mm: fix two typos in comments for to_vmem_altmap()
[linux-2.6-block.git] / mm / filemap.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
b95f1b31 12#include <linux/export.h>
1da177e4 13#include <linux/compiler.h>
f9fe48be 14#include <linux/dax.h>
1da177e4 15#include <linux/fs.h>
c22ce143 16#include <linux/uaccess.h>
c59ede7b 17#include <linux/capability.h>
1da177e4 18#include <linux/kernel_stat.h>
5a0e3ad6 19#include <linux/gfp.h>
1da177e4
LT
20#include <linux/mm.h>
21#include <linux/swap.h>
22#include <linux/mman.h>
23#include <linux/pagemap.h>
24#include <linux/file.h>
25#include <linux/uio.h>
26#include <linux/hash.h>
27#include <linux/writeback.h>
53253383 28#include <linux/backing-dev.h>
1da177e4
LT
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/security.h>
44110fe3 32#include <linux/cpuset.h>
2f718ffc 33#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
00501b53 34#include <linux/hugetlb.h>
8a9f3ccd 35#include <linux/memcontrol.h>
c515e1fd 36#include <linux/cleancache.h>
f1820361 37#include <linux/rmap.h>
0f8053a5
NP
38#include "internal.h"
39
fe0bfaaf
RJ
40#define CREATE_TRACE_POINTS
41#include <trace/events/filemap.h>
42
1da177e4 43/*
1da177e4
LT
44 * FIXME: remove all knowledge of the buffer layer from the core VM
45 */
148f948b 46#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 47
1da177e4
LT
48#include <asm/mman.h>
49
50/*
51 * Shared mappings implemented 30.11.1994. It's not fully working yet,
52 * though.
53 *
54 * Shared mappings now work. 15.8.1995 Bruno.
55 *
56 * finished 'unifying' the page and buffer cache and SMP-threaded the
57 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58 *
59 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60 */
61
62/*
63 * Lock ordering:
64 *
c8c06efa 65 * ->i_mmap_rwsem (truncate_pagecache)
1da177e4 66 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91
HD
67 * ->swap_lock (exclusive_swap_page, others)
68 * ->mapping->tree_lock
1da177e4 69 *
1b1dcc1b 70 * ->i_mutex
c8c06efa 71 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
1da177e4
LT
72 *
73 * ->mmap_sem
c8c06efa 74 * ->i_mmap_rwsem
b8072f09 75 * ->page_table_lock or pte_lock (various, mainly in memory.c)
1da177e4
LT
76 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
77 *
78 * ->mmap_sem
79 * ->lock_page (access_process_vm)
80 *
ccad2365 81 * ->i_mutex (generic_perform_write)
82591e6e 82 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
1da177e4 83 *
f758eeab 84 * bdi->wb.list_lock
a66979ab 85 * sb_lock (fs/fs-writeback.c)
1da177e4
LT
86 * ->mapping->tree_lock (__sync_single_inode)
87 *
c8c06efa 88 * ->i_mmap_rwsem
1da177e4
LT
89 * ->anon_vma.lock (vma_adjust)
90 *
91 * ->anon_vma.lock
b8072f09 92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 93 *
b8072f09 94 * ->page_table_lock or pte_lock
5d337b91 95 * ->swap_lock (try_to_unmap_one)
1da177e4
LT
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
98 * ->zone.lru_lock (follow_page->mark_page_accessed)
053837fc 99 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
1da177e4
LT
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
f758eeab 102 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
250df6ed 103 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
c4843a75 104 * ->memcg->move_lock (page_remove_rmap->mem_cgroup_begin_page_stat)
f758eeab 105 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 106 * ->inode->i_lock (zap_pte_range->set_page_dirty)
1da177e4
LT
107 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
108 *
c8c06efa 109 * ->i_mmap_rwsem
9a3c531d 110 * ->tasklist_lock (memory_failure, collect_procs_ao)
1da177e4
LT
111 */
112
91b0abe3
JW
113static void page_cache_tree_delete(struct address_space *mapping,
114 struct page *page, void *shadow)
115{
449dd698
JW
116 struct radix_tree_node *node;
117 unsigned long index;
118 unsigned int offset;
119 unsigned int tag;
120 void **slot;
91b0abe3 121
449dd698
JW
122 VM_BUG_ON(!PageLocked(page));
123
124 __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
125
126 if (shadow) {
f9fe48be 127 mapping->nrexceptional++;
91b0abe3 128 /*
f9fe48be 129 * Make sure the nrexceptional update is committed before
91b0abe3
JW
130 * the nrpages update so that final truncate racing
131 * with reclaim does not see both counters 0 at the
132 * same time and miss a shadow entry.
133 */
134 smp_wmb();
449dd698 135 }
91b0abe3 136 mapping->nrpages--;
449dd698
JW
137
138 if (!node) {
139 /* Clear direct pointer tags in root node */
140 mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
141 radix_tree_replace_slot(slot, shadow);
142 return;
143 }
144
145 /* Clear tree tags for the removed page */
146 index = page->index;
147 offset = index & RADIX_TREE_MAP_MASK;
148 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
149 if (test_bit(offset, node->tags[tag]))
150 radix_tree_tag_clear(&mapping->page_tree, index, tag);
151 }
152
153 /* Delete page, swap shadow entry */
154 radix_tree_replace_slot(slot, shadow);
155 workingset_node_pages_dec(node);
156 if (shadow)
157 workingset_node_shadows_inc(node);
158 else
159 if (__radix_tree_delete_node(&mapping->page_tree, node))
160 return;
161
162 /*
163 * Track node that only contains shadow entries.
164 *
165 * Avoid acquiring the list_lru lock if already tracked. The
166 * list_empty() test is safe as node->private_list is
167 * protected by mapping->tree_lock.
168 */
169 if (!workingset_node_pages(node) &&
170 list_empty(&node->private_list)) {
171 node->private_data = mapping;
172 list_lru_add(&workingset_shadow_nodes, &node->private_list);
173 }
91b0abe3
JW
174}
175
1da177e4 176/*
e64a782f 177 * Delete a page from the page cache and free it. Caller has to make
1da177e4 178 * sure the page is locked and that nobody else uses it - or that usage
c4843a75
GT
179 * is safe. The caller must hold the mapping's tree_lock and
180 * mem_cgroup_begin_page_stat().
1da177e4 181 */
c4843a75
GT
182void __delete_from_page_cache(struct page *page, void *shadow,
183 struct mem_cgroup *memcg)
1da177e4
LT
184{
185 struct address_space *mapping = page->mapping;
186
fe0bfaaf 187 trace_mm_filemap_delete_from_page_cache(page);
c515e1fd
DM
188 /*
189 * if we're uptodate, flush out into the cleancache, otherwise
190 * invalidate any existing cleancache entries. We can't leave
191 * stale data around in the cleancache once our page is gone
192 */
193 if (PageUptodate(page) && PageMappedToDisk(page))
194 cleancache_put_page(page);
195 else
3167760f 196 cleancache_invalidate_page(mapping, page);
c515e1fd 197
06b241f3
HD
198 VM_BUG_ON_PAGE(page_mapped(page), page);
199 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
200 int mapcount;
201
202 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
203 current->comm, page_to_pfn(page));
204 dump_page(page, "still mapped when deleted");
205 dump_stack();
206 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
207
208 mapcount = page_mapcount(page);
209 if (mapping_exiting(mapping) &&
210 page_count(page) >= mapcount + 2) {
211 /*
212 * All vmas have already been torn down, so it's
213 * a good bet that actually the page is unmapped,
214 * and we'd prefer not to leak it: if we're wrong,
215 * some other bad page check should catch it later.
216 */
217 page_mapcount_reset(page);
218 atomic_sub(mapcount, &page->_count);
219 }
220 }
221
91b0abe3
JW
222 page_cache_tree_delete(mapping, page, shadow);
223
1da177e4 224 page->mapping = NULL;
b85e0eff 225 /* Leave page->index set: truncation lookup relies upon it */
91b0abe3 226
4165b9b4
MH
227 /* hugetlb pages do not participate in page cache accounting. */
228 if (!PageHuge(page))
229 __dec_zone_page_state(page, NR_FILE_PAGES);
4b02108a
KM
230 if (PageSwapBacked(page))
231 __dec_zone_page_state(page, NR_SHMEM);
3a692790
LT
232
233 /*
b9ea2515
KK
234 * At this point page must be either written or cleaned by truncate.
235 * Dirty page here signals a bug and loss of unwritten data.
3a692790 236 *
b9ea2515
KK
237 * This fixes dirty accounting after removing the page entirely but
238 * leaves PageDirty set: it has no effect for truncated page and
239 * anyway will be cleared before returning page into buddy allocator.
3a692790 240 */
b9ea2515 241 if (WARN_ON_ONCE(PageDirty(page)))
682aa8e1
TH
242 account_page_cleaned(page, mapping, memcg,
243 inode_to_wb(mapping->host));
1da177e4
LT
244}
245
702cfbf9
MK
246/**
247 * delete_from_page_cache - delete page from page cache
248 * @page: the page which the kernel is trying to remove from page cache
249 *
250 * This must be called only on pages that have been verified to be in the page
251 * cache and locked. It will never put the page into the free list, the caller
252 * has a reference on the page.
253 */
254void delete_from_page_cache(struct page *page)
1da177e4
LT
255{
256 struct address_space *mapping = page->mapping;
c4843a75
GT
257 struct mem_cgroup *memcg;
258 unsigned long flags;
259
6072d13c 260 void (*freepage)(struct page *);
1da177e4 261
cd7619d6 262 BUG_ON(!PageLocked(page));
1da177e4 263
6072d13c 264 freepage = mapping->a_ops->freepage;
c4843a75
GT
265
266 memcg = mem_cgroup_begin_page_stat(page);
267 spin_lock_irqsave(&mapping->tree_lock, flags);
268 __delete_from_page_cache(page, NULL, memcg);
269 spin_unlock_irqrestore(&mapping->tree_lock, flags);
270 mem_cgroup_end_page_stat(memcg);
6072d13c
LT
271
272 if (freepage)
273 freepage(page);
97cecb5a
MK
274 page_cache_release(page);
275}
276EXPORT_SYMBOL(delete_from_page_cache);
277
865ffef3
DM
278static int filemap_check_errors(struct address_space *mapping)
279{
280 int ret = 0;
281 /* Check for outstanding write errors */
7fcbbaf1
JA
282 if (test_bit(AS_ENOSPC, &mapping->flags) &&
283 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
865ffef3 284 ret = -ENOSPC;
7fcbbaf1
JA
285 if (test_bit(AS_EIO, &mapping->flags) &&
286 test_and_clear_bit(AS_EIO, &mapping->flags))
865ffef3
DM
287 ret = -EIO;
288 return ret;
289}
290
1da177e4 291/**
485bb99b 292 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
293 * @mapping: address space structure to write
294 * @start: offset in bytes where the range starts
469eb4d0 295 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 296 * @sync_mode: enable synchronous operation
1da177e4 297 *
485bb99b
RD
298 * Start writeback against all of a mapping's dirty pages that lie
299 * within the byte offsets <start, end> inclusive.
300 *
1da177e4 301 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 302 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
303 * these two operations is that if a dirty page/buffer is encountered, it must
304 * be waited upon, and not just skipped over.
305 */
ebcf28e1
AM
306int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
307 loff_t end, int sync_mode)
1da177e4
LT
308{
309 int ret;
310 struct writeback_control wbc = {
311 .sync_mode = sync_mode,
05fe478d 312 .nr_to_write = LONG_MAX,
111ebb6e
OH
313 .range_start = start,
314 .range_end = end,
1da177e4
LT
315 };
316
317 if (!mapping_cap_writeback_dirty(mapping))
318 return 0;
319
b16b1deb 320 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
1da177e4 321 ret = do_writepages(mapping, &wbc);
b16b1deb 322 wbc_detach_inode(&wbc);
1da177e4
LT
323 return ret;
324}
325
326static inline int __filemap_fdatawrite(struct address_space *mapping,
327 int sync_mode)
328{
111ebb6e 329 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
330}
331
332int filemap_fdatawrite(struct address_space *mapping)
333{
334 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
335}
336EXPORT_SYMBOL(filemap_fdatawrite);
337
f4c0a0fd 338int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 339 loff_t end)
1da177e4
LT
340{
341 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
342}
f4c0a0fd 343EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 344
485bb99b
RD
345/**
346 * filemap_flush - mostly a non-blocking flush
347 * @mapping: target address_space
348 *
1da177e4
LT
349 * This is a mostly non-blocking flush. Not suitable for data-integrity
350 * purposes - I/O may not be started against all dirty pages.
