mm: memcontrol: rewrite charge API
[linux-2.6-block.git] / mm / filemap.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
b95f1b31 12#include <linux/export.h>
1da177e4
LT
13#include <linux/compiler.h>
14#include <linux/fs.h>
c22ce143 15#include <linux/uaccess.h>
1da177e4 16#include <linux/aio.h>
c59ede7b 17#include <linux/capability.h>
1da177e4 18#include <linux/kernel_stat.h>
5a0e3ad6 19#include <linux/gfp.h>
1da177e4
LT
20#include <linux/mm.h>
21#include <linux/swap.h>
22#include <linux/mman.h>
23#include <linux/pagemap.h>
24#include <linux/file.h>
25#include <linux/uio.h>
26#include <linux/hash.h>
27#include <linux/writeback.h>
53253383 28#include <linux/backing-dev.h>
1da177e4
LT
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/security.h>
44110fe3 32#include <linux/cpuset.h>
2f718ffc 33#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
00501b53 34#include <linux/hugetlb.h>
8a9f3ccd 35#include <linux/memcontrol.h>
c515e1fd 36#include <linux/cleancache.h>
f1820361 37#include <linux/rmap.h>
0f8053a5
NP
38#include "internal.h"
39
fe0bfaaf
RJ
40#define CREATE_TRACE_POINTS
41#include <trace/events/filemap.h>
42
1da177e4 43/*
1da177e4
LT
44 * FIXME: remove all knowledge of the buffer layer from the core VM
45 */
148f948b 46#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 47
1da177e4
LT
48#include <asm/mman.h>
49
50/*
51 * Shared mappings implemented 30.11.1994. It's not fully working yet,
52 * though.
53 *
54 * Shared mappings now work. 15.8.1995 Bruno.
55 *
56 * finished 'unifying' the page and buffer cache and SMP-threaded the
57 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58 *
59 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60 */
61
62/*
63 * Lock ordering:
64 *
3d48ae45 65 * ->i_mmap_mutex (truncate_pagecache)
1da177e4 66 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91
HD
67 * ->swap_lock (exclusive_swap_page, others)
68 * ->mapping->tree_lock
1da177e4 69 *
1b1dcc1b 70 * ->i_mutex
3d48ae45 71 * ->i_mmap_mutex (truncate->unmap_mapping_range)
1da177e4
LT
72 *
73 * ->mmap_sem
3d48ae45 74 * ->i_mmap_mutex
b8072f09 75 * ->page_table_lock or pte_lock (various, mainly in memory.c)
1da177e4
LT
76 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
77 *
78 * ->mmap_sem
79 * ->lock_page (access_process_vm)
80 *
ccad2365 81 * ->i_mutex (generic_perform_write)
82591e6e 82 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
1da177e4 83 *
f758eeab 84 * bdi->wb.list_lock
a66979ab 85 * sb_lock (fs/fs-writeback.c)
1da177e4
LT
86 * ->mapping->tree_lock (__sync_single_inode)
87 *
3d48ae45 88 * ->i_mmap_mutex
1da177e4
LT
89 * ->anon_vma.lock (vma_adjust)
90 *
91 * ->anon_vma.lock
b8072f09 92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 93 *
b8072f09 94 * ->page_table_lock or pte_lock
5d337b91 95 * ->swap_lock (try_to_unmap_one)
1da177e4
LT
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
98 * ->zone.lru_lock (follow_page->mark_page_accessed)
053837fc 99 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
1da177e4
LT
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
f758eeab 102 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
250df6ed 103 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
f758eeab 104 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 105 * ->inode->i_lock (zap_pte_range->set_page_dirty)
1da177e4
LT
106 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
107 *
9a3c531d
AK
108 * ->i_mmap_mutex
109 * ->tasklist_lock (memory_failure, collect_procs_ao)
1da177e4
LT
110 */
111
91b0abe3
JW
112static void page_cache_tree_delete(struct address_space *mapping,
113 struct page *page, void *shadow)
114{
449dd698
JW
115 struct radix_tree_node *node;
116 unsigned long index;
117 unsigned int offset;
118 unsigned int tag;
119 void **slot;
91b0abe3 120
449dd698
JW
121 VM_BUG_ON(!PageLocked(page));
122
123 __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
124
125 if (shadow) {
91b0abe3
JW
126 mapping->nrshadows++;
127 /*
128 * Make sure the nrshadows update is committed before
129 * the nrpages update so that final truncate racing
130 * with reclaim does not see both counters 0 at the
131 * same time and miss a shadow entry.
132 */
133 smp_wmb();
449dd698 134 }
91b0abe3 135 mapping->nrpages--;
449dd698
JW
136
137 if (!node) {
138 /* Clear direct pointer tags in root node */
139 mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
140 radix_tree_replace_slot(slot, shadow);
141 return;
142 }
143
144 /* Clear tree tags for the removed page */
145 index = page->index;
146 offset = index & RADIX_TREE_MAP_MASK;
147 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
148 if (test_bit(offset, node->tags[tag]))
149 radix_tree_tag_clear(&mapping->page_tree, index, tag);
150 }
151
152 /* Delete page, swap shadow entry */
153 radix_tree_replace_slot(slot, shadow);
154 workingset_node_pages_dec(node);
155 if (shadow)
156 workingset_node_shadows_inc(node);
157 else
158 if (__radix_tree_delete_node(&mapping->page_tree, node))
159 return;
160
161 /*
162 * Track node that only contains shadow entries.
163 *
164 * Avoid acquiring the list_lru lock if already tracked. The
165 * list_empty() test is safe as node->private_list is
166 * protected by mapping->tree_lock.
167 */
168 if (!workingset_node_pages(node) &&
169 list_empty(&node->private_list)) {
170 node->private_data = mapping;
171 list_lru_add(&workingset_shadow_nodes, &node->private_list);
172 }
91b0abe3
JW
173}
174
1da177e4 175/*
e64a782f 176 * Delete a page from the page cache and free it. Caller has to make
1da177e4 177 * sure the page is locked and that nobody else uses it - or that usage
19fd6231 178 * is safe. The caller must hold the mapping's tree_lock.
1da177e4 179 */
91b0abe3 180void __delete_from_page_cache(struct page *page, void *shadow)
1da177e4
LT
181{
182 struct address_space *mapping = page->mapping;
183
fe0bfaaf 184 trace_mm_filemap_delete_from_page_cache(page);
c515e1fd
DM
185 /*
186 * if we're uptodate, flush out into the cleancache, otherwise
187 * invalidate any existing cleancache entries. We can't leave
188 * stale data around in the cleancache once our page is gone
189 */
190 if (PageUptodate(page) && PageMappedToDisk(page))
191 cleancache_put_page(page);
192 else
3167760f 193 cleancache_invalidate_page(mapping, page);
c515e1fd 194
91b0abe3
JW
195 page_cache_tree_delete(mapping, page, shadow);
196
1da177e4 197 page->mapping = NULL;
b85e0eff 198 /* Leave page->index set: truncation lookup relies upon it */
91b0abe3 199
347ce434 200 __dec_zone_page_state(page, NR_FILE_PAGES);
4b02108a
KM
201 if (PageSwapBacked(page))
202 __dec_zone_page_state(page, NR_SHMEM);
45426812 203 BUG_ON(page_mapped(page));
3a692790
LT
204
205 /*
206 * Some filesystems seem to re-dirty the page even after
207 * the VM has canceled the dirty bit (eg ext3 journaling).
208 *
209 * Fix it up by doing a final dirty accounting check after
210 * having removed the page entirely.
211 */
212 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
213 dec_zone_page_state(page, NR_FILE_DIRTY);
214 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
215 }
1da177e4
LT
216}
217
702cfbf9
MK
218/**
219 * delete_from_page_cache - delete page from page cache
220 * @page: the page which the kernel is trying to remove from page cache
221 *
222 * This must be called only on pages that have been verified to be in the page
223 * cache and locked. It will never put the page into the free list, the caller
224 * has a reference on the page.
225 */
226void delete_from_page_cache(struct page *page)
1da177e4
LT
227{
228 struct address_space *mapping = page->mapping;
6072d13c 229 void (*freepage)(struct page *);
1da177e4 230
cd7619d6 231 BUG_ON(!PageLocked(page));
1da177e4 232
6072d13c 233 freepage = mapping->a_ops->freepage;
19fd6231 234 spin_lock_irq(&mapping->tree_lock);
91b0abe3 235 __delete_from_page_cache(page, NULL);
19fd6231 236 spin_unlock_irq(&mapping->tree_lock);
e767e056 237 mem_cgroup_uncharge_cache_page(page);
6072d13c
LT
238
239 if (freepage)
240 freepage(page);
97cecb5a
MK
241 page_cache_release(page);
242}
243EXPORT_SYMBOL(delete_from_page_cache);
244
865ffef3
DM
245static int filemap_check_errors(struct address_space *mapping)
246{
247 int ret = 0;
248 /* Check for outstanding write errors */
7fcbbaf1
JA
249 if (test_bit(AS_ENOSPC, &mapping->flags) &&
250 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
865ffef3 251 ret = -ENOSPC;
7fcbbaf1
JA
252 if (test_bit(AS_EIO, &mapping->flags) &&
253 test_and_clear_bit(AS_EIO, &mapping->flags))
865ffef3
DM
254 ret = -EIO;
255 return ret;
256}
257
1da177e4 258/**
485bb99b 259 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
260 * @mapping: address space structure to write
261 * @start: offset in bytes where the range starts
469eb4d0 262 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 263 * @sync_mode: enable synchronous operation
1da177e4 264 *
485bb99b
RD
265 * Start writeback against all of a mapping's dirty pages that lie
266 * within the byte offsets <start, end> inclusive.
267 *
1da177e4 268 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 269 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
270 * these two operations is that if a dirty page/buffer is encountered, it must
271 * be waited upon, and not just skipped over.
272 */
ebcf28e1
AM
273int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
274 loff_t end, int sync_mode)
1da177e4
LT
275{
276 int ret;
277 struct writeback_control wbc = {
278 .sync_mode = sync_mode,
05fe478d 279 .nr_to_write = LONG_MAX,
111ebb6e
OH
280 .range_start = start,
281 .range_end = end,
1da177e4
LT
282 };
283
284 if (!mapping_cap_writeback_dirty(mapping))
285 return 0;
286
287 ret = do_writepages(mapping, &wbc);
288 return ret;
289}
290
291static inline int __filemap_fdatawrite(struct address_space *mapping,
292 int sync_mode)
293{
111ebb6e 294 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
295}
296
297int filemap_fdatawrite(struct address_space *mapping)
298{
299 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
300}
301EXPORT_SYMBOL(filemap_fdatawrite);
302
f4c0a0fd 303int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 304 loff_t end)
1da177e4
LT
305{
306 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
307}
f4c0a0fd 308EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 309
485bb99b
RD
310/**
311 * filemap_flush - mostly a non-blocking flush
312 * @mapping: target address_space
313 *
1da177e4
LT
314 * This is a mostly non-blocking flush. Not suitable for data-integrity
315 * purposes - I/O may not be started against all dirty pages.
316 */
317int filemap_flush(struct address_space *mapping)
318{
319 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
320}
321EXPORT_SYMBOL(filemap_flush);
322
485bb99b 323/**
94004ed7
CH
324 * filemap_fdatawait_range - wait for writeback to complete
325 * @mapping: address space structure to wait for
326 * @start_byte: offset in bytes where the range starts
327 * @end_byte: offset in bytes where the range ends (inclusive)
485bb99b 328 *
94004ed7
CH
329 * Walk the list of under-writeback pages of the given address space
330 * in the given range and wait for all of them.
