mapping, eseq);
680}
681EXPORT_SYMBOL(__filemap_set_wb_err);
682
683/**
684 * file_check_and_advance_wb_err - report wb error (if any) that was previously
685 * and advance wb_err to current one
686 * @file: struct file on which the error is being reported
687 *
688 * When userland calls fsync (or something like nfsd does the equivalent), we
689 * want to report any writeback errors that occurred since the last fsync (or
690 * since the file was opened if there haven't been any).
691 *
692 * Grab the wb_err from the mapping. If it matches what we have in the file,
693 * then just quickly return 0. The file is all caught up.
694 *
695 * If it doesn't match, then take the mapping value, set the "seen" flag in
696 * it and try to swap it into place. If it works, or another task beat us
697 * to it with the new value, then update the f_wb_err and return the error
698 * portion. The error at this point must be reported via proper channels
699 * (a'la fsync, or NFS COMMIT operation, etc.).
700 *
701 * While we handle mapping->wb_err with atomic operations, the f_wb_err
702 * value is protected by the f_lock since we must ensure that it reflects
703 * the latest value swapped in for this file descriptor.
704 */
705int file_check_and_advance_wb_err(struct file *file)
706{
707 int err = 0;
708 errseq_t old = READ_ONCE(file->f_wb_err);
709 struct address_space *mapping = file->f_mapping;
710
711 /* Locklessly handle the common case where nothing has changed */
712 if (errseq_check(&mapping->wb_err, old)) {
713 /* Something changed, must use slow path */
714 spin_lock(&file->f_lock);
715 old = file->f_wb_err;
716 err = errseq_check_and_advance(&mapping->wb_err,
717 &file->f_wb_err);
718 trace_file_check_and_advance_wb_err(file, old);
719 spin_unlock(&file->f_lock);
720 }
f4e222c5
JL
721
722 /*
723 * We're mostly using this function as a drop in replacement for
724 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
725 * that the legacy code would have had on these flags.
726 */
727 clear_bit(AS_EIO, &mapping->flags);
728 clear_bit(AS_ENOSPC, &mapping->flags);
5660e13d
JL
729 return err;
730}
731EXPORT_SYMBOL(file_check_and_advance_wb_err);
732
733/**
734 * file_write_and_wait_range - write out & wait on a file range
735 * @file: file pointing to address_space with pages
736 * @lstart: offset in bytes where the range starts
737 * @lend: offset in bytes where the range ends (inclusive)
738 *
739 * Write out and wait upon file offsets lstart->lend, inclusive.
740 *
741 * Note that @lend is inclusive (describes the last byte to be written) so
742 * that this function can be used to write to the very end-of-file (end = -1).
743 *
744 * After writing out and waiting on the data, we check and advance the
745 * f_wb_err cursor to the latest value, and return any errors detected there.
746 */
747int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
748{
749 int err = 0, err2;
750 struct address_space *mapping = file->f_mapping;
751
9326c9b2 752 if (mapping_needs_writeback(mapping)) {
5660e13d
JL
753 err = __filemap_fdatawrite_range(mapping, lstart, lend,
754 WB_SYNC_ALL);
755 /* See comment of filemap_write_and_wait() */
756 if (err != -EIO)
757 __filemap_fdatawait_range(mapping, lstart, lend);
758 }
759 err2 = file_check_and_advance_wb_err(file);
760 if (!err)
761 err = err2;
762 return err;
763}
764EXPORT_SYMBOL(file_write_and_wait_range);
765
ef6a3c63
MS
766/**
767 * replace_page_cache_page - replace a pagecache page with a new one
768 * @old: page to be replaced
769 * @new: page to replace with
770 * @gfp_mask: allocation mode
771 *
772 * This function replaces a page in the pagecache with a new one. On
773 * success it acquires the pagecache reference for the new page and
774 * drops it for the old page. Both the old and new pages must be
775 * locked. This function does not add the new page to the LRU, the
776 * caller must do that.
777 *
778 * The remove + add is atomic. The only way this function can fail is
779 * memory allocation failure.
780 */
781int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
782{
783 int error;
ef6a3c63 784
309381fe
SL
785 VM_BUG_ON_PAGE(!PageLocked(old), old);
786 VM_BUG_ON_PAGE(!PageLocked(new), new);
787 VM_BUG_ON_PAGE(new->mapping, new);
ef6a3c63 788
abc1be13 789 error = radix_tree_preload(gfp_mask & GFP_RECLAIM_MASK);
ef6a3c63
MS
790 if (!error) {
791 struct address_space *mapping = old->mapping;
792 void (*freepage)(struct page *);
c4843a75 793 unsigned long flags;
ef6a3c63
MS
794
795 pgoff_t offset = old->index;
796 freepage = mapping->a_ops->freepage;
797
09cbfeaf 798 get_page(new);
ef6a3c63
MS
799 new->mapping = mapping;
800 new->index = offset;
801
b93b0163 802 xa_lock_irqsave(&mapping->i_pages, flags);
62cccb8c 803 __delete_from_page_cache(old, NULL);
22f2ac51 804 error = page_cache_tree_insert(mapping, new, NULL);
ef6a3c63 805 BUG_ON(error);
4165b9b4
MH
806
807 /*
808 * hugetlb pages do not participate in page cache accounting.
809 */
810 if (!PageHuge(new))
11fb9989 811 __inc_node_page_state(new, NR_FILE_PAGES);
ef6a3c63 812 if (PageSwapBacked(new))
11fb9989 813 __inc_node_page_state(new, NR_SHMEM);
b93b0163 814 xa_unlock_irqrestore(&mapping->i_pages, flags);
6a93ca8f 815 mem_cgroup_migrate(old, new);
ef6a3c63
MS
816 radix_tree_preload_end();
817 if (freepage)
818 freepage(old);
09cbfeaf 819 put_page(old);
ef6a3c63
MS
820 }
821
822 return error;
823}
824EXPORT_SYMBOL_GPL(replace_page_cache_page);
825
a528910e
JW
826static int __add_to_page_cache_locked(struct page *page,
827 struct address_space *mapping,
828 pgoff_t offset, gfp_t gfp_mask,
829 void **shadowp)
1da177e4 830{
00501b53
JW
831 int huge = PageHuge(page);
832 struct mem_cgroup *memcg;
e286781d
NP
833 int error;
834
309381fe
SL
835 VM_BUG_ON_PAGE(!PageLocked(page), page);
836 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
e286781d 837
00501b53
JW
838 if (!huge) {
839 error = mem_cgroup_try_charge(page, current->mm,
f627c2f5 840 gfp_mask, &memcg, false);
00501b53
JW
841 if (error)
842 return error;
843 }
1da177e4 844
abc1be13 845 error = radix_tree_maybe_preload(gfp_mask & GFP_RECLAIM_MASK);
66a0c8ee 846 if (error) {
00501b53 847 if (!huge)
f627c2f5 848 mem_cgroup_cancel_charge(page, memcg, false);
66a0c8ee
KS
849 return error;
850 }
851
09cbfeaf 852 get_page(page);
66a0c8ee
KS
853 page->mapping = mapping;
854 page->index = offset;
855
b93b0163 856 xa_lock_irq(&mapping->i_pages);
a528910e 857 error = page_cache_tree_insert(mapping, page, shadowp);
66a0c8ee
KS
858 radix_tree_preload_end();
859 if (unlikely(error))
860 goto err_insert;
4165b9b4
MH
861
862 /* hugetlb pages do not participate in page cache accounting. */
863 if (!huge)
11fb9989 864 __inc_node_page_state(page, NR_FILE_PAGES);
b93b0163 865 xa_unlock_irq(&mapping->i_pages);
00501b53 866 if (!huge)
f627c2f5 867 mem_cgroup_commit_charge(page, memcg, false, false);
66a0c8ee
KS
868 trace_mm_filemap_add_to_page_cache(page);
869 return 0;
870err_insert:
871 page->mapping = NULL;
872 /* Leave page->index set: truncation relies upon it */
b93b0163 873 xa_unlock_irq(&mapping->i_pages);
00501b53 874 if (!huge)
f627c2f5 875 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 876 put_page(page);
1da177e4
LT
877 return error;
878}
a528910e
JW
879
880/**
881 * add_to_page_cache_locked - add a locked page to the pagecache
882 * @page: page to add
883 * @mapping: the page's address_space
884 * @offset: page index
885 * @gfp_mask: page allocation mode
886 *
887 * This function is used to add a page to the pagecache. It must be locked.
888 * This function does not add the page to the LRU. The caller must do that.
889 */
890int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
891 pgoff_t offset, gfp_t gfp_mask)
892{
893 return __add_to_page_cache_locked(page, mapping, offset,
894 gfp_mask, NULL);
895}
e286781d 896EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4
LT
897
898int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 899 pgoff_t offset, gfp_t gfp_mask)
1da177e4 900{
a528910e 901 void *shadow = NULL;
4f98a2fe
RR
902 int ret;
903
48c935ad 904 __SetPageLocked(page);
a528910e
JW
905 ret = __add_to_page_cache_locked(page, mapping, offset,
906 gfp_mask, &shadow);
907 if (unlikely(ret))
48c935ad 908 __ClearPageLocked(page);
a528910e
JW
909 else {
910 /*
911 * The page might have been evicted from cache only
912 * recently, in which case it should be activated like
913 * any other repeatedly accessed page.
f0281a00
RR
914 * The exception is pages getting rewritten; evicting other
915 * data from the working set, only to cache data that will
916 * get overwritten with something else, is a waste of memory.
a528910e 917 */
f0281a00
RR
918 if (!(gfp_mask & __GFP_WRITE) &&
919 shadow && workingset_refault(shadow)) {
a528910e
JW
920 SetPageActive(page);
921 workingset_activation(page);
922 } else
923 ClearPageActive(page);
924 lru_cache_add(page);
925 }
1da177e4
LT
926 return ret;
927}
18bc0bbd 928EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1da177e4 929
44110fe3 930#ifdef CONFIG_NUMA
2ae88149 931struct page *__page_cache_alloc(gfp_t gfp)
44110fe3 932{
c0ff7453
MX
933 int n;
934 struct page *page;
935
44110fe3 936 if (cpuset_do_page_mem_spread()) {
cc9a6c87
MG
937 unsigned int cpuset_mems_cookie;
938 do {
d26914d1 939 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 940 n = cpuset_mem_spread_node();
96db800f 941 page = __alloc_pages_node(n, gfp, 0);
d26914d1 942 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
cc9a6c87 943
c0ff7453 944 return page;
44110fe3 945 }
2ae88149 946 return alloc_pages(gfp, 0);
44110fe3 947}
2ae88149 948EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
949#endif
950
1da177e4
LT
951/*
952 * In order to wait for pages to become available there must be
953 * waitqueues associated with pages. By using a hash table of
954 * waitqueues where the bucket discipline is to maintain all
955 * waiters on the same queue and wake all when any of the pages
956 * become available, and for the woken contexts to check to be
957 * sure the appropriate page became available, this saves space
958 * at a cost of "thundering herd" phenomena during rare hash
959 * collisions.
960 */
62906027
NP
961#define PAGE_WAIT_TABLE_BITS 8
962#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
963static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
964
965static wait_queue_head_t *page_waitqueue(struct page *page)
1da177e4 966{
62906027 967 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
1da177e4 968}
1da177e4 969
62906027 970void __init pagecache_init(void)
1da177e4 971{
62906027 972 int i;
1da177e4 973
62906027
NP
974 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
975 init_waitqueue_head(&page_wait_table[i]);
976
977 page_writeback_init();
1da177e4 978}
1da177e4 979
3510ca20 980/* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
62906027
NP
981struct wait_page_key {
982 struct page *page;
983 int bit_nr;
984 int page_match;
985};
986
987struct wait_page_queue {
988 struct page *page;
989 int bit_nr;
ac6424b9 990 wait_queue_entry_t wait;
62906027
NP
991};
992
ac6424b9 993static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
f62e00cc 994{
62906027
NP
995 struct wait_page_key *key = arg;
996 struct wait_page_queue *wait_page
997 = container_of(wait, struct wait_page_queue, wait);
998
999 if (wait_page->page != key->page)
1000 return 0;
1001 key->page_match = 1;
f62e00cc 1002
62906027
NP
1003 if (wait_page->bit_nr != key->bit_nr)
1004 return 0;
3510ca20
LT
1005
1006 /* Stop walking if it's locked */
62906027 1007 if (test_bit(key->bit_nr, &key->page->flags))
3510ca20 1008 return -1;
f62e00cc 1009
62906027 1010 return autoremove_wake_function(wait, mode, sync, key);
f62e00cc
KM
1011}
1012
74d81bfa 1013static void wake_up_page_bit(struct page *page, int bit_nr)
cbbce822 1014{
62906027
NP
1015 wait_queue_head_t *q = page_waitqueue(page);
1016 struct wait_page_key key;
1017 unsigned long flags;
11a19c7b 1018 wait_queue_entry_t bookmark;
cbbce822 1019
62906027
NP
1020 key.page = page;
1021 key.bit_nr = bit_nr;
1022 key.page_match = 0;
1023
11a19c7b
TC
1024 bookmark.flags = 0;
1025 bookmark.private = NULL;
1026 bookmark.func = NULL;
1027 INIT_LIST_HEAD(&bookmark.entry);
1028
62906027 1029 spin_lock_irqsave(&q->lock, flags);
11a19c7b
TC
1030 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1031
1032 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1033 /*
1034 * Take a breather from holding the lock,
1035 * allow pages that finish wake up asynchronously
1036 * to acquire the lock and remove themselves
1037 * from wait queue
1038 */
1039 spin_unlock_irqrestore(&q->lock, flags);
1040 cpu_relax();
1041 spin_lock_irqsave(&q->lock, flags);
1042 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1043 }
1044
62906027
NP
1045 /*
1046 * It is possible for other pages to have collided on the waitqueue
1047 * hash, so in that case check for a page match. That prevents a long-
1048 * term waiter
1049 *
1050 * It is still possible to miss a case here, when we woke page waiters
1051 * and removed them from the waitqueue, but there are still other
1052 * page waiters.
