Merge tag 'for-5.17/parisc-2' of git://git.kernel.org/pub/scm/linux/kernel/git/deller...
[linux-block.git] / mm / damon / vaddr.c
CommitLineData
3f49584b
SP
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * DAMON Primitives for Virtual Address Spaces
4 *
5 * Author: SeongJae Park <sjpark@amazon.de>
6 */
7
8#define pr_fmt(fmt) "damon-va: " fmt
9
6dea8add 10#include <asm-generic/mman-common.h>
46c3a0ac 11#include <linux/highmem.h>
3f49584b 12#include <linux/hugetlb.h>
3f49584b 13#include <linux/mmu_notifier.h>
3f49584b
SP
14#include <linux/page_idle.h>
15#include <linux/pagewalk.h>
8581fd40 16#include <linux/sched/mm.h>
46c3a0ac
SP
17
18#include "prmtv-common.h"
3f49584b 19
17ccae8b
SP
20#ifdef CONFIG_DAMON_VADDR_KUNIT_TEST
21#undef DAMON_MIN_REGION
22#define DAMON_MIN_REGION 1
23#endif
24
3f49584b
SP
25/*
26 * 't->id' should be the pointer to the relevant 'struct pid' having reference
27 * count. Caller must put the returned task, unless it is NULL.
28 */
88f86dcf
SP
29static inline struct task_struct *damon_get_task_struct(struct damon_target *t)
30{
31 return get_pid_task((struct pid *)t->id, PIDTYPE_PID);
32}
3f49584b
SP
33
34/*
35 * Get the mm_struct of the given target
36 *
37 * Caller _must_ put the mm_struct after use, unless it is NULL.
38 *
39 * Returns the mm_struct of the target on success, NULL on failure
40 */
41static struct mm_struct *damon_get_mm(struct damon_target *t)
42{
43 struct task_struct *task;
44 struct mm_struct *mm;
45
46 task = damon_get_task_struct(t);
47 if (!task)
48 return NULL;
49
50 mm = get_task_mm(task);
51 put_task_struct(task);
52 return mm;
53}
54
55/*
56 * Functions for the initial monitoring target regions construction
57 */
58
59/*
60 * Size-evenly split a region into 'nr_pieces' small regions
61 *
62 * Returns 0 on success, or negative error code otherwise.
63 */
64static int damon_va_evenly_split_region(struct damon_target *t,
65 struct damon_region *r, unsigned int nr_pieces)
66{
67 unsigned long sz_orig, sz_piece, orig_end;
68 struct damon_region *n = NULL, *next;
69 unsigned long start;
70
71 if (!r || !nr_pieces)
72 return -EINVAL;
73
74 orig_end = r->ar.end;
75 sz_orig = r->ar.end - r->ar.start;
76 sz_piece = ALIGN_DOWN(sz_orig / nr_pieces, DAMON_MIN_REGION);
77
78 if (!sz_piece)
79 return -EINVAL;
80
81 r->ar.end = r->ar.start + sz_piece;
82 next = damon_next_region(r);
83 for (start = r->ar.end; start + sz_piece <= orig_end;
84 start += sz_piece) {
85 n = damon_new_region(start, start + sz_piece);
86 if (!n)
87 return -ENOMEM;
88 damon_insert_region(n, r, next, t);
89 r = n;
90 }
91 /* complement last region for possible rounding error */
92 if (n)
93 n->ar.end = orig_end;
94
95 return 0;
96}
97
98static unsigned long sz_range(struct damon_addr_range *r)
99{
100 return r->end - r->start;
101}
102
3f49584b
SP
103/*
104 * Find three regions separated by two biggest unmapped regions
105 *
106 * vma the head vma of the target address space
107 * regions an array of three address ranges that results will be saved
108 *
109 * This function receives an address space and finds three regions in it which
110 * separated by the two biggest unmapped regions in the space. Please refer to
111 * below comments of '__damon_va_init_regions()' function to know why this is
112 * necessary.
113 *
114 * Returns 0 if success, or negative error code otherwise.
