mm/damon/core: implement DAMON-based Operation Schemes (DAMOS)
[linux-block.git] / mm / damon / vaddr.c
CommitLineData
3f49584b
SP
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * DAMON Primitives for Virtual Address Spaces
4 *
5 * Author: SeongJae Park <sjpark@amazon.de>
6 */
7
8#define pr_fmt(fmt) "damon-va: " fmt
9
10#include <linux/damon.h>
11#include <linux/hugetlb.h>
12#include <linux/mm.h>
13#include <linux/mmu_notifier.h>
14#include <linux/highmem.h>
15#include <linux/page_idle.h>
16#include <linux/pagewalk.h>
17#include <linux/random.h>
18#include <linux/sched/mm.h>
19#include <linux/slab.h>
20
17ccae8b
SP
21#ifdef CONFIG_DAMON_VADDR_KUNIT_TEST
22#undef DAMON_MIN_REGION
23#define DAMON_MIN_REGION 1
24#endif
25
3f49584b
SP
26/* Get a random number in [l, r) */
27#define damon_rand(l, r) (l + prandom_u32_max(r - l))
28
29/*
30 * 't->id' should be the pointer to the relevant 'struct pid' having reference
31 * count. Caller must put the returned task, unless it is NULL.
32 */
33#define damon_get_task_struct(t) \
34 (get_pid_task((struct pid *)t->id, PIDTYPE_PID))
35
36/*
37 * Get the mm_struct of the given target
38 *
39 * Caller _must_ put the mm_struct after use, unless it is NULL.
40 *
41 * Returns the mm_struct of the target on success, NULL on failure
42 */
43static struct mm_struct *damon_get_mm(struct damon_target *t)
44{
45 struct task_struct *task;
46 struct mm_struct *mm;
47
48 task = damon_get_task_struct(t);
49 if (!task)
50 return NULL;
51
52 mm = get_task_mm(task);
53 put_task_struct(task);
54 return mm;
55}
56
57/*
58 * Functions for the initial monitoring target regions construction
59 */
60
61/*
62 * Size-evenly split a region into 'nr_pieces' small regions
63 *
64 * Returns 0 on success, or negative error code otherwise.
65 */
66static int damon_va_evenly_split_region(struct damon_target *t,
67 struct damon_region *r, unsigned int nr_pieces)
68{
69 unsigned long sz_orig, sz_piece, orig_end;
70 struct damon_region *n = NULL, *next;
71 unsigned long start;
72
73 if (!r || !nr_pieces)
74 return -EINVAL;
75
76 orig_end = r->ar.end;
77 sz_orig = r->ar.end - r->ar.start;
78 sz_piece = ALIGN_DOWN(sz_orig / nr_pieces, DAMON_MIN_REGION);
79
80 if (!sz_piece)
81 return -EINVAL;
82
83 r->ar.end = r->ar.start + sz_piece;
84 next = damon_next_region(r);
85 for (start = r->ar.end; start + sz_piece <= orig_end;
86 start += sz_piece) {
87 n = damon_new_region(start, start + sz_piece);
88 if (!n)
89 return -ENOMEM;
90 damon_insert_region(n, r, next, t);
91 r = n;
92 }
93 /* complement last region for possible rounding error */
94 if (n)
95 n->ar.end = orig_end;
96
97 return 0;
98}
99
100static unsigned long sz_range(struct damon_addr_range *r)
101{
102 return r->end - r->start;
103}
104
105static void swap_ranges(struct damon_addr_range *r1,
106 struct damon_addr_range *r2)
107{
108 struct damon_addr_range tmp;
109
110 tmp = *r1;
111 *r1 = *r2;
112 *r2 = tmp;
113}
114
115/*
116 * Find three regions separated by two biggest unmapped regions
117 *
118 * vma the head vma of the target address space
119 * regions an array of three address ranges that results will be saved
120 *
121 * This function receives an address space and finds three regions in it which
122 * separated by the two biggest unmapped regions in the space. Please refer to
123 * below comments of '__damon_va_init_regions()' function to know why this is
124 * necessary.
125 *
126 * Returns 0 if success, or negative error code otherwise.