1053 */
1054 if (!waitqueue_active(q) || !key.page_match) {
1055 ClearPageWaiters(page);
1056 /*
1057 * It's possible to miss clearing Waiters here, when we woke
1058 * our page waiters, but the hashed waitqueue has waiters for
1059 * other pages on it.
1060 *
1061 * That's okay, it's a rare case. The next waker will clear it.
1062 */
1063 }
1064 spin_unlock_irqrestore(&q->lock, flags);
1065}
74d81bfa
NP
1066
1067static void wake_up_page(struct page *page, int bit)
1068{
1069 if (!PageWaiters(page))
1070 return;
1071 wake_up_page_bit(page, bit);
1072}
62906027
NP
1073
1074static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1075 struct page *page, int bit_nr, int state, bool lock)
1076{
1077 struct wait_page_queue wait_page;
ac6424b9 1078 wait_queue_entry_t *wait = &wait_page.wait;
62906027
NP
1079 int ret = 0;
1080
1081 init_wait(wait);
3510ca20 1082 wait->flags = lock ? WQ_FLAG_EXCLUSIVE : 0;
62906027
NP
1083 wait->func = wake_page_function;
1084 wait_page.page = page;
1085 wait_page.bit_nr = bit_nr;
1086
1087 for (;;) {
1088 spin_lock_irq(&q->lock);
1089
2055da97 1090 if (likely(list_empty(&wait->entry))) {
3510ca20 1091 __add_wait_queue_entry_tail(q, wait);
62906027
NP
1092 SetPageWaiters(page);
1093 }
1094
1095 set_current_state(state);
1096
1097 spin_unlock_irq(&q->lock);
1098
1099 if (likely(test_bit(bit_nr, &page->flags))) {
1100 io_schedule();
62906027
NP
1101 }
1102
1103 if (lock) {
1104 if (!test_and_set_bit_lock(bit_nr, &page->flags))
1105 break;
1106 } else {
1107 if (!test_bit(bit_nr, &page->flags))
1108 break;
1109 }
a8b169af
LT
1110
1111 if (unlikely(signal_pending_state(state, current))) {
1112 ret = -EINTR;
1113 break;
1114 }
62906027
NP
1115 }
1116
1117 finish_wait(q, wait);
1118
1119 /*
1120 * A signal could leave PageWaiters set. Clearing it here if
1121 * !waitqueue_active would be possible (by open-coding finish_wait),
1122 * but still fail to catch it in the case of wait hash collision. We
1123 * already can fail to clear wait hash collision cases, so don't
1124 * bother with signals either.
1125 */
1126
1127 return ret;
1128}
1129
1130void wait_on_page_bit(struct page *page, int bit_nr)
1131{
1132 wait_queue_head_t *q = page_waitqueue(page);
1133 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
1134}
1135EXPORT_SYMBOL(wait_on_page_bit);
1136
1137int wait_on_page_bit_killable(struct page *page, int bit_nr)
1138{
1139 wait_queue_head_t *q = page_waitqueue(page);
1140 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
cbbce822 1141}
4343d008 1142EXPORT_SYMBOL(wait_on_page_bit_killable);
cbbce822 1143
385e1ca5
DH
1144/**
1145 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
697f619f
RD
1146 * @page: Page defining the wait queue of interest
1147 * @waiter: Waiter to add to the queue
385e1ca5
DH
1148 *
1149 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1150 */
ac6424b9 1151void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
385e1ca5
DH
1152{
1153 wait_queue_head_t *q = page_waitqueue(page);
1154 unsigned long flags;
1155
1156 spin_lock_irqsave(&q->lock, flags);
9c3a815f 1157 __add_wait_queue_entry_tail(q, waiter);
62906027 1158 SetPageWaiters(page);
385e1ca5
DH
1159 spin_unlock_irqrestore(&q->lock, flags);
1160}
1161EXPORT_SYMBOL_GPL(add_page_wait_queue);
1162
b91e1302
LT
1163#ifndef clear_bit_unlock_is_negative_byte
1164
1165/*
1166 * PG_waiters is the high bit in the same byte as PG_lock.
1167 *
1168 * On x86 (and on many other architectures), we can clear PG_lock and
1169 * test the sign bit at the same time. But if the architecture does
1170 * not support that special operation, we just do this all by hand
1171 * instead.
1172 *
1173 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1174 * being cleared, but a memory barrier should be unneccssary since it is
1175 * in the same byte as PG_locked.
1176 */
1177static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1178{
1179 clear_bit_unlock(nr, mem);
1180 /* smp_mb__after_atomic(); */
98473f9f 1181 return test_bit(PG_waiters, mem);
b91e1302
LT
1182}
1183
1184#endif
1185
1da177e4 1186/**
485bb99b 1187 * unlock_page - unlock a locked page
1da177e4
LT
1188 * @page: the page
1189 *
1190 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1191 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
da3dae54 1192 * mechanism between PageLocked pages and PageWriteback pages is shared.
1da177e4
LT
1193 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1194 *
b91e1302
LT
1195 * Note that this depends on PG_waiters being the sign bit in the byte
1196 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1197 * clear the PG_locked bit and test PG_waiters at the same time fairly
1198 * portably (architectures that do LL/SC can test any bit, while x86 can
1199 * test the sign bit).
1da177e4 1200 */
920c7a5d 1201void unlock_page(struct page *page)
1da177e4 1202{
b91e1302 1203 BUILD_BUG_ON(PG_waiters != 7);
48c935ad 1204 page = compound_head(page);
309381fe 1205 VM_BUG_ON_PAGE(!PageLocked(page), page);
b91e1302
LT
1206 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1207 wake_up_page_bit(page, PG_locked);
1da177e4
LT
1208}
1209EXPORT_SYMBOL(unlock_page);
1210
485bb99b
RD
1211/**
1212 * end_page_writeback - end writeback against a page
1213 * @page: the page
1da177e4
LT
1214 */
1215void end_page_writeback(struct page *page)
1216{
888cf2db
MG
1217 /*
1218 * TestClearPageReclaim could be used here but it is an atomic
1219 * operation and overkill in this particular case. Failing to
1220 * shuffle a page marked for immediate reclaim is too mild to
1221 * justify taking an atomic operation penalty at the end of
1222 * ever page writeback.
1223 */
1224 if (PageReclaim(page)) {
1225 ClearPageReclaim(page);
ac6aadb2 1226 rotate_reclaimable_page(page);
888cf2db 1227 }
ac6aadb2
MS
1228
1229 if (!test_clear_page_writeback(page))
1230 BUG();
1231
4e857c58 1232 smp_mb__after_atomic();
1da177e4
LT
1233 wake_up_page(page, PG_writeback);
1234}
1235EXPORT_SYMBOL(end_page_writeback);
1236
57d99845
MW
1237/*
1238 * After completing I/O on a page, call this routine to update the page
1239 * flags appropriately
1240 */
c11f0c0b 1241void page_endio(struct page *page, bool is_write, int err)
57d99845 1242{
c11f0c0b 1243 if (!is_write) {
57d99845
MW
1244 if (!err) {
1245 SetPageUptodate(page);
1246 } else {
1247 ClearPageUptodate(page);
1248 SetPageError(page);
1249 }
1250 unlock_page(page);
abf54548 1251 } else {
57d99845 1252 if (err) {
dd8416c4
MK
1253 struct address_space *mapping;
1254
57d99845 1255 SetPageError(page);
dd8416c4
MK
1256 mapping = page_mapping(page);
1257 if (mapping)
1258 mapping_set_error(mapping, err);
57d99845
MW
1259 }
1260 end_page_writeback(page);
1261 }
1262}
1263EXPORT_SYMBOL_GPL(page_endio);
1264
485bb99b
RD
1265/**
1266 * __lock_page - get a lock on the page, assuming we need to sleep to get it
87066755 1267 * @__page: the page to lock
1da177e4 1268 */
62906027 1269void __lock_page(struct page *__page)
1da177e4 1270{
62906027
NP
1271 struct page *page = compound_head(__page);
1272 wait_queue_head_t *q = page_waitqueue(page);
1273 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
1da177e4
LT
1274}
1275EXPORT_SYMBOL(__lock_page);
1276
62906027 1277int __lock_page_killable(struct page *__page)
2687a356 1278{
62906027
NP
1279 struct page *page = compound_head(__page);
1280 wait_queue_head_t *q = page_waitqueue(page);
1281 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
2687a356 1282}
18bc0bbd 1283EXPORT_SYMBOL_GPL(__lock_page_killable);
2687a356 1284
9a95f3cf
PC
1285/*
1286 * Return values:
1287 * 1 - page is locked; mmap_sem is still held.
1288 * 0 - page is not locked.
1289 * mmap_sem has been released (up_read()), unless flags had both
1290 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1291 * which case mmap_sem is still held.
1292 *
1293 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1294 * with the page locked and the mmap_sem unperturbed.
1295 */
d065bd81
ML
1296int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1297 unsigned int flags)
1298{
37b23e05
KM
1299 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1300 /*
1301 * CAUTION! In this case, mmap_sem is not released
1302 * even though return 0.
1303 */
1304 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1305 return 0;
1306
1307 up_read(&mm->mmap_sem);
1308 if (flags & FAULT_FLAG_KILLABLE)
1309 wait_on_page_locked_killable(page);
1310 else
318b275f 1311 wait_on_page_locked(page);
d065bd81 1312 return 0;
37b23e05
KM
1313 } else {
1314 if (flags & FAULT_FLAG_KILLABLE) {
1315 int ret;
1316
1317 ret = __lock_page_killable(page);
1318 if (ret) {
1319 up_read(&mm->mmap_sem);
1320 return 0;
1321 }
1322 } else
1323 __lock_page(page);
1324 return 1;
d065bd81
ML
1325 }
1326}
1327
e7b563bb 1328/**
0d3f9296
MW
1329 * page_cache_next_miss() - Find the next gap in the page cache.
1330 * @mapping: Mapping.
1331 * @index: Index.
1332 * @max_scan: Maximum range to search.
e7b563bb 1333 *
0d3f9296
MW
1334 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1335 * gap with the lowest index.
e7b563bb 1336 *
0d3f9296
MW
1337 * This function may be called under the rcu_read_lock. However, this will
1338 * not atomically search a snapshot of the cache at a single point in time.
1339 * For example, if a gap is created at index 5, then subsequently a gap is
1340 * created at index 10, page_cache_next_miss covering both indices may
1341 * return 10 if called under the rcu_read_lock.
e7b563bb 1342 *
0d3f9296
MW
1343 * Return: The index of the gap if found, otherwise an index outside the
1344 * range specified (in which case 'return - index >= max_scan' will be true).
1345 * In the rare case of index wrap-around, 0 will be returned.
e7b563bb 1346 */
0d3f9296 1347pgoff_t page_cache_next_miss(struct address_space *mapping,
e7b563bb
JW
1348 pgoff_t index, unsigned long max_scan)
1349{
0d3f9296 1350 XA_STATE(xas, &mapping->i_pages, index);
e7b563bb 1351
0d3f9296
MW
1352 while (max_scan--) {
1353 void *entry = xas_next(&xas);
1354 if (!entry || xa_is_value(entry))
e7b563bb 1355 break;
0d3f9296 1356 if (xas.xa_index == 0)
e7b563bb
JW
1357 break;
1358 }
1359
0d3f9296 1360 return xas.xa_index;
e7b563bb 1361}
0d3f9296 1362EXPORT_SYMBOL(page_cache_next_miss);
e7b563bb
JW
1363
1364/**
0d3f9296
MW
1365 * page_cache_prev_miss() - Find the next gap in the page cache.
1366 * @mapping: Mapping.