351 */
352int filemap_flush(struct address_space *mapping)
353{
354 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
355}
356EXPORT_SYMBOL(filemap_flush);
357
aa750fd7
JN
358static int __filemap_fdatawait_range(struct address_space *mapping,
359 loff_t start_byte, loff_t end_byte)
1da177e4 360{
94004ed7
CH
361 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
362 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
1da177e4
LT
363 struct pagevec pvec;
364 int nr_pages;
aa750fd7 365 int ret = 0;
1da177e4 366
94004ed7 367 if (end_byte < start_byte)
865ffef3 368 goto out;
1da177e4
LT
369
370 pagevec_init(&pvec, 0);
1da177e4
LT
371 while ((index <= end) &&
372 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
373 PAGECACHE_TAG_WRITEBACK,
374 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
375 unsigned i;
376
377 for (i = 0; i < nr_pages; i++) {
378 struct page *page = pvec.pages[i];
379
380 /* until radix tree lookup accepts end_index */
381 if (page->index > end)
382 continue;
383
384 wait_on_page_writeback(page);
212260aa 385 if (TestClearPageError(page))
1da177e4
LT
386 ret = -EIO;
387 }
388 pagevec_release(&pvec);
389 cond_resched();
390 }
865ffef3 391out:
aa750fd7
JN
392 return ret;
393}
394
395/**
396 * filemap_fdatawait_range - wait for writeback to complete
397 * @mapping: address space structure to wait for
398 * @start_byte: offset in bytes where the range starts
399 * @end_byte: offset in bytes where the range ends (inclusive)
400 *
401 * Walk the list of under-writeback pages of the given address space
402 * in the given range and wait for all of them. Check error status of
403 * the address space and return it.
404 *
405 * Since the error status of the address space is cleared by this function,
406 * callers are responsible for checking the return value and handling and/or
407 * reporting the error.
408 */
409int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
410 loff_t end_byte)
411{
412 int ret, ret2;
413
414 ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
865ffef3
DM
415 ret2 = filemap_check_errors(mapping);
416 if (!ret)
417 ret = ret2;
1da177e4
LT
418
419 return ret;
420}
d3bccb6f
JK
421EXPORT_SYMBOL(filemap_fdatawait_range);
422
aa750fd7
JN
423/**
424 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
425 * @mapping: address space structure to wait for
426 *
427 * Walk the list of under-writeback pages of the given address space
428 * and wait for all of them. Unlike filemap_fdatawait(), this function
429 * does not clear error status of the address space.
430 *
431 * Use this function if callers don't handle errors themselves. Expected
432 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
433 * fsfreeze(8)
434 */
435void filemap_fdatawait_keep_errors(struct address_space *mapping)
436{
437 loff_t i_size = i_size_read(mapping->host);
438
439 if (i_size == 0)
440 return;
441
442 __filemap_fdatawait_range(mapping, 0, i_size - 1);
443}
444
1da177e4 445/**
485bb99b 446 * filemap_fdatawait - wait for all under-writeback pages to complete
1da177e4 447 * @mapping: address space structure to wait for
485bb99b
RD
448 *
449 * Walk the list of under-writeback pages of the given address space
aa750fd7
JN
450 * and wait for all of them. Check error status of the address space
451 * and return it.
452 *
453 * Since the error status of the address space is cleared by this function,
454 * callers are responsible for checking the return value and handling and/or
455 * reporting the error.
1da177e4
LT
456 */
457int filemap_fdatawait(struct address_space *mapping)
458{
459 loff_t i_size = i_size_read(mapping->host);
460
461 if (i_size == 0)
462 return 0;
463
94004ed7 464 return filemap_fdatawait_range(mapping, 0, i_size - 1);
1da177e4
LT
465}
466EXPORT_SYMBOL(filemap_fdatawait);
467
468int filemap_write_and_wait(struct address_space *mapping)
469{
28fd1298 470 int err = 0;
1da177e4 471
7f6d5b52
RZ
472 if ((!dax_mapping(mapping) && mapping->nrpages) ||
473 (dax_mapping(mapping) && mapping->nrexceptional)) {
28fd1298
OH
474 err = filemap_fdatawrite(mapping);
475 /*
476 * Even if the above returned error, the pages may be
477 * written partially (e.g. -ENOSPC), so we wait for it.
478 * But the -EIO is special case, it may indicate the worst
479 * thing (e.g. bug) happened, so we avoid waiting for it.
480 */
481 if (err != -EIO) {
482 int err2 = filemap_fdatawait(mapping);
483 if (!err)
484 err = err2;
485 }
865ffef3
DM
486 } else {
487 err = filemap_check_errors(mapping);
1da177e4 488 }
28fd1298 489 return err;
1da177e4 490}
28fd1298 491EXPORT_SYMBOL(filemap_write_and_wait);
1da177e4 492
485bb99b
RD
493/**
494 * filemap_write_and_wait_range - write out & wait on a file range
495 * @mapping: the address_space for the pages
496 * @lstart: offset in bytes where the range starts
497 * @lend: offset in bytes where the range ends (inclusive)
498 *
469eb4d0
AM
499 * Write out and wait upon file offsets lstart->lend, inclusive.
500 *
501 * Note that `lend' is inclusive (describes the last byte to be written) so
502 * that this function can be used to write to the very end-of-file (end = -1).
503 */
1da177e4
LT
504int filemap_write_and_wait_range(struct address_space *mapping,
505 loff_t lstart, loff_t lend)
506{
28fd1298 507 int err = 0;
1da177e4 508
7f6d5b52
RZ
509 if ((!dax_mapping(mapping) && mapping->nrpages) ||
510 (dax_mapping(mapping) && mapping->nrexceptional)) {
28fd1298
OH
511 err = __filemap_fdatawrite_range(mapping, lstart, lend,
512 WB_SYNC_ALL);
513 /* See comment of filemap_write_and_wait() */
514 if (err != -EIO) {
94004ed7
CH
515 int err2 = filemap_fdatawait_range(mapping,
516 lstart, lend);
28fd1298
OH
517 if (!err)
518 err = err2;
519 }
865ffef3
DM
520 } else {
521 err = filemap_check_errors(mapping);
1da177e4 522 }
28fd1298 523 return err;
1da177e4 524}
f6995585 525EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 526
ef6a3c63
MS
527/**
528 * replace_page_cache_page - replace a pagecache page with a new one
529 * @old: page to be replaced
530 * @new: page to replace with
531 * @gfp_mask: allocation mode
532 *
533 * This function replaces a page in the pagecache with a new one. On
534 * success it acquires the pagecache reference for the new page and
535 * drops it for the old page. Both the old and new pages must be
536 * locked. This function does not add the new page to the LRU, the
537 * caller must do that.
538 *
539 * The remove + add is atomic. The only way this function can fail is
540 * memory allocation failure.
541 */
542int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
543{
544 int error;
ef6a3c63 545
309381fe
SL
546 VM_BUG_ON_PAGE(!PageLocked(old), old);
547 VM_BUG_ON_PAGE(!PageLocked(new), new);
548 VM_BUG_ON_PAGE(new->mapping, new);
ef6a3c63 549
ef6a3c63
MS
550 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
551 if (!error) {
552 struct address_space *mapping = old->mapping;
553 void (*freepage)(struct page *);
c4843a75
GT
554 struct mem_cgroup *memcg;
555 unsigned long flags;
ef6a3c63
MS
556
557 pgoff_t offset = old->index;
558 freepage = mapping->a_ops->freepage;
559
560 page_cache_get(new);
561 new->mapping = mapping;
562 new->index = offset;
563
c4843a75
GT
564 memcg = mem_cgroup_begin_page_stat(old);
565 spin_lock_irqsave(&mapping->tree_lock, flags);
566 __delete_from_page_cache(old, NULL, memcg);
ef6a3c63
MS
567 error = radix_tree_insert(&mapping->page_tree, offset, new);
568 BUG_ON(error);
569 mapping->nrpages++;
4165b9b4
MH
570
571 /*
572 * hugetlb pages do not participate in page cache accounting.
573 */
574 if (!PageHuge(new))
575 __inc_zone_page_state(new, NR_FILE_PAGES);
ef6a3c63
MS
576 if (PageSwapBacked(new))
577 __inc_zone_page_state(new, NR_SHMEM);
c4843a75
GT
578 spin_unlock_irqrestore(&mapping->tree_lock, flags);
579 mem_cgroup_end_page_stat(memcg);
45637bab 580 mem_cgroup_replace_page(old, new);
ef6a3c63
MS
581 radix_tree_preload_end();
582 if (freepage)
583 freepage(old);
584 page_cache_release(old);
ef6a3c63
MS
585 }
586
587 return error;
588}
589EXPORT_SYMBOL_GPL(replace_page_cache_page);
590
0cd6144a 591static int page_cache_tree_insert(struct address_space *mapping,
a528910e 592 struct page *page, void **shadowp)
0cd6144a 593{
449dd698 594 struct radix_tree_node *node;
0cd6144a
JW
595 void **slot;
596 int error;
597
449dd698
JW
598 error = __radix_tree_create(&mapping->page_tree, page->index,
599 &node, &slot);
600 if (error)
601 return error;
602 if (*slot) {
0cd6144a
JW
603 void *p;
604
605 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
606 if (!radix_tree_exceptional_entry(p))
607 return -EEXIST;
f9fe48be
RZ
608
609 if (WARN_ON(dax_mapping(mapping)))
610 return -EINVAL;
611
a528910e
JW
612 if (shadowp)
613 *shadowp = p;
f9fe48be 614 mapping->nrexceptional--;
449dd698
JW
615 if (node)
616 workingset_node_shadows_dec(node);
0cd6144a 617 }
449dd698
JW
618 radix_tree_replace_slot(slot, page);
619 mapping->nrpages++;
620 if (node) {
621 workingset_node_pages_inc(node);
622 /*
623 * Don't track node that contains actual pages.
624 *
625 * Avoid acquiring the list_lru lock if already
626 * untracked. The list_empty() test is safe as
627 * node->private_list is protected by
628 * mapping->tree_lock.
629 */
630 if (!list_empty(&node->private_list))
631 list_lru_del(&workingset_shadow_nodes,
632 &node->private_list);
633 }
634 return 0;
0cd6144a
JW
635}
636
a528910e
JW
637static int __add_to_page_cache_locked(struct page *page,
638 struct address_space *mapping,
639 pgoff_t offset, gfp_t gfp_mask,
640 void **shadowp)
1da177e4 641{
00501b53
JW
642 int huge = PageHuge(page);
643 struct mem_cgroup *memcg;
e286781d
NP
644 int error;
645
309381fe
SL
646 VM_BUG_ON_PAGE(!PageLocked(page), page);
647 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
e286781d 648
00501b53
JW
649 if (!huge) {
650 error = mem_cgroup_try_charge(page, current->mm,
f627c2f5 651 gfp_mask, &memcg, false);
00501b53
JW
652 if (error)
653 return error;
654 }
1da177e4 655
5e4c0d97 656 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
66a0c8ee 657 if (error) {
00501b53 658 if (!huge)
f627c2f5 659 mem_cgroup_cancel_charge(page, memcg, false);
66a0c8ee
KS
660 return error;
661 }
662
663 page_cache_get(page);
664 page->mapping = mapping;
665 page->index = offset;
666
667 spin_lock_irq(&mapping->tree_lock);
a528910e 668 error = page_cache_tree_insert(mapping, page, shadowp);
66a0c8ee
KS
669 radix_tree_preload_end();
670 if (unlikely(error))
671 goto err_insert;
4165b9b4
MH
672
673 /* hugetlb pages do not participate in page cache accounting. */
674 if (!huge)
675 __inc_zone_page_state(page, NR_FILE_PAGES);
66a0c8ee 676 spin_unlock_irq(&mapping->tree_lock);
00501b53 677 if (!huge)
f627c2f5 678 mem_cgroup_commit_charge(page, memcg, false, false);
66a0c8ee
KS
679 trace_mm_filemap_add_to_page_cache(page);
680 return 0;
681err_insert:
682 page->mapping = NULL;
683 /* Leave page->index set: truncation relies upon it */
684 spin_unlock_irq(&mapping->tree_lock);
00501b53 685 if (!huge)
f627c2f5 686 mem_cgroup_cancel_charge(page, memcg, false);
66a0c8ee 687 page_cache_release(page);
1da177e4
LT
688 return error;
689}
a528910e
JW
690
691/**
692 * add_to_page_cache_locked - add a locked page to the pagecache
693 * @page: page to add
694 * @mapping: the page's address_space
695 * @offset: page index
696 * @gfp_mask: page allocation mode
697 *
698 * This function is used to add a page to the pagecache. It must be locked.
699 * This function does not add the page to the LRU. The caller must do that.
700 */
701int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
702 pgoff_t offset, gfp_t gfp_mask)
703{
704 return __add_to_page_cache_locked(page, mapping, offset,
705 gfp_mask, NULL);
706}
e286781d 707EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4
LT
708
709int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 710 pgoff_t offset, gfp_t gfp_mask)
1da177e4 711{
a528910e 712 void *shadow = NULL;
4f98a2fe
RR
713 int ret;
714
48c935ad 715 __SetPageLocked(page);
a528910e
JW
716 ret = __add_to_page_cache_locked(page, mapping, offset,
717 gfp_mask, &shadow);
718 if (unlikely(ret))
48c935ad 719 __ClearPageLocked(page);
a528910e
JW
720 else {
721 /*
722 * The page might have been evicted from cache only
723 * recently, in which case it should be activated like
724 * any other repeatedly accessed page.