127 */
128static int __damon_va_three_regions(struct vm_area_struct *vma,
129 struct damon_addr_range regions[3])
130{
131 struct damon_addr_range gap = {0}, first_gap = {0}, second_gap = {0};
132 struct vm_area_struct *last_vma = NULL;
133 unsigned long start = 0;
134 struct rb_root rbroot;
135
136 /* Find two biggest gaps so that first_gap > second_gap > others */
137 for (; vma; vma = vma->vm_next) {
138 if (!last_vma) {
139 start = vma->vm_start;
140 goto next;
141 }
142
143 if (vma->rb_subtree_gap <= sz_range(&second_gap)) {
144 rbroot.rb_node = &vma->vm_rb;
145 vma = rb_entry(rb_last(&rbroot),
146 struct vm_area_struct, vm_rb);
147 goto next;
148 }
149
150 gap.start = last_vma->vm_end;
151 gap.end = vma->vm_start;
152 if (sz_range(&gap) > sz_range(&second_gap)) {
153 swap_ranges(&gap, &second_gap);
154 if (sz_range(&second_gap) > sz_range(&first_gap))
155 swap_ranges(&second_gap, &first_gap);
156 }
157next:
158 last_vma = vma;
159 }
160
161 if (!sz_range(&second_gap) || !sz_range(&first_gap))
162 return -EINVAL;
163
164 /* Sort the two biggest gaps by address */
165 if (first_gap.start > second_gap.start)
166 swap_ranges(&first_gap, &second_gap);
167
168 /* Store the result */
169 regions[0].start = ALIGN(start, DAMON_MIN_REGION);
170 regions[0].end = ALIGN(first_gap.start, DAMON_MIN_REGION);
171 regions[1].start = ALIGN(first_gap.end, DAMON_MIN_REGION);
172 regions[1].end = ALIGN(second_gap.start, DAMON_MIN_REGION);
173 regions[2].start = ALIGN(second_gap.end, DAMON_MIN_REGION);
174 regions[2].end = ALIGN(last_vma->vm_end, DAMON_MIN_REGION);
175
176 return 0;
177}
178
179/*
180 * Get the three regions in the given target (task)
181 *
182 * Returns 0 on success, negative error code otherwise.
183 */
184static int damon_va_three_regions(struct damon_target *t,
185 struct damon_addr_range regions[3])
186{
187 struct mm_struct *mm;
188 int rc;
189
190 mm = damon_get_mm(t);
191 if (!mm)
192 return -EINVAL;
193
194 mmap_read_lock(mm);
195 rc = __damon_va_three_regions(mm->mmap, regions);
196 mmap_read_unlock(mm);
197
198 mmput(mm);
199 return rc;
200}
201
202/*
203 * Initialize the monitoring target regions for the given target (task)
204 *
205 * t the given target
206 *
207 * Because only a number of small portions of the entire address space
208 * is actually mapped to the memory and accessed, monitoring the unmapped
209 * regions is wasteful. That said, because we can deal with small noises,
210 * tracking every mapping is not strictly required but could even incur a high
211 * overhead if the mapping frequently changes or the number of mappings is
212 * high. The adaptive regions adjustment mechanism will further help to deal
213 * with the noise by simply identifying the unmapped areas as a region that
214 * has no access. Moreover, applying the real mappings that would have many
215 * unmapped areas inside will make the adaptive mechanism quite complex. That
216 * said, too huge unmapped areas inside the monitoring target should be removed
217 * to not take the time for the adaptive mechanism.
218 *
219 * For the reason, we convert the complex mappings to three distinct regions
220 * that cover every mapped area of the address space. Also the two gaps
221 * between the three regions are the two biggest unmapped areas in the given
222 * address space. In detail, this function first identifies the start and the
223 * end of the mappings and the two biggest unmapped areas of the address space.
224 * Then, it constructs the three regions as below:
225 *
226 * [mappings[0]->start, big_two_unmapped_areas[0]->start)
227 * [big_two_unmapped_areas[0]->end, big_two_unmapped_areas[1]->start)
228 * [big_two_unmapped_areas[1]->end, mappings[nr_mappings - 1]->end)
229 *
230 * As usual memory map of processes is as below, the gap between the heap and
231 * the uppermost mmap()-ed region, and the gap between the lowermost mmap()-ed
232 * region and the stack will be two biggest unmapped regions. Because these
233 * gaps are exceptionally huge areas in usual address space, excluding these
234 * two biggest unmapped regions will be sufficient to make a trade-off.
