mm/damon: remove some unneeded function definitions in damon.h
[linux-block.git] / mm / damon / vaddr.c
CommitLineData
3f49584b
SP
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * DAMON Primitives for Virtual Address Spaces
4 *
5 * Author: SeongJae Park <sjpark@amazon.de>
6 */
7
8#define pr_fmt(fmt) "damon-va: " fmt
9
6dea8add 10#include <asm-generic/mman-common.h>
46c3a0ac 11#include <linux/highmem.h>
3f49584b 12#include <linux/hugetlb.h>
3f49584b 13#include <linux/mmu_notifier.h>
3f49584b
SP
14#include <linux/page_idle.h>
15#include <linux/pagewalk.h>
8581fd40 16#include <linux/sched/mm.h>
46c3a0ac
SP
17
18#include "prmtv-common.h"
3f49584b 19
17ccae8b
SP
20#ifdef CONFIG_DAMON_VADDR_KUNIT_TEST
21#undef DAMON_MIN_REGION
22#define DAMON_MIN_REGION 1
23#endif
24
3f49584b
SP
25/*
26 * 't->id' should be the pointer to the relevant 'struct pid' having reference
27 * count. Caller must put the returned task, unless it is NULL.
28 */
29#define damon_get_task_struct(t) \
30 (get_pid_task((struct pid *)t->id, PIDTYPE_PID))
31
32/*
33 * Get the mm_struct of the given target
34 *
35 * Caller _must_ put the mm_struct after use, unless it is NULL.
36 *
37 * Returns the mm_struct of the target on success, NULL on failure
38 */
39static struct mm_struct *damon_get_mm(struct damon_target *t)
40{
41 struct task_struct *task;
42 struct mm_struct *mm;
43
44 task = damon_get_task_struct(t);
45 if (!task)
46 return NULL;
47
48 mm = get_task_mm(task);
49 put_task_struct(task);
50 return mm;
51}
52
53/*
54 * Functions for the initial monitoring target regions construction
55 */
56
57/*
58 * Size-evenly split a region into 'nr_pieces' small regions
59 *
60 * Returns 0 on success, or negative error code otherwise.
61 */
62static int damon_va_evenly_split_region(struct damon_target *t,
63 struct damon_region *r, unsigned int nr_pieces)
64{
65 unsigned long sz_orig, sz_piece, orig_end;
66 struct damon_region *n = NULL, *next;
67 unsigned long start;
68
69 if (!r || !nr_pieces)
70 return -EINVAL;
71
72 orig_end = r->ar.end;
73 sz_orig = r->ar.end - r->ar.start;
74 sz_piece = ALIGN_DOWN(sz_orig / nr_pieces, DAMON_MIN_REGION);
75
76 if (!sz_piece)
77 return -EINVAL;
78
79 r->ar.end = r->ar.start + sz_piece;
80 next = damon_next_region(r);
81 for (start = r->ar.end; start + sz_piece <= orig_end;
82 start += sz_piece) {
83 n = damon_new_region(start, start + sz_piece);
84 if (!n)
85 return -ENOMEM;
86 damon_insert_region(n, r, next, t);
87 r = n;
88 }
89 /* complement last region for possible rounding error */
90 if (n)
91 n->ar.end = orig_end;
92
93 return 0;
94}
95
96static unsigned long sz_range(struct damon_addr_range *r)
97{
98 return r->end - r->start;
99}
100
101static void swap_ranges(struct damon_addr_range *r1,
102 struct damon_addr_range *r2)
103{
104 struct damon_addr_range tmp;
105
106 tmp = *r1;
107 *r1 = *r2;
108 *r2 = tmp;
109}
110
111/*
112 * Find three regions separated by two biggest unmapped regions
113 *
114 * vma the head vma of the target address space
115 * regions an array of three address ranges that results will be saved
116 *
117 * This function receives an address space and finds three regions in it which
118 * separated by the two biggest unmapped regions in the space. Please refer to
119 * below comments of '__damon_va_init_regions()' function to know why this is
120 * necessary.
121 *
122 * Returns 0 if success, or negative error code otherwise.
