Merge tag 'irq_urgent_for_v6.8_rc2' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-block.git] / mm / filemap.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/filemap.c
4 *
5 * Copyright (C) 1994-1999 Linus Torvalds
6 */
7
8/*
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
12 */
b95f1b31 13#include <linux/export.h>
1da177e4 14#include <linux/compiler.h>
f9fe48be 15#include <linux/dax.h>
1da177e4 16#include <linux/fs.h>
3f07c014 17#include <linux/sched/signal.h>
c22ce143 18#include <linux/uaccess.h>
c59ede7b 19#include <linux/capability.h>
1da177e4 20#include <linux/kernel_stat.h>
5a0e3ad6 21#include <linux/gfp.h>
1da177e4
LT
22#include <linux/mm.h>
23#include <linux/swap.h>
ffa65753 24#include <linux/swapops.h>
cf264e13 25#include <linux/syscalls.h>
1da177e4
LT
26#include <linux/mman.h>
27#include <linux/pagemap.h>
28#include <linux/file.h>
29#include <linux/uio.h>
cfcbfb13 30#include <linux/error-injection.h>
1da177e4
LT
31#include <linux/hash.h>
32#include <linux/writeback.h>
53253383 33#include <linux/backing-dev.h>
1da177e4 34#include <linux/pagevec.h>
1da177e4 35#include <linux/security.h>
44110fe3 36#include <linux/cpuset.h>
00501b53 37#include <linux/hugetlb.h>
8a9f3ccd 38#include <linux/memcontrol.h>
c7df8ad2 39#include <linux/shmem_fs.h>
f1820361 40#include <linux/rmap.h>
b1d29ba8 41#include <linux/delayacct.h>
eb414681 42#include <linux/psi.h>
d0e6a582 43#include <linux/ramfs.h>
b9306a79 44#include <linux/page_idle.h>
ffa65753 45#include <linux/migrate.h>
07073eb0
DH
46#include <linux/pipe_fs_i.h>
47#include <linux/splice.h>
1e2f2d31 48#include <linux/rcupdate_wait.h>
f9ce0be7 49#include <asm/pgalloc.h>
de591a82 50#include <asm/tlbflush.h>
0f8053a5
NP
51#include "internal.h"
52
fe0bfaaf
RJ
53#define CREATE_TRACE_POINTS
54#include <trace/events/filemap.h>
55
1da177e4 56/*
1da177e4
LT
57 * FIXME: remove all knowledge of the buffer layer from the core VM
58 */
148f948b 59#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 60
1da177e4
LT
61#include <asm/mman.h>
62
cf264e13
NP
63#include "swap.h"
64
1da177e4
LT
65/*
66 * Shared mappings implemented 30.11.1994. It's not fully working yet,
67 * though.
68 *
69 * Shared mappings now work. 15.8.1995 Bruno.
70 *
71 * finished 'unifying' the page and buffer cache and SMP-threaded the
72 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
73 *
74 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
75 */
76
77/*
78 * Lock ordering:
79 *
c8c06efa 80 * ->i_mmap_rwsem (truncate_pagecache)
e621900a 81 * ->private_lock (__free_pte->block_dirty_folio)
5d337b91 82 * ->swap_lock (exclusive_swap_page, others)
b93b0163 83 * ->i_pages lock
1da177e4 84 *
9608703e 85 * ->i_rwsem
730633f0
JK
86 * ->invalidate_lock (acquired by fs in truncate path)
87 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
1da177e4 88 *
c1e8d7c6 89 * ->mmap_lock
c8c06efa 90 * ->i_mmap_rwsem
b8072f09 91 * ->page_table_lock or pte_lock (various, mainly in memory.c)
b93b0163 92 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
1da177e4 93 *
c1e8d7c6 94 * ->mmap_lock
730633f0
JK
95 * ->invalidate_lock (filemap_fault)
96 * ->lock_page (filemap_fault, access_process_vm)
1da177e4 97 *
9608703e 98 * ->i_rwsem (generic_perform_write)
bb523b40 99 * ->mmap_lock (fault_in_readable->do_page_fault)
1da177e4 100 *
f758eeab 101 * bdi->wb.list_lock
a66979ab 102 * sb_lock (fs/fs-writeback.c)
b93b0163 103 * ->i_pages lock (__sync_single_inode)
1da177e4 104 *
c8c06efa 105 * ->i_mmap_rwsem
0503ea8f 106 * ->anon_vma.lock (vma_merge)
1da177e4
LT
107 *
108 * ->anon_vma.lock
b8072f09 109 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 110 *
b8072f09 111 * ->page_table_lock or pte_lock
5d337b91 112 * ->swap_lock (try_to_unmap_one)
1da177e4 113 * ->private_lock (try_to_unmap_one)
b93b0163 114 * ->i_pages lock (try_to_unmap_one)
15b44736
HD
115 * ->lruvec->lru_lock (follow_page->mark_page_accessed)
116 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page)
4d8f7418
DH
117 * ->private_lock (folio_remove_rmap_pte->set_page_dirty)
118 * ->i_pages lock (folio_remove_rmap_pte->set_page_dirty)
119 * bdi.wb->list_lock (folio_remove_rmap_pte->set_page_dirty)
120 * ->inode->i_lock (folio_remove_rmap_pte->set_page_dirty)
121 * ->memcg->move_lock (folio_remove_rmap_pte->folio_memcg_lock)
f758eeab 122 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 123 * ->inode->i_lock (zap_pte_range->set_page_dirty)
e621900a 124 * ->private_lock (zap_pte_range->block_dirty_folio)
1da177e4
LT
125 */
126
5c024e6a 127static void page_cache_delete(struct address_space *mapping,
a548b615 128 struct folio *folio, void *shadow)
91b0abe3 129{
a548b615
MWO
130 XA_STATE(xas, &mapping->i_pages, folio->index);
131 long nr = 1;
c70b647d 132
5c024e6a 133 mapping_set_update(&xas, mapping);
c70b647d 134
a08c7193
SK
135 xas_set_order(&xas, folio->index, folio_order(folio));
136 nr = folio_nr_pages(folio);
91b0abe3 137
a548b615 138 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
449dd698 139
5c024e6a
MW
140 xas_store(&xas, shadow);
141 xas_init_marks(&xas);
d3798ae8 142
a548b615 143 folio->mapping = NULL;
2300638b 144 /* Leave page->index set: truncation lookup relies upon it */
d3798ae8 145 mapping->nrpages -= nr;
91b0abe3
JW
146}
147
621db488
MWO
148static void filemap_unaccount_folio(struct address_space *mapping,
149 struct folio *folio)
1da177e4 150{
621db488 151 long nr;
1da177e4 152
621db488
MWO
153 VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
154 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
06b241f3 155 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
621db488
MWO
156 current->comm, folio_pfn(folio));
157 dump_page(&folio->page, "still mapped when deleted");
06b241f3
HD
158 dump_stack();
159 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
160
85207ad8
HD
161 if (mapping_exiting(mapping) && !folio_test_large(folio)) {
162 int mapcount = page_mapcount(&folio->page);
163
164 if (folio_ref_count(folio) >= mapcount + 2) {
165 /*
166 * All vmas have already been torn down, so it's
167 * a good bet that actually the page is unmapped
168 * and we'd rather not leak it: if we're wrong,
169 * another bad page check should catch it later.
170 */
171 page_mapcount_reset(&folio->page);
172 folio_ref_sub(folio, mapcount);
173 }
06b241f3
HD
174 }
175 }
176
621db488
MWO
177 /* hugetlb folios do not participate in page cache accounting. */
178 if (folio_test_hugetlb(folio))
5ecc4d85 179 return;
09612fa6 180
621db488 181 nr = folio_nr_pages(folio);
5ecc4d85 182
621db488
MWO
183 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
184 if (folio_test_swapbacked(folio)) {
185 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
186 if (folio_test_pmd_mappable(folio))
187 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
188 } else if (folio_test_pmd_mappable(folio)) {
189 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
09d91cda 190 filemap_nr_thps_dec(mapping);
800d8c63 191 }
5ecc4d85
JK
192
193 /*
621db488
MWO
194 * At this point folio must be either written or cleaned by
195 * truncate. Dirty folio here signals a bug and loss of
566d3362 196 * unwritten data - on ordinary filesystems.
5ecc4d85 197 *
566d3362
HD
198 * But it's harmless on in-memory filesystems like tmpfs; and can
199 * occur when a driver which did get_user_pages() sets page dirty
200 * before putting it, while the inode is being finally evicted.
201 *
202 * Below fixes dirty accounting after removing the folio entirely
621db488
MWO
203 * but leaves the dirty flag set: it has no effect for truncated
204 * folio and anyway will be cleared before returning folio to
5ecc4d85
JK
205 * buddy allocator.
206 */
566d3362
HD
207 if (WARN_ON_ONCE(folio_test_dirty(folio) &&
208 mapping_can_writeback(mapping)))
209 folio_account_cleaned(folio, inode_to_wb(mapping->host));
5ecc4d85
JK
210}
211
212/*
213 * Delete a page from the page cache and free it. Caller has to make
214 * sure the page is locked and that nobody else uses it - or that usage
b93b0163 215 * is safe. The caller must hold the i_pages lock.
5ecc4d85 216 */
452e9e69 217void __filemap_remove_folio(struct folio *folio, void *shadow)
5ecc4d85 218{
452e9e69 219 struct address_space *mapping = folio->mapping;
5ecc4d85 220
a0580c6f 221 trace_mm_filemap_delete_from_page_cache(folio);
621db488 222 filemap_unaccount_folio(mapping, folio);
a548b615 223 page_cache_delete(mapping, folio, shadow);
1da177e4
LT
224}
225
78f42660 226void filemap_free_folio(struct address_space *mapping, struct folio *folio)
59c66c5f 227{
d2329aa0 228 void (*free_folio)(struct folio *);
3abb28e2 229 int refs = 1;
59c66c5f 230
d2329aa0
MWO
231 free_folio = mapping->a_ops->free_folio;
232 if (free_folio)
233 free_folio(folio);
59c66c5f 234
a08c7193 235 if (folio_test_large(folio))
3abb28e2
MWO
236 refs = folio_nr_pages(folio);
237 folio_put_refs(folio, refs);
59c66c5f
JK
238}
239
702cfbf9 240/**
452e9e69
MWO
241 * filemap_remove_folio - Remove folio from page cache.
242 * @folio: The folio.
702cfbf9 243 *
452e9e69
MWO
244 * This must be called only on folios that are locked and have been
245 * verified to be in the page cache. It will never put the folio into
246 * the free list because the caller has a reference on the page.
702cfbf9 247 */
452e9e69 248void filemap_remove_folio(struct folio *folio)
1da177e4 249{
452e9e69 250 struct address_space *mapping = folio->mapping;
1da177e4 251
452e9e69 252 BUG_ON(!folio_test_locked(folio));
51b8c1fe 253 spin_lock(&mapping->host->i_lock);
30472509 254 xa_lock_irq(&mapping->i_pages);
452e9e69 255 __filemap_remove_folio(folio, NULL);
30472509 256 xa_unlock_irq(&mapping->i_pages);
51b8c1fe
JW
257 if (mapping_shrinkable(mapping))
258 inode_add_lru(mapping->host);
259 spin_unlock(&mapping->host->i_lock);
6072d13c 260
452e9e69 261 filemap_free_folio(mapping, folio);
97cecb5a 262}
97cecb5a 263
aa65c29c 264/*
51dcbdac
MWO
265 * page_cache_delete_batch - delete several folios from page cache
266 * @mapping: the mapping to which folios belong
267 * @fbatch: batch of folios to delete
aa65c29c 268 *
51dcbdac
MWO
269 * The function walks over mapping->i_pages and removes folios passed in
270 * @fbatch from the mapping. The function expects @fbatch to be sorted
271 * by page index and is optimised for it to be dense.
272 * It tolerates holes in @fbatch (mapping entries at those indices are not
273 * modified).
aa65c29c 274 *
b93b0163 275 * The function expects the i_pages lock to be held.
aa65c29c 276 */
ef8e5717 277static void page_cache_delete_batch(struct address_space *mapping,
51dcbdac 278 struct folio_batch *fbatch)
aa65c29c 279{
51dcbdac 280 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
6b24ca4a 281 long total_pages = 0;
4101196b 282 int i = 0;
1afd7ae5 283 struct folio *folio;
aa65c29c 284
ef8e5717 285 mapping_set_update(&xas, mapping);
1afd7ae5 286 xas_for_each(&xas, folio, ULONG_MAX) {
51dcbdac 287 if (i >= folio_batch_count(fbatch))
aa65c29c 288 break;
4101196b
MWO
289
290 /* A swap/dax/shadow entry got inserted? Skip it. */
1afd7ae5 291 if (xa_is_value(folio))
aa65c29c 292 continue;
4101196b
MWO
293 /*
294 * A page got inserted in our range? Skip it. We have our
295 * pages locked so they are protected from being removed.
296 * If we see a page whose index is higher than ours, it
297 * means our page has been removed, which shouldn't be
298 * possible because we're holding the PageLock.
299 */
51dcbdac 300 if (folio != fbatch->folios[i]) {
1afd7ae5 301 VM_BUG_ON_FOLIO(folio->index >
51dcbdac 302 fbatch->folios[i]->index, folio);
4101196b
MWO
303 continue;
304 }
305
1afd7ae5 306 WARN_ON_ONCE(!folio_test_locked(folio));
4101196b 307
6b24ca4a 308 folio->mapping = NULL;
51dcbdac 309 /* Leave folio->index set: truncation lookup relies on it */
4101196b 310
6b24ca4a 311 i++;
ef8e5717 312 xas_store(&xas, NULL);
6b24ca4a 313 total_pages += folio_nr_pages(folio);
aa65c29c
JK
314 }
315 mapping->nrpages -= total_pages;
316}
317
318void delete_from_page_cache_batch(struct address_space *mapping,
51dcbdac 319 struct folio_batch *fbatch)
aa65c29c
JK
320{
321 int i;
aa65c29c 322
51dcbdac 323 if (!folio_batch_count(fbatch))
aa65c29c
JK
324 return;
325
51b8c1fe 326 spin_lock(&mapping->host->i_lock);
30472509 327 xa_lock_irq(&mapping->i_pages);
51dcbdac
MWO
328 for (i = 0; i < folio_batch_count(fbatch); i++) {
329 struct folio *folio = fbatch->folios[i];
aa65c29c 330
a0580c6f
MWO
331 trace_mm_filemap_delete_from_page_cache(folio);
332 filemap_unaccount_folio(mapping, folio);
aa65c29c 333 }
51dcbdac 334 page_cache_delete_batch(mapping, fbatch);
30472509 335 xa_unlock_irq(&mapping->i_pages);
51b8c1fe
JW
336 if (mapping_shrinkable(mapping))
337 inode_add_lru(mapping->host);
338 spin_unlock(&mapping->host->i_lock);
aa65c29c 339
51dcbdac
MWO
340 for (i = 0; i < folio_batch_count(fbatch); i++)
341 filemap_free_folio(mapping, fbatch->folios[i]);
aa65c29c
JK
342}
343
d72d9e2a 344int filemap_check_errors(struct address_space *mapping)
865ffef3
DM
345{
346 int ret = 0;
347 /* Check for outstanding write errors */
7fcbbaf1
JA
348 if (test_bit(AS_ENOSPC, &mapping->flags) &&
349 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
865ffef3 350 ret = -ENOSPC;
7fcbbaf1
JA
351 if (test_bit(AS_EIO, &mapping->flags) &&
352 test_and_clear_bit(AS_EIO, &mapping->flags))
865ffef3
DM
353 ret = -EIO;
354 return ret;
355}
d72d9e2a 356EXPORT_SYMBOL(filemap_check_errors);
865ffef3 357
76341cab
JL
358static int filemap_check_and_keep_errors(struct address_space *mapping)
359{
360 /* Check for outstanding write errors */
361 if (test_bit(AS_EIO, &mapping->flags))
362 return -EIO;
363 if (test_bit(AS_ENOSPC, &mapping->flags))
364 return -ENOSPC;
365 return 0;
366}
367
5a798493
JB
368/**
369 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
370 * @mapping: address space structure to write
371 * @wbc: the writeback_control controlling the writeout
372 *
373 * Call writepages on the mapping using the provided wbc to control the
374 * writeout.
375 *
376 * Return: %0 on success, negative error code otherwise.
377 */
378int filemap_fdatawrite_wbc(struct address_space *mapping,
379 struct writeback_control *wbc)
380{
381 int ret;
382
383 if (!mapping_can_writeback(mapping) ||
384 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
385 return 0;
386
387 wbc_attach_fdatawrite_inode(wbc, mapping->host);
388 ret = do_writepages(mapping, wbc);
389 wbc_detach_inode(wbc);
390 return ret;
391}
392EXPORT_SYMBOL(filemap_fdatawrite_wbc);
393
1da177e4 394/**
485bb99b 395 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
396 * @mapping: address space structure to write
397 * @start: offset in bytes where the range starts
469eb4d0 398 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 399 * @sync_mode: enable synchronous operation
1da177e4 400 *
485bb99b
RD
401 * Start writeback against all of a mapping's dirty pages that lie
402 * within the byte offsets <start, end> inclusive.
403 *
1da177e4 404 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 405 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
406 * these two operations is that if a dirty page/buffer is encountered, it must
407 * be waited upon, and not just skipped over.
a862f68a
MR
408 *
409 * Return: %0 on success, negative error code otherwise.
1da177e4 410 */
ebcf28e1
AM
411int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
412 loff_t end, int sync_mode)
1da177e4 413{
1da177e4
LT
414 struct writeback_control wbc = {
415 .sync_mode = sync_mode,
05fe478d 416 .nr_to_write = LONG_MAX,
111ebb6e
OH
417 .range_start = start,
418 .range_end = end,
1da177e4
LT
419 };
420
5a798493 421 return filemap_fdatawrite_wbc(mapping, &wbc);
1da177e4
LT
422}
423
424static inline int __filemap_fdatawrite(struct address_space *mapping,
425 int sync_mode)
426{
111ebb6e 427 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
428}
429
430int filemap_fdatawrite(struct address_space *mapping)
431{
432 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
433}
434EXPORT_SYMBOL(filemap_fdatawrite);
435
f4c0a0fd 436int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 437 loff_t end)
1da177e4
LT
438{
439 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
440}
f4c0a0fd 441EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 442
485bb99b
RD
443/**
444 * filemap_flush - mostly a non-blocking flush
445 * @mapping: target address_space
446 *
1da177e4
LT
447 * This is a mostly non-blocking flush. Not suitable for data-integrity
448 * purposes - I/O may not be started against all dirty pages.
a862f68a
MR
449 *
450 * Return: %0 on success, negative error code otherwise.
1da177e4
LT
451 */
452int filemap_flush(struct address_space *mapping)
453{
454 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
455}
456EXPORT_SYMBOL(filemap_flush);
457
7fc9e472
GR
458/**
459 * filemap_range_has_page - check if a page exists in range.
460 * @mapping: address space within which to check
461 * @start_byte: offset in bytes where the range starts
462 * @end_byte: offset in bytes where the range ends (inclusive)
463 *
464 * Find at least one page in the range supplied, usually used to check if
465 * direct writing in this range will trigger a writeback.
a862f68a
MR
466 *
467 * Return: %true if at least one page exists in the specified range,
468 * %false otherwise.
7fc9e472
GR
469 */
470bool filemap_range_has_page(struct address_space *mapping,
471 loff_t start_byte, loff_t end_byte)
472{
eff3b364 473 struct folio *folio;
8fa8e538
MW
474 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
475 pgoff_t max = end_byte >> PAGE_SHIFT;
7fc9e472
GR
476
477 if (end_byte < start_byte)
478 return false;
479
8fa8e538
MW
480 rcu_read_lock();
481 for (;;) {
eff3b364
MWO
482 folio = xas_find(&xas, max);
483 if (xas_retry(&xas, folio))
8fa8e538
MW
484 continue;
485 /* Shadow entries don't count */
eff3b364 486 if (xa_is_value(folio))
8fa8e538
MW
487 continue;
488 /*
489 * We don't need to try to pin this page; we're about to
490 * release the RCU lock anyway. It is enough to know that
491 * there was a page here recently.
492 */
493 break;
494 }
495 rcu_read_unlock();
7fc9e472 496
eff3b364 497 return folio != NULL;
7fc9e472
GR
498}
499EXPORT_SYMBOL(filemap_range_has_page);
500
5e8fcc1a 501static void __filemap_fdatawait_range(struct address_space *mapping,
aa750fd7 502 loff_t start_byte, loff_t end_byte)
1da177e4 503{
09cbfeaf
KS
504 pgoff_t index = start_byte >> PAGE_SHIFT;
505 pgoff_t end = end_byte >> PAGE_SHIFT;
6817ef51
VMO
506 struct folio_batch fbatch;
507 unsigned nr_folios;
508
509 folio_batch_init(&fbatch);
1da177e4 510
312e9d2f 511 while (index <= end) {
1da177e4
LT
512 unsigned i;
513
6817ef51
VMO
514 nr_folios = filemap_get_folios_tag(mapping, &index, end,
515 PAGECACHE_TAG_WRITEBACK, &fbatch);
516
517 if (!nr_folios)
312e9d2f
JK
518 break;
519
6817ef51
VMO
520 for (i = 0; i < nr_folios; i++) {
521 struct folio *folio = fbatch.folios[i];
1da177e4 522
6817ef51
VMO
523 folio_wait_writeback(folio);
524 folio_clear_error(folio);
1da177e4 525 }
6817ef51 526 folio_batch_release(&fbatch);
1da177e4
LT
527 cond_resched();
528 }
aa750fd7
JN
529}
530
531/**
532 * filemap_fdatawait_range - wait for writeback to complete
533 * @mapping: address space structure to wait for
534 * @start_byte: offset in bytes where the range starts
535 * @end_byte: offset in bytes where the range ends (inclusive)
536 *
537 * Walk the list of under-writeback pages of the given address space
538 * in the given range and wait for all of them. Check error status of
539 * the address space and return it.
