Merge tag 'afs-netfs-lib-20210426' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-block.git] / mm / filemap.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/filemap.c
4 *
5 * Copyright (C) 1994-1999 Linus Torvalds
6 */
7
8/*
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
12 */
b95f1b31 13#include <linux/export.h>
1da177e4 14#include <linux/compiler.h>
f9fe48be 15#include <linux/dax.h>
1da177e4 16#include <linux/fs.h>
3f07c014 17#include <linux/sched/signal.h>
c22ce143 18#include <linux/uaccess.h>
c59ede7b 19#include <linux/capability.h>
1da177e4 20#include <linux/kernel_stat.h>
5a0e3ad6 21#include <linux/gfp.h>
1da177e4
LT
22#include <linux/mm.h>
23#include <linux/swap.h>
24#include <linux/mman.h>
25#include <linux/pagemap.h>
26#include <linux/file.h>
27#include <linux/uio.h>
cfcbfb13 28#include <linux/error-injection.h>
1da177e4
LT
29#include <linux/hash.h>
30#include <linux/writeback.h>
53253383 31#include <linux/backing-dev.h>
1da177e4
LT
32#include <linux/pagevec.h>
33#include <linux/blkdev.h>
34#include <linux/security.h>
44110fe3 35#include <linux/cpuset.h>
00501b53 36#include <linux/hugetlb.h>
8a9f3ccd 37#include <linux/memcontrol.h>
c515e1fd 38#include <linux/cleancache.h>
c7df8ad2 39#include <linux/shmem_fs.h>
f1820361 40#include <linux/rmap.h>
b1d29ba8 41#include <linux/delayacct.h>
eb414681 42#include <linux/psi.h>
d0e6a582 43#include <linux/ramfs.h>
b9306a79 44#include <linux/page_idle.h>
f9ce0be7 45#include <asm/pgalloc.h>
de591a82 46#include <asm/tlbflush.h>
0f8053a5
NP
47#include "internal.h"
48
fe0bfaaf
RJ
49#define CREATE_TRACE_POINTS
50#include <trace/events/filemap.h>
51
1da177e4 52/*
1da177e4
LT
53 * FIXME: remove all knowledge of the buffer layer from the core VM
54 */
148f948b 55#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 56
1da177e4
LT
57#include <asm/mman.h>
58
59/*
60 * Shared mappings implemented 30.11.1994. It's not fully working yet,
61 * though.
62 *
63 * Shared mappings now work. 15.8.1995 Bruno.
64 *
65 * finished 'unifying' the page and buffer cache and SMP-threaded the
66 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
67 *
68 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
69 */
70
71/*
72 * Lock ordering:
73 *
c8c06efa 74 * ->i_mmap_rwsem (truncate_pagecache)
1da177e4 75 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91 76 * ->swap_lock (exclusive_swap_page, others)
b93b0163 77 * ->i_pages lock
1da177e4 78 *
1b1dcc1b 79 * ->i_mutex
c8c06efa 80 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
1da177e4 81 *
c1e8d7c6 82 * ->mmap_lock
c8c06efa 83 * ->i_mmap_rwsem
b8072f09 84 * ->page_table_lock or pte_lock (various, mainly in memory.c)
b93b0163 85 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
1da177e4 86 *
c1e8d7c6 87 * ->mmap_lock
1da177e4
LT
88 * ->lock_page (access_process_vm)
89 *
ccad2365 90 * ->i_mutex (generic_perform_write)
c1e8d7c6 91 * ->mmap_lock (fault_in_pages_readable->do_page_fault)
1da177e4 92 *
f758eeab 93 * bdi->wb.list_lock
a66979ab 94 * sb_lock (fs/fs-writeback.c)
b93b0163 95 * ->i_pages lock (__sync_single_inode)
1da177e4 96 *
c8c06efa 97 * ->i_mmap_rwsem
1da177e4
LT
98 * ->anon_vma.lock (vma_adjust)
99 *
100 * ->anon_vma.lock
b8072f09 101 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 102 *
b8072f09 103 * ->page_table_lock or pte_lock
5d337b91 104 * ->swap_lock (try_to_unmap_one)
1da177e4 105 * ->private_lock (try_to_unmap_one)
b93b0163 106 * ->i_pages lock (try_to_unmap_one)
15b44736
HD
107 * ->lruvec->lru_lock (follow_page->mark_page_accessed)
108 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page)
1da177e4 109 * ->private_lock (page_remove_rmap->set_page_dirty)
b93b0163 110 * ->i_pages lock (page_remove_rmap->set_page_dirty)
f758eeab 111 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
250df6ed 112 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
81f8c3a4 113 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
f758eeab 114 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 115 * ->inode->i_lock (zap_pte_range->set_page_dirty)
1da177e4
LT
116 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
117 *
c8c06efa 118 * ->i_mmap_rwsem
9a3c531d 119 * ->tasklist_lock (memory_failure, collect_procs_ao)
1da177e4
LT
120 */
121
5c024e6a 122static void page_cache_delete(struct address_space *mapping,
91b0abe3
JW
123 struct page *page, void *shadow)
124{
5c024e6a
MW
125 XA_STATE(xas, &mapping->i_pages, page->index);
126 unsigned int nr = 1;
c70b647d 127
5c024e6a 128 mapping_set_update(&xas, mapping);
c70b647d 129
5c024e6a
MW
130 /* hugetlb pages are represented by a single entry in the xarray */
131 if (!PageHuge(page)) {
132 xas_set_order(&xas, page->index, compound_order(page));
d8c6546b 133 nr = compound_nr(page);
5c024e6a 134 }
91b0abe3 135
83929372
KS
136 VM_BUG_ON_PAGE(!PageLocked(page), page);
137 VM_BUG_ON_PAGE(PageTail(page), page);
138 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
449dd698 139
5c024e6a
MW
140 xas_store(&xas, shadow);
141 xas_init_marks(&xas);
d3798ae8 142
2300638b
JK
143 page->mapping = NULL;
144 /* Leave page->index set: truncation lookup relies upon it */
145
d3798ae8
JW
146 if (shadow) {
147 mapping->nrexceptional += nr;
148 /*
149 * Make sure the nrexceptional update is committed before
150 * the nrpages update so that final truncate racing
151 * with reclaim does not see both counters 0 at the
152 * same time and miss a shadow entry.
153 */
154 smp_wmb();
155 }
156 mapping->nrpages -= nr;
91b0abe3
JW
157}
158
5ecc4d85
JK
159static void unaccount_page_cache_page(struct address_space *mapping,
160 struct page *page)
1da177e4 161{
5ecc4d85 162 int nr;
1da177e4 163
c515e1fd
DM
164 /*
165 * if we're uptodate, flush out into the cleancache, otherwise
166 * invalidate any existing cleancache entries. We can't leave
167 * stale data around in the cleancache once our page is gone
168 */
169 if (PageUptodate(page) && PageMappedToDisk(page))
170 cleancache_put_page(page);
171 else
3167760f 172 cleancache_invalidate_page(mapping, page);
c515e1fd 173
83929372 174 VM_BUG_ON_PAGE(PageTail(page), page);
06b241f3
HD
175 VM_BUG_ON_PAGE(page_mapped(page), page);
176 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
177 int mapcount;
178
179 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
180 current->comm, page_to_pfn(page));
181 dump_page(page, "still mapped when deleted");
182 dump_stack();
183 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
184
185 mapcount = page_mapcount(page);
186 if (mapping_exiting(mapping) &&
187 page_count(page) >= mapcount + 2) {
188 /*
189 * All vmas have already been torn down, so it's
190 * a good bet that actually the page is unmapped,
191 * and we'd prefer not to leak it: if we're wrong,
192 * some other bad page check should catch it later.
193 */
194 page_mapcount_reset(page);
6d061f9f 195 page_ref_sub(page, mapcount);
06b241f3
HD
196 }
197 }
198
4165b9b4 199 /* hugetlb pages do not participate in page cache accounting. */
5ecc4d85
JK
200 if (PageHuge(page))
201 return;
09612fa6 202
6c357848 203 nr = thp_nr_pages(page);
5ecc4d85 204
0d1c2072 205 __mod_lruvec_page_state(page, NR_FILE_PAGES, -nr);
5ecc4d85 206 if (PageSwapBacked(page)) {
0d1c2072 207 __mod_lruvec_page_state(page, NR_SHMEM, -nr);
5ecc4d85 208 if (PageTransHuge(page))
57b2847d 209 __mod_lruvec_page_state(page, NR_SHMEM_THPS, -nr);
99cb0dbd 210 } else if (PageTransHuge(page)) {
bf9ecead 211 __mod_lruvec_page_state(page, NR_FILE_THPS, -nr);
09d91cda 212 filemap_nr_thps_dec(mapping);
800d8c63 213 }
5ecc4d85
JK
214
215 /*
216 * At this point page must be either written or cleaned by
217 * truncate. Dirty page here signals a bug and loss of
218 * unwritten data.
219 *
220 * This fixes dirty accounting after removing the page entirely
221 * but leaves PageDirty set: it has no effect for truncated
222 * page and anyway will be cleared before returning page into
223 * buddy allocator.
224 */
225 if (WARN_ON_ONCE(PageDirty(page)))
226 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
227}
228
229/*
230 * Delete a page from the page cache and free it. Caller has to make
231 * sure the page is locked and that nobody else uses it - or that usage
b93b0163 232 * is safe. The caller must hold the i_pages lock.
5ecc4d85
JK
233 */
234void __delete_from_page_cache(struct page *page, void *shadow)
235{
236 struct address_space *mapping = page->mapping;
237
238 trace_mm_filemap_delete_from_page_cache(page);
239
240 unaccount_page_cache_page(mapping, page);
5c024e6a 241 page_cache_delete(mapping, page, shadow);
1da177e4
LT
242}
243
59c66c5f
JK
244static void page_cache_free_page(struct address_space *mapping,
245 struct page *page)
246{
247 void (*freepage)(struct page *);
248
249 freepage = mapping->a_ops->freepage;
250 if (freepage)
251 freepage(page);
252
253 if (PageTransHuge(page) && !PageHuge(page)) {
887b22c6 254 page_ref_sub(page, thp_nr_pages(page));
59c66c5f
JK
255 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
256 } else {
257 put_page(page);
258 }
259}
260
702cfbf9
MK
261/**
262 * delete_from_page_cache - delete page from page cache
263 * @page: the page which the kernel is trying to remove from page cache
264 *
265 * This must be called only on pages that have been verified to be in the page
266 * cache and locked. It will never put the page into the free list, the caller
267 * has a reference on the page.
268 */
269void delete_from_page_cache(struct page *page)
1da177e4 270{
83929372 271 struct address_space *mapping = page_mapping(page);
c4843a75 272 unsigned long flags;
1da177e4 273
cd7619d6 274 BUG_ON(!PageLocked(page));
b93b0163 275 xa_lock_irqsave(&mapping->i_pages, flags);
62cccb8c 276 __delete_from_page_cache(page, NULL);
b93b0163 277 xa_unlock_irqrestore(&mapping->i_pages, flags);
6072d13c 278
59c66c5f 279 page_cache_free_page(mapping, page);
97cecb5a
MK
280}
281EXPORT_SYMBOL(delete_from_page_cache);
282
aa65c29c 283/*
ef8e5717 284 * page_cache_delete_batch - delete several pages from page cache
aa65c29c
JK
285 * @mapping: the mapping to which pages belong
286 * @pvec: pagevec with pages to delete
287 *
b93b0163 288 * The function walks over mapping->i_pages and removes pages passed in @pvec
4101196b
MWO
289 * from the mapping. The function expects @pvec to be sorted by page index
290 * and is optimised for it to be dense.
b93b0163 291 * It tolerates holes in @pvec (mapping entries at those indices are not
aa65c29c 292 * modified). The function expects only THP head pages to be present in the
4101196b 293 * @pvec.
aa65c29c 294 *
b93b0163 295 * The function expects the i_pages lock to be held.
aa65c29c 296 */
ef8e5717 297static void page_cache_delete_batch(struct address_space *mapping,
aa65c29c
JK
298 struct pagevec *pvec)
299{
ef8e5717 300 XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
aa65c29c 301 int total_pages = 0;
4101196b 302 int i = 0;
aa65c29c 303 struct page *page;
aa65c29c 304
ef8e5717
MW
305 mapping_set_update(&xas, mapping);
306 xas_for_each(&xas, page, ULONG_MAX) {
4101196b 307 if (i >= pagevec_count(pvec))
aa65c29c 308 break;
4101196b
MWO
309
310 /* A swap/dax/shadow entry got inserted? Skip it. */
3159f943 311 if (xa_is_value(page))
aa65c29c 312 continue;
4101196b
MWO
313 /*
314 * A page got inserted in our range? Skip it. We have our
315 * pages locked so they are protected from being removed.
316 * If we see a page whose index is higher than ours, it
317 * means our page has been removed, which shouldn't be
318 * possible because we're holding the PageLock.
319 */
320 if (page != pvec->pages[i]) {
321 VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
322 page);
323 continue;
324 }
325
326 WARN_ON_ONCE(!PageLocked(page));
327
328 if (page->index == xas.xa_index)
aa65c29c 329 page->mapping = NULL;
4101196b
MWO
330 /* Leave page->index set: truncation lookup relies on it */
331
332 /*
333 * Move to the next page in the vector if this is a regular
334 * page or the index is of the last sub-page of this compound
335 * page.
336 */
337 if (page->index + compound_nr(page) - 1 == xas.xa_index)
aa65c29c 338 i++;
ef8e5717 339 xas_store(&xas, NULL);
aa65c29c
JK
340 total_pages++;
341 }
342 mapping->nrpages -= total_pages;
343}
344
345void delete_from_page_cache_batch(struct address_space *mapping,
346 struct pagevec *pvec)
347{
348 int i;
349 unsigned long flags;
350
351 if (!pagevec_count(pvec))
352 return;
353
b93b0163 354 xa_lock_irqsave(&mapping->i_pages, flags);
aa65c29c
JK
355 for (i = 0; i < pagevec_count(pvec); i++) {
356 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
357
358 unaccount_page_cache_page(mapping, pvec->pages[i]);
359 }
ef8e5717 360 page_cache_delete_batch(mapping, pvec);
b93b0163 361 xa_unlock_irqrestore(&mapping->i_pages, flags);
aa65c29c
JK
362
363 for (i = 0; i < pagevec_count(pvec); i++)
364 page_cache_free_page(mapping, pvec->pages[i]);
365}
366
d72d9e2a 367int filemap_check_errors(struct address_space *mapping)
865ffef3
DM
368{
369 int ret = 0;
370 /* Check for outstanding write errors */
7fcbbaf1
JA
371 if (test_bit(AS_ENOSPC, &mapping->flags) &&
372 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
865ffef3 373 ret = -ENOSPC;
7fcbbaf1
JA
374 if (test_bit(AS_EIO, &mapping->flags) &&
375 test_and_clear_bit(AS_EIO, &mapping->flags))
865ffef3
DM
376 ret = -EIO;
377 return ret;
378}
d72d9e2a 379EXPORT_SYMBOL(filemap_check_errors);
865ffef3 380
76341cab
JL
381static int filemap_check_and_keep_errors(struct address_space *mapping)
382{
383 /* Check for outstanding write errors */
384 if (test_bit(AS_EIO, &mapping->flags))
385 return -EIO;
386 if (test_bit(AS_ENOSPC, &mapping->flags))
387 return -ENOSPC;
388 return 0;
389}
390
1da177e4 391/**
485bb99b 392 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
393 * @mapping: address space structure to write
394 * @start: offset in bytes where the range starts
469eb4d0 395 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 396 * @sync_mode: enable synchronous operation
1da177e4 397 *
485bb99b
RD
398 * Start writeback against all of a mapping's dirty pages that lie
399 * within the byte offsets <start, end> inclusive.
400 *
1da177e4 401 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 402 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
403 * these two operations is that if a dirty page/buffer is encountered, it must
404 * be waited upon, and not just skipped over.
a862f68a
MR
405 *
406 * Return: %0 on success, negative error code otherwise.
1da177e4 407 */
ebcf28e1
AM
408int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
409 loff_t end, int sync_mode)
1da177e4
LT
410{
411 int ret;
412 struct writeback_control wbc = {
413 .sync_mode = sync_mode,
05fe478d 414 .nr_to_write = LONG_MAX,
111ebb6e
OH
415 .range_start = start,
416 .range_end = end,
1da177e4
LT
417 };
418
f56753ac 419 if (!mapping_can_writeback(mapping) ||
c3aab9a0 420 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1da177e4
LT
421 return 0;
422
b16b1deb 423 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
1da177e4 424 ret = do_writepages(mapping, &wbc);
b16b1deb 425 wbc_detach_inode(&wbc);
1da177e4
LT
426 return ret;
427}
428
429static inline int __filemap_fdatawrite(struct address_space *mapping,
430 int sync_mode)
431{
111ebb6e 432 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
433}
434
435int filemap_fdatawrite(struct address_space *mapping)
436{
437 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
438}
439EXPORT_SYMBOL(filemap_fdatawrite);
440
f4c0a0fd 441int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 442 loff_t end)
1da177e4
LT
443{
444 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
445}
f4c0a0fd 446EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 447
485bb99b
RD
448/**
449 * filemap_flush - mostly a non-blocking flush
450 * @mapping: target address_space
451 *
1da177e4
LT
452 * This is a mostly non-blocking flush. Not suitable for data-integrity
453 * purposes - I/O may not be started against all dirty pages.
a862f68a
MR
454 *
455 * Return: %0 on success, negative error code otherwise.
1da177e4
LT
456 */
457int filemap_flush(struct address_space *mapping)
458{
459 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
460}
461EXPORT_SYMBOL(filemap_flush);
462
7fc9e472
GR
463/**
464 * filemap_range_has_page - check if a page exists in range.
465 * @mapping: address space within which to check
466 * @start_byte: offset in bytes where the range starts
467 * @end_byte: offset in bytes where the range ends (inclusive)
468 *
469 * Find at least one page in the range supplied, usually used to check if
470 * direct writing in this range will trigger a writeback.
a862f68a
MR
471 *
472 * Return: %true if at least one page exists in the specified range,
473 * %false otherwise.
7fc9e472
GR
474 */
475bool filemap_range_has_page(struct address_space *mapping,
476 loff_t start_byte, loff_t end_byte)
477{
f7b68046 478 struct page *page;
8fa8e538
MW
479 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
480 pgoff_t max = end_byte >> PAGE_SHIFT;
7fc9e472
GR
481
482 if (end_byte < start_byte)
483 return false;
484
8fa8e538
MW
485 rcu_read_lock();
486 for (;;) {
487 page = xas_find(&xas, max);
488 if (xas_retry(&xas, page))
489 continue;
490 /* Shadow entries don't count */
491 if (xa_is_value(page))
492 continue;
493 /*
494 * We don't need to try to pin this page; we're about to
495 * release the RCU lock anyway. It is enough to know that
496 * there was a page here recently.
