mm/damon: convert macro functions to static inline functions
[linux-block.git] / mm / damon / core.c
CommitLineData
2224d848
SP
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Data Access Monitor
4 *
5 * Author: SeongJae Park <sjpark@amazon.de>
6 */
7
8#define pr_fmt(fmt) "damon: " fmt
9
10#include <linux/damon.h>
11#include <linux/delay.h>
12#include <linux/kthread.h>
ee801b7d 13#include <linux/mm.h>
2224d848 14#include <linux/slab.h>
38683e00 15#include <linux/string.h>
2224d848 16
2fcb9362
SP
17#define CREATE_TRACE_POINTS
18#include <trace/events/damon.h>
19
17ccae8b
SP
20#ifdef CONFIG_DAMON_KUNIT_TEST
21#undef DAMON_MIN_REGION
22#define DAMON_MIN_REGION 1
23#endif
24
2224d848
SP
25static DEFINE_MUTEX(damon_lock);
26static int nr_running_ctxs;
27
f23b8eee
SP
28/*
29 * Construct a damon_region struct
30 *
31 * Returns the pointer to the new struct if success, or NULL otherwise
32 */
33struct damon_region *damon_new_region(unsigned long start, unsigned long end)
34{
35 struct damon_region *region;
36
37 region = kmalloc(sizeof(*region), GFP_KERNEL);
38 if (!region)
39 return NULL;
40
41 region->ar.start = start;
42 region->ar.end = end;
43 region->nr_accesses = 0;
44 INIT_LIST_HEAD(&region->list);
45
fda504fa
SP
46 region->age = 0;
47 region->last_nr_accesses = 0;
48
f23b8eee
SP
49 return region;
50}
51
52/*
53 * Add a region between two other regions
54 */
55inline void damon_insert_region(struct damon_region *r,
b9a6ac4e
SP
56 struct damon_region *prev, struct damon_region *next,
57 struct damon_target *t)
f23b8eee
SP
58{
59 __list_add(&r->list, &prev->list, &next->list);
b9a6ac4e 60 t->nr_regions++;
f23b8eee
SP
61}
62
63void damon_add_region(struct damon_region *r, struct damon_target *t)
64{
65 list_add_tail(&r->list, &t->regions_list);
b9a6ac4e 66 t->nr_regions++;
f23b8eee
SP
67}
68
b9a6ac4e 69static void damon_del_region(struct damon_region *r, struct damon_target *t)
f23b8eee
SP
70{
71 list_del(&r->list);
b9a6ac4e 72 t->nr_regions--;
f23b8eee
SP
73}
74
75static void damon_free_region(struct damon_region *r)
76{
77 kfree(r);
78}
79
b9a6ac4e 80void damon_destroy_region(struct damon_region *r, struct damon_target *t)
f23b8eee 81{
b9a6ac4e 82 damon_del_region(r, t);
f23b8eee
SP
83 damon_free_region(r);
84}
85
1f366e42
SP
86struct damos *damon_new_scheme(
87 unsigned long min_sz_region, unsigned long max_sz_region,
88 unsigned int min_nr_accesses, unsigned int max_nr_accesses,
89 unsigned int min_age_region, unsigned int max_age_region,
ee801b7d
SP
90 enum damos_action action, struct damos_quota *quota,
91 struct damos_watermarks *wmarks)
1f366e42
SP
92{
93 struct damos *scheme;
94
95 scheme = kmalloc(sizeof(*scheme), GFP_KERNEL);
96 if (!scheme)
97 return NULL;
98 scheme->min_sz_region = min_sz_region;
99 scheme->max_sz_region = max_sz_region;
100 scheme->min_nr_accesses = min_nr_accesses;
101 scheme->max_nr_accesses = max_nr_accesses;
102 scheme->min_age_region = min_age_region;
103 scheme->max_age_region = max_age_region;
104 scheme->action = action;
2f0b548c
SP
105 scheme->stat_count = 0;
106 scheme->stat_sz = 0;
1f366e42
SP
107 INIT_LIST_HEAD(&scheme->list);
108
1cd24303 109 scheme->quota.ms = quota->ms;
2b8a248d
SP
110 scheme->quota.sz = quota->sz;
111 scheme->quota.reset_interval = quota->reset_interval;
38683e00
SP
112 scheme->quota.weight_sz = quota->weight_sz;
113 scheme->quota.weight_nr_accesses = quota->weight_nr_accesses;
114 scheme->quota.weight_age = quota->weight_age;
1cd24303
SP
115 scheme->quota.total_charged_sz = 0;
116 scheme->quota.total_charged_ns = 0;
117 scheme->quota.esz = 0;
2b8a248d
SP
118 scheme->quota.charged_sz = 0;
119 scheme->quota.charged_from = 0;