1da177e4 331 */
94004ed7
CH
332int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
333 loff_t end_byte)
1da177e4 334{
94004ed7
CH
335 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
336 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
1da177e4
LT
337 struct pagevec pvec;
338 int nr_pages;
865ffef3 339 int ret2, ret = 0;
1da177e4 340
94004ed7 341 if (end_byte < start_byte)
865ffef3 342 goto out;
1da177e4
LT
343
344 pagevec_init(&pvec, 0);
1da177e4
LT
345 while ((index <= end) &&
346 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
347 PAGECACHE_TAG_WRITEBACK,
348 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
349 unsigned i;
350
351 for (i = 0; i < nr_pages; i++) {
352 struct page *page = pvec.pages[i];
353
354 /* until radix tree lookup accepts end_index */
355 if (page->index > end)
356 continue;
357
358 wait_on_page_writeback(page);
212260aa 359 if (TestClearPageError(page))
1da177e4
LT
360 ret = -EIO;
361 }
362 pagevec_release(&pvec);
363 cond_resched();
364 }
865ffef3
DM
365out:
366 ret2 = filemap_check_errors(mapping);
367 if (!ret)
368 ret = ret2;
1da177e4
LT
369
370 return ret;
371}
d3bccb6f
JK
372EXPORT_SYMBOL(filemap_fdatawait_range);
373
1da177e4 374/**
485bb99b 375 * filemap_fdatawait - wait for all under-writeback pages to complete
1da177e4 376 * @mapping: address space structure to wait for
485bb99b
RD
377 *
378 * Walk the list of under-writeback pages of the given address space
379 * and wait for all of them.
1da177e4
LT
380 */
381int filemap_fdatawait(struct address_space *mapping)
382{
383 loff_t i_size = i_size_read(mapping->host);
384
385 if (i_size == 0)
386 return 0;
387
94004ed7 388 return filemap_fdatawait_range(mapping, 0, i_size - 1);
1da177e4
LT
389}
390EXPORT_SYMBOL(filemap_fdatawait);
391
392int filemap_write_and_wait(struct address_space *mapping)
393{
28fd1298 394 int err = 0;
1da177e4
LT
395
396 if (mapping->nrpages) {
28fd1298
OH
397 err = filemap_fdatawrite(mapping);
398 /*
399 * Even if the above returned error, the pages may be
400 * written partially (e.g. -ENOSPC), so we wait for it.
401 * But the -EIO is special case, it may indicate the worst
402 * thing (e.g. bug) happened, so we avoid waiting for it.
403 */
404 if (err != -EIO) {
405 int err2 = filemap_fdatawait(mapping);
406 if (!err)
407 err = err2;
408 }
865ffef3
DM
409 } else {
410 err = filemap_check_errors(mapping);
1da177e4 411 }
28fd1298 412 return err;
1da177e4 413}
28fd1298 414EXPORT_SYMBOL(filemap_write_and_wait);
1da177e4 415
485bb99b
RD
416/**
417 * filemap_write_and_wait_range - write out & wait on a file range
418 * @mapping: the address_space for the pages
419 * @lstart: offset in bytes where the range starts
420 * @lend: offset in bytes where the range ends (inclusive)
421 *
469eb4d0
AM
422 * Write out and wait upon file offsets lstart->lend, inclusive.
423 *
424 * Note that `lend' is inclusive (describes the last byte to be written) so
425 * that this function can be used to write to the very end-of-file (end = -1).
426 */
1da177e4
LT
427int filemap_write_and_wait_range(struct address_space *mapping,
428 loff_t lstart, loff_t lend)
429{
28fd1298 430 int err = 0;
1da177e4
LT
431
432 if (mapping->nrpages) {
28fd1298
OH
433 err = __filemap_fdatawrite_range(mapping, lstart, lend,
434 WB_SYNC_ALL);
435 /* See comment of filemap_write_and_wait() */
436 if (err != -EIO) {
94004ed7
CH
437 int err2 = filemap_fdatawait_range(mapping,
438 lstart, lend);
28fd1298
OH
439 if (!err)
440 err = err2;
441 }
865ffef3
DM
442 } else {
443 err = filemap_check_errors(mapping);
1da177e4 444 }
28fd1298 445 return err;
1da177e4 446}
f6995585 447EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 448
ef6a3c63
MS
449/**
450 * replace_page_cache_page - replace a pagecache page with a new one
451 * @old: page to be replaced
452 * @new: page to replace with
453 * @gfp_mask: allocation mode
454 *
455 * This function replaces a page in the pagecache with a new one. On
456 * success it acquires the pagecache reference for the new page and
457 * drops it for the old page. Both the old and new pages must be
458 * locked. This function does not add the new page to the LRU, the
459 * caller must do that.
460 *
461 * The remove + add is atomic. The only way this function can fail is
462 * memory allocation failure.
463 */
464int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
465{
466 int error;
ef6a3c63 467
309381fe
SL
468 VM_BUG_ON_PAGE(!PageLocked(old), old);
469 VM_BUG_ON_PAGE(!PageLocked(new), new);
470 VM_BUG_ON_PAGE(new->mapping, new);
ef6a3c63 471
ef6a3c63
MS
472 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
473 if (!error) {
474 struct address_space *mapping = old->mapping;
475 void (*freepage)(struct page *);
476
477 pgoff_t offset = old->index;
478 freepage = mapping->a_ops->freepage;
479
480 page_cache_get(new);
481 new->mapping = mapping;
482 new->index = offset;
483
484 spin_lock_irq(&mapping->tree_lock);
91b0abe3 485 __delete_from_page_cache(old, NULL);
ef6a3c63
MS
486 error = radix_tree_insert(&mapping->page_tree, offset, new);
487 BUG_ON(error);
488 mapping->nrpages++;
489 __inc_zone_page_state(new, NR_FILE_PAGES);
490 if (PageSwapBacked(new))
491 __inc_zone_page_state(new, NR_SHMEM);
492 spin_unlock_irq(&mapping->tree_lock);
ab936cbc
KH
493 /* mem_cgroup codes must not be called under tree_lock */
494 mem_cgroup_replace_page_cache(old, new);
ef6a3c63
MS
495 radix_tree_preload_end();
496 if (freepage)
497 freepage(old);
498 page_cache_release(old);
ef6a3c63
MS
499 }
500
501 return error;
502}
503EXPORT_SYMBOL_GPL(replace_page_cache_page);
504
0cd6144a 505static int page_cache_tree_insert(struct address_space *mapping,
a528910e 506 struct page *page, void **shadowp)
0cd6144a 507{
449dd698 508 struct radix_tree_node *node;
0cd6144a
JW
509 void **slot;
510 int error;
511
449dd698
JW
512 error = __radix_tree_create(&mapping->page_tree, page->index,
513 &node, &slot);
514 if (error)
515 return error;
516 if (*slot) {
0cd6144a
JW
517 void *p;
518
519 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
520 if (!radix_tree_exceptional_entry(p))
521 return -EEXIST;
a528910e
JW
522 if (shadowp)
523 *shadowp = p;
449dd698
JW
524 mapping->nrshadows--;
525 if (node)
526 workingset_node_shadows_dec(node);
0cd6144a 527 }
449dd698
JW
528 radix_tree_replace_slot(slot, page);
529 mapping->nrpages++;
530 if (node) {
531 workingset_node_pages_inc(node);
532 /*
533 * Don't track node that contains actual pages.
534 *
535 * Avoid acquiring the list_lru lock if already
536 * untracked. The list_empty() test is safe as
537 * node->private_list is protected by
538 * mapping->tree_lock.
539 */
540 if (!list_empty(&node->private_list))
541 list_lru_del(&workingset_shadow_nodes,
542 &node->private_list);
543 }
544 return 0;
0cd6144a
JW
545}
546
a528910e
JW
547static int __add_to_page_cache_locked(struct page *page,
548 struct address_space *mapping,
549 pgoff_t offset, gfp_t gfp_mask,
550 void **shadowp)
1da177e4 551{
00501b53
JW
552 int huge = PageHuge(page);
553 struct mem_cgroup *memcg;
e286781d
NP
554 int error;
555
309381fe
SL
556 VM_BUG_ON_PAGE(!PageLocked(page), page);
557 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
e286781d 558
00501b53
JW
559 if (!huge) {
560 error = mem_cgroup_try_charge(page, current->mm,
561 gfp_mask, &memcg);
562 if (error)
563 return error;
564 }
1da177e4 565
5e4c0d97 566 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
66a0c8ee 567 if (error) {
00501b53
JW
568 if (!huge)
569 mem_cgroup_cancel_charge(page, memcg);
66a0c8ee
KS
570 return error;
571 }
572
573 page_cache_get(page);
574 page->mapping = mapping;
575 page->index = offset;
576
577 spin_lock_irq(&mapping->tree_lock);
a528910e 578 error = page_cache_tree_insert(mapping, page, shadowp);
66a0c8ee
KS
579 radix_tree_preload_end();
580 if (unlikely(error))
581 goto err_insert;
66a0c8ee
KS
582 __inc_zone_page_state(page, NR_FILE_PAGES);
583 spin_unlock_irq(&mapping->tree_lock);
00501b53
JW
584 if (!huge)
585 mem_cgroup_commit_charge(page, memcg, false);
66a0c8ee
KS
586 trace_mm_filemap_add_to_page_cache(page);
587 return 0;
588err_insert:
589 page->mapping = NULL;
590 /* Leave page->index set: truncation relies upon it */
591 spin_unlock_irq(&mapping->tree_lock);
00501b53
JW
592 if (!huge)
593 mem_cgroup_cancel_charge(page, memcg);
66a0c8ee 594 page_cache_release(page);
1da177e4
LT
595 return error;
596}
a528910e
JW
597
598/**
599 * add_to_page_cache_locked - add a locked page to the pagecache
600 * @page: page to add
601 * @mapping: the page's address_space
602 * @offset: page index
603 * @gfp_mask: page allocation mode
604 *
605 * This function is used to add a page to the pagecache. It must be locked.
606 * This function does not add the page to the LRU. The caller must do that.
607 */
608int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
609 pgoff_t offset, gfp_t gfp_mask)
610{
611 return __add_to_page_cache_locked(page, mapping, offset,
612 gfp_mask, NULL);
613}
e286781d 614EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4
LT
615
616int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 617 pgoff_t offset, gfp_t gfp_mask)
1da177e4 618{
a528910e 619 void *shadow = NULL;
4f98a2fe
RR
620 int ret;
621
a528910e
JW
622 __set_page_locked(page);
623 ret = __add_to_page_cache_locked(page, mapping, offset,
624 gfp_mask, &shadow);
625 if (unlikely(ret))
626 __clear_page_locked(page);
627 else {
628 /*
629 * The page might have been evicted from cache only
630 * recently, in which case it should be activated like
631 * any other repeatedly accessed page.
632 */
633 if (shadow && workingset_refault(shadow)) {
634 SetPageActive(page);
635 workingset_activation(page);
636 } else
637 ClearPageActive(page);
638 lru_cache_add(page);
639 }
1da177e4
LT
640 return ret;
641}
18bc0bbd 642EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1da177e4 643
44110fe3 644#ifdef CONFIG_NUMA
2ae88149 645struct page *__page_cache_alloc(gfp_t gfp)
44110fe3 646{
c0ff7453
MX
647 int n;
648 struct page *page;
649
44110fe3 650 if (cpuset_do_page_mem_spread()) {
cc9a6c87
MG
651 unsigned int cpuset_mems_cookie;
652 do {
d26914d1 653 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87
MG
654 n = cpuset_mem_spread_node();
655 page = alloc_pages_exact_node(n, gfp, 0);
d26914d1 656 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
cc9a6c87 657
c0ff7453 658 return page;
44110fe3 659 }
2ae88149 660 return alloc_pages(gfp, 0);
44110fe3 661}
2ae88149 662EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
663#endif
664
1da177e4
LT
665/*
666 * In order to wait for pages to become available there must be
667 * waitqueues associated with pages. By using a hash table of
668 * waitqueues where the bucket discipline is to maintain all
669 * waiters on the same queue and wake all when any of the pages
670 * become available, and for the woken contexts to check to be
671 * sure the appropriate page became available, this saves space
672 * at a cost of "thundering herd" phenomena during rare hash
673 * collisions.
674 */
675static wait_queue_head_t *page_waitqueue(struct page *page)
676{
677 const struct zone *zone = page_zone(page);
678
679 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
680}
681
682static inline void wake_up_page(struct page *page, int bit)
683{
684 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
685}
686
920c7a5d 687void wait_on_page_bit(struct page *page, int bit_nr)
1da177e4
LT
688{
689 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
690
691 if (test_bit(bit_nr, &page->flags))
74316201 692 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
1da177e4
LT
693 TASK_UNINTERRUPTIBLE);
694}
695EXPORT_SYMBOL(wait_on_page_bit);
696
f62e00cc
KM
697int wait_on_page_bit_killable(struct page *page, int bit_nr)
698{
699 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
700
701 if (!test_bit(bit_nr, &page->flags))
702 return 0;
703
704 return __wait_on_bit(page_waitqueue(page), &wait,
74316201 705 bit_wait_io, TASK_KILLABLE);
f62e00cc
KM
706}
707
385e1ca5
DH
708/**
709 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
697f619f
RD
710 * @page: Page defining the wait queue of interest
711 * @waiter: Waiter to add to the queue
385e1ca5
DH
712 *
713 * Add an arbitrary @waiter to the wait queue for the nominated @page.