497 */
498 break;
499 }
500 rcu_read_unlock();
7fc9e472 501
8fa8e538 502 return page != NULL;
7fc9e472
GR
503}
504EXPORT_SYMBOL(filemap_range_has_page);
505
5e8fcc1a 506static void __filemap_fdatawait_range(struct address_space *mapping,
aa750fd7 507 loff_t start_byte, loff_t end_byte)
1da177e4 508{
09cbfeaf
KS
509 pgoff_t index = start_byte >> PAGE_SHIFT;
510 pgoff_t end = end_byte >> PAGE_SHIFT;
1da177e4
LT
511 struct pagevec pvec;
512 int nr_pages;
1da177e4 513
94004ed7 514 if (end_byte < start_byte)
5e8fcc1a 515 return;
1da177e4 516
86679820 517 pagevec_init(&pvec);
312e9d2f 518 while (index <= end) {
1da177e4
LT
519 unsigned i;
520
312e9d2f 521 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
67fd707f 522 end, PAGECACHE_TAG_WRITEBACK);
312e9d2f
JK
523 if (!nr_pages)
524 break;
525
1da177e4
LT
526 for (i = 0; i < nr_pages; i++) {
527 struct page *page = pvec.pages[i];
528
1da177e4 529 wait_on_page_writeback(page);
5e8fcc1a 530 ClearPageError(page);
1da177e4
LT
531 }
532 pagevec_release(&pvec);
533 cond_resched();
534 }
aa750fd7
JN
535}
536
537/**
538 * filemap_fdatawait_range - wait for writeback to complete
539 * @mapping: address space structure to wait for
540 * @start_byte: offset in bytes where the range starts
541 * @end_byte: offset in bytes where the range ends (inclusive)
542 *
543 * Walk the list of under-writeback pages of the given address space
544 * in the given range and wait for all of them. Check error status of
545 * the address space and return it.
546 *
547 * Since the error status of the address space is cleared by this function,
548 * callers are responsible for checking the return value and handling and/or
549 * reporting the error.
a862f68a
MR
550 *
551 * Return: error status of the address space.
aa750fd7
JN
552 */
553int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
554 loff_t end_byte)
555{
5e8fcc1a
JL
556 __filemap_fdatawait_range(mapping, start_byte, end_byte);
557 return filemap_check_errors(mapping);
1da177e4 558}
d3bccb6f
JK
559EXPORT_SYMBOL(filemap_fdatawait_range);
560
aa0bfcd9
RZ
561/**
562 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
563 * @mapping: address space structure to wait for
564 * @start_byte: offset in bytes where the range starts
565 * @end_byte: offset in bytes where the range ends (inclusive)
566 *
567 * Walk the list of under-writeback pages of the given address space in the
568 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
569 * this function does not clear error status of the address space.
570 *
571 * Use this function if callers don't handle errors themselves. Expected
572 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
573 * fsfreeze(8)
574 */
575int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
576 loff_t start_byte, loff_t end_byte)
577{
578 __filemap_fdatawait_range(mapping, start_byte, end_byte);
579 return filemap_check_and_keep_errors(mapping);
580}
581EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
582
a823e458
JL
583/**
584 * file_fdatawait_range - wait for writeback to complete
585 * @file: file pointing to address space structure to wait for
586 * @start_byte: offset in bytes where the range starts
587 * @end_byte: offset in bytes where the range ends (inclusive)
588 *
589 * Walk the list of under-writeback pages of the address space that file
590 * refers to, in the given range and wait for all of them. Check error
591 * status of the address space vs. the file->f_wb_err cursor and return it.
592 *
593 * Since the error status of the file is advanced by this function,
594 * callers are responsible for checking the return value and handling and/or
595 * reporting the error.
a862f68a
MR
596 *
597 * Return: error status of the address space vs. the file->f_wb_err cursor.
a823e458
JL
598 */
599int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
600{
601 struct address_space *mapping = file->f_mapping;
602
603 __filemap_fdatawait_range(mapping, start_byte, end_byte);
604 return file_check_and_advance_wb_err(file);
605}
606EXPORT_SYMBOL(file_fdatawait_range);
d3bccb6f 607
aa750fd7
JN
608/**
609 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
610 * @mapping: address space structure to wait for
611 *
612 * Walk the list of under-writeback pages of the given address space
613 * and wait for all of them. Unlike filemap_fdatawait(), this function
614 * does not clear error status of the address space.
615 *
616 * Use this function if callers don't handle errors themselves. Expected
617 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
618 * fsfreeze(8)
a862f68a
MR
619 *
620 * Return: error status of the address space.
aa750fd7 621 */
76341cab 622int filemap_fdatawait_keep_errors(struct address_space *mapping)
aa750fd7 623{
ffb959bb 624 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
76341cab 625 return filemap_check_and_keep_errors(mapping);
aa750fd7 626}
76341cab 627EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
aa750fd7 628
875d91b1 629/* Returns true if writeback might be needed or already in progress. */
9326c9b2 630static bool mapping_needs_writeback(struct address_space *mapping)
1da177e4 631{
875d91b1
KK
632 if (dax_mapping(mapping))
633 return mapping->nrexceptional;
634
635 return mapping->nrpages;
1da177e4 636}
1da177e4 637
485bb99b
RD
638/**
639 * filemap_write_and_wait_range - write out & wait on a file range
640 * @mapping: the address_space for the pages
641 * @lstart: offset in bytes where the range starts
642 * @lend: offset in bytes where the range ends (inclusive)
643 *
469eb4d0
AM
644 * Write out and wait upon file offsets lstart->lend, inclusive.
645 *
0e056eb5 646 * Note that @lend is inclusive (describes the last byte to be written) so
469eb4d0 647 * that this function can be used to write to the very end-of-file (end = -1).
a862f68a
MR
648 *
649 * Return: error status of the address space.
469eb4d0 650 */
1da177e4
LT
651int filemap_write_and_wait_range(struct address_space *mapping,
652 loff_t lstart, loff_t lend)
653{
28fd1298 654 int err = 0;
1da177e4 655
9326c9b2 656 if (mapping_needs_writeback(mapping)) {
28fd1298
OH
657 err = __filemap_fdatawrite_range(mapping, lstart, lend,
658 WB_SYNC_ALL);
ddf8f376
IW
659 /*
660 * Even if the above returned error, the pages may be
661 * written partially (e.g. -ENOSPC), so we wait for it.
662 * But the -EIO is special case, it may indicate the worst
663 * thing (e.g. bug) happened, so we avoid waiting for it.
664 */
28fd1298 665 if (err != -EIO) {
94004ed7
CH
666 int err2 = filemap_fdatawait_range(mapping,
667 lstart, lend);
28fd1298
OH
668 if (!err)
669 err = err2;
cbeaf951
JL
670 } else {
671 /* Clear any previously stored errors */
672 filemap_check_errors(mapping);
28fd1298 673 }
865ffef3
DM
674 } else {
675 err = filemap_check_errors(mapping);
1da177e4 676 }
28fd1298 677 return err;
1da177e4 678}
f6995585 679EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 680
5660e13d
JL
681void __filemap_set_wb_err(struct address_space *mapping, int err)
682{
3acdfd28 683 errseq_t eseq = errseq_set(&mapping->wb_err, err);
5660e13d
JL
684
685 trace_filemap_set_wb_err(mapping, eseq);
686}
687EXPORT_SYMBOL(__filemap_set_wb_err);
688
689/**
690 * file_check_and_advance_wb_err - report wb error (if any) that was previously
691 * and advance wb_err to current one
692 * @file: struct file on which the error is being reported
693 *
694 * When userland calls fsync (or something like nfsd does the equivalent), we
695 * want to report any writeback errors that occurred since the last fsync (or
696 * since the file was opened if there haven't been any).
697 *
698 * Grab the wb_err from the mapping. If it matches what we have in the file,
699 * then just quickly return 0. The file is all caught up.
700 *
701 * If it doesn't match, then take the mapping value, set the "seen" flag in
702 * it and try to swap it into place. If it works, or another task beat us
703 * to it with the new value, then update the f_wb_err and return the error
704 * portion. The error at this point must be reported via proper channels
705 * (a'la fsync, or NFS COMMIT operation, etc.).
706 *
707 * While we handle mapping->wb_err with atomic operations, the f_wb_err
708 * value is protected by the f_lock since we must ensure that it reflects
709 * the latest value swapped in for this file descriptor.
a862f68a
MR
710 *
711 * Return: %0 on success, negative error code otherwise.
5660e13d
JL
712 */
713int file_check_and_advance_wb_err(struct file *file)
714{
715 int err = 0;
716 errseq_t old = READ_ONCE(file->f_wb_err);
717 struct address_space *mapping = file->f_mapping;
718
719 /* Locklessly handle the common case where nothing has changed */
720 if (errseq_check(&mapping->wb_err, old)) {
721 /* Something changed, must use slow path */
722 spin_lock(&file->f_lock);
723 old = file->f_wb_err;
724 err = errseq_check_and_advance(&mapping->wb_err,
725 &file->f_wb_err);
726 trace_file_check_and_advance_wb_err(file, old);
727 spin_unlock(&file->f_lock);
728 }
f4e222c5
JL
729
730 /*
731 * We're mostly using this function as a drop in replacement for
732 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
733 * that the legacy code would have had on these flags.
734 */
735 clear_bit(AS_EIO, &mapping->flags);
736 clear_bit(AS_ENOSPC, &mapping->flags);
5660e13d
JL
737 return err;
738}
739EXPORT_SYMBOL(file_check_and_advance_wb_err);
740
741/**
742 * file_write_and_wait_range - write out & wait on a file range
743 * @file: file pointing to address_space with pages
744 * @lstart: offset in bytes where the range starts
745 * @lend: offset in bytes where the range ends (inclusive)
746 *
747 * Write out and wait upon file offsets lstart->lend, inclusive.
748 *
749 * Note that @lend is inclusive (describes the last byte to be written) so
750 * that this function can be used to write to the very end-of-file (end = -1).
751 *
752 * After writing out and waiting on the data, we check and advance the
753 * f_wb_err cursor to the latest value, and return any errors detected there.
a862f68a
MR
754 *
755 * Return: %0 on success, negative error code otherwise.
5660e13d
JL
756 */
757int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
758{
759 int err = 0, err2;
760 struct address_space *mapping = file->f_mapping;
761
9326c9b2 762 if (mapping_needs_writeback(mapping)) {
5660e13d
JL
763 err = __filemap_fdatawrite_range(mapping, lstart, lend,
764 WB_SYNC_ALL);
765 /* See comment of filemap_write_and_wait() */
766 if (err != -EIO)
767 __filemap_fdatawait_range(mapping, lstart, lend);
768 }
769 err2 = file_check_and_advance_wb_err(file);
770 if (!err)
771 err = err2;
772 return err;
773}
774EXPORT_SYMBOL(file_write_and_wait_range);
775
ef6a3c63
MS
776/**
777 * replace_page_cache_page - replace a pagecache page with a new one
778 * @old: page to be replaced
779 * @new: page to replace with
ef6a3c63
MS
780 *
781 * This function replaces a page in the pagecache with a new one. On
782 * success it acquires the pagecache reference for the new page and
783 * drops it for the old page. Both the old and new pages must be
784 * locked. This function does not add the new page to the LRU, the
785 * caller must do that.
786 *
74d60958 787 * The remove + add is atomic. This function cannot fail.
ef6a3c63 788 */
1f7ef657 789void replace_page_cache_page(struct page *old, struct page *new)
ef6a3c63 790{
74d60958
MW
791 struct address_space *mapping = old->mapping;
792 void (*freepage)(struct page *) = mapping->a_ops->freepage;
793 pgoff_t offset = old->index;
794 XA_STATE(xas, &mapping->i_pages, offset);
795 unsigned long flags;
ef6a3c63 796
309381fe
SL
797 VM_BUG_ON_PAGE(!PageLocked(old), old);
798 VM_BUG_ON_PAGE(!PageLocked(new), new);
799 VM_BUG_ON_PAGE(new->mapping, new);
ef6a3c63 800
74d60958
MW
801 get_page(new);
802 new->mapping = mapping;
803 new->index = offset;
ef6a3c63 804
0d1c2072
JW
805 mem_cgroup_migrate(old, new);
806
74d60958
MW
807 xas_lock_irqsave(&xas, flags);
808 xas_store(&xas, new);
4165b9b4 809
74d60958
MW
810 old->mapping = NULL;
811 /* hugetlb pages do not participate in page cache accounting. */
812 if (!PageHuge(old))
0d1c2072 813 __dec_lruvec_page_state(old, NR_FILE_PAGES);
74d60958 814 if (!PageHuge(new))
0d1c2072 815 __inc_lruvec_page_state(new, NR_FILE_PAGES);
74d60958 816 if (PageSwapBacked(old))
0d1c2072 817 __dec_lruvec_page_state(old, NR_SHMEM);
74d60958 818 if (PageSwapBacked(new))
0d1c2072 819 __inc_lruvec_page_state(new, NR_SHMEM);
74d60958 820 xas_unlock_irqrestore(&xas, flags);
74d60958
MW
821 if (freepage)
822 freepage(old);
823 put_page(old);
ef6a3c63
MS
824}
825EXPORT_SYMBOL_GPL(replace_page_cache_page);
826
16c0cc0c 827noinline int __add_to_page_cache_locked(struct page *page,
76cd6173 828 struct address_space *mapping,
c4cf498d 829 pgoff_t offset, gfp_t gfp,
76cd6173 830 void **shadowp)
1da177e4 831{
74d60958 832 XA_STATE(xas, &mapping->i_pages, offset);
00501b53 833 int huge = PageHuge(page);
e286781d 834 int error;
da74240e 835 bool charged = false;
e286781d 836
309381fe
SL
837 VM_BUG_ON_PAGE(!PageLocked(page), page);
838 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
74d60958 839 mapping_set_update(&xas, mapping);
e286781d 840
09cbfeaf 841 get_page(page);
66a0c8ee
KS
842 page->mapping = mapping;
843 page->index = offset;
844
3fea5a49 845 if (!huge) {
198b62f8 846 error = mem_cgroup_charge(page, current->mm, gfp);
3fea5a49
JW
847 if (error)
848 goto error;
da74240e 849 charged = true;
3fea5a49
JW
850 }
851
198b62f8
MWO
852 gfp &= GFP_RECLAIM_MASK;
853
74d60958 854 do {
198b62f8
MWO
855 unsigned int order = xa_get_order(xas.xa, xas.xa_index);
856 void *entry, *old = NULL;
857
858 if (order > thp_order(page))
859 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
860 order, gfp);
74d60958 861 xas_lock_irq(&xas);
198b62f8
MWO
862 xas_for_each_conflict(&xas, entry) {
863 old = entry;
864 if (!xa_is_value(entry)) {
865 xas_set_err(&xas, -EEXIST);
866 goto unlock;
867 }
868 }
869
870 if (old) {
871 if (shadowp)
872 *shadowp = old;
873 /* entry may have been split before we acquired lock */
874 order = xa_get_order(xas.xa, xas.xa_index);
875 if (order > thp_order(page)) {
876 xas_split(&xas, old, order);
877 xas_reset(&xas);
878 }
879 }
880
74d60958
MW
881 xas_store(&xas, page);
882 if (xas_error(&xas))
883 goto unlock;
884
198b62f8 885 if (old)
74d60958 886 mapping->nrexceptional--;
74d60958
MW
887 mapping->nrpages++;
888
889 /* hugetlb pages do not participate in page cache accounting */
890 if (!huge)
0d1c2072 891 __inc_lruvec_page_state(page, NR_FILE_PAGES);
74d60958
MW
892unlock:
893 xas_unlock_irq(&xas);
198b62f8 894 } while (xas_nomem(&xas, gfp));
74d60958 895
3fea5a49
JW
896 if (xas_error(&xas)) {
897 error = xas_error(&xas);
da74240e
WL
898 if (charged)
899 mem_cgroup_uncharge(page);
74d60958 900 goto error;
3fea5a49 901 }
4165b9b4 902
66a0c8ee
KS
903 trace_mm_filemap_add_to_page_cache(page);
904 return 0;
74d60958 905error:
66a0c8ee
KS
906 page->mapping = NULL;
907 /* Leave page->index set: truncation relies upon it */
09cbfeaf 908 put_page(page);
3fea5a49 909 return error;
1da177e4 910}
cfcbfb13 911ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
a528910e
JW
912
913/**
914 * add_to_page_cache_locked - add a locked page to the pagecache
915 * @page: page to add
916 * @mapping: the page's address_space
917 * @offset: page index
918 * @gfp_mask: page allocation mode
919 *
920 * This function is used to add a page to the pagecache. It must be locked.
921 * This function does not add the page to the LRU. The caller must do that.
a862f68a
MR
922 *
923 * Return: %0 on success, negative error code otherwise.
a528910e
JW
924 */
925int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
926 pgoff_t offset, gfp_t gfp_mask)
927{
928 return __add_to_page_cache_locked(page, mapping, offset,
929 gfp_mask, NULL);
930}
e286781d 931EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4
LT
932
933int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 934 pgoff_t offset, gfp_t gfp_mask)
1da177e4 935{
a528910e 936 void *shadow = NULL;
4f98a2fe
RR
937 int ret;
938
48c935ad 939 __SetPageLocked(page);
a528910e
JW
940 ret = __add_to_page_cache_locked(page, mapping, offset,
941 gfp_mask, &shadow);
942 if (unlikely(ret))
48c935ad 943 __ClearPageLocked(page);
a528910e
JW
944 else {
945 /*
946 * The page might have been evicted from cache only
947 * recently, in which case it should be activated like
948 * any other repeatedly accessed page.
f0281a00
RR
949 * The exception is pages getting rewritten; evicting other
950 * data from the working set, only to cache data that will
951 * get overwritten with something else, is a waste of memory.
a528910e 952 */
1899ad18
JW
953 WARN_ON_ONCE(PageActive(page));
954 if (!(gfp_mask & __GFP_WRITE) && shadow)
955 workingset_refault(page, shadow);
a528910e
JW
956 lru_cache_add(page);
957 }
1da177e4
LT
958 return ret;
959}
18bc0bbd 960EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1da177e4 961
44110fe3 962#ifdef CONFIG_NUMA
2ae88149 963struct page *__page_cache_alloc(gfp_t gfp)
44110fe3 964{
c0ff7453
MX
965 int n;
966 struct page *page;
967
44110fe3 968 if (cpuset_do_page_mem_spread()) {
cc9a6c87
MG
969 unsigned int cpuset_mems_cookie;
970 do {
d26914d1 971 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 972 n = cpuset_mem_spread_node();
96db800f 973 page = __alloc_pages_node(n, gfp, 0);
d26914d1 974 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
cc9a6c87 975
c0ff7453 976 return page;
44110fe3 977 }
2ae88149 978 return alloc_pages(gfp, 0);
44110fe3 979}
2ae88149 980EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
981#endif
982
1da177e4
LT
983/*
984 * In order to wait for pages to become available there must be
985 * waitqueues associated with pages. By using a hash table of
986 * waitqueues where the bucket discipline is to maintain all
987 * waiters on the same queue and wake all when any of the pages
988 * become available, and for the woken contexts to check to be
989 * sure the appropriate page became available, this saves space
990 * at a cost of "thundering herd" phenomena during rare hash
991 * collisions.