725 */
726 if (shadow && workingset_refault(shadow)) {
727 SetPageActive(page);
728 workingset_activation(page);
729 } else
730 ClearPageActive(page);
731 lru_cache_add(page);
732 }
1da177e4
LT
733 return ret;
734}
18bc0bbd 735EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1da177e4 736
44110fe3 737#ifdef CONFIG_NUMA
2ae88149 738struct page *__page_cache_alloc(gfp_t gfp)
44110fe3 739{
c0ff7453
MX
740 int n;
741 struct page *page;
742
44110fe3 743 if (cpuset_do_page_mem_spread()) {
cc9a6c87
MG
744 unsigned int cpuset_mems_cookie;
745 do {
d26914d1 746 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 747 n = cpuset_mem_spread_node();
96db800f 748 page = __alloc_pages_node(n, gfp, 0);
d26914d1 749 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
cc9a6c87 750
c0ff7453 751 return page;
44110fe3 752 }
2ae88149 753 return alloc_pages(gfp, 0);
44110fe3 754}
2ae88149 755EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
756#endif
757
1da177e4
LT
758/*
759 * In order to wait for pages to become available there must be
760 * waitqueues associated with pages. By using a hash table of
761 * waitqueues where the bucket discipline is to maintain all
762 * waiters on the same queue and wake all when any of the pages
763 * become available, and for the woken contexts to check to be
764 * sure the appropriate page became available, this saves space
765 * at a cost of "thundering herd" phenomena during rare hash
766 * collisions.
767 */
a4796e37 768wait_queue_head_t *page_waitqueue(struct page *page)
1da177e4
LT
769{
770 const struct zone *zone = page_zone(page);
771
772 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
773}
a4796e37 774EXPORT_SYMBOL(page_waitqueue);
1da177e4 775
920c7a5d 776void wait_on_page_bit(struct page *page, int bit_nr)
1da177e4
LT
777{
778 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
779
780 if (test_bit(bit_nr, &page->flags))
74316201 781 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
1da177e4
LT
782 TASK_UNINTERRUPTIBLE);
783}
784EXPORT_SYMBOL(wait_on_page_bit);
785
f62e00cc
KM
786int wait_on_page_bit_killable(struct page *page, int bit_nr)
787{
788 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
789
790 if (!test_bit(bit_nr, &page->flags))
791 return 0;
792
793 return __wait_on_bit(page_waitqueue(page), &wait,
74316201 794 bit_wait_io, TASK_KILLABLE);
f62e00cc
KM
795}
796
cbbce822
N
797int wait_on_page_bit_killable_timeout(struct page *page,
798 int bit_nr, unsigned long timeout)
799{
800 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
801
802 wait.key.timeout = jiffies + timeout;
803 if (!test_bit(bit_nr, &page->flags))
804 return 0;
805 return __wait_on_bit(page_waitqueue(page), &wait,
806 bit_wait_io_timeout, TASK_KILLABLE);
807}
808EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
809
385e1ca5
DH
810/**
811 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
697f619f
RD
812 * @page: Page defining the wait queue of interest
813 * @waiter: Waiter to add to the queue
385e1ca5
DH
814 *
815 * Add an arbitrary @waiter to the wait queue for the nominated @page.
816 */
817void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
818{
819 wait_queue_head_t *q = page_waitqueue(page);
820 unsigned long flags;
821
822 spin_lock_irqsave(&q->lock, flags);
823 __add_wait_queue(q, waiter);
824 spin_unlock_irqrestore(&q->lock, flags);
825}
826EXPORT_SYMBOL_GPL(add_page_wait_queue);
827
1da177e4 828/**
485bb99b 829 * unlock_page - unlock a locked page
1da177e4
LT
830 * @page: the page
831 *
832 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
833 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
da3dae54 834 * mechanism between PageLocked pages and PageWriteback pages is shared.
1da177e4
LT
835 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
836 *
8413ac9d
NP
837 * The mb is necessary to enforce ordering between the clear_bit and the read
838 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
1da177e4 839 */
920c7a5d 840void unlock_page(struct page *page)
1da177e4 841{
48c935ad 842 page = compound_head(page);
309381fe 843 VM_BUG_ON_PAGE(!PageLocked(page), page);
8413ac9d 844 clear_bit_unlock(PG_locked, &page->flags);
4e857c58 845 smp_mb__after_atomic();
1da177e4
LT
846 wake_up_page(page, PG_locked);
847}
848EXPORT_SYMBOL(unlock_page);
849
485bb99b
RD
850/**
851 * end_page_writeback - end writeback against a page
852 * @page: the page
1da177e4
LT
853 */
854void end_page_writeback(struct page *page)
855{
888cf2db
MG
856 /*
857 * TestClearPageReclaim could be used here but it is an atomic
858 * operation and overkill in this particular case. Failing to
859 * shuffle a page marked for immediate reclaim is too mild to
860 * justify taking an atomic operation penalty at the end of
861 * ever page writeback.
862 */
863 if (PageReclaim(page)) {
864 ClearPageReclaim(page);
ac6aadb2 865 rotate_reclaimable_page(page);
888cf2db 866 }
ac6aadb2
MS
867
868 if (!test_clear_page_writeback(page))
869 BUG();
870
4e857c58 871 smp_mb__after_atomic();
1da177e4
LT
872 wake_up_page(page, PG_writeback);
873}
874EXPORT_SYMBOL(end_page_writeback);
875
57d99845
MW
876/*
877 * After completing I/O on a page, call this routine to update the page
878 * flags appropriately
879 */
880void page_endio(struct page *page, int rw, int err)
881{
882 if (rw == READ) {
883 if (!err) {
884 SetPageUptodate(page);
885 } else {
886 ClearPageUptodate(page);
887 SetPageError(page);
888 }
889 unlock_page(page);
890 } else { /* rw == WRITE */
891 if (err) {
892 SetPageError(page);
893 if (page->mapping)
894 mapping_set_error(page->mapping, err);
895 }
896 end_page_writeback(page);
897 }
898}
899EXPORT_SYMBOL_GPL(page_endio);
900
485bb99b
RD
901/**
902 * __lock_page - get a lock on the page, assuming we need to sleep to get it
903 * @page: the page to lock
1da177e4 904 */
920c7a5d 905void __lock_page(struct page *page)
1da177e4 906{
48c935ad
KS
907 struct page *page_head = compound_head(page);
908 DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
1da177e4 909
48c935ad 910 __wait_on_bit_lock(page_waitqueue(page_head), &wait, bit_wait_io,
1da177e4
LT
911 TASK_UNINTERRUPTIBLE);
912}
913EXPORT_SYMBOL(__lock_page);
914
b5606c2d 915int __lock_page_killable(struct page *page)
2687a356 916{
48c935ad
KS
917 struct page *page_head = compound_head(page);
918 DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
2687a356 919
48c935ad 920 return __wait_on_bit_lock(page_waitqueue(page_head), &wait,
74316201 921 bit_wait_io, TASK_KILLABLE);
2687a356 922}
18bc0bbd 923EXPORT_SYMBOL_GPL(__lock_page_killable);
2687a356 924
9a95f3cf
PC
925/*
926 * Return values:
927 * 1 - page is locked; mmap_sem is still held.
928 * 0 - page is not locked.
929 * mmap_sem has been released (up_read()), unless flags had both
930 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
931 * which case mmap_sem is still held.
932 *
933 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
934 * with the page locked and the mmap_sem unperturbed.
935 */
d065bd81
ML
936int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
937 unsigned int flags)
938{
37b23e05
KM
939 if (flags & FAULT_FLAG_ALLOW_RETRY) {
940 /*
941 * CAUTION! In this case, mmap_sem is not released
942 * even though return 0.
943 */
944 if (flags & FAULT_FLAG_RETRY_NOWAIT)
945 return 0;
946
947 up_read(&mm->mmap_sem);
948 if (flags & FAULT_FLAG_KILLABLE)
949 wait_on_page_locked_killable(page);
950 else
318b275f 951 wait_on_page_locked(page);
d065bd81 952 return 0;
37b23e05
KM
953 } else {
954 if (flags & FAULT_FLAG_KILLABLE) {
955 int ret;
956
957 ret = __lock_page_killable(page);
958 if (ret) {
959 up_read(&mm->mmap_sem);
960 return 0;
961 }
962 } else
963 __lock_page(page);
964 return 1;
d065bd81
ML
965 }
966}
967
e7b563bb
JW
968/**
969 * page_cache_next_hole - find the next hole (not-present entry)
970 * @mapping: mapping
971 * @index: index
972 * @max_scan: maximum range to search
973 *
974 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
975 * lowest indexed hole.
976 *
977 * Returns: the index of the hole if found, otherwise returns an index
978 * outside of the set specified (in which case 'return - index >=
979 * max_scan' will be true). In rare cases of index wrap-around, 0 will
980 * be returned.
981 *
982 * page_cache_next_hole may be called under rcu_read_lock. However,
983 * like radix_tree_gang_lookup, this will not atomically search a
984 * snapshot of the tree at a single point in time. For example, if a
985 * hole is created at index 5, then subsequently a hole is created at
986 * index 10, page_cache_next_hole covering both indexes may return 10
987 * if called under rcu_read_lock.
988 */
989pgoff_t page_cache_next_hole(struct address_space *mapping,
990 pgoff_t index, unsigned long max_scan)
991{
992 unsigned long i;
993
994 for (i = 0; i < max_scan; i++) {
0cd6144a
JW
995 struct page *page;
996
997 page = radix_tree_lookup(&mapping->page_tree, index);
998 if (!page || radix_tree_exceptional_entry(page))
e7b563bb
JW
999 break;
1000 index++;
1001 if (index == 0)
1002 break;
1003 }
1004
1005 return index;
1006}
1007EXPORT_SYMBOL(page_cache_next_hole);
1008
1009/**
1010 * page_cache_prev_hole - find the prev hole (not-present entry)
1011 * @mapping: mapping
1012 * @index: index
1013 * @max_scan: maximum range to search
1014 *
1015 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1016 * the first hole.
1017 *
1018 * Returns: the index of the hole if found, otherwise returns an index
1019 * outside of the set specified (in which case 'index - return >=
1020 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1021 * will be returned.
1022 *
1023 * page_cache_prev_hole may be called under rcu_read_lock. However,
1024 * like radix_tree_gang_lookup, this will not atomically search a
1025 * snapshot of the tree at a single point in time. For example, if a
1026 * hole is created at index 10, then subsequently a hole is created at
1027 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1028 * called under rcu_read_lock.
1029 */
1030pgoff_t page_cache_prev_hole(struct address_space *mapping,
1031 pgoff_t index, unsigned long max_scan)
1032{
1033 unsigned long i;
1034
1035 for (i = 0; i < max_scan; i++) {
0cd6144a
JW
1036 struct page *page;
1037
1038 page = radix_tree_lookup(&mapping->page_tree, index);
1039 if (!page || radix_tree_exceptional_entry(page))
e7b563bb
JW
1040 break;
1041 index--;
1042 if (index == ULONG_MAX)
1043 break;
1044 }
1045
1046 return index;
1047}
1048EXPORT_SYMBOL(page_cache_prev_hole);
1049
485bb99b 1050/**
0cd6144a 1051 * find_get_entry - find and get a page cache entry
485bb99b 1052 * @mapping: the address_space to search
0cd6144a
JW
1053 * @offset: the page cache index
1054 *
1055 * Looks up the page cache slot at @mapping & @offset. If there is a
1056 * page cache page, it is returned with an increased refcount.
485bb99b 1057 *
139b6a6f
JW
1058 * If the slot holds a shadow entry of a previously evicted page, or a
1059 * swap entry from shmem/tmpfs, it is returned.
0cd6144a
JW
1060 *
1061 * Otherwise, %NULL is returned.
1da177e4 1062 */
0cd6144a 1063struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1da177e4 1064{
a60637c8 1065 void **pagep;
1da177e4
LT
1066 struct page *page;
1067
a60637c8
NP
1068 rcu_read_lock();
1069repeat:
1070 page = NULL;
1071 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1072 if (pagep) {
1073 page = radix_tree_deref_slot(pagep);
27d20fdd
NP
1074 if (unlikely(!page))
1075 goto out;
a2c16d6c 1076 if (radix_tree_exception(page)) {
8079b1c8
HD
1077 if (radix_tree_deref_retry(page))
1078 goto repeat;
1079 /*
139b6a6f
JW
1080 * A shadow entry of a recently evicted page,
1081 * or a swap entry from shmem/tmpfs. Return
1082 * it without attempting to raise page count.
8079b1c8
HD
1083 */
1084 goto out;
a2c16d6c 1085 }
a60637c8
NP
1086 if (!page_cache_get_speculative(page))
1087 goto repeat;
1088
1089 /*
1090 * Has the page moved?
1091 * This is part of the lockless pagecache protocol. See
1092 * include/linux/pagemap.h for details.