714 */
715void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
716{
717 wait_queue_head_t *q = page_waitqueue(page);
718 unsigned long flags;
719
720 spin_lock_irqsave(&q->lock, flags);
721 __add_wait_queue(q, waiter);
722 spin_unlock_irqrestore(&q->lock, flags);
723}
724EXPORT_SYMBOL_GPL(add_page_wait_queue);
725
1da177e4 726/**
485bb99b 727 * unlock_page - unlock a locked page
1da177e4
LT
728 * @page: the page
729 *
730 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
731 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
732 * mechananism between PageLocked pages and PageWriteback pages is shared.
733 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
734 *
8413ac9d
NP
735 * The mb is necessary to enforce ordering between the clear_bit and the read
736 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
1da177e4 737 */
920c7a5d 738void unlock_page(struct page *page)
1da177e4 739{
309381fe 740 VM_BUG_ON_PAGE(!PageLocked(page), page);
8413ac9d 741 clear_bit_unlock(PG_locked, &page->flags);
4e857c58 742 smp_mb__after_atomic();
1da177e4
LT
743 wake_up_page(page, PG_locked);
744}
745EXPORT_SYMBOL(unlock_page);
746
485bb99b
RD
747/**
748 * end_page_writeback - end writeback against a page
749 * @page: the page
1da177e4
LT
750 */
751void end_page_writeback(struct page *page)
752{
888cf2db
MG
753 /*
754 * TestClearPageReclaim could be used here but it is an atomic
755 * operation and overkill in this particular case. Failing to
756 * shuffle a page marked for immediate reclaim is too mild to
757 * justify taking an atomic operation penalty at the end of
758 * ever page writeback.
759 */
760 if (PageReclaim(page)) {
761 ClearPageReclaim(page);
ac6aadb2 762 rotate_reclaimable_page(page);
888cf2db 763 }
ac6aadb2
MS
764
765 if (!test_clear_page_writeback(page))
766 BUG();
767
4e857c58 768 smp_mb__after_atomic();
1da177e4
LT
769 wake_up_page(page, PG_writeback);
770}
771EXPORT_SYMBOL(end_page_writeback);
772
57d99845
MW
773/*
774 * After completing I/O on a page, call this routine to update the page
775 * flags appropriately
776 */
777void page_endio(struct page *page, int rw, int err)
778{
779 if (rw == READ) {
780 if (!err) {
781 SetPageUptodate(page);
782 } else {
783 ClearPageUptodate(page);
784 SetPageError(page);
785 }
786 unlock_page(page);
787 } else { /* rw == WRITE */
788 if (err) {
789 SetPageError(page);
790 if (page->mapping)
791 mapping_set_error(page->mapping, err);
792 }
793 end_page_writeback(page);
794 }
795}
796EXPORT_SYMBOL_GPL(page_endio);
797
485bb99b
RD
798/**
799 * __lock_page - get a lock on the page, assuming we need to sleep to get it
800 * @page: the page to lock
1da177e4 801 */
920c7a5d 802void __lock_page(struct page *page)
1da177e4
LT
803{
804 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
805
74316201 806 __wait_on_bit_lock(page_waitqueue(page), &wait, bit_wait_io,
1da177e4
LT
807 TASK_UNINTERRUPTIBLE);
808}
809EXPORT_SYMBOL(__lock_page);
810
b5606c2d 811int __lock_page_killable(struct page *page)
2687a356
MW
812{
813 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
814
815 return __wait_on_bit_lock(page_waitqueue(page), &wait,
74316201 816 bit_wait_io, TASK_KILLABLE);
2687a356 817}
18bc0bbd 818EXPORT_SYMBOL_GPL(__lock_page_killable);
2687a356 819
9a95f3cf
PC
820/*
821 * Return values:
822 * 1 - page is locked; mmap_sem is still held.
823 * 0 - page is not locked.
824 * mmap_sem has been released (up_read()), unless flags had both
825 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
826 * which case mmap_sem is still held.
827 *
828 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
829 * with the page locked and the mmap_sem unperturbed.
830 */
d065bd81
ML
831int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
832 unsigned int flags)
833{
37b23e05
KM
834 if (flags & FAULT_FLAG_ALLOW_RETRY) {
835 /*
836 * CAUTION! In this case, mmap_sem is not released
837 * even though return 0.
838 */
839 if (flags & FAULT_FLAG_RETRY_NOWAIT)
840 return 0;
841
842 up_read(&mm->mmap_sem);
843 if (flags & FAULT_FLAG_KILLABLE)
844 wait_on_page_locked_killable(page);
845 else
318b275f 846 wait_on_page_locked(page);
d065bd81 847 return 0;
37b23e05
KM
848 } else {
849 if (flags & FAULT_FLAG_KILLABLE) {
850 int ret;
851
852 ret = __lock_page_killable(page);
853 if (ret) {
854 up_read(&mm->mmap_sem);
855 return 0;
856 }
857 } else
858 __lock_page(page);
859 return 1;
d065bd81
ML
860 }
861}
862
e7b563bb
JW
863/**
864 * page_cache_next_hole - find the next hole (not-present entry)
865 * @mapping: mapping
866 * @index: index
867 * @max_scan: maximum range to search
868 *
869 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
870 * lowest indexed hole.
871 *
872 * Returns: the index of the hole if found, otherwise returns an index
873 * outside of the set specified (in which case 'return - index >=
874 * max_scan' will be true). In rare cases of index wrap-around, 0 will
875 * be returned.
876 *
877 * page_cache_next_hole may be called under rcu_read_lock. However,
878 * like radix_tree_gang_lookup, this will not atomically search a
879 * snapshot of the tree at a single point in time. For example, if a
880 * hole is created at index 5, then subsequently a hole is created at
881 * index 10, page_cache_next_hole covering both indexes may return 10
882 * if called under rcu_read_lock.
883 */
884pgoff_t page_cache_next_hole(struct address_space *mapping,
885 pgoff_t index, unsigned long max_scan)
886{
887 unsigned long i;
888
889 for (i = 0; i < max_scan; i++) {
0cd6144a
JW
890 struct page *page;
891
892 page = radix_tree_lookup(&mapping->page_tree, index);
893 if (!page || radix_tree_exceptional_entry(page))
e7b563bb
JW
894 break;
895 index++;
896 if (index == 0)
897 break;
898 }
899
900 return index;
901}
902EXPORT_SYMBOL(page_cache_next_hole);
903
904/**
905 * page_cache_prev_hole - find the prev hole (not-present entry)
906 * @mapping: mapping
907 * @index: index
908 * @max_scan: maximum range to search
909 *
910 * Search backwards in the range [max(index-max_scan+1, 0), index] for
911 * the first hole.
912 *
913 * Returns: the index of the hole if found, otherwise returns an index
914 * outside of the set specified (in which case 'index - return >=
915 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
916 * will be returned.
917 *
918 * page_cache_prev_hole may be called under rcu_read_lock. However,
919 * like radix_tree_gang_lookup, this will not atomically search a
920 * snapshot of the tree at a single point in time. For example, if a
921 * hole is created at index 10, then subsequently a hole is created at
922 * index 5, page_cache_prev_hole covering both indexes may return 5 if
923 * called under rcu_read_lock.
924 */
925pgoff_t page_cache_prev_hole(struct address_space *mapping,
926 pgoff_t index, unsigned long max_scan)
927{
928 unsigned long i;
929
930 for (i = 0; i < max_scan; i++) {
0cd6144a
JW
931 struct page *page;
932
933 page = radix_tree_lookup(&mapping->page_tree, index);
934 if (!page || radix_tree_exceptional_entry(page))
e7b563bb
JW
935 break;
936 index--;
937 if (index == ULONG_MAX)
938 break;
939 }
940
941 return index;
942}
943EXPORT_SYMBOL(page_cache_prev_hole);
944
485bb99b 945/**
0cd6144a 946 * find_get_entry - find and get a page cache entry
485bb99b 947 * @mapping: the address_space to search
0cd6144a
JW
948 * @offset: the page cache index
949 *
950 * Looks up the page cache slot at @mapping & @offset. If there is a
951 * page cache page, it is returned with an increased refcount.
485bb99b 952 *
139b6a6f
JW
953 * If the slot holds a shadow entry of a previously evicted page, or a
954 * swap entry from shmem/tmpfs, it is returned.
0cd6144a
JW
955 *
956 * Otherwise, %NULL is returned.
1da177e4 957 */
0cd6144a 958struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1da177e4 959{
a60637c8 960 void **pagep;
1da177e4
LT
961 struct page *page;
962
a60637c8
NP
963 rcu_read_lock();
964repeat:
965 page = NULL;
966 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
967 if (pagep) {
968 page = radix_tree_deref_slot(pagep);
27d20fdd
NP
969 if (unlikely(!page))
970 goto out;
a2c16d6c 971 if (radix_tree_exception(page)) {
8079b1c8
HD
972 if (radix_tree_deref_retry(page))
973 goto repeat;
974 /*
139b6a6f
JW
975 * A shadow entry of a recently evicted page,
976 * or a swap entry from shmem/tmpfs. Return
977 * it without attempting to raise page count.
8079b1c8
HD
978 */
979 goto out;
a2c16d6c 980 }
a60637c8
NP
981 if (!page_cache_get_speculative(page))
982 goto repeat;
983
984 /*
985 * Has the page moved?
986 * This is part of the lockless pagecache protocol. See
987 * include/linux/pagemap.h for details.
988 */
989 if (unlikely(page != *pagep)) {
990 page_cache_release(page);
991 goto repeat;
992 }
993 }
27d20fdd 994out:
a60637c8
NP
995 rcu_read_unlock();
996
1da177e4
LT
997 return page;
998}
0cd6144a 999EXPORT_SYMBOL(find_get_entry);
1da177e4 1000
0cd6144a
JW
1001/**
1002 * find_lock_entry - locate, pin and lock a page cache entry
1003 * @mapping: the address_space to search
1004 * @offset: the page cache index
1005 *
1006 * Looks up the page cache slot at @mapping & @offset. If there is a
1007 * page cache page, it is returned locked and with an increased
1008 * refcount.
1009 *
139b6a6f
JW
1010 * If the slot holds a shadow entry of a previously evicted page, or a
1011 * swap entry from shmem/tmpfs, it is returned.
0cd6144a
JW
1012 *
1013 * Otherwise, %NULL is returned.
1014 *
1015 * find_lock_entry() may sleep.
1016 */
1017struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1da177e4
LT
1018{
1019 struct page *page;
1020
1da177e4 1021repeat:
0cd6144a 1022 page = find_get_entry(mapping, offset);
a2c16d6c 1023 if (page && !radix_tree_exception(page)) {
a60637c8
NP
1024 lock_page(page);
1025 /* Has the page been truncated? */
1026 if (unlikely(page->mapping != mapping)) {
1027 unlock_page(page);
1028 page_cache_release(page);
1029 goto repeat;
1da177e4 1030 }
309381fe 1031 VM_BUG_ON_PAGE(page->index != offset, page);
1da177e4 1032 }
1da177e4
LT
1033 return page;
1034}
0cd6144a
JW
1035EXPORT_SYMBOL(find_lock_entry);
1036
1037/**
2457aec6 1038 * pagecache_get_page - find and get a page reference
0cd6144a
JW
1039 * @mapping: the address_space to search
1040 * @offset: the page index
2457aec6 1041 * @fgp_flags: PCG flags
75325189
RD
1042 * @cache_gfp_mask: gfp mask to use for the page cache data page allocation
1043 * @radix_gfp_mask: gfp mask to use for radix tree node allocation
0cd6144a 1044 *
2457aec6 1045 * Looks up the page cache slot at @mapping & @offset.
1da177e4 1046 *
75325189 1047 * PCG flags modify how the page is returned.