115 */
116static int __damon_va_three_regions(struct vm_area_struct *vma,
117 struct damon_addr_range regions[3])
118{
119 struct damon_addr_range gap = {0}, first_gap = {0}, second_gap = {0};
120 struct vm_area_struct *last_vma = NULL;
121 unsigned long start = 0;
122 struct rb_root rbroot;
123
124 /* Find two biggest gaps so that first_gap > second_gap > others */
125 for (; vma; vma = vma->vm_next) {
126 if (!last_vma) {
127 start = vma->vm_start;
128 goto next;
129 }
130
131 if (vma->rb_subtree_gap <= sz_range(&second_gap)) {
132 rbroot.rb_node = &vma->vm_rb;
133 vma = rb_entry(rb_last(&rbroot),
134 struct vm_area_struct, vm_rb);
135 goto next;
136 }
137
138 gap.start = last_vma->vm_end;
139 gap.end = vma->vm_start;
140 if (sz_range(&gap) > sz_range(&second_gap)) {
8bd0b9da 141 swap(gap, second_gap);
3f49584b 142 if (sz_range(&second_gap) > sz_range(&first_gap))
8bd0b9da 143 swap(second_gap, first_gap);
3f49584b
SP
144 }
145next:
146 last_vma = vma;
147 }
148
149 if (!sz_range(&second_gap) || !sz_range(&first_gap))
150 return -EINVAL;
151
152 /* Sort the two biggest gaps by address */
153 if (first_gap.start > second_gap.start)
8bd0b9da 154 swap(first_gap, second_gap);
3f49584b
SP
155
156 /* Store the result */
157 regions[0].start = ALIGN(start, DAMON_MIN_REGION);
158 regions[0].end = ALIGN(first_gap.start, DAMON_MIN_REGION);
159 regions[1].start = ALIGN(first_gap.end, DAMON_MIN_REGION);
160 regions[1].end = ALIGN(second_gap.start, DAMON_MIN_REGION);
161 regions[2].start = ALIGN(second_gap.end, DAMON_MIN_REGION);
162 regions[2].end = ALIGN(last_vma->vm_end, DAMON_MIN_REGION);
163
164 return 0;
165}
166
167/*
168 * Get the three regions in the given target (task)
169 *
170 * Returns 0 on success, negative error code otherwise.
171 */
172static int damon_va_three_regions(struct damon_target *t,
173 struct damon_addr_range regions[3])
174{
175 struct mm_struct *mm;
176 int rc;
177
178 mm = damon_get_mm(t);
179 if (!mm)
180 return -EINVAL;
181
182 mmap_read_lock(mm);
183 rc = __damon_va_three_regions(mm->mmap, regions);
184 mmap_read_unlock(mm);
185
186 mmput(mm);
187 return rc;
188}
189
190/*
191 * Initialize the monitoring target regions for the given target (task)
192 *
193 * t the given target
194 *
195 * Because only a number of small portions of the entire address space
196 * is actually mapped to the memory and accessed, monitoring the unmapped
197 * regions is wasteful. That said, because we can deal with small noises,
198 * tracking every mapping is not strictly required but could even incur a high
199 * overhead if the mapping frequently changes or the number of mappings is
200 * high. The adaptive regions adjustment mechanism will further help to deal
201 * with the noise by simply identifying the unmapped areas as a region that
202 * has no access. Moreover, applying the real mappings that would have many
203 * unmapped areas inside will make the adaptive mechanism quite complex. That
204 * said, too huge unmapped areas inside the monitoring target should be removed
205 * to not take the time for the adaptive mechanism.
206 *
207 * For the reason, we convert the complex mappings to three distinct regions
208 * that cover every mapped area of the address space. Also the two gaps
209 * between the three regions are the two biggest unmapped areas in the given
210 * address space. In detail, this function first identifies the start and the
211 * end of the mappings and the two biggest unmapped areas of the address space.
212 * Then, it constructs the three regions as below:
213 *
214 * [mappings[0]->start, big_two_unmapped_areas[0]->start)
215 * [big_two_unmapped_areas[0]->end, big_two_unmapped_areas[1]->start)
216 * [big_two_unmapped_areas[1]->end, mappings[nr_mappings - 1]->end)
217 *
218 * As usual memory map of processes is as below, the gap between the heap and
219 * the uppermost mmap()-ed region, and the gap between the lowermost mmap()-ed
220 * region and the stack will be two biggest unmapped regions. Because these
221 * gaps are exceptionally huge areas in usual address space, excluding these
222 * two biggest unmapped regions will be sufficient to make a trade-off.