540 *
541 * Since the error status of the address space is cleared by this function,
542 * callers are responsible for checking the return value and handling and/or
543 * reporting the error.
a862f68a
MR
544 *
545 * Return: error status of the address space.
aa750fd7
JN
546 */
547int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
548 loff_t end_byte)
549{
5e8fcc1a
JL
550 __filemap_fdatawait_range(mapping, start_byte, end_byte);
551 return filemap_check_errors(mapping);
1da177e4 552}
d3bccb6f
JK
553EXPORT_SYMBOL(filemap_fdatawait_range);
554
aa0bfcd9
RZ
555/**
556 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
557 * @mapping: address space structure to wait for
558 * @start_byte: offset in bytes where the range starts
559 * @end_byte: offset in bytes where the range ends (inclusive)
560 *
561 * Walk the list of under-writeback pages of the given address space in the
562 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
563 * this function does not clear error status of the address space.
564 *
565 * Use this function if callers don't handle errors themselves. Expected
566 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
567 * fsfreeze(8)
568 */
569int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
570 loff_t start_byte, loff_t end_byte)
571{
572 __filemap_fdatawait_range(mapping, start_byte, end_byte);
573 return filemap_check_and_keep_errors(mapping);
574}
575EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
576
a823e458
JL
577/**
578 * file_fdatawait_range - wait for writeback to complete
579 * @file: file pointing to address space structure to wait for
580 * @start_byte: offset in bytes where the range starts
581 * @end_byte: offset in bytes where the range ends (inclusive)
582 *
583 * Walk the list of under-writeback pages of the address space that file
584 * refers to, in the given range and wait for all of them. Check error
585 * status of the address space vs. the file->f_wb_err cursor and return it.
586 *
587 * Since the error status of the file is advanced by this function,
588 * callers are responsible for checking the return value and handling and/or
589 * reporting the error.
a862f68a
MR
590 *
591 * Return: error status of the address space vs. the file->f_wb_err cursor.
a823e458
JL
592 */
593int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
594{
595 struct address_space *mapping = file->f_mapping;
596
597 __filemap_fdatawait_range(mapping, start_byte, end_byte);
598 return file_check_and_advance_wb_err(file);
599}
600EXPORT_SYMBOL(file_fdatawait_range);
d3bccb6f 601
aa750fd7
JN
602/**
603 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
604 * @mapping: address space structure to wait for
605 *
606 * Walk the list of under-writeback pages of the given address space
607 * and wait for all of them. Unlike filemap_fdatawait(), this function
608 * does not clear error status of the address space.
609 *
610 * Use this function if callers don't handle errors themselves. Expected
611 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
612 * fsfreeze(8)
a862f68a
MR
613 *
614 * Return: error status of the address space.
aa750fd7 615 */
76341cab 616int filemap_fdatawait_keep_errors(struct address_space *mapping)
aa750fd7 617{
ffb959bb 618 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
76341cab 619 return filemap_check_and_keep_errors(mapping);
aa750fd7 620}
76341cab 621EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
aa750fd7 622
875d91b1 623/* Returns true if writeback might be needed or already in progress. */
9326c9b2 624static bool mapping_needs_writeback(struct address_space *mapping)
1da177e4 625{
875d91b1 626 return mapping->nrpages;
1da177e4 627}
1da177e4 628
4bdcd1dd
JA
629bool filemap_range_has_writeback(struct address_space *mapping,
630 loff_t start_byte, loff_t end_byte)
f8ee8909
JA
631{
632 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
633 pgoff_t max = end_byte >> PAGE_SHIFT;
b05f41a1 634 struct folio *folio;
f8ee8909
JA
635
636 if (end_byte < start_byte)
637 return false;
638
639 rcu_read_lock();
b05f41a1
VMO
640 xas_for_each(&xas, folio, max) {
641 if (xas_retry(&xas, folio))
f8ee8909 642 continue;
b05f41a1 643 if (xa_is_value(folio))
f8ee8909 644 continue;
b05f41a1
VMO
645 if (folio_test_dirty(folio) || folio_test_locked(folio) ||
646 folio_test_writeback(folio))
f8ee8909
JA
647 break;
648 }
649 rcu_read_unlock();
b05f41a1 650 return folio != NULL;
63135aa3 651}
4bdcd1dd 652EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
63135aa3 653
485bb99b
RD
654/**
655 * filemap_write_and_wait_range - write out & wait on a file range
656 * @mapping: the address_space for the pages
657 * @lstart: offset in bytes where the range starts
658 * @lend: offset in bytes where the range ends (inclusive)
659 *
469eb4d0
AM
660 * Write out and wait upon file offsets lstart->lend, inclusive.
661 *
0e056eb5 662 * Note that @lend is inclusive (describes the last byte to be written) so
469eb4d0 663 * that this function can be used to write to the very end-of-file (end = -1).
a862f68a
MR
664 *
665 * Return: error status of the address space.
469eb4d0 666 */
1da177e4
LT
667int filemap_write_and_wait_range(struct address_space *mapping,
668 loff_t lstart, loff_t lend)
669{
ccac11da 670 int err = 0, err2;
1da177e4 671
feeb9b26
BF
672 if (lend < lstart)
673 return 0;
674
9326c9b2 675 if (mapping_needs_writeback(mapping)) {
28fd1298
OH
676 err = __filemap_fdatawrite_range(mapping, lstart, lend,
677 WB_SYNC_ALL);
ddf8f376
IW
678 /*
679 * Even if the above returned error, the pages may be
680 * written partially (e.g. -ENOSPC), so we wait for it.
681 * But the -EIO is special case, it may indicate the worst
682 * thing (e.g. bug) happened, so we avoid waiting for it.
683 */
ccac11da
ML
684 if (err != -EIO)
685 __filemap_fdatawait_range(mapping, lstart, lend);
1da177e4 686 }
ccac11da
ML
687 err2 = filemap_check_errors(mapping);
688 if (!err)
689 err = err2;
28fd1298 690 return err;
1da177e4 691}
f6995585 692EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 693
5660e13d
JL
694void __filemap_set_wb_err(struct address_space *mapping, int err)
695{
3acdfd28 696 errseq_t eseq = errseq_set(&mapping->wb_err, err);
5660e13d
JL
697
698 trace_filemap_set_wb_err(mapping, eseq);
699}
700EXPORT_SYMBOL(__filemap_set_wb_err);
701
702/**
703 * file_check_and_advance_wb_err - report wb error (if any) that was previously
704 * and advance wb_err to current one
705 * @file: struct file on which the error is being reported
706 *
707 * When userland calls fsync (or something like nfsd does the equivalent), we
708 * want to report any writeback errors that occurred since the last fsync (or
709 * since the file was opened if there haven't been any).
710 *
711 * Grab the wb_err from the mapping. If it matches what we have in the file,
712 * then just quickly return 0. The file is all caught up.
713 *
714 * If it doesn't match, then take the mapping value, set the "seen" flag in
715 * it and try to swap it into place. If it works, or another task beat us
716 * to it with the new value, then update the f_wb_err and return the error
717 * portion. The error at this point must be reported via proper channels
718 * (a'la fsync, or NFS COMMIT operation, etc.).
719 *
720 * While we handle mapping->wb_err with atomic operations, the f_wb_err
721 * value is protected by the f_lock since we must ensure that it reflects
722 * the latest value swapped in for this file descriptor.
a862f68a
MR
723 *
724 * Return: %0 on success, negative error code otherwise.
5660e13d
JL
725 */
726int file_check_and_advance_wb_err(struct file *file)
727{
728 int err = 0;
729 errseq_t old = READ_ONCE(file->f_wb_err);
730 struct address_space *mapping = file->f_mapping;
731
732 /* Locklessly handle the common case where nothing has changed */
733 if (errseq_check(&mapping->wb_err, old)) {
734 /* Something changed, must use slow path */
735 spin_lock(&file->f_lock);
736 old = file->f_wb_err;
737 err = errseq_check_and_advance(&mapping->wb_err,
738 &file->f_wb_err);
739 trace_file_check_and_advance_wb_err(file, old);
740 spin_unlock(&file->f_lock);
741 }
f4e222c5
JL
742
743 /*
744 * We're mostly using this function as a drop in replacement for
745 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
746 * that the legacy code would have had on these flags.
747 */
748 clear_bit(AS_EIO, &mapping->flags);
749 clear_bit(AS_ENOSPC, &mapping->flags);
5660e13d
JL
750 return err;
751}
752EXPORT_SYMBOL(file_check_and_advance_wb_err);
753
754/**
755 * file_write_and_wait_range - write out & wait on a file range
756 * @file: file pointing to address_space with pages
757 * @lstart: offset in bytes where the range starts
758 * @lend: offset in bytes where the range ends (inclusive)
759 *
760 * Write out and wait upon file offsets lstart->lend, inclusive.
761 *
762 * Note that @lend is inclusive (describes the last byte to be written) so
763 * that this function can be used to write to the very end-of-file (end = -1).
764 *
765 * After writing out and waiting on the data, we check and advance the
766 * f_wb_err cursor to the latest value, and return any errors detected there.
a862f68a
MR
767 *
768 * Return: %0 on success, negative error code otherwise.
5660e13d
JL
769 */
770int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
771{
772 int err = 0, err2;
773 struct address_space *mapping = file->f_mapping;
774
feeb9b26
BF
775 if (lend < lstart)
776 return 0;
777
9326c9b2 778 if (mapping_needs_writeback(mapping)) {
5660e13d
JL
779 err = __filemap_fdatawrite_range(mapping, lstart, lend,
780 WB_SYNC_ALL);
781 /* See comment of filemap_write_and_wait() */
782 if (err != -EIO)
783 __filemap_fdatawait_range(mapping, lstart, lend);
784 }
785 err2 = file_check_and_advance_wb_err(file);
786 if (!err)
787 err = err2;
788 return err;
789}
790EXPORT_SYMBOL(file_write_and_wait_range);
791
ef6a3c63 792/**
3720dd6d
VMO
793 * replace_page_cache_folio - replace a pagecache folio with a new one
794 * @old: folio to be replaced
795 * @new: folio to replace with
796 *
797 * This function replaces a folio in the pagecache with a new one. On
798 * success it acquires the pagecache reference for the new folio and
799 * drops it for the old folio. Both the old and new folios must be
800 * locked. This function does not add the new folio to the LRU, the
ef6a3c63
MS
801 * caller must do that.
802 *
74d60958 803 * The remove + add is atomic. This function cannot fail.
ef6a3c63 804 */
3720dd6d 805void replace_page_cache_folio(struct folio *old, struct folio *new)
ef6a3c63 806{
74d60958 807 struct address_space *mapping = old->mapping;
d2329aa0 808 void (*free_folio)(struct folio *) = mapping->a_ops->free_folio;
74d60958
MW
809 pgoff_t offset = old->index;
810 XA_STATE(xas, &mapping->i_pages, offset);
ef6a3c63 811
3720dd6d
VMO
812 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
813 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
814 VM_BUG_ON_FOLIO(new->mapping, new);
ef6a3c63 815
3720dd6d 816 folio_get(new);
74d60958
MW
817 new->mapping = mapping;
818 new->index = offset;
ef6a3c63 819
85ce2c51 820 mem_cgroup_replace_folio(old, new);
0d1c2072 821
30472509 822 xas_lock_irq(&xas);
74d60958 823 xas_store(&xas, new);
4165b9b4 824
74d60958
MW
825 old->mapping = NULL;
826 /* hugetlb pages do not participate in page cache accounting. */
3720dd6d
VMO
827 if (!folio_test_hugetlb(old))
828 __lruvec_stat_sub_folio(old, NR_FILE_PAGES);
829 if (!folio_test_hugetlb(new))
830 __lruvec_stat_add_folio(new, NR_FILE_PAGES);
831 if (folio_test_swapbacked(old))
832 __lruvec_stat_sub_folio(old, NR_SHMEM);
833 if (folio_test_swapbacked(new))
834 __lruvec_stat_add_folio(new, NR_SHMEM);
30472509 835 xas_unlock_irq(&xas);
d2329aa0 836 if (free_folio)
3720dd6d
VMO
837 free_folio(old);
838 folio_put(old);
ef6a3c63 839}
3720dd6d 840EXPORT_SYMBOL_GPL(replace_page_cache_folio);
ef6a3c63 841
9dd3d069
MWO
842noinline int __filemap_add_folio(struct address_space *mapping,
843 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
1da177e4 844{
9dd3d069
MWO
845 XA_STATE(xas, &mapping->i_pages, index);
846 int huge = folio_test_hugetlb(folio);
da74240e 847 bool charged = false;
d68eccad 848 long nr = 1;
e286781d 849
9dd3d069
MWO
850 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
851 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
74d60958 852 mapping_set_update(&xas, mapping);
e286781d 853
3fea5a49 854 if (!huge) {
d68eccad 855 int error = mem_cgroup_charge(folio, NULL, gfp);
3fea5a49 856 if (error)
d68eccad 857 return error;
da74240e 858 charged = true;
3fea5a49
JW
859 }
860
a08c7193
SK
861 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
862 xas_set_order(&xas, index, folio_order(folio));
863 nr = folio_nr_pages(folio);
864
198b62f8 865 gfp &= GFP_RECLAIM_MASK;
d68eccad
MWO
866 folio_ref_add(folio, nr);
867 folio->mapping = mapping;
868 folio->index = xas.xa_index;
198b62f8 869
74d60958 870 do {
198b62f8
MWO
871 unsigned int order = xa_get_order(xas.xa, xas.xa_index);
872 void *entry, *old = NULL;
873
9dd3d069 874 if (order > folio_order(folio))
198b62f8
MWO
875 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
876 order, gfp);
74d60958 877 xas_lock_irq(&xas);
198b62f8
MWO
878 xas_for_each_conflict(&xas, entry) {
879 old = entry;
880 if (!xa_is_value(entry)) {
881 xas_set_err(&xas, -EEXIST);
882 goto unlock;
883 }
884 }
885
886 if (old) {
887 if (shadowp)
888 *shadowp = old;
889 /* entry may have been split before we acquired lock */
890 order = xa_get_order(xas.xa, xas.xa_index);
9dd3d069 891 if (order > folio_order(folio)) {
d68eccad
MWO
892 /* How to handle large swap entries? */
893 BUG_ON(shmem_mapping(mapping));
198b62f8
MWO
894 xas_split(&xas, old, order);
895 xas_reset(&xas);
896 }
897 }
898
9dd3d069 899 xas_store(&xas, folio);
74d60958
MW
900 if (xas_error(&xas))
901 goto unlock;
902
d68eccad 903 mapping->nrpages += nr;
74d60958
MW
904
905 /* hugetlb pages do not participate in page cache accounting */
d68eccad
MWO
906 if (!huge) {
907 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
908 if (folio_test_pmd_mappable(folio))
909 __lruvec_stat_mod_folio(folio,
910 NR_FILE_THPS, nr);
911 }
74d60958
MW
912unlock:
913 xas_unlock_irq(&xas);
198b62f8 914 } while (xas_nomem(&xas, gfp));
74d60958 915
d68eccad 916 if (xas_error(&xas))
74d60958 917 goto error;
4165b9b4 918
a0580c6f 919 trace_mm_filemap_add_to_page_cache(folio);
66a0c8ee 920 return 0;
74d60958 921error:
d68eccad
MWO
922 if (charged)
923 mem_cgroup_uncharge(folio);
9dd3d069 924 folio->mapping = NULL;
66a0c8ee 925 /* Leave page->index set: truncation relies upon it */
d68eccad
MWO
926 folio_put_refs(folio, nr);
927 return xas_error(&xas);
1da177e4 928}
9dd3d069 929ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
a528910e 930
9dd3d069
MWO
931int filemap_add_folio(struct address_space *mapping, struct folio *folio,
932 pgoff_t index, gfp_t gfp)
1da177e4 933{
a528910e 934 void *shadow = NULL;
4f98a2fe
RR
935 int ret;
936
9dd3d069
MWO
937 __folio_set_locked(folio);
938 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
a528910e 939 if (unlikely(ret))
9dd3d069 940 __folio_clear_locked(folio);
a528910e
JW
941 else {
942 /*
9dd3d069 943 * The folio might have been evicted from cache only
a528910e 944 * recently, in which case it should be activated like
9dd3d069
MWO
945 * any other repeatedly accessed folio.
946 * The exception is folios getting rewritten; evicting other
f0281a00
RR
947 * data from the working set, only to cache data that will
948 * get overwritten with something else, is a waste of memory.
a528910e 949 */
9dd3d069
MWO
950 WARN_ON_ONCE(folio_test_active(folio));
951 if (!(gfp & __GFP_WRITE) && shadow)
952 workingset_refault(folio, shadow);
953 folio_add_lru(folio);
a528910e 954 }
1da177e4
LT
955 return ret;
956}
9dd3d069 957EXPORT_SYMBOL_GPL(filemap_add_folio);
1da177e4 958
44110fe3 959#ifdef CONFIG_NUMA
bb3c579e 960struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
44110fe3 961{
c0ff7453 962 int n;
bb3c579e 963 struct folio *folio;
c0ff7453 964
44110fe3 965 if (cpuset_do_page_mem_spread()) {
cc9a6c87
MG
966 unsigned int cpuset_mems_cookie;
967 do {
d26914d1 968 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 969 n = cpuset_mem_spread_node();
bb3c579e
MWO
970 folio = __folio_alloc_node(gfp, order, n);
971 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
cc9a6c87 972
bb3c579e 973 return folio;
44110fe3 974 }
bb3c579e 975 return folio_alloc(gfp, order);
44110fe3 976}
bb3c579e 977EXPORT_SYMBOL(filemap_alloc_folio);
44110fe3
PJ
978#endif
979
7506ae6a
JK
980/*
981 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
982 *
983 * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
984 *
985 * @mapping1: the first mapping to lock
986 * @mapping2: the second mapping to lock
987 */
988void filemap_invalidate_lock_two(struct address_space *mapping1,
989 struct address_space *mapping2)
990{
991 if (mapping1 > mapping2)
992 swap(mapping1, mapping2);
993 if (mapping1)
994 down_write(&mapping1->invalidate_lock);
995 if (mapping2 && mapping1 != mapping2)
996 down_write_nested(&mapping2->invalidate_lock, 1);
997}
998EXPORT_SYMBOL(filemap_invalidate_lock_two);
999
1000/*
1001 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1002 *
1003 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1004 *
1005 * @mapping1: the first mapping to unlock
1006 * @mapping2: the second mapping to unlock
1007 */
1008void filemap_invalidate_unlock_two(struct address_space *mapping1,
1009 struct address_space *mapping2)
1010{
1011 if (mapping1)
1012 up_write(&mapping1->invalidate_lock);
1013 if (mapping2 && mapping1 != mapping2)
1014 up_write(&mapping2->invalidate_lock);
1015}
1016EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1017
1da177e4
LT
1018/*
1019 * In order to wait for pages to become available there must be
1020 * waitqueues associated with pages. By using a hash table of
1021 * waitqueues where the bucket discipline is to maintain all
1022 * waiters on the same queue and wake all when any of the pages
1023 * become available, and for the woken contexts to check to be
1024 * sure the appropriate page became available, this saves space
1025 * at a cost of "thundering herd" phenomena during rare hash
1026 * collisions.
1027 */
62906027
NP
1028#define PAGE_WAIT_TABLE_BITS 8
1029#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
df4d4f12 1030static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
62906027 1031
df4d4f12 1032static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1da177e4 1033{
df4d4f12 1034 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1da177e4 1035}
1da177e4 1036
62906027 1037void __init pagecache_init(void)
1da177e4 1038{
62906027 1039 int i;
1da177e4 1040
62906027 1041 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
df4d4f12 1042 init_waitqueue_head(&folio_wait_table[i]);
62906027
NP
1043
1044 page_writeback_init();
1da177e4 1045}
1da177e4 1046
5ef64cc8
LT
1047/*
1048 * The page wait code treats the "wait->flags" somewhat unusually, because
5868ec26 1049 * we have multiple different kinds of waits, not just the usual "exclusive"
5ef64cc8
LT
1050 * one.
1051 *
1052 * We have:
1053 *
1054 * (a) no special bits set:
1055 *
1056 * We're just waiting for the bit to be released, and when a waker
1057 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1058 * and remove it from the wait queue.
1059 *
1060 * Simple and straightforward.
1061 *
1062 * (b) WQ_FLAG_EXCLUSIVE:
1063 *
1064 * The waiter is waiting to get the lock, and only one waiter should
1065 * be woken up to avoid any thundering herd behavior. We'll set the
1066 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1067 *
1068 * This is the traditional exclusive wait.
1069 *
5868ec26 1070 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
5ef64cc8
LT
1071 *
1072 * The waiter is waiting to get the bit, and additionally wants the
1073 * lock to be transferred to it for fair lock behavior. If the lock
1074 * cannot be taken, we stop walking the wait queue without waking
1075 * the waiter.
1076 *
1077 * This is the "fair lock handoff" case, and in addition to setting
1078 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1079 * that it now has the lock.
1080 */
ac6424b9 1081static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
f62e00cc 1082{
5ef64cc8 1083 unsigned int flags;
62906027
NP
1084 struct wait_page_key *key = arg;
1085 struct wait_page_queue *wait_page
1086 = container_of(wait, struct wait_page_queue, wait);
1087
cdc8fcb4 1088 if (!wake_page_match(wait_page, key))
62906027 1089 return 0;
3510ca20 1090
9a1ea439 1091 /*
5ef64cc8
LT
1092 * If it's a lock handoff wait, we get the bit for it, and
1093 * stop walking (and do not wake it up) if we can't.
9a1ea439 1094 */
5ef64cc8
LT
1095 flags = wait->flags;
1096 if (flags & WQ_FLAG_EXCLUSIVE) {
df4d4f12 1097 if (test_bit(key->bit_nr, &key->folio->flags))
2a9127fc 1098 return -1;
5ef64cc8 1099 if (flags & WQ_FLAG_CUSTOM) {
df4d4f12 1100 if (test_and_set_bit(key->bit_nr, &key->folio->flags))
5ef64cc8
LT
1101 return -1;
1102 flags |= WQ_FLAG_DONE;
1103 }
2a9127fc 1104 }
f62e00cc 1105
5ef64cc8
LT
1106 /*
1107 * We are holding the wait-queue lock, but the waiter that
1108 * is waiting for this will be checking the flags without
1109 * any locking.