992 */
62906027
NP
993#define PAGE_WAIT_TABLE_BITS 8
994#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
995static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
996
997static wait_queue_head_t *page_waitqueue(struct page *page)
1da177e4 998{
62906027 999 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
1da177e4 1000}
1da177e4 1001
62906027 1002void __init pagecache_init(void)
1da177e4 1003{
62906027 1004 int i;
1da177e4 1005
62906027
NP
1006 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1007 init_waitqueue_head(&page_wait_table[i]);
1008
1009 page_writeback_init();
1da177e4 1010}
1da177e4 1011
5ef64cc8
LT
1012/*
1013 * The page wait code treats the "wait->flags" somewhat unusually, because
5868ec26 1014 * we have multiple different kinds of waits, not just the usual "exclusive"
5ef64cc8
LT
1015 * one.
1016 *
1017 * We have:
1018 *
1019 * (a) no special bits set:
1020 *
1021 * We're just waiting for the bit to be released, and when a waker
1022 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1023 * and remove it from the wait queue.
1024 *
1025 * Simple and straightforward.
1026 *
1027 * (b) WQ_FLAG_EXCLUSIVE:
1028 *
1029 * The waiter is waiting to get the lock, and only one waiter should
1030 * be woken up to avoid any thundering herd behavior. We'll set the
1031 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1032 *
1033 * This is the traditional exclusive wait.
1034 *
5868ec26 1035 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
5ef64cc8
LT
1036 *
1037 * The waiter is waiting to get the bit, and additionally wants the
1038 * lock to be transferred to it for fair lock behavior. If the lock
1039 * cannot be taken, we stop walking the wait queue without waking
1040 * the waiter.
1041 *
1042 * This is the "fair lock handoff" case, and in addition to setting
1043 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1044 * that it now has the lock.
1045 */
ac6424b9 1046static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
f62e00cc 1047{
5ef64cc8 1048 unsigned int flags;
62906027
NP
1049 struct wait_page_key *key = arg;
1050 struct wait_page_queue *wait_page
1051 = container_of(wait, struct wait_page_queue, wait);
1052
cdc8fcb4 1053 if (!wake_page_match(wait_page, key))
62906027 1054 return 0;
3510ca20 1055
9a1ea439 1056 /*
5ef64cc8
LT
1057 * If it's a lock handoff wait, we get the bit for it, and
1058 * stop walking (and do not wake it up) if we can't.
9a1ea439 1059 */
5ef64cc8
LT
1060 flags = wait->flags;
1061 if (flags & WQ_FLAG_EXCLUSIVE) {
1062 if (test_bit(key->bit_nr, &key->page->flags))
2a9127fc 1063 return -1;
5ef64cc8
LT
1064 if (flags & WQ_FLAG_CUSTOM) {
1065 if (test_and_set_bit(key->bit_nr, &key->page->flags))
1066 return -1;
1067 flags |= WQ_FLAG_DONE;
1068 }
2a9127fc 1069 }
f62e00cc 1070
5ef64cc8
LT
1071 /*
1072 * We are holding the wait-queue lock, but the waiter that
1073 * is waiting for this will be checking the flags without
1074 * any locking.
1075 *
1076 * So update the flags atomically, and wake up the waiter
1077 * afterwards to avoid any races. This store-release pairs
1078 * with the load-acquire in wait_on_page_bit_common().
1079 */
1080 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
2a9127fc
LT
1081 wake_up_state(wait->private, mode);
1082
1083 /*
1084 * Ok, we have successfully done what we're waiting for,
1085 * and we can unconditionally remove the wait entry.
1086 *
5ef64cc8
LT
1087 * Note that this pairs with the "finish_wait()" in the
1088 * waiter, and has to be the absolute last thing we do.
1089 * After this list_del_init(&wait->entry) the wait entry
2a9127fc
LT
1090 * might be de-allocated and the process might even have
1091 * exited.
2a9127fc 1092 */
c6fe44d9 1093 list_del_init_careful(&wait->entry);
5ef64cc8 1094 return (flags & WQ_FLAG_EXCLUSIVE) != 0;
f62e00cc
KM
1095}
1096
74d81bfa 1097static void wake_up_page_bit(struct page *page, int bit_nr)
cbbce822 1098{
62906027
NP
1099 wait_queue_head_t *q = page_waitqueue(page);
1100 struct wait_page_key key;
1101 unsigned long flags;
11a19c7b 1102 wait_queue_entry_t bookmark;
cbbce822 1103
62906027
NP
1104 key.page = page;
1105 key.bit_nr = bit_nr;
1106 key.page_match = 0;
1107
11a19c7b
TC
1108 bookmark.flags = 0;
1109 bookmark.private = NULL;
1110 bookmark.func = NULL;
1111 INIT_LIST_HEAD(&bookmark.entry);
1112
62906027 1113 spin_lock_irqsave(&q->lock, flags);
11a19c7b
TC
1114 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1115
1116 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1117 /*
1118 * Take a breather from holding the lock,
1119 * allow pages that finish wake up asynchronously
1120 * to acquire the lock and remove themselves
1121 * from wait queue
1122 */
1123 spin_unlock_irqrestore(&q->lock, flags);
1124 cpu_relax();
1125 spin_lock_irqsave(&q->lock, flags);
1126 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1127 }
1128
62906027
NP
1129 /*
1130 * It is possible for other pages to have collided on the waitqueue
1131 * hash, so in that case check for a page match. That prevents a long-
1132 * term waiter
1133 *
1134 * It is still possible to miss a case here, when we woke page waiters
1135 * and removed them from the waitqueue, but there are still other
1136 * page waiters.
1137 */
1138 if (!waitqueue_active(q) || !key.page_match) {
1139 ClearPageWaiters(page);
1140 /*
1141 * It's possible to miss clearing Waiters here, when we woke
1142 * our page waiters, but the hashed waitqueue has waiters for
1143 * other pages on it.
1144 *
1145 * That's okay, it's a rare case. The next waker will clear it.
1146 */
1147 }
1148 spin_unlock_irqrestore(&q->lock, flags);
1149}
74d81bfa
NP
1150
1151static void wake_up_page(struct page *page, int bit)
1152{
1153 if (!PageWaiters(page))
1154 return;
1155 wake_up_page_bit(page, bit);
1156}
62906027 1157
9a1ea439
HD
1158/*
1159 * A choice of three behaviors for wait_on_page_bit_common():
1160 */
1161enum behavior {
1162 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
1163 * __lock_page() waiting on then setting PG_locked.
1164 */
1165 SHARED, /* Hold ref to page and check the bit when woken, like
1166 * wait_on_page_writeback() waiting on PG_writeback.
1167 */
1168 DROP, /* Drop ref to page before wait, no check when woken,
1169 * like put_and_wait_on_page_locked() on PG_locked.
1170 */
1171};
1172
2a9127fc 1173/*
5ef64cc8
LT
1174 * Attempt to check (or get) the page bit, and mark us done
1175 * if successful.
2a9127fc
LT
1176 */
1177static inline bool trylock_page_bit_common(struct page *page, int bit_nr,
1178 struct wait_queue_entry *wait)
1179{
1180 if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1181 if (test_and_set_bit(bit_nr, &page->flags))
1182 return false;
1183 } else if (test_bit(bit_nr, &page->flags))
1184 return false;
1185
5ef64cc8 1186 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
2a9127fc
LT
1187 return true;
1188}
1189
5ef64cc8
LT
1190/* How many times do we accept lock stealing from under a waiter? */
1191int sysctl_page_lock_unfairness = 5;
1192
62906027 1193static inline int wait_on_page_bit_common(wait_queue_head_t *q,
9a1ea439 1194 struct page *page, int bit_nr, int state, enum behavior behavior)
62906027 1195{
5ef64cc8 1196 int unfairness = sysctl_page_lock_unfairness;
62906027 1197 struct wait_page_queue wait_page;
ac6424b9 1198 wait_queue_entry_t *wait = &wait_page.wait;
b1d29ba8 1199 bool thrashing = false;
9a1ea439 1200 bool delayacct = false;
eb414681 1201 unsigned long pflags;
62906027 1202
eb414681 1203 if (bit_nr == PG_locked &&
b1d29ba8 1204 !PageUptodate(page) && PageWorkingset(page)) {
9a1ea439 1205 if (!PageSwapBacked(page)) {
eb414681 1206 delayacct_thrashing_start();
9a1ea439
HD
1207 delayacct = true;
1208 }
eb414681 1209 psi_memstall_enter(&pflags);
b1d29ba8
JW
1210 thrashing = true;
1211 }
1212
62906027
NP
1213 init_wait(wait);
1214 wait->func = wake_page_function;
1215 wait_page.page = page;
1216 wait_page.bit_nr = bit_nr;
1217
5ef64cc8
LT
1218repeat:
1219 wait->flags = 0;
1220 if (behavior == EXCLUSIVE) {
1221 wait->flags = WQ_FLAG_EXCLUSIVE;
1222 if (--unfairness < 0)
1223 wait->flags |= WQ_FLAG_CUSTOM;
1224 }
1225
2a9127fc
LT
1226 /*
1227 * Do one last check whether we can get the
1228 * page bit synchronously.
1229 *
1230 * Do the SetPageWaiters() marking before that
1231 * to let any waker we _just_ missed know they
1232 * need to wake us up (otherwise they'll never
1233 * even go to the slow case that looks at the
1234 * page queue), and add ourselves to the wait
1235 * queue if we need to sleep.
1236 *
1237 * This part needs to be done under the queue
1238 * lock to avoid races.
1239 */
1240 spin_lock_irq(&q->lock);
1241 SetPageWaiters(page);
1242 if (!trylock_page_bit_common(page, bit_nr, wait))
1243 __add_wait_queue_entry_tail(q, wait);
1244 spin_unlock_irq(&q->lock);
62906027 1245
2a9127fc
LT
1246 /*
1247 * From now on, all the logic will be based on
5ef64cc8
LT
1248 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1249 * see whether the page bit testing has already
1250 * been done by the wake function.
2a9127fc
LT
1251 *
1252 * We can drop our reference to the page.
1253 */
1254 if (behavior == DROP)
1255 put_page(page);
62906027 1256
5ef64cc8
LT
1257 /*
1258 * Note that until the "finish_wait()", or until
1259 * we see the WQ_FLAG_WOKEN flag, we need to
1260 * be very careful with the 'wait->flags', because
1261 * we may race with a waker that sets them.
1262 */
2a9127fc 1263 for (;;) {
5ef64cc8
LT
1264 unsigned int flags;
1265
62906027
NP
1266 set_current_state(state);
1267
5ef64cc8
LT
1268 /* Loop until we've been woken or interrupted */
1269 flags = smp_load_acquire(&wait->flags);
1270 if (!(flags & WQ_FLAG_WOKEN)) {
1271 if (signal_pending_state(state, current))
1272 break;
1273
1274 io_schedule();
1275 continue;
1276 }
1277
1278 /* If we were non-exclusive, we're done */
1279 if (behavior != EXCLUSIVE)
a8b169af 1280 break;
9a1ea439 1281
5ef64cc8
LT
1282 /* If the waker got the lock for us, we're done */
1283 if (flags & WQ_FLAG_DONE)
9a1ea439 1284 break;
2a9127fc 1285
5ef64cc8
LT
1286 /*
1287 * Otherwise, if we're getting the lock, we need to
1288 * try to get it ourselves.
1289 *
1290 * And if that fails, we'll have to retry this all.
1291 */
1292 if (unlikely(test_and_set_bit(bit_nr, &page->flags)))
1293 goto repeat;
1294
1295 wait->flags |= WQ_FLAG_DONE;
1296 break;
62906027
NP
1297 }
1298
5ef64cc8
LT
1299 /*
1300 * If a signal happened, this 'finish_wait()' may remove the last
1301 * waiter from the wait-queues, but the PageWaiters bit will remain
1302 * set. That's ok. The next wakeup will take care of it, and trying
1303 * to do it here would be difficult and prone to races.
1304 */
62906027
NP
1305 finish_wait(q, wait);
1306
eb414681 1307 if (thrashing) {
9a1ea439 1308 if (delayacct)
eb414681
JW
1309 delayacct_thrashing_end();
1310 psi_memstall_leave(&pflags);
1311 }
b1d29ba8 1312
62906027 1313 /*
5ef64cc8
LT
1314 * NOTE! The wait->flags weren't stable until we've done the
1315 * 'finish_wait()', and we could have exited the loop above due
1316 * to a signal, and had a wakeup event happen after the signal
1317 * test but before the 'finish_wait()'.
1318 *
1319 * So only after the finish_wait() can we reliably determine
1320 * if we got woken up or not, so we can now figure out the final
1321 * return value based on that state without races.
1322 *
1323 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1324 * waiter, but an exclusive one requires WQ_FLAG_DONE.
62906027 1325 */
5ef64cc8
LT
1326 if (behavior == EXCLUSIVE)
1327 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
62906027 1328
2a9127fc 1329 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
62906027
NP
1330}
1331
1332void wait_on_page_bit(struct page *page, int bit_nr)
1333{
1334 wait_queue_head_t *q = page_waitqueue(page);
9a1ea439 1335 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
62906027
NP
1336}
1337EXPORT_SYMBOL(wait_on_page_bit);
1338
1339int wait_on_page_bit_killable(struct page *page, int bit_nr)
1340{
1341 wait_queue_head_t *q = page_waitqueue(page);
9a1ea439 1342 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
cbbce822 1343}
4343d008 1344EXPORT_SYMBOL(wait_on_page_bit_killable);
cbbce822 1345
9a1ea439
HD
1346/**
1347 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1348 * @page: The page to wait for.
48054625 1349 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
9a1ea439
HD
1350 *
1351 * The caller should hold a reference on @page. They expect the page to
1352 * become unlocked relatively soon, but do not wish to hold up migration
1353 * (for example) by holding the reference while waiting for the page to
1354 * come unlocked. After this function returns, the caller should not
1355 * dereference @page.
48054625
MWO
1356 *
1357 * Return: 0 if the page was unlocked or -EINTR if interrupted by a signal.
9a1ea439 1358 */
48054625 1359int put_and_wait_on_page_locked(struct page *page, int state)
9a1ea439
HD
1360{
1361 wait_queue_head_t *q;
1362
1363 page = compound_head(page);
1364 q = page_waitqueue(page);
48054625 1365 return wait_on_page_bit_common(q, page, PG_locked, state, DROP);
9a1ea439
HD
1366}
1367
385e1ca5
DH
1368/**
1369 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
697f619f
RD
1370 * @page: Page defining the wait queue of interest
1371 * @waiter: Waiter to add to the queue
385e1ca5
DH
1372 *
1373 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1374 */
ac6424b9 1375void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
385e1ca5
DH
1376{
1377 wait_queue_head_t *q = page_waitqueue(page);
1378 unsigned long flags;
1379
1380 spin_lock_irqsave(&q->lock, flags);
9c3a815f 1381 __add_wait_queue_entry_tail(q, waiter);
62906027 1382 SetPageWaiters(page);
385e1ca5
DH
1383 spin_unlock_irqrestore(&q->lock, flags);
1384}
1385EXPORT_SYMBOL_GPL(add_page_wait_queue);
1386
b91e1302
LT
1387#ifndef clear_bit_unlock_is_negative_byte
1388
1389/*
1390 * PG_waiters is the high bit in the same byte as PG_lock.
1391 *
1392 * On x86 (and on many other architectures), we can clear PG_lock and
1393 * test the sign bit at the same time. But if the architecture does
1394 * not support that special operation, we just do this all by hand
1395 * instead.
1396 *
1397 * The read of PG_waiters has to be after (or concurrently with) PG_locked
ffceeb62 1398 * being cleared, but a memory barrier should be unnecessary since it is
b91e1302
LT
1399 * in the same byte as PG_locked.
1400 */
1401static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1402{
1403 clear_bit_unlock(nr, mem);
1404 /* smp_mb__after_atomic(); */
98473f9f 1405 return test_bit(PG_waiters, mem);
b91e1302
LT
1406}
1407
1408#endif
1409
1da177e4 1410/**
485bb99b 1411 * unlock_page - unlock a locked page
1da177e4
LT
1412 * @page: the page
1413 *
0e9aa675 1414 * Unlocks the page and wakes up sleepers in wait_on_page_locked().
1da177e4 1415 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
da3dae54 1416 * mechanism between PageLocked pages and PageWriteback pages is shared.
1da177e4
LT
1417 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1418 *
b91e1302
LT
1419 * Note that this depends on PG_waiters being the sign bit in the byte
1420 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1421 * clear the PG_locked bit and test PG_waiters at the same time fairly
1422 * portably (architectures that do LL/SC can test any bit, while x86 can
1423 * test the sign bit).
1da177e4 1424 */
920c7a5d 1425void unlock_page(struct page *page)
1da177e4 1426{
b91e1302 1427 BUILD_BUG_ON(PG_waiters != 7);
48c935ad 1428 page = compound_head(page);
309381fe 1429 VM_BUG_ON_PAGE(!PageLocked(page), page);
b91e1302
LT
1430 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1431 wake_up_page_bit(page, PG_locked);
1da177e4
LT
1432}
1433EXPORT_SYMBOL(unlock_page);
1434
73e10ded
DH
1435/**
1436 * end_page_private_2 - Clear PG_private_2 and release any waiters
1437 * @page: The page
1438 *
1439 * Clear the PG_private_2 bit on a page and wake up any sleepers waiting for
1440 * this. The page ref held for PG_private_2 being set is released.
1441 *
1442 * This is, for example, used when a netfs page is being written to a local
1443 * disk cache, thereby allowing writes to the cache for the same page to be
1444 * serialised.
1445 */
1446void end_page_private_2(struct page *page)
1447{
1448 page = compound_head(page);
1449 VM_BUG_ON_PAGE(!PagePrivate2(page), page);
1450 clear_bit_unlock(PG_private_2, &page->flags);
1451 wake_up_page_bit(page, PG_private_2);
1452 put_page(page);
1453}
1454EXPORT_SYMBOL(end_page_private_2);
1455
1456/**
1457 * wait_on_page_private_2 - Wait for PG_private_2 to be cleared on a page
1458 * @page: The page to wait on
1459 *
1460 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a page.
1461 */
1462void wait_on_page_private_2(struct page *page)
1463{
1464 page = compound_head(page);
1465 while (PagePrivate2(page))
1466 wait_on_page_bit(page, PG_private_2);
1467}
1468EXPORT_SYMBOL(wait_on_page_private_2);
1469
1470/**
1471 * wait_on_page_private_2_killable - Wait for PG_private_2 to be cleared on a page
1472 * @page: The page to wait on
1473 *
1474 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a page or until a
1475 * fatal signal is received by the calling task.
1476 *
1477 * Return:
1478 * - 0 if successful.
1479 * - -EINTR if a fatal signal was encountered.