223 *
224 * <heap>
225 * <BIG UNMAPPED REGION 1>
226 * <uppermost mmap()-ed region>
227 * (other mmap()-ed regions and small unmapped regions)
228 * <lowermost mmap()-ed region>
229 * <BIG UNMAPPED REGION 2>
230 * <stack>
231 */
232static void __damon_va_init_regions(struct damon_ctx *ctx,
233 struct damon_target *t)
234{
962fe7a6 235 struct damon_target *ti;
3f49584b
SP
236 struct damon_region *r;
237 struct damon_addr_range regions[3];
238 unsigned long sz = 0, nr_pieces;
962fe7a6 239 int i, tidx = 0;
3f49584b
SP
240
241 if (damon_va_three_regions(t, regions)) {
962fe7a6
SP
242 damon_for_each_target(ti, ctx) {
243 if (ti == t)
244 break;
245 tidx++;
246 }
247 pr_debug("Failed to get three regions of %dth target\n", tidx);
3f49584b
SP
248 return;
249 }
250
251 for (i = 0; i < 3; i++)
252 sz += regions[i].end - regions[i].start;
253 if (ctx->min_nr_regions)
254 sz /= ctx->min_nr_regions;
255 if (sz < DAMON_MIN_REGION)
256 sz = DAMON_MIN_REGION;
257
258 /* Set the initial three regions of the target */
259 for (i = 0; i < 3; i++) {
260 r = damon_new_region(regions[i].start, regions[i].end);
261 if (!r) {
262 pr_err("%d'th init region creation failed\n", i);
263 return;
264 }
265 damon_add_region(r, t);
266
267 nr_pieces = (regions[i].end - regions[i].start) / sz;
268 damon_va_evenly_split_region(t, r, nr_pieces);
269 }
270}
271
272/* Initialize '->regions_list' of every target (task) */
cdeed009 273static void damon_va_init(struct damon_ctx *ctx)
3f49584b
SP
274{
275 struct damon_target *t;
276
277 damon_for_each_target(t, ctx) {
278 /* the user may set the target regions as they want */
279 if (!damon_nr_regions(t))
280 __damon_va_init_regions(ctx, t);
281 }
282}
283
284/*
285 * Functions for the dynamic monitoring target regions update
286 */
287
288/*
289 * Check whether a region is intersecting an address range
290 *
291 * Returns true if it is.
292 */
cdeed009
XH
293static bool damon_intersect(struct damon_region *r,
294 struct damon_addr_range *re)
3f49584b
SP
295{
296 return !(r->ar.end <= re->start || re->end <= r->ar.start);
297}
298
299/*
300 * Update damon regions for the three big regions of the given target
301 *
302 * t the given target
303 * bregions the three big regions of the target
304 */
305static void damon_va_apply_three_regions(struct damon_target *t,
306 struct damon_addr_range bregions[3])
307{
308 struct damon_region *r, *next;
a460a360 309 unsigned int i;
3f49584b
SP
310
311 /* Remove regions which are not in the three big regions now */
312 damon_for_each_region_safe(r, next, t) {
313 for (i = 0; i < 3; i++) {
314 if (damon_intersect(r, &bregions[i]))
315 break;
316 }
317 if (i == 3)
318 damon_destroy_region(r, t);
319 }
320
321 /* Adjust intersecting regions to fit with the three big regions */
322 for (i = 0; i < 3; i++) {
323 struct damon_region *first = NULL, *last;
324 struct damon_region *newr;
325 struct damon_addr_range *br;
326
327 br = &bregions[i];
328 /* Get the first and last regions which intersects with br */
329 damon_for_each_region(r, t) {
330 if (damon_intersect(r, br)) {
331 if (!first)
332 first = r;
333 last = r;
334 }
335 if (r->ar.start >= br->end)
336 break;
337 }
338 if (!first) {
339 /* no damon_region intersects with this big region */
340 newr = damon_new_region(
341 ALIGN_DOWN(br->start,
342 DAMON_MIN_REGION),
343 ALIGN(br->end, DAMON_MIN_REGION));
344 if (!newr)
345 continue;
346 damon_insert_region(newr, damon_prev_region(r), r, t);
347 } else {
348 first->ar.start = ALIGN_DOWN(br->start,
349 DAMON_MIN_REGION);
350 last->ar.end = ALIGN(br->end, DAMON_MIN_REGION);
