Merge tag 'devicetree-fixes-for-6.4-1' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-block.git] / mm / dmapool.c
CommitLineData
b2139ce0 1// SPDX-License-Identifier: GPL-2.0-only
6182a094
MW
2/*
3 * DMA Pool allocator
4 *
5 * Copyright 2001 David Brownell
6 * Copyright 2007 Intel Corporation
7 * Author: Matthew Wilcox <willy@linux.intel.com>
8 *
6182a094
MW
9 * This allocator returns small blocks of a given size which are DMA-able by
10 * the given device. It uses the dma_alloc_coherent page allocator to get
11 * new pages, then splits them up into blocks of the required size.
12 * Many older drivers still have their own code to do this.
13 *
14 * The current design of this allocator is fairly simple. The pool is
15 * represented by the 'struct dma_pool' which keeps a doubly-linked list of
16 * allocated pages. Each page in the page_list is split into blocks of at
a35a3455
MW
17 * least 'size' bytes. Free blocks are tracked in an unsorted singly-linked
18 * list of free blocks within the page. Used blocks aren't tracked, but we
19 * keep a count of how many are currently allocated from each page.
6182a094 20 */
1da177e4
LT
21
22#include <linux/device.h>
1da177e4
LT
23#include <linux/dma-mapping.h>
24#include <linux/dmapool.h>
6182a094
MW
25#include <linux/kernel.h>
26#include <linux/list.h>
b95f1b31 27#include <linux/export.h>
6182a094 28#include <linux/mutex.h>
c9cf5528 29#include <linux/poison.h>
e8edc6e0 30#include <linux/sched.h>
0f2f89b6 31#include <linux/sched/mm.h>
6182a094 32#include <linux/slab.h>
7c77509c 33#include <linux/stat.h>
6182a094
MW
34#include <linux/spinlock.h>
35#include <linux/string.h>
36#include <linux/types.h>
37#include <linux/wait.h>
1da177e4 38
b5ee5bef
AK
39#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON)
40#define DMAPOOL_DEBUG 1
41#endif
42
e87aa773
MW
43struct dma_pool { /* the pool */
44 struct list_head page_list;
45 spinlock_t lock;
e87aa773
MW
46 size_t size;
47 struct device *dev;
48 size_t allocation;
e34f44b3 49 size_t boundary;
e87aa773 50 char name[32];
e87aa773 51 struct list_head pools;
1da177e4
LT
52};
53
e87aa773
MW
54struct dma_page { /* cacheable header for 'allocation' bytes */
55 struct list_head page_list;
56 void *vaddr;
57 dma_addr_t dma;
a35a3455
MW
58 unsigned int in_use;
59 unsigned int offset;
1da177e4
LT
60};
61
e87aa773 62static DEFINE_MUTEX(pools_lock);
01c2965f 63static DEFINE_MUTEX(pools_reg_lock);
1da177e4 64
e8df2c70 65static ssize_t pools_show(struct device *dev, struct device_attribute *attr, char *buf)
1da177e4
LT
66{
67 unsigned temp;
68 unsigned size;
69 char *next;
70 struct dma_page *page;
71 struct dma_pool *pool;
72
73 next = buf;
74 size = PAGE_SIZE;
75
76 temp = scnprintf(next, size, "poolinfo - 0.1\n");
77 size -= temp;
78 next += temp;
79
b2366d68 80 mutex_lock(&pools_lock);
1da177e4
LT
81 list_for_each_entry(pool, &dev->dma_pools, pools) {
82 unsigned pages = 0;
83 unsigned blocks = 0;
84
c4956823 85 spin_lock_irq(&pool->lock);
1da177e4
LT
86 list_for_each_entry(page, &pool->page_list, page_list) {
87 pages++;
88 blocks += page->in_use;
89 }
c4956823 90 spin_unlock_irq(&pool->lock);
1da177e4
LT
91
92 /* per-pool info, no real statistics yet */
5b5e0928 93 temp = scnprintf(next, size, "%-16s %4u %4zu %4zu %2u\n",
a35a3455
MW
94 pool->name, blocks,
95 pages * (pool->allocation / pool->size),
e87aa773 96 pool->size, pages);
1da177e4
LT
97 size -= temp;
98 next += temp;
99 }
b2366d68 100 mutex_unlock(&pools_lock);
1da177e4
LT
101
102 return PAGE_SIZE - size;
103}
e87aa773 104
e8df2c70 105static DEVICE_ATTR_RO(pools);
1da177e4
LT
106
107/**
108 * dma_pool_create - Creates a pool of consistent memory blocks, for dma.