50585192
SP
120 scheme->quota.charge_target_from = NULL;
121 scheme->quota.charge_addr_from = 0;
2b8a248d 122
ee801b7d
SP
123 scheme->wmarks.metric = wmarks->metric;
124 scheme->wmarks.interval = wmarks->interval;
125 scheme->wmarks.high = wmarks->high;
126 scheme->wmarks.mid = wmarks->mid;
127 scheme->wmarks.low = wmarks->low;
128 scheme->wmarks.activated = true;
129
1f366e42
SP
130 return scheme;
131}
132
133void damon_add_scheme(struct damon_ctx *ctx, struct damos *s)
134{
135 list_add_tail(&s->list, &ctx->schemes);
136}
137
138static void damon_del_scheme(struct damos *s)
139{
140 list_del(&s->list);
141}
142
143static void damon_free_scheme(struct damos *s)
144{
145 kfree(s);
146}
147
148void damon_destroy_scheme(struct damos *s)
149{
150 damon_del_scheme(s);
151 damon_free_scheme(s);
152}
153
f23b8eee
SP
154/*
155 * Construct a damon_target struct
156 *
157 * Returns the pointer to the new struct if success, or NULL otherwise
158 */
159struct damon_target *damon_new_target(unsigned long id)
160{
161 struct damon_target *t;
162
163 t = kmalloc(sizeof(*t), GFP_KERNEL);
164 if (!t)
165 return NULL;
166
167 t->id = id;
b9a6ac4e 168 t->nr_regions = 0;
f23b8eee
SP
169 INIT_LIST_HEAD(&t->regions_list);
170
171 return t;
172}
173
174void damon_add_target(struct damon_ctx *ctx, struct damon_target *t)
175{
b9a6ac4e 176 list_add_tail(&t->list, &ctx->adaptive_targets);
f23b8eee
SP
177}
178
b5ca3e83
XH
179bool damon_targets_empty(struct damon_ctx *ctx)
180{
181 return list_empty(&ctx->adaptive_targets);
182}
183
f23b8eee
SP
184static void damon_del_target(struct damon_target *t)
185{
186 list_del(&t->list);
187}
188
189void damon_free_target(struct damon_target *t)
190{
191 struct damon_region *r, *next;
192
193 damon_for_each_region_safe(r, next, t)
194 damon_free_region(r);
195 kfree(t);
196}
197
198void damon_destroy_target(struct damon_target *t)
199{
200 damon_del_target(t);
201 damon_free_target(t);
202}
203
b9a6ac4e
SP
204unsigned int damon_nr_regions(struct damon_target *t)
205{
206 return t->nr_regions;
207}
208
2224d848
SP
209struct damon_ctx *damon_new_ctx(void)
210{
211 struct damon_ctx *ctx;
212
213 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
214 if (!ctx)
215 return NULL;
216
217 ctx->sample_interval = 5 * 1000;
218 ctx->aggr_interval = 100 * 1000;
219 ctx->primitive_update_interval = 60 * 1000 * 1000;
220
221 ktime_get_coarse_ts64(&ctx->last_aggregation);
222 ctx->last_primitive_update = ctx->last_aggregation;
223
224 mutex_init(&ctx->kdamond_lock);
225
b9a6ac4e
SP
226 ctx->min_nr_regions = 10;
227 ctx->max_nr_regions = 1000;
228
229 INIT_LIST_HEAD(&ctx->adaptive_targets);
1f366e42 230 INIT_LIST_HEAD(&ctx->schemes);
2224d848
SP
231
232 return ctx;
233}
234
f23b8eee 235static void damon_destroy_targets(struct damon_ctx *ctx)
2224d848 236{
f23b8eee
SP
237 struct damon_target *t, *next_t;
238
239 if (ctx->primitive.cleanup) {
2224d848 240 ctx->primitive.cleanup(ctx);
f23b8eee
SP
241 return;
242 }
243
244 damon_for_each_target_safe(t, next_t, ctx)
245 damon_destroy_target(t);
246}
247
248void damon_destroy_ctx(struct damon_ctx *ctx)
249{
1f366e42
SP
250 struct damos *s, *next_s;
251
f23b8eee 252 damon_destroy_targets(ctx);
1f366e42
SP
253
254 damon_for_each_scheme_safe(s, next_s, ctx)
255 damon_destroy_scheme(s);
256
2224d848
SP
257 kfree(ctx);
258}
259
4bc05954
SP
260/**
261 * damon_set_targets() - Set monitoring targets.
262 * @ctx: monitoring context
263 * @ids: array of target ids
264 * @nr_ids: number of entries in @ids
265 *
266 * This function should not be called while the kdamond is running.
267 *
268 * Return: 0 on success, negative error code otherwise.