1367 * @index: Index.
1368 * @max_scan: Maximum range to search.
e7b563bb 1369 *
0d3f9296
MW
1370 * Search the range [max(index - max_scan + 1, 0), index] for the
1371 * gap with the highest index.
e7b563bb 1372 *
0d3f9296
MW
1373 * This function may be called under the rcu_read_lock. However, this will
1374 * not atomically search a snapshot of the cache at a single point in time.
1375 * For example, if a gap is created at index 10, then subsequently a gap is
1376 * created at index 5, page_cache_prev_miss() covering both indices may
1377 * return 5 if called under the rcu_read_lock.
e7b563bb 1378 *
0d3f9296
MW
1379 * Return: The index of the gap if found, otherwise an index outside the
1380 * range specified (in which case 'index - return >= max_scan' will be true).
1381 * In the rare case of wrap-around, ULONG_MAX will be returned.
e7b563bb 1382 */
0d3f9296 1383pgoff_t page_cache_prev_miss(struct address_space *mapping,
e7b563bb
JW
1384 pgoff_t index, unsigned long max_scan)
1385{
0d3f9296 1386 XA_STATE(xas, &mapping->i_pages, index);
0cd6144a 1387
0d3f9296
MW
1388 while (max_scan--) {
1389 void *entry = xas_prev(&xas);
1390 if (!entry || xa_is_value(entry))
e7b563bb 1391 break;
0d3f9296 1392 if (xas.xa_index == ULONG_MAX)
e7b563bb
JW
1393 break;
1394 }
1395
0d3f9296 1396 return xas.xa_index;
e7b563bb 1397}
0d3f9296 1398EXPORT_SYMBOL(page_cache_prev_miss);
e7b563bb 1399
485bb99b 1400/**
0cd6144a 1401 * find_get_entry - find and get a page cache entry
485bb99b 1402 * @mapping: the address_space to search
0cd6144a
JW
1403 * @offset: the page cache index
1404 *
1405 * Looks up the page cache slot at @mapping & @offset. If there is a
1406 * page cache page, it is returned with an increased refcount.
485bb99b 1407 *
139b6a6f
JW
1408 * If the slot holds a shadow entry of a previously evicted page, or a
1409 * swap entry from shmem/tmpfs, it is returned.
0cd6144a
JW
1410 *
1411 * Otherwise, %NULL is returned.
1da177e4 1412 */
0cd6144a 1413struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1da177e4 1414{
a60637c8 1415 void **pagep;
83929372 1416 struct page *head, *page;
1da177e4 1417
a60637c8
NP
1418 rcu_read_lock();
1419repeat:
1420 page = NULL;
b93b0163 1421 pagep = radix_tree_lookup_slot(&mapping->i_pages, offset);
a60637c8
NP
1422 if (pagep) {
1423 page = radix_tree_deref_slot(pagep);
27d20fdd
NP
1424 if (unlikely(!page))
1425 goto out;
a2c16d6c 1426 if (radix_tree_exception(page)) {
8079b1c8
HD
1427 if (radix_tree_deref_retry(page))
1428 goto repeat;
1429 /*
139b6a6f
JW
1430 * A shadow entry of a recently evicted page,
1431 * or a swap entry from shmem/tmpfs. Return
1432 * it without attempting to raise page count.
8079b1c8
HD
1433 */
1434 goto out;
a2c16d6c 1435 }
83929372
KS
1436
1437 head = compound_head(page);
1438 if (!page_cache_get_speculative(head))
1439 goto repeat;
1440
1441 /* The page was split under us? */
1442 if (compound_head(page) != head) {
1443 put_page(head);
a60637c8 1444 goto repeat;
83929372 1445 }
a60637c8
NP
1446
1447 /*
1448 * Has the page moved?
1449 * This is part of the lockless pagecache protocol. See
1450 * include/linux/pagemap.h for details.
1451 */
1452 if (unlikely(page != *pagep)) {
83929372 1453 put_page(head);
a60637c8
NP
1454 goto repeat;
1455 }
1456 }
27d20fdd 1457out:
a60637c8
NP
1458 rcu_read_unlock();
1459
1da177e4
LT
1460 return page;
1461}
0cd6144a 1462EXPORT_SYMBOL(find_get_entry);
1da177e4 1463
0cd6144a
JW
1464/**
1465 * find_lock_entry - locate, pin and lock a page cache entry
1466 * @mapping: the address_space to search
1467 * @offset: the page cache index
1468 *
1469 * Looks up the page cache slot at @mapping & @offset. If there is a
1470 * page cache page, it is returned locked and with an increased
1471 * refcount.
1472 *
139b6a6f
JW
1473 * If the slot holds a shadow entry of a previously evicted page, or a
1474 * swap entry from shmem/tmpfs, it is returned.
0cd6144a
JW
1475 *
1476 * Otherwise, %NULL is returned.
1477 *
1478 * find_lock_entry() may sleep.
1479 */
1480struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1da177e4
LT
1481{
1482 struct page *page;
1483
1da177e4 1484repeat:
0cd6144a 1485 page = find_get_entry(mapping, offset);
a2c16d6c 1486 if (page && !radix_tree_exception(page)) {
a60637c8
NP
1487 lock_page(page);
1488 /* Has the page been truncated? */
83929372 1489 if (unlikely(page_mapping(page) != mapping)) {
a60637c8 1490 unlock_page(page);
09cbfeaf 1491 put_page(page);
a60637c8 1492 goto repeat;
1da177e4 1493 }
83929372 1494 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1da177e4 1495 }
1da177e4
LT
1496 return page;
1497}
0cd6144a
JW
1498EXPORT_SYMBOL(find_lock_entry);
1499
1500/**
2457aec6 1501 * pagecache_get_page - find and get a page reference
0cd6144a
JW
1502 * @mapping: the address_space to search
1503 * @offset: the page index
2457aec6 1504 * @fgp_flags: PCG flags
45f87de5 1505 * @gfp_mask: gfp mask to use for the page cache data page allocation
0cd6144a 1506 *
2457aec6 1507 * Looks up the page cache slot at @mapping & @offset.
1da177e4 1508 *
75325189 1509 * PCG flags modify how the page is returned.
0cd6144a 1510 *
0e056eb5 1511 * @fgp_flags can be:
1512 *
1513 * - FGP_ACCESSED: the page will be marked accessed
1514 * - FGP_LOCK: Page is return locked
1515 * - FGP_CREAT: If page is not present then a new page is allocated using
1516 * @gfp_mask and added to the page cache and the VM's LRU
1517 * list. The page is returned locked and with an increased
1518 * refcount. Otherwise, NULL is returned.
1da177e4 1519 *
2457aec6
MG
1520 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1521 * if the GFP flags specified for FGP_CREAT are atomic.
1da177e4 1522 *
2457aec6 1523 * If there is a page cache page, it is returned with an increased refcount.
1da177e4 1524 */
2457aec6 1525struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
45f87de5 1526 int fgp_flags, gfp_t gfp_mask)
1da177e4 1527{
eb2be189 1528 struct page *page;
2457aec6 1529
1da177e4 1530repeat:
2457aec6 1531 page = find_get_entry(mapping, offset);
3159f943 1532 if (xa_is_value(page))
2457aec6
MG
1533 page = NULL;
1534 if (!page)
1535 goto no_page;
1536
1537 if (fgp_flags & FGP_LOCK) {
1538 if (fgp_flags & FGP_NOWAIT) {
1539 if (!trylock_page(page)) {
09cbfeaf 1540 put_page(page);
2457aec6
MG
1541 return NULL;
1542 }
1543 } else {
1544 lock_page(page);
1545 }
1546
1547 /* Has the page been truncated? */
1548 if (unlikely(page->mapping != mapping)) {
1549 unlock_page(page);
09cbfeaf 1550 put_page(page);
2457aec6
MG
1551 goto repeat;
1552 }
1553 VM_BUG_ON_PAGE(page->index != offset, page);
1554 }
1555
1556 if (page && (fgp_flags & FGP_ACCESSED))
1557 mark_page_accessed(page);
1558
1559no_page:
1560 if (!page && (fgp_flags & FGP_CREAT)) {
1561 int err;
1562 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
45f87de5
MH
1563 gfp_mask |= __GFP_WRITE;
1564 if (fgp_flags & FGP_NOFS)
1565 gfp_mask &= ~__GFP_FS;
2457aec6 1566
45f87de5 1567 page = __page_cache_alloc(gfp_mask);
eb2be189
NP
1568 if (!page)
1569 return NULL;
2457aec6
MG
1570
1571 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1572 fgp_flags |= FGP_LOCK;
1573
eb39d618 1574 /* Init accessed so avoid atomic mark_page_accessed later */
2457aec6 1575 if (fgp_flags & FGP_ACCESSED)
eb39d618 1576 __SetPageReferenced(page);
2457aec6 1577
abc1be13 1578 err = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
eb2be189 1579 if (unlikely(err)) {
09cbfeaf 1580 put_page(page);
eb2be189
NP
1581 page = NULL;
1582 if (err == -EEXIST)
1583 goto repeat;
1da177e4 1584 }
1da177e4 1585 }
2457aec6 1586
1da177e4
LT
1587 return page;
1588}
2457aec6 1589EXPORT_SYMBOL(pagecache_get_page);
1da177e4 1590
0cd6144a
JW
1591/**
1592 * find_get_entries - gang pagecache lookup
1593 * @mapping: The address_space to search
1594 * @start: The starting page cache index
1595 * @nr_entries: The maximum number of entries
1596 * @entries: Where the resulting entries are placed
1597 * @indices: The cache indices corresponding to the entries in @entries
1598 *
1599 * find_get_entries() will search for and return a group of up to
1600 * @nr_entries entries in the mapping. The entries are placed at
1601 * @entries. find_get_entries() takes a reference against any actual
1602 * pages it returns.
1603 *
1604 * The search returns a group of mapping-contiguous page cache entries
1605 * with ascending indexes. There may be holes in the indices due to
1606 * not-present pages.
1607 *
139b6a6f
JW
1608 * Any shadow entries of evicted pages, or swap entries from
1609 * shmem/tmpfs, are included in the returned array.
0cd6144a
JW
1610 *
1611 * find_get_entries() returns the number of pages and shadow entries
1612 * which were found.
1613 */
1614unsigned find_get_entries(struct address_space *mapping,
1615 pgoff_t start, unsigned int nr_entries,
1616 struct page **entries, pgoff_t *indices)
1617{
1618 void **slot;
1619 unsigned int ret = 0;
1620 struct radix_tree_iter iter;
1621
1622 if (!nr_entries)
1623 return 0;
1624
1625 rcu_read_lock();
b93b0163 1626 radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
83929372 1627 struct page *head, *page;
0cd6144a
JW
1628repeat:
1629 page = radix_tree_deref_slot(slot);
1630 if (unlikely(!page))
1631 continue;
1632 if (radix_tree_exception(page)) {
2cf938aa
MW
1633 if (radix_tree_deref_retry(page)) {
1634 slot = radix_tree_iter_retry(&iter);
1635 continue;
1636 }
0cd6144a 1637 /*
f9fe48be
RZ
1638 * A shadow entry of a recently evicted page, a swap
1639 * entry from shmem/tmpfs or a DAX entry. Return it
1640 * without attempting to raise page count.
0cd6144a
JW
1641 */
1642 goto export;
1643 }
83929372
KS
1644
1645 head = compound_head(page);
1646 if (!page_cache_get_speculative(head))
1647 goto repeat;
1648
1649 /* The page was split under us? */
1650 if (compound_head(page) != head) {
1651 put_page(head);
0cd6144a 1652 goto repeat;
83929372 1653 }
0cd6144a
JW
1654
1655 /* Has the page moved? */
1656 if (unlikely(page != *slot)) {
83929372 1657 put_page(head);
0cd6144a
JW
1658 goto repeat;
1659 }
1660export:
1661 indices[ret] = iter.index;
1662 entries[ret] = page;
1663 if (++ret == nr_entries)
1664 break;
1665 }
1666 rcu_read_unlock();
1667 return ret;
1668}
1669
1da177e4 1670/**
b947cee4 1671 * find_get_pages_range - gang pagecache lookup
1da177e4
LT
1672 * @mapping: The address_space to search
1673 * @start: The starting page index
b947cee4 1674 * @end: The final page index (inclusive)
1da177e4
LT
1675 * @nr_pages: The maximum number of pages
1676 * @pages: Where the resulting pages are placed
1677 *
b947cee4
JK
1678 * find_get_pages_range() will search for and return a group of up to @nr_pages
1679 * pages in the mapping starting at index @start and up to index @end
1680 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes
1681 * a reference against the returned pages.
1da177e4
LT
1682 *
1683 * The search returns a group of mapping-contiguous pages with ascending
1684 * indexes. There may be holes in the indices due to not-present pages.
d72dc8a2 1685 * We also update @start to index the next page for the traversal.
