mm/damon/core: print kdamond start log in debug mode only
[linux-block.git] / mm / damon / core.c
CommitLineData
2224d848
SP
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Data Access Monitor
4 *
5 * Author: SeongJae Park <sjpark@amazon.de>
6 */
7
8#define pr_fmt(fmt) "damon: " fmt
9
10#include <linux/damon.h>
11#include <linux/delay.h>
12#include <linux/kthread.h>
b9a6ac4e 13#include <linux/random.h>
2224d848
SP
14#include <linux/slab.h>
15
2fcb9362
SP
16#define CREATE_TRACE_POINTS
17#include <trace/events/damon.h>
18
17ccae8b
SP
19#ifdef CONFIG_DAMON_KUNIT_TEST
20#undef DAMON_MIN_REGION
21#define DAMON_MIN_REGION 1
22#endif
23
b9a6ac4e
SP
24/* Get a random number in [l, r) */
25#define damon_rand(l, r) (l + prandom_u32_max(r - l))
26
2224d848
SP
27static DEFINE_MUTEX(damon_lock);
28static int nr_running_ctxs;
29
f23b8eee
SP
30/*
31 * Construct a damon_region struct
32 *
33 * Returns the pointer to the new struct if success, or NULL otherwise
34 */
35struct damon_region *damon_new_region(unsigned long start, unsigned long end)
36{
37 struct damon_region *region;
38
39 region = kmalloc(sizeof(*region), GFP_KERNEL);
40 if (!region)
41 return NULL;
42
43 region->ar.start = start;
44 region->ar.end = end;
45 region->nr_accesses = 0;
46 INIT_LIST_HEAD(&region->list);
47
48 return region;
49}
50
51/*
52 * Add a region between two other regions
53 */
54inline void damon_insert_region(struct damon_region *r,
b9a6ac4e
SP
55 struct damon_region *prev, struct damon_region *next,
56 struct damon_target *t)
f23b8eee
SP
57{
58 __list_add(&r->list, &prev->list, &next->list);
b9a6ac4e 59 t->nr_regions++;
f23b8eee
SP
60}
61
62void damon_add_region(struct damon_region *r, struct damon_target *t)
63{
64 list_add_tail(&r->list, &t->regions_list);
b9a6ac4e 65 t->nr_regions++;
f23b8eee
SP
66}
67
b9a6ac4e 68static void damon_del_region(struct damon_region *r, struct damon_target *t)
f23b8eee
SP
69{
70 list_del(&r->list);
b9a6ac4e 71 t->nr_regions--;
f23b8eee
SP
72}
73
74static void damon_free_region(struct damon_region *r)
75{
76 kfree(r);
77}
78
b9a6ac4e 79void damon_destroy_region(struct damon_region *r, struct damon_target *t)
f23b8eee 80{
b9a6ac4e 81 damon_del_region(r, t);
f23b8eee
SP
82 damon_free_region(r);
83}
84
85/*
86 * Construct a damon_target struct
87 *
88 * Returns the pointer to the new struct if success, or NULL otherwise
89 */
90struct damon_target *damon_new_target(unsigned long id)
91{
92 struct damon_target *t;
93
94 t = kmalloc(sizeof(*t), GFP_KERNEL);
95 if (!t)
96 return NULL;
97
98 t->id = id;
b9a6ac4e 99 t->nr_regions = 0;
f23b8eee
SP
100 INIT_LIST_HEAD(&t->regions_list);
101
102 return t;
103}
104
105void damon_add_target(struct damon_ctx *ctx, struct damon_target *t)
106{
b9a6ac4e 107 list_add_tail(&t->list, &ctx->adaptive_targets);
f23b8eee
SP
108}
109
110static void damon_del_target(struct damon_target *t)
111{
112 list_del(&t->list);
113}
114