1093 */
1094 if (unlikely(page != *pagep)) {
1095 page_cache_release(page);
1096 goto repeat;
1097 }
1098 }
27d20fdd 1099out:
a60637c8
NP
1100 rcu_read_unlock();
1101
1da177e4
LT
1102 return page;
1103}
0cd6144a 1104EXPORT_SYMBOL(find_get_entry);
1da177e4 1105
0cd6144a
JW
1106/**
1107 * find_lock_entry - locate, pin and lock a page cache entry
1108 * @mapping: the address_space to search
1109 * @offset: the page cache index
1110 *
1111 * Looks up the page cache slot at @mapping & @offset. If there is a
1112 * page cache page, it is returned locked and with an increased
1113 * refcount.
1114 *
139b6a6f
JW
1115 * If the slot holds a shadow entry of a previously evicted page, or a
1116 * swap entry from shmem/tmpfs, it is returned.
0cd6144a
JW
1117 *
1118 * Otherwise, %NULL is returned.
1119 *
1120 * find_lock_entry() may sleep.
1121 */
1122struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1da177e4
LT
1123{
1124 struct page *page;
1125
1da177e4 1126repeat:
0cd6144a 1127 page = find_get_entry(mapping, offset);
a2c16d6c 1128 if (page && !radix_tree_exception(page)) {
a60637c8
NP
1129 lock_page(page);
1130 /* Has the page been truncated? */
1131 if (unlikely(page->mapping != mapping)) {
1132 unlock_page(page);
1133 page_cache_release(page);
1134 goto repeat;
1da177e4 1135 }
309381fe 1136 VM_BUG_ON_PAGE(page->index != offset, page);
1da177e4 1137 }
1da177e4
LT
1138 return page;
1139}
0cd6144a
JW
1140EXPORT_SYMBOL(find_lock_entry);
1141
1142/**
2457aec6 1143 * pagecache_get_page - find and get a page reference
0cd6144a
JW
1144 * @mapping: the address_space to search
1145 * @offset: the page index
2457aec6 1146 * @fgp_flags: PCG flags
45f87de5 1147 * @gfp_mask: gfp mask to use for the page cache data page allocation
0cd6144a 1148 *
2457aec6 1149 * Looks up the page cache slot at @mapping & @offset.
1da177e4 1150 *
75325189 1151 * PCG flags modify how the page is returned.
0cd6144a 1152 *
2457aec6
MG
1153 * FGP_ACCESSED: the page will be marked accessed
1154 * FGP_LOCK: Page is return locked
1155 * FGP_CREAT: If page is not present then a new page is allocated using
45f87de5
MH
1156 * @gfp_mask and added to the page cache and the VM's LRU
1157 * list. The page is returned locked and with an increased
1158 * refcount. Otherwise, %NULL is returned.
1da177e4 1159 *
2457aec6
MG
1160 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1161 * if the GFP flags specified for FGP_CREAT are atomic.
1da177e4 1162 *
2457aec6 1163 * If there is a page cache page, it is returned with an increased refcount.
1da177e4 1164 */
2457aec6 1165struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
45f87de5 1166 int fgp_flags, gfp_t gfp_mask)
1da177e4 1167{
eb2be189 1168 struct page *page;
2457aec6 1169
1da177e4 1170repeat:
2457aec6
MG
1171 page = find_get_entry(mapping, offset);
1172 if (radix_tree_exceptional_entry(page))
1173 page = NULL;
1174 if (!page)
1175 goto no_page;
1176
1177 if (fgp_flags & FGP_LOCK) {
1178 if (fgp_flags & FGP_NOWAIT) {
1179 if (!trylock_page(page)) {
1180 page_cache_release(page);
1181 return NULL;
1182 }
1183 } else {
1184 lock_page(page);
1185 }
1186
1187 /* Has the page been truncated? */
1188 if (unlikely(page->mapping != mapping)) {
1189 unlock_page(page);
1190 page_cache_release(page);
1191 goto repeat;
1192 }
1193 VM_BUG_ON_PAGE(page->index != offset, page);
1194 }
1195
1196 if (page && (fgp_flags & FGP_ACCESSED))
1197 mark_page_accessed(page);
1198
1199no_page:
1200 if (!page && (fgp_flags & FGP_CREAT)) {
1201 int err;
1202 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
45f87de5
MH
1203 gfp_mask |= __GFP_WRITE;
1204 if (fgp_flags & FGP_NOFS)
1205 gfp_mask &= ~__GFP_FS;
2457aec6 1206
45f87de5 1207 page = __page_cache_alloc(gfp_mask);
eb2be189
NP
1208 if (!page)
1209 return NULL;
2457aec6
MG
1210
1211 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1212 fgp_flags |= FGP_LOCK;
1213
eb39d618 1214 /* Init accessed so avoid atomic mark_page_accessed later */
2457aec6 1215 if (fgp_flags & FGP_ACCESSED)
eb39d618 1216 __SetPageReferenced(page);
2457aec6 1217
45f87de5
MH
1218 err = add_to_page_cache_lru(page, mapping, offset,
1219 gfp_mask & GFP_RECLAIM_MASK);
eb2be189
NP
1220 if (unlikely(err)) {
1221 page_cache_release(page);
1222 page = NULL;
1223 if (err == -EEXIST)
1224 goto repeat;
1da177e4 1225 }
1da177e4 1226 }
2457aec6 1227
1da177e4
LT
1228 return page;
1229}
2457aec6 1230EXPORT_SYMBOL(pagecache_get_page);
1da177e4 1231
0cd6144a
JW
1232/**
1233 * find_get_entries - gang pagecache lookup
1234 * @mapping: The address_space to search
1235 * @start: The starting page cache index
1236 * @nr_entries: The maximum number of entries
1237 * @entries: Where the resulting entries are placed
1238 * @indices: The cache indices corresponding to the entries in @entries
1239 *
1240 * find_get_entries() will search for and return a group of up to
1241 * @nr_entries entries in the mapping. The entries are placed at
1242 * @entries. find_get_entries() takes a reference against any actual
1243 * pages it returns.
1244 *
1245 * The search returns a group of mapping-contiguous page cache entries
1246 * with ascending indexes. There may be holes in the indices due to
1247 * not-present pages.
1248 *
139b6a6f
JW
1249 * Any shadow entries of evicted pages, or swap entries from
1250 * shmem/tmpfs, are included in the returned array.
0cd6144a
JW
1251 *
1252 * find_get_entries() returns the number of pages and shadow entries
1253 * which were found.
1254 */
1255unsigned find_get_entries(struct address_space *mapping,
1256 pgoff_t start, unsigned int nr_entries,
1257 struct page **entries, pgoff_t *indices)
1258{
1259 void **slot;
1260 unsigned int ret = 0;
1261 struct radix_tree_iter iter;
1262
1263 if (!nr_entries)
1264 return 0;
1265
1266 rcu_read_lock();
1267restart:
1268 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1269 struct page *page;
1270repeat:
1271 page = radix_tree_deref_slot(slot);
1272 if (unlikely(!page))
1273 continue;
1274 if (radix_tree_exception(page)) {
1275 if (radix_tree_deref_retry(page))
1276 goto restart;
1277 /*
f9fe48be
RZ
1278 * A shadow entry of a recently evicted page, a swap
1279 * entry from shmem/tmpfs or a DAX entry. Return it
1280 * without attempting to raise page count.
0cd6144a
JW
1281 */
1282 goto export;
1283 }
1284 if (!page_cache_get_speculative(page))
1285 goto repeat;
1286
1287 /* Has the page moved? */
1288 if (unlikely(page != *slot)) {
1289 page_cache_release(page);
1290 goto repeat;
1291 }
1292export:
1293 indices[ret] = iter.index;
1294 entries[ret] = page;
1295 if (++ret == nr_entries)
1296 break;
1297 }
1298 rcu_read_unlock();
1299 return ret;
1300}
1301
1da177e4
LT
1302/**
1303 * find_get_pages - gang pagecache lookup
1304 * @mapping: The address_space to search
1305 * @start: The starting page index
1306 * @nr_pages: The maximum number of pages
1307 * @pages: Where the resulting pages are placed
1308 *
1309 * find_get_pages() will search for and return a group of up to
1310 * @nr_pages pages in the mapping. The pages are placed at @pages.
1311 * find_get_pages() takes a reference against the returned pages.
1312 *
1313 * The search returns a group of mapping-contiguous pages with ascending
1314 * indexes. There may be holes in the indices due to not-present pages.
1315 *
1316 * find_get_pages() returns the number of pages which were found.
1317 */
1318unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1319 unsigned int nr_pages, struct page **pages)
1320{
0fc9d104
KK
1321 struct radix_tree_iter iter;
1322 void **slot;
1323 unsigned ret = 0;
1324
1325 if (unlikely(!nr_pages))
1326 return 0;
a60637c8
NP
1327
1328 rcu_read_lock();
1329restart:
0fc9d104 1330 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
a60637c8
NP
1331 struct page *page;
1332repeat:
0fc9d104 1333 page = radix_tree_deref_slot(slot);
a60637c8
NP
1334 if (unlikely(!page))
1335 continue;
9d8aa4ea 1336
a2c16d6c 1337 if (radix_tree_exception(page)) {
8079b1c8
HD
1338 if (radix_tree_deref_retry(page)) {
1339 /*
1340 * Transient condition which can only trigger
1341 * when entry at index 0 moves out of or back
1342 * to root: none yet gotten, safe to restart.
1343 */
0fc9d104 1344 WARN_ON(iter.index);
8079b1c8
HD
1345 goto restart;
1346 }
a2c16d6c 1347 /*
139b6a6f
JW
1348 * A shadow entry of a recently evicted page,
1349 * or a swap entry from shmem/tmpfs. Skip
1350 * over it.
a2c16d6c 1351 */
8079b1c8 1352 continue;
27d20fdd 1353 }
a60637c8
NP
1354
1355 if (!page_cache_get_speculative(page))
1356 goto repeat;
1357
1358 /* Has the page moved? */
0fc9d104 1359 if (unlikely(page != *slot)) {
a60637c8
NP
1360 page_cache_release(page);
1361 goto repeat;
1362 }
1da177e4 1363
a60637c8 1364 pages[ret] = page;
0fc9d104
KK
1365 if (++ret == nr_pages)
1366 break;
a60637c8 1367 }
5b280c0c 1368
a60637c8 1369 rcu_read_unlock();
1da177e4
LT
1370 return ret;
1371}
1372
ebf43500
JA
1373/**
1374 * find_get_pages_contig - gang contiguous pagecache lookup
1375 * @mapping: The address_space to search
1376 * @index: The starting page index
1377 * @nr_pages: The maximum number of pages
1378 * @pages: Where the resulting pages are placed
1379 *
1380 * find_get_pages_contig() works exactly like find_get_pages(), except
1381 * that the returned number of pages are guaranteed to be contiguous.
1382 *
1383 * find_get_pages_contig() returns the number of pages which were found.
1384 */
1385unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1386 unsigned int nr_pages, struct page **pages)
1387{
0fc9d104
KK
1388 struct radix_tree_iter iter;
1389 void **slot;
1390 unsigned int ret = 0;
1391
1392 if (unlikely(!nr_pages))
1393 return 0;
a60637c8
NP
1394
1395 rcu_read_lock();
1396restart:
0fc9d104 1397 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
a60637c8
NP
1398 struct page *page;
1399repeat:
0fc9d104
KK
1400 page = radix_tree_deref_slot(slot);
1401 /* The hole, there no reason to continue */
a60637c8 1402 if (unlikely(!page))
0fc9d104 1403 break;
9d8aa4ea 1404
a2c16d6c 1405 if (radix_tree_exception(page)) {
8079b1c8
HD
1406 if (radix_tree_deref_retry(page)) {
1407 /*
1408 * Transient condition which can only trigger
1409 * when entry at index 0 moves out of or back
1410 * to root: none yet gotten, safe to restart.
1411 */
1412 goto restart;
1413 }
a2c16d6c 1414 /*
139b6a6f
JW
1415 * A shadow entry of a recently evicted page,
1416 * or a swap entry from shmem/tmpfs. Stop
1417 * looking for contiguous pages.
a2c16d6c 1418 */
8079b1c8 1419 break;
a2c16d6c 1420 }
ebf43500 1421
a60637c8
NP
1422 if (!page_cache_get_speculative(page))
1423 goto repeat;
1424
1425 /* Has the page moved? */
0fc9d104 1426 if (unlikely(page != *slot)) {
a60637c8
NP
1427 page_cache_release(page);
1428 goto repeat;
1429 }
1430
9cbb4cb2
NP
1431 /*
1432 * must check mapping and index after taking the ref.
1433 * otherwise we can get both false positives and false
1434 * negatives, which is just confusing to the caller.
1435 */
0fc9d104 1436 if (page->mapping == NULL || page->index != iter.index) {
9cbb4cb2
NP
1437 page_cache_release(page);
1438 break;
1439 }
1440
a60637c8 1441 pages[ret] = page;
0fc9d104
KK
1442 if (++ret == nr_pages)
1443 break;
ebf43500 1444 }
a60637c8
NP
1445 rcu_read_unlock();
1446 return ret;
ebf43500 1447}
ef71c15c 1448EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 1449
485bb99b
RD
1450/**
1451 * find_get_pages_tag - find and return pages that match @tag
1452 * @mapping: the address_space to search
1453 * @index: the starting page index
1454 * @tag: the tag index
1455 * @nr_pages: the maximum number of pages
1456 * @pages: where the resulting pages are placed
1457 *
1da177e4 1458 * Like find_get_pages, except we only return pages which are tagged with
485bb99b 1459 * @tag. We update @index to index the next page for the traversal.