109 * @name: name of pool, for diagnostics
110 * @dev: device that will be doing the DMA
111 * @size: size of the blocks in this pool.
112 * @align: alignment requirement for blocks; must be a power of two
e34f44b3 113 * @boundary: returned blocks won't cross this power of two boundary
a862f68a 114 * Context: not in_interrupt()
1da177e4 115 *
a862f68a 116 * Given one of these pools, dma_pool_alloc()
1da177e4
LT
117 * may be used to allocate memory. Such memory will all have "consistent"
118 * DMA mappings, accessible by the device and its driver without using
119 * cache flushing primitives. The actual size of blocks allocated may be
120 * larger than requested because of alignment.
121 *
e34f44b3 122 * If @boundary is nonzero, objects returned from dma_pool_alloc() won't
1da177e4
LT
123 * cross that size boundary. This is useful for devices which have
124 * addressing restrictions on individual DMA transfers, such as not crossing
125 * boundaries of 4KBytes.
a862f68a
MR
126 *
127 * Return: a dma allocation pool with the requested characteristics, or
128 * %NULL if one can't be created.
1da177e4 129 */
e87aa773 130struct dma_pool *dma_pool_create(const char *name, struct device *dev,
e34f44b3 131 size_t size, size_t align, size_t boundary)
1da177e4 132{
e87aa773 133 struct dma_pool *retval;
e34f44b3 134 size_t allocation;
01c2965f 135 bool empty = false;
1da177e4 136
baa2ef83 137 if (align == 0)
1da177e4 138 align = 1;
baa2ef83 139 else if (align & (align - 1))
1da177e4 140 return NULL;
1da177e4 141
baa2ef83 142 if (size == 0)
399154be 143 return NULL;
baa2ef83 144 else if (size < 4)
a35a3455 145 size = 4;
399154be 146
1386f7a3 147 size = ALIGN(size, align);
e34f44b3
MW
148 allocation = max_t(size_t, size, PAGE_SIZE);
149
baa2ef83 150 if (!boundary)
e34f44b3 151 boundary = allocation;
baa2ef83 152 else if ((boundary < size) || (boundary & (boundary - 1)))
1da177e4
LT
153 return NULL;
154
cc6266f0 155 retval = kmalloc(sizeof(*retval), GFP_KERNEL);
e34f44b3 156 if (!retval)
1da177e4
LT
157 return retval;
158
943f229e 159 strscpy(retval->name, name, sizeof(retval->name));
1da177e4
LT
160
161 retval->dev = dev;
162
e87aa773
MW
163 INIT_LIST_HEAD(&retval->page_list);
164 spin_lock_init(&retval->lock);
1da177e4 165 retval->size = size;
e34f44b3 166 retval->boundary = boundary;
1da177e4 167 retval->allocation = allocation;
1da177e4 168
cc6b664a
DY
169 INIT_LIST_HEAD(&retval->pools);
170
01c2965f
SAS
171 /*
172 * pools_lock ensures that the ->dma_pools list does not get corrupted.
173 * pools_reg_lock ensures that there is not a race between
174 * dma_pool_create() and dma_pool_destroy() or within dma_pool_create()
175 * when the first invocation of dma_pool_create() failed on
176 * device_create_file() and the second assumes that it has been done (I
177 * know it is a short window).