1110 *
1111 * So update the flags atomically, and wake up the waiter
1112 * afterwards to avoid any races. This store-release pairs
101c0bf6 1113 * with the load-acquire in folio_wait_bit_common().
5ef64cc8
LT
1114 */
1115 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
2a9127fc
LT
1116 wake_up_state(wait->private, mode);
1117
1118 /*
1119 * Ok, we have successfully done what we're waiting for,
1120 * and we can unconditionally remove the wait entry.
1121 *
5ef64cc8
LT
1122 * Note that this pairs with the "finish_wait()" in the
1123 * waiter, and has to be the absolute last thing we do.
1124 * After this list_del_init(&wait->entry) the wait entry
2a9127fc
LT
1125 * might be de-allocated and the process might even have
1126 * exited.
2a9127fc 1127 */
c6fe44d9 1128 list_del_init_careful(&wait->entry);
5ef64cc8 1129 return (flags & WQ_FLAG_EXCLUSIVE) != 0;
f62e00cc
KM
1130}
1131
6974d7c9 1132static void folio_wake_bit(struct folio *folio, int bit_nr)
cbbce822 1133{
df4d4f12 1134 wait_queue_head_t *q = folio_waitqueue(folio);
62906027
NP
1135 struct wait_page_key key;
1136 unsigned long flags;
cbbce822 1137
df4d4f12 1138 key.folio = folio;
62906027
NP
1139 key.bit_nr = bit_nr;
1140 key.page_match = 0;
1141
1142 spin_lock_irqsave(&q->lock, flags);
b0b598ee 1143 __wake_up_locked_key(q, TASK_NORMAL, &key);
11a19c7b 1144
62906027 1145 /*
bb43b14b
HD
1146 * It's possible to miss clearing waiters here, when we woke our page
1147 * waiters, but the hashed waitqueue has waiters for other pages on it.
1148 * That's okay, it's a rare case. The next waker will clear it.
62906027 1149 *
bb43b14b
HD
1150 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1151 * other), the flag may be cleared in the course of freeing the page;
1152 * but that is not required for correctness.
62906027 1153 */
bb43b14b 1154 if (!waitqueue_active(q) || !key.page_match)
6974d7c9 1155 folio_clear_waiters(folio);
bb43b14b 1156
62906027
NP
1157 spin_unlock_irqrestore(&q->lock, flags);
1158}
74d81bfa 1159
9a1ea439 1160/*
101c0bf6 1161 * A choice of three behaviors for folio_wait_bit_common():
9a1ea439
HD
1162 */
1163enum behavior {
1164 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
7c23c782 1165 * __folio_lock() waiting on then setting PG_locked.
9a1ea439
HD
1166 */
1167 SHARED, /* Hold ref to page and check the bit when woken, like
9f2b04a2 1168 * folio_wait_writeback() waiting on PG_writeback.
9a1ea439
HD
1169 */
1170 DROP, /* Drop ref to page before wait, no check when woken,
9f2b04a2 1171 * like folio_put_wait_locked() on PG_locked.
9a1ea439
HD
1172 */
1173};
1174
2a9127fc 1175/*
101c0bf6 1176 * Attempt to check (or get) the folio flag, and mark us done
5ef64cc8 1177 * if successful.
2a9127fc 1178 */
101c0bf6 1179static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
2a9127fc
LT
1180 struct wait_queue_entry *wait)
1181{
1182 if (wait->flags & WQ_FLAG_EXCLUSIVE) {
101c0bf6 1183 if (test_and_set_bit(bit_nr, &folio->flags))
2a9127fc 1184 return false;
101c0bf6 1185 } else if (test_bit(bit_nr, &folio->flags))
2a9127fc
LT
1186 return false;
1187
5ef64cc8 1188 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
2a9127fc
LT
1189 return true;
1190}
1191
5ef64cc8
LT
1192/* How many times do we accept lock stealing from under a waiter? */
1193int sysctl_page_lock_unfairness = 5;
1194
101c0bf6
MWO
1195static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1196 int state, enum behavior behavior)
62906027 1197{
df4d4f12 1198 wait_queue_head_t *q = folio_waitqueue(folio);
5ef64cc8 1199 int unfairness = sysctl_page_lock_unfairness;
62906027 1200 struct wait_page_queue wait_page;
ac6424b9 1201 wait_queue_entry_t *wait = &wait_page.wait;
b1d29ba8 1202 bool thrashing = false;
eb414681 1203 unsigned long pflags;
aa1cf99b 1204 bool in_thrashing;
62906027 1205
eb414681 1206 if (bit_nr == PG_locked &&
101c0bf6 1207 !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
aa1cf99b 1208 delayacct_thrashing_start(&in_thrashing);
eb414681 1209 psi_memstall_enter(&pflags);
b1d29ba8
JW
1210 thrashing = true;
1211 }
1212
62906027
NP
1213 init_wait(wait);
1214 wait->func = wake_page_function;
df4d4f12 1215 wait_page.folio = folio;
62906027
NP
1216 wait_page.bit_nr = bit_nr;
1217
5ef64cc8
LT
1218repeat:
1219 wait->flags = 0;
1220 if (behavior == EXCLUSIVE) {
1221 wait->flags = WQ_FLAG_EXCLUSIVE;
1222 if (--unfairness < 0)
1223 wait->flags |= WQ_FLAG_CUSTOM;
1224 }
1225
2a9127fc
LT
1226 /*
1227 * Do one last check whether we can get the
1228 * page bit synchronously.
1229 *
101c0bf6 1230 * Do the folio_set_waiters() marking before that
2a9127fc
LT
1231 * to let any waker we _just_ missed know they
1232 * need to wake us up (otherwise they'll never
1233 * even go to the slow case that looks at the
1234 * page queue), and add ourselves to the wait
1235 * queue if we need to sleep.
1236 *
1237 * This part needs to be done under the queue
1238 * lock to avoid races.
1239 */
1240 spin_lock_irq(&q->lock);
101c0bf6
MWO
1241 folio_set_waiters(folio);
1242 if (!folio_trylock_flag(folio, bit_nr, wait))
2a9127fc
LT
1243 __add_wait_queue_entry_tail(q, wait);
1244 spin_unlock_irq(&q->lock);
62906027 1245
2a9127fc
LT
1246 /*
1247 * From now on, all the logic will be based on
5ef64cc8
LT
1248 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1249 * see whether the page bit testing has already
1250 * been done by the wake function.
2a9127fc 1251 *
101c0bf6 1252 * We can drop our reference to the folio.
2a9127fc
LT
1253 */
1254 if (behavior == DROP)
101c0bf6 1255 folio_put(folio);
62906027 1256
5ef64cc8
LT
1257 /*
1258 * Note that until the "finish_wait()", or until
1259 * we see the WQ_FLAG_WOKEN flag, we need to
1260 * be very careful with the 'wait->flags', because
1261 * we may race with a waker that sets them.
1262 */
2a9127fc 1263 for (;;) {
5ef64cc8
LT
1264 unsigned int flags;
1265
62906027
NP
1266 set_current_state(state);
1267
5ef64cc8
LT
1268 /* Loop until we've been woken or interrupted */
1269 flags = smp_load_acquire(&wait->flags);
1270 if (!(flags & WQ_FLAG_WOKEN)) {
1271 if (signal_pending_state(state, current))
1272 break;
1273
1274 io_schedule();
1275 continue;
1276 }
1277
1278 /* If we were non-exclusive, we're done */
1279 if (behavior != EXCLUSIVE)
a8b169af 1280 break;
9a1ea439 1281
5ef64cc8
LT
1282 /* If the waker got the lock for us, we're done */
1283 if (flags & WQ_FLAG_DONE)
9a1ea439 1284 break;
2a9127fc 1285
5ef64cc8
LT
1286 /*
1287 * Otherwise, if we're getting the lock, we need to
1288 * try to get it ourselves.
1289 *
1290 * And if that fails, we'll have to retry this all.
1291 */
101c0bf6 1292 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
5ef64cc8
LT
1293 goto repeat;
1294
1295 wait->flags |= WQ_FLAG_DONE;
1296 break;
62906027
NP
1297 }
1298
5ef64cc8
LT
1299 /*
1300 * If a signal happened, this 'finish_wait()' may remove the last
101c0bf6 1301 * waiter from the wait-queues, but the folio waiters bit will remain
5ef64cc8
LT
1302 * set. That's ok. The next wakeup will take care of it, and trying
1303 * to do it here would be difficult and prone to races.
1304 */
62906027
NP
1305 finish_wait(q, wait);
1306
eb414681 1307 if (thrashing) {
aa1cf99b 1308 delayacct_thrashing_end(&in_thrashing);
eb414681
JW
1309 psi_memstall_leave(&pflags);
1310 }
b1d29ba8 1311
62906027 1312 /*
5ef64cc8
LT
1313 * NOTE! The wait->flags weren't stable until we've done the
1314 * 'finish_wait()', and we could have exited the loop above due
1315 * to a signal, and had a wakeup event happen after the signal
1316 * test but before the 'finish_wait()'.
1317 *
1318 * So only after the finish_wait() can we reliably determine
1319 * if we got woken up or not, so we can now figure out the final
1320 * return value based on that state without races.
1321 *
1322 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1323 * waiter, but an exclusive one requires WQ_FLAG_DONE.
62906027 1324 */
5ef64cc8
LT
1325 if (behavior == EXCLUSIVE)
1326 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
62906027 1327
2a9127fc 1328 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
62906027
NP
1329}
1330
ffa65753
AP
1331#ifdef CONFIG_MIGRATION
1332/**
1333 * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1334 * @entry: migration swap entry.
ffa65753
AP
1335 * @ptl: already locked ptl. This function will drop the lock.
1336 *
1337 * Wait for a migration entry referencing the given page to be removed. This is
1338 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except
1339 * this can be called without taking a reference on the page. Instead this
1340 * should be called while holding the ptl for the migration entry referencing
1341 * the page.
1342 *
0cb8fd4d 1343 * Returns after unlocking the ptl.
ffa65753
AP
1344 *
1345 * This follows the same logic as folio_wait_bit_common() so see the comments
1346 * there.
1347 */
0cb8fd4d
HD
1348void migration_entry_wait_on_locked(swp_entry_t entry, spinlock_t *ptl)
1349 __releases(ptl)
ffa65753
AP
1350{
1351 struct wait_page_queue wait_page;
1352 wait_queue_entry_t *wait = &wait_page.wait;
1353 bool thrashing = false;
ffa65753 1354 unsigned long pflags;
aa1cf99b 1355 bool in_thrashing;
ffa65753
AP
1356 wait_queue_head_t *q;
1357 struct folio *folio = page_folio(pfn_swap_entry_to_page(entry));
1358
1359 q = folio_waitqueue(folio);
1360 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
aa1cf99b 1361 delayacct_thrashing_start(&in_thrashing);
ffa65753
AP
1362 psi_memstall_enter(&pflags);
1363 thrashing = true;
1364 }
1365
1366 init_wait(wait);
1367 wait->func = wake_page_function;
1368 wait_page.folio = folio;
1369 wait_page.bit_nr = PG_locked;
1370 wait->flags = 0;
1371
1372 spin_lock_irq(&q->lock);
1373 folio_set_waiters(folio);
1374 if (!folio_trylock_flag(folio, PG_locked, wait))
1375 __add_wait_queue_entry_tail(q, wait);
1376 spin_unlock_irq(&q->lock);
1377
1378 /*
1379 * If a migration entry exists for the page the migration path must hold
1380 * a valid reference to the page, and it must take the ptl to remove the
1381 * migration entry. So the page is valid until the ptl is dropped.
1382 */
0cb8fd4d 1383 spin_unlock(ptl);
ffa65753
AP
1384
1385 for (;;) {
1386 unsigned int flags;
1387
1388 set_current_state(TASK_UNINTERRUPTIBLE);
1389
1390 /* Loop until we've been woken or interrupted */
1391 flags = smp_load_acquire(&wait->flags);
1392 if (!(flags & WQ_FLAG_WOKEN)) {
1393 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1394 break;
1395
1396 io_schedule();
1397 continue;
1398 }
1399 break;
1400 }
1401
1402 finish_wait(q, wait);
1403
1404 if (thrashing) {
aa1cf99b 1405 delayacct_thrashing_end(&in_thrashing);
ffa65753
AP
1406 psi_memstall_leave(&pflags);
1407 }
1408}
1409#endif
1410
101c0bf6 1411void folio_wait_bit(struct folio *folio, int bit_nr)
62906027 1412{
101c0bf6 1413 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
62906027 1414}
101c0bf6 1415EXPORT_SYMBOL(folio_wait_bit);
62906027 1416
101c0bf6 1417int folio_wait_bit_killable(struct folio *folio, int bit_nr)
62906027 1418{
101c0bf6 1419 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
cbbce822 1420}
101c0bf6 1421EXPORT_SYMBOL(folio_wait_bit_killable);
cbbce822 1422
9a1ea439 1423/**
9f2b04a2
MWO
1424 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1425 * @folio: The folio to wait for.
48054625 1426 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
9a1ea439 1427 *
9f2b04a2 1428 * The caller should hold a reference on @folio. They expect the page to
9a1ea439 1429 * become unlocked relatively soon, but do not wish to hold up migration
9f2b04a2 1430 * (for example) by holding the reference while waiting for the folio to
9a1ea439 1431 * come unlocked. After this function returns, the caller should not
9f2b04a2 1432 * dereference @folio.
48054625 1433 *
9f2b04a2 1434 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
9a1ea439 1435 */
c195c321 1436static int folio_put_wait_locked(struct folio *folio, int state)
9a1ea439 1437{
9f2b04a2 1438 return folio_wait_bit_common(folio, PG_locked, state, DROP);
9a1ea439
HD
1439}
1440
385e1ca5 1441/**
df4d4f12
MWO
1442 * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1443 * @folio: Folio defining the wait queue of interest
697f619f 1444 * @waiter: Waiter to add to the queue
385e1ca5 1445 *
df4d4f12 1446 * Add an arbitrary @waiter to the wait queue for the nominated @folio.
385e1ca5 1447 */
df4d4f12 1448void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
385e1ca5 1449{
df4d4f12 1450 wait_queue_head_t *q = folio_waitqueue(folio);
385e1ca5
DH
1451 unsigned long flags;
1452
1453 spin_lock_irqsave(&q->lock, flags);
9c3a815f 1454 __add_wait_queue_entry_tail(q, waiter);
df4d4f12 1455 folio_set_waiters(folio);
385e1ca5
DH
1456 spin_unlock_irqrestore(&q->lock, flags);
1457}
df4d4f12 1458EXPORT_SYMBOL_GPL(folio_add_wait_queue);
385e1ca5 1459
1da177e4 1460/**
4e136428
MWO
1461 * folio_unlock - Unlock a locked folio.
1462 * @folio: The folio.
1463 *
1464 * Unlocks the folio and wakes up any thread sleeping on the page lock.
1465 *
1466 * Context: May be called from interrupt or process context. May not be
1467 * called from NMI context.
1da177e4 1468 */
4e136428 1469void folio_unlock(struct folio *folio)
1da177e4 1470{
4e136428 1471 /* Bit 7 allows x86 to check the byte's sign bit */
b91e1302 1472 BUILD_BUG_ON(PG_waiters != 7);
4e136428
MWO
1473 BUILD_BUG_ON(PG_locked > 7);
1474 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
0410cd84 1475 if (folio_xor_flags_has_waiters(folio, 1 << PG_locked))
6974d7c9 1476 folio_wake_bit(folio, PG_locked);
1da177e4 1477}
4e136428 1478EXPORT_SYMBOL(folio_unlock);
1da177e4 1479
0b237047
MWO
1480/**
1481 * folio_end_read - End read on a folio.
1482 * @folio: The folio.
1483 * @success: True if all reads completed successfully.
1484 *
1485 * When all reads against a folio have completed, filesystems should
1486 * call this function to let the pagecache know that no more reads
1487 * are outstanding. This will unlock the folio and wake up any thread
1488 * sleeping on the lock. The folio will also be marked uptodate if all
1489 * reads succeeded.
1490 *
1491 * Context: May be called from interrupt or process context. May not be
1492 * called from NMI context.
1493 */
1494void folio_end_read(struct folio *folio, bool success)
1495{
0410cd84
MWO
1496 unsigned long mask = 1 << PG_locked;
1497
1498 /* Must be in bottom byte for x86 to work */
1499 BUILD_BUG_ON(PG_uptodate > 7);
1500 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1501 VM_BUG_ON_FOLIO(folio_test_uptodate(folio), folio);
1502
0b237047 1503 if (likely(success))
0410cd84
MWO
1504 mask |= 1 << PG_uptodate;
1505 if (folio_xor_flags_has_waiters(folio, mask))
1506 folio_wake_bit(folio, PG_locked);
0b237047
MWO
1507}
1508EXPORT_SYMBOL(folio_end_read);
1509
73e10ded 1510/**
b47393f8
MWO
1511 * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1512 * @folio: The folio.
73e10ded 1513 *
b47393f8
MWO
1514 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1515 * it. The folio reference held for PG_private_2 being set is released.
73e10ded 1516 *
b47393f8
MWO
1517 * This is, for example, used when a netfs folio is being written to a local
1518 * disk cache, thereby allowing writes to the cache for the same folio to be
73e10ded
DH
1519 * serialised.
1520 */
b47393f8 1521void folio_end_private_2(struct folio *folio)
73e10ded 1522{
6974d7c9
MWO
1523 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1524 clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1525 folio_wake_bit(folio, PG_private_2);
1526 folio_put(folio);
73e10ded 1527}
b47393f8 1528EXPORT_SYMBOL(folio_end_private_2);
73e10ded
DH
1529
1530/**
b47393f8
MWO
1531 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1532 * @folio: The folio to wait on.
73e10ded 1533 *
b47393f8 1534 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio.
73e10ded 1535 */
b47393f8 1536void folio_wait_private_2(struct folio *folio)
73e10ded 1537{
101c0bf6
MWO
1538 while (folio_test_private_2(folio))
1539 folio_wait_bit(folio, PG_private_2);
73e10ded 1540}
b47393f8 1541EXPORT_SYMBOL(folio_wait_private_2);
73e10ded
DH
1542
1543/**
b47393f8
MWO
1544 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1545 * @folio: The folio to wait on.
73e10ded 1546 *
b47393f8 1547 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a
73e10ded
DH
1548 * fatal signal is received by the calling task.
1549 *
1550 * Return:
1551 * - 0 if successful.
1552 * - -EINTR if a fatal signal was encountered.
1553 */
b47393f8 1554int folio_wait_private_2_killable(struct folio *folio)
73e10ded
DH
1555{
1556 int ret = 0;
1557
101c0bf6
MWO
1558 while (folio_test_private_2(folio)) {
1559 ret = folio_wait_bit_killable(folio, PG_private_2);
73e10ded
DH
1560 if (ret < 0)
1561 break;
1562 }
1563
1564 return ret;
1565}
b47393f8 1566EXPORT_SYMBOL(folio_wait_private_2_killable);
73e10ded 1567
485bb99b 1568/**
4268b480
MWO
1569 * folio_end_writeback - End writeback against a folio.
1570 * @folio: The folio.
7d0795d0
MWO
1571 *
1572 * The folio must actually be under writeback.
1573 *
1574 * Context: May be called from process or interrupt context.
1da177e4 1575 */
4268b480 1576void folio_end_writeback(struct folio *folio)
1da177e4 1577{
7d0795d0
MWO
1578 VM_BUG_ON_FOLIO(!folio_test_writeback(folio), folio);
1579
888cf2db 1580 /*
4268b480
MWO
1581 * folio_test_clear_reclaim() could be used here but it is an
1582 * atomic operation and overkill in this particular case. Failing
1583 * to shuffle a folio marked for immediate reclaim is too mild
1584 * a gain to justify taking an atomic operation penalty at the
1585 * end of every folio writeback.
888cf2db 1586 */
4268b480
MWO
1587 if (folio_test_reclaim(folio)) {
1588 folio_clear_reclaim(folio);
575ced1c 1589 folio_rotate_reclaimable(folio);
888cf2db 1590 }
ac6aadb2 1591
073861ed 1592 /*
4268b480 1593 * Writeback does not hold a folio reference of its own, relying
073861ed 1594 * on truncation to wait for the clearing of PG_writeback.
4268b480 1595 * But here we must make sure that the folio is not freed and
2580d554 1596 * reused before the folio_wake_bit().
073861ed 1597 */
4268b480 1598 folio_get(folio);
2580d554
MWO
1599 if (__folio_end_writeback(folio))
1600 folio_wake_bit(folio, PG_writeback);
512b7931 1601 acct_reclaim_writeback(folio);
4268b480 1602 folio_put(folio);
1da177e4 1603}
4268b480 1604EXPORT_SYMBOL(folio_end_writeback);
1da177e4 1605
485bb99b 1606/**
7c23c782
MWO
1607 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1608 * @folio: The folio to lock
1da177e4 1609 */
7c23c782 1610void __folio_lock(struct folio *folio)
1da177e4 1611{
101c0bf6 1612 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
9a1ea439 1613 EXCLUSIVE);
1da177e4 1614}
7c23c782 1615EXPORT_SYMBOL(__folio_lock);
1da177e4 1616
af7f29d9 1617int __folio_lock_killable(struct folio *folio)
2687a356 1618{
101c0bf6 1619 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
9a1ea439 1620 EXCLUSIVE);
2687a356 1621}
af7f29d9 1622EXPORT_SYMBOL_GPL(__folio_lock_killable);
2687a356 1623
ffdc8dab 1624static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
dd3e6d50 1625{
df4d4f12 1626 struct wait_queue_head *q = folio_waitqueue(folio);
a1748f85 1627 int ret;
f32b5dd7 1628
df4d4f12 1629 wait->folio = folio;
f32b5dd7
MWO
1630 wait->bit_nr = PG_locked;
1631
1632 spin_lock_irq(&q->lock);
1633 __add_wait_queue_entry_tail(q, &wait->wait);
ffdc8dab
MWO
1634 folio_set_waiters(folio);
1635 ret = !folio_trylock(folio);
f32b5dd7
MWO
1636 /*
1637 * If we were successful now, we know we're still on the
1638 * waitqueue as we're still under the lock. This means it's
1639 * safe to remove and return success, we know the callback
1640 * isn't going to trigger.