1da177e4
LT
1460 */
1461unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1462 int tag, unsigned int nr_pages, struct page **pages)
1463{
0fc9d104
KK
1464 struct radix_tree_iter iter;
1465 void **slot;
1466 unsigned ret = 0;
1467
1468 if (unlikely(!nr_pages))
1469 return 0;
a60637c8
NP
1470
1471 rcu_read_lock();
1472restart:
0fc9d104
KK
1473 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1474 &iter, *index, tag) {
a60637c8
NP
1475 struct page *page;
1476repeat:
0fc9d104 1477 page = radix_tree_deref_slot(slot);
a60637c8
NP
1478 if (unlikely(!page))
1479 continue;
9d8aa4ea 1480
a2c16d6c 1481 if (radix_tree_exception(page)) {
8079b1c8
HD
1482 if (radix_tree_deref_retry(page)) {
1483 /*
1484 * Transient condition which can only trigger
1485 * when entry at index 0 moves out of or back
1486 * to root: none yet gotten, safe to restart.
1487 */
1488 goto restart;
1489 }
a2c16d6c 1490 /*
139b6a6f
JW
1491 * A shadow entry of a recently evicted page.
1492 *
1493 * Those entries should never be tagged, but
1494 * this tree walk is lockless and the tags are
1495 * looked up in bulk, one radix tree node at a
1496 * time, so there is a sizable window for page
1497 * reclaim to evict a page we saw tagged.
1498 *
1499 * Skip over it.
a2c16d6c 1500 */
139b6a6f 1501 continue;
a2c16d6c 1502 }
a60637c8
NP
1503
1504 if (!page_cache_get_speculative(page))
1505 goto repeat;
1506
1507 /* Has the page moved? */
0fc9d104 1508 if (unlikely(page != *slot)) {
a60637c8
NP
1509 page_cache_release(page);
1510 goto repeat;
1511 }
1512
1513 pages[ret] = page;
0fc9d104
KK
1514 if (++ret == nr_pages)
1515 break;
a60637c8 1516 }
5b280c0c 1517
a60637c8 1518 rcu_read_unlock();
1da177e4 1519
1da177e4
LT
1520 if (ret)
1521 *index = pages[ret - 1]->index + 1;
a60637c8 1522
1da177e4
LT
1523 return ret;
1524}
ef71c15c 1525EXPORT_SYMBOL(find_get_pages_tag);
1da177e4 1526
7e7f7749
RZ
1527/**
1528 * find_get_entries_tag - find and return entries that match @tag
1529 * @mapping: the address_space to search
1530 * @start: the starting page cache index
1531 * @tag: the tag index
1532 * @nr_entries: the maximum number of entries
1533 * @entries: where the resulting entries are placed
1534 * @indices: the cache indices corresponding to the entries in @entries
1535 *
1536 * Like find_get_entries, except we only return entries which are tagged with
1537 * @tag.
1538 */
1539unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1540 int tag, unsigned int nr_entries,
1541 struct page **entries, pgoff_t *indices)
1542{
1543 void **slot;
1544 unsigned int ret = 0;
1545 struct radix_tree_iter iter;
1546
1547 if (!nr_entries)
1548 return 0;
1549
1550 rcu_read_lock();
1551restart:
1552 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1553 &iter, start, tag) {
1554 struct page *page;
1555repeat:
1556 page = radix_tree_deref_slot(slot);
1557 if (unlikely(!page))
1558 continue;
1559 if (radix_tree_exception(page)) {
1560 if (radix_tree_deref_retry(page)) {
1561 /*
1562 * Transient condition which can only trigger
1563 * when entry at index 0 moves out of or back
1564 * to root: none yet gotten, safe to restart.
1565 */
1566 goto restart;
1567 }
1568
1569 /*
1570 * A shadow entry of a recently evicted page, a swap
1571 * entry from shmem/tmpfs or a DAX entry. Return it
1572 * without attempting to raise page count.
1573 */
1574 goto export;
1575 }
1576 if (!page_cache_get_speculative(page))
1577 goto repeat;
1578
1579 /* Has the page moved? */
1580 if (unlikely(page != *slot)) {
1581 page_cache_release(page);
1582 goto repeat;
1583 }
1584export:
1585 indices[ret] = iter.index;
1586 entries[ret] = page;
1587 if (++ret == nr_entries)
1588 break;
1589 }
1590 rcu_read_unlock();
1591 return ret;
1592}
1593EXPORT_SYMBOL(find_get_entries_tag);
1594
76d42bd9
WF
1595/*
1596 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1597 * a _large_ part of the i/o request. Imagine the worst scenario:
1598 *
1599 * ---R__________________________________________B__________
1600 * ^ reading here ^ bad block(assume 4k)
1601 *
1602 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1603 * => failing the whole request => read(R) => read(R+1) =>
1604 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1605 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1606 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1607 *
1608 * It is going insane. Fix it by quickly scaling down the readahead size.
1609 */
1610static void shrink_readahead_size_eio(struct file *filp,
1611 struct file_ra_state *ra)
1612{
76d42bd9 1613 ra->ra_pages /= 4;
76d42bd9
WF
1614}
1615
485bb99b 1616/**
36e78914 1617 * do_generic_file_read - generic file read routine
485bb99b
RD
1618 * @filp: the file to read
1619 * @ppos: current file position
6e58e79d
AV
1620 * @iter: data destination
1621 * @written: already copied
485bb99b 1622 *
1da177e4 1623 * This is a generic file read routine, and uses the
485bb99b 1624 * mapping->a_ops->readpage() function for the actual low-level stuff.
1da177e4
LT
1625 *
1626 * This is really ugly. But the goto's actually try to clarify some
1627 * of the logic when it comes to error handling etc.
1da177e4 1628 */
6e58e79d
AV
1629static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1630 struct iov_iter *iter, ssize_t written)
1da177e4 1631{
36e78914 1632 struct address_space *mapping = filp->f_mapping;
1da177e4 1633 struct inode *inode = mapping->host;
36e78914 1634 struct file_ra_state *ra = &filp->f_ra;
57f6b96c
FW
1635 pgoff_t index;
1636 pgoff_t last_index;
1637 pgoff_t prev_index;
1638 unsigned long offset; /* offset into pagecache page */
ec0f1637 1639 unsigned int prev_offset;
6e58e79d 1640 int error = 0;
1da177e4 1641
1da177e4 1642 index = *ppos >> PAGE_CACHE_SHIFT;
7ff81078
FW
1643 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1644 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
6e58e79d 1645 last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1da177e4
LT
1646 offset = *ppos & ~PAGE_CACHE_MASK;
1647
1da177e4
LT
1648 for (;;) {
1649 struct page *page;
57f6b96c 1650 pgoff_t end_index;
a32ea1e1 1651 loff_t isize;
1da177e4
LT
1652 unsigned long nr, ret;
1653
1da177e4 1654 cond_resched();
1da177e4
LT
1655find_page:
1656 page = find_get_page(mapping, index);
3ea89ee8 1657 if (!page) {
cf914a7d 1658 page_cache_sync_readahead(mapping,
7ff81078 1659 ra, filp,
3ea89ee8
FW
1660 index, last_index - index);
1661 page = find_get_page(mapping, index);
1662 if (unlikely(page == NULL))
1663 goto no_cached_page;
1664 }
1665 if (PageReadahead(page)) {
cf914a7d 1666 page_cache_async_readahead(mapping,
7ff81078 1667 ra, filp, page,
3ea89ee8 1668 index, last_index - index);
1da177e4 1669 }
8ab22b9a
HH
1670 if (!PageUptodate(page)) {
1671 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1672 !mapping->a_ops->is_partially_uptodate)
1673 goto page_not_up_to_date;
529ae9aa 1674 if (!trylock_page(page))
8ab22b9a 1675 goto page_not_up_to_date;
8d056cb9
DH
1676 /* Did it get truncated before we got the lock? */
1677 if (!page->mapping)
1678 goto page_not_up_to_date_locked;
8ab22b9a 1679 if (!mapping->a_ops->is_partially_uptodate(page,
6e58e79d 1680 offset, iter->count))
8ab22b9a
HH
1681 goto page_not_up_to_date_locked;
1682 unlock_page(page);
1683 }
1da177e4 1684page_ok:
a32ea1e1
N
1685 /*
1686 * i_size must be checked after we know the page is Uptodate.
1687 *
1688 * Checking i_size after the check allows us to calculate
1689 * the correct value for "nr", which means the zero-filled
1690 * part of the page is not copied back to userspace (unless
1691 * another truncate extends the file - this is desired though).
1692 */
1693
1694 isize = i_size_read(inode);
1695 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1696 if (unlikely(!isize || index > end_index)) {
1697 page_cache_release(page);
1698 goto out;
1699 }
1700
1701 /* nr is the maximum number of bytes to copy from this page */
1702 nr = PAGE_CACHE_SIZE;
1703 if (index == end_index) {
1704 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1705 if (nr <= offset) {
1706 page_cache_release(page);
1707 goto out;
1708 }
1709 }
1710 nr = nr - offset;
1da177e4
LT
1711
1712 /* If users can be writing to this page using arbitrary
1713 * virtual addresses, take care about potential aliasing
1714 * before reading the page on the kernel side.
1715 */
1716 if (mapping_writably_mapped(mapping))
1717 flush_dcache_page(page);
1718
1719 /*
ec0f1637
JK
1720 * When a sequential read accesses a page several times,
1721 * only mark it as accessed the first time.
1da177e4 1722 */
ec0f1637 1723 if (prev_index != index || offset != prev_offset)
1da177e4
LT
1724 mark_page_accessed(page);
1725 prev_index = index;
1726
1727 /*
1728 * Ok, we have the page, and it's up-to-date, so
1729 * now we can copy it to user space...
1da177e4 1730 */
6e58e79d
AV
1731
1732 ret = copy_page_to_iter(page, offset, nr, iter);
1da177e4
LT
1733 offset += ret;
1734 index += offset >> PAGE_CACHE_SHIFT;
1735 offset &= ~PAGE_CACHE_MASK;
6ce745ed 1736 prev_offset = offset;
1da177e4
LT
1737
1738 page_cache_release(page);
6e58e79d
AV
1739 written += ret;
1740 if (!iov_iter_count(iter))
1741 goto out;
1742 if (ret < nr) {
1743 error = -EFAULT;
1744 goto out;
1745 }
1746 continue;
1da177e4
LT
1747
1748page_not_up_to_date:
1749 /* Get exclusive access to the page ... */
85462323
ON
1750 error = lock_page_killable(page);
1751 if (unlikely(error))
1752 goto readpage_error;
1da177e4 1753
8ab22b9a 1754page_not_up_to_date_locked:
da6052f7 1755 /* Did it get truncated before we got the lock? */
1da177e4
LT
1756 if (!page->mapping) {
1757 unlock_page(page);
1758 page_cache_release(page);
1759 continue;
1760 }
1761
1762 /* Did somebody else fill it already? */
1763 if (PageUptodate(page)) {
1764 unlock_page(page);
1765 goto page_ok;
1766 }
1767
1768readpage:
91803b49
JM
1769 /*
1770 * A previous I/O error may have been due to temporary
1771 * failures, eg. multipath errors.
1772 * PG_error will be set again if readpage fails.
1773 */
1774 ClearPageError(page);
1da177e4
LT
1775 /* Start the actual read. The read will unlock the page. */
1776 error = mapping->a_ops->readpage(filp, page);
1777
994fc28c
ZB
1778 if (unlikely(error)) {
1779 if (error == AOP_TRUNCATED_PAGE) {
1780 page_cache_release(page);
6e58e79d 1781 error = 0;
994fc28c
ZB
1782 goto find_page;
1783 }
1da177e4 1784 goto readpage_error;
994fc28c 1785 }
1da177e4
LT
1786
1787 if (!PageUptodate(page)) {
85462323
ON
1788 error = lock_page_killable(page);
1789 if (unlikely(error))
1790 goto readpage_error;
1da177e4
LT
1791 if (!PageUptodate(page)) {
1792 if (page->mapping == NULL) {
1793 /*
2ecdc82e 1794 * invalidate_mapping_pages got it
1da177e4
LT
1795 */
1796 unlock_page(page);
1797 page_cache_release(page);
1798 goto find_page;
1799 }
1800 unlock_page(page);
7ff81078 1801 shrink_readahead_size_eio(filp, ra);
85462323
ON
1802 error = -EIO;
1803 goto readpage_error;
1da177e4
LT
1804 }
1805 unlock_page(page);
1806 }
1807
1da177e4
LT
1808 goto page_ok;
1809
1810readpage_error:
1811 /* UHHUH! A synchronous read error occurred. Report it */
1da177e4
LT
1812 page_cache_release(page);
1813 goto out;
1814
1815no_cached_page:
1816 /*
1817 * Ok, it wasn't cached, so we need to create a new
1818 * page..