1da177e4 1686 *
b947cee4
JK
1687 * find_get_pages_range() returns the number of pages which were found. If this
1688 * number is smaller than @nr_pages, the end of specified range has been
1689 * reached.
1da177e4 1690 */
b947cee4
JK
1691unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1692 pgoff_t end, unsigned int nr_pages,
1693 struct page **pages)
1da177e4 1694{
0fc9d104
KK
1695 struct radix_tree_iter iter;
1696 void **slot;
1697 unsigned ret = 0;
1698
1699 if (unlikely(!nr_pages))
1700 return 0;
a60637c8
NP
1701
1702 rcu_read_lock();
b93b0163 1703 radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, *start) {
83929372 1704 struct page *head, *page;
b947cee4
JK
1705
1706 if (iter.index > end)
1707 break;
a60637c8 1708repeat:
0fc9d104 1709 page = radix_tree_deref_slot(slot);
a60637c8
NP
1710 if (unlikely(!page))
1711 continue;
9d8aa4ea 1712
a2c16d6c 1713 if (radix_tree_exception(page)) {
8079b1c8 1714 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1715 slot = radix_tree_iter_retry(&iter);
1716 continue;
8079b1c8 1717 }
a2c16d6c 1718 /*
139b6a6f
JW
1719 * A shadow entry of a recently evicted page,
1720 * or a swap entry from shmem/tmpfs. Skip
1721 * over it.
a2c16d6c 1722 */
8079b1c8 1723 continue;
27d20fdd 1724 }
a60637c8 1725
83929372
KS
1726 head = compound_head(page);
1727 if (!page_cache_get_speculative(head))
1728 goto repeat;
1729
1730 /* The page was split under us? */
1731 if (compound_head(page) != head) {
1732 put_page(head);
a60637c8 1733 goto repeat;
83929372 1734 }
a60637c8
NP
1735
1736 /* Has the page moved? */
0fc9d104 1737 if (unlikely(page != *slot)) {
83929372 1738 put_page(head);
a60637c8
NP
1739 goto repeat;
1740 }
1da177e4 1741
a60637c8 1742 pages[ret] = page;
b947cee4
JK
1743 if (++ret == nr_pages) {
1744 *start = pages[ret - 1]->index + 1;
1745 goto out;
1746 }
a60637c8 1747 }
5b280c0c 1748
b947cee4
JK
1749 /*
1750 * We come here when there is no page beyond @end. We take care to not
1751 * overflow the index @start as it confuses some of the callers. This
1752 * breaks the iteration when there is page at index -1 but that is
1753 * already broken anyway.
1754 */
1755 if (end == (pgoff_t)-1)
1756 *start = (pgoff_t)-1;
1757 else
1758 *start = end + 1;
1759out:
a60637c8 1760 rcu_read_unlock();
d72dc8a2 1761
1da177e4
LT
1762 return ret;
1763}
1764
ebf43500
JA
1765/**
1766 * find_get_pages_contig - gang contiguous pagecache lookup
1767 * @mapping: The address_space to search
1768 * @index: The starting page index
1769 * @nr_pages: The maximum number of pages
1770 * @pages: Where the resulting pages are placed
1771 *
1772 * find_get_pages_contig() works exactly like find_get_pages(), except
1773 * that the returned number of pages are guaranteed to be contiguous.
1774 *
1775 * find_get_pages_contig() returns the number of pages which were found.
1776 */
1777unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1778 unsigned int nr_pages, struct page **pages)
1779{
0fc9d104
KK
1780 struct radix_tree_iter iter;
1781 void **slot;
1782 unsigned int ret = 0;
1783
1784 if (unlikely(!nr_pages))
1785 return 0;
a60637c8
NP
1786
1787 rcu_read_lock();
b93b0163 1788 radix_tree_for_each_contig(slot, &mapping->i_pages, &iter, index) {
83929372 1789 struct page *head, *page;
a60637c8 1790repeat:
0fc9d104
KK
1791 page = radix_tree_deref_slot(slot);
1792 /* The hole, there no reason to continue */
a60637c8 1793 if (unlikely(!page))
0fc9d104 1794 break;
9d8aa4ea 1795
a2c16d6c 1796 if (radix_tree_exception(page)) {
8079b1c8 1797 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1798 slot = radix_tree_iter_retry(&iter);
1799 continue;
8079b1c8 1800 }
a2c16d6c 1801 /*
139b6a6f
JW
1802 * A shadow entry of a recently evicted page,
1803 * or a swap entry from shmem/tmpfs. Stop
1804 * looking for contiguous pages.
a2c16d6c 1805 */
8079b1c8 1806 break;
a2c16d6c 1807 }
ebf43500 1808
83929372
KS
1809 head = compound_head(page);
1810 if (!page_cache_get_speculative(head))
1811 goto repeat;
1812
1813 /* The page was split under us? */
1814 if (compound_head(page) != head) {
1815 put_page(head);
a60637c8 1816 goto repeat;
83929372 1817 }
a60637c8
NP
1818
1819 /* Has the page moved? */
0fc9d104 1820 if (unlikely(page != *slot)) {
83929372 1821 put_page(head);
a60637c8
NP
1822 goto repeat;
1823 }
1824
9cbb4cb2
NP
1825 /*
1826 * must check mapping and index after taking the ref.
1827 * otherwise we can get both false positives and false
1828 * negatives, which is just confusing to the caller.
1829 */
83929372 1830 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
09cbfeaf 1831 put_page(page);
9cbb4cb2
NP
1832 break;
1833 }
1834
a60637c8 1835 pages[ret] = page;
0fc9d104
KK
1836 if (++ret == nr_pages)
1837 break;
ebf43500 1838 }
a60637c8
NP
1839 rcu_read_unlock();
1840 return ret;
ebf43500 1841}
ef71c15c 1842EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 1843
485bb99b 1844/**
72b045ae 1845 * find_get_pages_range_tag - find and return pages in given range matching @tag
485bb99b
RD
1846 * @mapping: the address_space to search
1847 * @index: the starting page index
72b045ae 1848 * @end: The final page index (inclusive)
485bb99b
RD
1849 * @tag: the tag index
1850 * @nr_pages: the maximum number of pages
1851 * @pages: where the resulting pages are placed
1852 *
1da177e4 1853 * Like find_get_pages, except we only return pages which are tagged with
485bb99b 1854 * @tag. We update @index to index the next page for the traversal.
1da177e4 1855 */
72b045ae
JK
1856unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
1857 pgoff_t end, int tag, unsigned int nr_pages,
1858 struct page **pages)
1da177e4 1859{
0fc9d104
KK
1860 struct radix_tree_iter iter;
1861 void **slot;
1862 unsigned ret = 0;
1863
1864 if (unlikely(!nr_pages))
1865 return 0;
a60637c8
NP
1866
1867 rcu_read_lock();
b93b0163 1868 radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, *index, tag) {
83929372 1869 struct page *head, *page;
72b045ae
JK
1870
1871 if (iter.index > end)
1872 break;
a60637c8 1873repeat:
0fc9d104 1874 page = radix_tree_deref_slot(slot);
a60637c8
NP
1875 if (unlikely(!page))
1876 continue;
9d8aa4ea 1877
a2c16d6c 1878 if (radix_tree_exception(page)) {
8079b1c8 1879 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1880 slot = radix_tree_iter_retry(&iter);
1881 continue;
8079b1c8 1882 }
a2c16d6c 1883 /*
139b6a6f
JW
1884 * A shadow entry of a recently evicted page.
1885 *
1886 * Those entries should never be tagged, but
1887 * this tree walk is lockless and the tags are
1888 * looked up in bulk, one radix tree node at a
1889 * time, so there is a sizable window for page
1890 * reclaim to evict a page we saw tagged.
1891 *
1892 * Skip over it.
a2c16d6c 1893 */
139b6a6f 1894 continue;
a2c16d6c 1895 }
a60637c8 1896
83929372
KS
1897 head = compound_head(page);
1898 if (!page_cache_get_speculative(head))
a60637c8
NP
1899 goto repeat;
1900
83929372
KS
1901 /* The page was split under us? */
1902 if (compound_head(page) != head) {
1903 put_page(head);
1904 goto repeat;
1905 }
1906
a60637c8 1907 /* Has the page moved? */
0fc9d104 1908 if (unlikely(page != *slot)) {
83929372 1909 put_page(head);
a60637c8
NP
1910 goto repeat;
1911 }
1912
1913 pages[ret] = page;
72b045ae
JK
1914 if (++ret == nr_pages) {
1915 *index = pages[ret - 1]->index + 1;
1916 goto out;
1917 }
a60637c8 1918 }
5b280c0c 1919
72b045ae
JK
1920 /*
1921 * We come here when we got at @end. We take care to not overflow the
1922 * index @index as it confuses some of the callers. This breaks the
1923 * iteration when there is page at index -1 but that is already broken
1924 * anyway.
1925 */
1926 if (end == (pgoff_t)-1)
1927 *index = (pgoff_t)-1;
1928 else
1929 *index = end + 1;
1930out:
a60637c8 1931 rcu_read_unlock();
1da177e4 1932
1da177e4
LT
1933 return ret;
1934}
72b045ae 1935EXPORT_SYMBOL(find_get_pages_range_tag);
1da177e4 1936
7e7f7749
RZ
1937/**
1938 * find_get_entries_tag - find and return entries that match @tag
1939 * @mapping: the address_space to search
1940 * @start: the starting page cache index
1941 * @tag: the tag index
1942 * @nr_entries: the maximum number of entries
1943 * @entries: where the resulting entries are placed
1944 * @indices: the cache indices corresponding to the entries in @entries
1945 *
1946 * Like find_get_entries, except we only return entries which are tagged with
1947 * @tag.
1948 */
1949unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1950 int tag, unsigned int nr_entries,
1951 struct page **entries, pgoff_t *indices)
1952{
1953 void **slot;
1954 unsigned int ret = 0;
1955 struct radix_tree_iter iter;
1956
1957 if (!nr_entries)
1958 return 0;
1959
1960 rcu_read_lock();
b93b0163 1961 radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, start, tag) {
83929372 1962 struct page *head, *page;
7e7f7749
RZ
1963repeat:
1964 page = radix_tree_deref_slot(slot);
1965 if (unlikely(!page))
1966 continue;
1967 if (radix_tree_exception(page)) {
1968 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1969 slot = radix_tree_iter_retry(&iter);
1970 continue;
7e7f7749
RZ
1971 }
1972
1973 /*
1974 * A shadow entry of a recently evicted page, a swap
1975 * entry from shmem/tmpfs or a DAX entry. Return it
1976 * without attempting to raise page count.
1977 */
1978 goto export;
1979 }
83929372
KS
1980
1981 head = compound_head(page);
1982 if (!page_cache_get_speculative(head))
7e7f7749
RZ
1983 goto repeat;
1984
83929372
KS
1985 /* The page was split under us? */
1986 if (compound_head(page) != head) {
1987 put_page(head);
1988 goto repeat;
1989 }
1990
7e7f7749
RZ
1991 /* Has the page moved? */
1992 if (unlikely(page != *slot)) {
83929372 1993 put_page(head);
7e7f7749
RZ
1994 goto repeat;
1995 }
1996export:
1997 indices[ret] = iter.index;
1998 entries[ret] = page;
1999 if (++ret == nr_entries)
2000 break;
2001 }
2002 rcu_read_unlock();
2003 return ret;
2004}
2005EXPORT_SYMBOL(find_get_entries_tag);
2006
76d42bd9
WF
2007/*
2008 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2009 * a _large_ part of the i/o request. Imagine the worst scenario:
2010 *
2011 * ---R__________________________________________B__________
2012 * ^ reading here ^ bad block(assume 4k)
2013 *
2014 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2015 * => failing the whole request => read(R) => read(R+1) =>
2016 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2017 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2018 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2019 *
2020 * It is going insane. Fix it by quickly scaling down the readahead size.
2021 */
2022static void shrink_readahead_size_eio(struct file *filp,
2023 struct file_ra_state *ra)
2024{
76d42bd9 2025 ra->ra_pages /= 4;
76d42bd9
WF
2026}
2027
485bb99b 2028/**
47c27bc4
CH
2029 * generic_file_buffered_read - generic file read routine
2030 * @iocb: the iocb to read
6e58e79d
AV
2031 * @iter: data destination
2032 * @written: already copied
485bb99b 2033 *
1da177e4 2034 * This is a generic file read routine, and uses the
485bb99b 2035 * mapping->a_ops->readpage() function for the actual low-level stuff.
1da177e4
LT
2036 *
2037 * This is really ugly. But the goto's actually try to clarify some
2038 * of the logic when it comes to error handling etc.