1641 */
1642 if (!ret)
1643 __remove_wait_queue(q, &wait->wait);
1644 else
1645 ret = -EIOCBQUEUED;
1646 spin_unlock_irq(&q->lock);
1647 return ret;
dd3e6d50
JA
1648}
1649
9a95f3cf
PC
1650/*
1651 * Return values:
fdc724d6
SB
1652 * 0 - folio is locked.
1653 * non-zero - folio is not locked.
1235ccd0
SB
1654 * mmap_lock or per-VMA lock has been released (mmap_read_unlock() or
1655 * vma_end_read()), unless flags had both FAULT_FLAG_ALLOW_RETRY and
1656 * FAULT_FLAG_RETRY_NOWAIT set, in which case the lock is still held.
9a95f3cf 1657 *
fdc724d6 1658 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 0
1235ccd0 1659 * with the folio locked and the mmap_lock/per-VMA lock is left unperturbed.
9a95f3cf 1660 */
fdc724d6 1661vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf)
d065bd81 1662{
fdc724d6
SB
1663 unsigned int flags = vmf->flags;
1664
4064b982 1665 if (fault_flag_allow_retry_first(flags)) {
37b23e05 1666 /*
1235ccd0
SB
1667 * CAUTION! In this case, mmap_lock/per-VMA lock is not
1668 * released even though returning VM_FAULT_RETRY.
37b23e05
KM
1669 */
1670 if (flags & FAULT_FLAG_RETRY_NOWAIT)
fdc724d6 1671 return VM_FAULT_RETRY;
37b23e05 1672
1235ccd0 1673 release_fault_lock(vmf);
37b23e05 1674 if (flags & FAULT_FLAG_KILLABLE)
6baa8d60 1675 folio_wait_locked_killable(folio);
37b23e05 1676 else
6baa8d60 1677 folio_wait_locked(folio);
fdc724d6 1678 return VM_FAULT_RETRY;
800bca7c
HL
1679 }
1680 if (flags & FAULT_FLAG_KILLABLE) {
9138e47e 1681 bool ret;
37b23e05 1682
af7f29d9 1683 ret = __folio_lock_killable(folio);
800bca7c 1684 if (ret) {
1235ccd0 1685 release_fault_lock(vmf);
fdc724d6 1686 return VM_FAULT_RETRY;
800bca7c
HL
1687 }
1688 } else {
af7f29d9 1689 __folio_lock(folio);
d065bd81 1690 }
800bca7c 1691
fdc724d6 1692 return 0;
d065bd81
ML
1693}
1694
e7b563bb 1695/**
0d3f9296
MW
1696 * page_cache_next_miss() - Find the next gap in the page cache.
1697 * @mapping: Mapping.
1698 * @index: Index.
1699 * @max_scan: Maximum range to search.
e7b563bb 1700 *
0d3f9296
MW
1701 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1702 * gap with the lowest index.
e7b563bb 1703 *
0d3f9296
MW
1704 * This function may be called under the rcu_read_lock. However, this will
1705 * not atomically search a snapshot of the cache at a single point in time.
1706 * For example, if a gap is created at index 5, then subsequently a gap is
1707 * created at index 10, page_cache_next_miss covering both indices may
1708 * return 10 if called under the rcu_read_lock.
e7b563bb 1709 *
0d3f9296
MW
1710 * Return: The index of the gap if found, otherwise an index outside the
1711 * range specified (in which case 'return - index >= max_scan' will be true).
16f8eb3e 1712 * In the rare case of index wrap-around, 0 will be returned.
e7b563bb 1713 */
0d3f9296 1714pgoff_t page_cache_next_miss(struct address_space *mapping,
e7b563bb
JW
1715 pgoff_t index, unsigned long max_scan)
1716{
0d3f9296 1717 XA_STATE(xas, &mapping->i_pages, index);
e7b563bb 1718
0d3f9296
MW
1719 while (max_scan--) {
1720 void *entry = xas_next(&xas);
1721 if (!entry || xa_is_value(entry))
16f8eb3e
MK
1722 break;
1723 if (xas.xa_index == 0)
1724 break;
e7b563bb
JW
1725 }
1726
16f8eb3e 1727 return xas.xa_index;
e7b563bb 1728}
0d3f9296 1729EXPORT_SYMBOL(page_cache_next_miss);
e7b563bb
JW
1730
1731/**
2346a560 1732 * page_cache_prev_miss() - Find the previous gap in the page cache.
0d3f9296
MW
1733 * @mapping: Mapping.
1734 * @index: Index.
1735 * @max_scan: Maximum range to search.
e7b563bb 1736 *
0d3f9296
MW
1737 * Search the range [max(index - max_scan + 1, 0), index] for the
1738 * gap with the highest index.
e7b563bb 1739 *
0d3f9296
MW
1740 * This function may be called under the rcu_read_lock. However, this will
1741 * not atomically search a snapshot of the cache at a single point in time.
1742 * For example, if a gap is created at index 10, then subsequently a gap is
1743 * created at index 5, page_cache_prev_miss() covering both indices may
1744 * return 5 if called under the rcu_read_lock.
e7b563bb 1745 *
0d3f9296
MW
1746 * Return: The index of the gap if found, otherwise an index outside the
1747 * range specified (in which case 'index - return >= max_scan' will be true).
16f8eb3e 1748 * In the rare case of wrap-around, ULONG_MAX will be returned.
e7b563bb 1749 */
0d3f9296 1750pgoff_t page_cache_prev_miss(struct address_space *mapping,
e7b563bb
JW
1751 pgoff_t index, unsigned long max_scan)
1752{
0d3f9296 1753 XA_STATE(xas, &mapping->i_pages, index);
e7b563bb 1754
0d3f9296
MW
1755 while (max_scan--) {
1756 void *entry = xas_prev(&xas);
1757 if (!entry || xa_is_value(entry))
16f8eb3e
MK
1758 break;
1759 if (xas.xa_index == ULONG_MAX)
1760 break;
e7b563bb
JW
1761 }
1762
16f8eb3e 1763 return xas.xa_index;
e7b563bb 1764}
0d3f9296 1765EXPORT_SYMBOL(page_cache_prev_miss);
e7b563bb 1766
020853b6
MWO
1767/*
1768 * Lockless page cache protocol:
1769 * On the lookup side:
1770 * 1. Load the folio from i_pages
1771 * 2. Increment the refcount if it's not zero
1772 * 3. If the folio is not found by xas_reload(), put the refcount and retry
1773 *
1774 * On the removal side:
1775 * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1776 * B. Remove the page from i_pages
1777 * C. Return the page to the page allocator
1778 *
1779 * This means that any page may have its reference count temporarily
1780 * increased by a speculative page cache (or fast GUP) lookup as it can
1781 * be allocated by another user before the RCU grace period expires.
1782 * Because the refcount temporarily acquired here may end up being the
1783 * last refcount on the page, any page allocation must be freeable by
1784 * folio_put().
1785 */
1786
44835d20 1787/*
263e721e 1788 * filemap_get_entry - Get a page cache entry.
485bb99b 1789 * @mapping: the address_space to search
a6de4b48 1790 * @index: The page cache index.
0cd6144a 1791 *
bca65eea
MWO
1792 * Looks up the page cache entry at @mapping & @index. If it is a folio,
1793 * it is returned with an increased refcount. If it is a shadow entry
1794 * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1795 * it is returned without further action.
485bb99b 1796 *
bca65eea 1797 * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1da177e4 1798 */
263e721e 1799void *filemap_get_entry(struct address_space *mapping, pgoff_t index)
1da177e4 1800{
a6de4b48 1801 XA_STATE(xas, &mapping->i_pages, index);
bca65eea 1802 struct folio *folio;
1da177e4 1803
a60637c8
NP
1804 rcu_read_lock();
1805repeat:
4c7472c0 1806 xas_reset(&xas);
bca65eea
MWO
1807 folio = xas_load(&xas);
1808 if (xas_retry(&xas, folio))
4c7472c0
MW
1809 goto repeat;
1810 /*
1811 * A shadow entry of a recently evicted page, or a swap entry from
1812 * shmem/tmpfs. Return it without attempting to raise page count.
1813 */
bca65eea 1814 if (!folio || xa_is_value(folio))
4c7472c0 1815 goto out;
83929372 1816
bca65eea 1817 if (!folio_try_get_rcu(folio))
4c7472c0 1818 goto repeat;
83929372 1819
bca65eea
MWO
1820 if (unlikely(folio != xas_reload(&xas))) {
1821 folio_put(folio);
4c7472c0 1822 goto repeat;
a60637c8 1823 }
27d20fdd 1824out:
a60637c8
NP
1825 rcu_read_unlock();
1826
bca65eea 1827 return folio;
1da177e4 1828}
1da177e4 1829
0cd6144a 1830/**
3f0c6a07 1831 * __filemap_get_folio - Find and get a reference to a folio.
2294b32e
MWO
1832 * @mapping: The address_space to search.
1833 * @index: The page index.
3f0c6a07
MWO
1834 * @fgp_flags: %FGP flags modify how the folio is returned.
1835 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1da177e4 1836 *
2294b32e 1837 * Looks up the page cache entry at @mapping & @index.
0cd6144a 1838 *
2294b32e
MWO
1839 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1840 * if the %GFP flags specified for %FGP_CREAT are atomic.
1da177e4 1841 *
ffc143db 1842 * If this function returns a folio, it is returned with an increased refcount.
a862f68a 1843 *
66dabbb6 1844 * Return: The found folio or an ERR_PTR() otherwise.
1da177e4 1845 */
3f0c6a07 1846struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
ffc143db 1847 fgf_t fgp_flags, gfp_t gfp)
1da177e4 1848{
3f0c6a07 1849 struct folio *folio;
2457aec6 1850
1da177e4 1851repeat:
263e721e 1852 folio = filemap_get_entry(mapping, index);
48c9d113 1853 if (xa_is_value(folio))
3f0c6a07 1854 folio = NULL;
3f0c6a07 1855 if (!folio)
2457aec6
MG
1856 goto no_page;
1857
1858 if (fgp_flags & FGP_LOCK) {
1859 if (fgp_flags & FGP_NOWAIT) {
3f0c6a07
MWO
1860 if (!folio_trylock(folio)) {
1861 folio_put(folio);
66dabbb6 1862 return ERR_PTR(-EAGAIN);
2457aec6
MG
1863 }
1864 } else {
3f0c6a07 1865 folio_lock(folio);
2457aec6
MG
1866 }
1867
1868 /* Has the page been truncated? */
3f0c6a07
MWO
1869 if (unlikely(folio->mapping != mapping)) {
1870 folio_unlock(folio);
1871 folio_put(folio);
2457aec6
MG
1872 goto repeat;
1873 }
3f0c6a07 1874 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
2457aec6
MG
1875 }
1876
c16eb000 1877 if (fgp_flags & FGP_ACCESSED)
3f0c6a07 1878 folio_mark_accessed(folio);
b9306a79
YS
1879 else if (fgp_flags & FGP_WRITE) {
1880 /* Clear idle flag for buffer write */
3f0c6a07
MWO
1881 if (folio_test_idle(folio))
1882 folio_clear_idle(folio);
b9306a79 1883 }
2457aec6 1884
b27652d9
MWO
1885 if (fgp_flags & FGP_STABLE)
1886 folio_wait_stable(folio);
2457aec6 1887no_page:
3f0c6a07 1888 if (!folio && (fgp_flags & FGP_CREAT)) {
4f661701 1889 unsigned order = FGF_GET_ORDER(fgp_flags);
2457aec6 1890 int err;
4f661701 1891
f56753ac 1892 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
3f0c6a07 1893 gfp |= __GFP_WRITE;
45f87de5 1894 if (fgp_flags & FGP_NOFS)
3f0c6a07 1895 gfp &= ~__GFP_FS;
0dd316ba
JA
1896 if (fgp_flags & FGP_NOWAIT) {
1897 gfp &= ~GFP_KERNEL;
1898 gfp |= GFP_NOWAIT | __GFP_NOWARN;
1899 }
a75d4c33 1900 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
2457aec6
MG
1901 fgp_flags |= FGP_LOCK;
1902
4f661701
MWO
1903 if (!mapping_large_folio_support(mapping))
1904 order = 0;
1905 if (order > MAX_PAGECACHE_ORDER)
1906 order = MAX_PAGECACHE_ORDER;
1907 /* If we're not aligned, allocate a smaller folio */
1908 if (index & ((1UL << order) - 1))
1909 order = __ffs(index);
2457aec6 1910
4f661701
MWO
1911 do {
1912 gfp_t alloc_gfp = gfp;
1913
1914 err = -ENOMEM;
1915 if (order == 1)
1916 order = 0;
1917 if (order > 0)
1918 alloc_gfp |= __GFP_NORETRY | __GFP_NOWARN;
1919 folio = filemap_alloc_folio(alloc_gfp, order);
1920 if (!folio)
1921 continue;
1922
1923 /* Init accessed so avoid atomic mark_page_accessed later */
1924 if (fgp_flags & FGP_ACCESSED)
1925 __folio_set_referenced(folio);
1926
1927 err = filemap_add_folio(mapping, folio, index, gfp);
1928 if (!err)
1929 break;
3f0c6a07
MWO
1930 folio_put(folio);
1931 folio = NULL;
4f661701 1932 } while (order-- > 0);
a75d4c33 1933
4f661701
MWO
1934 if (err == -EEXIST)
1935 goto repeat;
1936 if (err)
1937 return ERR_PTR(err);
a75d4c33 1938 /*
3f0c6a07
MWO
1939 * filemap_add_folio locks the page, and for mmap
1940 * we expect an unlocked page.
a75d4c33 1941 */
3f0c6a07
MWO
1942 if (folio && (fgp_flags & FGP_FOR_MMAP))
1943 folio_unlock(folio);
1da177e4 1944 }
2457aec6 1945
66dabbb6
CH
1946 if (!folio)
1947 return ERR_PTR(-ENOENT);
3f0c6a07 1948 return folio;
1da177e4 1949}
3f0c6a07 1950EXPORT_SYMBOL(__filemap_get_folio);
1da177e4 1951
f5e6429a 1952static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
c7bad633
MWO
1953 xa_mark_t mark)
1954{
f5e6429a 1955 struct folio *folio;
c7bad633
MWO
1956
1957retry:
1958 if (mark == XA_PRESENT)
f5e6429a 1959 folio = xas_find(xas, max);
c7bad633 1960 else
f5e6429a 1961 folio = xas_find_marked(xas, max, mark);
c7bad633 1962
f5e6429a 1963 if (xas_retry(xas, folio))
c7bad633
MWO
1964 goto retry;
1965 /*
1966 * A shadow entry of a recently evicted page, a swap
1967 * entry from shmem/tmpfs or a DAX entry. Return it
1968 * without attempting to raise page count.
1969 */
f5e6429a
MWO
1970 if (!folio || xa_is_value(folio))
1971 return folio;
c7bad633 1972
f5e6429a 1973 if (!folio_try_get_rcu(folio))
c7bad633
MWO
1974 goto reset;
1975
f5e6429a
MWO
1976 if (unlikely(folio != xas_reload(xas))) {
1977 folio_put(folio);
c7bad633
MWO
1978 goto reset;
1979 }
1980
f5e6429a 1981 return folio;
c7bad633
MWO
1982reset:
1983 xas_reset(xas);
1984 goto retry;
1985}
1986
0cd6144a
JW
1987/**
1988 * find_get_entries - gang pagecache lookup
1989 * @mapping: The address_space to search
1990 * @start: The starting page cache index
ca122fe4 1991 * @end: The final page index (inclusive).
0e499ed3 1992 * @fbatch: Where the resulting entries are placed.
0cd6144a
JW
1993 * @indices: The cache indices corresponding to the entries in @entries
1994 *
cf2039af 1995 * find_get_entries() will search for and return a batch of entries in
0e499ed3
MWO
1996 * the mapping. The entries are placed in @fbatch. find_get_entries()
1997 * takes a reference on any actual folios it returns.
0cd6144a 1998 *
0e499ed3
MWO
1999 * The entries have ascending indexes. The indices may not be consecutive
2000 * due to not-present entries or large folios.
0cd6144a 2001 *
0e499ed3 2002 * Any shadow entries of evicted folios, or swap entries from
139b6a6f 2003 * shmem/tmpfs, are included in the returned array.
0cd6144a 2004 *
0e499ed3 2005 * Return: The number of entries which were found.
0cd6144a 2006 */
9fb6beea 2007unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
0e499ed3 2008 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
0cd6144a 2009{
9fb6beea 2010 XA_STATE(xas, &mapping->i_pages, *start);
f5e6429a 2011 struct folio *folio;
0cd6144a
JW
2012
2013 rcu_read_lock();
f5e6429a 2014 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
0e499ed3
MWO
2015 indices[fbatch->nr] = xas.xa_index;
2016 if (!folio_batch_add(fbatch, folio))
0cd6144a
JW
2017 break;
2018 }
2019 rcu_read_unlock();
cf2039af 2020
9fb6beea
VMO
2021 if (folio_batch_count(fbatch)) {
2022 unsigned long nr = 1;
2023 int idx = folio_batch_count(fbatch) - 1;
2024
2025 folio = fbatch->folios[idx];
a08c7193 2026 if (!xa_is_value(folio))
9fb6beea
VMO
2027 nr = folio_nr_pages(folio);
2028 *start = indices[idx] + nr;
2029 }
0e499ed3 2030 return folio_batch_count(fbatch);
0cd6144a
JW
2031}
2032
5c211ba2
MWO
2033/**
2034 * find_lock_entries - Find a batch of pagecache entries.
2035 * @mapping: The address_space to search.
2036 * @start: The starting page cache index.
2037 * @end: The final page index (inclusive).
51dcbdac
MWO
2038 * @fbatch: Where the resulting entries are placed.
2039 * @indices: The cache indices of the entries in @fbatch.
5c211ba2
MWO
2040 *
2041 * find_lock_entries() will return a batch of entries from @mapping.
f5e6429a
MWO
2042 * Swap, shadow and DAX entries are included. Folios are returned
2043 * locked and with an incremented refcount. Folios which are locked
2044 * by somebody else or under writeback are skipped. Folios which are
2045 * partially outside the range are not returned.
5c211ba2
MWO
2046 *
2047 * The entries have ascending indexes. The indices may not be consecutive
f5e6429a
MWO
2048 * due to not-present entries, large folios, folios which could not be
2049 * locked or folios under writeback.
5c211ba2
MWO
2050 *
2051 * Return: The number of entries which were found.
2052 */
3392ca12 2053unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
51dcbdac 2054 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
5c211ba2 2055{
3392ca12 2056 XA_STATE(xas, &mapping->i_pages, *start);
f5e6429a 2057 struct folio *folio;
5c211ba2
MWO
2058
2059 rcu_read_lock();
f5e6429a
MWO
2060 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2061 if (!xa_is_value(folio)) {
3392ca12 2062 if (folio->index < *start)
5c211ba2 2063 goto put;
87b11f86 2064 if (folio_next_index(folio) - 1 > end)
5c211ba2 2065 goto put;
f5e6429a 2066 if (!folio_trylock(folio))
5c211ba2 2067 goto put;
f5e6429a
MWO
2068 if (folio->mapping != mapping ||
2069 folio_test_writeback(folio))
5c211ba2 2070 goto unlock;
f5e6429a
MWO
2071 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2072 folio);
5c211ba2 2073 }
51dcbdac
MWO
2074 indices[fbatch->nr] = xas.xa_index;
2075 if (!folio_batch_add(fbatch, folio))
5c211ba2 2076 break;
6b24ca4a 2077 continue;
5c211ba2 2078unlock:
f5e6429a 2079 folio_unlock(folio);
5c211ba2 2080put:
f5e6429a 2081 folio_put(folio);
5c211ba2
MWO
2082 }
2083 rcu_read_unlock();
2084
3392ca12
VMO
2085 if (folio_batch_count(fbatch)) {
2086 unsigned long nr = 1;
2087 int idx = folio_batch_count(fbatch) - 1;
2088
2089 folio = fbatch->folios[idx];
a08c7193 2090 if (!xa_is_value(folio))
3392ca12
VMO
2091 nr = folio_nr_pages(folio);
2092 *start = indices[idx] + nr;
2093 }
51dcbdac 2094 return folio_batch_count(fbatch);
5c211ba2
MWO
2095}
2096
1da177e4 2097/**
be0ced5e 2098 * filemap_get_folios - Get a batch of folios
1da177e4
LT
2099 * @mapping: The address_space to search
2100 * @start: The starting page index
b947cee4 2101 * @end: The final page index (inclusive)
be0ced5e 2102 * @fbatch: The batch to fill.
1da177e4 2103 *
be0ced5e
MWO
2104 * Search for and return a batch of folios in the mapping starting at
2105 * index @start and up to index @end (inclusive). The folios are returned
2106 * in @fbatch with an elevated reference count.
1da177e4 2107 *
be0ced5e
MWO
2108 * Return: The number of folios which were found.
2109 * We also update @start to index the next folio for the traversal.
1da177e4 2110 */
be0ced5e
MWO
2111unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
2112 pgoff_t end, struct folio_batch *fbatch)
1da177e4 2113{
bafd7e9d 2114 return filemap_get_folios_tag(mapping, start, end, XA_PRESENT, fbatch);
be0ced5e
MWO
2115}
2116EXPORT_SYMBOL(filemap_get_folios);
2117
ebf43500 2118/**
35b47146 2119 * filemap_get_folios_contig - Get a batch of contiguous folios
ebf43500 2120 * @mapping: The address_space to search
35b47146
VMO
2121 * @start: The starting page index
2122 * @end: The final page index (inclusive)
2123 * @fbatch: The batch to fill
ebf43500 2124 *
35b47146
VMO
2125 * filemap_get_folios_contig() works exactly like filemap_get_folios(),
2126 * except the returned folios are guaranteed to be contiguous. This may
2127 * not return all contiguous folios if the batch gets filled up.
ebf43500 2128 *
35b47146
VMO
2129 * Return: The number of folios found.