115void damon_free_target(struct damon_target *t)
116{
117 struct damon_region *r, *next;
118
119 damon_for_each_region_safe(r, next, t)
120 damon_free_region(r);
121 kfree(t);
122}
123
124void damon_destroy_target(struct damon_target *t)
125{
126 damon_del_target(t);
127 damon_free_target(t);
128}
129
b9a6ac4e
SP
130unsigned int damon_nr_regions(struct damon_target *t)
131{
132 return t->nr_regions;
133}
134
2224d848
SP
135struct damon_ctx *damon_new_ctx(void)
136{
137 struct damon_ctx *ctx;
138
139 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
140 if (!ctx)
141 return NULL;
142
143 ctx->sample_interval = 5 * 1000;
144 ctx->aggr_interval = 100 * 1000;
145 ctx->primitive_update_interval = 60 * 1000 * 1000;
146
147 ktime_get_coarse_ts64(&ctx->last_aggregation);
148 ctx->last_primitive_update = ctx->last_aggregation;
149
150 mutex_init(&ctx->kdamond_lock);
151
b9a6ac4e
SP
152 ctx->min_nr_regions = 10;
153 ctx->max_nr_regions = 1000;
154
155 INIT_LIST_HEAD(&ctx->adaptive_targets);
2224d848
SP
156
157 return ctx;
158}
159
f23b8eee 160static void damon_destroy_targets(struct damon_ctx *ctx)
2224d848 161{
f23b8eee
SP
162 struct damon_target *t, *next_t;
163
164 if (ctx->primitive.cleanup) {
2224d848 165 ctx->primitive.cleanup(ctx);
f23b8eee
SP
166 return;
167 }
168
169 damon_for_each_target_safe(t, next_t, ctx)
170 damon_destroy_target(t);
171}
172
173void damon_destroy_ctx(struct damon_ctx *ctx)
174{
175 damon_destroy_targets(ctx);
2224d848
SP
176 kfree(ctx);
177}
178
4bc05954
SP
179/**
180 * damon_set_targets() - Set monitoring targets.
181 * @ctx: monitoring context
182 * @ids: array of target ids
183 * @nr_ids: number of entries in @ids
184 *
185 * This function should not be called while the kdamond is running.
186 *
187 * Return: 0 on success, negative error code otherwise.
188 */
189int damon_set_targets(struct damon_ctx *ctx,
190 unsigned long *ids, ssize_t nr_ids)
191{
192 ssize_t i;
193 struct damon_target *t, *next;
194
195 damon_destroy_targets(ctx);
196
197 for (i = 0; i < nr_ids; i++) {
198 t = damon_new_target(ids[i]);
199 if (!t) {
200 pr_err("Failed to alloc damon_target\n");
201 /* The caller should do cleanup of the ids itself */
202 damon_for_each_target_safe(t, next, ctx)
203 damon_destroy_target(t);
204 return -ENOMEM;
205 }
206 damon_add_target(ctx, t);
207 }
208
209 return 0;
210}
211
2224d848
SP
212/**
213 * damon_set_attrs() - Set attributes for the monitoring.
214 * @ctx: monitoring context
215 * @sample_int: time interval between samplings
216 * @aggr_int: time interval between aggregations
217 * @primitive_upd_int: time interval between monitoring primitive updates
b9a6ac4e
SP
218 * @min_nr_reg: minimal number of regions
219 * @max_nr_reg: maximum number of regions
2224d848
SP
220 *
221 * This function should not be called while the kdamond is running.
222 * Every time interval is in micro-seconds.
223 *
224 * Return: 0 on success, negative error code otherwise.