1da177e4 2039 */
47c27bc4 2040static ssize_t generic_file_buffered_read(struct kiocb *iocb,
6e58e79d 2041 struct iov_iter *iter, ssize_t written)
1da177e4 2042{
47c27bc4 2043 struct file *filp = iocb->ki_filp;
36e78914 2044 struct address_space *mapping = filp->f_mapping;
1da177e4 2045 struct inode *inode = mapping->host;
36e78914 2046 struct file_ra_state *ra = &filp->f_ra;
47c27bc4 2047 loff_t *ppos = &iocb->ki_pos;
57f6b96c
FW
2048 pgoff_t index;
2049 pgoff_t last_index;
2050 pgoff_t prev_index;
2051 unsigned long offset; /* offset into pagecache page */
ec0f1637 2052 unsigned int prev_offset;
6e58e79d 2053 int error = 0;
1da177e4 2054
c2a9737f 2055 if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
d05c5f7b 2056 return 0;
c2a9737f
WF
2057 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2058
09cbfeaf
KS
2059 index = *ppos >> PAGE_SHIFT;
2060 prev_index = ra->prev_pos >> PAGE_SHIFT;
2061 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
2062 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2063 offset = *ppos & ~PAGE_MASK;
1da177e4 2064
1da177e4
LT
2065 for (;;) {
2066 struct page *page;
57f6b96c 2067 pgoff_t end_index;
a32ea1e1 2068 loff_t isize;
1da177e4
LT
2069 unsigned long nr, ret;
2070
1da177e4 2071 cond_resched();
1da177e4 2072find_page:
5abf186a
MH
2073 if (fatal_signal_pending(current)) {
2074 error = -EINTR;
2075 goto out;
2076 }
2077
1da177e4 2078 page = find_get_page(mapping, index);
3ea89ee8 2079 if (!page) {
3239d834
MT
2080 if (iocb->ki_flags & IOCB_NOWAIT)
2081 goto would_block;
cf914a7d 2082 page_cache_sync_readahead(mapping,
7ff81078 2083 ra, filp,
3ea89ee8
FW
2084 index, last_index - index);
2085 page = find_get_page(mapping, index);
2086 if (unlikely(page == NULL))
2087 goto no_cached_page;
2088 }
2089 if (PageReadahead(page)) {
cf914a7d 2090 page_cache_async_readahead(mapping,
7ff81078 2091 ra, filp, page,
3ea89ee8 2092 index, last_index - index);
1da177e4 2093 }
8ab22b9a 2094 if (!PageUptodate(page)) {
3239d834
MT
2095 if (iocb->ki_flags & IOCB_NOWAIT) {
2096 put_page(page);
2097 goto would_block;
2098 }
2099
ebded027
MG
2100 /*
2101 * See comment in do_read_cache_page on why
2102 * wait_on_page_locked is used to avoid unnecessarily
2103 * serialisations and why it's safe.
2104 */
c4b209a4
BVA
2105 error = wait_on_page_locked_killable(page);
2106 if (unlikely(error))
2107 goto readpage_error;
ebded027
MG
2108 if (PageUptodate(page))
2109 goto page_ok;
2110
09cbfeaf 2111 if (inode->i_blkbits == PAGE_SHIFT ||
8ab22b9a
HH
2112 !mapping->a_ops->is_partially_uptodate)
2113 goto page_not_up_to_date;
6d6d36bc
EG
2114 /* pipes can't handle partially uptodate pages */
2115 if (unlikely(iter->type & ITER_PIPE))
2116 goto page_not_up_to_date;
529ae9aa 2117 if (!trylock_page(page))
8ab22b9a 2118 goto page_not_up_to_date;
8d056cb9
DH
2119 /* Did it get truncated before we got the lock? */
2120 if (!page->mapping)
2121 goto page_not_up_to_date_locked;
8ab22b9a 2122 if (!mapping->a_ops->is_partially_uptodate(page,
6e58e79d 2123 offset, iter->count))
8ab22b9a
HH
2124 goto page_not_up_to_date_locked;
2125 unlock_page(page);
2126 }
1da177e4 2127page_ok:
a32ea1e1
N
2128 /*
2129 * i_size must be checked after we know the page is Uptodate.
2130 *
2131 * Checking i_size after the check allows us to calculate
2132 * the correct value for "nr", which means the zero-filled
2133 * part of the page is not copied back to userspace (unless
2134 * another truncate extends the file - this is desired though).
2135 */
2136
2137 isize = i_size_read(inode);
09cbfeaf 2138 end_index = (isize - 1) >> PAGE_SHIFT;
a32ea1e1 2139 if (unlikely(!isize || index > end_index)) {
09cbfeaf 2140 put_page(page);
a32ea1e1
N
2141 goto out;
2142 }
2143
2144 /* nr is the maximum number of bytes to copy from this page */
09cbfeaf 2145 nr = PAGE_SIZE;
a32ea1e1 2146 if (index == end_index) {
09cbfeaf 2147 nr = ((isize - 1) & ~PAGE_MASK) + 1;
a32ea1e1 2148 if (nr <= offset) {
09cbfeaf 2149 put_page(page);
a32ea1e1
N
2150 goto out;
2151 }
2152 }
2153 nr = nr - offset;
1da177e4
LT
2154
2155 /* If users can be writing to this page using arbitrary
2156 * virtual addresses, take care about potential aliasing
2157 * before reading the page on the kernel side.
2158 */
2159 if (mapping_writably_mapped(mapping))
2160 flush_dcache_page(page);
2161
2162 /*
ec0f1637
JK
2163 * When a sequential read accesses a page several times,
2164 * only mark it as accessed the first time.
1da177e4 2165 */
ec0f1637 2166 if (prev_index != index || offset != prev_offset)
1da177e4
LT
2167 mark_page_accessed(page);
2168 prev_index = index;
2169
2170 /*
2171 * Ok, we have the page, and it's up-to-date, so
2172 * now we can copy it to user space...
1da177e4 2173 */
6e58e79d
AV
2174
2175 ret = copy_page_to_iter(page, offset, nr, iter);
1da177e4 2176 offset += ret;
09cbfeaf
KS
2177 index += offset >> PAGE_SHIFT;
2178 offset &= ~PAGE_MASK;
6ce745ed 2179 prev_offset = offset;
1da177e4 2180
09cbfeaf 2181 put_page(page);
6e58e79d
AV
2182 written += ret;
2183 if (!iov_iter_count(iter))
2184 goto out;
2185 if (ret < nr) {
2186 error = -EFAULT;
2187 goto out;
2188 }
2189 continue;
1da177e4
LT
2190
2191page_not_up_to_date:
2192 /* Get exclusive access to the page ... */
85462323
ON
2193 error = lock_page_killable(page);
2194 if (unlikely(error))
2195 goto readpage_error;
1da177e4 2196
8ab22b9a 2197page_not_up_to_date_locked:
da6052f7 2198 /* Did it get truncated before we got the lock? */
1da177e4
LT
2199 if (!page->mapping) {
2200 unlock_page(page);
09cbfeaf 2201 put_page(page);
1da177e4
LT
2202 continue;
2203 }
2204
2205 /* Did somebody else fill it already? */
2206 if (PageUptodate(page)) {
2207 unlock_page(page);
2208 goto page_ok;
2209 }
2210
2211readpage:
91803b49
JM
2212 /*
2213 * A previous I/O error may have been due to temporary
2214 * failures, eg. multipath errors.
2215 * PG_error will be set again if readpage fails.
2216 */
2217 ClearPageError(page);
1da177e4
LT
2218 /* Start the actual read. The read will unlock the page. */
2219 error = mapping->a_ops->readpage(filp, page);
2220
994fc28c
ZB
2221 if (unlikely(error)) {
2222 if (error == AOP_TRUNCATED_PAGE) {
09cbfeaf 2223 put_page(page);
6e58e79d 2224 error = 0;
994fc28c
ZB
2225 goto find_page;
2226 }
1da177e4 2227 goto readpage_error;
994fc28c 2228 }
1da177e4
LT
2229
2230 if (!PageUptodate(page)) {
85462323
ON
2231 error = lock_page_killable(page);
2232 if (unlikely(error))
2233 goto readpage_error;
1da177e4
LT
2234 if (!PageUptodate(page)) {
2235 if (page->mapping == NULL) {
2236 /*
2ecdc82e 2237 * invalidate_mapping_pages got it
1da177e4
LT
2238 */
2239 unlock_page(page);
09cbfeaf 2240 put_page(page);
1da177e4
LT
2241 goto find_page;
2242 }
2243 unlock_page(page);
7ff81078 2244 shrink_readahead_size_eio(filp, ra);
85462323
ON
2245 error = -EIO;
2246 goto readpage_error;
1da177e4
LT
2247 }
2248 unlock_page(page);
2249 }
2250
1da177e4
LT
2251 goto page_ok;
2252
2253readpage_error:
2254 /* UHHUH! A synchronous read error occurred. Report it */
09cbfeaf 2255 put_page(page);
1da177e4
LT
2256 goto out;
2257
2258no_cached_page:
2259 /*
2260 * Ok, it wasn't cached, so we need to create a new
2261 * page..
2262 */
453f85d4 2263 page = page_cache_alloc(mapping);
eb2be189 2264 if (!page) {
6e58e79d 2265 error = -ENOMEM;
eb2be189 2266 goto out;
1da177e4 2267 }
6afdb859 2268 error = add_to_page_cache_lru(page, mapping, index,
c62d2555 2269 mapping_gfp_constraint(mapping, GFP_KERNEL));
1da177e4 2270 if (error) {
09cbfeaf 2271 put_page(page);
6e58e79d
AV
2272 if (error == -EEXIST) {
2273 error = 0;
1da177e4 2274 goto find_page;
6e58e79d 2275 }
1da177e4
LT
2276 goto out;
2277 }
1da177e4
LT
2278 goto readpage;
2279 }
2280
3239d834
MT
2281would_block:
2282 error = -EAGAIN;
1da177e4 2283out:
7ff81078 2284 ra->prev_pos = prev_index;
09cbfeaf 2285 ra->prev_pos <<= PAGE_SHIFT;
7ff81078 2286 ra->prev_pos |= prev_offset;
1da177e4 2287
09cbfeaf 2288 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
0c6aa263 2289 file_accessed(filp);
6e58e79d 2290 return written ? written : error;
1da177e4
LT
2291}
2292
485bb99b 2293/**
6abd2322 2294 * generic_file_read_iter - generic filesystem read routine
485bb99b 2295 * @iocb: kernel I/O control block
6abd2322 2296 * @iter: destination for the data read
485bb99b 2297 *
6abd2322 2298 * This is the "read_iter()" routine for all filesystems
1da177e4
LT
2299 * that can use the page cache directly.
2300 */
2301ssize_t
ed978a81 2302generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1da177e4 2303{
e7080a43 2304 size_t count = iov_iter_count(iter);
47c27bc4 2305 ssize_t retval = 0;
e7080a43
NS
2306
2307 if (!count)
2308 goto out; /* skip atime */
1da177e4 2309
2ba48ce5 2310 if (iocb->ki_flags & IOCB_DIRECT) {
47c27bc4 2311 struct file *file = iocb->ki_filp;
ed978a81
AV
2312 struct address_space *mapping = file->f_mapping;
2313 struct inode *inode = mapping->host;
543ade1f 2314 loff_t size;
1da177e4 2315
1da177e4 2316 size = i_size_read(inode);
6be96d3a
GR
2317 if (iocb->ki_flags & IOCB_NOWAIT) {
2318 if (filemap_range_has_page(mapping, iocb->ki_pos,
2319 iocb->ki_pos + count - 1))
2320 return -EAGAIN;
2321 } else {
2322 retval = filemap_write_and_wait_range(mapping,
2323 iocb->ki_pos,
2324 iocb->ki_pos + count - 1);
2325 if (retval < 0)
2326 goto out;
2327 }
d8d3d94b 2328
0d5b0cf2
CH
2329 file_accessed(file);
2330
5ecda137 2331 retval = mapping->a_ops->direct_IO(iocb, iter);
c3a69024 2332 if (retval >= 0) {
c64fb5c7 2333 iocb->ki_pos += retval;
5ecda137 2334 count -= retval;
9fe55eea 2335 }
5b47d59a 2336 iov_iter_revert(iter, count - iov_iter_count(iter));
66f998f6 2337
9fe55eea
SW
2338 /*
2339 * Btrfs can have a short DIO read if we encounter
2340 * compressed extents, so if there was an error, or if
2341 * we've already read everything we wanted to, or if
2342 * there was a short read because we hit EOF, go ahead
2343 * and return. Otherwise fallthrough to buffered io for
fbbbad4b
MW
2344 * the rest of the read. Buffered reads will not work for
2345 * DAX files, so don't bother trying.