2130 * Also update @start to be positioned for traversal of the next folio.
ebf43500 2131 */
35b47146
VMO
2132
2133unsigned filemap_get_folios_contig(struct address_space *mapping,
2134 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch)
ebf43500 2135{
35b47146
VMO
2136 XA_STATE(xas, &mapping->i_pages, *start);
2137 unsigned long nr;
e1c37722 2138 struct folio *folio;
a60637c8
NP
2139
2140 rcu_read_lock();
35b47146
VMO
2141
2142 for (folio = xas_load(&xas); folio && xas.xa_index <= end;
2143 folio = xas_next(&xas)) {
e1c37722 2144 if (xas_retry(&xas, folio))
3ece58a2
MW
2145 continue;
2146 /*
2147 * If the entry has been swapped out, we can stop looking.
2148 * No current caller is looking for DAX entries.
2149 */
e1c37722 2150 if (xa_is_value(folio))
35b47146 2151 goto update_start;
ebf43500 2152
e1c37722 2153 if (!folio_try_get_rcu(folio))
3ece58a2 2154 goto retry;
83929372 2155
e1c37722 2156 if (unlikely(folio != xas_reload(&xas)))
35b47146 2157 goto put_folio;
a60637c8 2158
35b47146
VMO
2159 if (!folio_batch_add(fbatch, folio)) {
2160 nr = folio_nr_pages(folio);
35b47146
VMO
2161 *start = folio->index + nr;
2162 goto out;
6b24ca4a 2163 }
3ece58a2 2164 continue;
35b47146 2165put_folio:
e1c37722 2166 folio_put(folio);
35b47146 2167
3ece58a2
MW
2168retry:
2169 xas_reset(&xas);
ebf43500 2170 }
35b47146
VMO
2171
2172update_start:
2173 nr = folio_batch_count(fbatch);
2174
2175 if (nr) {
2176 folio = fbatch->folios[nr - 1];
8ff25266 2177 *start = folio_next_index(folio);
35b47146
VMO
2178 }
2179out:
a60637c8 2180 rcu_read_unlock();
35b47146 2181 return folio_batch_count(fbatch);
ebf43500 2182}
35b47146 2183EXPORT_SYMBOL(filemap_get_folios_contig);
ebf43500 2184
485bb99b 2185/**
247f9e1f
VMO
2186 * filemap_get_folios_tag - Get a batch of folios matching @tag
2187 * @mapping: The address_space to search
2188 * @start: The starting page index
2189 * @end: The final page index (inclusive)
2190 * @tag: The tag index
2191 * @fbatch: The batch to fill
485bb99b 2192 *
bafd7e9d
PR
2193 * The first folio may start before @start; if it does, it will contain
2194 * @start. The final folio may extend beyond @end; if it does, it will
2195 * contain @end. The folios have ascending indices. There may be gaps
2196 * between the folios if there are indices which have no folio in the
2197 * page cache. If folios are added to or removed from the page cache
2198 * while this is running, they may or may not be found by this call.
2199 * Only returns folios that are tagged with @tag.
a862f68a 2200 *
247f9e1f
VMO
2201 * Return: The number of folios found.
2202 * Also update @start to index the next folio for traversal.
1da177e4 2203 */
247f9e1f
VMO
2204unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
2205 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch)
1da177e4 2206{
247f9e1f 2207 XA_STATE(xas, &mapping->i_pages, *start);
f5e6429a 2208 struct folio *folio;
a60637c8
NP
2209
2210 rcu_read_lock();
247f9e1f 2211 while ((folio = find_get_entry(&xas, end, tag)) != NULL) {
a6906972
MW
2212 /*
2213 * Shadow entries should never be tagged, but this iteration
2214 * is lockless so there is a window for page reclaim to evict
247f9e1f 2215 * a page we saw tagged. Skip over it.
a6906972 2216 */
f5e6429a 2217 if (xa_is_value(folio))
139b6a6f 2218 continue;
247f9e1f
VMO
2219 if (!folio_batch_add(fbatch, folio)) {
2220 unsigned long nr = folio_nr_pages(folio);
247f9e1f 2221 *start = folio->index + nr;
72b045ae
JK
2222 goto out;
2223 }
a60637c8 2224 }
72b045ae 2225 /*
247f9e1f
VMO
2226 * We come here when there is no page beyond @end. We take care to not
2227 * overflow the index @start as it confuses some of the callers. This
2228 * breaks the iteration when there is a page at index -1 but that is
2229 * already broke anyway.
72b045ae
JK
2230 */
2231 if (end == (pgoff_t)-1)
247f9e1f 2232 *start = (pgoff_t)-1;
72b045ae 2233 else
247f9e1f 2234 *start = end + 1;
72b045ae 2235out:
a60637c8 2236 rcu_read_unlock();
1da177e4 2237
247f9e1f 2238 return folio_batch_count(fbatch);
1da177e4 2239}
247f9e1f 2240EXPORT_SYMBOL(filemap_get_folios_tag);
1da177e4 2241
76d42bd9
WF
2242/*
2243 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2244 * a _large_ part of the i/o request. Imagine the worst scenario:
2245 *
2246 * ---R__________________________________________B__________
2247 * ^ reading here ^ bad block(assume 4k)
2248 *
2249 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2250 * => failing the whole request => read(R) => read(R+1) =>
2251 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2252 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2253 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2254 *
2255 * It is going insane. Fix it by quickly scaling down the readahead size.
2256 */
0f8e2db4 2257static void shrink_readahead_size_eio(struct file_ra_state *ra)
76d42bd9 2258{
76d42bd9 2259 ra->ra_pages /= 4;
76d42bd9
WF
2260}
2261
cbd59c48 2262/*
25d6a23e 2263 * filemap_get_read_batch - Get a batch of folios for read
cbd59c48 2264 *
25d6a23e
MWO
2265 * Get a batch of folios which represent a contiguous range of bytes in
2266 * the file. No exceptional entries will be returned. If @index is in
2267 * the middle of a folio, the entire folio will be returned. The last
2268 * folio in the batch may have the readahead flag set or the uptodate flag
2269 * clear so that the caller can take the appropriate action.
cbd59c48
MWO
2270 */
2271static void filemap_get_read_batch(struct address_space *mapping,
25d6a23e 2272 pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
cbd59c48
MWO
2273{
2274 XA_STATE(xas, &mapping->i_pages, index);
bdb72932 2275 struct folio *folio;
cbd59c48
MWO
2276
2277 rcu_read_lock();
bdb72932
MWO
2278 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2279 if (xas_retry(&xas, folio))
cbd59c48 2280 continue;
bdb72932 2281 if (xas.xa_index > max || xa_is_value(folio))
cbd59c48 2282 break;
cb995f4e
MWO
2283 if (xa_is_sibling(folio))
2284 break;
bdb72932 2285 if (!folio_try_get_rcu(folio))
cbd59c48
MWO
2286 goto retry;
2287
bdb72932 2288 if (unlikely(folio != xas_reload(&xas)))
25d6a23e 2289 goto put_folio;
cbd59c48 2290
25d6a23e 2291 if (!folio_batch_add(fbatch, folio))
cbd59c48 2292 break;
bdb72932 2293 if (!folio_test_uptodate(folio))
cbd59c48 2294 break;
bdb72932 2295 if (folio_test_readahead(folio))
cbd59c48 2296 break;
87b11f86 2297 xas_advance(&xas, folio_next_index(folio) - 1);
cbd59c48 2298 continue;
25d6a23e 2299put_folio:
bdb72932 2300 folio_put(folio);
cbd59c48
MWO
2301retry:
2302 xas_reset(&xas);
2303 }
2304 rcu_read_unlock();
2305}
2306
290e1a32 2307static int filemap_read_folio(struct file *file, filler_t filler,
9d427b4e 2308 struct folio *folio)
723ef24b 2309{
17604240
CH
2310 bool workingset = folio_test_workingset(folio);
2311 unsigned long pflags;
723ef24b
KO
2312 int error;
2313
723ef24b 2314 /*
68430303 2315 * A previous I/O error may have been due to temporary failures,
7e0a1265 2316 * eg. multipath errors. PG_error will be set again if read_folio
68430303 2317 * fails.
723ef24b 2318 */
9d427b4e 2319 folio_clear_error(folio);
17604240 2320
723ef24b 2321 /* Start the actual read. The read will unlock the page. */
17604240
CH
2322 if (unlikely(workingset))
2323 psi_memstall_enter(&pflags);
290e1a32 2324 error = filler(file, folio);
17604240
CH
2325 if (unlikely(workingset))
2326 psi_memstall_leave(&pflags);
68430303
MWO
2327 if (error)
2328 return error;
723ef24b 2329
9d427b4e 2330 error = folio_wait_locked_killable(folio);
68430303
MWO
2331 if (error)
2332 return error;
9d427b4e 2333 if (folio_test_uptodate(folio))
aa1ec2f6 2334 return 0;
290e1a32
MWO
2335 if (file)
2336 shrink_readahead_size_eio(&file->f_ra);
aa1ec2f6 2337 return -EIO;
723ef24b
KO
2338}
2339
fce70da3 2340static bool filemap_range_uptodate(struct address_space *mapping,
dd5b9d00
DH
2341 loff_t pos, size_t count, struct folio *folio,
2342 bool need_uptodate)
fce70da3 2343{
2fa4eeb8 2344 if (folio_test_uptodate(folio))
fce70da3
MWO
2345 return true;
2346 /* pipes can't handle partially uptodate pages */
dd5b9d00 2347 if (need_uptodate)
fce70da3
MWO
2348 return false;
2349 if (!mapping->a_ops->is_partially_uptodate)
2350 return false;
2fa4eeb8 2351 if (mapping->host->i_blkbits >= folio_shift(folio))
fce70da3
MWO
2352 return false;
2353
2fa4eeb8
MWO
2354 if (folio_pos(folio) > pos) {
2355 count -= folio_pos(folio) - pos;
fce70da3
MWO
2356 pos = 0;
2357 } else {
2fa4eeb8 2358 pos -= folio_pos(folio);
fce70da3
MWO
2359 }
2360
2e7e80f7 2361 return mapping->a_ops->is_partially_uptodate(folio, pos, count);
fce70da3
MWO
2362}
2363
4612aeef 2364static int filemap_update_page(struct kiocb *iocb,
dd5b9d00
DH
2365 struct address_space *mapping, size_t count,
2366 struct folio *folio, bool need_uptodate)
723ef24b 2367{
723ef24b
KO
2368 int error;
2369
730633f0
JK
2370 if (iocb->ki_flags & IOCB_NOWAIT) {
2371 if (!filemap_invalidate_trylock_shared(mapping))
2372 return -EAGAIN;
2373 } else {
2374 filemap_invalidate_lock_shared(mapping);
2375 }
2376
ffdc8dab 2377 if (!folio_trylock(folio)) {
730633f0 2378 error = -EAGAIN;
87d1d7b6 2379 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
730633f0 2380 goto unlock_mapping;
87d1d7b6 2381 if (!(iocb->ki_flags & IOCB_WAITQ)) {
730633f0 2382 filemap_invalidate_unlock_shared(mapping);
9f2b04a2
MWO
2383 /*
2384 * This is where we usually end up waiting for a
2385 * previously submitted readahead to finish.
2386 */
2387 folio_put_wait_locked(folio, TASK_KILLABLE);
4612aeef 2388 return AOP_TRUNCATED_PAGE;
bd8a1f36 2389 }
ffdc8dab 2390 error = __folio_lock_async(folio, iocb->ki_waitq);
87d1d7b6 2391 if (error)
730633f0 2392 goto unlock_mapping;
723ef24b 2393 }
723ef24b 2394
730633f0 2395 error = AOP_TRUNCATED_PAGE;
ffdc8dab 2396 if (!folio->mapping)
730633f0 2397 goto unlock;
723ef24b 2398
fce70da3 2399 error = 0;
dd5b9d00
DH
2400 if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio,
2401 need_uptodate))
fce70da3
MWO
2402 goto unlock;
2403
2404 error = -EAGAIN;
2405 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2406 goto unlock;
2407
290e1a32
MWO
2408 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2409 folio);
730633f0 2410 goto unlock_mapping;
fce70da3 2411unlock:
ffdc8dab 2412 folio_unlock(folio);
730633f0
JK
2413unlock_mapping:
2414 filemap_invalidate_unlock_shared(mapping);
2415 if (error == AOP_TRUNCATED_PAGE)
ffdc8dab 2416 folio_put(folio);
fce70da3 2417 return error;
723ef24b
KO
2418}
2419
a5d4ad09 2420static int filemap_create_folio(struct file *file,
f253e185 2421 struct address_space *mapping, pgoff_t index,
25d6a23e 2422 struct folio_batch *fbatch)
723ef24b 2423{
a5d4ad09 2424 struct folio *folio;
723ef24b
KO
2425 int error;
2426
a5d4ad09
MWO
2427 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0);
2428 if (!folio)
f253e185 2429 return -ENOMEM;
723ef24b 2430
730633f0 2431 /*
a5d4ad09
MWO
2432 * Protect against truncate / hole punch. Grabbing invalidate_lock
2433 * here assures we cannot instantiate and bring uptodate new
2434 * pagecache folios after evicting page cache during truncate
2435 * and before actually freeing blocks. Note that we could
2436 * release invalidate_lock after inserting the folio into
2437 * the page cache as the locked folio would then be enough to
2438 * synchronize with hole punching. But there are code paths
2439 * such as filemap_update_page() filling in partially uptodate
704528d8 2440 * pages or ->readahead() that need to hold invalidate_lock
a5d4ad09
MWO
2441 * while mapping blocks for IO so let's hold the lock here as
2442 * well to keep locking rules simple.
730633f0
JK
2443 */
2444 filemap_invalidate_lock_shared(mapping);
a5d4ad09 2445 error = filemap_add_folio(mapping, folio, index,
f253e185
MWO
2446 mapping_gfp_constraint(mapping, GFP_KERNEL));
2447 if (error == -EEXIST)
2448 error = AOP_TRUNCATED_PAGE;
2449 if (error)
2450 goto error;
2451
290e1a32 2452 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
f253e185
MWO
2453 if (error)
2454 goto error;
2455
730633f0 2456 filemap_invalidate_unlock_shared(mapping);
25d6a23e 2457 folio_batch_add(fbatch, folio);
f253e185
MWO
2458 return 0;
2459error:
730633f0 2460 filemap_invalidate_unlock_shared(mapping);
a5d4ad09 2461 folio_put(folio);
f253e185 2462 return error;
723ef24b
KO
2463}
2464
5963fe03 2465static int filemap_readahead(struct kiocb *iocb, struct file *file,
65bca53b 2466 struct address_space *mapping, struct folio *folio,
5963fe03
MWO
2467 pgoff_t last_index)
2468{
65bca53b
MWO
2469 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2470
5963fe03
MWO
2471 if (iocb->ki_flags & IOCB_NOIO)
2472 return -EAGAIN;
65bca53b 2473 page_cache_async_ra(&ractl, folio, last_index - folio->index);
5963fe03
MWO
2474 return 0;
2475}
2476
dd5b9d00
DH
2477static int filemap_get_pages(struct kiocb *iocb, size_t count,
2478 struct folio_batch *fbatch, bool need_uptodate)
06c04442
KO
2479{
2480 struct file *filp = iocb->ki_filp;
2481 struct address_space *mapping = filp->f_mapping;
2482 struct file_ra_state *ra = &filp->f_ra;
2483 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
cbd59c48 2484 pgoff_t last_index;
65bca53b 2485 struct folio *folio;
cbd59c48 2486 int err = 0;
06c04442 2487
5956592c 2488 /* "last_index" is the index of the page beyond the end of the read */
dd5b9d00 2489 last_index = DIV_ROUND_UP(iocb->ki_pos + count, PAGE_SIZE);
2642fca6 2490retry:
06c04442
KO
2491 if (fatal_signal_pending(current))
2492 return -EINTR;
2493
5956592c 2494 filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
25d6a23e 2495 if (!folio_batch_count(fbatch)) {
2642fca6
MWO
2496 if (iocb->ki_flags & IOCB_NOIO)
2497 return -EAGAIN;
2498 page_cache_sync_readahead(mapping, ra, filp, index,
2499 last_index - index);
5956592c 2500 filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2642fca6 2501 }
25d6a23e 2502 if (!folio_batch_count(fbatch)) {
f253e185
MWO
2503 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2504 return -EAGAIN;
a5d4ad09 2505 err = filemap_create_folio(filp, mapping,
25d6a23e 2506 iocb->ki_pos >> PAGE_SHIFT, fbatch);
f253e185 2507 if (err == AOP_TRUNCATED_PAGE)
2642fca6 2508 goto retry;
f253e185
MWO
2509 return err;
2510 }
06c04442 2511
25d6a23e 2512 folio = fbatch->folios[folio_batch_count(fbatch) - 1];
65bca53b
MWO
2513 if (folio_test_readahead(folio)) {
2514 err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2642fca6
MWO
2515 if (err)
2516 goto err;
2517 }
65bca53b 2518 if (!folio_test_uptodate(folio)) {
25d6a23e
MWO
2519 if ((iocb->ki_flags & IOCB_WAITQ) &&
2520 folio_batch_count(fbatch) > 1)
2642fca6 2521 iocb->ki_flags |= IOCB_NOWAIT;
dd5b9d00
DH
2522 err = filemap_update_page(iocb, mapping, count, folio,
2523 need_uptodate);
2642fca6
MWO
2524 if (err)
2525 goto err;
06c04442
KO
2526 }
2527
2642fca6 2528 return 0;
cbd59c48 2529err:
2642fca6 2530 if (err < 0)
65bca53b 2531 folio_put(folio);
25d6a23e 2532 if (likely(--fbatch->nr))
ff993ba1 2533 return 0;
4612aeef 2534 if (err == AOP_TRUNCATED_PAGE)
2642fca6
MWO
2535 goto retry;
2536 return err;
06c04442
KO
2537}
2538
5ccc944d
MWO
2539static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio)
2540{
2541 unsigned int shift = folio_shift(folio);
2542
2543 return (pos1 >> shift == pos2 >> shift);
2544}
2545
485bb99b 2546/**
87fa0f3e
CH
2547 * filemap_read - Read data from the page cache.
2548 * @iocb: The iocb to read.
2549 * @iter: Destination for the data.
2550 * @already_read: Number of bytes already read by the caller.
485bb99b 2551 *
87fa0f3e 2552 * Copies data from the page cache. If the data is not currently present,
7e0a1265 2553 * uses the readahead and read_folio address_space operations to fetch it.
1da177e4 2554 *
87fa0f3e
CH
2555 * Return: Total number of bytes copied, including those already read by
2556 * the caller. If an error happens before any bytes are copied, returns
2557 * a negative error number.
1da177e4 2558 */
87fa0f3e
CH
2559ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2560 ssize_t already_read)
1da177e4 2561{
47c27bc4 2562 struct file *filp = iocb->ki_filp;
06c04442 2563 struct file_ra_state *ra = &filp->f_ra;
36e78914 2564 struct address_space *mapping = filp->f_mapping;
1da177e4 2565 struct inode *inode = mapping->host;
25d6a23e 2566 struct folio_batch fbatch;
ff993ba1 2567 int i, error = 0;
06c04442
KO
2568 bool writably_mapped;
2569 loff_t isize, end_offset;
f04d16ee 2570 loff_t last_pos = ra->prev_pos;
1da177e4 2571
723ef24b 2572 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
d05c5f7b 2573 return 0;
3644e2d2
KO
2574 if (unlikely(!iov_iter_count(iter)))
2575 return 0;
2576
c2a9737f 2577 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
25d6a23e 2578 folio_batch_init(&fbatch);
c2a9737f 2579
06c04442 2580 do {
1da177e4 2581 cond_resched();
5abf186a 2582
723ef24b 2583 /*
06c04442
KO
2584 * If we've already successfully copied some data, then we
2585 * can no longer safely return -EIOCBQUEUED. Hence mark
2586 * an async read NOWAIT at that point.
723ef24b 2587 */
87fa0f3e 2588 if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
723ef24b
KO
2589 iocb->ki_flags |= IOCB_NOWAIT;
2590
8c8387ee
DH
2591 if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2592 break;
2593
3fc40265 2594 error = filemap_get_pages(iocb, iter->count, &fbatch, false);
ff993ba1 2595 if (error < 0)
06c04442 2596 break;
1da177e4 2597
06c04442
KO
2598 /*
2599 * i_size must be checked after we know the pages are Uptodate.
2600 *
2601 * Checking i_size after the check allows us to calculate
2602 * the correct value for "nr", which means the zero-filled
2603 * part of the page is not copied back to userspace (unless
2604 * another truncate extends the file - this is desired though).
2605 */
2606 isize = i_size_read(inode);
2607 if (unlikely(iocb->ki_pos >= isize))
25d6a23e 2608 goto put_folios;
06c04442
KO
2609 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2610
e2c27b80
BL
2611 /*
2612 * Pairs with a barrier in
2613 * block_write_end()->mark_buffer_dirty() or other page
2614 * dirtying routines like iomap_write_end() to ensure
2615 * changes to page contents are visible before we see
2616 * increased inode size.
2617 */
2618 smp_rmb();
2619
06c04442
KO
2620 /*
2621 * Once we start copying data, we don't want to be touching any
2622 * cachelines that might be contended:
2623 */
2624 writably_mapped = mapping_writably_mapped(mapping);
2625
2626 /*
5ccc944d 2627 * When a read accesses the same folio several times, only
06c04442
KO
2628 * mark it as accessed the first time.
2629 */
f04d16ee
HL
2630 if (!pos_same_folio(iocb->ki_pos, last_pos - 1,
2631 fbatch.folios[0]))
25d6a23e 2632 folio_mark_accessed(fbatch.folios[0]);
06c04442 2633
25d6a23e
MWO
2634 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2635 struct folio *folio = fbatch.folios[i];
d996fc7f
MWO
2636 size_t fsize = folio_size(folio);
2637 size_t offset = iocb->ki_pos & (fsize - 1);
cbd59c48 2638 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
d996fc7f 2639 fsize - offset);
cbd59c48 2640 size_t copied;
06c04442 2641
d996fc7f 2642 if (end_offset < folio_pos(folio))
cbd59c48
MWO
2643 break;
2644 if (i > 0)
d996fc7f 2645 folio_mark_accessed(folio);
06c04442 2646 /*
d996fc7f
MWO
2647 * If users can be writing to this folio using arbitrary
2648 * virtual addresses, take care of potential aliasing
2649 * before reading the folio on the kernel side.