225 */
226int damon_set_attrs(struct damon_ctx *ctx, unsigned long sample_int,
b9a6ac4e
SP
227 unsigned long aggr_int, unsigned long primitive_upd_int,
228 unsigned long min_nr_reg, unsigned long max_nr_reg)
2224d848 229{
b9a6ac4e
SP
230 if (min_nr_reg < 3) {
231 pr_err("min_nr_regions (%lu) must be at least 3\n",
232 min_nr_reg);
233 return -EINVAL;
234 }
235 if (min_nr_reg > max_nr_reg) {
236 pr_err("invalid nr_regions. min (%lu) > max (%lu)\n",
237 min_nr_reg, max_nr_reg);
238 return -EINVAL;
239 }
240
2224d848
SP
241 ctx->sample_interval = sample_int;
242 ctx->aggr_interval = aggr_int;
243 ctx->primitive_update_interval = primitive_upd_int;
b9a6ac4e
SP
244 ctx->min_nr_regions = min_nr_reg;
245 ctx->max_nr_regions = max_nr_reg;
2224d848
SP
246
247 return 0;
248}
249
4bc05954
SP
250/**
251 * damon_nr_running_ctxs() - Return number of currently running contexts.
252 */
253int damon_nr_running_ctxs(void)
254{
255 int nr_ctxs;
256
257 mutex_lock(&damon_lock);
258 nr_ctxs = nr_running_ctxs;
259 mutex_unlock(&damon_lock);
260
261 return nr_ctxs;
262}
263
b9a6ac4e
SP
264/* Returns the size upper limit for each monitoring region */
265static unsigned long damon_region_sz_limit(struct damon_ctx *ctx)
266{
267 struct damon_target *t;
268 struct damon_region *r;
269 unsigned long sz = 0;
270
271 damon_for_each_target(t, ctx) {
272 damon_for_each_region(r, t)
273 sz += r->ar.end - r->ar.start;
274 }
275
276 if (ctx->min_nr_regions)
277 sz /= ctx->min_nr_regions;
278 if (sz < DAMON_MIN_REGION)
279 sz = DAMON_MIN_REGION;
280
281 return sz;
282}
283
2224d848
SP
284static bool damon_kdamond_running(struct damon_ctx *ctx)
285{
286 bool running;
287
288 mutex_lock(&ctx->kdamond_lock);
289 running = ctx->kdamond != NULL;
290 mutex_unlock(&ctx->kdamond_lock);
291
292 return running;
293}
294
295static int kdamond_fn(void *data);
296
297/*
298 * __damon_start() - Starts monitoring with given context.
299 * @ctx: monitoring context
300 *
301 * This function should be called while damon_lock is hold.
302 *
303 * Return: 0 on success, negative error code otherwise.
304 */
305static int __damon_start(struct damon_ctx *ctx)
306{
307 int err = -EBUSY;
308
309 mutex_lock(&ctx->kdamond_lock);
310 if (!ctx->kdamond) {
311 err = 0;
312 ctx->kdamond_stop = false;
313 ctx->kdamond = kthread_run(kdamond_fn, ctx, "kdamond.%d",
314 nr_running_ctxs);
315 if (IS_ERR(ctx->kdamond)) {
316 err = PTR_ERR(ctx->kdamond);
317 ctx->kdamond = 0;
318 }
319 }
320 mutex_unlock(&ctx->kdamond_lock);
321
322 return err;
323}
324
325/**
326 * damon_start() - Starts the monitorings for a given group of contexts.
327 * @ctxs: an array of the pointers for contexts to start monitoring
328 * @nr_ctxs: size of @ctxs
329 *
330 * This function starts a group of monitoring threads for a group of monitoring
331 * contexts. One thread per each context is created and run in parallel. The
332 * caller should handle synchronization between the threads by itself. If a
333 * group of threads that created by other 'damon_start()' call is currently
334 * running, this function does nothing but returns -EBUSY.
335 *
336 * Return: 0 on success, negative error code otherwise.
337 */
338int damon_start(struct damon_ctx **ctxs, int nr_ctxs)
339{
340 int i;
341 int err = 0;
342
343 mutex_lock(&damon_lock);
344 if (nr_running_ctxs) {
345 mutex_unlock(&damon_lock);
346 return -EBUSY;
347 }
348
349 for (i = 0; i < nr_ctxs; i++) {
350 err = __damon_start(ctxs[i]);
351 if (err)
352 break;
353 nr_running_ctxs++;
354 }
355 mutex_unlock(&damon_lock);
356
357 return err;
358}
359
360/*
361 * __damon_stop() - Stops monitoring of given context.