123 */
124static int __damon_va_three_regions(struct vm_area_struct *vma,
125 struct damon_addr_range regions[3])
126{
127 struct damon_addr_range gap = {0}, first_gap = {0}, second_gap = {0};
128 struct vm_area_struct *last_vma = NULL;
129 unsigned long start = 0;
130 struct rb_root rbroot;
131
132 /* Find two biggest gaps so that first_gap > second_gap > others */
133 for (; vma; vma = vma->vm_next) {
134 if (!last_vma) {
135 start = vma->vm_start;
136 goto next;
137 }
138
139 if (vma->rb_subtree_gap <= sz_range(&second_gap)) {
140 rbroot.rb_node = &vma->vm_rb;
141 vma = rb_entry(rb_last(&rbroot),
142 struct vm_area_struct, vm_rb);
143 goto next;
144 }
145
146 gap.start = last_vma->vm_end;
147 gap.end = vma->vm_start;
148 if (sz_range(&gap) > sz_range(&second_gap)) {
149 swap_ranges(&gap, &second_gap);
150 if (sz_range(&second_gap) > sz_range(&first_gap))
151 swap_ranges(&second_gap, &first_gap);
152 }
153next:
154 last_vma = vma;
155 }
156
157 if (!sz_range(&second_gap) || !sz_range(&first_gap))
158 return -EINVAL;
159
160 /* Sort the two biggest gaps by address */
161 if (first_gap.start > second_gap.start)
162 swap_ranges(&first_gap, &second_gap);
163
164 /* Store the result */
165 regions[0].start = ALIGN(start, DAMON_MIN_REGION);
166 regions[0].end = ALIGN(first_gap.start, DAMON_MIN_REGION);
167 regions[1].start = ALIGN(first_gap.end, DAMON_MIN_REGION);
168 regions[1].end = ALIGN(second_gap.start, DAMON_MIN_REGION);
169 regions[2].start = ALIGN(second_gap.end, DAMON_MIN_REGION);
170 regions[2].end = ALIGN(last_vma->vm_end, DAMON_MIN_REGION);
171
172 return 0;
173}
174
175/*
176 * Get the three regions in the given target (task)
177 *
178 * Returns 0 on success, negative error code otherwise.
179 */
180static int damon_va_three_regions(struct damon_target *t,
181 struct damon_addr_range regions[3])
182{
183 struct mm_struct *mm;
184 int rc;
185
186 mm = damon_get_mm(t);
187 if (!mm)
188 return -EINVAL;
189
190 mmap_read_lock(mm);
191 rc = __damon_va_three_regions(mm->mmap, regions);
192 mmap_read_unlock(mm);
193
194 mmput(mm);
195 return rc;
196}
197
198/*
199 * Initialize the monitoring target regions for the given target (task)
200 *
201 * t the given target
202 *
203 * Because only a number of small portions of the entire address space
204 * is actually mapped to the memory and accessed, monitoring the unmapped
205 * regions is wasteful. That said, because we can deal with small noises,
206 * tracking every mapping is not strictly required but could even incur a high
207 * overhead if the mapping frequently changes or the number of mappings is
208 * high. The adaptive regions adjustment mechanism will further help to deal
209 * with the noise by simply identifying the unmapped areas as a region that
210 * has no access. Moreover, applying the real mappings that would have many
211 * unmapped areas inside will make the adaptive mechanism quite complex. That
212 * said, too huge unmapped areas inside the monitoring target should be removed
213 * to not take the time for the adaptive mechanism.
214 *
215 * For the reason, we convert the complex mappings to three distinct regions
216 * that cover every mapped area of the address space. Also the two gaps
217 * between the three regions are the two biggest unmapped areas in the given
218 * address space. In detail, this function first identifies the start and the
219 * end of the mappings and the two biggest unmapped areas of the address space.
220 * Then, it constructs the three regions as below:
221 *
222 * [mappings[0]->start, big_two_unmapped_areas[0]->start)
223 * [big_two_unmapped_areas[0]->end, big_two_unmapped_areas[1]->start)
224 * [big_two_unmapped_areas[1]->end, mappings[nr_mappings - 1]->end)
225 *
226 * As usual memory map of processes is as below, the gap between the heap and
227 * the uppermost mmap()-ed region, and the gap between the lowermost mmap()-ed
228 * region and the stack will be two biggest unmapped regions. Because these
229 * gaps are exceptionally huge areas in usual address space, excluding these
230 * two biggest unmapped regions will be sufficient to make a trade-off.