178 */
179 mutex_lock(&pools_reg_lock);
cc6b664a 180 mutex_lock(&pools_lock);
01c2965f
SAS
181 if (list_empty(&dev->dma_pools))
182 empty = true;
183 list_add(&retval->pools, &dev->dma_pools);
cc6b664a 184 mutex_unlock(&pools_lock);
01c2965f
SAS
185 if (empty) {
186 int err;
187
188 err = device_create_file(dev, &dev_attr_pools);
189 if (err) {
190 mutex_lock(&pools_lock);
191 list_del(&retval->pools);
192 mutex_unlock(&pools_lock);
193 mutex_unlock(&pools_reg_lock);
194 kfree(retval);
195 return NULL;
196 }
197 }
198 mutex_unlock(&pools_reg_lock);
1da177e4
LT
199 return retval;
200}
e87aa773 201EXPORT_SYMBOL(dma_pool_create);
1da177e4 202
a35a3455
MW
203static void pool_initialise_page(struct dma_pool *pool, struct dma_page *page)
204{
205 unsigned int offset = 0;
e34f44b3 206 unsigned int next_boundary = pool->boundary;
a35a3455
MW
207
208 do {
209 unsigned int next = offset + pool->size;
e34f44b3
MW
210 if (unlikely((next + pool->size) >= next_boundary)) {
211 next = next_boundary;
212 next_boundary += pool->boundary;
213 }
a35a3455
MW
214 *(int *)(page->vaddr + offset) = next;
215 offset = next;
216 } while (offset < pool->allocation);
217}
218
e87aa773 219static struct dma_page *pool_alloc_page(struct dma_pool *pool, gfp_t mem_flags)
1da177e4 220{
e87aa773 221 struct dma_page *page;
1da177e4 222
a35a3455 223 page = kmalloc(sizeof(*page), mem_flags);
1da177e4
LT
224 if (!page)
225 return NULL;
a35a3455 226 page->vaddr = dma_alloc_coherent(pool->dev, pool->allocation,
e87aa773 227 &page->dma, mem_flags);
1da177e4 228 if (page->vaddr) {
b5ee5bef 229#ifdef DMAPOOL_DEBUG
e87aa773 230 memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
1da177e4 231#endif
a35a3455 232 pool_initialise_page(pool, page);
1da177e4 233 page->in_use = 0;
a35a3455 234 page->offset = 0;
1da177e4 235 } else {
e87aa773 236 kfree(page);
1da177e4
LT
237 page = NULL;
238 }
239 return page;
240}
241
d9e7e37b 242static inline bool is_page_busy(struct dma_page *page)
1da177e4 243{
a35a3455 244 return page->in_use != 0;
1da177e4
LT
245}
246
e87aa773 247static void pool_free_page(struct dma_pool *pool, struct dma_page *page)
1da177e4 248{
e87aa773 249 dma_addr_t dma = page->dma;
1da177e4 250
b5ee5bef 251#ifdef DMAPOOL_DEBUG
e87aa773 252 memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
1da177e4 253#endif
e87aa773
MW
254 dma_free_coherent(pool->dev, pool->allocation, page->vaddr, dma);
255 list_del(&page->page_list);
256 kfree(page);
1da177e4
LT
257}
258
1da177e4
LT
259/**
260 * dma_pool_destroy - destroys a pool of dma memory blocks.
261 * @pool: dma pool that will be destroyed
262 * Context: !in_interrupt()
263 *
264 * Caller guarantees that no more memory from the pool is in use,
265 * and that nothing will try to use the pool after this call.
266 */
e87aa773 267void dma_pool_destroy(struct dma_pool *pool)
1da177e4 268{
42286f83 269 struct dma_page *page, *tmp;
01c2965f
SAS
270 bool empty = false;
271
44d7175d
SS
272 if (unlikely(!pool))
273 return;
274
01c2965f 275 mutex_lock(&pools_reg_lock);
b2366d68 276 mutex_lock(&pools_lock);
e87aa773
MW
277 list_del(&pool->pools);
278 if (pool->dev && list_empty(&pool->dev->dma_pools))
01c2965f 279 empty = true;
b2366d68 280 mutex_unlock(&pools_lock);
01c2965f
SAS
281 if (empty)
282 device_remove_file(pool->dev, &dev_attr_pools);
283 mutex_unlock(&pools_reg_lock);
1da177e4 284
42286f83 285 list_for_each_entry_safe(page, tmp, &pool->page_list, page_list) {
a35a3455 286 if (is_page_busy(page)) {
1da177e4 287 if (pool->dev)
41a04814 288 dev_err(pool->dev, "%s %s, %p busy\n", __func__,
1da177e4
LT
289 pool->name, page->vaddr);
290 else
41a04814 291 pr_err("%s %s, %p busy\n", __func__,
e87aa773 292 pool->name, page->vaddr);
1da177e4 293 /* leak the still-in-use consistent memory */
e87aa773
MW
294 list_del(&page->page_list);
295 kfree(page);
1da177e4 296 } else
e87aa773 297 pool_free_page(pool, page);
1da177e4
LT
298 }
299
e87aa773 300 kfree(pool);
1da177e4 301}
e87aa773 302EXPORT_SYMBOL(dma_pool_destroy);
1da177e4
LT
303
304/**
305 * dma_pool_alloc - get a block of consistent memory
306 * @pool: dma pool that will produce the block
307 * @mem_flags: GFP_* bitmask
308 * @handle: pointer to dma address of block
309 *
a862f68a 310 * Return: the kernel virtual address of a currently unused block,
1da177e4 311 * and reports its dma address through the handle.
6182a094 312 * If such a memory block can't be allocated, %NULL is returned.