362 * @ctx: monitoring context
363 *
364 * Return: 0 on success, negative error code otherwise.
365 */
366static int __damon_stop(struct damon_ctx *ctx)
367{
368 mutex_lock(&ctx->kdamond_lock);
369 if (ctx->kdamond) {
370 ctx->kdamond_stop = true;
371 mutex_unlock(&ctx->kdamond_lock);
372 while (damon_kdamond_running(ctx))
373 usleep_range(ctx->sample_interval,
374 ctx->sample_interval * 2);
375 return 0;
376 }
377 mutex_unlock(&ctx->kdamond_lock);
378
379 return -EPERM;
380}
381
382/**
383 * damon_stop() - Stops the monitorings for a given group of contexts.
384 * @ctxs: an array of the pointers for contexts to stop monitoring
385 * @nr_ctxs: size of @ctxs
386 *
387 * Return: 0 on success, negative error code otherwise.
388 */
389int damon_stop(struct damon_ctx **ctxs, int nr_ctxs)
390{
391 int i, err = 0;
392
393 for (i = 0; i < nr_ctxs; i++) {
394 /* nr_running_ctxs is decremented in kdamond_fn */
395 err = __damon_stop(ctxs[i]);
396 if (err)
397 return err;
398 }
399
400 return err;
401}
402
403/*
404 * damon_check_reset_time_interval() - Check if a time interval is elapsed.
405 * @baseline: the time to check whether the interval has elapsed since
406 * @interval: the time interval (microseconds)
407 *
408 * See whether the given time interval has passed since the given baseline
409 * time. If so, it also updates the baseline to current time for next check.
410 *
411 * Return: true if the time interval has passed, or false otherwise.
412 */
413static bool damon_check_reset_time_interval(struct timespec64 *baseline,
414 unsigned long interval)
415{
416 struct timespec64 now;
417
418 ktime_get_coarse_ts64(&now);
419 if ((timespec64_to_ns(&now) - timespec64_to_ns(baseline)) <
420 interval * 1000)
421 return false;
422 *baseline = now;
423 return true;
424}
425
426/*
427 * Check whether it is time to flush the aggregated information
428 */
429static bool kdamond_aggregate_interval_passed(struct damon_ctx *ctx)
430{
431 return damon_check_reset_time_interval(&ctx->last_aggregation,
432 ctx->aggr_interval);
433}
434
f23b8eee
SP
435/*
436 * Reset the aggregated monitoring results ('nr_accesses' of each region).
437 */
438static void kdamond_reset_aggregated(struct damon_ctx *c)
439{
440 struct damon_target *t;
441
442 damon_for_each_target(t, c) {
443 struct damon_region *r;
444
2fcb9362
SP
445 damon_for_each_region(r, t) {
446 trace_damon_aggregated(t, r, damon_nr_regions(t));
f23b8eee 447 r->nr_accesses = 0;
2fcb9362 448 }
f23b8eee
SP
449 }
450}
451
b9a6ac4e
SP
452#define sz_damon_region(r) (r->ar.end - r->ar.start)
453
454/*
455 * Merge two adjacent regions into one region
456 */
457static void damon_merge_two_regions(struct damon_target *t,
458 struct damon_region *l, struct damon_region *r)
459{
460 unsigned long sz_l = sz_damon_region(l), sz_r = sz_damon_region(r);
461
462 l->nr_accesses = (l->nr_accesses * sz_l + r->nr_accesses * sz_r) /
463 (sz_l + sz_r);
464 l->ar.end = r->ar.end;
465 damon_destroy_region(r, t);
466}
467
468#define diff_of(a, b) (a > b ? a - b : b - a)
469
470/*
471 * Merge adjacent regions having similar access frequencies
472 *
473 * t target affected by this merge operation