1480 */
1481int wait_on_page_private_2_killable(struct page *page)
1482{
1483 int ret = 0;
1484
1485 page = compound_head(page);
1486 while (PagePrivate2(page)) {
1487 ret = wait_on_page_bit_killable(page, PG_private_2);
1488 if (ret < 0)
1489 break;
1490 }
1491
1492 return ret;
1493}
1494EXPORT_SYMBOL(wait_on_page_private_2_killable);
1495
485bb99b
RD
1496/**
1497 * end_page_writeback - end writeback against a page
1498 * @page: the page
1da177e4
LT
1499 */
1500void end_page_writeback(struct page *page)
1501{
888cf2db
MG
1502 /*
1503 * TestClearPageReclaim could be used here but it is an atomic
1504 * operation and overkill in this particular case. Failing to
1505 * shuffle a page marked for immediate reclaim is too mild to
1506 * justify taking an atomic operation penalty at the end of
1507 * ever page writeback.
1508 */
1509 if (PageReclaim(page)) {
1510 ClearPageReclaim(page);
ac6aadb2 1511 rotate_reclaimable_page(page);
888cf2db 1512 }
ac6aadb2 1513
073861ed
HD
1514 /*
1515 * Writeback does not hold a page reference of its own, relying
1516 * on truncation to wait for the clearing of PG_writeback.
1517 * But here we must make sure that the page is not freed and
1518 * reused before the wake_up_page().
1519 */
1520 get_page(page);
ac6aadb2
MS
1521 if (!test_clear_page_writeback(page))
1522 BUG();
1523
4e857c58 1524 smp_mb__after_atomic();
1da177e4 1525 wake_up_page(page, PG_writeback);
073861ed 1526 put_page(page);
1da177e4
LT
1527}
1528EXPORT_SYMBOL(end_page_writeback);
1529
57d99845
MW
1530/*
1531 * After completing I/O on a page, call this routine to update the page
1532 * flags appropriately
1533 */
c11f0c0b 1534void page_endio(struct page *page, bool is_write, int err)
57d99845 1535{
c11f0c0b 1536 if (!is_write) {
57d99845
MW
1537 if (!err) {
1538 SetPageUptodate(page);
1539 } else {
1540 ClearPageUptodate(page);
1541 SetPageError(page);
1542 }
1543 unlock_page(page);
abf54548 1544 } else {
57d99845 1545 if (err) {
dd8416c4
MK
1546 struct address_space *mapping;
1547
57d99845 1548 SetPageError(page);
dd8416c4
MK
1549 mapping = page_mapping(page);
1550 if (mapping)
1551 mapping_set_error(mapping, err);
57d99845
MW
1552 }
1553 end_page_writeback(page);
1554 }
1555}
1556EXPORT_SYMBOL_GPL(page_endio);
1557
485bb99b
RD
1558/**
1559 * __lock_page - get a lock on the page, assuming we need to sleep to get it
87066755 1560 * @__page: the page to lock
1da177e4 1561 */
62906027 1562void __lock_page(struct page *__page)
1da177e4 1563{
62906027
NP
1564 struct page *page = compound_head(__page);
1565 wait_queue_head_t *q = page_waitqueue(page);
9a1ea439
HD
1566 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1567 EXCLUSIVE);
1da177e4
LT
1568}
1569EXPORT_SYMBOL(__lock_page);
1570
62906027 1571int __lock_page_killable(struct page *__page)
2687a356 1572{
62906027
NP
1573 struct page *page = compound_head(__page);
1574 wait_queue_head_t *q = page_waitqueue(page);
9a1ea439
HD
1575 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1576 EXCLUSIVE);
2687a356 1577}
18bc0bbd 1578EXPORT_SYMBOL_GPL(__lock_page_killable);
2687a356 1579
dd3e6d50
JA
1580int __lock_page_async(struct page *page, struct wait_page_queue *wait)
1581{
f32b5dd7
MWO
1582 struct wait_queue_head *q = page_waitqueue(page);
1583 int ret = 0;
1584
1585 wait->page = page;
1586 wait->bit_nr = PG_locked;
1587
1588 spin_lock_irq(&q->lock);
1589 __add_wait_queue_entry_tail(q, &wait->wait);
1590 SetPageWaiters(page);
1591 ret = !trylock_page(page);
1592 /*
1593 * If we were successful now, we know we're still on the
1594 * waitqueue as we're still under the lock. This means it's
1595 * safe to remove and return success, we know the callback
1596 * isn't going to trigger.
1597 */
1598 if (!ret)
1599 __remove_wait_queue(q, &wait->wait);
1600 else
1601 ret = -EIOCBQUEUED;
1602 spin_unlock_irq(&q->lock);
1603 return ret;
dd3e6d50
JA
1604}
1605
9a95f3cf
PC
1606/*
1607 * Return values:
c1e8d7c6 1608 * 1 - page is locked; mmap_lock is still held.
9a95f3cf 1609 * 0 - page is not locked.
3e4e28c5 1610 * mmap_lock has been released (mmap_read_unlock(), unless flags had both
9a95f3cf 1611 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
c1e8d7c6 1612 * which case mmap_lock is still held.
9a95f3cf
PC
1613 *
1614 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
c1e8d7c6 1615 * with the page locked and the mmap_lock unperturbed.
9a95f3cf 1616 */
d065bd81
ML
1617int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1618 unsigned int flags)
1619{
4064b982 1620 if (fault_flag_allow_retry_first(flags)) {
37b23e05 1621 /*
c1e8d7c6 1622 * CAUTION! In this case, mmap_lock is not released
37b23e05
KM
1623 * even though return 0.
1624 */
1625 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1626 return 0;
1627
d8ed45c5 1628 mmap_read_unlock(mm);
37b23e05
KM
1629 if (flags & FAULT_FLAG_KILLABLE)
1630 wait_on_page_locked_killable(page);
1631 else
318b275f 1632 wait_on_page_locked(page);
d065bd81 1633 return 0;
800bca7c
HL
1634 }
1635 if (flags & FAULT_FLAG_KILLABLE) {
1636 int ret;
37b23e05 1637
800bca7c
HL
1638 ret = __lock_page_killable(page);
1639 if (ret) {
1640 mmap_read_unlock(mm);
1641 return 0;
1642 }
1643 } else {
1644 __lock_page(page);
d065bd81 1645 }
800bca7c
HL
1646 return 1;
1647
d065bd81
ML
1648}
1649
e7b563bb 1650/**
0d3f9296
MW
1651 * page_cache_next_miss() - Find the next gap in the page cache.
1652 * @mapping: Mapping.
1653 * @index: Index.
1654 * @max_scan: Maximum range to search.
e7b563bb 1655 *
0d3f9296
MW
1656 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1657 * gap with the lowest index.
e7b563bb 1658 *
0d3f9296
MW
1659 * This function may be called under the rcu_read_lock. However, this will
1660 * not atomically search a snapshot of the cache at a single point in time.
1661 * For example, if a gap is created at index 5, then subsequently a gap is
1662 * created at index 10, page_cache_next_miss covering both indices may
1663 * return 10 if called under the rcu_read_lock.
e7b563bb 1664 *
0d3f9296
MW
1665 * Return: The index of the gap if found, otherwise an index outside the
1666 * range specified (in which case 'return - index >= max_scan' will be true).
1667 * In the rare case of index wrap-around, 0 will be returned.
e7b563bb 1668 */
0d3f9296 1669pgoff_t page_cache_next_miss(struct address_space *mapping,
e7b563bb
JW
1670 pgoff_t index, unsigned long max_scan)
1671{
0d3f9296 1672 XA_STATE(xas, &mapping->i_pages, index);
e7b563bb 1673
0d3f9296
MW
1674 while (max_scan--) {
1675 void *entry = xas_next(&xas);
1676 if (!entry || xa_is_value(entry))
e7b563bb 1677 break;
0d3f9296 1678 if (xas.xa_index == 0)
e7b563bb
JW
1679 break;
1680 }
1681
0d3f9296 1682 return xas.xa_index;
e7b563bb 1683}
0d3f9296 1684EXPORT_SYMBOL(page_cache_next_miss);
e7b563bb
JW
1685
1686/**
2346a560 1687 * page_cache_prev_miss() - Find the previous gap in the page cache.
0d3f9296
MW
1688 * @mapping: Mapping.
1689 * @index: Index.
1690 * @max_scan: Maximum range to search.
e7b563bb 1691 *
0d3f9296
MW
1692 * Search the range [max(index - max_scan + 1, 0), index] for the
1693 * gap with the highest index.
e7b563bb 1694 *
0d3f9296
MW
1695 * This function may be called under the rcu_read_lock. However, this will
1696 * not atomically search a snapshot of the cache at a single point in time.
1697 * For example, if a gap is created at index 10, then subsequently a gap is
1698 * created at index 5, page_cache_prev_miss() covering both indices may
1699 * return 5 if called under the rcu_read_lock.
e7b563bb 1700 *
0d3f9296
MW
1701 * Return: The index of the gap if found, otherwise an index outside the
1702 * range specified (in which case 'index - return >= max_scan' will be true).
1703 * In the rare case of wrap-around, ULONG_MAX will be returned.
e7b563bb 1704 */
0d3f9296 1705pgoff_t page_cache_prev_miss(struct address_space *mapping,
e7b563bb
JW
1706 pgoff_t index, unsigned long max_scan)
1707{
0d3f9296 1708 XA_STATE(xas, &mapping->i_pages, index);
e7b563bb 1709
0d3f9296
MW
1710 while (max_scan--) {
1711 void *entry = xas_prev(&xas);
1712 if (!entry || xa_is_value(entry))
e7b563bb 1713 break;
0d3f9296 1714 if (xas.xa_index == ULONG_MAX)
e7b563bb
JW
1715 break;
1716 }
1717
0d3f9296 1718 return xas.xa_index;
e7b563bb 1719}
0d3f9296 1720EXPORT_SYMBOL(page_cache_prev_miss);
e7b563bb 1721
44835d20 1722/*
bc5a3011 1723 * mapping_get_entry - Get a page cache entry.
485bb99b 1724 * @mapping: the address_space to search
a6de4b48 1725 * @index: The page cache index.
0cd6144a
JW
1726 *
1727 * Looks up the page cache slot at @mapping & @offset. If there is a
a6de4b48 1728 * page cache page, the head page is returned with an increased refcount.
485bb99b 1729 *
139b6a6f
JW
1730 * If the slot holds a shadow entry of a previously evicted page, or a
1731 * swap entry from shmem/tmpfs, it is returned.
0cd6144a 1732 *
a6de4b48 1733 * Return: The head page or shadow entry, %NULL if nothing is found.
1da177e4 1734 */
bc5a3011
MWO
1735static struct page *mapping_get_entry(struct address_space *mapping,
1736 pgoff_t index)
1da177e4 1737{
a6de4b48 1738 XA_STATE(xas, &mapping->i_pages, index);
4101196b 1739 struct page *page;
1da177e4 1740
a60637c8
NP
1741 rcu_read_lock();
1742repeat:
4c7472c0
MW
1743 xas_reset(&xas);
1744 page = xas_load(&xas);
1745 if (xas_retry(&xas, page))
1746 goto repeat;
1747 /*
1748 * A shadow entry of a recently evicted page, or a swap entry from
1749 * shmem/tmpfs. Return it without attempting to raise page count.
1750 */
1751 if (!page || xa_is_value(page))
1752 goto out;
83929372 1753
4101196b 1754 if (!page_cache_get_speculative(page))
4c7472c0 1755 goto repeat;
83929372 1756
4c7472c0 1757 /*
4101196b 1758 * Has the page moved or been split?
4c7472c0
MW
1759 * This is part of the lockless pagecache protocol. See
1760 * include/linux/pagemap.h for details.
1761 */
1762 if (unlikely(page != xas_reload(&xas))) {
4101196b 1763 put_page(page);
4c7472c0 1764 goto repeat;
a60637c8 1765 }
27d20fdd 1766out:
a60637c8
NP
1767 rcu_read_unlock();
1768
1da177e4
LT
1769 return page;
1770}
1da177e4 1771
0cd6144a 1772/**
2294b32e
MWO
1773 * pagecache_get_page - Find and get a reference to a page.
1774 * @mapping: The address_space to search.
1775 * @index: The page index.
1776 * @fgp_flags: %FGP flags modify how the page is returned.
1777 * @gfp_mask: Memory allocation flags to use if %FGP_CREAT is specified.
1da177e4 1778 *
2294b32e 1779 * Looks up the page cache entry at @mapping & @index.
0cd6144a 1780 *
2294b32e 1781 * @fgp_flags can be zero or more of these flags:
0e056eb5 1782 *
2294b32e
MWO
1783 * * %FGP_ACCESSED - The page will be marked accessed.
1784 * * %FGP_LOCK - The page is returned locked.
a8cf7f27
MWO
1785 * * %FGP_HEAD - If the page is present and a THP, return the head page
1786 * rather than the exact page specified by the index.
44835d20
MWO
1787 * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it
1788 * instead of allocating a new page to replace it.
2294b32e
MWO
1789 * * %FGP_CREAT - If no page is present then a new page is allocated using
1790 * @gfp_mask and added to the page cache and the VM's LRU list.
1791 * The page is returned locked and with an increased refcount.
1792 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1793 * page is already in cache. If the page was allocated, unlock it before
1794 * returning so the caller can do the same dance.
605cad83
YS
1795 * * %FGP_WRITE - The page will be written
1796 * * %FGP_NOFS - __GFP_FS will get cleared in gfp mask
1797 * * %FGP_NOWAIT - Don't get blocked by page lock
1da177e4 1798 *
2294b32e
MWO
1799 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1800 * if the %GFP flags specified for %FGP_CREAT are atomic.
1da177e4 1801 *
2457aec6 1802 * If there is a page cache page, it is returned with an increased refcount.
a862f68a 1803 *
2294b32e 1804 * Return: The found page or %NULL otherwise.
1da177e4 1805 */
2294b32e
MWO
1806struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
1807 int fgp_flags, gfp_t gfp_mask)
1da177e4 1808{
eb2be189 1809 struct page *page;
2457aec6 1810
1da177e4 1811repeat:
bc5a3011 1812 page = mapping_get_entry(mapping, index);
44835d20
MWO
1813 if (xa_is_value(page)) {
1814 if (fgp_flags & FGP_ENTRY)
1815 return page;
2457aec6 1816 page = NULL;
44835d20 1817 }
2457aec6
MG
1818 if (!page)
1819 goto no_page;
1820
1821 if (fgp_flags & FGP_LOCK) {
1822 if (fgp_flags & FGP_NOWAIT) {
1823 if (!trylock_page(page)) {
09cbfeaf 1824 put_page(page);
2457aec6
MG
1825 return NULL;
1826 }
1827 } else {
1828 lock_page(page);
1829 }
1830
1831 /* Has the page been truncated? */
a8cf7f27 1832 if (unlikely(page->mapping != mapping)) {
2457aec6 1833 unlock_page(page);
09cbfeaf 1834 put_page(page);
2457aec6
MG
1835 goto repeat;
1836 }
a8cf7f27 1837 VM_BUG_ON_PAGE(!thp_contains(page, index), page);
2457aec6
MG
1838 }
1839
c16eb000 1840 if (fgp_flags & FGP_ACCESSED)
2457aec6 1841 mark_page_accessed(page);
b9306a79
YS
1842 else if (fgp_flags & FGP_WRITE) {
1843 /* Clear idle flag for buffer write */
1844 if (page_is_idle(page))
1845 clear_page_idle(page);
1846 }
a8cf7f27
MWO
1847 if (!(fgp_flags & FGP_HEAD))
1848 page = find_subpage(page, index);
2457aec6
MG
1849
1850no_page:
1851 if (!page && (fgp_flags & FGP_CREAT)) {
1852 int err;
f56753ac 1853 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
45f87de5
MH
1854 gfp_mask |= __GFP_WRITE;
1855 if (fgp_flags & FGP_NOFS)
1856 gfp_mask &= ~__GFP_FS;
2457aec6 1857
45f87de5 1858 page = __page_cache_alloc(gfp_mask);
eb2be189
NP
1859 if (!page)
1860 return NULL;
2457aec6 1861
a75d4c33 1862 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
2457aec6
MG
1863 fgp_flags |= FGP_LOCK;
1864
eb39d618 1865 /* Init accessed so avoid atomic mark_page_accessed later */
2457aec6 1866 if (fgp_flags & FGP_ACCESSED)
eb39d618 1867 __SetPageReferenced(page);
2457aec6 1868
2294b32e 1869 err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
eb2be189 1870 if (unlikely(err)) {
09cbfeaf 1871 put_page(page);
eb2be189
NP
1872 page = NULL;
1873 if (err == -EEXIST)
1874 goto repeat;
1da177e4 1875 }
a75d4c33
JB
1876
1877 /*
1878 * add_to_page_cache_lru locks the page, and for mmap we expect
1879 * an unlocked page.
1880 */
1881 if (page && (fgp_flags & FGP_FOR_MMAP))
1882 unlock_page(page);
1da177e4 1883 }
2457aec6 1884
1da177e4
LT
1885 return page;
1886}
2457aec6 1887EXPORT_SYMBOL(pagecache_get_page);
1da177e4 1888
c7bad633
MWO
1889static inline struct page *find_get_entry(struct xa_state *xas, pgoff_t max,
1890 xa_mark_t mark)
1891{
1892 struct page *page;
1893
1894retry:
1895 if (mark == XA_PRESENT)
1896 page = xas_find(xas, max);
1897 else
1898 page = xas_find_marked(xas, max, mark);
1899
1900 if (xas_retry(xas, page))
1901 goto retry;
1902 /*
1903 * A shadow entry of a recently evicted page, a swap
1904 * entry from shmem/tmpfs or a DAX entry. Return it
1905 * without attempting to raise page count.
1906 */
1907 if (!page || xa_is_value(page))
1908 return page;
1909
1910 if (!page_cache_get_speculative(page))
1911 goto reset;
1912
1913 /* Has the page moved or been split? */
1914 if (unlikely(page != xas_reload(xas))) {
1915 put_page(page);
1916 goto reset;
1917 }
1918
1919 return page;
1920reset:
1921 xas_reset(xas);
1922 goto retry;
1923}
1924
0cd6144a
JW
1925/**
1926 * find_get_entries - gang pagecache lookup
1927 * @mapping: The address_space to search
1928 * @start: The starting page cache index
ca122fe4 1929 * @end: The final page index (inclusive).
cf2039af 1930 * @pvec: Where the resulting entries are placed.
0cd6144a
JW
1931 * @indices: The cache indices corresponding to the entries in @entries
1932 *
cf2039af
MWO
1933 * find_get_entries() will search for and return a batch of entries in
1934 * the mapping. The entries are placed in @pvec. find_get_entries()
1935 * takes a reference on any actual pages it returns.
0cd6144a
JW
1936 *
1937 * The search returns a group of mapping-contiguous page cache entries
1938 * with ascending indexes. There may be holes in the indices due to
1939 * not-present pages.
1940 *
139b6a6f
JW
1941 * Any shadow entries of evicted pages, or swap entries from
1942 * shmem/tmpfs, are included in the returned array.