351 }
352 }
353}
354
355/*
356 * Update regions for current memory mappings
357 */
cdeed009 358static void damon_va_update(struct damon_ctx *ctx)
3f49584b
SP
359{
360 struct damon_addr_range three_regions[3];
361 struct damon_target *t;
362
363 damon_for_each_target(t, ctx) {
364 if (damon_va_three_regions(t, three_regions))
365 continue;
366 damon_va_apply_three_regions(t, three_regions);
367 }
368}
369
3f49584b
SP
370static int damon_mkold_pmd_entry(pmd_t *pmd, unsigned long addr,
371 unsigned long next, struct mm_walk *walk)
372{
373 pte_t *pte;
374 spinlock_t *ptl;
375
376 if (pmd_huge(*pmd)) {
377 ptl = pmd_lock(walk->mm, pmd);
378 if (pmd_huge(*pmd)) {
379 damon_pmdp_mkold(pmd, walk->mm, addr);
380 spin_unlock(ptl);
381 return 0;
382 }
383 spin_unlock(ptl);
384 }
385
386 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
387 return 0;
388 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
389 if (!pte_present(*pte))
390 goto out;
391 damon_ptep_mkold(pte, walk->mm, addr);
392out:
393 pte_unmap_unlock(pte, ptl);
394 return 0;
395}
396
49f4203a
BW
397#ifdef CONFIG_HUGETLB_PAGE
398static void damon_hugetlb_mkold(pte_t *pte, struct mm_struct *mm,
399 struct vm_area_struct *vma, unsigned long addr)
400{
401 bool referenced = false;
402 pte_t entry = huge_ptep_get(pte);
403 struct page *page = pte_page(entry);
404
405 if (!page)
406 return;
407
408 get_page(page);
409
410 if (pte_young(entry)) {
411 referenced = true;
412 entry = pte_mkold(entry);
413 huge_ptep_set_access_flags(vma, addr, pte, entry,
414 vma->vm_flags & VM_WRITE);
415 }
416
417#ifdef CONFIG_MMU_NOTIFIER
418 if (mmu_notifier_clear_young(mm, addr,
419 addr + huge_page_size(hstate_vma(vma))))
420 referenced = true;
421#endif /* CONFIG_MMU_NOTIFIER */
422
423 if (referenced)
424 set_page_young(page);
425
426 set_page_idle(page);
427 put_page(page);
428}
429
430static int damon_mkold_hugetlb_entry(pte_t *pte, unsigned long hmask,
431 unsigned long addr, unsigned long end,
432 struct mm_walk *walk)
433{
434 struct hstate *h = hstate_vma(walk->vma);
435 spinlock_t *ptl;
436 pte_t entry;
437
438 ptl = huge_pte_lock(h, walk->mm, pte);
439 entry = huge_ptep_get(pte);
440 if (!pte_present(entry))
441 goto out;
442
443 damon_hugetlb_mkold(pte, walk->mm, walk->vma, addr);
444
445out:
446 spin_unlock(ptl);
447 return 0;
448}
449#else
450#define damon_mkold_hugetlb_entry NULL
451#endif /* CONFIG_HUGETLB_PAGE */
452
199b50f4 453static const struct mm_walk_ops damon_mkold_ops = {
3f49584b 454 .pmd_entry = damon_mkold_pmd_entry,
49f4203a 455 .hugetlb_entry = damon_mkold_hugetlb_entry,
3f49584b
SP
456};
457
458static void damon_va_mkold(struct mm_struct *mm, unsigned long addr)
459{
460 mmap_read_lock(mm);
461 walk_page_range(mm, addr, addr + 1, &damon_mkold_ops, NULL);
462 mmap_read_unlock(mm);
463}
464
465/*
466 * Functions for the access checking of the regions
467 */
468
b627b774 469static void __damon_va_prepare_access_check(struct damon_ctx *ctx,
3f49584b
SP
470 struct mm_struct *mm, struct damon_region *r)
471{
472 r->sampling_addr = damon_rand(r->ar.start, r->ar.end);
473
474 damon_va_mkold(mm, r->sampling_addr);
475}
476
cdeed009 477static void damon_va_prepare_access_checks(struct damon_ctx *ctx)
3f49584b
SP
478{
479 struct damon_target *t;
480 struct mm_struct *mm;
481 struct damon_region *r;
482
483 damon_for_each_target(t, ctx) {
484 mm = damon_get_mm(t);
485 if (!mm)
486 continue;
487 damon_for_each_region(r, t)
b627b774 488 __damon_va_prepare_access_check(ctx, mm, r);
3f49584b
SP
489 mmput(mm);
490 }
491}
492
493struct damon_young_walk_private {