1da177e4 313 */
e87aa773
MW
314void *dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags,
315 dma_addr_t *handle)
1da177e4 316{
e87aa773
MW
317 unsigned long flags;
318 struct dma_page *page;
e87aa773
MW
319 size_t offset;
320 void *retval;
321
0f2f89b6 322 might_alloc(mem_flags);
ea05c844 323
e87aa773 324 spin_lock_irqsave(&pool->lock, flags);
1da177e4 325 list_for_each_entry(page, &pool->page_list, page_list) {
a35a3455
MW
326 if (page->offset < pool->allocation)
327 goto ready;
1da177e4 328 }
1da177e4 329
387870f2
MS
330 /* pool_alloc_page() might sleep, so temporarily drop &pool->lock */
331 spin_unlock_irqrestore(&pool->lock, flags);
1da177e4 332
fa23f56d 333 page = pool_alloc_page(pool, mem_flags & (~__GFP_ZERO));
387870f2
MS
334 if (!page)
335 return NULL;
1da177e4 336
387870f2 337 spin_lock_irqsave(&pool->lock, flags);
1da177e4 338
387870f2 339 list_add(&page->page_list, &pool->page_list);
e87aa773 340 ready:
1da177e4 341 page->in_use++;
a35a3455
MW
342 offset = page->offset;
343 page->offset = *(int *)(page->vaddr + offset);
1da177e4
LT
344 retval = offset + page->vaddr;
345 *handle = offset + page->dma;
b5ee5bef 346#ifdef DMAPOOL_DEBUG
5de55b26
MC
347 {
348 int i;
349 u8 *data = retval;
350 /* page->offset is stored in first 4 bytes */
351 for (i = sizeof(page->offset); i < pool->size; i++) {
352 if (data[i] == POOL_POISON_FREED)
353 continue;
354 if (pool->dev)
41a04814
AS
355 dev_err(pool->dev, "%s %s, %p (corrupted)\n",
356 __func__, pool->name, retval);
5de55b26 357 else
41a04814
AS
358 pr_err("%s %s, %p (corrupted)\n",
359 __func__, pool->name, retval);
5de55b26
MC
360
361 /*
362 * Dump the first 4 bytes even if they are not
363 * POOL_POISON_FREED
364 */
365 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1,
366 data, pool->size, 1);
367 break;
368 }
369 }
fa23f56d
SS
370 if (!(mem_flags & __GFP_ZERO))
371 memset(retval, POOL_POISON_ALLOCATED, pool->size);
1da177e4 372#endif
e87aa773 373 spin_unlock_irqrestore(&pool->lock, flags);
fa23f56d 374
6471384a 375 if (want_init_on_alloc(mem_flags))
fa23f56d
SS
376 memset(retval, 0, pool->size);
377
1da177e4
LT
378 return retval;
379}
e87aa773 380EXPORT_SYMBOL(dma_pool_alloc);
1da177e4 381
e87aa773 382static struct dma_page *pool_find_page(struct dma_pool *pool, dma_addr_t dma)
1da177e4 383{
e87aa773 384 struct dma_page *page;
1da177e4 385
1da177e4
LT
386 list_for_each_entry(page, &pool->page_list, page_list) {
387 if (dma < page->dma)
388 continue;
676bd991 389 if ((dma - page->dma) < pool->allocation)
84bc227d 390 return page;
1da177e4 391 }
84bc227d 392 return NULL;
1da177e4
LT
393}
394
1da177e4
LT
395/**
396 * dma_pool_free - put block back into dma pool
397 * @pool: the dma pool holding the block
398 * @vaddr: virtual address of block
399 * @dma: dma address of block
400 *
401 * Caller promises neither device nor driver will again touch this block
402 * unless it is first re-allocated.