0cd6144a 1943 *
71725ed1
HD
1944 * If it finds a Transparent Huge Page, head or tail, find_get_entries()
1945 * stops at that page: the caller is likely to have a better way to handle
1946 * the compound page as a whole, and then skip its extent, than repeatedly
1947 * calling find_get_entries() to return all its tails.
1948 *
a862f68a 1949 * Return: the number of pages and shadow entries which were found.
0cd6144a 1950 */
ca122fe4 1951unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
cf2039af 1952 pgoff_t end, struct pagevec *pvec, pgoff_t *indices)
0cd6144a 1953{
f280bf09
MW
1954 XA_STATE(xas, &mapping->i_pages, start);
1955 struct page *page;
0cd6144a 1956 unsigned int ret = 0;
cf2039af 1957 unsigned nr_entries = PAGEVEC_SIZE;
0cd6144a
JW
1958
1959 rcu_read_lock();
ca122fe4 1960 while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
71725ed1
HD
1961 /*
1962 * Terminate early on finding a THP, to allow the caller to
1963 * handle it all at once; but continue if this is hugetlbfs.
1964 */
c7bad633
MWO
1965 if (!xa_is_value(page) && PageTransHuge(page) &&
1966 !PageHuge(page)) {
71725ed1
HD
1967 page = find_subpage(page, xas.xa_index);
1968 nr_entries = ret + 1;
1969 }
c7bad633 1970
f280bf09 1971 indices[ret] = xas.xa_index;
cf2039af 1972 pvec->pages[ret] = page;
0cd6144a
JW
1973 if (++ret == nr_entries)
1974 break;
1975 }
1976 rcu_read_unlock();
cf2039af
MWO
1977
1978 pvec->nr = ret;
0cd6144a
JW
1979 return ret;
1980}
1981
5c211ba2
MWO
1982/**
1983 * find_lock_entries - Find a batch of pagecache entries.
1984 * @mapping: The address_space to search.
1985 * @start: The starting page cache index.
1986 * @end: The final page index (inclusive).
1987 * @pvec: Where the resulting entries are placed.
1988 * @indices: The cache indices of the entries in @pvec.
1989 *
1990 * find_lock_entries() will return a batch of entries from @mapping.
1991 * Swap, shadow and DAX entries are included. Pages are returned
1992 * locked and with an incremented refcount. Pages which are locked by
1993 * somebody else or under writeback are skipped. Only the head page of
1994 * a THP is returned. Pages which are partially outside the range are
1995 * not returned.
1996 *
1997 * The entries have ascending indexes. The indices may not be consecutive
1998 * due to not-present entries, THP pages, pages which could not be locked
1999 * or pages under writeback.
2000 *
2001 * Return: The number of entries which were found.
2002 */
2003unsigned find_lock_entries(struct address_space *mapping, pgoff_t start,
2004 pgoff_t end, struct pagevec *pvec, pgoff_t *indices)
2005{
2006 XA_STATE(xas, &mapping->i_pages, start);
2007 struct page *page;
2008
2009 rcu_read_lock();
2010 while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
2011 if (!xa_is_value(page)) {
2012 if (page->index < start)
2013 goto put;
2014 VM_BUG_ON_PAGE(page->index != xas.xa_index, page);
2015 if (page->index + thp_nr_pages(page) - 1 > end)
2016 goto put;
2017 if (!trylock_page(page))
2018 goto put;
2019 if (page->mapping != mapping || PageWriteback(page))
2020 goto unlock;
2021 VM_BUG_ON_PAGE(!thp_contains(page, xas.xa_index),
2022 page);
2023 }
2024 indices[pvec->nr] = xas.xa_index;
2025 if (!pagevec_add(pvec, page))
2026 break;
2027 goto next;
2028unlock:
2029 unlock_page(page);
2030put:
2031 put_page(page);
2032next:
2d11e738
HD
2033 if (!xa_is_value(page) && PageTransHuge(page)) {
2034 unsigned int nr_pages = thp_nr_pages(page);
2035
2036 /* Final THP may cross MAX_LFS_FILESIZE on 32-bit */
2037 xas_set(&xas, page->index + nr_pages);
2038 if (xas.xa_index < nr_pages)
2039 break;
2040 }
5c211ba2
MWO
2041 }
2042 rcu_read_unlock();
2043
2044 return pagevec_count(pvec);
2045}
2046
1da177e4 2047/**
b947cee4 2048 * find_get_pages_range - gang pagecache lookup
1da177e4
LT
2049 * @mapping: The address_space to search
2050 * @start: The starting page index
b947cee4 2051 * @end: The final page index (inclusive)
1da177e4
LT
2052 * @nr_pages: The maximum number of pages
2053 * @pages: Where the resulting pages are placed
2054 *
b947cee4
JK
2055 * find_get_pages_range() will search for and return a group of up to @nr_pages
2056 * pages in the mapping starting at index @start and up to index @end
2057 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes
2058 * a reference against the returned pages.
1da177e4
LT
2059 *
2060 * The search returns a group of mapping-contiguous pages with ascending
2061 * indexes. There may be holes in the indices due to not-present pages.
d72dc8a2 2062 * We also update @start to index the next page for the traversal.
1da177e4 2063 *
a862f68a
MR
2064 * Return: the number of pages which were found. If this number is
2065 * smaller than @nr_pages, the end of specified range has been
b947cee4 2066 * reached.
1da177e4 2067 */
b947cee4
JK
2068unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
2069 pgoff_t end, unsigned int nr_pages,
2070 struct page **pages)
1da177e4 2071{
fd1b3cee
MW
2072 XA_STATE(xas, &mapping->i_pages, *start);
2073 struct page *page;
0fc9d104
KK
2074 unsigned ret = 0;
2075
2076 if (unlikely(!nr_pages))
2077 return 0;
a60637c8
NP
2078
2079 rcu_read_lock();
c7bad633 2080 while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
fd1b3cee
MW
2081 /* Skip over shadow, swap and DAX entries */
2082 if (xa_is_value(page))
8079b1c8 2083 continue;
a60637c8 2084
4101196b 2085 pages[ret] = find_subpage(page, xas.xa_index);
b947cee4 2086 if (++ret == nr_pages) {
5d3ee42f 2087 *start = xas.xa_index + 1;
b947cee4
JK
2088 goto out;
2089 }
a60637c8 2090 }
5b280c0c 2091
b947cee4
JK
2092 /*
2093 * We come here when there is no page beyond @end. We take care to not
2094 * overflow the index @start as it confuses some of the callers. This
fd1b3cee 2095 * breaks the iteration when there is a page at index -1 but that is
b947cee4
JK
2096 * already broken anyway.
2097 */
2098 if (end == (pgoff_t)-1)
2099 *start = (pgoff_t)-1;
2100 else
2101 *start = end + 1;
2102out:
a60637c8 2103 rcu_read_unlock();
d72dc8a2 2104
1da177e4
LT
2105 return ret;
2106}
2107
ebf43500
JA
2108/**
2109 * find_get_pages_contig - gang contiguous pagecache lookup
2110 * @mapping: The address_space to search
2111 * @index: The starting page index
2112 * @nr_pages: The maximum number of pages
2113 * @pages: Where the resulting pages are placed
2114 *
2115 * find_get_pages_contig() works exactly like find_get_pages(), except
2116 * that the returned number of pages are guaranteed to be contiguous.
2117 *
a862f68a 2118 * Return: the number of pages which were found.
ebf43500
JA
2119 */
2120unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
2121 unsigned int nr_pages, struct page **pages)
2122{
3ece58a2
MW
2123 XA_STATE(xas, &mapping->i_pages, index);
2124 struct page *page;
0fc9d104
KK
2125 unsigned int ret = 0;
2126
2127 if (unlikely(!nr_pages))
2128 return 0;
a60637c8
NP
2129
2130 rcu_read_lock();
3ece58a2 2131 for (page = xas_load(&xas); page; page = xas_next(&xas)) {
3ece58a2
MW
2132 if (xas_retry(&xas, page))
2133 continue;
2134 /*
2135 * If the entry has been swapped out, we can stop looking.
2136 * No current caller is looking for DAX entries.
2137 */
2138 if (xa_is_value(page))
8079b1c8 2139 break;
ebf43500 2140
4101196b 2141 if (!page_cache_get_speculative(page))
3ece58a2 2142 goto retry;
83929372 2143
4101196b 2144 /* Has the page moved or been split? */
3ece58a2
MW
2145 if (unlikely(page != xas_reload(&xas)))
2146 goto put_page;
a60637c8 2147
4101196b 2148 pages[ret] = find_subpage(page, xas.xa_index);
0fc9d104
KK
2149 if (++ret == nr_pages)
2150 break;
3ece58a2
MW
2151 continue;
2152put_page:
4101196b 2153 put_page(page);
3ece58a2
MW
2154retry:
2155 xas_reset(&xas);
ebf43500 2156 }
a60637c8
NP
2157 rcu_read_unlock();
2158 return ret;
ebf43500 2159}
ef71c15c 2160EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 2161
485bb99b 2162/**
c49f50d1 2163 * find_get_pages_range_tag - Find and return head pages matching @tag.
485bb99b
RD
2164 * @mapping: the address_space to search
2165 * @index: the starting page index
72b045ae 2166 * @end: The final page index (inclusive)
485bb99b
RD
2167 * @tag: the tag index
2168 * @nr_pages: the maximum number of pages
2169 * @pages: where the resulting pages are placed
2170 *
c49f50d1
MWO
2171 * Like find_get_pages(), except we only return head pages which are tagged
2172 * with @tag. @index is updated to the index immediately after the last
2173 * page we return, ready for the next iteration.
a862f68a
MR
2174 *
2175 * Return: the number of pages which were found.
1da177e4 2176 */
72b045ae 2177unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
a6906972 2178 pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
72b045ae 2179 struct page **pages)
1da177e4 2180{
a6906972
MW
2181 XA_STATE(xas, &mapping->i_pages, *index);
2182 struct page *page;
0fc9d104
KK
2183 unsigned ret = 0;
2184
2185 if (unlikely(!nr_pages))
2186 return 0;
a60637c8
NP
2187
2188 rcu_read_lock();
c7bad633 2189 while ((page = find_get_entry(&xas, end, tag))) {
a6906972
MW
2190 /*
2191 * Shadow entries should never be tagged, but this iteration
2192 * is lockless so there is a window for page reclaim to evict
2193 * a page we saw tagged. Skip over it.
2194 */
2195 if (xa_is_value(page))
139b6a6f 2196 continue;
a60637c8 2197
c49f50d1 2198 pages[ret] = page;
72b045ae 2199 if (++ret == nr_pages) {
c49f50d1 2200 *index = page->index + thp_nr_pages(page);
72b045ae
JK
2201 goto out;
2202 }
a60637c8 2203 }
5b280c0c 2204
72b045ae 2205 /*
a6906972 2206 * We come here when we got to @end. We take care to not overflow the
72b045ae 2207 * index @index as it confuses some of the callers. This breaks the
a6906972
MW
2208 * iteration when there is a page at index -1 but that is already
2209 * broken anyway.
72b045ae
JK
2210 */
2211 if (end == (pgoff_t)-1)
2212 *index = (pgoff_t)-1;
2213 else
2214 *index = end + 1;
2215out:
a60637c8 2216 rcu_read_unlock();
1da177e4 2217
1da177e4
LT
2218 return ret;
2219}
72b045ae 2220EXPORT_SYMBOL(find_get_pages_range_tag);
1da177e4 2221
76d42bd9
WF
2222/*
2223 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2224 * a _large_ part of the i/o request. Imagine the worst scenario:
2225 *
2226 * ---R__________________________________________B__________
2227 * ^ reading here ^ bad block(assume 4k)
2228 *
2229 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2230 * => failing the whole request => read(R) => read(R+1) =>
2231 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2232 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2233 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2234 *
2235 * It is going insane. Fix it by quickly scaling down the readahead size.
2236 */
0f8e2db4 2237static void shrink_readahead_size_eio(struct file_ra_state *ra)
76d42bd9 2238{
76d42bd9 2239 ra->ra_pages /= 4;
76d42bd9
WF
2240}
2241
cbd59c48
MWO
2242/*
2243 * filemap_get_read_batch - Get a batch of pages for read
2244 *
2245 * Get a batch of pages which represent a contiguous range of bytes
2246 * in the file. No tail pages will be returned. If @index is in the
2247 * middle of a THP, the entire THP will be returned. The last page in
2248 * the batch may have Readahead set or be not Uptodate so that the
2249 * caller can take the appropriate action.
2250 */
2251static void filemap_get_read_batch(struct address_space *mapping,
2252 pgoff_t index, pgoff_t max, struct pagevec *pvec)
2253{
2254 XA_STATE(xas, &mapping->i_pages, index);
2255 struct page *head;
2256
2257 rcu_read_lock();
2258 for (head = xas_load(&xas); head; head = xas_next(&xas)) {
2259 if (xas_retry(&xas, head))
2260 continue;
2261 if (xas.xa_index > max || xa_is_value(head))
2262 break;
2263 if (!page_cache_get_speculative(head))
2264 goto retry;
2265
2266 /* Has the page moved or been split? */
2267 if (unlikely(head != xas_reload(&xas)))
2268 goto put_page;
2269
2270 if (!pagevec_add(pvec, head))
2271 break;
2272 if (!PageUptodate(head))
2273 break;
2274 if (PageReadahead(head))
2275 break;
2276 xas.xa_index = head->index + thp_nr_pages(head) - 1;
2277 xas.xa_offset = (xas.xa_index >> xas.xa_shift) & XA_CHUNK_MASK;
2278 continue;
2279put_page:
2280 put_page(head);
2281retry:
2282 xas_reset(&xas);
2283 }
2284 rcu_read_unlock();
2285}
2286
68430303
MWO
2287static int filemap_read_page(struct file *file, struct address_space *mapping,
2288 struct page *page)
723ef24b 2289{
723ef24b
KO
2290 int error;
2291
723ef24b 2292 /*
68430303
MWO
2293 * A previous I/O error may have been due to temporary failures,
2294 * eg. multipath errors. PG_error will be set again if readpage
2295 * fails.
723ef24b
KO
2296 */
2297 ClearPageError(page);
2298 /* Start the actual read. The read will unlock the page. */
68430303
MWO
2299 error = mapping->a_ops->readpage(file, page);
2300 if (error)
2301 return error;
723ef24b 2302
aa1ec2f6 2303 error = wait_on_page_locked_killable(page);
68430303
MWO
2304 if (error)
2305 return error;
aa1ec2f6
MWO
2306 if (PageUptodate(page))
2307 return 0;
2308 if (!page->mapping) /* page truncated */
2309 return AOP_TRUNCATED_PAGE;
2310 shrink_readahead_size_eio(&file->f_ra);
2311 return -EIO;
723ef24b
KO
2312}
2313
fce70da3
MWO
2314static bool filemap_range_uptodate(struct address_space *mapping,
2315 loff_t pos, struct iov_iter *iter, struct page *page)
2316{
2317 int count;
2318
2319 if (PageUptodate(page))
2320 return true;
2321 /* pipes can't handle partially uptodate pages */
2322 if (iov_iter_is_pipe(iter))
2323 return false;
2324 if (!mapping->a_ops->is_partially_uptodate)
2325 return false;
2326 if (mapping->host->i_blkbits >= (PAGE_SHIFT + thp_order(page)))
2327 return false;
2328
2329 count = iter->count;
2330 if (page_offset(page) > pos) {
2331 count -= page_offset(page) - pos;
2332 pos = 0;
2333 } else {
2334 pos -= page_offset(page);
2335 }
2336
2337 return mapping->a_ops->is_partially_uptodate(page, pos, count);
2338}
2339
4612aeef
MWO
2340static int filemap_update_page(struct kiocb *iocb,
2341 struct address_space *mapping, struct iov_iter *iter,
fce70da3 2342 struct page *page)
723ef24b 2343{
723ef24b
KO
2344 int error;
2345
87d1d7b6
MWO
2346 if (!trylock_page(page)) {
2347 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2348 return -EAGAIN;
2349 if (!(iocb->ki_flags & IOCB_WAITQ)) {
bd8a1f36 2350 put_and_wait_on_page_locked(page, TASK_KILLABLE);
4612aeef 2351 return AOP_TRUNCATED_PAGE;
bd8a1f36 2352 }
87d1d7b6
MWO
2353 error = __lock_page_async(page, iocb->ki_waitq);
2354 if (error)
2355 return error;
723ef24b 2356 }
723ef24b 2357
bd8a1f36
MWO
2358 if (!page->mapping)
2359 goto truncated;
723ef24b 2360
fce70da3
MWO
2361 error = 0;
2362 if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, page))
2363 goto unlock;
2364
2365 error = -EAGAIN;
2366 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2367 goto unlock;
2368
68430303 2369 error = filemap_read_page(iocb->ki_filp, mapping, page);
68430303 2370 if (error == AOP_TRUNCATED_PAGE)
4612aeef
MWO
2371 put_page(page);
2372 return error;
bd8a1f36
MWO
2373truncated:
2374 unlock_page(page);
2375 put_page(page);
4612aeef 2376 return AOP_TRUNCATED_PAGE;
fce70da3
MWO
2377unlock:
2378 unlock_page(page);
2379 return error;
723ef24b
KO
2380}
2381
f253e185
MWO
2382static int filemap_create_page(struct file *file,
2383 struct address_space *mapping, pgoff_t index,
2384 struct pagevec *pvec)
723ef24b 2385{
723ef24b
KO
2386 struct page *page;
2387 int error;
2388
723ef24b
KO
2389 page = page_cache_alloc(mapping);
2390 if (!page)
f253e185 2391 return -ENOMEM;
723ef24b
KO
2392
2393 error = add_to_page_cache_lru(page, mapping, index,
f253e185
MWO
2394 mapping_gfp_constraint(mapping, GFP_KERNEL));
2395 if (error == -EEXIST)
2396 error = AOP_TRUNCATED_PAGE;
2397 if (error)
2398 goto error;
2399
2400 error = filemap_read_page(file, mapping, page);
2401 if (error)
2402 goto error;
2403
2404 pagevec_add(pvec, page);
2405 return 0;
2406error:
68430303 2407 put_page(page);
f253e185 2408 return error;
723ef24b
KO
2409}
2410
5963fe03
MWO
2411static int filemap_readahead(struct kiocb *iocb, struct file *file,
2412 struct address_space *mapping, struct page *page,
2413 pgoff_t last_index)
2414{
2415 if (iocb->ki_flags & IOCB_NOIO)
2416 return -EAGAIN;
2417 page_cache_async_readahead(mapping, &file->f_ra, file, page,
2418 page->index, last_index - page->index);
2419 return 0;
2420}
2421
3a6bae48 2422static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter,
ff993ba1 2423 struct pagevec *pvec)
06c04442
KO
2424{
2425 struct file *filp = iocb->ki_filp;
2426 struct address_space *mapping = filp->f_mapping;
2427 struct file_ra_state *ra = &filp->f_ra;
2428 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
cbd59c48 2429 pgoff_t last_index;
2642fca6 2430 struct page *page;
cbd59c48 2431 int err = 0;
06c04442 2432
cbd59c48 2433 last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE);
2642fca6 2434retry:
06c04442
KO
2435 if (fatal_signal_pending(current))
2436 return -EINTR;
2437
cbd59c48 2438 filemap_get_read_batch(mapping, index, last_index, pvec);
2642fca6
MWO
2439 if (!pagevec_count(pvec)) {
2440 if (iocb->ki_flags & IOCB_NOIO)
2441 return -EAGAIN;
2442 page_cache_sync_readahead(mapping, ra, filp, index,
2443 last_index - index);
2444 filemap_get_read_batch(mapping, index, last_index, pvec);
2445 }
f253e185
MWO
2446 if (!pagevec_count(pvec)) {
2447 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2448 return -EAGAIN;
2449 err = filemap_create_page(filp, mapping,
2450 iocb->ki_pos >> PAGE_SHIFT, pvec);
2451 if (err == AOP_TRUNCATED_PAGE)
2642fca6 2452 goto retry;
f253e185
MWO
2453 return err;
2454 }
06c04442 2455
2642fca6
MWO
2456 page = pvec->pages[pagevec_count(pvec) - 1];
2457 if (PageReadahead(page)) {
2458 err = filemap_readahead(iocb, filp, mapping, page, last_index);
2459 if (err)
2460 goto err;
2461 }
2462 if (!PageUptodate(page)) {
2463 if ((iocb->ki_flags & IOCB_WAITQ) && pagevec_count(pvec) > 1)
2464 iocb->ki_flags |= IOCB_NOWAIT;
2465 err = filemap_update_page(iocb, mapping, iter, page);
2466 if (err)
2467 goto err;
06c04442
KO
2468 }
2469
2642fca6 2470 return 0;
cbd59c48 2471err:
2642fca6
MWO
2472 if (err < 0)
2473 put_page(page);
2474 if (likely(--pvec->nr))
ff993ba1 2475 return 0;
4612aeef 2476 if (err == AOP_TRUNCATED_PAGE)
2642fca6
MWO
2477 goto retry;
2478 return err;
06c04442
KO
2479}
2480
485bb99b 2481/**
87fa0f3e
CH
2482 * filemap_read - Read data from the page cache.