0cd6144a 1048 *
2457aec6
MG
1049 * FGP_ACCESSED: the page will be marked accessed
1050 * FGP_LOCK: Page is return locked
1051 * FGP_CREAT: If page is not present then a new page is allocated using
75325189
RD
1052 * @cache_gfp_mask and added to the page cache and the VM's LRU
1053 * list. If radix tree nodes are allocated during page cache
1054 * insertion then @radix_gfp_mask is used. The page is returned
1055 * locked and with an increased refcount. Otherwise, %NULL is
1056 * returned.
1da177e4 1057 *
2457aec6
MG
1058 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1059 * if the GFP flags specified for FGP_CREAT are atomic.
1da177e4 1060 *
2457aec6 1061 * If there is a page cache page, it is returned with an increased refcount.
1da177e4 1062 */
2457aec6
MG
1063struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1064 int fgp_flags, gfp_t cache_gfp_mask, gfp_t radix_gfp_mask)
1da177e4 1065{
eb2be189 1066 struct page *page;
2457aec6 1067
1da177e4 1068repeat:
2457aec6
MG
1069 page = find_get_entry(mapping, offset);
1070 if (radix_tree_exceptional_entry(page))
1071 page = NULL;
1072 if (!page)
1073 goto no_page;
1074
1075 if (fgp_flags & FGP_LOCK) {
1076 if (fgp_flags & FGP_NOWAIT) {
1077 if (!trylock_page(page)) {
1078 page_cache_release(page);
1079 return NULL;
1080 }
1081 } else {
1082 lock_page(page);
1083 }
1084
1085 /* Has the page been truncated? */
1086 if (unlikely(page->mapping != mapping)) {
1087 unlock_page(page);
1088 page_cache_release(page);
1089 goto repeat;
1090 }
1091 VM_BUG_ON_PAGE(page->index != offset, page);
1092 }
1093
1094 if (page && (fgp_flags & FGP_ACCESSED))
1095 mark_page_accessed(page);
1096
1097no_page:
1098 if (!page && (fgp_flags & FGP_CREAT)) {
1099 int err;
1100 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1101 cache_gfp_mask |= __GFP_WRITE;
1102 if (fgp_flags & FGP_NOFS) {
1103 cache_gfp_mask &= ~__GFP_FS;
1104 radix_gfp_mask &= ~__GFP_FS;
1105 }
1106
1107 page = __page_cache_alloc(cache_gfp_mask);
eb2be189
NP
1108 if (!page)
1109 return NULL;
2457aec6
MG
1110
1111 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1112 fgp_flags |= FGP_LOCK;
1113
eb39d618 1114 /* Init accessed so avoid atomic mark_page_accessed later */
2457aec6 1115 if (fgp_flags & FGP_ACCESSED)
eb39d618 1116 __SetPageReferenced(page);
2457aec6
MG
1117
1118 err = add_to_page_cache_lru(page, mapping, offset, radix_gfp_mask);
eb2be189
NP
1119 if (unlikely(err)) {
1120 page_cache_release(page);
1121 page = NULL;
1122 if (err == -EEXIST)
1123 goto repeat;
1da177e4 1124 }
1da177e4 1125 }
2457aec6 1126
1da177e4
LT
1127 return page;
1128}
2457aec6 1129EXPORT_SYMBOL(pagecache_get_page);
1da177e4 1130
0cd6144a
JW
1131/**
1132 * find_get_entries - gang pagecache lookup
1133 * @mapping: The address_space to search
1134 * @start: The starting page cache index
1135 * @nr_entries: The maximum number of entries
1136 * @entries: Where the resulting entries are placed
1137 * @indices: The cache indices corresponding to the entries in @entries
1138 *
1139 * find_get_entries() will search for and return a group of up to
1140 * @nr_entries entries in the mapping. The entries are placed at
1141 * @entries. find_get_entries() takes a reference against any actual
1142 * pages it returns.
1143 *
1144 * The search returns a group of mapping-contiguous page cache entries
1145 * with ascending indexes. There may be holes in the indices due to
1146 * not-present pages.
1147 *
139b6a6f
JW
1148 * Any shadow entries of evicted pages, or swap entries from
1149 * shmem/tmpfs, are included in the returned array.
0cd6144a
JW
1150 *
1151 * find_get_entries() returns the number of pages and shadow entries
1152 * which were found.
1153 */
1154unsigned find_get_entries(struct address_space *mapping,
1155 pgoff_t start, unsigned int nr_entries,
1156 struct page **entries, pgoff_t *indices)
1157{
1158 void **slot;
1159 unsigned int ret = 0;
1160 struct radix_tree_iter iter;
1161
1162 if (!nr_entries)
1163 return 0;
1164
1165 rcu_read_lock();
1166restart:
1167 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1168 struct page *page;
1169repeat:
1170 page = radix_tree_deref_slot(slot);
1171 if (unlikely(!page))
1172 continue;
1173 if (radix_tree_exception(page)) {
1174 if (radix_tree_deref_retry(page))
1175 goto restart;
1176 /*
139b6a6f
JW
1177 * A shadow entry of a recently evicted page,
1178 * or a swap entry from shmem/tmpfs. Return
1179 * it without attempting to raise page count.
0cd6144a
JW
1180 */
1181 goto export;
1182 }
1183 if (!page_cache_get_speculative(page))
1184 goto repeat;
1185
1186 /* Has the page moved? */
1187 if (unlikely(page != *slot)) {
1188 page_cache_release(page);
1189 goto repeat;
1190 }
1191export:
1192 indices[ret] = iter.index;
1193 entries[ret] = page;
1194 if (++ret == nr_entries)
1195 break;
1196 }
1197 rcu_read_unlock();
1198 return ret;
1199}
1200
1da177e4
LT
1201/**
1202 * find_get_pages - gang pagecache lookup
1203 * @mapping: The address_space to search
1204 * @start: The starting page index
1205 * @nr_pages: The maximum number of pages
1206 * @pages: Where the resulting pages are placed
1207 *
1208 * find_get_pages() will search for and return a group of up to
1209 * @nr_pages pages in the mapping. The pages are placed at @pages.
1210 * find_get_pages() takes a reference against the returned pages.
1211 *
1212 * The search returns a group of mapping-contiguous pages with ascending
1213 * indexes. There may be holes in the indices due to not-present pages.
1214 *
1215 * find_get_pages() returns the number of pages which were found.
1216 */
1217unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1218 unsigned int nr_pages, struct page **pages)
1219{
0fc9d104
KK
1220 struct radix_tree_iter iter;
1221 void **slot;
1222 unsigned ret = 0;
1223
1224 if (unlikely(!nr_pages))
1225 return 0;
a60637c8
NP
1226
1227 rcu_read_lock();
1228restart:
0fc9d104 1229 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
a60637c8
NP
1230 struct page *page;
1231repeat:
0fc9d104 1232 page = radix_tree_deref_slot(slot);
a60637c8
NP
1233 if (unlikely(!page))
1234 continue;
9d8aa4ea 1235
a2c16d6c 1236 if (radix_tree_exception(page)) {
8079b1c8
HD
1237 if (radix_tree_deref_retry(page)) {
1238 /*
1239 * Transient condition which can only trigger
1240 * when entry at index 0 moves out of or back
1241 * to root: none yet gotten, safe to restart.
1242 */
0fc9d104 1243 WARN_ON(iter.index);
8079b1c8
HD
1244 goto restart;
1245 }
a2c16d6c 1246 /*
139b6a6f
JW
1247 * A shadow entry of a recently evicted page,
1248 * or a swap entry from shmem/tmpfs. Skip
1249 * over it.
a2c16d6c 1250 */
8079b1c8 1251 continue;
27d20fdd 1252 }
a60637c8
NP
1253
1254 if (!page_cache_get_speculative(page))
1255 goto repeat;
1256
1257 /* Has the page moved? */
0fc9d104 1258 if (unlikely(page != *slot)) {
a60637c8
NP
1259 page_cache_release(page);
1260 goto repeat;
1261 }
1da177e4 1262
a60637c8 1263 pages[ret] = page;
0fc9d104
KK
1264 if (++ret == nr_pages)
1265 break;
a60637c8 1266 }
5b280c0c 1267
a60637c8 1268 rcu_read_unlock();
1da177e4
LT
1269 return ret;
1270}
1271
ebf43500
JA
1272/**
1273 * find_get_pages_contig - gang contiguous pagecache lookup
1274 * @mapping: The address_space to search
1275 * @index: The starting page index
1276 * @nr_pages: The maximum number of pages
1277 * @pages: Where the resulting pages are placed
1278 *
1279 * find_get_pages_contig() works exactly like find_get_pages(), except
1280 * that the returned number of pages are guaranteed to be contiguous.
1281 *
1282 * find_get_pages_contig() returns the number of pages which were found.
1283 */
1284unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1285 unsigned int nr_pages, struct page **pages)
1286{
0fc9d104
KK
1287 struct radix_tree_iter iter;
1288 void **slot;
1289 unsigned int ret = 0;
1290
1291 if (unlikely(!nr_pages))
1292 return 0;
a60637c8
NP
1293
1294 rcu_read_lock();
1295restart:
0fc9d104 1296 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
a60637c8
NP
1297 struct page *page;
1298repeat:
0fc9d104
KK
1299 page = radix_tree_deref_slot(slot);
1300 /* The hole, there no reason to continue */
a60637c8 1301 if (unlikely(!page))
0fc9d104 1302 break;
9d8aa4ea 1303
a2c16d6c 1304 if (radix_tree_exception(page)) {
8079b1c8
HD
1305 if (radix_tree_deref_retry(page)) {
1306 /*
1307 * Transient condition which can only trigger
1308 * when entry at index 0 moves out of or back
1309 * to root: none yet gotten, safe to restart.
1310 */
1311 goto restart;
1312 }
a2c16d6c 1313 /*
139b6a6f
JW
1314 * A shadow entry of a recently evicted page,
1315 * or a swap entry from shmem/tmpfs. Stop
1316 * looking for contiguous pages.
a2c16d6c 1317 */
8079b1c8 1318 break;
a2c16d6c 1319 }
ebf43500 1320
a60637c8
NP
1321 if (!page_cache_get_speculative(page))
1322 goto repeat;
1323
1324 /* Has the page moved? */
0fc9d104 1325 if (unlikely(page != *slot)) {
a60637c8
NP
1326 page_cache_release(page);
1327 goto repeat;
1328 }
1329
9cbb4cb2
NP
1330 /*
1331 * must check mapping and index after taking the ref.
1332 * otherwise we can get both false positives and false
1333 * negatives, which is just confusing to the caller.
1334 */
0fc9d104 1335 if (page->mapping == NULL || page->index != iter.index) {
9cbb4cb2
NP
1336 page_cache_release(page);
1337 break;
1338 }
1339
a60637c8 1340 pages[ret] = page;
0fc9d104
KK
1341 if (++ret == nr_pages)
1342 break;
ebf43500 1343 }
a60637c8
NP
1344 rcu_read_unlock();
1345 return ret;
ebf43500 1346}
ef71c15c 1347EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 1348
485bb99b
RD
1349/**
1350 * find_get_pages_tag - find and return pages that match @tag
1351 * @mapping: the address_space to search
1352 * @index: the starting page index
1353 * @tag: the tag index
1354 * @nr_pages: the maximum number of pages
1355 * @pages: where the resulting pages are placed
1356 *
1da177e4 1357 * Like find_get_pages, except we only return pages which are tagged with
485bb99b 1358 * @tag. We update @index to index the next page for the traversal.
1da177e4
LT
1359 */
1360unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1361 int tag, unsigned int nr_pages, struct page **pages)
1362{
0fc9d104
KK
1363 struct radix_tree_iter iter;
1364 void **slot;
1365 unsigned ret = 0;
1366
1367 if (unlikely(!nr_pages))
1368 return 0;
a60637c8
NP
1369
1370 rcu_read_lock();
1371restart:
0fc9d104
KK
1372 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1373 &iter, *index, tag) {
a60637c8
NP
1374 struct page *page;
1375repeat:
0fc9d104 1376 page = radix_tree_deref_slot(slot);
a60637c8
NP
1377 if (unlikely(!page))
1378 continue;
9d8aa4ea 1379
a2c16d6c 1380 if (radix_tree_exception(page)) {
8079b1c8
HD
1381 if (radix_tree_deref_retry(page)) {
1382 /*
1383 * Transient condition which can only trigger
1384 * when entry at index 0 moves out of or back
1385 * to root: none yet gotten, safe to restart.