474 * thres '->nr_accesses' diff threshold for the merge
475 * sz_limit size upper limit of each region
476 */
477static void damon_merge_regions_of(struct damon_target *t, unsigned int thres,
478 unsigned long sz_limit)
479{
480 struct damon_region *r, *prev = NULL, *next;
481
482 damon_for_each_region_safe(r, next, t) {
483 if (prev && prev->ar.end == r->ar.start &&
484 diff_of(prev->nr_accesses, r->nr_accesses) <= thres &&
485 sz_damon_region(prev) + sz_damon_region(r) <= sz_limit)
486 damon_merge_two_regions(t, prev, r);
487 else
488 prev = r;
489 }
490}
491
492/*
493 * Merge adjacent regions having similar access frequencies
494 *
495 * threshold '->nr_accesses' diff threshold for the merge
496 * sz_limit size upper limit of each region
497 *
498 * This function merges monitoring target regions which are adjacent and their
499 * access frequencies are similar. This is for minimizing the monitoring
500 * overhead under the dynamically changeable access pattern. If a merge was
501 * unnecessarily made, later 'kdamond_split_regions()' will revert it.
502 */
503static void kdamond_merge_regions(struct damon_ctx *c, unsigned int threshold,
504 unsigned long sz_limit)
505{
506 struct damon_target *t;
507
508 damon_for_each_target(t, c)
509 damon_merge_regions_of(t, threshold, sz_limit);
510}
511
512/*
513 * Split a region in two
514 *
515 * r the region to be split
516 * sz_r size of the first sub-region that will be made
517 */
518static void damon_split_region_at(struct damon_ctx *ctx,
519 struct damon_target *t, struct damon_region *r,
520 unsigned long sz_r)
521{
522 struct damon_region *new;
523
524 new = damon_new_region(r->ar.start + sz_r, r->ar.end);
525 if (!new)
526 return;
527
528 r->ar.end = new->ar.start;
529
530 damon_insert_region(new, r, damon_next_region(r), t);
531}
532
533/* Split every region in the given target into 'nr_subs' regions */
534static void damon_split_regions_of(struct damon_ctx *ctx,
535 struct damon_target *t, int nr_subs)
536{
537 struct damon_region *r, *next;
538 unsigned long sz_region, sz_sub = 0;
539 int i;
540
541 damon_for_each_region_safe(r, next, t) {
542 sz_region = r->ar.end - r->ar.start;
543
544 for (i = 0; i < nr_subs - 1 &&
545 sz_region > 2 * DAMON_MIN_REGION; i++) {
546 /*
547 * Randomly select size of left sub-region to be at
548 * least 10 percent and at most 90% of original region
549 */
550 sz_sub = ALIGN_DOWN(damon_rand(1, 10) *
551 sz_region / 10, DAMON_MIN_REGION);
552 /* Do not allow blank region */
553 if (sz_sub == 0 || sz_sub >= sz_region)
554 continue;
555
556 damon_split_region_at(ctx, t, r, sz_sub);
557 sz_region = sz_sub;
558 }
559 }
560}
561
562/*
563 * Split every target region into randomly-sized small regions
564 *
565 * This function splits every target region into random-sized small regions if
566 * current total number of the regions is equal or smaller than half of the
567 * user-specified maximum number of regions. This is for maximizing the
568 * monitoring accuracy under the dynamically changeable access patterns. If a
569 * split was unnecessarily made, later 'kdamond_merge_regions()' will revert
570 * it.