2483 * @iocb: The iocb to read.
2484 * @iter: Destination for the data.
2485 * @already_read: Number of bytes already read by the caller.
485bb99b 2486 *
87fa0f3e
CH
2487 * Copies data from the page cache. If the data is not currently present,
2488 * uses the readahead and readpage address_space operations to fetch it.
1da177e4 2489 *
87fa0f3e
CH
2490 * Return: Total number of bytes copied, including those already read by
2491 * the caller. If an error happens before any bytes are copied, returns
2492 * a negative error number.
1da177e4 2493 */
87fa0f3e
CH
2494ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2495 ssize_t already_read)
1da177e4 2496{
47c27bc4 2497 struct file *filp = iocb->ki_filp;
06c04442 2498 struct file_ra_state *ra = &filp->f_ra;
36e78914 2499 struct address_space *mapping = filp->f_mapping;
1da177e4 2500 struct inode *inode = mapping->host;
ff993ba1
MWO
2501 struct pagevec pvec;
2502 int i, error = 0;
06c04442
KO
2503 bool writably_mapped;
2504 loff_t isize, end_offset;
1da177e4 2505
723ef24b 2506 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
d05c5f7b 2507 return 0;
3644e2d2
KO
2508 if (unlikely(!iov_iter_count(iter)))
2509 return 0;
2510
c2a9737f 2511 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
cbd59c48 2512 pagevec_init(&pvec);
c2a9737f 2513
06c04442 2514 do {
1da177e4 2515 cond_resched();
5abf186a 2516
723ef24b 2517 /*
06c04442
KO
2518 * If we've already successfully copied some data, then we
2519 * can no longer safely return -EIOCBQUEUED. Hence mark
2520 * an async read NOWAIT at that point.
723ef24b 2521 */
87fa0f3e 2522 if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
723ef24b
KO
2523 iocb->ki_flags |= IOCB_NOWAIT;
2524
ff993ba1
MWO
2525 error = filemap_get_pages(iocb, iter, &pvec);
2526 if (error < 0)
06c04442 2527 break;
1da177e4 2528
06c04442
KO
2529 /*
2530 * i_size must be checked after we know the pages are Uptodate.
2531 *
2532 * Checking i_size after the check allows us to calculate
2533 * the correct value for "nr", which means the zero-filled
2534 * part of the page is not copied back to userspace (unless
2535 * another truncate extends the file - this is desired though).
2536 */
2537 isize = i_size_read(inode);
2538 if (unlikely(iocb->ki_pos >= isize))
2539 goto put_pages;
06c04442
KO
2540 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2541
06c04442
KO
2542 /*
2543 * Once we start copying data, we don't want to be touching any
2544 * cachelines that might be contended:
2545 */
2546 writably_mapped = mapping_writably_mapped(mapping);
2547
2548 /*
2549 * When a sequential read accesses a page several times, only
2550 * mark it as accessed the first time.
2551 */
2552 if (iocb->ki_pos >> PAGE_SHIFT !=
2553 ra->prev_pos >> PAGE_SHIFT)
ff993ba1 2554 mark_page_accessed(pvec.pages[0]);
06c04442 2555
ff993ba1 2556 for (i = 0; i < pagevec_count(&pvec); i++) {
cbd59c48
MWO
2557 struct page *page = pvec.pages[i];
2558 size_t page_size = thp_size(page);
2559 size_t offset = iocb->ki_pos & (page_size - 1);
2560 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2561 page_size - offset);
2562 size_t copied;
06c04442 2563
cbd59c48
MWO
2564 if (end_offset < page_offset(page))
2565 break;
2566 if (i > 0)
2567 mark_page_accessed(page);
06c04442
KO
2568 /*
2569 * If users can be writing to this page using arbitrary
2570 * virtual addresses, take care about potential aliasing
2571 * before reading the page on the kernel side.
2572 */
cbd59c48
MWO
2573 if (writably_mapped) {
2574 int j;
2575
2576 for (j = 0; j < thp_nr_pages(page); j++)
2577 flush_dcache_page(page + j);
2578 }
06c04442 2579
cbd59c48 2580 copied = copy_page_to_iter(page, offset, bytes, iter);
06c04442 2581
87fa0f3e 2582 already_read += copied;
06c04442
KO
2583 iocb->ki_pos += copied;
2584 ra->prev_pos = iocb->ki_pos;
2585
2586 if (copied < bytes) {
2587 error = -EFAULT;
2588 break;
2589 }
1da177e4 2590 }
06c04442 2591put_pages:
ff993ba1
MWO
2592 for (i = 0; i < pagevec_count(&pvec); i++)
2593 put_page(pvec.pages[i]);
cbd59c48 2594 pagevec_reinit(&pvec);
06c04442 2595 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
1da177e4 2596
0c6aa263 2597 file_accessed(filp);
06c04442 2598
87fa0f3e 2599 return already_read ? already_read : error;
1da177e4 2600}
87fa0f3e 2601EXPORT_SYMBOL_GPL(filemap_read);
1da177e4 2602
485bb99b 2603/**
6abd2322 2604 * generic_file_read_iter - generic filesystem read routine
485bb99b 2605 * @iocb: kernel I/O control block
6abd2322 2606 * @iter: destination for the data read
485bb99b 2607 *
6abd2322 2608 * This is the "read_iter()" routine for all filesystems
1da177e4 2609 * that can use the page cache directly.
41da51bc
AG
2610 *
2611 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2612 * be returned when no data can be read without waiting for I/O requests
2613 * to complete; it doesn't prevent readahead.
2614 *
2615 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2616 * requests shall be made for the read or for readahead. When no data
2617 * can be read, -EAGAIN shall be returned. When readahead would be
2618 * triggered, a partial, possibly empty read shall be returned.
2619 *
a862f68a
MR
2620 * Return:
2621 * * number of bytes copied, even for partial reads
41da51bc 2622 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
1da177e4
LT
2623 */
2624ssize_t
ed978a81 2625generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1da177e4 2626{
e7080a43 2627 size_t count = iov_iter_count(iter);
47c27bc4 2628 ssize_t retval = 0;
e7080a43
NS
2629
2630 if (!count)
826ea860 2631 return 0; /* skip atime */
1da177e4 2632
2ba48ce5 2633 if (iocb->ki_flags & IOCB_DIRECT) {
47c27bc4 2634 struct file *file = iocb->ki_filp;
ed978a81
AV
2635 struct address_space *mapping = file->f_mapping;
2636 struct inode *inode = mapping->host;
543ade1f 2637 loff_t size;
1da177e4 2638
1da177e4 2639 size = i_size_read(inode);
6be96d3a
GR
2640 if (iocb->ki_flags & IOCB_NOWAIT) {
2641 if (filemap_range_has_page(mapping, iocb->ki_pos,
2642 iocb->ki_pos + count - 1))
2643 return -EAGAIN;
2644 } else {
2645 retval = filemap_write_and_wait_range(mapping,
2646 iocb->ki_pos,
2647 iocb->ki_pos + count - 1);
2648 if (retval < 0)
826ea860 2649 return retval;
6be96d3a 2650 }
d8d3d94b 2651
0d5b0cf2
CH
2652 file_accessed(file);
2653
5ecda137 2654 retval = mapping->a_ops->direct_IO(iocb, iter);
c3a69024 2655 if (retval >= 0) {
c64fb5c7 2656 iocb->ki_pos += retval;
5ecda137 2657 count -= retval;
9fe55eea 2658 }
ab2125df
PB
2659 if (retval != -EIOCBQUEUED)
2660 iov_iter_revert(iter, count - iov_iter_count(iter));
66f998f6 2661
9fe55eea
SW
2662 /*
2663 * Btrfs can have a short DIO read if we encounter
2664 * compressed extents, so if there was an error, or if
2665 * we've already read everything we wanted to, or if
2666 * there was a short read because we hit EOF, go ahead
2667 * and return. Otherwise fallthrough to buffered io for
fbbbad4b
MW
2668 * the rest of the read. Buffered reads will not work for
2669 * DAX files, so don't bother trying.
9fe55eea 2670 */
5ecda137 2671 if (retval < 0 || !count || iocb->ki_pos >= size ||
0d5b0cf2 2672 IS_DAX(inode))
826ea860 2673 return retval;
1da177e4
LT
2674 }
2675
826ea860 2676 return filemap_read(iocb, iter, retval);
1da177e4 2677}
ed978a81 2678EXPORT_SYMBOL(generic_file_read_iter);
1da177e4 2679
54fa39ac
MWO
2680static inline loff_t page_seek_hole_data(struct xa_state *xas,
2681 struct address_space *mapping, struct page *page,
2682 loff_t start, loff_t end, bool seek_data)
41139aa4 2683{
54fa39ac
MWO
2684 const struct address_space_operations *ops = mapping->a_ops;
2685 size_t offset, bsz = i_blocksize(mapping->host);
2686
41139aa4 2687 if (xa_is_value(page) || PageUptodate(page))
54fa39ac
MWO
2688 return seek_data ? start : end;
2689 if (!ops->is_partially_uptodate)
2690 return seek_data ? end : start;
2691
2692 xas_pause(xas);
2693 rcu_read_unlock();
2694 lock_page(page);
2695 if (unlikely(page->mapping != mapping))
2696 goto unlock;
2697
2698 offset = offset_in_thp(page, start) & ~(bsz - 1);
2699
2700 do {
2701 if (ops->is_partially_uptodate(page, offset, bsz) == seek_data)
2702 break;
2703 start = (start + bsz) & ~(bsz - 1);
2704 offset += bsz;
2705 } while (offset < thp_size(page));
2706unlock:
2707 unlock_page(page);
2708 rcu_read_lock();
2709 return start;
41139aa4
MWO
2710}
2711
2712static inline
2713unsigned int seek_page_size(struct xa_state *xas, struct page *page)
2714{
2715 if (xa_is_value(page))
2716 return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
2717 return thp_size(page);
2718}
2719
2720/**
2721 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
2722 * @mapping: Address space to search.
2723 * @start: First byte to consider.
2724 * @end: Limit of search (exclusive).
2725 * @whence: Either SEEK_HOLE or SEEK_DATA.
2726 *
2727 * If the page cache knows which blocks contain holes and which blocks
2728 * contain data, your filesystem can use this function to implement
2729 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are
2730 * entirely memory-based such as tmpfs, and filesystems which support
2731 * unwritten extents.
2732 *
2733 * Return: The requested offset on successs, or -ENXIO if @whence specifies
2734 * SEEK_DATA and there is no data after @start. There is an implicit hole
2735 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
2736 * and @end contain data.
2737 */
2738loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
2739 loff_t end, int whence)
2740{
2741 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
ed98b015 2742 pgoff_t max = (end - 1) >> PAGE_SHIFT;
41139aa4
MWO
2743 bool seek_data = (whence == SEEK_DATA);
2744 struct page *page;
2745
2746 if (end <= start)
2747 return -ENXIO;
2748
2749 rcu_read_lock();
2750 while ((page = find_get_entry(&xas, max, XA_PRESENT))) {
ed98b015
HD
2751 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
2752 unsigned int seek_size;
41139aa4
MWO
2753
2754 if (start < pos) {
2755 if (!seek_data)
2756 goto unlock;
2757 start = pos;
2758 }
2759
ed98b015
HD
2760 seek_size = seek_page_size(&xas, page);
2761 pos = round_up(pos + 1, seek_size);
54fa39ac
MWO
2762 start = page_seek_hole_data(&xas, mapping, page, start, pos,
2763 seek_data);
2764 if (start < pos)
41139aa4 2765 goto unlock;
ed98b015
HD
2766 if (start >= end)
2767 break;
2768 if (seek_size > PAGE_SIZE)
2769 xas_set(&xas, pos >> PAGE_SHIFT);
41139aa4
MWO
2770 if (!xa_is_value(page))
2771 put_page(page);
2772 }
41139aa4 2773 if (seek_data)
ed98b015 2774 start = -ENXIO;
41139aa4
MWO
2775unlock:
2776 rcu_read_unlock();
ed98b015 2777 if (page && !xa_is_value(page))
41139aa4 2778 put_page(page);
41139aa4
MWO
2779 if (start > end)
2780 return end;
2781 return start;
2782}
2783
1da177e4 2784#ifdef CONFIG_MMU
1da177e4 2785#define MMAP_LOTSAMISS (100)
6b4c9f44 2786/*
c1e8d7c6 2787 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
6b4c9f44
JB
2788 * @vmf - the vm_fault for this fault.
2789 * @page - the page to lock.
2790 * @fpin - the pointer to the file we may pin (or is already pinned).
2791 *
c1e8d7c6 2792 * This works similar to lock_page_or_retry in that it can drop the mmap_lock.
6b4c9f44 2793 * It differs in that it actually returns the page locked if it returns 1 and 0
c1e8d7c6 2794 * if it couldn't lock the page. If we did have to drop the mmap_lock then fpin
6b4c9f44
JB
2795 * will point to the pinned file and needs to be fput()'ed at a later point.
2796 */
2797static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2798 struct file **fpin)
2799{
2800 if (trylock_page(page))
2801 return 1;
2802
8b0f9fa2
LT
2803 /*
2804 * NOTE! This will make us return with VM_FAULT_RETRY, but with
c1e8d7c6 2805 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
8b0f9fa2
LT
2806 * is supposed to work. We have way too many special cases..
2807 */
6b4c9f44
JB
2808 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2809 return 0;
2810
2811 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2812 if (vmf->flags & FAULT_FLAG_KILLABLE) {
2813 if (__lock_page_killable(page)) {
2814 /*
c1e8d7c6 2815 * We didn't have the right flags to drop the mmap_lock,
6b4c9f44
JB
2816 * but all fault_handlers only check for fatal signals
2817 * if we return VM_FAULT_RETRY, so we need to drop the
c1e8d7c6 2818 * mmap_lock here and return 0 if we don't have a fpin.
6b4c9f44
JB
2819 */
2820 if (*fpin == NULL)
d8ed45c5 2821 mmap_read_unlock(vmf->vma->vm_mm);
6b4c9f44
JB
2822 return 0;
2823 }
2824 } else
2825 __lock_page(page);
2826 return 1;
2827}
2828
1da177e4 2829
ef00e08e 2830/*
6b4c9f44
JB
2831 * Synchronous readahead happens when we don't even find a page in the page
2832 * cache at all. We don't want to perform IO under the mmap sem, so if we have
2833 * to drop the mmap sem we return the file that was pinned in order for us to do
2834 * that. If we didn't pin a file then we return NULL. The file that is
2835 * returned needs to be fput()'ed when we're done with it.
ef00e08e 2836 */
6b4c9f44 2837static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
ef00e08e 2838{
2a1180f1
JB
2839 struct file *file = vmf->vma->vm_file;
2840 struct file_ra_state *ra = &file->f_ra;
ef00e08e 2841 struct address_space *mapping = file->f_mapping;
fcd9ae4f 2842 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
6b4c9f44 2843 struct file *fpin = NULL;
e630bfac 2844 unsigned int mmap_miss;
ef00e08e
LT
2845
2846 /* If we don't want any read-ahead, don't bother */
2a1180f1 2847 if (vmf->vma->vm_flags & VM_RAND_READ)
6b4c9f44 2848 return fpin;
275b12bf 2849 if (!ra->ra_pages)
6b4c9f44 2850 return fpin;
ef00e08e 2851
2a1180f1 2852 if (vmf->vma->vm_flags & VM_SEQ_READ) {
6b4c9f44 2853 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
fcd9ae4f 2854 page_cache_sync_ra(&ractl, ra->ra_pages);
6b4c9f44 2855 return fpin;
ef00e08e
LT
2856 }
2857
207d04ba 2858 /* Avoid banging the cache line if not needed */
e630bfac
KS
2859 mmap_miss = READ_ONCE(ra->mmap_miss);
2860 if (mmap_miss < MMAP_LOTSAMISS * 10)
2861 WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
ef00e08e
LT
2862
2863 /*
2864 * Do we miss much more than hit in this file? If so,
2865 * stop bothering with read-ahead. It will only hurt.