269 */
270int damon_set_targets(struct damon_ctx *ctx,
271 unsigned long *ids, ssize_t nr_ids)
272{
273 ssize_t i;
274 struct damon_target *t, *next;
275
276 damon_destroy_targets(ctx);
277
278 for (i = 0; i < nr_ids; i++) {
279 t = damon_new_target(ids[i]);
280 if (!t) {
4bc05954
SP
281 /* The caller should do cleanup of the ids itself */
282 damon_for_each_target_safe(t, next, ctx)
283 damon_destroy_target(t);
284 return -ENOMEM;
285 }
286 damon_add_target(ctx, t);
287 }
288
289 return 0;
290}
291
2224d848
SP
292/**
293 * damon_set_attrs() - Set attributes for the monitoring.
294 * @ctx: monitoring context
295 * @sample_int: time interval between samplings
296 * @aggr_int: time interval between aggregations
297 * @primitive_upd_int: time interval between monitoring primitive updates
b9a6ac4e
SP
298 * @min_nr_reg: minimal number of regions
299 * @max_nr_reg: maximum number of regions
2224d848
SP
300 *
301 * This function should not be called while the kdamond is running.
302 * Every time interval is in micro-seconds.
303 *
304 * Return: 0 on success, negative error code otherwise.
305 */
306int damon_set_attrs(struct damon_ctx *ctx, unsigned long sample_int,
b9a6ac4e
SP
307 unsigned long aggr_int, unsigned long primitive_upd_int,
308 unsigned long min_nr_reg, unsigned long max_nr_reg)
2224d848 309{
1afaf5cb 310 if (min_nr_reg < 3)
b9a6ac4e 311 return -EINVAL;
1afaf5cb 312 if (min_nr_reg > max_nr_reg)
b9a6ac4e 313 return -EINVAL;
b9a6ac4e 314
2224d848
SP
315 ctx->sample_interval = sample_int;
316 ctx->aggr_interval = aggr_int;
317 ctx->primitive_update_interval = primitive_upd_int;
b9a6ac4e
SP
318 ctx->min_nr_regions = min_nr_reg;
319 ctx->max_nr_regions = max_nr_reg;
2224d848
SP
320
321 return 0;
322}
323
1f366e42
SP
324/**
325 * damon_set_schemes() - Set data access monitoring based operation schemes.
326 * @ctx: monitoring context
327 * @schemes: array of the schemes
328 * @nr_schemes: number of entries in @schemes
329 *
330 * This function should not be called while the kdamond of the context is
331 * running.
332 *
333 * Return: 0 if success, or negative error code otherwise.
334 */
335int damon_set_schemes(struct damon_ctx *ctx, struct damos **schemes,
336 ssize_t nr_schemes)
337{
338 struct damos *s, *next;
339 ssize_t i;
340
341 damon_for_each_scheme_safe(s, next, ctx)
342 damon_destroy_scheme(s);
343 for (i = 0; i < nr_schemes; i++)
344 damon_add_scheme(ctx, schemes[i]);
345 return 0;
346}
347
4bc05954
SP
348/**
349 * damon_nr_running_ctxs() - Return number of currently running contexts.
350 */
351int damon_nr_running_ctxs(void)
352{
353 int nr_ctxs;
354
355 mutex_lock(&damon_lock);
356 nr_ctxs = nr_running_ctxs;
357 mutex_unlock(&damon_lock);
358
359 return nr_ctxs;
360}
361
b9a6ac4e
SP
362/* Returns the size upper limit for each monitoring region */
363static unsigned long damon_region_sz_limit(struct damon_ctx *ctx)
364{
365 struct damon_target *t;
366 struct damon_region *r;
367 unsigned long sz = 0;
368
369 damon_for_each_target(t, ctx) {
370 damon_for_each_region(r, t)
371 sz += r->ar.end - r->ar.start;
372 }
373
374 if (ctx->min_nr_regions)
375 sz /= ctx->min_nr_regions;
376 if (sz < DAMON_MIN_REGION)
377 sz = DAMON_MIN_REGION;
378
379 return sz;
380}
381
2224d848
SP
382static int kdamond_fn(void *data);
383
384/*
385 * __damon_start() - Starts monitoring with given context.
386 * @ctx: monitoring context
387 *
388 * This function should be called while damon_lock is hold.
389 *
390 * Return: 0 on success, negative error code otherwise.
391 */
392static int __damon_start(struct damon_ctx *ctx)
393{
394 int err = -EBUSY;
395
396 mutex_lock(&ctx->kdamond_lock);
397 if (!ctx->kdamond) {
398 err = 0;
2224d848
SP
399 ctx->kdamond = kthread_run(kdamond_fn, ctx, "kdamond.%d",
400 nr_running_ctxs);
401 if (IS_ERR(ctx->kdamond)) {
402 err = PTR_ERR(ctx->kdamond);
7ec1992b 403 ctx->kdamond = NULL;
2224d848
SP
404 }
405 }
406 mutex_unlock(&ctx->kdamond_lock);
407
408 return err;
409}
410
411/**
412 * damon_start() - Starts the monitorings for a given group of contexts.