235 *
236 * <heap>
237 * <BIG UNMAPPED REGION 1>
238 * <uppermost mmap()-ed region>
239 * (other mmap()-ed regions and small unmapped regions)
240 * <lowermost mmap()-ed region>
241 * <BIG UNMAPPED REGION 2>
242 * <stack>
243 */
244static void __damon_va_init_regions(struct damon_ctx *ctx,
245 struct damon_target *t)
246{
247 struct damon_region *r;
248 struct damon_addr_range regions[3];
249 unsigned long sz = 0, nr_pieces;
250 int i;
251
252 if (damon_va_three_regions(t, regions)) {
253 pr_err("Failed to get three regions of target %lu\n", t->id);
254 return;
255 }
256
257 for (i = 0; i < 3; i++)
258 sz += regions[i].end - regions[i].start;
259 if (ctx->min_nr_regions)
260 sz /= ctx->min_nr_regions;
261 if (sz < DAMON_MIN_REGION)
262 sz = DAMON_MIN_REGION;
263
264 /* Set the initial three regions of the target */
265 for (i = 0; i < 3; i++) {
266 r = damon_new_region(regions[i].start, regions[i].end);
267 if (!r) {
268 pr_err("%d'th init region creation failed\n", i);
269 return;
270 }
271 damon_add_region(r, t);
272
273 nr_pieces = (regions[i].end - regions[i].start) / sz;
274 damon_va_evenly_split_region(t, r, nr_pieces);
275 }
276}
277
278/* Initialize '->regions_list' of every target (task) */
279void damon_va_init(struct damon_ctx *ctx)
280{
281 struct damon_target *t;
282
283 damon_for_each_target(t, ctx) {
284 /* the user may set the target regions as they want */
285 if (!damon_nr_regions(t))
286 __damon_va_init_regions(ctx, t);
287 }
288}
289
290/*
291 * Functions for the dynamic monitoring target regions update
292 */
293
294/*
295 * Check whether a region is intersecting an address range
296 *
297 * Returns true if it is.
298 */
299static bool damon_intersect(struct damon_region *r, struct damon_addr_range *re)
300{
301 return !(r->ar.end <= re->start || re->end <= r->ar.start);
302}
303
304/*
305 * Update damon regions for the three big regions of the given target
306 *
307 * t the given target
308 * bregions the three big regions of the target
309 */
310static void damon_va_apply_three_regions(struct damon_target *t,
311 struct damon_addr_range bregions[3])
312{
313 struct damon_region *r, *next;
314 unsigned int i = 0;
315
316 /* Remove regions which are not in the three big regions now */
317 damon_for_each_region_safe(r, next, t) {
318 for (i = 0; i < 3; i++) {
319 if (damon_intersect(r, &bregions[i]))
320 break;
321 }
322 if (i == 3)
323 damon_destroy_region(r, t);
324 }
325
326 /* Adjust intersecting regions to fit with the three big regions */
327 for (i = 0; i < 3; i++) {
328 struct damon_region *first = NULL, *last;
329 struct damon_region *newr;
330 struct damon_addr_range *br;
331
332 br = &bregions[i];
333 /* Get the first and last regions which intersects with br */
334 damon_for_each_region(r, t) {
335 if (damon_intersect(r, br)) {
336 if (!first)
337 first = r;
338 last = r;
339 }
340 if (r->ar.start >= br->end)
341 break;
342 }
343 if (!first) {
344 /* no damon_region intersects with this big region */
345 newr = damon_new_region(
346 ALIGN_DOWN(br->start,
347 DAMON_MIN_REGION),
348 ALIGN(br->end, DAMON_MIN_REGION));
349 if (!newr)
350 continue;
351 damon_insert_region(newr, damon_prev_region(r), r, t);
352 } else {
353 first->ar.start = ALIGN_DOWN(br->start,
354 DAMON_MIN_REGION);
355 last->ar.end = ALIGN(br->end, DAMON_MIN_REGION);
356 }
357 }
358}
359
360/*
361 * Update regions for current memory mappings
362 */
363void damon_va_update(struct damon_ctx *ctx)
364{
365 struct damon_addr_range three_regions[3];
366 struct damon_target *t;
367
368 damon_for_each_target(t, ctx) {
369 if (damon_va_three_regions(t, three_regions))
370 continue;
371 damon_va_apply_three_regions(t, three_regions);
372 }
373}
374
375/*
376 * Get an online page for a pfn if it's in the LRU list. Otherwise, returns
377 * NULL.
378 *
379 * The body of this function is stolen from the 'page_idle_get_page()'. We
380 * steal rather than reuse it because the code is quite simple.