231 *
232 * <heap>
233 * <BIG UNMAPPED REGION 1>
234 * <uppermost mmap()-ed region>
235 * (other mmap()-ed regions and small unmapped regions)
236 * <lowermost mmap()-ed region>
237 * <BIG UNMAPPED REGION 2>
238 * <stack>
239 */
240static void __damon_va_init_regions(struct damon_ctx *ctx,
241 struct damon_target *t)
242{
243 struct damon_region *r;
244 struct damon_addr_range regions[3];
245 unsigned long sz = 0, nr_pieces;
246 int i;
247
248 if (damon_va_three_regions(t, regions)) {
249 pr_err("Failed to get three regions of target %lu\n", t->id);
250 return;
251 }
252
253 for (i = 0; i < 3; i++)
254 sz += regions[i].end - regions[i].start;
255 if (ctx->min_nr_regions)
256 sz /= ctx->min_nr_regions;
257 if (sz < DAMON_MIN_REGION)
258 sz = DAMON_MIN_REGION;
259
260 /* Set the initial three regions of the target */
261 for (i = 0; i < 3; i++) {
262 r = damon_new_region(regions[i].start, regions[i].end);
263 if (!r) {
264 pr_err("%d'th init region creation failed\n", i);
265 return;
266 }
267 damon_add_region(r, t);
268
269 nr_pieces = (regions[i].end - regions[i].start) / sz;
270 damon_va_evenly_split_region(t, r, nr_pieces);
271 }
272}
273
274/* Initialize '->regions_list' of every target (task) */
cdeed009 275static void damon_va_init(struct damon_ctx *ctx)
3f49584b
SP
276{
277 struct damon_target *t;
278
279 damon_for_each_target(t, ctx) {
280 /* the user may set the target regions as they want */
281 if (!damon_nr_regions(t))
282 __damon_va_init_regions(ctx, t);
283 }
284}
285
286/*
287 * Functions for the dynamic monitoring target regions update
288 */
289
290/*
291 * Check whether a region is intersecting an address range
292 *
293 * Returns true if it is.
294 */
cdeed009
XH
295static bool damon_intersect(struct damon_region *r,
296 struct damon_addr_range *re)
3f49584b
SP
297{
298 return !(r->ar.end <= re->start || re->end <= r->ar.start);
299}
300
301/*
302 * Update damon regions for the three big regions of the given target
303 *
304 * t the given target
305 * bregions the three big regions of the target
306 */
307static void damon_va_apply_three_regions(struct damon_target *t,
308 struct damon_addr_range bregions[3])
309{
310 struct damon_region *r, *next;
a460a360 311 unsigned int i;
3f49584b
SP
312
313 /* Remove regions which are not in the three big regions now */
314 damon_for_each_region_safe(r, next, t) {
315 for (i = 0; i < 3; i++) {
316 if (damon_intersect(r, &bregions[i]))
317 break;
318 }
319 if (i == 3)
320 damon_destroy_region(r, t);
321 }
322
323 /* Adjust intersecting regions to fit with the three big regions */
324 for (i = 0; i < 3; i++) {
325 struct damon_region *first = NULL, *last;
326 struct damon_region *newr;
327 struct damon_addr_range *br;
328
329 br = &bregions[i];
330 /* Get the first and last regions which intersects with br */
331 damon_for_each_region(r, t) {
332 if (damon_intersect(r, br)) {
333 if (!first)
334 first = r;
335 last = r;
336 }
337 if (r->ar.start >= br->end)
338 break;
339 }
340 if (!first) {
341 /* no damon_region intersects with this big region */
342 newr = damon_new_region(
343 ALIGN_DOWN(br->start,
344 DAMON_MIN_REGION),
345 ALIGN(br->end, DAMON_MIN_REGION));
346 if (!newr)
347 continue;
348 damon_insert_region(newr, damon_prev_region(r), r, t);
349 } else {
350 first->ar.start = ALIGN_DOWN(br->start,
351 DAMON_MIN_REGION);
352 last->ar.end = ALIGN(br->end, DAMON_MIN_REGION);
353 }
354 }
355}
356
357/*
358 * Update regions for current memory mappings
359 */
cdeed009 360static void damon_va_update(struct damon_ctx *ctx)
3f49584b
SP
361{
362 struct damon_addr_range three_regions[3];
363 struct damon_target *t;
364
365 damon_for_each_target(t, ctx) {
366 if (damon_va_three_regions(t, three_regions))
367 continue;
368 damon_va_apply_three_regions(t, three_regions);
369 }
370}
371
3f49584b
SP