1386 */
1387 goto restart;
1388 }
a2c16d6c 1389 /*
139b6a6f
JW
1390 * A shadow entry of a recently evicted page.
1391 *
1392 * Those entries should never be tagged, but
1393 * this tree walk is lockless and the tags are
1394 * looked up in bulk, one radix tree node at a
1395 * time, so there is a sizable window for page
1396 * reclaim to evict a page we saw tagged.
1397 *
1398 * Skip over it.
a2c16d6c 1399 */
139b6a6f 1400 continue;
a2c16d6c 1401 }
a60637c8
NP
1402
1403 if (!page_cache_get_speculative(page))
1404 goto repeat;
1405
1406 /* Has the page moved? */
0fc9d104 1407 if (unlikely(page != *slot)) {
a60637c8
NP
1408 page_cache_release(page);
1409 goto repeat;
1410 }
1411
1412 pages[ret] = page;
0fc9d104
KK
1413 if (++ret == nr_pages)
1414 break;
a60637c8 1415 }
5b280c0c 1416
a60637c8 1417 rcu_read_unlock();
1da177e4 1418
1da177e4
LT
1419 if (ret)
1420 *index = pages[ret - 1]->index + 1;
a60637c8 1421
1da177e4
LT
1422 return ret;
1423}
ef71c15c 1424EXPORT_SYMBOL(find_get_pages_tag);
1da177e4 1425
76d42bd9
WF
1426/*
1427 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1428 * a _large_ part of the i/o request. Imagine the worst scenario:
1429 *
1430 * ---R__________________________________________B__________
1431 * ^ reading here ^ bad block(assume 4k)
1432 *
1433 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1434 * => failing the whole request => read(R) => read(R+1) =>
1435 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1436 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1437 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1438 *
1439 * It is going insane. Fix it by quickly scaling down the readahead size.
1440 */
1441static void shrink_readahead_size_eio(struct file *filp,
1442 struct file_ra_state *ra)
1443{
76d42bd9 1444 ra->ra_pages /= 4;
76d42bd9
WF
1445}
1446
485bb99b 1447/**
36e78914 1448 * do_generic_file_read - generic file read routine
485bb99b
RD
1449 * @filp: the file to read
1450 * @ppos: current file position
6e58e79d
AV
1451 * @iter: data destination
1452 * @written: already copied
485bb99b 1453 *
1da177e4 1454 * This is a generic file read routine, and uses the
485bb99b 1455 * mapping->a_ops->readpage() function for the actual low-level stuff.
1da177e4
LT
1456 *
1457 * This is really ugly. But the goto's actually try to clarify some
1458 * of the logic when it comes to error handling etc.
1da177e4 1459 */
6e58e79d
AV
1460static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1461 struct iov_iter *iter, ssize_t written)
1da177e4 1462{
36e78914 1463 struct address_space *mapping = filp->f_mapping;
1da177e4 1464 struct inode *inode = mapping->host;
36e78914 1465 struct file_ra_state *ra = &filp->f_ra;
57f6b96c
FW
1466 pgoff_t index;
1467 pgoff_t last_index;
1468 pgoff_t prev_index;
1469 unsigned long offset; /* offset into pagecache page */
ec0f1637 1470 unsigned int prev_offset;
6e58e79d 1471 int error = 0;
1da177e4 1472
1da177e4 1473 index = *ppos >> PAGE_CACHE_SHIFT;
7ff81078
FW
1474 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1475 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
6e58e79d 1476 last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1da177e4
LT
1477 offset = *ppos & ~PAGE_CACHE_MASK;
1478
1da177e4
LT
1479 for (;;) {
1480 struct page *page;
57f6b96c 1481 pgoff_t end_index;
a32ea1e1 1482 loff_t isize;
1da177e4
LT
1483 unsigned long nr, ret;
1484
1da177e4 1485 cond_resched();
1da177e4
LT
1486find_page:
1487 page = find_get_page(mapping, index);
3ea89ee8 1488 if (!page) {
cf914a7d 1489 page_cache_sync_readahead(mapping,
7ff81078 1490 ra, filp,
3ea89ee8
FW
1491 index, last_index - index);
1492 page = find_get_page(mapping, index);
1493 if (unlikely(page == NULL))
1494 goto no_cached_page;
1495 }
1496 if (PageReadahead(page)) {
cf914a7d 1497 page_cache_async_readahead(mapping,
7ff81078 1498 ra, filp, page,
3ea89ee8 1499 index, last_index - index);
1da177e4 1500 }
8ab22b9a
HH
1501 if (!PageUptodate(page)) {
1502 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1503 !mapping->a_ops->is_partially_uptodate)
1504 goto page_not_up_to_date;
529ae9aa 1505 if (!trylock_page(page))
8ab22b9a 1506 goto page_not_up_to_date;
8d056cb9
DH
1507 /* Did it get truncated before we got the lock? */
1508 if (!page->mapping)
1509 goto page_not_up_to_date_locked;
8ab22b9a 1510 if (!mapping->a_ops->is_partially_uptodate(page,
6e58e79d 1511 offset, iter->count))
8ab22b9a
HH
1512 goto page_not_up_to_date_locked;
1513 unlock_page(page);
1514 }
1da177e4 1515page_ok:
a32ea1e1
N
1516 /*
1517 * i_size must be checked after we know the page is Uptodate.
1518 *
1519 * Checking i_size after the check allows us to calculate
1520 * the correct value for "nr", which means the zero-filled
1521 * part of the page is not copied back to userspace (unless
1522 * another truncate extends the file - this is desired though).
1523 */
1524
1525 isize = i_size_read(inode);
1526 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1527 if (unlikely(!isize || index > end_index)) {
1528 page_cache_release(page);
1529 goto out;
1530 }
1531
1532 /* nr is the maximum number of bytes to copy from this page */
1533 nr = PAGE_CACHE_SIZE;
1534 if (index == end_index) {
1535 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1536 if (nr <= offset) {
1537 page_cache_release(page);
1538 goto out;
1539 }
1540 }
1541 nr = nr - offset;
1da177e4
LT
1542
1543 /* If users can be writing to this page using arbitrary
1544 * virtual addresses, take care about potential aliasing
1545 * before reading the page on the kernel side.
1546 */
1547 if (mapping_writably_mapped(mapping))
1548 flush_dcache_page(page);
1549
1550 /*
ec0f1637
JK
1551 * When a sequential read accesses a page several times,
1552 * only mark it as accessed the first time.
1da177e4 1553 */
ec0f1637 1554 if (prev_index != index || offset != prev_offset)
1da177e4
LT
1555 mark_page_accessed(page);
1556 prev_index = index;
1557
1558 /*
1559 * Ok, we have the page, and it's up-to-date, so
1560 * now we can copy it to user space...
1da177e4 1561 */
6e58e79d
AV
1562
1563 ret = copy_page_to_iter(page, offset, nr, iter);
1da177e4
LT
1564 offset += ret;
1565 index += offset >> PAGE_CACHE_SHIFT;
1566 offset &= ~PAGE_CACHE_MASK;
6ce745ed 1567 prev_offset = offset;
1da177e4
LT
1568
1569 page_cache_release(page);
6e58e79d
AV
1570 written += ret;
1571 if (!iov_iter_count(iter))
1572 goto out;
1573 if (ret < nr) {
1574 error = -EFAULT;
1575 goto out;
1576 }
1577 continue;
1da177e4
LT
1578
1579page_not_up_to_date:
1580 /* Get exclusive access to the page ... */
85462323
ON
1581 error = lock_page_killable(page);
1582 if (unlikely(error))
1583 goto readpage_error;
1da177e4 1584
8ab22b9a 1585page_not_up_to_date_locked:
da6052f7 1586 /* Did it get truncated before we got the lock? */
1da177e4
LT
1587 if (!page->mapping) {
1588 unlock_page(page);
1589 page_cache_release(page);
1590 continue;
1591 }
1592
1593 /* Did somebody else fill it already? */
1594 if (PageUptodate(page)) {
1595 unlock_page(page);
1596 goto page_ok;
1597 }
1598
1599readpage:
91803b49
JM
1600 /*
1601 * A previous I/O error may have been due to temporary
1602 * failures, eg. multipath errors.
1603 * PG_error will be set again if readpage fails.
1604 */
1605 ClearPageError(page);
1da177e4
LT
1606 /* Start the actual read. The read will unlock the page. */
1607 error = mapping->a_ops->readpage(filp, page);
1608
994fc28c
ZB
1609 if (unlikely(error)) {
1610 if (error == AOP_TRUNCATED_PAGE) {
1611 page_cache_release(page);
6e58e79d 1612 error = 0;
994fc28c
ZB
1613 goto find_page;
1614 }
1da177e4 1615 goto readpage_error;
994fc28c 1616 }
1da177e4
LT
1617
1618 if (!PageUptodate(page)) {
85462323
ON
1619 error = lock_page_killable(page);
1620 if (unlikely(error))
1621 goto readpage_error;
1da177e4
LT
1622 if (!PageUptodate(page)) {
1623 if (page->mapping == NULL) {
1624 /*
2ecdc82e 1625 * invalidate_mapping_pages got it
1da177e4
LT
1626 */
1627 unlock_page(page);
1628 page_cache_release(page);
1629 goto find_page;
1630 }
1631 unlock_page(page);
7ff81078 1632 shrink_readahead_size_eio(filp, ra);
85462323
ON
1633 error = -EIO;
1634 goto readpage_error;
1da177e4
LT
1635 }
1636 unlock_page(page);
1637 }
1638
1da177e4
LT
1639 goto page_ok;
1640
1641readpage_error:
1642 /* UHHUH! A synchronous read error occurred. Report it */
1da177e4
LT
1643 page_cache_release(page);
1644 goto out;
1645
1646no_cached_page:
1647 /*
1648 * Ok, it wasn't cached, so we need to create a new
1649 * page..
1650 */
eb2be189
NP
1651 page = page_cache_alloc_cold(mapping);
1652 if (!page) {
6e58e79d 1653 error = -ENOMEM;
eb2be189 1654 goto out;
1da177e4 1655 }
eb2be189 1656 error = add_to_page_cache_lru(page, mapping,
1da177e4
LT
1657 index, GFP_KERNEL);
1658 if (error) {
eb2be189 1659 page_cache_release(page);
6e58e79d
AV
1660 if (error == -EEXIST) {
1661 error = 0;
1da177e4 1662 goto find_page;
6e58e79d 1663 }
1da177e4
LT
1664 goto out;
1665 }
1da177e4
LT
1666 goto readpage;
1667 }
1668
1669out:
7ff81078
FW
1670 ra->prev_pos = prev_index;
1671 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1672 ra->prev_pos |= prev_offset;
1da177e4 1673
f4e6b498 1674 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
0c6aa263 1675 file_accessed(filp);
6e58e79d 1676 return written ? written : error;
1da177e4
LT
1677}
1678
485bb99b 1679/**
6abd2322 1680 * generic_file_read_iter - generic filesystem read routine
485bb99b 1681 * @iocb: kernel I/O control block
6abd2322 1682 * @iter: destination for the data read
485bb99b 1683 *
6abd2322 1684 * This is the "read_iter()" routine for all filesystems
1da177e4
LT
1685 * that can use the page cache directly.
1686 */
1687ssize_t
ed978a81 1688generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1da177e4 1689{
ed978a81 1690 struct file *file = iocb->ki_filp;
cb66a7a1 1691 ssize_t retval = 0;
543ade1f 1692 loff_t *ppos = &iocb->ki_pos;
ed978a81 1693 loff_t pos = *ppos;
1da177e4
LT
1694
1695 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
ed978a81
AV
1696 if (file->f_flags & O_DIRECT) {
1697 struct address_space *mapping = file->f_mapping;
1698 struct inode *inode = mapping->host;
1699 size_t count = iov_iter_count(iter);
543ade1f 1700 loff_t size;
1da177e4 1701
1da177e4
LT
1702 if (!count)
1703 goto out; /* skip atime */
1704 size = i_size_read(inode);
9fe55eea 1705 retval = filemap_write_and_wait_range(mapping, pos,
a6cbcd4a 1706 pos + count - 1);
9fe55eea 1707 if (!retval) {
ed978a81 1708 struct iov_iter data = *iter;
26978b8b 1709 retval = mapping->a_ops->direct_IO(READ, iocb, &data, pos);
9fe55eea 1710 }
d8d3d94b 1711
9fe55eea
SW
1712 if (retval > 0) {
1713 *ppos = pos + retval;
ed978a81 1714 iov_iter_advance(iter, retval);
9fe55eea 1715 }
66f998f6 1716
9fe55eea
SW
1717 /*
1718 * Btrfs can have a short DIO read if we encounter
1719 * compressed extents, so if there was an error, or if
1720 * we've already read everything we wanted to, or if
1721 * there was a short read because we hit EOF, go ahead
1722 * and return. Otherwise fallthrough to buffered io for
1723 * the rest of the read.