413 * @ctxs: an array of the pointers for contexts to start monitoring
414 * @nr_ctxs: size of @ctxs
415 *
416 * This function starts a group of monitoring threads for a group of monitoring
417 * contexts. One thread per each context is created and run in parallel. The
418 * caller should handle synchronization between the threads by itself. If a
419 * group of threads that created by other 'damon_start()' call is currently
420 * running, this function does nothing but returns -EBUSY.
421 *
422 * Return: 0 on success, negative error code otherwise.
423 */
424int damon_start(struct damon_ctx **ctxs, int nr_ctxs)
425{
426 int i;
427 int err = 0;
428
429 mutex_lock(&damon_lock);
430 if (nr_running_ctxs) {
431 mutex_unlock(&damon_lock);
432 return -EBUSY;
433 }
434
435 for (i = 0; i < nr_ctxs; i++) {
436 err = __damon_start(ctxs[i]);
437 if (err)
438 break;
439 nr_running_ctxs++;
440 }
441 mutex_unlock(&damon_lock);
442
443 return err;
444}
445
446/*
447 * __damon_stop() - Stops monitoring of given context.
448 * @ctx: monitoring context
449 *
450 * Return: 0 on success, negative error code otherwise.
451 */
452static int __damon_stop(struct damon_ctx *ctx)
453{
0f91d133
CD
454 struct task_struct *tsk;
455
2224d848 456 mutex_lock(&ctx->kdamond_lock);
0f91d133
CD
457 tsk = ctx->kdamond;
458 if (tsk) {
459 get_task_struct(tsk);
2224d848 460 mutex_unlock(&ctx->kdamond_lock);
0f91d133
CD
461 kthread_stop(tsk);
462 put_task_struct(tsk);
2224d848
SP
463 return 0;
464 }
465 mutex_unlock(&ctx->kdamond_lock);
466
467 return -EPERM;
468}
469
470/**
471 * damon_stop() - Stops the monitorings for a given group of contexts.
472 * @ctxs: an array of the pointers for contexts to stop monitoring
473 * @nr_ctxs: size of @ctxs
474 *
475 * Return: 0 on success, negative error code otherwise.
476 */
477int damon_stop(struct damon_ctx **ctxs, int nr_ctxs)
478{
479 int i, err = 0;
480
481 for (i = 0; i < nr_ctxs; i++) {
482 /* nr_running_ctxs is decremented in kdamond_fn */
483 err = __damon_stop(ctxs[i]);
484 if (err)
485 return err;
486 }
487
488 return err;
489}
490
491/*
492 * damon_check_reset_time_interval() - Check if a time interval is elapsed.
493 * @baseline: the time to check whether the interval has elapsed since
494 * @interval: the time interval (microseconds)
495 *
496 * See whether the given time interval has passed since the given baseline
497 * time. If so, it also updates the baseline to current time for next check.
498 *
499 * Return: true if the time interval has passed, or false otherwise.
500 */
501static bool damon_check_reset_time_interval(struct timespec64 *baseline,
502 unsigned long interval)
503{
504 struct timespec64 now;
505
506 ktime_get_coarse_ts64(&now);
507 if ((timespec64_to_ns(&now) - timespec64_to_ns(baseline)) <
508 interval * 1000)
509 return false;
510 *baseline = now;
511 return true;
512}
513
514/*
515 * Check whether it is time to flush the aggregated information
516 */
517static bool kdamond_aggregate_interval_passed(struct damon_ctx *ctx)
518{
519 return damon_check_reset_time_interval(&ctx->last_aggregation,
520 ctx->aggr_interval);
521}
522
f23b8eee
SP
523/*
524 * Reset the aggregated monitoring results ('nr_accesses' of each region).