06c04442 2650 */
d996fc7f
MWO
2651 if (writably_mapped)
2652 flush_dcache_folio(folio);
06c04442 2653
d996fc7f 2654 copied = copy_folio_to_iter(folio, offset, bytes, iter);
06c04442 2655
87fa0f3e 2656 already_read += copied;
06c04442 2657 iocb->ki_pos += copied;
f04d16ee 2658 last_pos = iocb->ki_pos;
06c04442
KO
2659
2660 if (copied < bytes) {
2661 error = -EFAULT;
2662 break;
2663 }
1da177e4 2664 }
25d6a23e
MWO
2665put_folios:
2666 for (i = 0; i < folio_batch_count(&fbatch); i++)
2667 folio_put(fbatch.folios[i]);
2668 folio_batch_init(&fbatch);
06c04442 2669 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
1da177e4 2670
0c6aa263 2671 file_accessed(filp);
f04d16ee 2672 ra->prev_pos = last_pos;
87fa0f3e 2673 return already_read ? already_read : error;
1da177e4 2674}
87fa0f3e 2675EXPORT_SYMBOL_GPL(filemap_read);
1da177e4 2676
3c435a0f
CH
2677int kiocb_write_and_wait(struct kiocb *iocb, size_t count)
2678{
2679 struct address_space *mapping = iocb->ki_filp->f_mapping;
2680 loff_t pos = iocb->ki_pos;
2681 loff_t end = pos + count - 1;
2682
2683 if (iocb->ki_flags & IOCB_NOWAIT) {
2684 if (filemap_range_needs_writeback(mapping, pos, end))
2685 return -EAGAIN;
2686 return 0;
2687 }
2688
2689 return filemap_write_and_wait_range(mapping, pos, end);
2690}
016dc851 2691EXPORT_SYMBOL_GPL(kiocb_write_and_wait);
3c435a0f 2692
e003f74a
CH
2693int kiocb_invalidate_pages(struct kiocb *iocb, size_t count)
2694{
2695 struct address_space *mapping = iocb->ki_filp->f_mapping;
2696 loff_t pos = iocb->ki_pos;
2697 loff_t end = pos + count - 1;
2698 int ret;
2699
2700 if (iocb->ki_flags & IOCB_NOWAIT) {
2701 /* we could block if there are any pages in the range */
2702 if (filemap_range_has_page(mapping, pos, end))
2703 return -EAGAIN;
2704 } else {
2705 ret = filemap_write_and_wait_range(mapping, pos, end);
2706 if (ret)
2707 return ret;
2708 }
2709
2710 /*
2711 * After a write we want buffered reads to be sure to go to disk to get
2712 * the new data. We invalidate clean cached page from the region we're
2713 * about to write. We do this *before* the write so that we can return
2714 * without clobbering -EIOCBQUEUED from ->direct_IO().
2715 */
2716 return invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT,
2717 end >> PAGE_SHIFT);
2718}
153a9961 2719EXPORT_SYMBOL_GPL(kiocb_invalidate_pages);
e003f74a 2720
485bb99b 2721/**
6abd2322 2722 * generic_file_read_iter - generic filesystem read routine
485bb99b 2723 * @iocb: kernel I/O control block
6abd2322 2724 * @iter: destination for the data read
485bb99b 2725 *
6abd2322 2726 * This is the "read_iter()" routine for all filesystems
1da177e4 2727 * that can use the page cache directly.
41da51bc
AG
2728 *
2729 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2730 * be returned when no data can be read without waiting for I/O requests
2731 * to complete; it doesn't prevent readahead.
2732 *
2733 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2734 * requests shall be made for the read or for readahead. When no data
2735 * can be read, -EAGAIN shall be returned. When readahead would be
2736 * triggered, a partial, possibly empty read shall be returned.
2737 *
a862f68a
MR
2738 * Return:
2739 * * number of bytes copied, even for partial reads
41da51bc 2740 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
1da177e4
LT
2741 */
2742ssize_t
ed978a81 2743generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1da177e4 2744{
e7080a43 2745 size_t count = iov_iter_count(iter);
47c27bc4 2746 ssize_t retval = 0;
e7080a43
NS
2747
2748 if (!count)
826ea860 2749 return 0; /* skip atime */
1da177e4 2750
2ba48ce5 2751 if (iocb->ki_flags & IOCB_DIRECT) {
47c27bc4 2752 struct file *file = iocb->ki_filp;
ed978a81
AV
2753 struct address_space *mapping = file->f_mapping;
2754 struct inode *inode = mapping->host;
1da177e4 2755
3c435a0f
CH
2756 retval = kiocb_write_and_wait(iocb, count);
2757 if (retval < 0)
2758 return retval;
0d5b0cf2
CH
2759 file_accessed(file);
2760
5ecda137 2761 retval = mapping->a_ops->direct_IO(iocb, iter);
c3a69024 2762 if (retval >= 0) {
c64fb5c7 2763 iocb->ki_pos += retval;
5ecda137 2764 count -= retval;
9fe55eea 2765 }
ab2125df
PB
2766 if (retval != -EIOCBQUEUED)
2767 iov_iter_revert(iter, count - iov_iter_count(iter));
66f998f6 2768
9fe55eea
SW
2769 /*
2770 * Btrfs can have a short DIO read if we encounter
2771 * compressed extents, so if there was an error, or if
2772 * we've already read everything we wanted to, or if
2773 * there was a short read because we hit EOF, go ahead
2774 * and return. Otherwise fallthrough to buffered io for
fbbbad4b
MW
2775 * the rest of the read. Buffered reads will not work for
2776 * DAX files, so don't bother trying.
9fe55eea 2777 */
61d0017e
JA
2778 if (retval < 0 || !count || IS_DAX(inode))
2779 return retval;
2780 if (iocb->ki_pos >= i_size_read(inode))
826ea860 2781 return retval;
1da177e4
LT
2782 }
2783
826ea860 2784 return filemap_read(iocb, iter, retval);
1da177e4 2785}
ed978a81 2786EXPORT_SYMBOL(generic_file_read_iter);
1da177e4 2787
07073eb0
DH
2788/*
2789 * Splice subpages from a folio into a pipe.
2790 */
2791size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
2792 struct folio *folio, loff_t fpos, size_t size)
2793{
2794 struct page *page;
2795 size_t spliced = 0, offset = offset_in_folio(folio, fpos);
2796
2797 page = folio_page(folio, offset / PAGE_SIZE);
2798 size = min(size, folio_size(folio) - offset);
2799 offset %= PAGE_SIZE;
2800
2801 while (spliced < size &&
2802 !pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
2803 struct pipe_buffer *buf = pipe_head_buf(pipe);
2804 size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced);
2805
2806 *buf = (struct pipe_buffer) {
2807 .ops = &page_cache_pipe_buf_ops,
2808 .page = page,
2809 .offset = offset,
2810 .len = part,
2811 };
2812 folio_get(folio);
2813 pipe->head++;
2814 page++;
2815 spliced += part;
2816 offset = 0;
2817 }
2818
2819 return spliced;
2820}
2821
9eee8bd8
DH
2822/**
2823 * filemap_splice_read - Splice data from a file's pagecache into a pipe
2824 * @in: The file to read from
2825 * @ppos: Pointer to the file position to read from
2826 * @pipe: The pipe to splice into
2827 * @len: The amount to splice
2828 * @flags: The SPLICE_F_* flags
2829 *
2830 * This function gets folios from a file's pagecache and splices them into the
2831 * pipe. Readahead will be called as necessary to fill more folios. This may
2832 * be used for blockdevs also.
2833 *
2834 * Return: On success, the number of bytes read will be returned and *@ppos
2835 * will be updated if appropriate; 0 will be returned if there is no more data
2836 * to be read; -EAGAIN will be returned if the pipe had no space, and some
2837 * other negative error code will be returned on error. A short read may occur
2838 * if the pipe has insufficient space, we reach the end of the data or we hit a
2839 * hole.
07073eb0
DH
2840 */
2841ssize_t filemap_splice_read(struct file *in, loff_t *ppos,
2842 struct pipe_inode_info *pipe,
2843 size_t len, unsigned int flags)
2844{
2845 struct folio_batch fbatch;
2846 struct kiocb iocb;
2847 size_t total_spliced = 0, used, npages;
2848 loff_t isize, end_offset;
2849 bool writably_mapped;
2850 int i, error = 0;
2851
83aeff88
DH
2852 if (unlikely(*ppos >= in->f_mapping->host->i_sb->s_maxbytes))
2853 return 0;
2854
07073eb0
DH
2855 init_sync_kiocb(&iocb, in);
2856 iocb.ki_pos = *ppos;
2857
2858 /* Work out how much data we can actually add into the pipe */
2859 used = pipe_occupancy(pipe->head, pipe->tail);
2860 npages = max_t(ssize_t, pipe->max_usage - used, 0);
2861 len = min_t(size_t, len, npages * PAGE_SIZE);
2862
2863 folio_batch_init(&fbatch);
2864
2865 do {
2866 cond_resched();
2867
c3722208 2868 if (*ppos >= i_size_read(in->f_mapping->host))
07073eb0
DH
2869 break;
2870
2871 iocb.ki_pos = *ppos;
2872 error = filemap_get_pages(&iocb, len, &fbatch, true);
2873 if (error < 0)
2874 break;
2875
2876 /*
2877 * i_size must be checked after we know the pages are Uptodate.
2878 *
2879 * Checking i_size after the check allows us to calculate
2880 * the correct value for "nr", which means the zero-filled
2881 * part of the page is not copied back to userspace (unless
2882 * another truncate extends the file - this is desired though).
2883 */
c3722208 2884 isize = i_size_read(in->f_mapping->host);
07073eb0
DH
2885 if (unlikely(*ppos >= isize))
2886 break;
2887 end_offset = min_t(loff_t, isize, *ppos + len);
2888
2889 /*
2890 * Once we start copying data, we don't want to be touching any
2891 * cachelines that might be contended:
2892 */
2893 writably_mapped = mapping_writably_mapped(in->f_mapping);
2894
2895 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2896 struct folio *folio = fbatch.folios[i];
2897 size_t n;
2898
2899 if (folio_pos(folio) >= end_offset)
2900 goto out;
2901 folio_mark_accessed(folio);
2902
2903 /*
2904 * If users can be writing to this folio using arbitrary
2905 * virtual addresses, take care of potential aliasing
2906 * before reading the folio on the kernel side.
2907 */
2908 if (writably_mapped)
2909 flush_dcache_folio(folio);
2910
2911 n = min_t(loff_t, len, isize - *ppos);
2912 n = splice_folio_into_pipe(pipe, folio, *ppos, n);
2913 if (!n)
2914 goto out;
2915 len -= n;
2916 total_spliced += n;
2917 *ppos += n;
2918 in->f_ra.prev_pos = *ppos;
2919 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
2920 goto out;
2921 }
2922
2923 folio_batch_release(&fbatch);
2924 } while (len);
2925
2926out:
2927 folio_batch_release(&fbatch);
2928 file_accessed(in);
2929
2930 return total_spliced ? total_spliced : error;
2931}
7c8e01eb 2932EXPORT_SYMBOL(filemap_splice_read);
07073eb0 2933
f5e6429a
MWO
2934static inline loff_t folio_seek_hole_data(struct xa_state *xas,
2935 struct address_space *mapping, struct folio *folio,
54fa39ac 2936 loff_t start, loff_t end, bool seek_data)
41139aa4 2937{
54fa39ac
MWO
2938 const struct address_space_operations *ops = mapping->a_ops;
2939 size_t offset, bsz = i_blocksize(mapping->host);
2940
f5e6429a 2941 if (xa_is_value(folio) || folio_test_uptodate(folio))
54fa39ac
MWO
2942 return seek_data ? start : end;
2943 if (!ops->is_partially_uptodate)
2944 return seek_data ? end : start;
2945
2946 xas_pause(xas);
2947 rcu_read_unlock();
f5e6429a
MWO
2948 folio_lock(folio);
2949 if (unlikely(folio->mapping != mapping))
54fa39ac
MWO
2950 goto unlock;
2951
f5e6429a 2952 offset = offset_in_folio(folio, start) & ~(bsz - 1);
54fa39ac
MWO
2953
2954 do {
2e7e80f7 2955 if (ops->is_partially_uptodate(folio, offset, bsz) ==
f5e6429a 2956 seek_data)
54fa39ac
MWO
2957 break;
2958 start = (start + bsz) & ~(bsz - 1);
2959 offset += bsz;
f5e6429a 2960 } while (offset < folio_size(folio));
54fa39ac 2961unlock:
f5e6429a 2962 folio_unlock(folio);
54fa39ac
MWO
2963 rcu_read_lock();
2964 return start;
41139aa4
MWO
2965}
2966
f5e6429a 2967static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
41139aa4 2968{
f5e6429a 2969 if (xa_is_value(folio))
41139aa4 2970 return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
f5e6429a 2971 return folio_size(folio);
41139aa4
MWO
2972}
2973
2974/**
2975 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
2976 * @mapping: Address space to search.
2977 * @start: First byte to consider.
2978 * @end: Limit of search (exclusive).
2979 * @whence: Either SEEK_HOLE or SEEK_DATA.
2980 *
2981 * If the page cache knows which blocks contain holes and which blocks
2982 * contain data, your filesystem can use this function to implement
2983 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are
2984 * entirely memory-based such as tmpfs, and filesystems which support
2985 * unwritten extents.
2986 *
f0953a1b 2987 * Return: The requested offset on success, or -ENXIO if @whence specifies
41139aa4
MWO
2988 * SEEK_DATA and there is no data after @start. There is an implicit hole
2989 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
2990 * and @end contain data.
2991 */
2992loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
2993 loff_t end, int whence)
2994{
2995 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
ed98b015 2996 pgoff_t max = (end - 1) >> PAGE_SHIFT;
41139aa4 2997 bool seek_data = (whence == SEEK_DATA);
f5e6429a 2998 struct folio *folio;
41139aa4
MWO
2999
3000 if (end <= start)
3001 return -ENXIO;
3002
3003 rcu_read_lock();
f5e6429a 3004 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
ed98b015 3005 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
f5e6429a 3006 size_t seek_size;
41139aa4
MWO
3007
3008 if (start < pos) {
3009 if (!seek_data)
3010 goto unlock;
3011 start = pos;
3012 }
3013
f5e6429a
MWO
3014 seek_size = seek_folio_size(&xas, folio);
3015 pos = round_up((u64)pos + 1, seek_size);
3016 start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
54fa39ac
MWO
3017 seek_data);
3018 if (start < pos)
41139aa4 3019 goto unlock;
ed98b015
HD
3020 if (start >= end)
3021 break;
3022 if (seek_size > PAGE_SIZE)
3023 xas_set(&xas, pos >> PAGE_SHIFT);
f5e6429a
MWO
3024 if (!xa_is_value(folio))
3025 folio_put(folio);
41139aa4 3026 }
41139aa4 3027 if (seek_data)
ed98b015 3028 start = -ENXIO;
41139aa4
MWO
3029unlock:
3030 rcu_read_unlock();
f5e6429a
MWO
3031 if (folio && !xa_is_value(folio))
3032 folio_put(folio);
41139aa4
MWO
3033 if (start > end)
3034 return end;
3035 return start;
3036}
3037
1da177e4 3038#ifdef CONFIG_MMU
1da177e4 3039#define MMAP_LOTSAMISS (100)
6b4c9f44 3040/*
e292e6d6 3041 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
6b4c9f44 3042 * @vmf - the vm_fault for this fault.
e292e6d6 3043 * @folio - the folio to lock.
6b4c9f44
JB
3044 * @fpin - the pointer to the file we may pin (or is already pinned).
3045 *
e292e6d6
MWO
3046 * This works similar to lock_folio_or_retry in that it can drop the
3047 * mmap_lock. It differs in that it actually returns the folio locked
3048 * if it returns 1 and 0 if it couldn't lock the folio. If we did have
3049 * to drop the mmap_lock then fpin will point to the pinned file and
3050 * needs to be fput()'ed at a later point.
6b4c9f44 3051 */
e292e6d6 3052static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
6b4c9f44
JB
3053 struct file **fpin)
3054{
7c23c782 3055 if (folio_trylock(folio))
6b4c9f44
JB
3056 return 1;
3057
8b0f9fa2
LT
3058 /*
3059 * NOTE! This will make us return with VM_FAULT_RETRY, but with
5d74b2ab 3060 * the fault lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
8b0f9fa2
LT
3061 * is supposed to work. We have way too many special cases..
3062 */
6b4c9f44
JB
3063 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
3064 return 0;
3065
3066 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
3067 if (vmf->flags & FAULT_FLAG_KILLABLE) {
af7f29d9 3068 if (__folio_lock_killable(folio)) {
6b4c9f44 3069 /*
5d74b2ab
MWO
3070 * We didn't have the right flags to drop the
3071 * fault lock, but all fault_handlers only check
3072 * for fatal signals if we return VM_FAULT_RETRY,
3073 * so we need to drop the fault lock here and
3074 * return 0 if we don't have a fpin.
6b4c9f44
JB
3075 */
3076 if (*fpin == NULL)
5d74b2ab 3077 release_fault_lock(vmf);
6b4c9f44
JB
3078 return 0;
3079 }
3080 } else
7c23c782
MWO
3081 __folio_lock(folio);
3082
6b4c9f44
JB
3083 return 1;
3084}
3085
ef00e08e 3086/*
6b4c9f44
JB
3087 * Synchronous readahead happens when we don't even find a page in the page
3088 * cache at all. We don't want to perform IO under the mmap sem, so if we have
3089 * to drop the mmap sem we return the file that was pinned in order for us to do
3090 * that. If we didn't pin a file then we return NULL. The file that is
3091 * returned needs to be fput()'ed when we're done with it.
ef00e08e 3092 */
6b4c9f44 3093static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
ef00e08e 3094{
2a1180f1
JB
3095 struct file *file = vmf->vma->vm_file;
3096 struct file_ra_state *ra = &file->f_ra;
ef00e08e 3097 struct address_space *mapping = file->f_mapping;
fcd9ae4f 3098 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
6b4c9f44 3099 struct file *fpin = NULL;
dcfa24ba 3100 unsigned long vm_flags = vmf->vma->vm_flags;
e630bfac 3101 unsigned int mmap_miss;
ef00e08e 3102
4687fdbb
MWO
3103#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3104 /* Use the readahead code, even if readahead is disabled */
dcfa24ba 3105 if (vm_flags & VM_HUGEPAGE) {
4687fdbb
MWO
3106 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3107 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
3108 ra->size = HPAGE_PMD_NR;
3109 /*
3110 * Fetch two PMD folios, so we get the chance to actually
3111 * readahead, unless we've been told not to.
3112 */
dcfa24ba 3113 if (!(vm_flags & VM_RAND_READ))
4687fdbb
MWO
3114 ra->size *= 2;
3115 ra->async_size = HPAGE_PMD_NR;
3116 page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER);
3117 return fpin;
3118 }
3119#endif
3120
ef00e08e 3121 /* If we don't want any read-ahead, don't bother */
dcfa24ba 3122 if (vm_flags & VM_RAND_READ)
6b4c9f44 3123 return fpin;
275b12bf 3124 if (!ra->ra_pages)
6b4c9f44 3125 return fpin;
ef00e08e 3126
dcfa24ba 3127 if (vm_flags & VM_SEQ_READ) {
6b4c9f44 3128 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
fcd9ae4f 3129 page_cache_sync_ra(&ractl, ra->ra_pages);
6b4c9f44 3130 return fpin;
ef00e08e
LT
3131 }
3132
207d04ba 3133 /* Avoid banging the cache line if not needed */
e630bfac
KS
3134 mmap_miss = READ_ONCE(ra->mmap_miss);
3135 if (mmap_miss < MMAP_LOTSAMISS * 10)
3136 WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
ef00e08e
LT
3137
3138 /*
3139 * Do we miss much more than hit in this file? If so,
3140 * stop bothering with read-ahead. It will only hurt.
3141 */
e630bfac 3142 if (mmap_miss > MMAP_LOTSAMISS)
6b4c9f44 3143 return fpin;
ef00e08e 3144
d30a1100
WF
3145 /*
3146 * mmap read-around
3147 */
6b4c9f44 3148 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
db660d46 3149 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
600e19af
RG
3150 ra->size = ra->ra_pages;
3151 ra->async_size = ra->ra_pages / 4;
db660d46 3152 ractl._index = ra->start;
56a4d67c 3153 page_cache_ra_order(&ractl, ra, 0);
6b4c9f44 3154 return fpin;
ef00e08e
LT
3155}
3156
3157/*
3158 * Asynchronous readahead happens when we find the page and PG_readahead,
6b4c9f44 3159 * so we want to possibly extend the readahead further. We return the file that
c1e8d7c6 3160 * was pinned if we have to drop the mmap_lock in order to do IO.
ef00e08e 3161 */
6b4c9f44 3162static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
79598ced 3163 struct folio *folio)
ef00e08e 3164{
2a1180f1
JB
3165 struct file *file = vmf->vma->vm_file;
3166 struct file_ra_state *ra = &file->f_ra;
79598ced 3167 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
6b4c9f44 3168 struct file *fpin = NULL;
e630bfac 3169 unsigned int mmap_miss;
ef00e08e
LT
3170
3171 /* If we don't want any read-ahead, don't bother */
5c72feee 3172 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
6b4c9f44 3173 return fpin;
79598ced 3174
e630bfac
KS
3175 mmap_miss = READ_ONCE(ra->mmap_miss);
3176 if (mmap_miss)
3177 WRITE_ONCE(ra->mmap_miss, --mmap_miss);
79598ced
MWO
3178
3179 if (folio_test_readahead(folio)) {
6b4c9f44 3180 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
79598ced 3181 page_cache_async_ra(&ractl, folio, ra->ra_pages);
6b4c9f44
JB
3182 }
3183 return fpin;
ef00e08e
LT
3184}
3185
485bb99b 3186/**
54cb8821 3187 * filemap_fault - read in file data for page fault handling
d0217ac0 3188 * @vmf: struct vm_fault containing details of the fault
485bb99b 3189 *
54cb8821 3190 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
3191 * mapped memory region to read in file data during a page fault.