1819 */
eb2be189
NP
1820 page = page_cache_alloc_cold(mapping);
1821 if (!page) {
6e58e79d 1822 error = -ENOMEM;
eb2be189 1823 goto out;
1da177e4 1824 }
6afdb859 1825 error = add_to_page_cache_lru(page, mapping, index,
c62d2555 1826 mapping_gfp_constraint(mapping, GFP_KERNEL));
1da177e4 1827 if (error) {
eb2be189 1828 page_cache_release(page);
6e58e79d
AV
1829 if (error == -EEXIST) {
1830 error = 0;
1da177e4 1831 goto find_page;
6e58e79d 1832 }
1da177e4
LT
1833 goto out;
1834 }
1da177e4
LT
1835 goto readpage;
1836 }
1837
1838out:
7ff81078
FW
1839 ra->prev_pos = prev_index;
1840 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1841 ra->prev_pos |= prev_offset;
1da177e4 1842
f4e6b498 1843 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
0c6aa263 1844 file_accessed(filp);
6e58e79d 1845 return written ? written : error;
1da177e4
LT
1846}
1847
485bb99b 1848/**
6abd2322 1849 * generic_file_read_iter - generic filesystem read routine
485bb99b 1850 * @iocb: kernel I/O control block
6abd2322 1851 * @iter: destination for the data read
485bb99b 1852 *
6abd2322 1853 * This is the "read_iter()" routine for all filesystems
1da177e4
LT
1854 * that can use the page cache directly.
1855 */
1856ssize_t
ed978a81 1857generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1da177e4 1858{
ed978a81 1859 struct file *file = iocb->ki_filp;
cb66a7a1 1860 ssize_t retval = 0;
543ade1f 1861 loff_t *ppos = &iocb->ki_pos;
ed978a81 1862 loff_t pos = *ppos;
1da177e4 1863
2ba48ce5 1864 if (iocb->ki_flags & IOCB_DIRECT) {
ed978a81
AV
1865 struct address_space *mapping = file->f_mapping;
1866 struct inode *inode = mapping->host;
1867 size_t count = iov_iter_count(iter);
543ade1f 1868 loff_t size;
1da177e4 1869
1da177e4
LT
1870 if (!count)
1871 goto out; /* skip atime */
1872 size = i_size_read(inode);
9fe55eea 1873 retval = filemap_write_and_wait_range(mapping, pos,
a6cbcd4a 1874 pos + count - 1);
9fe55eea 1875 if (!retval) {
ed978a81 1876 struct iov_iter data = *iter;
22c6186e 1877 retval = mapping->a_ops->direct_IO(iocb, &data, pos);
9fe55eea 1878 }
d8d3d94b 1879
9fe55eea
SW
1880 if (retval > 0) {
1881 *ppos = pos + retval;
ed978a81 1882 iov_iter_advance(iter, retval);
9fe55eea 1883 }
66f998f6 1884
9fe55eea
SW
1885 /*
1886 * Btrfs can have a short DIO read if we encounter
1887 * compressed extents, so if there was an error, or if
1888 * we've already read everything we wanted to, or if
1889 * there was a short read because we hit EOF, go ahead
1890 * and return. Otherwise fallthrough to buffered io for
fbbbad4b
MW
1891 * the rest of the read. Buffered reads will not work for
1892 * DAX files, so don't bother trying.
9fe55eea 1893 */
fbbbad4b
MW
1894 if (retval < 0 || !iov_iter_count(iter) || *ppos >= size ||
1895 IS_DAX(inode)) {
ed978a81 1896 file_accessed(file);
9fe55eea 1897 goto out;
0e0bcae3 1898 }
1da177e4
LT
1899 }
1900
ed978a81 1901 retval = do_generic_file_read(file, ppos, iter, retval);
1da177e4
LT
1902out:
1903 return retval;
1904}
ed978a81 1905EXPORT_SYMBOL(generic_file_read_iter);
1da177e4 1906
1da177e4 1907#ifdef CONFIG_MMU
485bb99b
RD
1908/**
1909 * page_cache_read - adds requested page to the page cache if not already there
1910 * @file: file to read
1911 * @offset: page index
62eb320a 1912 * @gfp_mask: memory allocation flags
485bb99b 1913 *
1da177e4
LT
1914 * This adds the requested page to the page cache if it isn't already there,
1915 * and schedules an I/O to read in its contents from disk.
1916 */
c20cd45e 1917static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1da177e4
LT
1918{
1919 struct address_space *mapping = file->f_mapping;
99dadfdd 1920 struct page *page;
994fc28c 1921 int ret;
1da177e4 1922
994fc28c 1923 do {
c20cd45e 1924 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
994fc28c
ZB
1925 if (!page)
1926 return -ENOMEM;
1927
c20cd45e 1928 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
994fc28c
ZB
1929 if (ret == 0)
1930 ret = mapping->a_ops->readpage(file, page);
1931 else if (ret == -EEXIST)
1932 ret = 0; /* losing race to add is OK */
1da177e4 1933
1da177e4 1934 page_cache_release(page);
1da177e4 1935
994fc28c 1936 } while (ret == AOP_TRUNCATED_PAGE);
99dadfdd 1937
994fc28c 1938 return ret;
1da177e4
LT
1939}
1940
1941#define MMAP_LOTSAMISS (100)
1942
ef00e08e
LT
1943/*
1944 * Synchronous readahead happens when we don't even find
1945 * a page in the page cache at all.
1946 */
1947static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1948 struct file_ra_state *ra,
1949 struct file *file,
1950 pgoff_t offset)
1951{
ef00e08e
LT
1952 struct address_space *mapping = file->f_mapping;
1953
1954 /* If we don't want any read-ahead, don't bother */
64363aad 1955 if (vma->vm_flags & VM_RAND_READ)
ef00e08e 1956 return;
275b12bf
WF
1957 if (!ra->ra_pages)
1958 return;
ef00e08e 1959
64363aad 1960 if (vma->vm_flags & VM_SEQ_READ) {
7ffc59b4
WF
1961 page_cache_sync_readahead(mapping, ra, file, offset,
1962 ra->ra_pages);
ef00e08e
LT
1963 return;
1964 }
1965
207d04ba
AK
1966 /* Avoid banging the cache line if not needed */
1967 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
ef00e08e
LT
1968 ra->mmap_miss++;
1969
1970 /*
1971 * Do we miss much more than hit in this file? If so,
1972 * stop bothering with read-ahead. It will only hurt.
1973 */
1974 if (ra->mmap_miss > MMAP_LOTSAMISS)
1975 return;
1976
d30a1100
WF
1977 /*
1978 * mmap read-around
1979 */
600e19af
RG
1980 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
1981 ra->size = ra->ra_pages;
1982 ra->async_size = ra->ra_pages / 4;
275b12bf 1983 ra_submit(ra, mapping, file);
ef00e08e
LT
1984}
1985
1986/*
1987 * Asynchronous readahead happens when we find the page and PG_readahead,
1988 * so we want to possibly extend the readahead further..
1989 */
1990static void do_async_mmap_readahead(struct vm_area_struct *vma,
1991 struct file_ra_state *ra,
1992 struct file *file,
1993 struct page *page,
1994 pgoff_t offset)
1995{
1996 struct address_space *mapping = file->f_mapping;
1997
1998 /* If we don't want any read-ahead, don't bother */
64363aad 1999 if (vma->vm_flags & VM_RAND_READ)
ef00e08e
LT
2000 return;
2001 if (ra->mmap_miss > 0)
2002 ra->mmap_miss--;
2003 if (PageReadahead(page))
2fad6f5d
WF
2004 page_cache_async_readahead(mapping, ra, file,
2005 page, offset, ra->ra_pages);
ef00e08e
LT
2006}
2007
485bb99b 2008/**
54cb8821 2009 * filemap_fault - read in file data for page fault handling
d0217ac0
NP
2010 * @vma: vma in which the fault was taken
2011 * @vmf: struct vm_fault containing details of the fault
485bb99b 2012 *
54cb8821 2013 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
2014 * mapped memory region to read in file data during a page fault.
2015 *
2016 * The goto's are kind of ugly, but this streamlines the normal case of having
2017 * it in the page cache, and handles the special cases reasonably without
2018 * having a lot of duplicated code.
9a95f3cf
PC
2019 *
2020 * vma->vm_mm->mmap_sem must be held on entry.
2021 *
2022 * If our return value has VM_FAULT_RETRY set, it's because
2023 * lock_page_or_retry() returned 0.
2024 * The mmap_sem has usually been released in this case.
2025 * See __lock_page_or_retry() for the exception.
2026 *
2027 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2028 * has not been released.
2029 *
2030 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
1da177e4 2031 */
d0217ac0 2032int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
2033{
2034 int error;
54cb8821 2035 struct file *file = vma->vm_file;
1da177e4
LT
2036 struct address_space *mapping = file->f_mapping;
2037 struct file_ra_state *ra = &file->f_ra;
2038 struct inode *inode = mapping->host;
ef00e08e 2039 pgoff_t offset = vmf->pgoff;
1da177e4 2040 struct page *page;
99e3e53f 2041 loff_t size;
83c54070 2042 int ret = 0;
1da177e4 2043
99e3e53f
KS
2044 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
2045 if (offset >= size >> PAGE_CACHE_SHIFT)
5307cc1a 2046 return VM_FAULT_SIGBUS;
1da177e4 2047
1da177e4 2048 /*
49426420 2049 * Do we have something in the page cache already?
1da177e4 2050 */
ef00e08e 2051 page = find_get_page(mapping, offset);
45cac65b 2052 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1da177e4 2053 /*
ef00e08e
LT
2054 * We found the page, so try async readahead before
2055 * waiting for the lock.
1da177e4 2056 */
ef00e08e 2057 do_async_mmap_readahead(vma, ra, file, page, offset);
45cac65b 2058 } else if (!page) {
ef00e08e
LT
2059 /* No page in the page cache at all */
2060 do_sync_mmap_readahead(vma, ra, file, offset);
2061 count_vm_event(PGMAJFAULT);
456f998e 2062 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
ef00e08e
LT
2063 ret = VM_FAULT_MAJOR;
2064retry_find:
b522c94d 2065 page = find_get_page(mapping, offset);
1da177e4
LT
2066 if (!page)
2067 goto no_cached_page;
2068 }
2069
d88c0922
ML
2070 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
2071 page_cache_release(page);
d065bd81 2072 return ret | VM_FAULT_RETRY;
d88c0922 2073 }
b522c94d
ML
2074
2075 /* Did it get truncated? */
2076 if (unlikely(page->mapping != mapping)) {
2077 unlock_page(page);
2078 put_page(page);
2079 goto retry_find;
2080 }
309381fe 2081 VM_BUG_ON_PAGE(page->index != offset, page);
b522c94d 2082
1da177e4 2083 /*
d00806b1
NP
2084 * We have a locked page in the page cache, now we need to check
2085 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 2086 */
d00806b1 2087 if (unlikely(!PageUptodate(page)))
1da177e4
LT
2088 goto page_not_uptodate;
2089
ef00e08e
LT
2090 /*
2091 * Found the page and have a reference on it.
2092 * We must recheck i_size under page lock.
2093 */
99e3e53f
KS
2094 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
2095 if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
d00806b1 2096 unlock_page(page);
745ad48e 2097 page_cache_release(page);
5307cc1a 2098 return VM_FAULT_SIGBUS;
d00806b1
NP
2099 }
2100
d0217ac0 2101 vmf->page = page;
83c54070 2102 return ret | VM_FAULT_LOCKED;
1da177e4 2103
1da177e4
LT
2104no_cached_page:
2105 /*
2106 * We're only likely to ever get here if MADV_RANDOM is in
2107 * effect.
2108 */
c20cd45e 2109 error = page_cache_read(file, offset, vmf->gfp_mask);
1da177e4
LT
2110
2111 /*
2112 * The page we want has now been added to the page cache.
2113 * In the unlikely event that someone removed it in the
2114 * meantime, we'll just come back here and read it again.
2115 */
2116 if (error >= 0)
2117 goto retry_find;
2118
2119 /*
2120 * An error return from page_cache_read can result if the
2121 * system is low on memory, or a problem occurs while trying
2122 * to schedule I/O.
2123 */
2124 if (error == -ENOMEM)
d0217ac0
NP
2125 return VM_FAULT_OOM;
2126 return VM_FAULT_SIGBUS;
1da177e4
LT
2127
2128page_not_uptodate:
1da177e4
LT
2129 /*
2130 * Umm, take care of errors if the page isn't up-to-date.
2131 * Try to re-read it _once_. We do this synchronously,
2132 * because there really aren't any performance issues here
2133 * and we need to check for errors.