525 */
526static void kdamond_reset_aggregated(struct damon_ctx *c)
527{
528 struct damon_target *t;
529
530 damon_for_each_target(t, c) {
531 struct damon_region *r;
532
2fcb9362
SP
533 damon_for_each_region(r, t) {
534 trace_damon_aggregated(t, r, damon_nr_regions(t));
fda504fa 535 r->last_nr_accesses = r->nr_accesses;
f23b8eee 536 r->nr_accesses = 0;
2fcb9362 537 }
f23b8eee
SP
538 }
539}
540
2b8a248d
SP
541static void damon_split_region_at(struct damon_ctx *ctx,
542 struct damon_target *t, struct damon_region *r,
543 unsigned long sz_r);
544
38683e00
SP
545static bool __damos_valid_target(struct damon_region *r, struct damos *s)
546{
547 unsigned long sz;
548
549 sz = r->ar.end - r->ar.start;
550 return s->min_sz_region <= sz && sz <= s->max_sz_region &&
551 s->min_nr_accesses <= r->nr_accesses &&
552 r->nr_accesses <= s->max_nr_accesses &&
553 s->min_age_region <= r->age && r->age <= s->max_age_region;
554}
555
556static bool damos_valid_target(struct damon_ctx *c, struct damon_target *t,
557 struct damon_region *r, struct damos *s)
558{
559 bool ret = __damos_valid_target(r, s);
560
561 if (!ret || !s->quota.esz || !c->primitive.get_scheme_score)
562 return ret;
563
564 return c->primitive.get_scheme_score(c, t, r, s) >= s->quota.min_score;
565}
566
1f366e42
SP
567static void damon_do_apply_schemes(struct damon_ctx *c,
568 struct damon_target *t,
569 struct damon_region *r)
570{
571 struct damos *s;
1f366e42
SP
572
573 damon_for_each_scheme(s, c) {
2b8a248d
SP
574 struct damos_quota *quota = &s->quota;
575 unsigned long sz = r->ar.end - r->ar.start;
1cd24303 576 struct timespec64 begin, end;
2b8a248d 577
ee801b7d
SP
578 if (!s->wmarks.activated)
579 continue;
580
2b8a248d 581 /* Check the quota */
1cd24303 582 if (quota->esz && quota->charged_sz >= quota->esz)
2b8a248d
SP
583 continue;
584
50585192
SP
585 /* Skip previously charged regions */
586 if (quota->charge_target_from) {
587 if (t != quota->charge_target_from)
588 continue;
589 if (r == damon_last_region(t)) {
590 quota->charge_target_from = NULL;
591 quota->charge_addr_from = 0;
592 continue;
593 }
594 if (quota->charge_addr_from &&
595 r->ar.end <= quota->charge_addr_from)
596 continue;
597
598 if (quota->charge_addr_from && r->ar.start <
599 quota->charge_addr_from) {
600 sz = ALIGN_DOWN(quota->charge_addr_from -
601 r->ar.start, DAMON_MIN_REGION);
602 if (!sz) {
603 if (r->ar.end - r->ar.start <=
604 DAMON_MIN_REGION)
605 continue;
606 sz = DAMON_MIN_REGION;
607 }
608 damon_split_region_at(c, t, r, sz);
609 r = damon_next_region(r);
610 sz = r->ar.end - r->ar.start;
611 }
612 quota->charge_target_from = NULL;
613 quota->charge_addr_from = 0;
614 }
615
38683e00 616 if (!damos_valid_target(c, t, r, s))
1f366e42 617 continue;
2b8a248d
SP
618
619 /* Apply the scheme */
620 if (c->primitive.apply_scheme) {
1cd24303
SP
621 if (quota->esz &&
622 quota->charged_sz + sz > quota->esz) {
623 sz = ALIGN_DOWN(quota->esz - quota->charged_sz,
2b8a248d
SP
624 DAMON_MIN_REGION);
625 if (!sz)
626 goto update_stat;
627 damon_split_region_at(c, t, r, sz);
628 }
1cd24303 629 ktime_get_coarse_ts64(&begin);
1f366e42 630 c->primitive.apply_scheme(c, t, r, s);
1cd24303
SP
631 ktime_get_coarse_ts64(&end);
632 quota->total_charged_ns += timespec64_to_ns(&end) -
633 timespec64_to_ns(&begin);
2b8a248d 634 quota->charged_sz += sz;
1cd24303 635 if (quota->esz && quota->charged_sz >= quota->esz) {
50585192
SP
636 quota->charge_target_from = t;
637 quota->charge_addr_from = r->ar.end + 1;
638 }
2b8a248d 639 }
2f0b548c
SP
640 if (s->action != DAMOS_STAT)
641 r->age = 0;
2b8a248d
SP
642
643update_stat:
644 s->stat_count++;
645 s->stat_sz += sz;
1f366e42
SP
646 }
647}
648
1cd24303
SP
649/* Shouldn't be called if quota->ms and quota->sz are zero */
650static void damos_set_effective_quota(struct damos_quota *quota)
651{
652 unsigned long throughput;
653 unsigned long esz;
654
655 if (!quota->ms) {
656 quota->esz = quota->sz;
657 return;
658 }
659
660 if (quota->total_charged_ns)