1724 */
ed978a81
AV
1725 if (retval < 0 || !iov_iter_count(iter) || *ppos >= size) {
1726 file_accessed(file);
9fe55eea 1727 goto out;
0e0bcae3 1728 }
1da177e4
LT
1729 }
1730
ed978a81 1731 retval = do_generic_file_read(file, ppos, iter, retval);
1da177e4
LT
1732out:
1733 return retval;
1734}
ed978a81 1735EXPORT_SYMBOL(generic_file_read_iter);
1da177e4 1736
1da177e4 1737#ifdef CONFIG_MMU
485bb99b
RD
1738/**
1739 * page_cache_read - adds requested page to the page cache if not already there
1740 * @file: file to read
1741 * @offset: page index
1742 *
1da177e4
LT
1743 * This adds the requested page to the page cache if it isn't already there,
1744 * and schedules an I/O to read in its contents from disk.
1745 */
920c7a5d 1746static int page_cache_read(struct file *file, pgoff_t offset)
1da177e4
LT
1747{
1748 struct address_space *mapping = file->f_mapping;
1749 struct page *page;
994fc28c 1750 int ret;
1da177e4 1751
994fc28c
ZB
1752 do {
1753 page = page_cache_alloc_cold(mapping);
1754 if (!page)
1755 return -ENOMEM;
1756
1757 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1758 if (ret == 0)
1759 ret = mapping->a_ops->readpage(file, page);
1760 else if (ret == -EEXIST)
1761 ret = 0; /* losing race to add is OK */
1da177e4 1762
1da177e4 1763 page_cache_release(page);
1da177e4 1764
994fc28c
ZB
1765 } while (ret == AOP_TRUNCATED_PAGE);
1766
1767 return ret;
1da177e4
LT
1768}
1769
1770#define MMAP_LOTSAMISS (100)
1771
ef00e08e
LT
1772/*
1773 * Synchronous readahead happens when we don't even find
1774 * a page in the page cache at all.
1775 */
1776static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1777 struct file_ra_state *ra,
1778 struct file *file,
1779 pgoff_t offset)
1780{
1781 unsigned long ra_pages;
1782 struct address_space *mapping = file->f_mapping;
1783
1784 /* If we don't want any read-ahead, don't bother */
64363aad 1785 if (vma->vm_flags & VM_RAND_READ)
ef00e08e 1786 return;
275b12bf
WF
1787 if (!ra->ra_pages)
1788 return;
ef00e08e 1789
64363aad 1790 if (vma->vm_flags & VM_SEQ_READ) {
7ffc59b4
WF
1791 page_cache_sync_readahead(mapping, ra, file, offset,
1792 ra->ra_pages);
ef00e08e
LT
1793 return;
1794 }
1795
207d04ba
AK
1796 /* Avoid banging the cache line if not needed */
1797 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
ef00e08e
LT
1798 ra->mmap_miss++;
1799
1800 /*
1801 * Do we miss much more than hit in this file? If so,
1802 * stop bothering with read-ahead. It will only hurt.
1803 */
1804 if (ra->mmap_miss > MMAP_LOTSAMISS)
1805 return;
1806
d30a1100
WF
1807 /*
1808 * mmap read-around
1809 */
ef00e08e 1810 ra_pages = max_sane_readahead(ra->ra_pages);
275b12bf
WF
1811 ra->start = max_t(long, 0, offset - ra_pages / 2);
1812 ra->size = ra_pages;
2cbea1d3 1813 ra->async_size = ra_pages / 4;
275b12bf 1814 ra_submit(ra, mapping, file);
ef00e08e
LT
1815}
1816
1817/*
1818 * Asynchronous readahead happens when we find the page and PG_readahead,
1819 * so we want to possibly extend the readahead further..
1820 */
1821static void do_async_mmap_readahead(struct vm_area_struct *vma,
1822 struct file_ra_state *ra,
1823 struct file *file,
1824 struct page *page,
1825 pgoff_t offset)
1826{
1827 struct address_space *mapping = file->f_mapping;
1828
1829 /* If we don't want any read-ahead, don't bother */
64363aad 1830 if (vma->vm_flags & VM_RAND_READ)
ef00e08e
LT
1831 return;
1832 if (ra->mmap_miss > 0)
1833 ra->mmap_miss--;
1834 if (PageReadahead(page))
2fad6f5d
WF
1835 page_cache_async_readahead(mapping, ra, file,
1836 page, offset, ra->ra_pages);
ef00e08e
LT
1837}
1838
485bb99b 1839/**
54cb8821 1840 * filemap_fault - read in file data for page fault handling
d0217ac0
NP
1841 * @vma: vma in which the fault was taken
1842 * @vmf: struct vm_fault containing details of the fault
485bb99b 1843 *
54cb8821 1844 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
1845 * mapped memory region to read in file data during a page fault.
1846 *
1847 * The goto's are kind of ugly, but this streamlines the normal case of having
1848 * it in the page cache, and handles the special cases reasonably without
1849 * having a lot of duplicated code.
9a95f3cf
PC
1850 *
1851 * vma->vm_mm->mmap_sem must be held on entry.
1852 *
1853 * If our return value has VM_FAULT_RETRY set, it's because
1854 * lock_page_or_retry() returned 0.
1855 * The mmap_sem has usually been released in this case.
1856 * See __lock_page_or_retry() for the exception.
1857 *
1858 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
1859 * has not been released.
1860 *
1861 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
1da177e4 1862 */
d0217ac0 1863int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
1864{
1865 int error;
54cb8821 1866 struct file *file = vma->vm_file;
1da177e4
LT
1867 struct address_space *mapping = file->f_mapping;
1868 struct file_ra_state *ra = &file->f_ra;
1869 struct inode *inode = mapping->host;
ef00e08e 1870 pgoff_t offset = vmf->pgoff;
1da177e4 1871 struct page *page;
99e3e53f 1872 loff_t size;
83c54070 1873 int ret = 0;
1da177e4 1874
99e3e53f
KS
1875 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1876 if (offset >= size >> PAGE_CACHE_SHIFT)
5307cc1a 1877 return VM_FAULT_SIGBUS;
1da177e4 1878
1da177e4 1879 /*
49426420 1880 * Do we have something in the page cache already?
1da177e4 1881 */
ef00e08e 1882 page = find_get_page(mapping, offset);
45cac65b 1883 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1da177e4 1884 /*
ef00e08e
LT
1885 * We found the page, so try async readahead before
1886 * waiting for the lock.
1da177e4 1887 */
ef00e08e 1888 do_async_mmap_readahead(vma, ra, file, page, offset);
45cac65b 1889 } else if (!page) {
ef00e08e
LT
1890 /* No page in the page cache at all */
1891 do_sync_mmap_readahead(vma, ra, file, offset);
1892 count_vm_event(PGMAJFAULT);
456f998e 1893 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
ef00e08e
LT
1894 ret = VM_FAULT_MAJOR;
1895retry_find:
b522c94d 1896 page = find_get_page(mapping, offset);
1da177e4
LT
1897 if (!page)
1898 goto no_cached_page;
1899 }
1900
d88c0922
ML
1901 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1902 page_cache_release(page);
d065bd81 1903 return ret | VM_FAULT_RETRY;
d88c0922 1904 }
b522c94d
ML
1905
1906 /* Did it get truncated? */
1907 if (unlikely(page->mapping != mapping)) {
1908 unlock_page(page);
1909 put_page(page);
1910 goto retry_find;
1911 }
309381fe 1912 VM_BUG_ON_PAGE(page->index != offset, page);
b522c94d 1913
1da177e4 1914 /*
d00806b1
NP
1915 * We have a locked page in the page cache, now we need to check
1916 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 1917 */
d00806b1 1918 if (unlikely(!PageUptodate(page)))
1da177e4
LT
1919 goto page_not_uptodate;
1920
ef00e08e
LT
1921 /*
1922 * Found the page and have a reference on it.
1923 * We must recheck i_size under page lock.
1924 */
99e3e53f
KS
1925 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1926 if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
d00806b1 1927 unlock_page(page);
745ad48e 1928 page_cache_release(page);
5307cc1a 1929 return VM_FAULT_SIGBUS;
d00806b1
NP
1930 }
1931
d0217ac0 1932 vmf->page = page;
83c54070 1933 return ret | VM_FAULT_LOCKED;
1da177e4 1934
1da177e4
LT
1935no_cached_page:
1936 /*
1937 * We're only likely to ever get here if MADV_RANDOM is in
1938 * effect.
1939 */
ef00e08e 1940 error = page_cache_read(file, offset);
1da177e4
LT
1941
1942 /*
1943 * The page we want has now been added to the page cache.
1944 * In the unlikely event that someone removed it in the
1945 * meantime, we'll just come back here and read it again.
1946 */
1947 if (error >= 0)
1948 goto retry_find;
1949
1950 /*
1951 * An error return from page_cache_read can result if the
1952 * system is low on memory, or a problem occurs while trying
1953 * to schedule I/O.
1954 */
1955 if (error == -ENOMEM)
d0217ac0
NP
1956 return VM_FAULT_OOM;
1957 return VM_FAULT_SIGBUS;
1da177e4
LT
1958
1959page_not_uptodate:
1da177e4
LT
1960 /*
1961 * Umm, take care of errors if the page isn't up-to-date.
1962 * Try to re-read it _once_. We do this synchronously,
1963 * because there really aren't any performance issues here
1964 * and we need to check for errors.
1965 */
1da177e4 1966 ClearPageError(page);
994fc28c 1967 error = mapping->a_ops->readpage(file, page);
3ef0f720
MS
1968 if (!error) {
1969 wait_on_page_locked(page);
1970 if (!PageUptodate(page))
1971 error = -EIO;
1972 }
d00806b1
NP
1973 page_cache_release(page);
1974
1975 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 1976 goto retry_find;
1da177e4 1977
d00806b1 1978 /* Things didn't work out. Return zero to tell the mm layer so. */
76d42bd9 1979 shrink_readahead_size_eio(file, ra);
d0217ac0 1980 return VM_FAULT_SIGBUS;
54cb8821
NP
1981}
1982EXPORT_SYMBOL(filemap_fault);
1983
f1820361
KS
1984void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
1985{
1986 struct radix_tree_iter iter;
1987 void **slot;
1988 struct file *file = vma->vm_file;
1989 struct address_space *mapping = file->f_mapping;
1990 loff_t size;
1991 struct page *page;
1992 unsigned long address = (unsigned long) vmf->virtual_address;
1993 unsigned long addr;
1994 pte_t *pte;
1995
1996 rcu_read_lock();
1997 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
1998 if (iter.index > vmf->max_pgoff)
1999 break;
2000repeat:
2001 page = radix_tree_deref_slot(slot);
2002 if (unlikely(!page))
2003 goto next;
2004 if (radix_tree_exception(page)) {
2005 if (radix_tree_deref_retry(page))
2006 break;
2007 else
2008 goto next;
2009 }
2010
2011 if (!page_cache_get_speculative(page))
2012 goto repeat;
2013
2014 /* Has the page moved? */
2015 if (unlikely(page != *slot)) {
2016 page_cache_release(page);
2017 goto repeat;
2018 }
2019
2020 if (!PageUptodate(page) ||
2021 PageReadahead(page) ||
2022 PageHWPoison(page))
2023 goto skip;
2024 if (!trylock_page(page))
2025 goto skip;
2026
2027 if (page->mapping != mapping || !PageUptodate(page))
2028 goto unlock;
2029
99e3e53f
KS
2030 size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
2031 if (page->index >= size >> PAGE_CACHE_SHIFT)
f1820361
KS
2032 goto unlock;
2033
2034 pte = vmf->pte + page->index - vmf->pgoff;
2035 if (!pte_none(*pte))
2036 goto unlock;
2037
2038 if (file->f_ra.mmap_miss > 0)
2039 file->f_ra.mmap_miss--;
2040 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2041 do_set_pte(vma, addr, page, pte, false, false);
2042 unlock_page(page);
2043 goto next;
2044unlock:
2045 unlock_page(page);
2046skip:
2047 page_cache_release(page);
2048next:
2049 if (iter.index == vmf->max_pgoff)
2050 break;
2051 }
2052 rcu_read_unlock();
2053}
2054EXPORT_SYMBOL(filemap_map_pages);
2055
4fcf1c62
JK
2056int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2057{
2058 struct page *page = vmf->page;
496ad9aa 2059 struct inode *inode = file_inode(vma->vm_file);
4fcf1c62
JK
2060 int ret = VM_FAULT_LOCKED;
2061
14da9200 2062 sb_start_pagefault(inode->i_sb);
4fcf1c62
JK
2063 file_update_time(vma->vm_file);
2064 lock_page(page);
2065 if (page->mapping != inode->i_mapping) {
2066 unlock_page(page);
2067 ret = VM_FAULT_NOPAGE;
2068 goto out;
2069 }
14da9200
JK
2070 /*
2071 * We mark the page dirty already here so that when freeze is in
2072 * progress, we are guaranteed that writeback during freezing will
2073 * see the dirty page and writeprotect it again.