372static int damon_mkold_pmd_entry(pmd_t *pmd, unsigned long addr,
373 unsigned long next, struct mm_walk *walk)
374{
375 pte_t *pte;
376 spinlock_t *ptl;
377
378 if (pmd_huge(*pmd)) {
379 ptl = pmd_lock(walk->mm, pmd);
380 if (pmd_huge(*pmd)) {
381 damon_pmdp_mkold(pmd, walk->mm, addr);
382 spin_unlock(ptl);
383 return 0;
384 }
385 spin_unlock(ptl);
386 }
387
388 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
389 return 0;
390 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
391 if (!pte_present(*pte))
392 goto out;
393 damon_ptep_mkold(pte, walk->mm, addr);
394out:
395 pte_unmap_unlock(pte, ptl);
396 return 0;
397}
398
199b50f4 399static const struct mm_walk_ops damon_mkold_ops = {
3f49584b
SP
400 .pmd_entry = damon_mkold_pmd_entry,
401};
402
403static void damon_va_mkold(struct mm_struct *mm, unsigned long addr)
404{
405 mmap_read_lock(mm);
406 walk_page_range(mm, addr, addr + 1, &damon_mkold_ops, NULL);
407 mmap_read_unlock(mm);
408}
409
410/*
411 * Functions for the access checking of the regions
412 */
413
b627b774 414static void __damon_va_prepare_access_check(struct damon_ctx *ctx,
3f49584b
SP
415 struct mm_struct *mm, struct damon_region *r)
416{
417 r->sampling_addr = damon_rand(r->ar.start, r->ar.end);
418
419 damon_va_mkold(mm, r->sampling_addr);
420}
421
cdeed009 422static void damon_va_prepare_access_checks(struct damon_ctx *ctx)
3f49584b
SP
423{
424 struct damon_target *t;
425 struct mm_struct *mm;
426 struct damon_region *r;
427
428 damon_for_each_target(t, ctx) {
429 mm = damon_get_mm(t);
430 if (!mm)
431 continue;
432 damon_for_each_region(r, t)
b627b774 433 __damon_va_prepare_access_check(ctx, mm, r);
3f49584b
SP
434 mmput(mm);
435 }
436}
437
438struct damon_young_walk_private {
439 unsigned long *page_sz;
440 bool young;
441};
442
443static int damon_young_pmd_entry(pmd_t *pmd, unsigned long addr,
444 unsigned long next, struct mm_walk *walk)
445{
446 pte_t *pte;
447 spinlock_t *ptl;
448 struct page *page;
449 struct damon_young_walk_private *priv = walk->private;
450
451#ifdef CONFIG_TRANSPARENT_HUGEPAGE
452 if (pmd_huge(*pmd)) {
453 ptl = pmd_lock(walk->mm, pmd);
454 if (!pmd_huge(*pmd)) {
455 spin_unlock(ptl);
456 goto regular_page;
457 }
458 page = damon_get_page(pmd_pfn(*pmd));
459 if (!page)
460 goto huge_out;
461 if (pmd_young(*pmd) || !page_is_idle(page) ||
462 mmu_notifier_test_young(walk->mm,
463 addr)) {
464 *priv->page_sz = ((1UL) << HPAGE_PMD_SHIFT);
465 priv->young = true;
466 }
467 put_page(page);
468huge_out:
469 spin_unlock(ptl);
470 return 0;
471 }
472
473regular_page:
474#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
475
476 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
477 return -EINVAL;
478 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
479 if (!pte_present(*pte))
480 goto out;
481 page = damon_get_page(pte_pfn(*pte));
482 if (!page)
483 goto out;
484 if (pte_young(*pte) || !page_is_idle(page) ||
485 mmu_notifier_test_young(walk->mm, addr)) {
486 *priv->page_sz = PAGE_SIZE;
487 priv->young = true;
488 }
489 put_page(page);
490out:
491 pte_unmap_unlock(pte, ptl);
492 return 0;
493}
494
199b50f4 495static const struct mm_walk_ops damon_young_ops = {
3f49584b
SP
496 .pmd_entry = damon_young_pmd_entry,
497};
498
499static bool damon_va_young(struct mm_struct *mm, unsigned long addr,
500 unsigned long *page_sz)
501{
502 struct damon_young_walk_private arg = {
503 .page_sz = page_sz,
504 .young = false,
505 };
506
507 mmap_read_lock(mm);
508 walk_page_range(mm, addr, addr + 1, &damon_young_ops, &arg);
509 mmap_read_unlock(mm);
510 return arg.young;
511}
512
513/*
514 * Check whether the region was accessed after the last preparation
515 *
516 * mm 'mm_struct' for the given virtual address space
517 * r the region to be checked
518 */
b627b774 519static void __damon_va_check_access(struct damon_ctx *ctx,