661 throughput = quota->total_charged_sz * 1000000 /
662 quota->total_charged_ns;
663 else
664 throughput = PAGE_SIZE * 1024;
665 esz = throughput * quota->ms;
666
667 if (quota->sz && quota->sz < esz)
668 esz = quota->sz;
669 quota->esz = esz;
670}
671
1f366e42
SP
672static void kdamond_apply_schemes(struct damon_ctx *c)
673{
674 struct damon_target *t;
2b8a248d
SP
675 struct damon_region *r, *next_r;
676 struct damos *s;
677
678 damon_for_each_scheme(s, c) {
679 struct damos_quota *quota = &s->quota;
38683e00
SP
680 unsigned long cumulated_sz;
681 unsigned int score, max_score = 0;
2b8a248d 682
ee801b7d
SP
683 if (!s->wmarks.activated)
684 continue;
685
1cd24303 686 if (!quota->ms && !quota->sz)
2b8a248d
SP
687 continue;
688
689 /* New charge window starts */
690 if (time_after_eq(jiffies, quota->charged_from +
691 msecs_to_jiffies(
692 quota->reset_interval))) {
1cd24303 693 quota->total_charged_sz += quota->charged_sz;
2b8a248d
SP
694 quota->charged_from = jiffies;
695 quota->charged_sz = 0;
1cd24303 696 damos_set_effective_quota(quota);
2b8a248d 697 }
38683e00
SP
698
699 if (!c->primitive.get_scheme_score)
700 continue;
701
702 /* Fill up the score histogram */
703 memset(quota->histogram, 0, sizeof(quota->histogram));
704 damon_for_each_target(t, c) {
705 damon_for_each_region(r, t) {
706 if (!__damos_valid_target(r, s))
707 continue;
708 score = c->primitive.get_scheme_score(
709 c, t, r, s);
710 quota->histogram[score] +=
711 r->ar.end - r->ar.start;
712 if (score > max_score)
713 max_score = score;
714 }
715 }
716
717 /* Set the min score limit */
718 for (cumulated_sz = 0, score = max_score; ; score--) {
719 cumulated_sz += quota->histogram[score];
720 if (cumulated_sz >= quota->esz || !score)
721 break;
722 }
723 quota->min_score = score;
2b8a248d 724 }
1f366e42
SP
725
726 damon_for_each_target(t, c) {
2b8a248d 727 damon_for_each_region_safe(r, next_r, t)
1f366e42
SP
728 damon_do_apply_schemes(c, t, r);
729 }
730}
731
88f86dcf
SP
732static inline unsigned long sz_damon_region(struct damon_region *r)
733{
734 return r->ar.end - r->ar.start;
735}
b9a6ac4e
SP
736
737/*
738 * Merge two adjacent regions into one region
739 */
740static void damon_merge_two_regions(struct damon_target *t,
741 struct damon_region *l, struct damon_region *r)
742{
743 unsigned long sz_l = sz_damon_region(l), sz_r = sz_damon_region(r);
744
745 l->nr_accesses = (l->nr_accesses * sz_l + r->nr_accesses * sz_r) /
746 (sz_l + sz_r);
fda504fa 747 l->age = (l->age * sz_l + r->age * sz_r) / (sz_l + sz_r);
b9a6ac4e
SP
748 l->ar.end = r->ar.end;
749 damon_destroy_region(r, t);
750}
751
b9a6ac4e
SP
752/*
753 * Merge adjacent regions having similar access frequencies
754 *
755 * t target affected by this merge operation
756 * thres '->nr_accesses' diff threshold for the merge
757 * sz_limit size upper limit of each region
758 */
759static void damon_merge_regions_of(struct damon_target *t, unsigned int thres,
760 unsigned long sz_limit)
761{
762 struct damon_region *r, *prev = NULL, *next;
763
764 damon_for_each_region_safe(r, next, t) {
d720bbbd 765 if (abs(r->nr_accesses - r->last_nr_accesses) > thres)
fda504fa
SP
766 r->age = 0;
767 else
768 r->age++;
769
b9a6ac4e 770 if (prev && prev->ar.end == r->ar.start &&
d720bbbd 771 abs(prev->nr_accesses - r->nr_accesses) <= thres &&
b9a6ac4e
SP
772 sz_damon_region(prev) + sz_damon_region(r) <= sz_limit)
773 damon_merge_two_regions(t, prev, r);
774 else
775 prev = r;
776 }
777}
778
779/*
780 * Merge adjacent regions having similar access frequencies
781 *
782 * threshold '->nr_accesses' diff threshold for the merge
783 * sz_limit size upper limit of each region
784 *
785 * This function merges monitoring target regions which are adjacent and their
786 * access frequencies are similar. This is for minimizing the monitoring
787 * overhead under the dynamically changeable access pattern. If a merge was
788 * unnecessarily made, later 'kdamond_split_regions()' will revert it.