3192 *
3193 * The goto's are kind of ugly, but this streamlines the normal case of having
3194 * it in the page cache, and handles the special cases reasonably without
3195 * having a lot of duplicated code.
9a95f3cf 3196 *
c1e8d7c6 3197 * vma->vm_mm->mmap_lock must be held on entry.
9a95f3cf 3198 *
c1e8d7c6 3199 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
e292e6d6 3200 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
9a95f3cf 3201 *
c1e8d7c6 3202 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
9a95f3cf
PC
3203 * has not been released.
3204 *
3205 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
a862f68a
MR
3206 *
3207 * Return: bitwise-OR of %VM_FAULT_ codes.
1da177e4 3208 */
2bcd6454 3209vm_fault_t filemap_fault(struct vm_fault *vmf)
1da177e4
LT
3210{
3211 int error;
11bac800 3212 struct file *file = vmf->vma->vm_file;
6b4c9f44 3213 struct file *fpin = NULL;
1da177e4 3214 struct address_space *mapping = file->f_mapping;
1da177e4 3215 struct inode *inode = mapping->host;
e292e6d6
MWO
3216 pgoff_t max_idx, index = vmf->pgoff;
3217 struct folio *folio;
2bcd6454 3218 vm_fault_t ret = 0;
730633f0 3219 bool mapping_locked = false;
1da177e4 3220
e292e6d6
MWO
3221 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3222 if (unlikely(index >= max_idx))
5307cc1a 3223 return VM_FAULT_SIGBUS;
1da177e4 3224
1da177e4 3225 /*
49426420 3226 * Do we have something in the page cache already?
1da177e4 3227 */
e292e6d6 3228 folio = filemap_get_folio(mapping, index);
66dabbb6 3229 if (likely(!IS_ERR(folio))) {
1da177e4 3230 /*
730633f0
JK
3231 * We found the page, so try async readahead before waiting for
3232 * the lock.
1da177e4 3233 */
730633f0 3234 if (!(vmf->flags & FAULT_FLAG_TRIED))
79598ced 3235 fpin = do_async_mmap_readahead(vmf, folio);
e292e6d6 3236 if (unlikely(!folio_test_uptodate(folio))) {
730633f0
JK
3237 filemap_invalidate_lock_shared(mapping);
3238 mapping_locked = true;
3239 }
3240 } else {
ef00e08e 3241 /* No page in the page cache at all */
ef00e08e 3242 count_vm_event(PGMAJFAULT);
2262185c 3243 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
ef00e08e 3244 ret = VM_FAULT_MAJOR;
6b4c9f44 3245 fpin = do_sync_mmap_readahead(vmf);
ef00e08e 3246retry_find:
730633f0 3247 /*
e292e6d6 3248 * See comment in filemap_create_folio() why we need
730633f0
JK
3249 * invalidate_lock
3250 */
3251 if (!mapping_locked) {
3252 filemap_invalidate_lock_shared(mapping);
3253 mapping_locked = true;
3254 }
e292e6d6 3255 folio = __filemap_get_folio(mapping, index,
a75d4c33
JB
3256 FGP_CREAT|FGP_FOR_MMAP,
3257 vmf->gfp_mask);
66dabbb6 3258 if (IS_ERR(folio)) {
6b4c9f44
JB
3259 if (fpin)
3260 goto out_retry;
730633f0 3261 filemap_invalidate_unlock_shared(mapping);
e520e932 3262 return VM_FAULT_OOM;
6b4c9f44 3263 }
1da177e4
LT
3264 }
3265
e292e6d6 3266 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
6b4c9f44 3267 goto out_retry;
b522c94d
ML
3268
3269 /* Did it get truncated? */
e292e6d6
MWO
3270 if (unlikely(folio->mapping != mapping)) {
3271 folio_unlock(folio);
3272 folio_put(folio);
b522c94d
ML
3273 goto retry_find;
3274 }
e292e6d6 3275 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
b522c94d 3276
1da177e4 3277 /*
6facf36e
LS
3278 * We have a locked folio in the page cache, now we need to check
3279 * that it's up-to-date. If not, it is going to be due to an error,
3280 * or because readahead was otherwise unable to retrieve it.
1da177e4 3281 */
e292e6d6 3282 if (unlikely(!folio_test_uptodate(folio))) {
730633f0 3283 /*
6facf36e
LS
3284 * If the invalidate lock is not held, the folio was in cache
3285 * and uptodate and now it is not. Strange but possible since we
3286 * didn't hold the page lock all the time. Let's drop
3287 * everything, get the invalidate lock and try again.
730633f0
JK
3288 */
3289 if (!mapping_locked) {
e292e6d6
MWO
3290 folio_unlock(folio);
3291 folio_put(folio);
730633f0
JK
3292 goto retry_find;
3293 }
6facf36e
LS
3294
3295 /*
3296 * OK, the folio is really not uptodate. This can be because the
3297 * VMA has the VM_RAND_READ flag set, or because an error
3298 * arose. Let's read it in directly.
3299 */
1da177e4 3300 goto page_not_uptodate;
730633f0 3301 }
1da177e4 3302
6b4c9f44 3303 /*
c1e8d7c6 3304 * We've made it this far and we had to drop our mmap_lock, now is the
6b4c9f44
JB
3305 * time to return to the upper layer and have it re-find the vma and
3306 * redo the fault.
3307 */
3308 if (fpin) {
e292e6d6 3309 folio_unlock(folio);
6b4c9f44
JB
3310 goto out_retry;
3311 }
730633f0
JK
3312 if (mapping_locked)
3313 filemap_invalidate_unlock_shared(mapping);
6b4c9f44 3314
ef00e08e
LT
3315 /*
3316 * Found the page and have a reference on it.
3317 * We must recheck i_size under page lock.
3318 */
e292e6d6
MWO
3319 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3320 if (unlikely(index >= max_idx)) {
3321 folio_unlock(folio);
3322 folio_put(folio);
5307cc1a 3323 return VM_FAULT_SIGBUS;
d00806b1
NP
3324 }
3325
e292e6d6 3326 vmf->page = folio_file_page(folio, index);
83c54070 3327 return ret | VM_FAULT_LOCKED;
1da177e4 3328
1da177e4 3329page_not_uptodate:
1da177e4
LT
3330 /*
3331 * Umm, take care of errors if the page isn't up-to-date.
3332 * Try to re-read it _once_. We do this synchronously,
3333 * because there really aren't any performance issues here
3334 * and we need to check for errors.
3335 */
6b4c9f44 3336 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
290e1a32 3337 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
6b4c9f44
JB
3338 if (fpin)
3339 goto out_retry;
e292e6d6 3340 folio_put(folio);
d00806b1
NP
3341
3342 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 3343 goto retry_find;
730633f0 3344 filemap_invalidate_unlock_shared(mapping);
1da177e4 3345
d0217ac0 3346 return VM_FAULT_SIGBUS;
6b4c9f44
JB
3347
3348out_retry:
3349 /*
c1e8d7c6 3350 * We dropped the mmap_lock, we need to return to the fault handler to
6b4c9f44
JB
3351 * re-find the vma and come back and find our hopefully still populated
3352 * page.
3353 */
38a55db9 3354 if (!IS_ERR(folio))
e292e6d6 3355 folio_put(folio);
730633f0
JK
3356 if (mapping_locked)
3357 filemap_invalidate_unlock_shared(mapping);
6b4c9f44
JB
3358 if (fpin)
3359 fput(fpin);
3360 return ret | VM_FAULT_RETRY;
54cb8821
NP
3361}
3362EXPORT_SYMBOL(filemap_fault);
3363
8808ecab
MWO
3364static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio,
3365 pgoff_t start)
f1820361 3366{
f9ce0be7
KS
3367 struct mm_struct *mm = vmf->vma->vm_mm;
3368
3369 /* Huge page is mapped? No need to proceed. */
3370 if (pmd_trans_huge(*vmf->pmd)) {
8808ecab
MWO
3371 folio_unlock(folio);
3372 folio_put(folio);
f9ce0be7
KS
3373 return true;
3374 }
3375
8808ecab
MWO
3376 if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) {
3377 struct page *page = folio_file_page(folio, start);
e0f43fa5
YS
3378 vm_fault_t ret = do_set_pmd(vmf, page);
3379 if (!ret) {
3380 /* The page is mapped successfully, reference consumed. */
8808ecab 3381 folio_unlock(folio);
e0f43fa5 3382 return true;
f9ce0be7 3383 }
f9ce0be7
KS
3384 }
3385
9aa1345d 3386 if (pmd_none(*vmf->pmd) && vmf->prealloc_pte)
03c4f204 3387 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
f9ce0be7 3388
f9ce0be7
KS
3389 return false;
3390}
3391
de74976e
YF
3392static struct folio *next_uptodate_folio(struct xa_state *xas,
3393 struct address_space *mapping, pgoff_t end_pgoff)
f9ce0be7 3394{
de74976e 3395 struct folio *folio = xas_next_entry(xas, end_pgoff);
f9ce0be7
KS
3396 unsigned long max_idx;
3397
3398 do {
9184a307 3399 if (!folio)
f9ce0be7 3400 return NULL;
9184a307 3401 if (xas_retry(xas, folio))
f9ce0be7 3402 continue;
9184a307 3403 if (xa_is_value(folio))
f9ce0be7 3404 continue;
9184a307 3405 if (folio_test_locked(folio))
f9ce0be7 3406 continue;
9184a307 3407 if (!folio_try_get_rcu(folio))
f9ce0be7
KS
3408 continue;
3409 /* Has the page moved or been split? */
9184a307 3410 if (unlikely(folio != xas_reload(xas)))
f9ce0be7 3411 goto skip;
9184a307 3412 if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
f9ce0be7 3413 goto skip;
9184a307 3414 if (!folio_trylock(folio))
f9ce0be7 3415 goto skip;
9184a307 3416 if (folio->mapping != mapping)
f9ce0be7 3417 goto unlock;
9184a307 3418 if (!folio_test_uptodate(folio))
f9ce0be7
KS
3419 goto unlock;
3420 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3421 if (xas->xa_index >= max_idx)
3422 goto unlock;
820b05e9 3423 return folio;
f9ce0be7 3424unlock:
9184a307 3425 folio_unlock(folio);
f9ce0be7 3426skip:
9184a307
MWO
3427 folio_put(folio);
3428 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
f9ce0be7
KS
3429
3430 return NULL;
3431}
3432
de74976e
YF
3433/*
3434 * Map page range [start_page, start_page + nr_pages) of folio.
3435 * start_page is gotten from start by folio_page(folio, start)
3436 */
3437static vm_fault_t filemap_map_folio_range(struct vm_fault *vmf,
3438 struct folio *folio, unsigned long start,
c8be0380
YF
3439 unsigned long addr, unsigned int nr_pages,
3440 unsigned int *mmap_miss)
f9ce0be7 3441{
de74976e 3442 vm_fault_t ret = 0;
de74976e 3443 struct page *page = folio_page(folio, start);
617c28ec
YF
3444 unsigned int count = 0;
3445 pte_t *old_ptep = vmf->pte;
f9ce0be7 3446
de74976e 3447 do {
617c28ec
YF
3448 if (PageHWPoison(page + count))
3449 goto skip;
de74976e 3450
c8be0380 3451 (*mmap_miss)++;
de74976e
YF
3452
3453 /*
3454 * NOTE: If there're PTE markers, we'll leave them to be
3455 * handled in the specific fault path, and it'll prohibit the
3456 * fault-around logic.
3457 */
afccb080 3458 if (!pte_none(ptep_get(&vmf->pte[count])))
617c28ec 3459 goto skip;
de74976e 3460
617c28ec
YF
3461 count++;
3462 continue;
3463skip:
3464 if (count) {
3465 set_pte_range(vmf, folio, page, count, addr);
3466 folio_ref_add(folio, count);
a501a070 3467 if (in_range(vmf->address, addr, count * PAGE_SIZE))
617c28ec
YF
3468 ret = VM_FAULT_NOPAGE;
3469 }
de74976e 3470
617c28ec
YF
3471 count++;
3472 page += count;
3473 vmf->pte += count;
3474 addr += count * PAGE_SIZE;
3475 count = 0;
3476 } while (--nr_pages > 0);
3477
3478 if (count) {
3479 set_pte_range(vmf, folio, page, count, addr);
3480 folio_ref_add(folio, count);
a501a070 3481 if (in_range(vmf->address, addr, count * PAGE_SIZE))
617c28ec
YF
3482 ret = VM_FAULT_NOPAGE;
3483 }
de74976e 3484
617c28ec 3485 vmf->pte = old_ptep;
c8be0380
YF
3486
3487 return ret;
3488}
3489
3490static vm_fault_t filemap_map_order0_folio(struct vm_fault *vmf,
3491 struct folio *folio, unsigned long addr,
3492 unsigned int *mmap_miss)
3493{
3494 vm_fault_t ret = 0;
3495 struct page *page = &folio->page;
3496
3497 if (PageHWPoison(page))
3498 return ret;
3499
3500 (*mmap_miss)++;
3501
3502 /*
3503 * NOTE: If there're PTE markers, we'll leave them to be
3504 * handled in the specific fault path, and it'll prohibit
3505 * the fault-around logic.
3506 */
3507 if (!pte_none(ptep_get(vmf->pte)))
3508 return ret;
3509
3510 if (vmf->address == addr)
3511 ret = VM_FAULT_NOPAGE;
3512
3513 set_pte_range(vmf, folio, page, 1, addr);
3514 folio_ref_inc(folio);
de74976e
YF
3515
3516 return ret;
f9ce0be7
KS
3517}
3518
3519vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3520 pgoff_t start_pgoff, pgoff_t end_pgoff)
3521{
3522 struct vm_area_struct *vma = vmf->vma;
3523 struct file *file = vma->vm_file;
f1820361 3524 struct address_space *mapping = file->f_mapping;
bae473a4 3525 pgoff_t last_pgoff = start_pgoff;
9d3af4b4 3526 unsigned long addr;
070e807c 3527 XA_STATE(xas, &mapping->i_pages, start_pgoff);
820b05e9 3528 struct folio *folio;
f9ce0be7 3529 vm_fault_t ret = 0;
c8be0380 3530 unsigned int nr_pages = 0, mmap_miss = 0, mmap_miss_saved;
f1820361
KS
3531
3532 rcu_read_lock();
de74976e 3533 folio = next_uptodate_folio(&xas, mapping, end_pgoff);
820b05e9 3534 if (!folio)
f9ce0be7 3535 goto out;
f1820361 3536
8808ecab 3537 if (filemap_map_pmd(vmf, folio, start_pgoff)) {
f9ce0be7
KS
3538 ret = VM_FAULT_NOPAGE;
3539 goto out;
3540 }
f1820361 3541
9d3af4b4
WD
3542 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3543 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
65747aaf
HD
3544 if (!vmf->pte) {
3545 folio_unlock(folio);
3546 folio_put(folio);
3547 goto out;
3548 }
f9ce0be7 3549 do {
de74976e 3550 unsigned long end;
7267ec00 3551
9d3af4b4 3552 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
f9ce0be7 3553 vmf->pte += xas.xa_index - last_pgoff;
070e807c 3554 last_pgoff = xas.xa_index;
d98388ce 3555 end = folio_next_index(folio) - 1;
de74976e 3556 nr_pages = min(end, end_pgoff) - xas.xa_index + 1;
f9ce0be7 3557
c8be0380
YF
3558 if (!folio_test_large(folio))
3559 ret |= filemap_map_order0_folio(vmf,
3560 folio, addr, &mmap_miss);
3561 else
3562 ret |= filemap_map_folio_range(vmf, folio,
3563 xas.xa_index - folio->index, addr,
3564 nr_pages, &mmap_miss);
46bdb427 3565
820b05e9
MWO
3566 folio_unlock(folio);
3567 folio_put(folio);
c8be0380 3568 } while ((folio = next_uptodate_folio(&xas, mapping, end_pgoff)) != NULL);
f9ce0be7
KS
3569 pte_unmap_unlock(vmf->pte, vmf->ptl);
3570out:
f1820361 3571 rcu_read_unlock();
c8be0380
YF
3572
3573 mmap_miss_saved = READ_ONCE(file->f_ra.mmap_miss);
3574 if (mmap_miss >= mmap_miss_saved)
3575 WRITE_ONCE(file->f_ra.mmap_miss, 0);
3576 else
3577 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss_saved - mmap_miss);
3578
f9ce0be7 3579 return ret;
f1820361
KS
3580}
3581EXPORT_SYMBOL(filemap_map_pages);
3582
2bcd6454 3583vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
4fcf1c62 3584{
5df1a672 3585 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
960ea971 3586 struct folio *folio = page_folio(vmf->page);
2bcd6454 3587 vm_fault_t ret = VM_FAULT_LOCKED;
4fcf1c62 3588
5df1a672 3589 sb_start_pagefault(mapping->host->i_sb);
11bac800 3590 file_update_time(vmf->vma->vm_file);
960ea971
MWO
3591 folio_lock(folio);
3592 if (folio->mapping != mapping) {
3593 folio_unlock(folio);
4fcf1c62
JK
3594 ret = VM_FAULT_NOPAGE;
3595 goto out;
3596 }
14da9200 3597 /*
960ea971 3598 * We mark the folio dirty already here so that when freeze is in
14da9200 3599 * progress, we are guaranteed that writeback during freezing will
960ea971 3600 * see the dirty folio and writeprotect it again.
14da9200 3601 */
960ea971
MWO
3602 folio_mark_dirty(folio);
3603 folio_wait_stable(folio);
4fcf1c62 3604out:
5df1a672 3605 sb_end_pagefault(mapping->host->i_sb);
4fcf1c62
JK
3606 return ret;
3607}
4fcf1c62 3608
f0f37e2f 3609const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 3610 .fault = filemap_fault,
f1820361 3611 .map_pages = filemap_map_pages,
4fcf1c62 3612 .page_mkwrite = filemap_page_mkwrite,
1da177e4
LT
3613};
3614
3615/* This is used for a general mmap of a disk file */
3616
68d68ff6 3617int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
3618{
3619 struct address_space *mapping = file->f_mapping;
3620
7e0a1265 3621 if (!mapping->a_ops->read_folio)
1da177e4
LT
3622 return -ENOEXEC;
3623 file_accessed(file);
3624 vma->vm_ops = &generic_file_vm_ops;
3625 return 0;
3626}
1da177e4
LT
3627
3628/*
3629 * This is for filesystems which do not implement ->writepage.
3630 */
3631int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3632{
e8e17ee9 3633 if (vma_is_shared_maywrite(vma))
1da177e4
LT
3634 return -EINVAL;
3635 return generic_file_mmap(file, vma);
3636}
3637#else
4b96a37d 3638vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
45397228 3639{
4b96a37d 3640 return VM_FAULT_SIGBUS;
45397228 3641}
68d68ff6 3642int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
3643{
3644 return -ENOSYS;
3645}
68d68ff6 3646int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
3647{
3648 return -ENOSYS;
3649}
3650#endif /* CONFIG_MMU */
3651
45397228 3652EXPORT_SYMBOL(filemap_page_mkwrite);
1da177e4
LT
3653EXPORT_SYMBOL(generic_file_mmap);
3654EXPORT_SYMBOL(generic_file_readonly_mmap);
3655
539a3322 3656static struct folio *do_read_cache_folio(struct address_space *mapping,
e9b5b23e 3657 pgoff_t index, filler_t filler, struct file *file, gfp_t gfp)
67f9fd91 3658{
539a3322 3659 struct folio *folio;
1da177e4 3660 int err;
07950008
MWO
3661
3662 if (!filler)
3663 filler = mapping->a_ops->read_folio;
1da177e4 3664repeat:
539a3322 3665 folio = filemap_get_folio(mapping, index);
66dabbb6 3666 if (IS_ERR(folio)) {
539a3322
MWO
3667 folio = filemap_alloc_folio(gfp, 0);
3668 if (!folio)
eb2be189 3669 return ERR_PTR(-ENOMEM);
539a3322 3670 err = filemap_add_folio(mapping, folio, index, gfp);
eb2be189 3671 if (unlikely(err)) {
539a3322 3672 folio_put(folio);
eb2be189
NP
3673 if (err == -EEXIST)
3674 goto repeat;
22ecdb4f 3675 /* Presumably ENOMEM for xarray node */
1da177e4
LT
3676 return ERR_PTR(err);
3677 }
32b63529 3678
9bc3e869 3679 goto filler;
32b63529 3680 }
539a3322 3681 if (folio_test_uptodate(folio))
1da177e4
LT
3682 goto out;
3683
81f4c03b
MWO
3684 if (!folio_trylock(folio)) {
3685 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3686 goto repeat;
3687 }
ebded027 3688
81f4c03b 3689 /* Folio was truncated from mapping */
539a3322
MWO
3690 if (!folio->mapping) {
3691 folio_unlock(folio);
3692 folio_put(folio);
32b63529 3693 goto repeat;
1da177e4 3694 }
ebded027
MG
3695
3696 /* Someone else locked and filled the page in a very small window */
539a3322
MWO
3697 if (folio_test_uptodate(folio)) {
3698 folio_unlock(folio);
1da177e4
LT
3699 goto out;
3700 }
faffdfa0 3701
9bc3e869 3702filler:
290e1a32 3703 err = filemap_read_folio(file, filler, folio);
1dfa24a4 3704 if (err) {
9bc3e869 3705 folio_put(folio);
1dfa24a4
MWO
3706 if (err == AOP_TRUNCATED_PAGE)
3707 goto repeat;
9bc3e869
MWO
3708 return ERR_PTR(err);
3709 }
32b63529 3710
c855ff37 3711out:
539a3322
MWO
3712 folio_mark_accessed(folio);
3713 return folio;
6fe6900e 3714}
0531b2aa
LT
3715
3716/**
e9b5b23e
MWO
3717 * read_cache_folio - Read into page cache, fill it if needed.
3718 * @mapping: The address_space to read from.
3719 * @index: The index to read.
3720 * @filler: Function to perform the read, or NULL to use aops->read_folio().
3721 * @file: Passed to filler function, may be NULL if not required.