3f49584b
SP
520 struct mm_struct *mm, struct damon_region *r)
521{
522 static struct mm_struct *last_mm;
523 static unsigned long last_addr;
524 static unsigned long last_page_sz = PAGE_SIZE;
525 static bool last_accessed;
526
527 /* If the region is in the last checked page, reuse the result */
528 if (mm == last_mm && (ALIGN_DOWN(last_addr, last_page_sz) ==
529 ALIGN_DOWN(r->sampling_addr, last_page_sz))) {
530 if (last_accessed)
531 r->nr_accesses++;
532 return;
533 }
534
535 last_accessed = damon_va_young(mm, r->sampling_addr, &last_page_sz);
536 if (last_accessed)
537 r->nr_accesses++;
538
539 last_mm = mm;
540 last_addr = r->sampling_addr;
541}
542
cdeed009 543static unsigned int damon_va_check_accesses(struct damon_ctx *ctx)
3f49584b
SP
544{
545 struct damon_target *t;
546 struct mm_struct *mm;
547 struct damon_region *r;
548 unsigned int max_nr_accesses = 0;
549
550 damon_for_each_target(t, ctx) {
551 mm = damon_get_mm(t);
552 if (!mm)
553 continue;
554 damon_for_each_region(r, t) {
b627b774 555 __damon_va_check_access(ctx, mm, r);
3f49584b
SP
556 max_nr_accesses = max(r->nr_accesses, max_nr_accesses);
557 }
558 mmput(mm);
559 }
560
561 return max_nr_accesses;
562}
563
564/*
565 * Functions for the target validity check and cleanup
566 */
567
568bool damon_va_target_valid(void *target)
569{
570 struct damon_target *t = target;
571 struct task_struct *task;
572
573 task = damon_get_task_struct(t);
574 if (task) {
575 put_task_struct(task);
576 return true;
577 }
578
579 return false;
580}
581
6dea8add
SP
582#ifndef CONFIG_ADVISE_SYSCALLS
583static int damos_madvise(struct damon_target *target, struct damon_region *r,
584 int behavior)
585{
586 return -EINVAL;
587}
588#else
589static int damos_madvise(struct damon_target *target, struct damon_region *r,
590 int behavior)
591{
592 struct mm_struct *mm;
593 int ret = -ENOMEM;
594
595 mm = damon_get_mm(target);
596 if (!mm)
597 goto out;
598
599 ret = do_madvise(mm, PAGE_ALIGN(r->ar.start),
600 PAGE_ALIGN(r->ar.end - r->ar.start), behavior);
601 mmput(mm);
602out:
603 return ret;
604}
605#endif /* CONFIG_ADVISE_SYSCALLS */
606
cdeed009 607static int damon_va_apply_scheme(struct damon_ctx *ctx, struct damon_target *t,
6dea8add
SP
608 struct damon_region *r, struct damos *scheme)
609{
610 int madv_action;
611
612 switch (scheme->action) {
613 case DAMOS_WILLNEED:
614 madv_action = MADV_WILLNEED;
615 break;
616 case DAMOS_COLD:
617 madv_action = MADV_COLD;
618 break;
619 case DAMOS_PAGEOUT:
620 madv_action = MADV_PAGEOUT;
621 break;
622 case DAMOS_HUGEPAGE:
623 madv_action = MADV_HUGEPAGE;
624 break;
625 case DAMOS_NOHUGEPAGE:
626 madv_action = MADV_NOHUGEPAGE;
627 break;
2f0b548c
SP
628 case DAMOS_STAT:
629 return 0;
6dea8add 630 default:
6dea8add
SP
631 return -EINVAL;
632 }
633
634 return damos_madvise(t, r, madv_action);
635}
636
cdeed009
XH
637static int damon_va_scheme_score(struct damon_ctx *context,
638 struct damon_target *t, struct damon_region *r,
639 struct damos *scheme)
198f0f4c
SP
640{
641
642 switch (scheme->action) {
643 case DAMOS_PAGEOUT:
644 return damon_pageout_score(context, r, scheme);
645 default:
646 break;
647 }
648
649 return DAMOS_MAX_SCORE;
650}
651
3f49584b
SP
652void damon_va_set_primitives(struct damon_ctx *ctx)
653{
654 ctx->primitive.init = damon_va_init;
655 ctx->primitive.update = damon_va_update;
656 ctx->primitive.prepare_access_checks = damon_va_prepare_access_checks;
657 ctx->primitive.check_accesses = damon_va_check_accesses;
658 ctx->primitive.reset_aggregated = NULL;
659 ctx->primitive.target_valid = damon_va_target_valid;
660 ctx->primitive.cleanup = NULL;
6dea8add 661 ctx->primitive.apply_scheme = damon_va_apply_scheme;
198f0f4c 662 ctx->primitive.get_scheme_score = damon_va_scheme_score;
3f49584b 663}
17ccae8b
SP
664
665#include "vaddr-test.h"