789 */
790static void kdamond_merge_regions(struct damon_ctx *c, unsigned int threshold,
791 unsigned long sz_limit)
792{
793 struct damon_target *t;
794
795 damon_for_each_target(t, c)
796 damon_merge_regions_of(t, threshold, sz_limit);
797}
798
799/*
800 * Split a region in two
801 *
802 * r the region to be split
803 * sz_r size of the first sub-region that will be made
804 */
805static void damon_split_region_at(struct damon_ctx *ctx,
806 struct damon_target *t, struct damon_region *r,
807 unsigned long sz_r)
808{
809 struct damon_region *new;
810
811 new = damon_new_region(r->ar.start + sz_r, r->ar.end);
812 if (!new)
813 return;
814
815 r->ar.end = new->ar.start;
816
fda504fa
SP
817 new->age = r->age;
818 new->last_nr_accesses = r->last_nr_accesses;
819
b9a6ac4e
SP
820 damon_insert_region(new, r, damon_next_region(r), t);
821}
822
823/* Split every region in the given target into 'nr_subs' regions */
824static void damon_split_regions_of(struct damon_ctx *ctx,
825 struct damon_target *t, int nr_subs)
826{
827 struct damon_region *r, *next;
828 unsigned long sz_region, sz_sub = 0;
829 int i;
830
831 damon_for_each_region_safe(r, next, t) {
832 sz_region = r->ar.end - r->ar.start;
833
834 for (i = 0; i < nr_subs - 1 &&
835 sz_region > 2 * DAMON_MIN_REGION; i++) {
836 /*
837 * Randomly select size of left sub-region to be at
838 * least 10 percent and at most 90% of original region
839 */
840 sz_sub = ALIGN_DOWN(damon_rand(1, 10) *
841 sz_region / 10, DAMON_MIN_REGION);
842 /* Do not allow blank region */
843 if (sz_sub == 0 || sz_sub >= sz_region)
844 continue;
845
846 damon_split_region_at(ctx, t, r, sz_sub);
847 sz_region = sz_sub;
848 }
849 }
850}
851
852/*
853 * Split every target region into randomly-sized small regions
854 *
855 * This function splits every target region into random-sized small regions if
856 * current total number of the regions is equal or smaller than half of the
857 * user-specified maximum number of regions. This is for maximizing the
858 * monitoring accuracy under the dynamically changeable access patterns. If a
859 * split was unnecessarily made, later 'kdamond_merge_regions()' will revert
860 * it.
861 */
862static void kdamond_split_regions(struct damon_ctx *ctx)
863{
864 struct damon_target *t;
865 unsigned int nr_regions = 0;
866 static unsigned int last_nr_regions;
867 int nr_subregions = 2;
868
869 damon_for_each_target(t, ctx)
870 nr_regions += damon_nr_regions(t);
871
872 if (nr_regions > ctx->max_nr_regions / 2)
873 return;
874
875 /* Maybe the middle of the region has different access frequency */
876 if (last_nr_regions == nr_regions &&
877 nr_regions < ctx->max_nr_regions / 3)
878 nr_subregions = 3;
879
880 damon_for_each_target(t, ctx)
881 damon_split_regions_of(ctx, t, nr_subregions);
882
883 last_nr_regions = nr_regions;
884}
885
2224d848
SP
886/*
887 * Check whether it is time to check and apply the target monitoring regions
888 *
889 * Returns true if it is.
890 */
891static bool kdamond_need_update_primitive(struct damon_ctx *ctx)
892{
893 return damon_check_reset_time_interval(&ctx->last_primitive_update,
894 ctx->primitive_update_interval);
895}
896
897/*
898 * Check whether current monitoring should be stopped
899 *
900 * The monitoring is stopped when either the user requested to stop, or all
901 * monitoring targets are invalid.
902 *
903 * Returns true if need to stop current monitoring.
904 */
905static bool kdamond_need_stop(struct damon_ctx *ctx)
906{
f23b8eee 907 struct damon_target *t;
2224d848 908
0f91d133 909 if (kthread_should_stop())
2224d848
SP
910 return true;
911
912 if (!ctx->primitive.target_valid)
913 return false;
914
f23b8eee
SP
915 damon_for_each_target(t, ctx) {
916 if (ctx->primitive.target_valid(t))
917 return false;
918 }
919
920 return true;
2224d848
SP
921}
922
ee801b7d
SP
923static unsigned long damos_wmark_metric_value(enum damos_wmark_metric metric)
924{
925 struct sysinfo i;
926
927 switch (metric) {
928 case DAMOS_WMARK_FREE_MEM_RATE:
929 si_meminfo(&i);
930 return i.freeram * 1000 / i.totalram;
931 default:
932 break;
933 }
934 return -EINVAL;
935}
936
937/*
938 * Returns zero if the scheme is active. Else, returns time to wait for next
939 * watermark check in micro-seconds.
940 */
941static unsigned long damos_wmark_wait_us(struct damos *scheme)
942{
943 unsigned long metric;
944
945 if (scheme->wmarks.metric == DAMOS_WMARK_NONE)
946 return 0;
947
948 metric = damos_wmark_metric_value(scheme->wmarks.metric);
949 /* higher than high watermark or lower than low watermark */
950 if (metric > scheme->wmarks.high || scheme->wmarks.low > metric) {
951 if (scheme->wmarks.activated)
01078655 952 pr_debug("deactivate a scheme (%d) for %s wmark\n",
ee801b7d
SP
953 scheme->action,
954 metric > scheme->wmarks.high ?