2074 */
2075 set_page_dirty(page);
1d1d1a76 2076 wait_for_stable_page(page);
4fcf1c62 2077out:
14da9200 2078 sb_end_pagefault(inode->i_sb);
4fcf1c62
JK
2079 return ret;
2080}
2081EXPORT_SYMBOL(filemap_page_mkwrite);
2082
f0f37e2f 2083const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 2084 .fault = filemap_fault,
f1820361 2085 .map_pages = filemap_map_pages,
4fcf1c62 2086 .page_mkwrite = filemap_page_mkwrite,
0b173bc4 2087 .remap_pages = generic_file_remap_pages,
1da177e4
LT
2088};
2089
2090/* This is used for a general mmap of a disk file */
2091
2092int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2093{
2094 struct address_space *mapping = file->f_mapping;
2095
2096 if (!mapping->a_ops->readpage)
2097 return -ENOEXEC;
2098 file_accessed(file);
2099 vma->vm_ops = &generic_file_vm_ops;
2100 return 0;
2101}
1da177e4
LT
2102
2103/*
2104 * This is for filesystems which do not implement ->writepage.
2105 */
2106int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2107{
2108 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2109 return -EINVAL;
2110 return generic_file_mmap(file, vma);
2111}
2112#else
2113int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2114{
2115 return -ENOSYS;
2116}
2117int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2118{
2119 return -ENOSYS;
2120}
2121#endif /* CONFIG_MMU */
2122
2123EXPORT_SYMBOL(generic_file_mmap);
2124EXPORT_SYMBOL(generic_file_readonly_mmap);
2125
67f9fd91
SL
2126static struct page *wait_on_page_read(struct page *page)
2127{
2128 if (!IS_ERR(page)) {
2129 wait_on_page_locked(page);
2130 if (!PageUptodate(page)) {
2131 page_cache_release(page);
2132 page = ERR_PTR(-EIO);
2133 }
2134 }
2135 return page;
2136}
2137
6fe6900e 2138static struct page *__read_cache_page(struct address_space *mapping,
57f6b96c 2139 pgoff_t index,
5e5358e7 2140 int (*filler)(void *, struct page *),
0531b2aa
LT
2141 void *data,
2142 gfp_t gfp)
1da177e4 2143{
eb2be189 2144 struct page *page;
1da177e4
LT
2145 int err;
2146repeat:
2147 page = find_get_page(mapping, index);
2148 if (!page) {
0531b2aa 2149 page = __page_cache_alloc(gfp | __GFP_COLD);
eb2be189
NP
2150 if (!page)
2151 return ERR_PTR(-ENOMEM);
e6f67b8c 2152 err = add_to_page_cache_lru(page, mapping, index, gfp);
eb2be189
NP
2153 if (unlikely(err)) {
2154 page_cache_release(page);
2155 if (err == -EEXIST)
2156 goto repeat;
1da177e4 2157 /* Presumably ENOMEM for radix tree node */
1da177e4
LT
2158 return ERR_PTR(err);
2159 }
1da177e4
LT
2160 err = filler(data, page);
2161 if (err < 0) {
2162 page_cache_release(page);
2163 page = ERR_PTR(err);
67f9fd91
SL
2164 } else {
2165 page = wait_on_page_read(page);
1da177e4
LT
2166 }
2167 }
1da177e4
LT
2168 return page;
2169}
2170
0531b2aa 2171static struct page *do_read_cache_page(struct address_space *mapping,
57f6b96c 2172 pgoff_t index,
5e5358e7 2173 int (*filler)(void *, struct page *),
0531b2aa
LT
2174 void *data,
2175 gfp_t gfp)
2176
1da177e4
LT
2177{
2178 struct page *page;
2179 int err;
2180
2181retry:
0531b2aa 2182 page = __read_cache_page(mapping, index, filler, data, gfp);
1da177e4 2183 if (IS_ERR(page))
c855ff37 2184 return page;
1da177e4
LT
2185 if (PageUptodate(page))
2186 goto out;
2187
2188 lock_page(page);
2189 if (!page->mapping) {
2190 unlock_page(page);
2191 page_cache_release(page);
2192 goto retry;
2193 }
2194 if (PageUptodate(page)) {
2195 unlock_page(page);
2196 goto out;
2197 }
2198 err = filler(data, page);
2199 if (err < 0) {
2200 page_cache_release(page);
c855ff37 2201 return ERR_PTR(err);
67f9fd91
SL
2202 } else {
2203 page = wait_on_page_read(page);
2204 if (IS_ERR(page))
2205 return page;
1da177e4 2206 }
c855ff37 2207out:
6fe6900e
NP
2208 mark_page_accessed(page);
2209 return page;
2210}
0531b2aa
LT
2211
2212/**
67f9fd91 2213 * read_cache_page - read into page cache, fill it if needed
0531b2aa
LT
2214 * @mapping: the page's address_space
2215 * @index: the page index
2216 * @filler: function to perform the read
5e5358e7 2217 * @data: first arg to filler(data, page) function, often left as NULL
0531b2aa 2218 *
0531b2aa 2219 * Read into the page cache. If a page already exists, and PageUptodate() is
67f9fd91 2220 * not set, try to fill the page and wait for it to become unlocked.
0531b2aa
LT
2221 *
2222 * If the page does not get brought uptodate, return -EIO.
2223 */
67f9fd91 2224struct page *read_cache_page(struct address_space *mapping,
0531b2aa 2225 pgoff_t index,
5e5358e7 2226 int (*filler)(void *, struct page *),
0531b2aa
LT
2227 void *data)
2228{
2229 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2230}
67f9fd91 2231EXPORT_SYMBOL(read_cache_page);
0531b2aa
LT
2232
2233/**
2234 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2235 * @mapping: the page's address_space
2236 * @index: the page index
2237 * @gfp: the page allocator flags to use if allocating
2238 *
2239 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
e6f67b8c 2240 * any new page allocations done using the specified allocation flags.
0531b2aa
LT
2241 *
2242 * If the page does not get brought uptodate, return -EIO.
2243 */
2244struct page *read_cache_page_gfp(struct address_space *mapping,
2245 pgoff_t index,
2246 gfp_t gfp)
2247{
2248 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2249
67f9fd91 2250 return do_read_cache_page(mapping, index, filler, NULL, gfp);
0531b2aa
LT
2251}
2252EXPORT_SYMBOL(read_cache_page_gfp);
2253
1da177e4
LT
2254/*
2255 * Performs necessary checks before doing a write
2256 *
485bb99b 2257 * Can adjust writing position or amount of bytes to write.
1da177e4
LT
2258 * Returns appropriate error code that caller should return or
2259 * zero in case that write should be allowed.
2260 */
2261inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2262{
2263 struct inode *inode = file->f_mapping->host;
59e99e5b 2264 unsigned long limit = rlimit(RLIMIT_FSIZE);
1da177e4
LT
2265
2266 if (unlikely(*pos < 0))
2267 return -EINVAL;
2268
1da177e4
LT
2269 if (!isblk) {
2270 /* FIXME: this is for backwards compatibility with 2.4 */
2271 if (file->f_flags & O_APPEND)
2272 *pos = i_size_read(inode);
2273
2274 if (limit != RLIM_INFINITY) {
2275 if (*pos >= limit) {
2276 send_sig(SIGXFSZ, current, 0);
2277 return -EFBIG;
2278 }
2279 if (*count > limit - (typeof(limit))*pos) {
2280 *count = limit - (typeof(limit))*pos;
2281 }
2282 }
2283 }
2284
2285 /*
2286 * LFS rule
2287 */
2288 if (unlikely(*pos + *count > MAX_NON_LFS &&
2289 !(file->f_flags & O_LARGEFILE))) {
2290 if (*pos >= MAX_NON_LFS) {
1da177e4
LT
2291 return -EFBIG;
2292 }
2293 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2294 *count = MAX_NON_LFS - (unsigned long)*pos;
2295 }
2296 }
2297
2298 /*
2299 * Are we about to exceed the fs block limit ?
2300 *
2301 * If we have written data it becomes a short write. If we have
2302 * exceeded without writing data we send a signal and return EFBIG.
2303 * Linus frestrict idea will clean these up nicely..
2304 */
2305 if (likely(!isblk)) {
2306 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2307 if (*count || *pos > inode->i_sb->s_maxbytes) {
1da177e4
LT
2308 return -EFBIG;
2309 }
2310 /* zero-length writes at ->s_maxbytes are OK */
2311 }
2312
2313 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2314 *count = inode->i_sb->s_maxbytes - *pos;
2315 } else {
9361401e 2316#ifdef CONFIG_BLOCK
1da177e4
LT
2317 loff_t isize;
2318 if (bdev_read_only(I_BDEV(inode)))
2319 return -EPERM;
2320 isize = i_size_read(inode);
2321 if (*pos >= isize) {
2322 if (*count || *pos > isize)
2323 return -ENOSPC;
2324 }
2325
2326 if (*pos + *count > isize)
2327 *count = isize - *pos;
9361401e
DH
2328#else
2329 return -EPERM;
2330#endif
1da177e4
LT
2331 }
2332 return 0;
2333}
2334EXPORT_SYMBOL(generic_write_checks);
2335
afddba49
NP
2336int pagecache_write_begin(struct file *file, struct address_space *mapping,
2337 loff_t pos, unsigned len, unsigned flags,
2338 struct page **pagep, void **fsdata)
2339{
2340 const struct address_space_operations *aops = mapping->a_ops;
2341
4e02ed4b 2342 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 2343 pagep, fsdata);
afddba49
NP
2344}
2345EXPORT_SYMBOL(pagecache_write_begin);
2346
2347int pagecache_write_end(struct file *file, struct address_space *mapping,
2348 loff_t pos, unsigned len, unsigned copied,
2349 struct page *page, void *fsdata)
2350{
2351 const struct address_space_operations *aops = mapping->a_ops;
afddba49 2352
4e02ed4b 2353 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
2354}
2355EXPORT_SYMBOL(pagecache_write_end);
2356
1da177e4 2357ssize_t
0c949334 2358generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos)
1da177e4
LT
2359{
2360 struct file *file = iocb->ki_filp;
2361 struct address_space *mapping = file->f_mapping;
2362 struct inode *inode = mapping->host;
2363 ssize_t written;
a969e903
CH
2364 size_t write_len;
2365 pgoff_t end;
26978b8b 2366 struct iov_iter data;
1da177e4 2367
0c949334 2368 write_len = iov_iter_count(from);
a969e903 2369 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
a969e903 2370
48b47c56 2371 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
a969e903
CH
2372 if (written)
2373 goto out;
2374
2375 /*
2376 * After a write we want buffered reads to be sure to go to disk to get
2377 * the new data. We invalidate clean cached page from the region we're
2378 * about to write. We do this *before* the write so that we can return
6ccfa806 2379 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903
CH
2380 */
2381 if (mapping->nrpages) {
2382 written = invalidate_inode_pages2_range(mapping,
2383 pos >> PAGE_CACHE_SHIFT, end);
6ccfa806
HH
2384 /*
2385 * If a page can not be invalidated, return 0 to fall back
2386 * to buffered write.