9fe55eea 2346 */
5ecda137 2347 if (retval < 0 || !count || iocb->ki_pos >= size ||
0d5b0cf2 2348 IS_DAX(inode))
9fe55eea 2349 goto out;
1da177e4
LT
2350 }
2351
47c27bc4 2352 retval = generic_file_buffered_read(iocb, iter, retval);
1da177e4
LT
2353out:
2354 return retval;
2355}
ed978a81 2356EXPORT_SYMBOL(generic_file_read_iter);
1da177e4 2357
1da177e4 2358#ifdef CONFIG_MMU
485bb99b
RD
2359/**
2360 * page_cache_read - adds requested page to the page cache if not already there
2361 * @file: file to read
2362 * @offset: page index
62eb320a 2363 * @gfp_mask: memory allocation flags
485bb99b 2364 *
1da177e4
LT
2365 * This adds the requested page to the page cache if it isn't already there,
2366 * and schedules an I/O to read in its contents from disk.
2367 */
c20cd45e 2368static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1da177e4
LT
2369{
2370 struct address_space *mapping = file->f_mapping;
99dadfdd 2371 struct page *page;
994fc28c 2372 int ret;
1da177e4 2373
994fc28c 2374 do {
453f85d4 2375 page = __page_cache_alloc(gfp_mask);
994fc28c
ZB
2376 if (!page)
2377 return -ENOMEM;
2378
abc1be13 2379 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
994fc28c
ZB
2380 if (ret == 0)
2381 ret = mapping->a_ops->readpage(file, page);
2382 else if (ret == -EEXIST)
2383 ret = 0; /* losing race to add is OK */
1da177e4 2384
09cbfeaf 2385 put_page(page);
1da177e4 2386
994fc28c 2387 } while (ret == AOP_TRUNCATED_PAGE);
99dadfdd 2388
994fc28c 2389 return ret;
1da177e4
LT
2390}
2391
2392#define MMAP_LOTSAMISS (100)
2393
ef00e08e
LT
2394/*
2395 * Synchronous readahead happens when we don't even find
2396 * a page in the page cache at all.
2397 */
2398static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2399 struct file_ra_state *ra,
2400 struct file *file,
2401 pgoff_t offset)
2402{
ef00e08e
LT
2403 struct address_space *mapping = file->f_mapping;
2404
2405 /* If we don't want any read-ahead, don't bother */
64363aad 2406 if (vma->vm_flags & VM_RAND_READ)
ef00e08e 2407 return;
275b12bf
WF
2408 if (!ra->ra_pages)
2409 return;
ef00e08e 2410
64363aad 2411 if (vma->vm_flags & VM_SEQ_READ) {
7ffc59b4
WF
2412 page_cache_sync_readahead(mapping, ra, file, offset,
2413 ra->ra_pages);
ef00e08e
LT
2414 return;
2415 }
2416
207d04ba
AK
2417 /* Avoid banging the cache line if not needed */
2418 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
ef00e08e
LT
2419 ra->mmap_miss++;
2420
2421 /*
2422 * Do we miss much more than hit in this file? If so,
2423 * stop bothering with read-ahead. It will only hurt.
2424 */
2425 if (ra->mmap_miss > MMAP_LOTSAMISS)
2426 return;
2427
d30a1100
WF
2428 /*
2429 * mmap read-around
2430 */
600e19af
RG
2431 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2432 ra->size = ra->ra_pages;
2433 ra->async_size = ra->ra_pages / 4;
275b12bf 2434 ra_submit(ra, mapping, file);
ef00e08e
LT
2435}
2436
2437/*
2438 * Asynchronous readahead happens when we find the page and PG_readahead,
2439 * so we want to possibly extend the readahead further..
2440 */
2441static void do_async_mmap_readahead(struct vm_area_struct *vma,
2442 struct file_ra_state *ra,
2443 struct file *file,
2444 struct page *page,
2445 pgoff_t offset)
2446{
2447 struct address_space *mapping = file->f_mapping;
2448
2449 /* If we don't want any read-ahead, don't bother */
64363aad 2450 if (vma->vm_flags & VM_RAND_READ)
ef00e08e
LT
2451 return;
2452 if (ra->mmap_miss > 0)
2453 ra->mmap_miss--;
2454 if (PageReadahead(page))
2fad6f5d
WF
2455 page_cache_async_readahead(mapping, ra, file,
2456 page, offset, ra->ra_pages);
ef00e08e
LT
2457}
2458
485bb99b 2459/**
54cb8821 2460 * filemap_fault - read in file data for page fault handling
d0217ac0 2461 * @vmf: struct vm_fault containing details of the fault
485bb99b 2462 *
54cb8821 2463 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
2464 * mapped memory region to read in file data during a page fault.
2465 *
2466 * The goto's are kind of ugly, but this streamlines the normal case of having
2467 * it in the page cache, and handles the special cases reasonably without
2468 * having a lot of duplicated code.
9a95f3cf
PC
2469 *
2470 * vma->vm_mm->mmap_sem must be held on entry.
2471 *
2472 * If our return value has VM_FAULT_RETRY set, it's because
2473 * lock_page_or_retry() returned 0.
2474 * The mmap_sem has usually been released in this case.
2475 * See __lock_page_or_retry() for the exception.
2476 *
2477 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2478 * has not been released.
2479 *
2480 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
1da177e4 2481 */
2bcd6454 2482vm_fault_t filemap_fault(struct vm_fault *vmf)
1da177e4
LT
2483{
2484 int error;
11bac800 2485 struct file *file = vmf->vma->vm_file;
1da177e4
LT
2486 struct address_space *mapping = file->f_mapping;
2487 struct file_ra_state *ra = &file->f_ra;
2488 struct inode *inode = mapping->host;
ef00e08e 2489 pgoff_t offset = vmf->pgoff;
9ab2594f 2490 pgoff_t max_off;
1da177e4 2491 struct page *page;
2bcd6454 2492 vm_fault_t ret = 0;
1da177e4 2493
9ab2594f
MW
2494 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2495 if (unlikely(offset >= max_off))
5307cc1a 2496 return VM_FAULT_SIGBUS;
1da177e4 2497
1da177e4 2498 /*
49426420 2499 * Do we have something in the page cache already?
1da177e4 2500 */
ef00e08e 2501 page = find_get_page(mapping, offset);
45cac65b 2502 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1da177e4 2503 /*
ef00e08e
LT
2504 * We found the page, so try async readahead before
2505 * waiting for the lock.
1da177e4 2506 */
11bac800 2507 do_async_mmap_readahead(vmf->vma, ra, file, page, offset);
45cac65b 2508 } else if (!page) {
ef00e08e 2509 /* No page in the page cache at all */
11bac800 2510 do_sync_mmap_readahead(vmf->vma, ra, file, offset);
ef00e08e 2511 count_vm_event(PGMAJFAULT);
2262185c 2512 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
ef00e08e
LT
2513 ret = VM_FAULT_MAJOR;
2514retry_find:
b522c94d 2515 page = find_get_page(mapping, offset);
1da177e4
LT
2516 if (!page)
2517 goto no_cached_page;
2518 }
2519
11bac800 2520 if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
09cbfeaf 2521 put_page(page);
d065bd81 2522 return ret | VM_FAULT_RETRY;
d88c0922 2523 }
b522c94d
ML
2524
2525 /* Did it get truncated? */
2526 if (unlikely(page->mapping != mapping)) {
2527 unlock_page(page);
2528 put_page(page);
2529 goto retry_find;
2530 }
309381fe 2531 VM_BUG_ON_PAGE(page->index != offset, page);
b522c94d 2532
1da177e4 2533 /*
d00806b1
NP
2534 * We have a locked page in the page cache, now we need to check
2535 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 2536 */
d00806b1 2537 if (unlikely(!PageUptodate(page)))
1da177e4
LT
2538 goto page_not_uptodate;
2539
ef00e08e
LT
2540 /*
2541 * Found the page and have a reference on it.
2542 * We must recheck i_size under page lock.
2543 */
9ab2594f
MW
2544 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2545 if (unlikely(offset >= max_off)) {
d00806b1 2546 unlock_page(page);
09cbfeaf 2547 put_page(page);
5307cc1a 2548 return VM_FAULT_SIGBUS;
d00806b1
NP
2549 }
2550
d0217ac0 2551 vmf->page = page;
83c54070 2552 return ret | VM_FAULT_LOCKED;
1da177e4 2553
1da177e4
LT
2554no_cached_page:
2555 /*
2556 * We're only likely to ever get here if MADV_RANDOM is in
2557 * effect.
2558 */
c20cd45e 2559 error = page_cache_read(file, offset, vmf->gfp_mask);
1da177e4
LT
2560
2561 /*
2562 * The page we want has now been added to the page cache.
2563 * In the unlikely event that someone removed it in the
2564 * meantime, we'll just come back here and read it again.
2565 */
2566 if (error >= 0)
2567 goto retry_find;
2568
2569 /*
2570 * An error return from page_cache_read can result if the
2571 * system is low on memory, or a problem occurs while trying
2572 * to schedule I/O.
2573 */
2574 if (error == -ENOMEM)
d0217ac0
NP
2575 return VM_FAULT_OOM;
2576 return VM_FAULT_SIGBUS;
1da177e4
LT
2577
2578page_not_uptodate:
1da177e4
LT
2579 /*
2580 * Umm, take care of errors if the page isn't up-to-date.
2581 * Try to re-read it _once_. We do this synchronously,
2582 * because there really aren't any performance issues here
2583 * and we need to check for errors.
2584 */
1da177e4 2585 ClearPageError(page);
994fc28c 2586 error = mapping->a_ops->readpage(file, page);
3ef0f720
MS
2587 if (!error) {
2588 wait_on_page_locked(page);
2589 if (!PageUptodate(page))
2590 error = -EIO;
2591 }
09cbfeaf 2592 put_page(page);
d00806b1
NP
2593
2594 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 2595 goto retry_find;
1da177e4 2596
d00806b1 2597 /* Things didn't work out. Return zero to tell the mm layer so. */
76d42bd9 2598 shrink_readahead_size_eio(file, ra);
d0217ac0 2599 return VM_FAULT_SIGBUS;
54cb8821
NP
2600}
2601EXPORT_SYMBOL(filemap_fault);
2602
82b0f8c3 2603void filemap_map_pages(struct vm_fault *vmf,
bae473a4 2604 pgoff_t start_pgoff, pgoff_t end_pgoff)
f1820361
KS
2605{
2606 struct radix_tree_iter iter;
2607 void **slot;
82b0f8c3 2608 struct file *file = vmf->vma->vm_file;
f1820361 2609 struct address_space *mapping = file->f_mapping;
bae473a4 2610 pgoff_t last_pgoff = start_pgoff;
9ab2594f 2611 unsigned long max_idx;
83929372 2612 struct page *head, *page;
f1820361
KS
2613
2614 rcu_read_lock();
b93b0163 2615 radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start_pgoff) {
bae473a4 2616 if (iter.index > end_pgoff)
f1820361
KS
2617 break;
2618repeat:
2619 page = radix_tree_deref_slot(slot);
2620 if (unlikely(!page))
2621 goto next;
2622 if (radix_tree_exception(page)) {
2cf938aa
MW
2623 if (radix_tree_deref_retry(page)) {
2624 slot = radix_tree_iter_retry(&iter);
2625 continue;
2626 }
2627 goto next;
f1820361
KS
2628 }
2629
83929372
KS
2630 head = compound_head(page);
2631 if (!page_cache_get_speculative(head))
f1820361
KS
2632 goto repeat;
2633
83929372
KS
2634 /* The page was split under us? */
2635 if (compound_head(page) != head) {
2636 put_page(head);
2637 goto repeat;
2638 }
2639
f1820361
KS
2640 /* Has the page moved? */
2641 if (unlikely(page != *slot)) {
83929372 2642 put_page(head);
f1820361
KS
2643 goto repeat;
2644 }
2645
2646 if (!PageUptodate(page) ||
2647 PageReadahead(page) ||
2648 PageHWPoison(page))
2649 goto skip;
2650 if (!trylock_page(page))
2651 goto skip;
2652
2653 if (page->mapping != mapping || !PageUptodate(page))
2654 goto unlock;
2655
9ab2594f
MW
2656 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2657 if (page->index >= max_idx)
f1820361
KS
2658 goto unlock;
2659
f1820361
KS
2660 if (file->f_ra.mmap_miss > 0)
2661 file->f_ra.mmap_miss--;
7267ec00 2662
82b0f8c3
JK
2663 vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2664 if (vmf->pte)
2665 vmf->pte += iter.index - last_pgoff;
7267ec00 2666 last_pgoff = iter.index;
82b0f8c3 2667 if (alloc_set_pte(vmf, NULL, page))
7267ec00 2668 goto unlock;
f1820361
KS
2669 unlock_page(page);
2670 goto next;
2671unlock:
2672 unlock_page(page);
2673skip:
09cbfeaf 2674 put_page(page);
f1820361 2675next:
7267ec00 2676 /* Huge page is mapped? No need to proceed. */
82b0f8c3 2677 if (pmd_trans_huge(*vmf->pmd))
7267ec00 2678 break;
bae473a4 2679 if (iter.index == end_pgoff)
f1820361
KS
2680 break;
2681 }
2682 rcu_read_unlock();
2683}
2684EXPORT_SYMBOL(filemap_map_pages);
2685
2bcd6454 2686vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
4fcf1c62
JK
2687{
2688 struct page *page = vmf->page;
11bac800 2689 struct inode *inode = file_inode(vmf->vma->vm_file);
2bcd6454 2690 vm_fault_t ret = VM_FAULT_LOCKED;
4fcf1c62 2691
14da9200 2692 sb_start_pagefault(inode->i_sb);
11bac800 2693 file_update_time(vmf->vma->vm_file);
4fcf1c62
JK
2694 lock_page(page);
2695 if (page->mapping != inode->i_mapping) {
2696 unlock_page(page);
2697 ret = VM_FAULT_NOPAGE;
2698 goto out;
2699 }
14da9200
JK
2700 /*
2701 * We mark the page dirty already here so that when freeze is in
2702 * progress, we are guaranteed that writeback during freezing will
2703 * see the dirty page and writeprotect it again.