2866 */
e630bfac 2867 if (mmap_miss > MMAP_LOTSAMISS)
6b4c9f44 2868 return fpin;
ef00e08e 2869
d30a1100
WF
2870 /*
2871 * mmap read-around
2872 */
6b4c9f44 2873 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
db660d46 2874 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
600e19af
RG
2875 ra->size = ra->ra_pages;
2876 ra->async_size = ra->ra_pages / 4;
db660d46
DH
2877 ractl._index = ra->start;
2878 do_page_cache_ra(&ractl, ra->size, ra->async_size);
6b4c9f44 2879 return fpin;
ef00e08e
LT
2880}
2881
2882/*
2883 * Asynchronous readahead happens when we find the page and PG_readahead,
6b4c9f44 2884 * so we want to possibly extend the readahead further. We return the file that
c1e8d7c6 2885 * was pinned if we have to drop the mmap_lock in order to do IO.
ef00e08e 2886 */
6b4c9f44
JB
2887static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2888 struct page *page)
ef00e08e 2889{
2a1180f1
JB
2890 struct file *file = vmf->vma->vm_file;
2891 struct file_ra_state *ra = &file->f_ra;
ef00e08e 2892 struct address_space *mapping = file->f_mapping;
6b4c9f44 2893 struct file *fpin = NULL;
e630bfac 2894 unsigned int mmap_miss;
2a1180f1 2895 pgoff_t offset = vmf->pgoff;
ef00e08e
LT
2896
2897 /* If we don't want any read-ahead, don't bother */
5c72feee 2898 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
6b4c9f44 2899 return fpin;
e630bfac
KS
2900 mmap_miss = READ_ONCE(ra->mmap_miss);
2901 if (mmap_miss)
2902 WRITE_ONCE(ra->mmap_miss, --mmap_miss);
6b4c9f44
JB
2903 if (PageReadahead(page)) {
2904 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2fad6f5d
WF
2905 page_cache_async_readahead(mapping, ra, file,
2906 page, offset, ra->ra_pages);
6b4c9f44
JB
2907 }
2908 return fpin;
ef00e08e
LT
2909}
2910
485bb99b 2911/**
54cb8821 2912 * filemap_fault - read in file data for page fault handling
d0217ac0 2913 * @vmf: struct vm_fault containing details of the fault
485bb99b 2914 *
54cb8821 2915 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
2916 * mapped memory region to read in file data during a page fault.
2917 *
2918 * The goto's are kind of ugly, but this streamlines the normal case of having
2919 * it in the page cache, and handles the special cases reasonably without
2920 * having a lot of duplicated code.
9a95f3cf 2921 *
c1e8d7c6 2922 * vma->vm_mm->mmap_lock must be held on entry.
9a95f3cf 2923 *
c1e8d7c6 2924 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
a4985833 2925 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
9a95f3cf 2926 *
c1e8d7c6 2927 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
9a95f3cf
PC
2928 * has not been released.
2929 *
2930 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
a862f68a
MR
2931 *
2932 * Return: bitwise-OR of %VM_FAULT_ codes.
1da177e4 2933 */
2bcd6454 2934vm_fault_t filemap_fault(struct vm_fault *vmf)
1da177e4
LT
2935{
2936 int error;
11bac800 2937 struct file *file = vmf->vma->vm_file;
6b4c9f44 2938 struct file *fpin = NULL;
1da177e4
LT
2939 struct address_space *mapping = file->f_mapping;
2940 struct file_ra_state *ra = &file->f_ra;
2941 struct inode *inode = mapping->host;
ef00e08e 2942 pgoff_t offset = vmf->pgoff;
9ab2594f 2943 pgoff_t max_off;
1da177e4 2944 struct page *page;
2bcd6454 2945 vm_fault_t ret = 0;
1da177e4 2946
9ab2594f
MW
2947 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2948 if (unlikely(offset >= max_off))
5307cc1a 2949 return VM_FAULT_SIGBUS;
1da177e4 2950
1da177e4 2951 /*
49426420 2952 * Do we have something in the page cache already?
1da177e4 2953 */
ef00e08e 2954 page = find_get_page(mapping, offset);
45cac65b 2955 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1da177e4 2956 /*
ef00e08e
LT
2957 * We found the page, so try async readahead before
2958 * waiting for the lock.
1da177e4 2959 */
6b4c9f44 2960 fpin = do_async_mmap_readahead(vmf, page);
45cac65b 2961 } else if (!page) {
ef00e08e 2962 /* No page in the page cache at all */
ef00e08e 2963 count_vm_event(PGMAJFAULT);
2262185c 2964 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
ef00e08e 2965 ret = VM_FAULT_MAJOR;
6b4c9f44 2966 fpin = do_sync_mmap_readahead(vmf);
ef00e08e 2967retry_find:
a75d4c33
JB
2968 page = pagecache_get_page(mapping, offset,
2969 FGP_CREAT|FGP_FOR_MMAP,
2970 vmf->gfp_mask);
6b4c9f44
JB
2971 if (!page) {
2972 if (fpin)
2973 goto out_retry;
e520e932 2974 return VM_FAULT_OOM;
6b4c9f44 2975 }
1da177e4
LT
2976 }
2977
6b4c9f44
JB
2978 if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
2979 goto out_retry;
b522c94d
ML
2980
2981 /* Did it get truncated? */
585e5a7b 2982 if (unlikely(compound_head(page)->mapping != mapping)) {
b522c94d
ML
2983 unlock_page(page);
2984 put_page(page);
2985 goto retry_find;
2986 }
520e5ba4 2987 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
b522c94d 2988
1da177e4 2989 /*
d00806b1
NP
2990 * We have a locked page in the page cache, now we need to check
2991 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 2992 */
d00806b1 2993 if (unlikely(!PageUptodate(page)))
1da177e4
LT
2994 goto page_not_uptodate;
2995
6b4c9f44 2996 /*
c1e8d7c6 2997 * We've made it this far and we had to drop our mmap_lock, now is the
6b4c9f44
JB
2998 * time to return to the upper layer and have it re-find the vma and
2999 * redo the fault.
3000 */
3001 if (fpin) {
3002 unlock_page(page);
3003 goto out_retry;
3004 }
3005
ef00e08e
LT
3006 /*
3007 * Found the page and have a reference on it.
3008 * We must recheck i_size under page lock.
3009 */
9ab2594f
MW
3010 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3011 if (unlikely(offset >= max_off)) {
d00806b1 3012 unlock_page(page);
09cbfeaf 3013 put_page(page);
5307cc1a 3014 return VM_FAULT_SIGBUS;
d00806b1
NP
3015 }
3016
d0217ac0 3017 vmf->page = page;
83c54070 3018 return ret | VM_FAULT_LOCKED;
1da177e4 3019
1da177e4 3020page_not_uptodate:
1da177e4
LT
3021 /*
3022 * Umm, take care of errors if the page isn't up-to-date.
3023 * Try to re-read it _once_. We do this synchronously,
3024 * because there really aren't any performance issues here
3025 * and we need to check for errors.
3026 */
1da177e4 3027 ClearPageError(page);
6b4c9f44 3028 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
994fc28c 3029 error = mapping->a_ops->readpage(file, page);
3ef0f720
MS
3030 if (!error) {
3031 wait_on_page_locked(page);
3032 if (!PageUptodate(page))
3033 error = -EIO;
3034 }
6b4c9f44
JB
3035 if (fpin)
3036 goto out_retry;
09cbfeaf 3037 put_page(page);
d00806b1
NP
3038
3039 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 3040 goto retry_find;
1da177e4 3041
0f8e2db4 3042 shrink_readahead_size_eio(ra);
d0217ac0 3043 return VM_FAULT_SIGBUS;
6b4c9f44
JB
3044
3045out_retry:
3046 /*
c1e8d7c6 3047 * We dropped the mmap_lock, we need to return to the fault handler to
6b4c9f44
JB
3048 * re-find the vma and come back and find our hopefully still populated
3049 * page.
3050 */
3051 if (page)
3052 put_page(page);
3053 if (fpin)
3054 fput(fpin);
3055 return ret | VM_FAULT_RETRY;
54cb8821
NP
3056}
3057EXPORT_SYMBOL(filemap_fault);
3058
f9ce0be7 3059static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page)
f1820361 3060{
f9ce0be7
KS
3061 struct mm_struct *mm = vmf->vma->vm_mm;
3062
3063 /* Huge page is mapped? No need to proceed. */
3064 if (pmd_trans_huge(*vmf->pmd)) {
3065 unlock_page(page);
3066 put_page(page);
3067 return true;
3068 }
3069
3070 if (pmd_none(*vmf->pmd) && PageTransHuge(page)) {
3071 vm_fault_t ret = do_set_pmd(vmf, page);
3072 if (!ret) {
3073 /* The page is mapped successfully, reference consumed. */
3074 unlock_page(page);
3075 return true;
3076 }
3077 }
3078
3079 if (pmd_none(*vmf->pmd)) {
3080 vmf->ptl = pmd_lock(mm, vmf->pmd);
3081 if (likely(pmd_none(*vmf->pmd))) {
3082 mm_inc_nr_ptes(mm);
3083 pmd_populate(mm, vmf->pmd, vmf->prealloc_pte);
3084 vmf->prealloc_pte = NULL;
3085 }
3086 spin_unlock(vmf->ptl);
3087 }
3088
3089 /* See comment in handle_pte_fault() */
3090 if (pmd_devmap_trans_unstable(vmf->pmd)) {
3091 unlock_page(page);
3092 put_page(page);
3093 return true;
3094 }
3095
3096 return false;
3097}
3098
3099static struct page *next_uptodate_page(struct page *page,
3100 struct address_space *mapping,
3101 struct xa_state *xas, pgoff_t end_pgoff)
3102{
3103 unsigned long max_idx;
3104
3105 do {
3106 if (!page)
3107 return NULL;
3108 if (xas_retry(xas, page))
3109 continue;
3110 if (xa_is_value(page))
3111 continue;
3112 if (PageLocked(page))
3113 continue;
3114 if (!page_cache_get_speculative(page))
3115 continue;
3116 /* Has the page moved or been split? */
3117 if (unlikely(page != xas_reload(xas)))
3118 goto skip;
3119 if (!PageUptodate(page) || PageReadahead(page))
3120 goto skip;
3121 if (PageHWPoison(page))
3122 goto skip;
3123 if (!trylock_page(page))
3124 goto skip;
3125 if (page->mapping != mapping)
3126 goto unlock;
3127 if (!PageUptodate(page))
3128 goto unlock;
3129 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3130 if (xas->xa_index >= max_idx)
3131 goto unlock;
3132 return page;
3133unlock:
3134 unlock_page(page);
3135skip:
3136 put_page(page);
3137 } while ((page = xas_next_entry(xas, end_pgoff)) != NULL);
3138
3139 return NULL;
3140}
3141
3142static inline struct page *first_map_page(struct address_space *mapping,
3143 struct xa_state *xas,
3144 pgoff_t end_pgoff)
3145{
3146 return next_uptodate_page(xas_find(xas, end_pgoff),
3147 mapping, xas, end_pgoff);
3148}
3149
3150static inline struct page *next_map_page(struct address_space *mapping,
3151 struct xa_state *xas,
3152 pgoff_t end_pgoff)
3153{
3154 return next_uptodate_page(xas_next_entry(xas, end_pgoff),
3155 mapping, xas, end_pgoff);
3156}
3157
3158vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3159 pgoff_t start_pgoff, pgoff_t end_pgoff)
3160{
3161 struct vm_area_struct *vma = vmf->vma;
3162 struct file *file = vma->vm_file;
f1820361 3163 struct address_space *mapping = file->f_mapping;
bae473a4 3164 pgoff_t last_pgoff = start_pgoff;
9d3af4b4 3165 unsigned long addr;
070e807c 3166 XA_STATE(xas, &mapping->i_pages, start_pgoff);
27a83a60 3167 struct page *head, *page;
e630bfac 3168 unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
f9ce0be7 3169 vm_fault_t ret = 0;
f1820361
KS
3170
3171 rcu_read_lock();
f9ce0be7
KS
3172 head = first_map_page(mapping, &xas, end_pgoff);
3173 if (!head)
3174 goto out;
f1820361 3175
f9ce0be7
KS
3176 if (filemap_map_pmd(vmf, head)) {
3177 ret = VM_FAULT_NOPAGE;
3178 goto out;
3179 }
f1820361 3180
9d3af4b4
WD
3181 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3182 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
f9ce0be7 3183 do {
27a83a60 3184 page = find_subpage(head, xas.xa_index);
f9ce0be7 3185 if (PageHWPoison(page))
f1820361
KS
3186 goto unlock;
3187
e630bfac
KS
3188 if (mmap_miss > 0)
3189 mmap_miss--;
7267ec00 3190
9d3af4b4 3191 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
f9ce0be7 3192 vmf->pte += xas.xa_index - last_pgoff;
070e807c 3193 last_pgoff = xas.xa_index;
f9ce0be7
KS
3194
3195 if (!pte_none(*vmf->pte))
7267ec00 3196 goto unlock;
f9ce0be7 3197
46bdb427 3198 /* We're about to handle the fault */
9d3af4b4 3199 if (vmf->address == addr)
46bdb427 3200 ret = VM_FAULT_NOPAGE;
46bdb427 3201
9d3af4b4 3202 do_set_pte(vmf, page, addr);
f9ce0be7 3203 /* no need to invalidate: a not-present page won't be cached */
9d3af4b4 3204 update_mmu_cache(vma, addr, vmf->pte);
27a83a60 3205 unlock_page(head);
f9ce0be7 3206 continue;
f1820361 3207unlock:
27a83a60 3208 unlock_page(head);
27a83a60 3209 put_page(head);
f9ce0be7
KS
3210 } while ((head = next_map_page(mapping, &xas, end_pgoff)) != NULL);
3211 pte_unmap_unlock(vmf->pte, vmf->ptl);
3212out:
f1820361 3213 rcu_read_unlock();
e630bfac 3214 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
f9ce0be7 3215 return ret;
f1820361
KS
3216}
3217EXPORT_SYMBOL(filemap_map_pages);
3218
2bcd6454 3219vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
4fcf1c62 3220{
5df1a672 3221 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
4fcf1c62 3222 struct page *page = vmf->page;
2bcd6454 3223 vm_fault_t ret = VM_FAULT_LOCKED;
4fcf1c62 3224
5df1a672 3225 sb_start_pagefault(mapping->host->i_sb);
11bac800 3226 file_update_time(vmf->vma->vm_file);
4fcf1c62 3227 lock_page(page);
5df1a672 3228 if (page->mapping != mapping) {
4fcf1c62
JK
3229 unlock_page(page);
3230 ret = VM_FAULT_NOPAGE;
3231 goto out;
3232 }
14da9200
JK
3233 /*
3234 * We mark the page dirty already here so that when freeze is in
3235 * progress, we are guaranteed that writeback during freezing will
3236 * see the dirty page and writeprotect it again.
3237 */
3238 set_page_dirty(page);
1d1d1a76 3239 wait_for_stable_page(page);
4fcf1c62 3240out:
5df1a672 3241 sb_end_pagefault(mapping->host->i_sb);
4fcf1c62
JK
3242 return ret;
3243}
4fcf1c62 3244
f0f37e2f 3245const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 3246 .fault = filemap_fault,
f1820361 3247 .map_pages = filemap_map_pages,
4fcf1c62 3248 .page_mkwrite = filemap_page_mkwrite,
1da177e4
LT
3249};
3250
3251/* This is used for a general mmap of a disk file */
3252
3253int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
3254{
3255 struct address_space *mapping = file->f_mapping;
3256
3257 if (!mapping->a_ops->readpage)
3258 return -ENOEXEC;
3259 file_accessed(file);
3260 vma->vm_ops = &generic_file_vm_ops;
3261 return 0;
3262}
1da177e4
LT
3263
3264/*
3265 * This is for filesystems which do not implement ->writepage.
3266 */
3267int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3268{
3269 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3270 return -EINVAL;
3271 return generic_file_mmap(file, vma);
3272}
3273#else
4b96a37d 3274vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
45397228 3275{
4b96a37d 3276 return VM_FAULT_SIGBUS;
45397228 3277}
1da177e4
LT
3278int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
3279{
3280 return -ENOSYS;
3281}
3282int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
3283{
3284 return -ENOSYS;
3285}
3286#endif /* CONFIG_MMU */
3287
45397228 3288EXPORT_SYMBOL(filemap_page_mkwrite);
1da177e4
LT
3289EXPORT_SYMBOL(generic_file_mmap);
3290EXPORT_SYMBOL(generic_file_readonly_mmap);
3291
67f9fd91
SL
3292static struct page *wait_on_page_read(struct page *page)
3293{
3294 if (!IS_ERR(page)) {
3295 wait_on_page_locked(page);
3296 if (!PageUptodate(page)) {
09cbfeaf 3297 put_page(page);
67f9fd91
SL
3298 page = ERR_PTR(-EIO);
3299 }
3300 }
3301 return page;
3302}
3303
32b63529 3304static struct page *do_read_cache_page(struct address_space *mapping,
57f6b96c 3305 pgoff_t index,
5e5358e7 3306 int (*filler)(void *, struct page *),
0531b2aa
LT
3307 void *data,
3308 gfp_t gfp)
1da177e4 3309{
eb2be189 3310 struct page *page;
1da177e4
LT
3311 int err;
3312repeat:
3313 page = find_get_page(mapping, index);
3314 if (!page) {
453f85d4 3315 page = __page_cache_alloc(gfp);
eb2be189
NP
3316 if (!page)
3317 return ERR_PTR(-ENOMEM);
e6f67b8c 3318 err = add_to_page_cache_lru(page, mapping, index, gfp);
eb2be189 3319 if (unlikely(err)) {
09cbfeaf 3320 put_page(page);
eb2be189
NP
3321 if (err == -EEXIST)
3322 goto repeat;
22ecdb4f 3323 /* Presumably ENOMEM for xarray node */
1da177e4
LT
3324 return ERR_PTR(err);
3325 }
32b63529
MG
3326
3327filler:
6c45b454
CH
3328 if (filler)
3329 err = filler(data, page);
3330 else
3331 err = mapping->a_ops->readpage(data, page);
3332
1da177e4 3333 if (err < 0) {
09cbfeaf 3334 put_page(page);
32b63529 3335 return ERR_PTR(err);
1da177e4 3336 }
1da177e4 3337
32b63529
MG
3338 page = wait_on_page_read(page);
3339 if (IS_ERR(page))
3340 return page;
3341 goto out;
3342 }
1da177e4
LT
3343 if (PageUptodate(page))
3344 goto out;
3345
ebded027 3346 /*
0e9aa675 3347 * Page is not up to date and may be locked due to one of the following
ebded027
MG
3348 * case a: Page is being filled and the page lock is held
3349 * case b: Read/write error clearing the page uptodate status
3350 * case c: Truncation in progress (page locked)
3351 * case d: Reclaim in progress
3352 *
3353 * Case a, the page will be up to date when the page is unlocked.
3354 * There is no need to serialise on the page lock here as the page
3355 * is pinned so the lock gives no additional protection. Even if the
ce89fddf 3356 * page is truncated, the data is still valid if PageUptodate as
ebded027
MG
3357 * it's a race vs truncate race.
3358 * Case b, the page will not be up to date
3359 * Case c, the page may be truncated but in itself, the data may still
3360 * be valid after IO completes as it's a read vs truncate race. The
3361 * operation must restart if the page is not uptodate on unlock but
3362 * otherwise serialising on page lock to stabilise the mapping gives
3363 * no additional guarantees to the caller as the page lock is
3364 * released before return.
3365 * Case d, similar to truncation. If reclaim holds the page lock, it
3366 * will be a race with remove_mapping that determines if the mapping
3367 * is valid on unlock but otherwise the data is valid and there is
3368 * no need to serialise with page lock.