2387 */
2388 if (written) {
2389 if (written == -EBUSY)
2390 return 0;
a969e903 2391 goto out;
6ccfa806 2392 }
a969e903
CH
2393 }
2394
26978b8b
AV
2395 data = *from;
2396 written = mapping->a_ops->direct_IO(WRITE, iocb, &data, pos);
a969e903
CH
2397
2398 /*
2399 * Finally, try again to invalidate clean pages which might have been
2400 * cached by non-direct readahead, or faulted in by get_user_pages()
2401 * if the source of the write was an mmap'ed region of the file
2402 * we're writing. Either one is a pretty crazy thing to do,
2403 * so we don't support it 100%. If this invalidation
2404 * fails, tough, the write still worked...
2405 */
2406 if (mapping->nrpages) {
2407 invalidate_inode_pages2_range(mapping,
2408 pos >> PAGE_CACHE_SHIFT, end);
2409 }
2410
1da177e4 2411 if (written > 0) {
0116651c 2412 pos += written;
f8579f86 2413 iov_iter_advance(from, written);
0116651c
NK
2414 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2415 i_size_write(inode, pos);
1da177e4
LT
2416 mark_inode_dirty(inode);
2417 }
5cb6c6c7 2418 iocb->ki_pos = pos;
1da177e4 2419 }
a969e903 2420out:
1da177e4
LT
2421 return written;
2422}
2423EXPORT_SYMBOL(generic_file_direct_write);
2424
eb2be189
NP
2425/*
2426 * Find or create a page at the given pagecache position. Return the locked
2427 * page. This function is specifically for buffered writes.
2428 */
54566b2c
NP
2429struct page *grab_cache_page_write_begin(struct address_space *mapping,
2430 pgoff_t index, unsigned flags)
eb2be189 2431{
eb2be189 2432 struct page *page;
2457aec6 2433 int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
0faa70cb 2434
54566b2c 2435 if (flags & AOP_FLAG_NOFS)
2457aec6
MG
2436 fgp_flags |= FGP_NOFS;
2437
2438 page = pagecache_get_page(mapping, index, fgp_flags,
2439 mapping_gfp_mask(mapping),
2440 GFP_KERNEL);
c585a267 2441 if (page)
2457aec6 2442 wait_for_stable_page(page);
eb2be189 2443
eb2be189
NP
2444 return page;
2445}
54566b2c 2446EXPORT_SYMBOL(grab_cache_page_write_begin);
eb2be189 2447
3b93f911 2448ssize_t generic_perform_write(struct file *file,
afddba49
NP
2449 struct iov_iter *i, loff_t pos)
2450{
2451 struct address_space *mapping = file->f_mapping;
2452 const struct address_space_operations *a_ops = mapping->a_ops;
2453 long status = 0;
2454 ssize_t written = 0;
674b892e
NP
2455 unsigned int flags = 0;
2456
2457 /*
2458 * Copies from kernel address space cannot fail (NFSD is a big user).
2459 */
2460 if (segment_eq(get_fs(), KERNEL_DS))
2461 flags |= AOP_FLAG_UNINTERRUPTIBLE;
afddba49
NP
2462
2463 do {
2464 struct page *page;
afddba49
NP
2465 unsigned long offset; /* Offset into pagecache page */
2466 unsigned long bytes; /* Bytes to write to page */
2467 size_t copied; /* Bytes copied from user */
2468 void *fsdata;
2469
2470 offset = (pos & (PAGE_CACHE_SIZE - 1));
afddba49
NP
2471 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2472 iov_iter_count(i));
2473
2474again:
afddba49
NP
2475 /*
2476 * Bring in the user page that we will copy from _first_.
2477 * Otherwise there's a nasty deadlock on copying from the
2478 * same page as we're writing to, without it being marked
2479 * up-to-date.
2480 *
2481 * Not only is this an optimisation, but it is also required
2482 * to check that the address is actually valid, when atomic
2483 * usercopies are used, below.
2484 */
2485 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2486 status = -EFAULT;
2487 break;
2488 }
2489
674b892e 2490 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49 2491 &page, &fsdata);
2457aec6 2492 if (unlikely(status < 0))
afddba49
NP
2493 break;
2494
931e80e4 2495 if (mapping_writably_mapped(mapping))
2496 flush_dcache_page(page);
2497
afddba49 2498 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
afddba49
NP
2499 flush_dcache_page(page);
2500
2501 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2502 page, fsdata);
2503 if (unlikely(status < 0))
2504 break;
2505 copied = status;
2506
2507 cond_resched();
2508
124d3b70 2509 iov_iter_advance(i, copied);
afddba49
NP
2510 if (unlikely(copied == 0)) {
2511 /*
2512 * If we were unable to copy any data at all, we must
2513 * fall back to a single segment length write.
2514 *
2515 * If we didn't fallback here, we could livelock
2516 * because not all segments in the iov can be copied at
2517 * once without a pagefault.
2518 */
2519 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2520 iov_iter_single_seg_count(i));
2521 goto again;
2522 }
afddba49
NP
2523 pos += copied;
2524 written += copied;
2525
2526 balance_dirty_pages_ratelimited(mapping);
a50527b1
JK
2527 if (fatal_signal_pending(current)) {
2528 status = -EINTR;
2529 break;
2530 }
afddba49
NP
2531 } while (iov_iter_count(i));
2532
2533 return written ? written : status;
2534}
3b93f911 2535EXPORT_SYMBOL(generic_perform_write);
1da177e4 2536
e4dd9de3 2537/**
8174202b 2538 * __generic_file_write_iter - write data to a file
e4dd9de3 2539 * @iocb: IO state structure (file, offset, etc.)
8174202b 2540 * @from: iov_iter with data to write
e4dd9de3
JK
2541 *
2542 * This function does all the work needed for actually writing data to a
2543 * file. It does all basic checks, removes SUID from the file, updates
2544 * modification times and calls proper subroutines depending on whether we
2545 * do direct IO or a standard buffered write.
2546 *
2547 * It expects i_mutex to be grabbed unless we work on a block device or similar
2548 * object which does not need locking at all.
2549 *
2550 * This function does *not* take care of syncing data in case of O_SYNC write.
2551 * A caller has to handle it. This is mainly due to the fact that we want to
2552 * avoid syncing under i_mutex.
2553 */
8174202b 2554ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
2555{
2556 struct file *file = iocb->ki_filp;
fb5527e6 2557 struct address_space * mapping = file->f_mapping;
1da177e4 2558 struct inode *inode = mapping->host;
41fc56d5 2559 loff_t pos = iocb->ki_pos;
3b93f911 2560 ssize_t written = 0;
1da177e4 2561 ssize_t err;
3b93f911 2562 ssize_t status;
8174202b 2563 size_t count = iov_iter_count(from);
1da177e4 2564
1da177e4
LT
2565 /* We can write back this queue in page reclaim */
2566 current->backing_dev_info = mapping->backing_dev_info;
1da177e4
LT
2567 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2568 if (err)
2569 goto out;
2570
2571 if (count == 0)
2572 goto out;
2573
8174202b 2574 iov_iter_truncate(from, count);
0c949334 2575
2f1936b8 2576 err = file_remove_suid(file);
1da177e4
LT
2577 if (err)
2578 goto out;
2579
c3b2da31
JB
2580 err = file_update_time(file);
2581 if (err)
2582 goto out;
1da177e4
LT
2583
2584 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2585 if (unlikely(file->f_flags & O_DIRECT)) {
fb5527e6 2586 loff_t endbyte;
fb5527e6 2587
8174202b 2588 written = generic_file_direct_write(iocb, from, pos);
1da177e4
LT
2589 if (written < 0 || written == count)
2590 goto out;
3b93f911 2591
1da177e4
LT
2592 /*
2593 * direct-io write to a hole: fall through to buffered I/O
2594 * for completing the rest of the request.
2595 */
2596 pos += written;
2597 count -= written;
3b93f911 2598
8174202b 2599 status = generic_perform_write(file, from, pos);
fb5527e6 2600 /*
3b93f911 2601 * If generic_perform_write() returned a synchronous error
fb5527e6
JM
2602 * then we want to return the number of bytes which were
2603 * direct-written, or the error code if that was zero. Note
2604 * that this differs from normal direct-io semantics, which
2605 * will return -EFOO even if some bytes were written.
2606 */
3b93f911
AV
2607 if (unlikely(status < 0) && !written) {
2608 err = status;
fb5527e6
JM
2609 goto out;
2610 }
3b93f911 2611 iocb->ki_pos = pos + status;
fb5527e6
JM
2612 /*
2613 * We need to ensure that the page cache pages are written to
2614 * disk and invalidated to preserve the expected O_DIRECT
2615 * semantics.
2616 */
3b93f911 2617 endbyte = pos + status - 1;
c05c4edd 2618 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
fb5527e6 2619 if (err == 0) {
3b93f911 2620 written += status;
fb5527e6
JM
2621 invalidate_mapping_pages(mapping,
2622 pos >> PAGE_CACHE_SHIFT,
2623 endbyte >> PAGE_CACHE_SHIFT);
2624 } else {
2625 /*
2626 * We don't know how much we wrote, so just return
2627 * the number of bytes which were direct-written
2628 */
2629 }
2630 } else {
8174202b 2631 written = generic_perform_write(file, from, pos);
3b93f911
AV
2632 if (likely(written >= 0))
2633 iocb->ki_pos = pos + written;
fb5527e6 2634 }
1da177e4
LT
2635out:
2636 current->backing_dev_info = NULL;
2637 return written ? written : err;
2638}
8174202b 2639EXPORT_SYMBOL(__generic_file_write_iter);
e4dd9de3 2640
e4dd9de3 2641/**
8174202b 2642 * generic_file_write_iter - write data to a file
e4dd9de3 2643 * @iocb: IO state structure
8174202b 2644 * @from: iov_iter with data to write
e4dd9de3 2645 *
8174202b 2646 * This is a wrapper around __generic_file_write_iter() to be used by most
e4dd9de3
JK
2647 * filesystems. It takes care of syncing the file in case of O_SYNC file
2648 * and acquires i_mutex as needed.
2649 */
8174202b 2650ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
2651{
2652 struct file *file = iocb->ki_filp;
148f948b 2653 struct inode *inode = file->f_mapping->host;
1da177e4 2654 ssize_t ret;
1da177e4 2655
1b1dcc1b 2656 mutex_lock(&inode->i_mutex);
8174202b 2657 ret = __generic_file_write_iter(iocb, from);
1b1dcc1b 2658 mutex_unlock(&inode->i_mutex);
1da177e4 2659
02afc27f 2660 if (ret > 0) {
1da177e4
LT
2661 ssize_t err;
2662
d311d79d
AV
2663 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2664 if (err < 0)
1da177e4
LT
2665 ret = err;
2666 }
2667 return ret;
2668}
8174202b 2669EXPORT_SYMBOL(generic_file_write_iter);
1da177e4 2670
cf9a2ae8
DH
2671/**
2672 * try_to_release_page() - release old fs-specific metadata on a page
2673 *
2674 * @page: the page which the kernel is trying to free
2675 * @gfp_mask: memory allocation flags (and I/O mode)
2676 *
2677 * The address_space is to try to release any data against the page
2678 * (presumably at page->private). If the release was successful, return `1'.
2679 * Otherwise return zero.
2680 *
266cf658
DH
2681 * This may also be called if PG_fscache is set on a page, indicating that the
2682 * page is known to the local caching routines.
2683 *
cf9a2ae8 2684 * The @gfp_mask argument specifies whether I/O may be performed to release
3f31fddf 2685 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
cf9a2ae8 2686 *
cf9a2ae8
DH
2687 */
2688int try_to_release_page(struct page *page, gfp_t gfp_mask)
2689{
2690 struct address_space * const mapping = page->mapping;
2691
2692 BUG_ON(!PageLocked(page));
2693 if (PageWriteback(page))
2694 return 0;
2695
2696 if (mapping && mapping->a_ops->releasepage)
2697 return mapping->a_ops->releasepage(page, gfp_mask);
2698 return try_to_free_buffers(page);
2699}
2700
2701EXPORT_SYMBOL(try_to_release_page);