2134 */
1da177e4 2135 ClearPageError(page);
994fc28c 2136 error = mapping->a_ops->readpage(file, page);
3ef0f720
MS
2137 if (!error) {
2138 wait_on_page_locked(page);
2139 if (!PageUptodate(page))
2140 error = -EIO;
2141 }
d00806b1
NP
2142 page_cache_release(page);
2143
2144 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 2145 goto retry_find;
1da177e4 2146
d00806b1 2147 /* Things didn't work out. Return zero to tell the mm layer so. */
76d42bd9 2148 shrink_readahead_size_eio(file, ra);
d0217ac0 2149 return VM_FAULT_SIGBUS;
54cb8821
NP
2150}
2151EXPORT_SYMBOL(filemap_fault);
2152
f1820361
KS
2153void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
2154{
2155 struct radix_tree_iter iter;
2156 void **slot;
2157 struct file *file = vma->vm_file;
2158 struct address_space *mapping = file->f_mapping;
2159 loff_t size;
2160 struct page *page;
2161 unsigned long address = (unsigned long) vmf->virtual_address;
2162 unsigned long addr;
2163 pte_t *pte;
2164
2165 rcu_read_lock();
2166 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
2167 if (iter.index > vmf->max_pgoff)
2168 break;
2169repeat:
2170 page = radix_tree_deref_slot(slot);
2171 if (unlikely(!page))
2172 goto next;
2173 if (radix_tree_exception(page)) {
2174 if (radix_tree_deref_retry(page))
2175 break;
2176 else
2177 goto next;
2178 }
2179
2180 if (!page_cache_get_speculative(page))
2181 goto repeat;
2182
2183 /* Has the page moved? */
2184 if (unlikely(page != *slot)) {
2185 page_cache_release(page);
2186 goto repeat;
2187 }
2188
2189 if (!PageUptodate(page) ||
2190 PageReadahead(page) ||
2191 PageHWPoison(page))
2192 goto skip;
2193 if (!trylock_page(page))
2194 goto skip;
2195
2196 if (page->mapping != mapping || !PageUptodate(page))
2197 goto unlock;
2198
99e3e53f
KS
2199 size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
2200 if (page->index >= size >> PAGE_CACHE_SHIFT)
f1820361
KS
2201 goto unlock;
2202
2203 pte = vmf->pte + page->index - vmf->pgoff;
2204 if (!pte_none(*pte))
2205 goto unlock;
2206
2207 if (file->f_ra.mmap_miss > 0)
2208 file->f_ra.mmap_miss--;
2209 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2210 do_set_pte(vma, addr, page, pte, false, false);
2211 unlock_page(page);
2212 goto next;
2213unlock:
2214 unlock_page(page);
2215skip:
2216 page_cache_release(page);
2217next:
2218 if (iter.index == vmf->max_pgoff)
2219 break;
2220 }
2221 rcu_read_unlock();
2222}
2223EXPORT_SYMBOL(filemap_map_pages);
2224
4fcf1c62
JK
2225int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2226{
2227 struct page *page = vmf->page;
496ad9aa 2228 struct inode *inode = file_inode(vma->vm_file);
4fcf1c62
JK
2229 int ret = VM_FAULT_LOCKED;
2230
14da9200 2231 sb_start_pagefault(inode->i_sb);
4fcf1c62
JK
2232 file_update_time(vma->vm_file);
2233 lock_page(page);
2234 if (page->mapping != inode->i_mapping) {
2235 unlock_page(page);
2236 ret = VM_FAULT_NOPAGE;
2237 goto out;
2238 }
14da9200
JK
2239 /*
2240 * We mark the page dirty already here so that when freeze is in
2241 * progress, we are guaranteed that writeback during freezing will
2242 * see the dirty page and writeprotect it again.
2243 */
2244 set_page_dirty(page);
1d1d1a76 2245 wait_for_stable_page(page);
4fcf1c62 2246out:
14da9200 2247 sb_end_pagefault(inode->i_sb);
4fcf1c62
JK
2248 return ret;
2249}
2250EXPORT_SYMBOL(filemap_page_mkwrite);
2251
f0f37e2f 2252const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 2253 .fault = filemap_fault,
f1820361 2254 .map_pages = filemap_map_pages,
4fcf1c62 2255 .page_mkwrite = filemap_page_mkwrite,
1da177e4
LT
2256};
2257
2258/* This is used for a general mmap of a disk file */
2259
2260int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2261{
2262 struct address_space *mapping = file->f_mapping;
2263
2264 if (!mapping->a_ops->readpage)
2265 return -ENOEXEC;
2266 file_accessed(file);
2267 vma->vm_ops = &generic_file_vm_ops;
2268 return 0;
2269}
1da177e4
LT
2270
2271/*
2272 * This is for filesystems which do not implement ->writepage.
2273 */
2274int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2275{
2276 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2277 return -EINVAL;
2278 return generic_file_mmap(file, vma);
2279}
2280#else
2281int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2282{
2283 return -ENOSYS;
2284}
2285int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2286{
2287 return -ENOSYS;
2288}
2289#endif /* CONFIG_MMU */
2290
2291EXPORT_SYMBOL(generic_file_mmap);
2292EXPORT_SYMBOL(generic_file_readonly_mmap);
2293
67f9fd91
SL
2294static struct page *wait_on_page_read(struct page *page)
2295{
2296 if (!IS_ERR(page)) {
2297 wait_on_page_locked(page);
2298 if (!PageUptodate(page)) {
2299 page_cache_release(page);
2300 page = ERR_PTR(-EIO);
2301 }
2302 }
2303 return page;
2304}
2305
6fe6900e 2306static struct page *__read_cache_page(struct address_space *mapping,
57f6b96c 2307 pgoff_t index,
5e5358e7 2308 int (*filler)(void *, struct page *),
0531b2aa
LT
2309 void *data,
2310 gfp_t gfp)
1da177e4 2311{
eb2be189 2312 struct page *page;
1da177e4
LT
2313 int err;
2314repeat:
2315 page = find_get_page(mapping, index);
2316 if (!page) {
0531b2aa 2317 page = __page_cache_alloc(gfp | __GFP_COLD);
eb2be189
NP
2318 if (!page)
2319 return ERR_PTR(-ENOMEM);
e6f67b8c 2320 err = add_to_page_cache_lru(page, mapping, index, gfp);
eb2be189
NP
2321 if (unlikely(err)) {
2322 page_cache_release(page);
2323 if (err == -EEXIST)
2324 goto repeat;
1da177e4 2325 /* Presumably ENOMEM for radix tree node */
1da177e4
LT
2326 return ERR_PTR(err);
2327 }
1da177e4
LT
2328 err = filler(data, page);
2329 if (err < 0) {
2330 page_cache_release(page);
2331 page = ERR_PTR(err);
67f9fd91
SL
2332 } else {
2333 page = wait_on_page_read(page);
1da177e4
LT
2334 }
2335 }
1da177e4
LT
2336 return page;
2337}
2338
0531b2aa 2339static struct page *do_read_cache_page(struct address_space *mapping,
57f6b96c 2340 pgoff_t index,
5e5358e7 2341 int (*filler)(void *, struct page *),
0531b2aa
LT
2342 void *data,
2343 gfp_t gfp)
2344
1da177e4
LT
2345{
2346 struct page *page;
2347 int err;
2348
2349retry:
0531b2aa 2350 page = __read_cache_page(mapping, index, filler, data, gfp);
1da177e4 2351 if (IS_ERR(page))
c855ff37 2352 return page;
1da177e4
LT
2353 if (PageUptodate(page))
2354 goto out;
2355
2356 lock_page(page);
2357 if (!page->mapping) {
2358 unlock_page(page);
2359 page_cache_release(page);
2360 goto retry;
2361 }
2362 if (PageUptodate(page)) {
2363 unlock_page(page);
2364 goto out;
2365 }
2366 err = filler(data, page);
2367 if (err < 0) {
2368 page_cache_release(page);
c855ff37 2369 return ERR_PTR(err);
67f9fd91
SL
2370 } else {
2371 page = wait_on_page_read(page);
2372 if (IS_ERR(page))
2373 return page;
1da177e4 2374 }
c855ff37 2375out:
6fe6900e
NP
2376 mark_page_accessed(page);
2377 return page;
2378}
0531b2aa
LT
2379
2380/**
67f9fd91 2381 * read_cache_page - read into page cache, fill it if needed
0531b2aa
LT
2382 * @mapping: the page's address_space
2383 * @index: the page index
2384 * @filler: function to perform the read
5e5358e7 2385 * @data: first arg to filler(data, page) function, often left as NULL
0531b2aa 2386 *
0531b2aa 2387 * Read into the page cache. If a page already exists, and PageUptodate() is
67f9fd91 2388 * not set, try to fill the page and wait for it to become unlocked.
0531b2aa
LT
2389 *
2390 * If the page does not get brought uptodate, return -EIO.
2391 */
67f9fd91 2392struct page *read_cache_page(struct address_space *mapping,
0531b2aa 2393 pgoff_t index,
5e5358e7 2394 int (*filler)(void *, struct page *),
0531b2aa
LT
2395 void *data)
2396{
2397 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2398}
67f9fd91 2399EXPORT_SYMBOL(read_cache_page);
0531b2aa
LT
2400
2401/**
2402 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2403 * @mapping: the page's address_space
2404 * @index: the page index
2405 * @gfp: the page allocator flags to use if allocating
2406 *
2407 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
e6f67b8c 2408 * any new page allocations done using the specified allocation flags.
0531b2aa
LT
2409 *
2410 * If the page does not get brought uptodate, return -EIO.
2411 */
2412struct page *read_cache_page_gfp(struct address_space *mapping,
2413 pgoff_t index,
2414 gfp_t gfp)
2415{
2416 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2417
67f9fd91 2418 return do_read_cache_page(mapping, index, filler, NULL, gfp);
0531b2aa
LT
2419}
2420EXPORT_SYMBOL(read_cache_page_gfp);
2421
1da177e4
LT
2422/*
2423 * Performs necessary checks before doing a write
2424 *
485bb99b 2425 * Can adjust writing position or amount of bytes to write.
1da177e4
LT
2426 * Returns appropriate error code that caller should return or
2427 * zero in case that write should be allowed.
2428 */
3309dd04 2429inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
1da177e4 2430{
3309dd04 2431 struct file *file = iocb->ki_filp;
1da177e4 2432 struct inode *inode = file->f_mapping->host;
59e99e5b 2433 unsigned long limit = rlimit(RLIMIT_FSIZE);
3309dd04 2434 loff_t pos;
1da177e4 2435
3309dd04
AV
2436 if (!iov_iter_count(from))
2437 return 0;
1da177e4 2438
0fa6b005 2439 /* FIXME: this is for backwards compatibility with 2.4 */
2ba48ce5 2440 if (iocb->ki_flags & IOCB_APPEND)
3309dd04 2441 iocb->ki_pos = i_size_read(inode);
1da177e4 2442
3309dd04 2443 pos = iocb->ki_pos;
1da177e4 2444
0fa6b005 2445 if (limit != RLIM_INFINITY) {
3309dd04 2446 if (iocb->ki_pos >= limit) {
0fa6b005
AV
2447 send_sig(SIGXFSZ, current, 0);
2448 return -EFBIG;
1da177e4 2449 }
3309dd04 2450 iov_iter_truncate(from, limit - (unsigned long)pos);
1da177e4
LT
2451 }
2452
2453 /*
2454 * LFS rule
2455 */
3309dd04 2456 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
1da177e4 2457 !(file->f_flags & O_LARGEFILE))) {
3309dd04 2458 if (pos >= MAX_NON_LFS)
1da177e4 2459 return -EFBIG;
3309dd04 2460 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
1da177e4
LT
2461 }
2462
2463 /*
2464 * Are we about to exceed the fs block limit ?
2465 *
2466 * If we have written data it becomes a short write. If we have
2467 * exceeded without writing data we send a signal and return EFBIG.
2468 * Linus frestrict idea will clean these up nicely..
2469 */
3309dd04
AV
2470 if (unlikely(pos >= inode->i_sb->s_maxbytes))
2471 return -EFBIG;
1da177e4 2472
3309dd04
AV
2473 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2474 return iov_iter_count(from);
1da177e4
LT
2475}
2476EXPORT_SYMBOL(generic_write_checks);
2477
afddba49
NP
2478int pagecache_write_begin(struct file *file, struct address_space *mapping,
2479 loff_t pos, unsigned len, unsigned flags,
2480 struct page **pagep, void **fsdata)
2481{
2482 const struct address_space_operations *aops = mapping->a_ops;
2483
4e02ed4b 2484 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 2485 pagep, fsdata);
afddba49
NP
2486}
2487EXPORT_SYMBOL(pagecache_write_begin);
2488
2489int pagecache_write_end(struct file *file, struct address_space *mapping,
2490 loff_t pos, unsigned len, unsigned copied,
2491 struct page *page, void *fsdata)
2492{
2493 const struct address_space_operations *aops = mapping->a_ops;
afddba49 2494
4e02ed4b 2495 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
2496}
2497EXPORT_SYMBOL(pagecache_write_end);
2498
1da177e4 2499ssize_t
0c949334 2500generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos)
1da177e4
LT
2501{
2502 struct file *file = iocb->ki_filp;
2503 struct address_space *mapping = file->f_mapping;
2504 struct inode *inode = mapping->host;
2505 ssize_t written;
a969e903
CH
2506 size_t write_len;
2507 pgoff_t end;
26978b8b 2508 struct iov_iter data;
1da177e4 2509
0c949334 2510 write_len = iov_iter_count(from);
a969e903 2511 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
a969e903 2512
48b47c56 2513 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
a969e903
CH
2514 if (written)
2515 goto out;
2516
2517 /*
2518 * After a write we want buffered reads to be sure to go to disk to get
2519 * the new data. We invalidate clean cached page from the region we're
2520 * about to write. We do this *before* the write so that we can return
6ccfa806 2521 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903
CH
2522 */
2523 if (mapping->nrpages) {
2524 written = invalidate_inode_pages2_range(mapping,
2525 pos >> PAGE_CACHE_SHIFT, end);
6ccfa806
HH
2526 /*
2527 * If a page can not be invalidated, return 0 to fall back
2528 * to buffered write.