494 unsigned long *page_sz;
495 bool young;
496};
497
498static int damon_young_pmd_entry(pmd_t *pmd, unsigned long addr,
499 unsigned long next, struct mm_walk *walk)
500{
501 pte_t *pte;
502 spinlock_t *ptl;
503 struct page *page;
504 struct damon_young_walk_private *priv = walk->private;
505
506#ifdef CONFIG_TRANSPARENT_HUGEPAGE
507 if (pmd_huge(*pmd)) {
508 ptl = pmd_lock(walk->mm, pmd);
509 if (!pmd_huge(*pmd)) {
510 spin_unlock(ptl);
511 goto regular_page;
512 }
513 page = damon_get_page(pmd_pfn(*pmd));
514 if (!page)
515 goto huge_out;
516 if (pmd_young(*pmd) || !page_is_idle(page) ||
517 mmu_notifier_test_young(walk->mm,
518 addr)) {
519 *priv->page_sz = ((1UL) << HPAGE_PMD_SHIFT);
520 priv->young = true;
521 }
522 put_page(page);
523huge_out:
524 spin_unlock(ptl);
525 return 0;
526 }
527
528regular_page:
529#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
530
531 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
532 return -EINVAL;
533 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
534 if (!pte_present(*pte))
535 goto out;
536 page = damon_get_page(pte_pfn(*pte));
537 if (!page)
538 goto out;
539 if (pte_young(*pte) || !page_is_idle(page) ||
540 mmu_notifier_test_young(walk->mm, addr)) {
541 *priv->page_sz = PAGE_SIZE;
542 priv->young = true;
543 }
544 put_page(page);
545out:
546 pte_unmap_unlock(pte, ptl);
547 return 0;
548}
549
49f4203a
BW
550#ifdef CONFIG_HUGETLB_PAGE
551static int damon_young_hugetlb_entry(pte_t *pte, unsigned long hmask,
552 unsigned long addr, unsigned long end,
553 struct mm_walk *walk)
554{
555 struct damon_young_walk_private *priv = walk->private;
556 struct hstate *h = hstate_vma(walk->vma);
557 struct page *page;
558 spinlock_t *ptl;
559 pte_t entry;
560
561 ptl = huge_pte_lock(h, walk->mm, pte);
562 entry = huge_ptep_get(pte);
563 if (!pte_present(entry))
564 goto out;
565
566 page = pte_page(entry);
567 if (!page)
568 goto out;
569
570 get_page(page);
571
572 if (pte_young(entry) || !page_is_idle(page) ||
573 mmu_notifier_test_young(walk->mm, addr)) {
574 *priv->page_sz = huge_page_size(h);
575 priv->young = true;
576 }
577
578 put_page(page);
579
580out:
581 spin_unlock(ptl);
582 return 0;
583}
584#else
585#define damon_young_hugetlb_entry NULL
586#endif /* CONFIG_HUGETLB_PAGE */
587
199b50f4 588static const struct mm_walk_ops damon_young_ops = {
3f49584b 589 .pmd_entry = damon_young_pmd_entry,
49f4203a 590 .hugetlb_entry = damon_young_hugetlb_entry,
3f49584b
SP
591};
592
593static bool damon_va_young(struct mm_struct *mm, unsigned long addr,
594 unsigned long *page_sz)
595{
596 struct damon_young_walk_private arg = {
597 .page_sz = page_sz,
598 .young = false,
599 };
600
601 mmap_read_lock(mm);
602 walk_page_range(mm, addr, addr + 1, &damon_young_ops, &arg);
603 mmap_read_unlock(mm);
604 return arg.young;
605}
606
607/*
608 * Check whether the region was accessed after the last preparation
609 *
610 * mm 'mm_struct' for the given virtual address space
611 * r the region to be checked
612 */
b627b774 613static void __damon_va_check_access(struct damon_ctx *ctx,
3f49584b
SP
614 struct mm_struct *mm, struct damon_region *r)
615{
616 static struct mm_struct *last_mm;
617 static unsigned long last_addr;
618 static unsigned long last_page_sz = PAGE_SIZE;
619 static bool last_accessed;
620
621 /* If the region is in the last checked page, reuse the result */
622 if (mm == last_mm && (ALIGN_DOWN(last_addr, last_page_sz) ==
623 ALIGN_DOWN(r->sampling_addr, last_page_sz))) {
624 if (last_accessed)
625 r->nr_accesses++;
626 return;
627 }
628