403 */
e87aa773 404void dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma)
1da177e4 405{
e87aa773
MW
406 struct dma_page *page;
407 unsigned long flags;
a35a3455 408 unsigned int offset;
1da177e4 409
84bc227d 410 spin_lock_irqsave(&pool->lock, flags);
e87aa773
MW
411 page = pool_find_page(pool, dma);
412 if (!page) {
84bc227d 413 spin_unlock_irqrestore(&pool->lock, flags);
1da177e4 414 if (pool->dev)
41a04814
AS
415 dev_err(pool->dev, "%s %s, %p/%pad (bad dma)\n",
416 __func__, pool->name, vaddr, &dma);
1da177e4 417 else
41a04814
AS
418 pr_err("%s %s, %p/%pad (bad dma)\n",
419 __func__, pool->name, vaddr, &dma);
1da177e4
LT
420 return;
421 }
422
a35a3455 423 offset = vaddr - page->vaddr;
6471384a
AP
424 if (want_init_on_free())
425 memset(vaddr, 0, pool->size);
b5ee5bef 426#ifdef DMAPOOL_DEBUG
a35a3455 427 if ((dma - page->dma) != offset) {
84bc227d 428 spin_unlock_irqrestore(&pool->lock, flags);
1da177e4 429 if (pool->dev)
41a04814
AS
430 dev_err(pool->dev, "%s %s, %p (bad vaddr)/%pad\n",
431 __func__, pool->name, vaddr, &dma);
1da177e4 432 else
41a04814
AS
433 pr_err("%s %s, %p (bad vaddr)/%pad\n",
434 __func__, pool->name, vaddr, &dma);
1da177e4
LT
435 return;
436 }
a35a3455
MW
437 {
438 unsigned int chain = page->offset;
439 while (chain < pool->allocation) {
440 if (chain != offset) {
441 chain = *(int *)(page->vaddr + chain);
442 continue;
443 }
84bc227d 444 spin_unlock_irqrestore(&pool->lock, flags);
a35a3455 445 if (pool->dev)
41a04814
AS
446 dev_err(pool->dev, "%s %s, dma %pad already free\n",
447 __func__, pool->name, &dma);
a35a3455 448 else
41a04814
AS
449 pr_err("%s %s, dma %pad already free\n",
450 __func__, pool->name, &dma);
a35a3455
MW
451 return;
452 }
1da177e4 453 }
e87aa773 454 memset(vaddr, POOL_POISON_FREED, pool->size);
1da177e4
LT
455#endif
456
1da177e4 457 page->in_use--;
a35a3455
MW
458 *(int *)vaddr = page->offset;
459 page->offset = offset;
1da177e4
LT
460 /*
461 * Resist a temptation to do
a35a3455 462 * if (!is_page_busy(page)) pool_free_page(pool, page);
1da177e4
LT
463 * Better have a few empty pages hang around.
464 */
e87aa773 465 spin_unlock_irqrestore(&pool->lock, flags);
1da177e4 466}
e87aa773 467EXPORT_SYMBOL(dma_pool_free);
1da177e4 468
9ac7849e
TH
469/*
470 * Managed DMA pool
471 */
472static void dmam_pool_release(struct device *dev, void *res)
473{
474 struct dma_pool *pool = *(struct dma_pool **)res;
475
476 dma_pool_destroy(pool);
477}
478
479static int dmam_pool_match(struct device *dev, void *res, void *match_data)
480{
481 return *(struct dma_pool **)res == match_data;
482}
483
484/**
485 * dmam_pool_create - Managed dma_pool_create()
486 * @name: name of pool, for diagnostics
487 * @dev: device that will be doing the DMA
488 * @size: size of the blocks in this pool.
489 * @align: alignment requirement for blocks; must be a power of two
490 * @allocation: returned blocks won't cross this boundary (or zero)
491 *
492 * Managed dma_pool_create(). DMA pool created with this function is
493 * automatically destroyed on driver detach.
a862f68a
MR
494 *
495 * Return: a managed dma allocation pool with the requested
496 * characteristics, or %NULL if one can't be created.
9ac7849e
TH
497 */
498struct dma_pool *dmam_pool_create(const char *name, struct device *dev,
499 size_t size, size_t align, size_t allocation)
500{
501 struct dma_pool **ptr, *pool;
502
503 ptr = devres_alloc(dmam_pool_release, sizeof(*ptr), GFP_KERNEL);
504 if (!ptr)
505 return NULL;
506
507 pool = *ptr = dma_pool_create(name, dev, size, align, allocation);
508 if (pool)
509 devres_add(dev, ptr);
510 else
511 devres_free(ptr);
512
513 return pool;
514}
e87aa773 515EXPORT_SYMBOL(dmam_pool_create);
9ac7849e
TH
516
517/**
518 * dmam_pool_destroy - Managed dma_pool_destroy()
519 * @pool: dma pool that will be destroyed
520 *
521 * Managed dma_pool_destroy().
522 */
523void dmam_pool_destroy(struct dma_pool *pool)
524{
525 struct device *dev = pool->dev;
526
172cb4b3 527 WARN_ON(devres_release(dev, dmam_pool_release, dmam_pool_match, pool));
9ac7849e 528}
e87aa773 529EXPORT_SYMBOL(dmam_pool_destroy);