2529 */
2530 if (written) {
2531 if (written == -EBUSY)
2532 return 0;
a969e903 2533 goto out;
6ccfa806 2534 }
a969e903
CH
2535 }
2536
26978b8b 2537 data = *from;
22c6186e 2538 written = mapping->a_ops->direct_IO(iocb, &data, pos);
a969e903
CH
2539
2540 /*
2541 * Finally, try again to invalidate clean pages which might have been
2542 * cached by non-direct readahead, or faulted in by get_user_pages()
2543 * if the source of the write was an mmap'ed region of the file
2544 * we're writing. Either one is a pretty crazy thing to do,
2545 * so we don't support it 100%. If this invalidation
2546 * fails, tough, the write still worked...
2547 */
2548 if (mapping->nrpages) {
2549 invalidate_inode_pages2_range(mapping,
2550 pos >> PAGE_CACHE_SHIFT, end);
2551 }
2552
1da177e4 2553 if (written > 0) {
0116651c 2554 pos += written;
f8579f86 2555 iov_iter_advance(from, written);
0116651c
NK
2556 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2557 i_size_write(inode, pos);
1da177e4
LT
2558 mark_inode_dirty(inode);
2559 }
5cb6c6c7 2560 iocb->ki_pos = pos;
1da177e4 2561 }
a969e903 2562out:
1da177e4
LT
2563 return written;
2564}
2565EXPORT_SYMBOL(generic_file_direct_write);
2566
eb2be189
NP
2567/*
2568 * Find or create a page at the given pagecache position. Return the locked
2569 * page. This function is specifically for buffered writes.
2570 */
54566b2c
NP
2571struct page *grab_cache_page_write_begin(struct address_space *mapping,
2572 pgoff_t index, unsigned flags)
eb2be189 2573{
eb2be189 2574 struct page *page;
2457aec6 2575 int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
0faa70cb 2576
54566b2c 2577 if (flags & AOP_FLAG_NOFS)
2457aec6
MG
2578 fgp_flags |= FGP_NOFS;
2579
2580 page = pagecache_get_page(mapping, index, fgp_flags,
45f87de5 2581 mapping_gfp_mask(mapping));
c585a267 2582 if (page)
2457aec6 2583 wait_for_stable_page(page);
eb2be189 2584
eb2be189
NP
2585 return page;
2586}
54566b2c 2587EXPORT_SYMBOL(grab_cache_page_write_begin);
eb2be189 2588
3b93f911 2589ssize_t generic_perform_write(struct file *file,
afddba49
NP
2590 struct iov_iter *i, loff_t pos)
2591{
2592 struct address_space *mapping = file->f_mapping;
2593 const struct address_space_operations *a_ops = mapping->a_ops;
2594 long status = 0;
2595 ssize_t written = 0;
674b892e
NP
2596 unsigned int flags = 0;
2597
2598 /*
2599 * Copies from kernel address space cannot fail (NFSD is a big user).
2600 */
777eda2c 2601 if (!iter_is_iovec(i))
674b892e 2602 flags |= AOP_FLAG_UNINTERRUPTIBLE;
afddba49
NP
2603
2604 do {
2605 struct page *page;
afddba49
NP
2606 unsigned long offset; /* Offset into pagecache page */
2607 unsigned long bytes; /* Bytes to write to page */
2608 size_t copied; /* Bytes copied from user */
2609 void *fsdata;
2610
2611 offset = (pos & (PAGE_CACHE_SIZE - 1));
afddba49
NP
2612 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2613 iov_iter_count(i));
2614
2615again:
00a3d660
LT
2616 /*
2617 * Bring in the user page that we will copy from _first_.
2618 * Otherwise there's a nasty deadlock on copying from the
2619 * same page as we're writing to, without it being marked
2620 * up-to-date.
2621 *
2622 * Not only is this an optimisation, but it is also required
2623 * to check that the address is actually valid, when atomic
2624 * usercopies are used, below.
2625 */
2626 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2627 status = -EFAULT;
2628 break;
2629 }
2630
296291cd
JK
2631 if (fatal_signal_pending(current)) {
2632 status = -EINTR;
2633 break;
2634 }
2635
674b892e 2636 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49 2637 &page, &fsdata);
2457aec6 2638 if (unlikely(status < 0))
afddba49
NP
2639 break;
2640
931e80e4 2641 if (mapping_writably_mapped(mapping))
2642 flush_dcache_page(page);
00a3d660 2643
afddba49 2644 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
afddba49
NP
2645 flush_dcache_page(page);
2646
2647 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2648 page, fsdata);
2649 if (unlikely(status < 0))
2650 break;
2651 copied = status;
2652
2653 cond_resched();
2654
124d3b70 2655 iov_iter_advance(i, copied);
afddba49
NP
2656 if (unlikely(copied == 0)) {
2657 /*
2658 * If we were unable to copy any data at all, we must
2659 * fall back to a single segment length write.
2660 *
2661 * If we didn't fallback here, we could livelock
2662 * because not all segments in the iov can be copied at
2663 * once without a pagefault.
2664 */
2665 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2666 iov_iter_single_seg_count(i));
2667 goto again;
2668 }
afddba49
NP
2669 pos += copied;
2670 written += copied;
2671
2672 balance_dirty_pages_ratelimited(mapping);
afddba49
NP
2673 } while (iov_iter_count(i));
2674
2675 return written ? written : status;
2676}
3b93f911 2677EXPORT_SYMBOL(generic_perform_write);
1da177e4 2678
e4dd9de3 2679/**
8174202b 2680 * __generic_file_write_iter - write data to a file
e4dd9de3 2681 * @iocb: IO state structure (file, offset, etc.)
8174202b 2682 * @from: iov_iter with data to write
e4dd9de3
JK
2683 *
2684 * This function does all the work needed for actually writing data to a
2685 * file. It does all basic checks, removes SUID from the file, updates
2686 * modification times and calls proper subroutines depending on whether we
2687 * do direct IO or a standard buffered write.
2688 *
2689 * It expects i_mutex to be grabbed unless we work on a block device or similar
2690 * object which does not need locking at all.
2691 *
2692 * This function does *not* take care of syncing data in case of O_SYNC write.
2693 * A caller has to handle it. This is mainly due to the fact that we want to
2694 * avoid syncing under i_mutex.
2695 */
8174202b 2696ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
2697{
2698 struct file *file = iocb->ki_filp;
fb5527e6 2699 struct address_space * mapping = file->f_mapping;
1da177e4 2700 struct inode *inode = mapping->host;
3b93f911 2701 ssize_t written = 0;
1da177e4 2702 ssize_t err;
3b93f911 2703 ssize_t status;
1da177e4 2704
1da177e4 2705 /* We can write back this queue in page reclaim */
de1414a6 2706 current->backing_dev_info = inode_to_bdi(inode);
5fa8e0a1 2707 err = file_remove_privs(file);
1da177e4
LT
2708 if (err)
2709 goto out;
2710
c3b2da31
JB
2711 err = file_update_time(file);
2712 if (err)
2713 goto out;
1da177e4 2714
2ba48ce5 2715 if (iocb->ki_flags & IOCB_DIRECT) {
0b8def9d 2716 loff_t pos, endbyte;
fb5527e6 2717
0b8def9d 2718 written = generic_file_direct_write(iocb, from, iocb->ki_pos);
1da177e4 2719 /*
fbbbad4b
MW
2720 * If the write stopped short of completing, fall back to
2721 * buffered writes. Some filesystems do this for writes to
2722 * holes, for example. For DAX files, a buffered write will
2723 * not succeed (even if it did, DAX does not handle dirty
2724 * page-cache pages correctly).
1da177e4 2725 */
0b8def9d 2726 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
fbbbad4b
MW
2727 goto out;
2728
0b8def9d 2729 status = generic_perform_write(file, from, pos = iocb->ki_pos);
fb5527e6 2730 /*
3b93f911 2731 * If generic_perform_write() returned a synchronous error
fb5527e6
JM
2732 * then we want to return the number of bytes which were
2733 * direct-written, or the error code if that was zero. Note
2734 * that this differs from normal direct-io semantics, which
2735 * will return -EFOO even if some bytes were written.
2736 */
60bb4529 2737 if (unlikely(status < 0)) {
3b93f911 2738 err = status;
fb5527e6
JM
2739 goto out;
2740 }
fb5527e6
JM
2741 /*
2742 * We need to ensure that the page cache pages are written to
2743 * disk and invalidated to preserve the expected O_DIRECT
2744 * semantics.
2745 */
3b93f911 2746 endbyte = pos + status - 1;
0b8def9d 2747 err = filemap_write_and_wait_range(mapping, pos, endbyte);
fb5527e6 2748 if (err == 0) {
0b8def9d 2749 iocb->ki_pos = endbyte + 1;
3b93f911 2750 written += status;
fb5527e6
JM
2751 invalidate_mapping_pages(mapping,
2752 pos >> PAGE_CACHE_SHIFT,
2753 endbyte >> PAGE_CACHE_SHIFT);
2754 } else {
2755 /*
2756 * We don't know how much we wrote, so just return
2757 * the number of bytes which were direct-written
2758 */
2759 }
2760 } else {
0b8def9d
AV
2761 written = generic_perform_write(file, from, iocb->ki_pos);
2762 if (likely(written > 0))
2763 iocb->ki_pos += written;
fb5527e6 2764 }
1da177e4
LT
2765out:
2766 current->backing_dev_info = NULL;
2767 return written ? written : err;
2768}
8174202b 2769EXPORT_SYMBOL(__generic_file_write_iter);
e4dd9de3 2770
e4dd9de3 2771/**
8174202b 2772 * generic_file_write_iter - write data to a file
e4dd9de3 2773 * @iocb: IO state structure
8174202b 2774 * @from: iov_iter with data to write
e4dd9de3 2775 *
8174202b 2776 * This is a wrapper around __generic_file_write_iter() to be used by most
e4dd9de3
JK
2777 * filesystems. It takes care of syncing the file in case of O_SYNC file
2778 * and acquires i_mutex as needed.
2779 */
8174202b 2780ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
2781{
2782 struct file *file = iocb->ki_filp;
148f948b 2783 struct inode *inode = file->f_mapping->host;
1da177e4 2784 ssize_t ret;
1da177e4 2785
5955102c 2786 inode_lock(inode);
3309dd04
AV
2787 ret = generic_write_checks(iocb, from);
2788 if (ret > 0)
5f380c7f 2789 ret = __generic_file_write_iter(iocb, from);
5955102c 2790 inode_unlock(inode);
1da177e4 2791
02afc27f 2792 if (ret > 0) {
1da177e4
LT
2793 ssize_t err;
2794
d311d79d
AV
2795 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2796 if (err < 0)
1da177e4
LT
2797 ret = err;
2798 }
2799 return ret;
2800}
8174202b 2801EXPORT_SYMBOL(generic_file_write_iter);
1da177e4 2802
cf9a2ae8
DH
2803/**
2804 * try_to_release_page() - release old fs-specific metadata on a page
2805 *
2806 * @page: the page which the kernel is trying to free
2807 * @gfp_mask: memory allocation flags (and I/O mode)
2808 *
2809 * The address_space is to try to release any data against the page
2810 * (presumably at page->private). If the release was successful, return `1'.
2811 * Otherwise return zero.
2812 *
266cf658
DH
2813 * This may also be called if PG_fscache is set on a page, indicating that the
2814 * page is known to the local caching routines.
2815 *
cf9a2ae8 2816 * The @gfp_mask argument specifies whether I/O may be performed to release
71baba4b 2817 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
cf9a2ae8 2818 *
cf9a2ae8
DH
2819 */
2820int try_to_release_page(struct page *page, gfp_t gfp_mask)
2821{
2822 struct address_space * const mapping = page->mapping;
2823
2824 BUG_ON(!PageLocked(page));
2825 if (PageWriteback(page))
2826 return 0;
2827
2828 if (mapping && mapping->a_ops->releasepage)
2829 return mapping->a_ops->releasepage(page, gfp_mask);
2830 return try_to_free_buffers(page);
2831}
2832
2833EXPORT_SYMBOL(try_to_release_page);