3369 *
3370 * As the page lock gives no additional guarantee, we optimistically
3371 * wait on the page to be unlocked and check if it's up to date and
3372 * use the page if it is. Otherwise, the page lock is required to
3373 * distinguish between the different cases. The motivation is that we
3374 * avoid spurious serialisations and wakeups when multiple processes
3375 * wait on the same page for IO to complete.
3376 */
3377 wait_on_page_locked(page);
3378 if (PageUptodate(page))
3379 goto out;
3380
3381 /* Distinguish between all the cases under the safety of the lock */
1da177e4 3382 lock_page(page);
ebded027
MG
3383
3384 /* Case c or d, restart the operation */
1da177e4
LT
3385 if (!page->mapping) {
3386 unlock_page(page);
09cbfeaf 3387 put_page(page);
32b63529 3388 goto repeat;
1da177e4 3389 }
ebded027
MG
3390
3391 /* Someone else locked and filled the page in a very small window */
1da177e4
LT
3392 if (PageUptodate(page)) {
3393 unlock_page(page);
3394 goto out;
3395 }
faffdfa0
XT
3396
3397 /*
3398 * A previous I/O error may have been due to temporary
3399 * failures.
3400 * Clear page error before actual read, PG_error will be
3401 * set again if read page fails.
3402 */
3403 ClearPageError(page);
32b63529
MG
3404 goto filler;
3405
c855ff37 3406out:
6fe6900e
NP
3407 mark_page_accessed(page);
3408 return page;
3409}
0531b2aa
LT
3410
3411/**
67f9fd91 3412 * read_cache_page - read into page cache, fill it if needed
0531b2aa
LT
3413 * @mapping: the page's address_space
3414 * @index: the page index
3415 * @filler: function to perform the read
5e5358e7 3416 * @data: first arg to filler(data, page) function, often left as NULL
0531b2aa 3417 *
0531b2aa 3418 * Read into the page cache. If a page already exists, and PageUptodate() is
67f9fd91 3419 * not set, try to fill the page and wait for it to become unlocked.
0531b2aa
LT
3420 *
3421 * If the page does not get brought uptodate, return -EIO.
a862f68a
MR
3422 *
3423 * Return: up to date page on success, ERR_PTR() on failure.
0531b2aa 3424 */
67f9fd91 3425struct page *read_cache_page(struct address_space *mapping,
0531b2aa 3426 pgoff_t index,
5e5358e7 3427 int (*filler)(void *, struct page *),
0531b2aa
LT
3428 void *data)
3429{
d322a8e5
CH
3430 return do_read_cache_page(mapping, index, filler, data,
3431 mapping_gfp_mask(mapping));
0531b2aa 3432}
67f9fd91 3433EXPORT_SYMBOL(read_cache_page);
0531b2aa
LT
3434
3435/**
3436 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3437 * @mapping: the page's address_space
3438 * @index: the page index
3439 * @gfp: the page allocator flags to use if allocating
3440 *
3441 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
e6f67b8c 3442 * any new page allocations done using the specified allocation flags.
0531b2aa
LT
3443 *
3444 * If the page does not get brought uptodate, return -EIO.
a862f68a
MR
3445 *
3446 * Return: up to date page on success, ERR_PTR() on failure.
0531b2aa
LT
3447 */
3448struct page *read_cache_page_gfp(struct address_space *mapping,
3449 pgoff_t index,
3450 gfp_t gfp)
3451{
6c45b454 3452 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
0531b2aa
LT
3453}
3454EXPORT_SYMBOL(read_cache_page_gfp);
3455
afddba49
NP
3456int pagecache_write_begin(struct file *file, struct address_space *mapping,
3457 loff_t pos, unsigned len, unsigned flags,
3458 struct page **pagep, void **fsdata)
3459{
3460 const struct address_space_operations *aops = mapping->a_ops;
3461
4e02ed4b 3462 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 3463 pagep, fsdata);
afddba49
NP
3464}
3465EXPORT_SYMBOL(pagecache_write_begin);
3466
3467int pagecache_write_end(struct file *file, struct address_space *mapping,
3468 loff_t pos, unsigned len, unsigned copied,
3469 struct page *page, void *fsdata)
3470{
3471 const struct address_space_operations *aops = mapping->a_ops;
afddba49 3472
4e02ed4b 3473 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
3474}
3475EXPORT_SYMBOL(pagecache_write_end);
3476
a92853b6
KK
3477/*
3478 * Warn about a page cache invalidation failure during a direct I/O write.
3479 */
3480void dio_warn_stale_pagecache(struct file *filp)
3481{
3482 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3483 char pathname[128];
a92853b6
KK
3484 char *path;
3485
5df1a672 3486 errseq_set(&filp->f_mapping->wb_err, -EIO);
a92853b6
KK
3487 if (__ratelimit(&_rs)) {
3488 path = file_path(filp, pathname, sizeof(pathname));
3489 if (IS_ERR(path))
3490 path = "(unknown)";
3491 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
3492 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3493 current->comm);
3494 }
3495}
3496
1da177e4 3497ssize_t
1af5bb49 3498generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3499{
3500 struct file *file = iocb->ki_filp;
3501 struct address_space *mapping = file->f_mapping;
3502 struct inode *inode = mapping->host;
1af5bb49 3503 loff_t pos = iocb->ki_pos;
1da177e4 3504 ssize_t written;
a969e903
CH
3505 size_t write_len;
3506 pgoff_t end;
1da177e4 3507
0c949334 3508 write_len = iov_iter_count(from);
09cbfeaf 3509 end = (pos + write_len - 1) >> PAGE_SHIFT;
a969e903 3510
6be96d3a
GR
3511 if (iocb->ki_flags & IOCB_NOWAIT) {
3512 /* If there are pages to writeback, return */
5df1a672 3513 if (filemap_range_has_page(file->f_mapping, pos,
35f12f0f 3514 pos + write_len - 1))
6be96d3a
GR
3515 return -EAGAIN;
3516 } else {
3517 written = filemap_write_and_wait_range(mapping, pos,
3518 pos + write_len - 1);
3519 if (written)
3520 goto out;
3521 }
a969e903
CH
3522
3523 /*
3524 * After a write we want buffered reads to be sure to go to disk to get
3525 * the new data. We invalidate clean cached page from the region we're
3526 * about to write. We do this *before* the write so that we can return
6ccfa806 3527 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903 3528 */
55635ba7 3529 written = invalidate_inode_pages2_range(mapping,
09cbfeaf 3530 pos >> PAGE_SHIFT, end);
55635ba7
AR
3531 /*
3532 * If a page can not be invalidated, return 0 to fall back
3533 * to buffered write.
3534 */
3535 if (written) {
3536 if (written == -EBUSY)
3537 return 0;
3538 goto out;
a969e903
CH
3539 }
3540
639a93a5 3541 written = mapping->a_ops->direct_IO(iocb, from);
a969e903
CH
3542
3543 /*
3544 * Finally, try again to invalidate clean pages which might have been
3545 * cached by non-direct readahead, or faulted in by get_user_pages()
3546 * if the source of the write was an mmap'ed region of the file
3547 * we're writing. Either one is a pretty crazy thing to do,
3548 * so we don't support it 100%. If this invalidation
3549 * fails, tough, the write still worked...
332391a9
LC
3550 *
3551 * Most of the time we do not need this since dio_complete() will do
3552 * the invalidation for us. However there are some file systems that
3553 * do not end up with dio_complete() being called, so let's not break
80c1fe90
KK
3554 * them by removing it completely.
3555 *
9266a140
KK
3556 * Noticeable example is a blkdev_direct_IO().
3557 *
80c1fe90 3558 * Skip invalidation for async writes or if mapping has no pages.
a969e903 3559 */
9266a140
KK
3560 if (written > 0 && mapping->nrpages &&
3561 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3562 dio_warn_stale_pagecache(file);
a969e903 3563
1da177e4 3564 if (written > 0) {
0116651c 3565 pos += written;
639a93a5 3566 write_len -= written;
0116651c
NK
3567 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3568 i_size_write(inode, pos);
1da177e4
LT
3569 mark_inode_dirty(inode);
3570 }
5cb6c6c7 3571 iocb->ki_pos = pos;
1da177e4 3572 }
ab2125df
PB
3573 if (written != -EIOCBQUEUED)
3574 iov_iter_revert(from, write_len - iov_iter_count(from));
a969e903 3575out:
1da177e4
LT
3576 return written;
3577}
3578EXPORT_SYMBOL(generic_file_direct_write);
3579
eb2be189
NP
3580/*
3581 * Find or create a page at the given pagecache position. Return the locked
3582 * page. This function is specifically for buffered writes.
3583 */
54566b2c
NP
3584struct page *grab_cache_page_write_begin(struct address_space *mapping,
3585 pgoff_t index, unsigned flags)
eb2be189 3586{
eb2be189 3587 struct page *page;
bbddabe2 3588 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
0faa70cb 3589
54566b2c 3590 if (flags & AOP_FLAG_NOFS)
2457aec6
MG
3591 fgp_flags |= FGP_NOFS;
3592
3593 page = pagecache_get_page(mapping, index, fgp_flags,
45f87de5 3594 mapping_gfp_mask(mapping));
c585a267 3595 if (page)
2457aec6 3596 wait_for_stable_page(page);
eb2be189 3597
eb2be189
NP
3598 return page;
3599}
54566b2c 3600EXPORT_SYMBOL(grab_cache_page_write_begin);
eb2be189 3601
3b93f911 3602ssize_t generic_perform_write(struct file *file,
afddba49
NP
3603 struct iov_iter *i, loff_t pos)
3604{
3605 struct address_space *mapping = file->f_mapping;
3606 const struct address_space_operations *a_ops = mapping->a_ops;
3607 long status = 0;
3608 ssize_t written = 0;
674b892e
NP
3609 unsigned int flags = 0;
3610
afddba49
NP
3611 do {
3612 struct page *page;
afddba49
NP
3613 unsigned long offset; /* Offset into pagecache page */
3614 unsigned long bytes; /* Bytes to write to page */
3615 size_t copied; /* Bytes copied from user */
3616 void *fsdata;
3617
09cbfeaf
KS
3618 offset = (pos & (PAGE_SIZE - 1));
3619 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
3620 iov_iter_count(i));
3621
3622again:
00a3d660
LT
3623 /*
3624 * Bring in the user page that we will copy from _first_.
3625 * Otherwise there's a nasty deadlock on copying from the
3626 * same page as we're writing to, without it being marked
3627 * up-to-date.
3628 *
3629 * Not only is this an optimisation, but it is also required
3630 * to check that the address is actually valid, when atomic
3631 * usercopies are used, below.
3632 */
3633 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3634 status = -EFAULT;
3635 break;
3636 }
3637
296291cd
JK
3638 if (fatal_signal_pending(current)) {
3639 status = -EINTR;
3640 break;
3641 }
3642
674b892e 3643 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49 3644 &page, &fsdata);
2457aec6 3645 if (unlikely(status < 0))
afddba49
NP
3646 break;
3647
931e80e4 3648 if (mapping_writably_mapped(mapping))
3649 flush_dcache_page(page);
00a3d660 3650
afddba49 3651 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
afddba49
NP
3652 flush_dcache_page(page);
3653
3654 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3655 page, fsdata);
3656 if (unlikely(status < 0))
3657 break;
3658 copied = status;
3659
3660 cond_resched();
3661
124d3b70 3662 iov_iter_advance(i, copied);
afddba49
NP
3663 if (unlikely(copied == 0)) {
3664 /*
3665 * If we were unable to copy any data at all, we must
3666 * fall back to a single segment length write.
3667 *
3668 * If we didn't fallback here, we could livelock
3669 * because not all segments in the iov can be copied at
3670 * once without a pagefault.
3671 */
09cbfeaf 3672 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
3673 iov_iter_single_seg_count(i));
3674 goto again;
3675 }
afddba49
NP
3676 pos += copied;
3677 written += copied;
3678
3679 balance_dirty_pages_ratelimited(mapping);
afddba49
NP
3680 } while (iov_iter_count(i));
3681
3682 return written ? written : status;
3683}
3b93f911 3684EXPORT_SYMBOL(generic_perform_write);
1da177e4 3685
e4dd9de3 3686/**
8174202b 3687 * __generic_file_write_iter - write data to a file
e4dd9de3 3688 * @iocb: IO state structure (file, offset, etc.)
8174202b 3689 * @from: iov_iter with data to write
e4dd9de3
JK
3690 *
3691 * This function does all the work needed for actually writing data to a
3692 * file. It does all basic checks, removes SUID from the file, updates
3693 * modification times and calls proper subroutines depending on whether we
3694 * do direct IO or a standard buffered write.
3695 *
3696 * It expects i_mutex to be grabbed unless we work on a block device or similar
3697 * object which does not need locking at all.
3698 *
3699 * This function does *not* take care of syncing data in case of O_SYNC write.
3700 * A caller has to handle it. This is mainly due to the fact that we want to
3701 * avoid syncing under i_mutex.
a862f68a
MR
3702 *
3703 * Return:
3704 * * number of bytes written, even for truncated writes
3705 * * negative error code if no data has been written at all
e4dd9de3 3706 */
8174202b 3707ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3708{
3709 struct file *file = iocb->ki_filp;
fb5527e6 3710 struct address_space * mapping = file->f_mapping;
1da177e4 3711 struct inode *inode = mapping->host;
3b93f911 3712 ssize_t written = 0;
1da177e4 3713 ssize_t err;
3b93f911 3714 ssize_t status;
1da177e4 3715
1da177e4 3716 /* We can write back this queue in page reclaim */
de1414a6 3717 current->backing_dev_info = inode_to_bdi(inode);
5fa8e0a1 3718 err = file_remove_privs(file);
1da177e4
LT
3719 if (err)
3720 goto out;
3721
c3b2da31
JB
3722 err = file_update_time(file);
3723 if (err)
3724 goto out;
1da177e4 3725
2ba48ce5 3726 if (iocb->ki_flags & IOCB_DIRECT) {
0b8def9d 3727 loff_t pos, endbyte;
fb5527e6 3728
1af5bb49 3729 written = generic_file_direct_write(iocb, from);
1da177e4 3730 /*
fbbbad4b
MW
3731 * If the write stopped short of completing, fall back to
3732 * buffered writes. Some filesystems do this for writes to
3733 * holes, for example. For DAX files, a buffered write will
3734 * not succeed (even if it did, DAX does not handle dirty
3735 * page-cache pages correctly).
1da177e4 3736 */
0b8def9d 3737 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
fbbbad4b
MW
3738 goto out;
3739
0b8def9d 3740 status = generic_perform_write(file, from, pos = iocb->ki_pos);
fb5527e6 3741 /*
3b93f911 3742 * If generic_perform_write() returned a synchronous error
fb5527e6
JM
3743 * then we want to return the number of bytes which were
3744 * direct-written, or the error code if that was zero. Note
3745 * that this differs from normal direct-io semantics, which
3746 * will return -EFOO even if some bytes were written.
3747 */
60bb4529 3748 if (unlikely(status < 0)) {
3b93f911 3749 err = status;
fb5527e6
JM
3750 goto out;
3751 }
fb5527e6
JM
3752 /*
3753 * We need to ensure that the page cache pages are written to
3754 * disk and invalidated to preserve the expected O_DIRECT
3755 * semantics.
3756 */
3b93f911 3757 endbyte = pos + status - 1;
0b8def9d 3758 err = filemap_write_and_wait_range(mapping, pos, endbyte);
fb5527e6 3759 if (err == 0) {
0b8def9d 3760 iocb->ki_pos = endbyte + 1;
3b93f911 3761 written += status;
fb5527e6 3762 invalidate_mapping_pages(mapping,
09cbfeaf
KS
3763 pos >> PAGE_SHIFT,
3764 endbyte >> PAGE_SHIFT);
fb5527e6
JM
3765 } else {
3766 /*
3767 * We don't know how much we wrote, so just return
3768 * the number of bytes which were direct-written
3769 */
3770 }
3771 } else {
0b8def9d
AV
3772 written = generic_perform_write(file, from, iocb->ki_pos);
3773 if (likely(written > 0))
3774 iocb->ki_pos += written;
fb5527e6 3775 }
1da177e4
LT
3776out:
3777 current->backing_dev_info = NULL;
3778 return written ? written : err;
3779}
8174202b 3780EXPORT_SYMBOL(__generic_file_write_iter);
e4dd9de3 3781
e4dd9de3 3782/**
8174202b 3783 * generic_file_write_iter - write data to a file
e4dd9de3 3784 * @iocb: IO state structure
8174202b 3785 * @from: iov_iter with data to write
e4dd9de3 3786 *
8174202b 3787 * This is a wrapper around __generic_file_write_iter() to be used by most
e4dd9de3
JK
3788 * filesystems. It takes care of syncing the file in case of O_SYNC file
3789 * and acquires i_mutex as needed.
a862f68a
MR
3790 * Return:
3791 * * negative error code if no data has been written at all of
3792 * vfs_fsync_range() failed for a synchronous write
3793 * * number of bytes written, even for truncated writes
e4dd9de3 3794 */
8174202b 3795ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3796{
3797 struct file *file = iocb->ki_filp;
148f948b 3798 struct inode *inode = file->f_mapping->host;
1da177e4 3799 ssize_t ret;
1da177e4 3800
5955102c 3801 inode_lock(inode);
3309dd04
AV
3802 ret = generic_write_checks(iocb, from);
3803 if (ret > 0)
5f380c7f 3804 ret = __generic_file_write_iter(iocb, from);
5955102c 3805 inode_unlock(inode);
1da177e4 3806
e2592217
CH
3807 if (ret > 0)
3808 ret = generic_write_sync(iocb, ret);
1da177e4
LT
3809 return ret;
3810}
8174202b 3811EXPORT_SYMBOL(generic_file_write_iter);
1da177e4 3812
cf9a2ae8
DH
3813/**
3814 * try_to_release_page() - release old fs-specific metadata on a page
3815 *
3816 * @page: the page which the kernel is trying to free
3817 * @gfp_mask: memory allocation flags (and I/O mode)
3818 *
3819 * The address_space is to try to release any data against the page
a862f68a 3820 * (presumably at page->private).
cf9a2ae8 3821 *
266cf658
DH
3822 * This may also be called if PG_fscache is set on a page, indicating that the
3823 * page is known to the local caching routines.
3824 *
cf9a2ae8 3825 * The @gfp_mask argument specifies whether I/O may be performed to release
71baba4b 3826 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
cf9a2ae8 3827 *
a862f68a 3828 * Return: %1 if the release was successful, otherwise return zero.
cf9a2ae8
DH
3829 */
3830int try_to_release_page(struct page *page, gfp_t gfp_mask)
3831{
3832 struct address_space * const mapping = page->mapping;
3833
3834 BUG_ON(!PageLocked(page));
3835 if (PageWriteback(page))
3836 return 0;
3837
3838 if (mapping && mapping->a_ops->releasepage)
3839 return mapping->a_ops->releasepage(page, gfp_mask);
3840 return try_to_free_buffers(page);
3841}
3842
3843EXPORT_SYMBOL(try_to_release_page);