2704 */
2705 set_page_dirty(page);
1d1d1a76 2706 wait_for_stable_page(page);
4fcf1c62 2707out:
14da9200 2708 sb_end_pagefault(inode->i_sb);
4fcf1c62
JK
2709 return ret;
2710}
4fcf1c62 2711
f0f37e2f 2712const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 2713 .fault = filemap_fault,
f1820361 2714 .map_pages = filemap_map_pages,
4fcf1c62 2715 .page_mkwrite = filemap_page_mkwrite,
1da177e4
LT
2716};
2717
2718/* This is used for a general mmap of a disk file */
2719
2720int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2721{
2722 struct address_space *mapping = file->f_mapping;
2723
2724 if (!mapping->a_ops->readpage)
2725 return -ENOEXEC;
2726 file_accessed(file);
2727 vma->vm_ops = &generic_file_vm_ops;
2728 return 0;
2729}
1da177e4
LT
2730
2731/*
2732 * This is for filesystems which do not implement ->writepage.
2733 */
2734int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2735{
2736 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2737 return -EINVAL;
2738 return generic_file_mmap(file, vma);
2739}
2740#else
45397228
AB
2741int filemap_page_mkwrite(struct vm_fault *vmf)
2742{
2743 return -ENOSYS;
2744}
1da177e4
LT
2745int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2746{
2747 return -ENOSYS;
2748}
2749int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2750{
2751 return -ENOSYS;
2752}
2753#endif /* CONFIG_MMU */
2754
45397228 2755EXPORT_SYMBOL(filemap_page_mkwrite);
1da177e4
LT
2756EXPORT_SYMBOL(generic_file_mmap);
2757EXPORT_SYMBOL(generic_file_readonly_mmap);
2758
67f9fd91
SL
2759static struct page *wait_on_page_read(struct page *page)
2760{
2761 if (!IS_ERR(page)) {
2762 wait_on_page_locked(page);
2763 if (!PageUptodate(page)) {
09cbfeaf 2764 put_page(page);
67f9fd91
SL
2765 page = ERR_PTR(-EIO);
2766 }
2767 }
2768 return page;
2769}
2770
32b63529 2771static struct page *do_read_cache_page(struct address_space *mapping,
57f6b96c 2772 pgoff_t index,
5e5358e7 2773 int (*filler)(void *, struct page *),
0531b2aa
LT
2774 void *data,
2775 gfp_t gfp)
1da177e4 2776{
eb2be189 2777 struct page *page;
1da177e4
LT
2778 int err;
2779repeat:
2780 page = find_get_page(mapping, index);
2781 if (!page) {
453f85d4 2782 page = __page_cache_alloc(gfp);
eb2be189
NP
2783 if (!page)
2784 return ERR_PTR(-ENOMEM);
e6f67b8c 2785 err = add_to_page_cache_lru(page, mapping, index, gfp);
eb2be189 2786 if (unlikely(err)) {
09cbfeaf 2787 put_page(page);
eb2be189
NP
2788 if (err == -EEXIST)
2789 goto repeat;
1da177e4 2790 /* Presumably ENOMEM for radix tree node */
1da177e4
LT
2791 return ERR_PTR(err);
2792 }
32b63529
MG
2793
2794filler:
1da177e4
LT
2795 err = filler(data, page);
2796 if (err < 0) {
09cbfeaf 2797 put_page(page);
32b63529 2798 return ERR_PTR(err);
1da177e4 2799 }
1da177e4 2800
32b63529
MG
2801 page = wait_on_page_read(page);
2802 if (IS_ERR(page))
2803 return page;
2804 goto out;
2805 }
1da177e4
LT
2806 if (PageUptodate(page))
2807 goto out;
2808
ebded027
MG
2809 /*
2810 * Page is not up to date and may be locked due one of the following
2811 * case a: Page is being filled and the page lock is held
2812 * case b: Read/write error clearing the page uptodate status
2813 * case c: Truncation in progress (page locked)
2814 * case d: Reclaim in progress
2815 *
2816 * Case a, the page will be up to date when the page is unlocked.
2817 * There is no need to serialise on the page lock here as the page
2818 * is pinned so the lock gives no additional protection. Even if the
2819 * the page is truncated, the data is still valid if PageUptodate as
2820 * it's a race vs truncate race.
2821 * Case b, the page will not be up to date
2822 * Case c, the page may be truncated but in itself, the data may still
2823 * be valid after IO completes as it's a read vs truncate race. The
2824 * operation must restart if the page is not uptodate on unlock but
2825 * otherwise serialising on page lock to stabilise the mapping gives
2826 * no additional guarantees to the caller as the page lock is
2827 * released before return.
2828 * Case d, similar to truncation. If reclaim holds the page lock, it
2829 * will be a race with remove_mapping that determines if the mapping
2830 * is valid on unlock but otherwise the data is valid and there is
2831 * no need to serialise with page lock.
2832 *
2833 * As the page lock gives no additional guarantee, we optimistically
2834 * wait on the page to be unlocked and check if it's up to date and
2835 * use the page if it is. Otherwise, the page lock is required to
2836 * distinguish between the different cases. The motivation is that we
2837 * avoid spurious serialisations and wakeups when multiple processes
2838 * wait on the same page for IO to complete.
2839 */
2840 wait_on_page_locked(page);
2841 if (PageUptodate(page))
2842 goto out;
2843
2844 /* Distinguish between all the cases under the safety of the lock */
1da177e4 2845 lock_page(page);
ebded027
MG
2846
2847 /* Case c or d, restart the operation */
1da177e4
LT
2848 if (!page->mapping) {
2849 unlock_page(page);
09cbfeaf 2850 put_page(page);
32b63529 2851 goto repeat;
1da177e4 2852 }
ebded027
MG
2853
2854 /* Someone else locked and filled the page in a very small window */
1da177e4
LT
2855 if (PageUptodate(page)) {
2856 unlock_page(page);
2857 goto out;
2858 }
32b63529
MG
2859 goto filler;
2860
c855ff37 2861out:
6fe6900e
NP
2862 mark_page_accessed(page);
2863 return page;
2864}
0531b2aa
LT
2865
2866/**
67f9fd91 2867 * read_cache_page - read into page cache, fill it if needed
0531b2aa
LT
2868 * @mapping: the page's address_space
2869 * @index: the page index
2870 * @filler: function to perform the read
5e5358e7 2871 * @data: first arg to filler(data, page) function, often left as NULL
0531b2aa 2872 *
0531b2aa 2873 * Read into the page cache. If a page already exists, and PageUptodate() is
67f9fd91 2874 * not set, try to fill the page and wait for it to become unlocked.
0531b2aa
LT
2875 *
2876 * If the page does not get brought uptodate, return -EIO.
2877 */
67f9fd91 2878struct page *read_cache_page(struct address_space *mapping,
0531b2aa 2879 pgoff_t index,
5e5358e7 2880 int (*filler)(void *, struct page *),
0531b2aa
LT
2881 void *data)
2882{
2883 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2884}
67f9fd91 2885EXPORT_SYMBOL(read_cache_page);
0531b2aa
LT
2886
2887/**
2888 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2889 * @mapping: the page's address_space
2890 * @index: the page index
2891 * @gfp: the page allocator flags to use if allocating
2892 *
2893 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
e6f67b8c 2894 * any new page allocations done using the specified allocation flags.
0531b2aa
LT
2895 *
2896 * If the page does not get brought uptodate, return -EIO.
2897 */
2898struct page *read_cache_page_gfp(struct address_space *mapping,
2899 pgoff_t index,
2900 gfp_t gfp)
2901{
2902 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2903
67f9fd91 2904 return do_read_cache_page(mapping, index, filler, NULL, gfp);
0531b2aa
LT
2905}
2906EXPORT_SYMBOL(read_cache_page_gfp);
2907
1da177e4
LT
2908/*
2909 * Performs necessary checks before doing a write
2910 *
485bb99b 2911 * Can adjust writing position or amount of bytes to write.
1da177e4
LT
2912 * Returns appropriate error code that caller should return or
2913 * zero in case that write should be allowed.
2914 */
3309dd04 2915inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
1da177e4 2916{
3309dd04 2917 struct file *file = iocb->ki_filp;
1da177e4 2918 struct inode *inode = file->f_mapping->host;
59e99e5b 2919 unsigned long limit = rlimit(RLIMIT_FSIZE);
3309dd04 2920 loff_t pos;
1da177e4 2921
3309dd04
AV
2922 if (!iov_iter_count(from))
2923 return 0;
1da177e4 2924
0fa6b005 2925 /* FIXME: this is for backwards compatibility with 2.4 */
2ba48ce5 2926 if (iocb->ki_flags & IOCB_APPEND)
3309dd04 2927 iocb->ki_pos = i_size_read(inode);
1da177e4 2928
3309dd04 2929 pos = iocb->ki_pos;
1da177e4 2930
6be96d3a
GR
2931 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2932 return -EINVAL;
2933
0fa6b005 2934 if (limit != RLIM_INFINITY) {
3309dd04 2935 if (iocb->ki_pos >= limit) {
0fa6b005
AV
2936 send_sig(SIGXFSZ, current, 0);
2937 return -EFBIG;
1da177e4 2938 }
3309dd04 2939 iov_iter_truncate(from, limit - (unsigned long)pos);
1da177e4
LT
2940 }
2941
2942 /*
2943 * LFS rule
2944 */
3309dd04 2945 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
1da177e4 2946 !(file->f_flags & O_LARGEFILE))) {
3309dd04 2947 if (pos >= MAX_NON_LFS)
1da177e4 2948 return -EFBIG;
3309dd04 2949 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
1da177e4
LT
2950 }
2951
2952 /*
2953 * Are we about to exceed the fs block limit ?
2954 *
2955 * If we have written data it becomes a short write. If we have
2956 * exceeded without writing data we send a signal and return EFBIG.
2957 * Linus frestrict idea will clean these up nicely..
2958 */
3309dd04
AV
2959 if (unlikely(pos >= inode->i_sb->s_maxbytes))
2960 return -EFBIG;
1da177e4 2961
3309dd04
AV
2962 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2963 return iov_iter_count(from);
1da177e4
LT
2964}
2965EXPORT_SYMBOL(generic_write_checks);
2966
afddba49
NP
2967int pagecache_write_begin(struct file *file, struct address_space *mapping,
2968 loff_t pos, unsigned len, unsigned flags,
2969 struct page **pagep, void **fsdata)
2970{
2971 const struct address_space_operations *aops = mapping->a_ops;
2972
4e02ed4b 2973 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 2974 pagep, fsdata);
afddba49
NP
2975}
2976EXPORT_SYMBOL(pagecache_write_begin);
2977
2978int pagecache_write_end(struct file *file, struct address_space *mapping,
2979 loff_t pos, unsigned len, unsigned copied,
2980 struct page *page, void *fsdata)
2981{
2982 const struct address_space_operations *aops = mapping->a_ops;
afddba49 2983
4e02ed4b 2984 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
2985}
2986EXPORT_SYMBOL(pagecache_write_end);
2987
1da177e4 2988ssize_t
1af5bb49 2989generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
2990{
2991 struct file *file = iocb->ki_filp;
2992 struct address_space *mapping = file->f_mapping;
2993 struct inode *inode = mapping->host;
1af5bb49 2994 loff_t pos = iocb->ki_pos;
1da177e4 2995 ssize_t written;
a969e903
CH
2996 size_t write_len;
2997 pgoff_t end;
1da177e4 2998
0c949334 2999 write_len = iov_iter_count(from);
09cbfeaf 3000 end = (pos + write_len - 1) >> PAGE_SHIFT;
a969e903 3001
6be96d3a
GR
3002 if (iocb->ki_flags & IOCB_NOWAIT) {
3003 /* If there are pages to writeback, return */
3004 if (filemap_range_has_page(inode->i_mapping, pos,
3005 pos + iov_iter_count(from)))
3006 return -EAGAIN;
3007 } else {
3008 written = filemap_write_and_wait_range(mapping, pos,
3009 pos + write_len - 1);
3010 if (written)
3011 goto out;
3012 }
a969e903
CH
3013
3014 /*
3015 * After a write we want buffered reads to be sure to go to disk to get
3016 * the new data. We invalidate clean cached page from the region we're
3017 * about to write. We do this *before* the write so that we can return
6ccfa806 3018 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903 3019 */
55635ba7 3020 written = invalidate_inode_pages2_range(mapping,
09cbfeaf 3021 pos >> PAGE_SHIFT, end);
55635ba7
AR
3022 /*
3023 * If a page can not be invalidated, return 0 to fall back
3024 * to buffered write.