955 "high" : "low");
956 scheme->wmarks.activated = false;
957 return scheme->wmarks.interval;
958 }
959
960 /* inactive and higher than middle watermark */
961 if ((scheme->wmarks.high >= metric && metric >= scheme->wmarks.mid) &&
962 !scheme->wmarks.activated)
963 return scheme->wmarks.interval;
964
965 if (!scheme->wmarks.activated)
966 pr_debug("activate a scheme (%d)\n", scheme->action);
967 scheme->wmarks.activated = true;
968 return 0;
969}
970
971static void kdamond_usleep(unsigned long usecs)
972{
4de46a30
SP
973 /* See Documentation/timers/timers-howto.rst for the thresholds */
974 if (usecs > 20 * USEC_PER_MSEC)
70e92748 975 schedule_timeout_idle(usecs_to_jiffies(usecs));
ee801b7d 976 else
70e92748 977 usleep_idle_range(usecs, usecs + 1);
ee801b7d
SP
978}
979
980/* Returns negative error code if it's not activated but should return */
981static int kdamond_wait_activation(struct damon_ctx *ctx)
982{
983 struct damos *s;
984 unsigned long wait_time;
985 unsigned long min_wait_time = 0;
986
987 while (!kdamond_need_stop(ctx)) {
988 damon_for_each_scheme(s, ctx) {
989 wait_time = damos_wmark_wait_us(s);
990 if (!min_wait_time || wait_time < min_wait_time)
991 min_wait_time = wait_time;
992 }
993 if (!min_wait_time)
994 return 0;
995
996 kdamond_usleep(min_wait_time);
997 }
998 return -EBUSY;
999}
1000
2224d848
SP
1001/*
1002 * The monitoring daemon that runs as a kernel thread
1003 */
1004static int kdamond_fn(void *data)
1005{
1006 struct damon_ctx *ctx = (struct damon_ctx *)data;
f23b8eee
SP
1007 struct damon_target *t;
1008 struct damon_region *r, *next;
b9a6ac4e
SP
1009 unsigned int max_nr_accesses = 0;
1010 unsigned long sz_limit = 0;
0f91d133 1011 bool done = false;
2224d848 1012
42e4cef5 1013 pr_debug("kdamond (%d) starts\n", current->pid);
2224d848
SP
1014
1015 if (ctx->primitive.init)
1016 ctx->primitive.init(ctx);
1017 if (ctx->callback.before_start && ctx->callback.before_start(ctx))
0f91d133 1018 done = true;
2224d848 1019
b9a6ac4e
SP
1020 sz_limit = damon_region_sz_limit(ctx);
1021
0f91d133 1022 while (!kdamond_need_stop(ctx) && !done) {
ee801b7d
SP
1023 if (kdamond_wait_activation(ctx))
1024 continue;
1025
2224d848
SP
1026 if (ctx->primitive.prepare_access_checks)
1027 ctx->primitive.prepare_access_checks(ctx);
1028 if (ctx->callback.after_sampling &&
1029 ctx->callback.after_sampling(ctx))
0f91d133 1030 done = true;
2224d848 1031
70e92748 1032 kdamond_usleep(ctx->sample_interval);
2224d848
SP
1033
1034 if (ctx->primitive.check_accesses)
b9a6ac4e 1035 max_nr_accesses = ctx->primitive.check_accesses(ctx);
2224d848
SP
1036
1037 if (kdamond_aggregate_interval_passed(ctx)) {
b9a6ac4e
SP
1038 kdamond_merge_regions(ctx,
1039 max_nr_accesses / 10,
1040 sz_limit);
2224d848
SP
1041 if (ctx->callback.after_aggregation &&
1042 ctx->callback.after_aggregation(ctx))
0f91d133 1043 done = true;
1f366e42 1044 kdamond_apply_schemes(ctx);
f23b8eee 1045 kdamond_reset_aggregated(ctx);
b9a6ac4e 1046 kdamond_split_regions(ctx);
2224d848
SP
1047 if (ctx->primitive.reset_aggregated)
1048 ctx->primitive.reset_aggregated(ctx);
1049 }
1050
1051 if (kdamond_need_update_primitive(ctx)) {
1052 if (ctx->primitive.update)
1053 ctx->primitive.update(ctx);
b9a6ac4e 1054 sz_limit = damon_region_sz_limit(ctx);
2224d848
SP
1055 }
1056 }
f23b8eee
SP
1057 damon_for_each_target(t, ctx) {
1058 damon_for_each_region_safe(r, next, t)
b9a6ac4e 1059 damon_destroy_region(r, t);
f23b8eee 1060 }
2224d848 1061
0f91d133
CD
1062 if (ctx->callback.before_terminate)
1063 ctx->callback.before_terminate(ctx);
2224d848
SP
1064 if (ctx->primitive.cleanup)
1065 ctx->primitive.cleanup(ctx);
1066
42e4cef5 1067 pr_debug("kdamond (%d) finishes\n", current->pid);
2224d848
SP
1068 mutex_lock(&ctx->kdamond_lock);
1069 ctx->kdamond = NULL;
1070 mutex_unlock(&ctx->kdamond_lock);
1071
1072 mutex_lock(&damon_lock);
1073 nr_running_ctxs--;
1074 mutex_unlock(&damon_lock);
1075
5f7fe2b9 1076 return 0;
2224d848 1077}
17ccae8b
SP
1078
1079#include "core-test.h"