381 */
382static struct page *damon_get_page(unsigned long pfn)
383{
384 struct page *page = pfn_to_online_page(pfn);
385
386 if (!page || !PageLRU(page) || !get_page_unless_zero(page))
387 return NULL;
388
389 if (unlikely(!PageLRU(page))) {
390 put_page(page);
391 page = NULL;
392 }
393 return page;
394}
395
396static void damon_ptep_mkold(pte_t *pte, struct mm_struct *mm,
397 unsigned long addr)
398{
399 bool referenced = false;
400 struct page *page = damon_get_page(pte_pfn(*pte));
401
402 if (!page)
403 return;
404
405 if (pte_young(*pte)) {
406 referenced = true;
407 *pte = pte_mkold(*pte);
408 }
409
410#ifdef CONFIG_MMU_NOTIFIER
411 if (mmu_notifier_clear_young(mm, addr, addr + PAGE_SIZE))
412 referenced = true;
413#endif /* CONFIG_MMU_NOTIFIER */
414
415 if (referenced)
416 set_page_young(page);
417
418 set_page_idle(page);
419 put_page(page);
420}
421
422static void damon_pmdp_mkold(pmd_t *pmd, struct mm_struct *mm,
423 unsigned long addr)
424{
425#ifdef CONFIG_TRANSPARENT_HUGEPAGE
426 bool referenced = false;
427 struct page *page = damon_get_page(pmd_pfn(*pmd));
428
429 if (!page)
430 return;
431
432 if (pmd_young(*pmd)) {
433 referenced = true;
434 *pmd = pmd_mkold(*pmd);
435 }
436
437#ifdef CONFIG_MMU_NOTIFIER
438 if (mmu_notifier_clear_young(mm, addr,
439 addr + ((1UL) << HPAGE_PMD_SHIFT)))
440 referenced = true;
441#endif /* CONFIG_MMU_NOTIFIER */
442
443 if (referenced)
444 set_page_young(page);
445
446 set_page_idle(page);
447 put_page(page);
448#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
449}
450
451static int damon_mkold_pmd_entry(pmd_t *pmd, unsigned long addr,
452 unsigned long next, struct mm_walk *walk)
453{
454 pte_t *pte;
455 spinlock_t *ptl;
456
457 if (pmd_huge(*pmd)) {
458 ptl = pmd_lock(walk->mm, pmd);
459 if (pmd_huge(*pmd)) {
460 damon_pmdp_mkold(pmd, walk->mm, addr);
461 spin_unlock(ptl);
462 return 0;
463 }
464 spin_unlock(ptl);
465 }
466
467 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
468 return 0;
469 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
470 if (!pte_present(*pte))
471 goto out;
472 damon_ptep_mkold(pte, walk->mm, addr);
473out:
474 pte_unmap_unlock(pte, ptl);
475 return 0;
476}
477
478static struct mm_walk_ops damon_mkold_ops = {
479 .pmd_entry = damon_mkold_pmd_entry,
480};
481
482static void damon_va_mkold(struct mm_struct *mm, unsigned long addr)
483{
484 mmap_read_lock(mm);
485 walk_page_range(mm, addr, addr + 1, &damon_mkold_ops, NULL);
486 mmap_read_unlock(mm);
487}
488
489/*
490 * Functions for the access checking of the regions
491 */
492
493static void damon_va_prepare_access_check(struct damon_ctx *ctx,
494 struct mm_struct *mm, struct damon_region *r)
495{
496 r->sampling_addr = damon_rand(r->ar.start, r->ar.end);
497
498 damon_va_mkold(mm, r->sampling_addr);
499}
500
501void damon_va_prepare_access_checks(struct damon_ctx *ctx)
502{
503 struct damon_target *t;
504 struct mm_struct *mm;
505 struct damon_region *r;
506
507 damon_for_each_target(t, ctx) {
508 mm = damon_get_mm(t);
509 if (!mm)
510 continue;
511 damon_for_each_region(r, t)
512 damon_va_prepare_access_check(ctx, mm, r);
513 mmput(mm);
514 }
515}
516
517struct damon_young_walk_private {
518 unsigned long *page_sz;
519 bool young;
520};
521
522static int damon_young_pmd_entry(pmd_t *pmd, unsigned long addr,
523 unsigned long next, struct mm_walk *walk)
524{
525 pte_t *pte;
526 spinlock_t *ptl;
527 struct page *page;
528 struct damon_young_walk_private *priv = walk->private;
529
530#ifdef CONFIG_TRANSPARENT_HUGEPAGE
531 if (pmd_huge(*pmd)) {
532 ptl = pmd_lock(walk->mm, pmd);