3025 */
3026 if (written) {
3027 if (written == -EBUSY)
3028 return 0;
3029 goto out;
a969e903
CH
3030 }
3031
639a93a5 3032 written = mapping->a_ops->direct_IO(iocb, from);
a969e903
CH
3033
3034 /*
3035 * Finally, try again to invalidate clean pages which might have been
3036 * cached by non-direct readahead, or faulted in by get_user_pages()
3037 * if the source of the write was an mmap'ed region of the file
3038 * we're writing. Either one is a pretty crazy thing to do,
3039 * so we don't support it 100%. If this invalidation
3040 * fails, tough, the write still worked...
332391a9
LC
3041 *
3042 * Most of the time we do not need this since dio_complete() will do
3043 * the invalidation for us. However there are some file systems that
3044 * do not end up with dio_complete() being called, so let's not break
3045 * them by removing it completely
a969e903 3046 */
332391a9
LC
3047 if (mapping->nrpages)
3048 invalidate_inode_pages2_range(mapping,
3049 pos >> PAGE_SHIFT, end);
a969e903 3050
1da177e4 3051 if (written > 0) {
0116651c 3052 pos += written;
639a93a5 3053 write_len -= written;
0116651c
NK
3054 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3055 i_size_write(inode, pos);
1da177e4
LT
3056 mark_inode_dirty(inode);
3057 }
5cb6c6c7 3058 iocb->ki_pos = pos;
1da177e4 3059 }
639a93a5 3060 iov_iter_revert(from, write_len - iov_iter_count(from));
a969e903 3061out:
1da177e4
LT
3062 return written;
3063}
3064EXPORT_SYMBOL(generic_file_direct_write);
3065
eb2be189
NP
3066/*
3067 * Find or create a page at the given pagecache position. Return the locked
3068 * page. This function is specifically for buffered writes.
3069 */
54566b2c
NP
3070struct page *grab_cache_page_write_begin(struct address_space *mapping,
3071 pgoff_t index, unsigned flags)
eb2be189 3072{
eb2be189 3073 struct page *page;
bbddabe2 3074 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
0faa70cb 3075
54566b2c 3076 if (flags & AOP_FLAG_NOFS)
2457aec6
MG
3077 fgp_flags |= FGP_NOFS;
3078
3079 page = pagecache_get_page(mapping, index, fgp_flags,
45f87de5 3080 mapping_gfp_mask(mapping));
c585a267 3081 if (page)
2457aec6 3082 wait_for_stable_page(page);
eb2be189 3083
eb2be189
NP
3084 return page;
3085}
54566b2c 3086EXPORT_SYMBOL(grab_cache_page_write_begin);
eb2be189 3087
3b93f911 3088ssize_t generic_perform_write(struct file *file,
afddba49
NP
3089 struct iov_iter *i, loff_t pos)
3090{
3091 struct address_space *mapping = file->f_mapping;
3092 const struct address_space_operations *a_ops = mapping->a_ops;
3093 long status = 0;
3094 ssize_t written = 0;
674b892e
NP
3095 unsigned int flags = 0;
3096
afddba49
NP
3097 do {
3098 struct page *page;
afddba49
NP
3099 unsigned long offset; /* Offset into pagecache page */
3100 unsigned long bytes; /* Bytes to write to page */
3101 size_t copied; /* Bytes copied from user */
3102 void *fsdata;
3103
09cbfeaf
KS
3104 offset = (pos & (PAGE_SIZE - 1));
3105 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
3106 iov_iter_count(i));
3107
3108again:
00a3d660
LT
3109 /*
3110 * Bring in the user page that we will copy from _first_.
3111 * Otherwise there's a nasty deadlock on copying from the
3112 * same page as we're writing to, without it being marked
3113 * up-to-date.
3114 *
3115 * Not only is this an optimisation, but it is also required
3116 * to check that the address is actually valid, when atomic
3117 * usercopies are used, below.
3118 */
3119 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3120 status = -EFAULT;
3121 break;
3122 }
3123
296291cd
JK
3124 if (fatal_signal_pending(current)) {
3125 status = -EINTR;
3126 break;
3127 }
3128
674b892e 3129 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49 3130 &page, &fsdata);
2457aec6 3131 if (unlikely(status < 0))
afddba49
NP
3132 break;
3133
931e80e4 3134 if (mapping_writably_mapped(mapping))
3135 flush_dcache_page(page);
00a3d660 3136
afddba49 3137 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
afddba49
NP
3138 flush_dcache_page(page);
3139
3140 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3141 page, fsdata);
3142 if (unlikely(status < 0))
3143 break;
3144 copied = status;
3145
3146 cond_resched();
3147
124d3b70 3148 iov_iter_advance(i, copied);
afddba49
NP
3149 if (unlikely(copied == 0)) {
3150 /*
3151 * If we were unable to copy any data at all, we must
3152 * fall back to a single segment length write.
3153 *
3154 * If we didn't fallback here, we could livelock
3155 * because not all segments in the iov can be copied at
3156 * once without a pagefault.
3157 */
09cbfeaf 3158 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
3159 iov_iter_single_seg_count(i));
3160 goto again;
3161 }
afddba49
NP
3162 pos += copied;
3163 written += copied;
3164
3165 balance_dirty_pages_ratelimited(mapping);
afddba49
NP
3166 } while (iov_iter_count(i));
3167
3168 return written ? written : status;
3169}
3b93f911 3170EXPORT_SYMBOL(generic_perform_write);
1da177e4 3171
e4dd9de3 3172/**
8174202b 3173 * __generic_file_write_iter - write data to a file
e4dd9de3 3174 * @iocb: IO state structure (file, offset, etc.)
8174202b 3175 * @from: iov_iter with data to write
e4dd9de3
JK
3176 *
3177 * This function does all the work needed for actually writing data to a
3178 * file. It does all basic checks, removes SUID from the file, updates
3179 * modification times and calls proper subroutines depending on whether we
3180 * do direct IO or a standard buffered write.
3181 *
3182 * It expects i_mutex to be grabbed unless we work on a block device or similar
3183 * object which does not need locking at all.
3184 *
3185 * This function does *not* take care of syncing data in case of O_SYNC write.
3186 * A caller has to handle it. This is mainly due to the fact that we want to
3187 * avoid syncing under i_mutex.
3188 */
8174202b 3189ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3190{
3191 struct file *file = iocb->ki_filp;
fb5527e6 3192 struct address_space * mapping = file->f_mapping;
1da177e4 3193 struct inode *inode = mapping->host;
3b93f911 3194 ssize_t written = 0;
1da177e4 3195 ssize_t err;
3b93f911 3196 ssize_t status;
1da177e4 3197
1da177e4 3198 /* We can write back this queue in page reclaim */
de1414a6 3199 current->backing_dev_info = inode_to_bdi(inode);
5fa8e0a1 3200 err = file_remove_privs(file);
1da177e4
LT
3201 if (err)
3202 goto out;
3203
c3b2da31
JB
3204 err = file_update_time(file);
3205 if (err)
3206 goto out;
1da177e4 3207
2ba48ce5 3208 if (iocb->ki_flags & IOCB_DIRECT) {
0b8def9d 3209 loff_t pos, endbyte;
fb5527e6 3210
1af5bb49 3211 written = generic_file_direct_write(iocb, from);
1da177e4 3212 /*
fbbbad4b
MW
3213 * If the write stopped short of completing, fall back to
3214 * buffered writes. Some filesystems do this for writes to
3215 * holes, for example. For DAX files, a buffered write will
3216 * not succeed (even if it did, DAX does not handle dirty
3217 * page-cache pages correctly).
1da177e4 3218 */
0b8def9d 3219 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
fbbbad4b
MW
3220 goto out;
3221
0b8def9d 3222 status = generic_perform_write(file, from, pos = iocb->ki_pos);
fb5527e6 3223 /*
3b93f911 3224 * If generic_perform_write() returned a synchronous error
fb5527e6
JM
3225 * then we want to return the number of bytes which were
3226 * direct-written, or the error code if that was zero. Note
3227 * that this differs from normal direct-io semantics, which
3228 * will return -EFOO even if some bytes were written.
3229 */
60bb4529 3230 if (unlikely(status < 0)) {
3b93f911 3231 err = status;
fb5527e6
JM
3232 goto out;
3233 }
fb5527e6
JM
3234 /*
3235 * We need to ensure that the page cache pages are written to
3236 * disk and invalidated to preserve the expected O_DIRECT
3237 * semantics.
3238 */
3b93f911 3239 endbyte = pos + status - 1;
0b8def9d 3240 err = filemap_write_and_wait_range(mapping, pos, endbyte);
fb5527e6 3241 if (err == 0) {
0b8def9d 3242 iocb->ki_pos = endbyte + 1;
3b93f911 3243 written += status;
fb5527e6 3244 invalidate_mapping_pages(mapping,
09cbfeaf
KS
3245 pos >> PAGE_SHIFT,
3246 endbyte >> PAGE_SHIFT);
fb5527e6
JM
3247 } else {
3248 /*
3249 * We don't know how much we wrote, so just return
3250 * the number of bytes which were direct-written
3251 */
3252 }
3253 } else {
0b8def9d
AV
3254 written = generic_perform_write(file, from, iocb->ki_pos);
3255 if (likely(written > 0))
3256 iocb->ki_pos += written;
fb5527e6 3257 }
1da177e4
LT
3258out:
3259 current->backing_dev_info = NULL;
3260 return written ? written : err;
3261}
8174202b 3262EXPORT_SYMBOL(__generic_file_write_iter);
e4dd9de3 3263
e4dd9de3 3264/**
8174202b 3265 * generic_file_write_iter - write data to a file
e4dd9de3 3266 * @iocb: IO state structure
8174202b 3267 * @from: iov_iter with data to write
e4dd9de3 3268 *
8174202b 3269 * This is a wrapper around __generic_file_write_iter() to be used by most
e4dd9de3
JK
3270 * filesystems. It takes care of syncing the file in case of O_SYNC file
3271 * and acquires i_mutex as needed.
3272 */
8174202b 3273ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3274{
3275 struct file *file = iocb->ki_filp;
148f948b 3276 struct inode *inode = file->f_mapping->host;
1da177e4 3277 ssize_t ret;
1da177e4 3278
5955102c 3279 inode_lock(inode);
3309dd04
AV
3280 ret = generic_write_checks(iocb, from);
3281 if (ret > 0)
5f380c7f 3282 ret = __generic_file_write_iter(iocb, from);
5955102c 3283 inode_unlock(inode);
1da177e4 3284
e2592217
CH
3285 if (ret > 0)
3286 ret = generic_write_sync(iocb, ret);
1da177e4
LT
3287 return ret;
3288}
8174202b 3289EXPORT_SYMBOL(generic_file_write_iter);
1da177e4 3290
cf9a2ae8
DH
3291/**
3292 * try_to_release_page() - release old fs-specific metadata on a page
3293 *
3294 * @page: the page which the kernel is trying to free
3295 * @gfp_mask: memory allocation flags (and I/O mode)
3296 *
3297 * The address_space is to try to release any data against the page
0e056eb5 3298 * (presumably at page->private). If the release was successful, return '1'.
cf9a2ae8
DH
3299 * Otherwise return zero.
3300 *
266cf658
DH
3301 * This may also be called if PG_fscache is set on a page, indicating that the
3302 * page is known to the local caching routines.
3303 *
cf9a2ae8 3304 * The @gfp_mask argument specifies whether I/O may be performed to release
71baba4b 3305 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
cf9a2ae8 3306 *
cf9a2ae8
DH
3307 */
3308int try_to_release_page(struct page *page, gfp_t gfp_mask)
3309{
3310 struct address_space * const mapping = page->mapping;
3311
3312 BUG_ON(!PageLocked(page));
3313 if (PageWriteback(page))
3314 return 0;
3315
3316 if (mapping && mapping->a_ops->releasepage)
3317 return mapping->a_ops->releasepage(page, gfp_mask);
3318 return try_to_free_buffers(page);
3319}
3320
3321EXPORT_SYMBOL(try_to_release_page);