629 last_accessed = damon_va_young(mm, r->sampling_addr, &last_page_sz);
630 if (last_accessed)
631 r->nr_accesses++;
632
633 last_mm = mm;
634 last_addr = r->sampling_addr;
635}
636
cdeed009 637static unsigned int damon_va_check_accesses(struct damon_ctx *ctx)
3f49584b
SP
638{
639 struct damon_target *t;
640 struct mm_struct *mm;
641 struct damon_region *r;
642 unsigned int max_nr_accesses = 0;
643
644 damon_for_each_target(t, ctx) {
645 mm = damon_get_mm(t);
646 if (!mm)
647 continue;
648 damon_for_each_region(r, t) {
b627b774 649 __damon_va_check_access(ctx, mm, r);
3f49584b
SP
650 max_nr_accesses = max(r->nr_accesses, max_nr_accesses);
651 }
652 mmput(mm);
653 }
654
655 return max_nr_accesses;
656}
657
658/*
659 * Functions for the target validity check and cleanup
660 */
661
662bool damon_va_target_valid(void *target)
663{
664 struct damon_target *t = target;
665 struct task_struct *task;
666
667 task = damon_get_task_struct(t);
668 if (task) {
669 put_task_struct(task);
670 return true;
671 }
672
673 return false;
674}
675
6dea8add 676#ifndef CONFIG_ADVISE_SYSCALLS
0e92c2ee
SP
677static unsigned long damos_madvise(struct damon_target *target,
678 struct damon_region *r, int behavior)
6dea8add 679{
0e92c2ee 680 return 0;
6dea8add
SP
681}
682#else
0e92c2ee
SP
683static unsigned long damos_madvise(struct damon_target *target,
684 struct damon_region *r, int behavior)
6dea8add
SP
685{
686 struct mm_struct *mm;
0e92c2ee
SP
687 unsigned long start = PAGE_ALIGN(r->ar.start);
688 unsigned long len = PAGE_ALIGN(r->ar.end - r->ar.start);
689 unsigned long applied;
6dea8add
SP
690
691 mm = damon_get_mm(target);
692 if (!mm)
0e92c2ee 693 return 0;
6dea8add 694
0e92c2ee 695 applied = do_madvise(mm, start, len, behavior) ? 0 : len;
6dea8add 696 mmput(mm);
0e92c2ee
SP
697
698 return applied;
6dea8add
SP
699}
700#endif /* CONFIG_ADVISE_SYSCALLS */
701
0e92c2ee
SP
702static unsigned long damon_va_apply_scheme(struct damon_ctx *ctx,
703 struct damon_target *t, struct damon_region *r,
704 struct damos *scheme)
6dea8add
SP
705{
706 int madv_action;
707
708 switch (scheme->action) {
709 case DAMOS_WILLNEED:
710 madv_action = MADV_WILLNEED;
711 break;
712 case DAMOS_COLD:
713 madv_action = MADV_COLD;
714 break;
715 case DAMOS_PAGEOUT:
716 madv_action = MADV_PAGEOUT;
717 break;
718 case DAMOS_HUGEPAGE:
719 madv_action = MADV_HUGEPAGE;
720 break;
721 case DAMOS_NOHUGEPAGE:
722 madv_action = MADV_NOHUGEPAGE;
723 break;
2f0b548c
SP
724 case DAMOS_STAT:
725 return 0;
6dea8add 726 default:
0e92c2ee 727 return 0;
6dea8add
SP
728 }
729
730 return damos_madvise(t, r, madv_action);
731}
732
cdeed009
XH
733static int damon_va_scheme_score(struct damon_ctx *context,
734 struct damon_target *t, struct damon_region *r,
735 struct damos *scheme)
198f0f4c
SP
736{
737
738 switch (scheme->action) {
739 case DAMOS_PAGEOUT:
740 return damon_pageout_score(context, r, scheme);
741 default:
742 break;
743 }
744
745 return DAMOS_MAX_SCORE;
746}
747
3f49584b
SP
748void damon_va_set_primitives(struct damon_ctx *ctx)
749{
750 ctx->primitive.init = damon_va_init;
751 ctx->primitive.update = damon_va_update;
752 ctx->primitive.prepare_access_checks = damon_va_prepare_access_checks;
753 ctx->primitive.check_accesses = damon_va_check_accesses;
754 ctx->primitive.reset_aggregated = NULL;
755 ctx->primitive.target_valid = damon_va_target_valid;
756 ctx->primitive.cleanup = NULL;
6dea8add 757 ctx->primitive.apply_scheme = damon_va_apply_scheme;
198f0f4c 758 ctx->primitive.get_scheme_score = damon_va_scheme_score;
3f49584b 759}
17ccae8b
SP
760
761#include "vaddr-test.h"