0531b2aa 3722 *
e9b5b23e
MWO
3723 * Read one page into the page cache. If it succeeds, the folio returned
3724 * will contain @index, but it may not be the first page of the folio.
a862f68a 3725 *
e9b5b23e
MWO
3726 * If the filler function returns an error, it will be returned to the
3727 * caller.
730633f0 3728 *
e9b5b23e
MWO
3729 * Context: May sleep. Expects mapping->invalidate_lock to be held.
3730 * Return: An uptodate folio on success, ERR_PTR() on failure.
0531b2aa 3731 */
539a3322 3732struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
e9b5b23e 3733 filler_t filler, struct file *file)
539a3322 3734{
e9b5b23e 3735 return do_read_cache_folio(mapping, index, filler, file,
539a3322
MWO
3736 mapping_gfp_mask(mapping));
3737}
3738EXPORT_SYMBOL(read_cache_folio);
3739
3e629597
MWO
3740/**
3741 * mapping_read_folio_gfp - Read into page cache, using specified allocation flags.
3742 * @mapping: The address_space for the folio.
3743 * @index: The index that the allocated folio will contain.
3744 * @gfp: The page allocator flags to use if allocating.
3745 *
3746 * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with
3747 * any new memory allocations done using the specified allocation flags.
3748 *
3749 * The most likely error from this function is EIO, but ENOMEM is
3750 * possible and so is EINTR. If ->read_folio returns another error,
3751 * that will be returned to the caller.
3752 *
3753 * The function expects mapping->invalidate_lock to be already held.
3754 *
3755 * Return: Uptodate folio on success, ERR_PTR() on failure.
3756 */
3757struct folio *mapping_read_folio_gfp(struct address_space *mapping,
3758 pgoff_t index, gfp_t gfp)
3759{
3760 return do_read_cache_folio(mapping, index, NULL, NULL, gfp);
3761}
3762EXPORT_SYMBOL(mapping_read_folio_gfp);
3763
539a3322 3764static struct page *do_read_cache_page(struct address_space *mapping,
e9b5b23e 3765 pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp)
539a3322
MWO
3766{
3767 struct folio *folio;
3768
e9b5b23e 3769 folio = do_read_cache_folio(mapping, index, filler, file, gfp);
539a3322
MWO
3770 if (IS_ERR(folio))
3771 return &folio->page;
3772 return folio_file_page(folio, index);
3773}
3774
67f9fd91 3775struct page *read_cache_page(struct address_space *mapping,
e9b5b23e 3776 pgoff_t index, filler_t *filler, struct file *file)
0531b2aa 3777{
e9b5b23e 3778 return do_read_cache_page(mapping, index, filler, file,
d322a8e5 3779 mapping_gfp_mask(mapping));
0531b2aa 3780}
67f9fd91 3781EXPORT_SYMBOL(read_cache_page);
0531b2aa
LT
3782
3783/**
3784 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3785 * @mapping: the page's address_space
3786 * @index: the page index
3787 * @gfp: the page allocator flags to use if allocating
3788 *
3789 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
e6f67b8c 3790 * any new page allocations done using the specified allocation flags.
0531b2aa
LT
3791 *
3792 * If the page does not get brought uptodate, return -EIO.
a862f68a 3793 *
730633f0
JK
3794 * The function expects mapping->invalidate_lock to be already held.
3795 *
a862f68a 3796 * Return: up to date page on success, ERR_PTR() on failure.
0531b2aa
LT
3797 */
3798struct page *read_cache_page_gfp(struct address_space *mapping,
3799 pgoff_t index,
3800 gfp_t gfp)
3801{
6c45b454 3802 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
0531b2aa
LT
3803}
3804EXPORT_SYMBOL(read_cache_page_gfp);
3805
a92853b6
KK
3806/*
3807 * Warn about a page cache invalidation failure during a direct I/O write.
3808 */
c402a9a9 3809static void dio_warn_stale_pagecache(struct file *filp)
a92853b6
KK
3810{
3811 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3812 char pathname[128];
a92853b6
KK
3813 char *path;
3814
5df1a672 3815 errseq_set(&filp->f_mapping->wb_err, -EIO);
a92853b6
KK
3816 if (__ratelimit(&_rs)) {
3817 path = file_path(filp, pathname, sizeof(pathname));
3818 if (IS_ERR(path))
3819 path = "(unknown)";
3820 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
3821 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3822 current->comm);
3823 }
3824}
3825
c402a9a9 3826void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count)
1da177e4 3827{
c402a9a9 3828 struct address_space *mapping = iocb->ki_filp->f_mapping;
1da177e4 3829
c402a9a9
CH
3830 if (mapping->nrpages &&
3831 invalidate_inode_pages2_range(mapping,
3832 iocb->ki_pos >> PAGE_SHIFT,
3833 (iocb->ki_pos + count - 1) >> PAGE_SHIFT))
3834 dio_warn_stale_pagecache(iocb->ki_filp);
3835}
a969e903 3836
1da177e4 3837ssize_t
1af5bb49 3838generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
1da177e4 3839{
c402a9a9
CH
3840 struct address_space *mapping = iocb->ki_filp->f_mapping;
3841 size_t write_len = iov_iter_count(from);
3842 ssize_t written;
a969e903 3843
55635ba7
AR
3844 /*
3845 * If a page can not be invalidated, return 0 to fall back
3846 * to buffered write.
3847 */
e003f74a 3848 written = kiocb_invalidate_pages(iocb, write_len);
55635ba7
AR
3849 if (written) {
3850 if (written == -EBUSY)
3851 return 0;
c402a9a9 3852 return written;
a969e903
CH
3853 }
3854
639a93a5 3855 written = mapping->a_ops->direct_IO(iocb, from);
a969e903
CH
3856
3857 /*
3858 * Finally, try again to invalidate clean pages which might have been
3859 * cached by non-direct readahead, or faulted in by get_user_pages()
3860 * if the source of the write was an mmap'ed region of the file
3861 * we're writing. Either one is a pretty crazy thing to do,
3862 * so we don't support it 100%. If this invalidation
3863 * fails, tough, the write still worked...
332391a9
LC
3864 *
3865 * Most of the time we do not need this since dio_complete() will do
3866 * the invalidation for us. However there are some file systems that
3867 * do not end up with dio_complete() being called, so let's not break
80c1fe90
KK
3868 * them by removing it completely.
3869 *
9266a140
KK
3870 * Noticeable example is a blkdev_direct_IO().
3871 *
80c1fe90 3872 * Skip invalidation for async writes or if mapping has no pages.
a969e903 3873 */
1da177e4 3874 if (written > 0) {
c402a9a9
CH
3875 struct inode *inode = mapping->host;
3876 loff_t pos = iocb->ki_pos;
3877
3878 kiocb_invalidate_post_direct_write(iocb, written);
0116651c 3879 pos += written;
639a93a5 3880 write_len -= written;
0116651c
NK
3881 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3882 i_size_write(inode, pos);
1da177e4
LT
3883 mark_inode_dirty(inode);
3884 }
5cb6c6c7 3885 iocb->ki_pos = pos;
1da177e4 3886 }
ab2125df
PB
3887 if (written != -EIOCBQUEUED)
3888 iov_iter_revert(from, write_len - iov_iter_count(from));
1da177e4
LT
3889 return written;
3890}
3891EXPORT_SYMBOL(generic_file_direct_write);
3892
800ba295 3893ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
afddba49 3894{
800ba295
MWO
3895 struct file *file = iocb->ki_filp;
3896 loff_t pos = iocb->ki_pos;
afddba49
NP
3897 struct address_space *mapping = file->f_mapping;
3898 const struct address_space_operations *a_ops = mapping->a_ops;
3899 long status = 0;
3900 ssize_t written = 0;
674b892e 3901
afddba49
NP
3902 do {
3903 struct page *page;
afddba49
NP
3904 unsigned long offset; /* Offset into pagecache page */
3905 unsigned long bytes; /* Bytes to write to page */
3906 size_t copied; /* Bytes copied from user */
1468c6f4 3907 void *fsdata = NULL;
afddba49 3908
09cbfeaf
KS
3909 offset = (pos & (PAGE_SIZE - 1));
3910 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
3911 iov_iter_count(i));
3912
3913again:
00a3d660
LT
3914 /*
3915 * Bring in the user page that we will copy from _first_.
3916 * Otherwise there's a nasty deadlock on copying from the
3917 * same page as we're writing to, without it being marked
3918 * up-to-date.
00a3d660 3919 */
631f871f 3920 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
00a3d660
LT
3921 status = -EFAULT;
3922 break;
3923 }
3924
296291cd
JK
3925 if (fatal_signal_pending(current)) {
3926 status = -EINTR;
3927 break;
3928 }
3929
9d6b0cd7 3930 status = a_ops->write_begin(file, mapping, pos, bytes,
afddba49 3931 &page, &fsdata);
2457aec6 3932 if (unlikely(status < 0))
afddba49
NP
3933 break;
3934
931e80e4 3935 if (mapping_writably_mapped(mapping))
3936 flush_dcache_page(page);
00a3d660 3937
f0b65f39 3938 copied = copy_page_from_iter_atomic(page, offset, bytes, i);
afddba49
NP
3939 flush_dcache_page(page);
3940
3941 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3942 page, fsdata);
f0b65f39
AV
3943 if (unlikely(status != copied)) {
3944 iov_iter_revert(i, copied - max(status, 0L));
3945 if (unlikely(status < 0))
3946 break;
3947 }
afddba49
NP
3948 cond_resched();
3949
bc1bb416 3950 if (unlikely(status == 0)) {
afddba49 3951 /*
bc1bb416
AV
3952 * A short copy made ->write_end() reject the
3953 * thing entirely. Might be memory poisoning
3954 * halfway through, might be a race with munmap,
3955 * might be severe memory pressure.
afddba49 3956 */
bc1bb416
AV
3957 if (copied)
3958 bytes = copied;
afddba49
NP
3959 goto again;
3960 }
f0b65f39
AV
3961 pos += status;
3962 written += status;
afddba49
NP
3963
3964 balance_dirty_pages_ratelimited(mapping);
afddba49
NP
3965 } while (iov_iter_count(i));
3966
182c25e9
CH
3967 if (!written)
3968 return status;
3969 iocb->ki_pos += written;
3970 return written;
afddba49 3971}
3b93f911 3972EXPORT_SYMBOL(generic_perform_write);
1da177e4 3973
e4dd9de3 3974/**
8174202b 3975 * __generic_file_write_iter - write data to a file
e4dd9de3 3976 * @iocb: IO state structure (file, offset, etc.)
8174202b 3977 * @from: iov_iter with data to write
e4dd9de3
JK
3978 *
3979 * This function does all the work needed for actually writing data to a
3980 * file. It does all basic checks, removes SUID from the file, updates
3981 * modification times and calls proper subroutines depending on whether we
3982 * do direct IO or a standard buffered write.
3983 *
9608703e 3984 * It expects i_rwsem to be grabbed unless we work on a block device or similar
e4dd9de3
JK
3985 * object which does not need locking at all.
3986 *
3987 * This function does *not* take care of syncing data in case of O_SYNC write.
3988 * A caller has to handle it. This is mainly due to the fact that we want to
9608703e 3989 * avoid syncing under i_rwsem.
a862f68a
MR
3990 *
3991 * Return:
3992 * * number of bytes written, even for truncated writes
3993 * * negative error code if no data has been written at all
e4dd9de3 3994 */
8174202b 3995ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3996{
3997 struct file *file = iocb->ki_filp;
68d68ff6 3998 struct address_space *mapping = file->f_mapping;
44fff0fa
CH
3999 struct inode *inode = mapping->host;
4000 ssize_t ret;
1da177e4 4001
44fff0fa
CH
4002 ret = file_remove_privs(file);
4003 if (ret)
4004 return ret;
1da177e4 4005
44fff0fa
CH
4006 ret = file_update_time(file);
4007 if (ret)
4008 return ret;
fb5527e6 4009
2ba48ce5 4010 if (iocb->ki_flags & IOCB_DIRECT) {
44fff0fa 4011 ret = generic_file_direct_write(iocb, from);
1da177e4 4012 /*
fbbbad4b
MW
4013 * If the write stopped short of completing, fall back to
4014 * buffered writes. Some filesystems do this for writes to
4015 * holes, for example. For DAX files, a buffered write will
4016 * not succeed (even if it did, DAX does not handle dirty
4017 * page-cache pages correctly).
1da177e4 4018 */
44fff0fa
CH
4019 if (ret < 0 || !iov_iter_count(from) || IS_DAX(inode))
4020 return ret;
4021 return direct_write_fallback(iocb, from, ret,
4022 generic_perform_write(iocb, from));
fb5527e6 4023 }
44fff0fa
CH
4024
4025 return generic_perform_write(iocb, from);
1da177e4 4026}
8174202b 4027EXPORT_SYMBOL(__generic_file_write_iter);
e4dd9de3 4028
e4dd9de3 4029/**
8174202b 4030 * generic_file_write_iter - write data to a file
e4dd9de3 4031 * @iocb: IO state structure
8174202b 4032 * @from: iov_iter with data to write
e4dd9de3 4033 *
8174202b 4034 * This is a wrapper around __generic_file_write_iter() to be used by most
e4dd9de3 4035 * filesystems. It takes care of syncing the file in case of O_SYNC file
9608703e 4036 * and acquires i_rwsem as needed.
a862f68a
MR
4037 * Return:
4038 * * negative error code if no data has been written at all of
4039 * vfs_fsync_range() failed for a synchronous write
4040 * * number of bytes written, even for truncated writes
e4dd9de3 4041 */
8174202b 4042ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
4043{
4044 struct file *file = iocb->ki_filp;
148f948b 4045 struct inode *inode = file->f_mapping->host;
1da177e4 4046 ssize_t ret;
1da177e4 4047
5955102c 4048 inode_lock(inode);
3309dd04
AV
4049 ret = generic_write_checks(iocb, from);
4050 if (ret > 0)
5f380c7f 4051 ret = __generic_file_write_iter(iocb, from);
5955102c 4052 inode_unlock(inode);
1da177e4 4053
e2592217
CH
4054 if (ret > 0)
4055 ret = generic_write_sync(iocb, ret);
1da177e4
LT
4056 return ret;
4057}
8174202b 4058EXPORT_SYMBOL(generic_file_write_iter);
1da177e4 4059
cf9a2ae8 4060/**
82c50f8b
MWO
4061 * filemap_release_folio() - Release fs-specific metadata on a folio.
4062 * @folio: The folio which the kernel is trying to free.
4063 * @gfp: Memory allocation flags (and I/O mode).
cf9a2ae8 4064 *
82c50f8b
MWO
4065 * The address_space is trying to release any data attached to a folio
4066 * (presumably at folio->private).
cf9a2ae8 4067 *
82c50f8b
MWO
4068 * This will also be called if the private_2 flag is set on a page,
4069 * indicating that the folio has other metadata associated with it.
266cf658 4070 *
82c50f8b
MWO
4071 * The @gfp argument specifies whether I/O may be performed to release
4072 * this page (__GFP_IO), and whether the call may block
4073 * (__GFP_RECLAIM & __GFP_FS).
cf9a2ae8 4074 *
82c50f8b 4075 * Return: %true if the release was successful, otherwise %false.
cf9a2ae8 4076 */
82c50f8b 4077bool filemap_release_folio(struct folio *folio, gfp_t gfp)
cf9a2ae8 4078{
82c50f8b 4079 struct address_space * const mapping = folio->mapping;
cf9a2ae8 4080
82c50f8b 4081 BUG_ON(!folio_test_locked(folio));
0201ebf2
DH
4082 if (!folio_needs_release(folio))
4083 return true;
82c50f8b
MWO
4084 if (folio_test_writeback(folio))
4085 return false;
cf9a2ae8 4086
fa29000b
MWO
4087 if (mapping && mapping->a_ops->release_folio)
4088 return mapping->a_ops->release_folio(folio, gfp);
68189fef 4089 return try_to_free_buffers(folio);
cf9a2ae8 4090}
82c50f8b 4091EXPORT_SYMBOL(filemap_release_folio);
cf264e13
NP
4092
4093#ifdef CONFIG_CACHESTAT_SYSCALL
4094/**
4095 * filemap_cachestat() - compute the page cache statistics of a mapping
4096 * @mapping: The mapping to compute the statistics for.
4097 * @first_index: The starting page cache index.
4098 * @last_index: The final page index (inclusive).
4099 * @cs: the cachestat struct to write the result to.
4100 *
4101 * This will query the page cache statistics of a mapping in the
4102 * page range of [first_index, last_index] (inclusive). The statistics
4103 * queried include: number of dirty pages, number of pages marked for
4104 * writeback, and the number of (recently) evicted pages.
4105 */
4106static void filemap_cachestat(struct address_space *mapping,
4107 pgoff_t first_index, pgoff_t last_index, struct cachestat *cs)
4108{
4109 XA_STATE(xas, &mapping->i_pages, first_index);
4110 struct folio *folio;
4111
4112 rcu_read_lock();
4113 xas_for_each(&xas, folio, last_index) {
4114 unsigned long nr_pages;
4115 pgoff_t folio_first_index, folio_last_index;
4116
4117 if (xas_retry(&xas, folio))
4118 continue;
4119
4120 if (xa_is_value(folio)) {
4121 /* page is evicted */
4122 void *shadow = (void *)folio;
4123 bool workingset; /* not used */
4124 int order = xa_get_order(xas.xa, xas.xa_index);
4125
4126 nr_pages = 1 << order;
4127 folio_first_index = round_down(xas.xa_index, 1 << order);
4128 folio_last_index = folio_first_index + nr_pages - 1;
4129
4130 /* Folios might straddle the range boundaries, only count covered pages */
4131 if (folio_first_index < first_index)
4132 nr_pages -= first_index - folio_first_index;
4133
4134 if (folio_last_index > last_index)
4135 nr_pages -= folio_last_index - last_index;
4136
4137 cs->nr_evicted += nr_pages;
4138
4139#ifdef CONFIG_SWAP /* implies CONFIG_MMU */
4140 if (shmem_mapping(mapping)) {
4141 /* shmem file - in swap cache */
4142 swp_entry_t swp = radix_to_swp_entry(folio);
4143
4144 shadow = get_shadow_from_swap_cache(swp);
4145 }
4146#endif
4147 if (workingset_test_recent(shadow, true, &workingset))
4148 cs->nr_recently_evicted += nr_pages;
4149
4150 goto resched;
4151 }
4152
4153 nr_pages = folio_nr_pages(folio);
4154 folio_first_index = folio_pgoff(folio);
4155 folio_last_index = folio_first_index + nr_pages - 1;
4156
4157 /* Folios might straddle the range boundaries, only count covered pages */
4158 if (folio_first_index < first_index)
4159 nr_pages -= first_index - folio_first_index;
4160
4161 if (folio_last_index > last_index)
4162 nr_pages -= folio_last_index - last_index;
4163
4164 /* page is in cache */
4165 cs->nr_cache += nr_pages;
4166
4167 if (folio_test_dirty(folio))
4168 cs->nr_dirty += nr_pages;
4169
4170 if (folio_test_writeback(folio))
4171 cs->nr_writeback += nr_pages;
4172
4173resched:
4174 if (need_resched()) {
4175 xas_pause(&xas);
4176 cond_resched_rcu();
4177 }
4178 }
4179 rcu_read_unlock();
4180}
4181
4182/*
4183 * The cachestat(2) system call.
4184 *
4185 * cachestat() returns the page cache statistics of a file in the
4186 * bytes range specified by `off` and `len`: number of cached pages,
4187 * number of dirty pages, number of pages marked for writeback,
4188 * number of evicted pages, and number of recently evicted pages.
4189 *
4190 * An evicted page is a page that is previously in the page cache
4191 * but has been evicted since. A page is recently evicted if its last
4192 * eviction was recent enough that its reentry to the cache would
4193 * indicate that it is actively being used by the system, and that
4194 * there is memory pressure on the system.
4195 *
4196 * `off` and `len` must be non-negative integers. If `len` > 0,
4197 * the queried range is [`off`, `off` + `len`]. If `len` == 0,
4198 * we will query in the range from `off` to the end of the file.
4199 *
4200 * The `flags` argument is unused for now, but is included for future
4201 * extensibility. User should pass 0 (i.e no flag specified).
4202 *
4203 * Currently, hugetlbfs is not supported.
4204 *
4205 * Because the status of a page can change after cachestat() checks it
4206 * but before it returns to the application, the returned values may
4207 * contain stale information.
4208 *
4209 * return values:
4210 * zero - success
4211 * -EFAULT - cstat or cstat_range points to an illegal address
4212 * -EINVAL - invalid flags
4213 * -EBADF - invalid file descriptor
4214 * -EOPNOTSUPP - file descriptor is of a hugetlbfs file
4215 */
4216SYSCALL_DEFINE4(cachestat, unsigned int, fd,
4217 struct cachestat_range __user *, cstat_range,
4218 struct cachestat __user *, cstat, unsigned int, flags)
4219{
4220 struct fd f = fdget(fd);
4221 struct address_space *mapping;
4222 struct cachestat_range csr;
4223 struct cachestat cs;
4224 pgoff_t first_index, last_index;
4225
4226 if (!f.file)
4227 return -EBADF;
4228
4229 if (copy_from_user(&csr, cstat_range,
4230 sizeof(struct cachestat_range))) {
4231 fdput(f);
4232 return -EFAULT;
4233 }
4234
4235 /* hugetlbfs is not supported */
4236 if (is_file_hugepages(f.file)) {
4237 fdput(f);
4238 return -EOPNOTSUPP;
4239 }
4240
4241 if (flags != 0) {
4242 fdput(f);
4243 return -EINVAL;
4244 }
4245
4246 first_index = csr.off >> PAGE_SHIFT;
4247 last_index =
4248 csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT;
4249 memset(&cs, 0, sizeof(struct cachestat));
4250 mapping = f.file->f_mapping;
4251 filemap_cachestat(mapping, first_index, last_index, &cs);
4252 fdput(f);
4253
4254 if (copy_to_user(cstat, &cs, sizeof(struct cachestat)))
4255 return -EFAULT;
4256
4257 return 0;
4258}
4259#endif /* CONFIG_CACHESTAT_SYSCALL */