533 if (!pmd_huge(*pmd)) {
534 spin_unlock(ptl);
535 goto regular_page;
536 }
537 page = damon_get_page(pmd_pfn(*pmd));
538 if (!page)
539 goto huge_out;
540 if (pmd_young(*pmd) || !page_is_idle(page) ||
541 mmu_notifier_test_young(walk->mm,
542 addr)) {
543 *priv->page_sz = ((1UL) << HPAGE_PMD_SHIFT);
544 priv->young = true;
545 }
546 put_page(page);
547huge_out:
548 spin_unlock(ptl);
549 return 0;
550 }
551
552regular_page:
553#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
554
555 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
556 return -EINVAL;
557 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
558 if (!pte_present(*pte))
559 goto out;
560 page = damon_get_page(pte_pfn(*pte));
561 if (!page)
562 goto out;
563 if (pte_young(*pte) || !page_is_idle(page) ||
564 mmu_notifier_test_young(walk->mm, addr)) {
565 *priv->page_sz = PAGE_SIZE;
566 priv->young = true;
567 }
568 put_page(page);
569out:
570 pte_unmap_unlock(pte, ptl);
571 return 0;
572}
573
574static struct mm_walk_ops damon_young_ops = {
575 .pmd_entry = damon_young_pmd_entry,
576};
577
578static bool damon_va_young(struct mm_struct *mm, unsigned long addr,
579 unsigned long *page_sz)
580{
581 struct damon_young_walk_private arg = {
582 .page_sz = page_sz,
583 .young = false,
584 };
585
586 mmap_read_lock(mm);
587 walk_page_range(mm, addr, addr + 1, &damon_young_ops, &arg);
588 mmap_read_unlock(mm);
589 return arg.young;
590}
591
592/*
593 * Check whether the region was accessed after the last preparation
594 *
595 * mm 'mm_struct' for the given virtual address space
596 * r the region to be checked
597 */
598static void damon_va_check_access(struct damon_ctx *ctx,
599 struct mm_struct *mm, struct damon_region *r)
600{
601 static struct mm_struct *last_mm;
602 static unsigned long last_addr;
603 static unsigned long last_page_sz = PAGE_SIZE;
604 static bool last_accessed;
605
606 /* If the region is in the last checked page, reuse the result */
607 if (mm == last_mm && (ALIGN_DOWN(last_addr, last_page_sz) ==
608 ALIGN_DOWN(r->sampling_addr, last_page_sz))) {
609 if (last_accessed)
610 r->nr_accesses++;
611 return;
612 }
613
614 last_accessed = damon_va_young(mm, r->sampling_addr, &last_page_sz);
615 if (last_accessed)
616 r->nr_accesses++;
617
618 last_mm = mm;
619 last_addr = r->sampling_addr;
620}
621
622unsigned int damon_va_check_accesses(struct damon_ctx *ctx)
623{
624 struct damon_target *t;
625 struct mm_struct *mm;
626 struct damon_region *r;
627 unsigned int max_nr_accesses = 0;
628
629 damon_for_each_target(t, ctx) {
630 mm = damon_get_mm(t);
631 if (!mm)
632 continue;
633 damon_for_each_region(r, t) {
634 damon_va_check_access(ctx, mm, r);
635 max_nr_accesses = max(r->nr_accesses, max_nr_accesses);
636 }
637 mmput(mm);
638 }
639
640 return max_nr_accesses;
641}
642
643/*
644 * Functions for the target validity check and cleanup
645 */
646
647bool damon_va_target_valid(void *target)
648{
649 struct damon_target *t = target;
650 struct task_struct *task;
651
652 task = damon_get_task_struct(t);
653 if (task) {
654 put_task_struct(task);
655 return true;
656 }
657
658 return false;
659}
660
661void damon_va_set_primitives(struct damon_ctx *ctx)
662{
663 ctx->primitive.init = damon_va_init;
664 ctx->primitive.update = damon_va_update;
665 ctx->primitive.prepare_access_checks = damon_va_prepare_access_checks;
666 ctx->primitive.check_accesses = damon_va_check_accesses;
667 ctx->primitive.reset_aggregated = NULL;
668 ctx->primitive.target_valid = damon_va_target_valid;
669 ctx->primitive.cleanup = NULL;
670}
17ccae8b
SP
671
672#include "vaddr-test.h"