571 */
572static void kdamond_split_regions(struct damon_ctx *ctx)
573{
574 struct damon_target *t;
575 unsigned int nr_regions = 0;
576 static unsigned int last_nr_regions;
577 int nr_subregions = 2;
578
579 damon_for_each_target(t, ctx)
580 nr_regions += damon_nr_regions(t);
581
582 if (nr_regions > ctx->max_nr_regions / 2)
583 return;
584
585 /* Maybe the middle of the region has different access frequency */
586 if (last_nr_regions == nr_regions &&
587 nr_regions < ctx->max_nr_regions / 3)
588 nr_subregions = 3;
589
590 damon_for_each_target(t, ctx)
591 damon_split_regions_of(ctx, t, nr_subregions);
592
593 last_nr_regions = nr_regions;
594}
595
2224d848
SP
596/*
597 * Check whether it is time to check and apply the target monitoring regions
598 *
599 * Returns true if it is.
600 */
601static bool kdamond_need_update_primitive(struct damon_ctx *ctx)
602{
603 return damon_check_reset_time_interval(&ctx->last_primitive_update,
604 ctx->primitive_update_interval);
605}
606
607/*
608 * Check whether current monitoring should be stopped
609 *
610 * The monitoring is stopped when either the user requested to stop, or all
611 * monitoring targets are invalid.
612 *
613 * Returns true if need to stop current monitoring.
614 */
615static bool kdamond_need_stop(struct damon_ctx *ctx)
616{
f23b8eee 617 struct damon_target *t;
2224d848
SP
618 bool stop;
619
620 mutex_lock(&ctx->kdamond_lock);
621 stop = ctx->kdamond_stop;
622 mutex_unlock(&ctx->kdamond_lock);
623 if (stop)
624 return true;
625
626 if (!ctx->primitive.target_valid)
627 return false;
628
f23b8eee
SP
629 damon_for_each_target(t, ctx) {
630 if (ctx->primitive.target_valid(t))
631 return false;
632 }
633
634 return true;
2224d848
SP
635}
636
637static void set_kdamond_stop(struct damon_ctx *ctx)
638{
639 mutex_lock(&ctx->kdamond_lock);
640 ctx->kdamond_stop = true;
641 mutex_unlock(&ctx->kdamond_lock);
642}
643
644/*
645 * The monitoring daemon that runs as a kernel thread
646 */
647static int kdamond_fn(void *data)
648{
649 struct damon_ctx *ctx = (struct damon_ctx *)data;
f23b8eee
SP
650 struct damon_target *t;
651 struct damon_region *r, *next;
b9a6ac4e
SP
652 unsigned int max_nr_accesses = 0;
653 unsigned long sz_limit = 0;
2224d848
SP
654
655 mutex_lock(&ctx->kdamond_lock);
704571f9 656 pr_debug("kdamond (%d) starts\n", ctx->kdamond->pid);
2224d848
SP
657 mutex_unlock(&ctx->kdamond_lock);
658
659 if (ctx->primitive.init)
660 ctx->primitive.init(ctx);
661 if (ctx->callback.before_start && ctx->callback.before_start(ctx))
662 set_kdamond_stop(ctx);
663
b9a6ac4e
SP
664 sz_limit = damon_region_sz_limit(ctx);
665
2224d848
SP
666 while (!kdamond_need_stop(ctx)) {
667 if (ctx->primitive.prepare_access_checks)
668 ctx->primitive.prepare_access_checks(ctx);
669 if (ctx->callback.after_sampling &&
670 ctx->callback.after_sampling(ctx))
671 set_kdamond_stop(ctx);
672
673 usleep_range(ctx->sample_interval, ctx->sample_interval + 1);
674
675 if (ctx->primitive.check_accesses)
b9a6ac4e 676 max_nr_accesses = ctx->primitive.check_accesses(ctx);
2224d848
SP
677
678 if (kdamond_aggregate_interval_passed(ctx)) {
b9a6ac4e
SP
679 kdamond_merge_regions(ctx,
680 max_nr_accesses / 10,
681 sz_limit);
2224d848
SP
682 if (ctx->callback.after_aggregation &&
683 ctx->callback.after_aggregation(ctx))
684 set_kdamond_stop(ctx);
f23b8eee 685 kdamond_reset_aggregated(ctx);
b9a6ac4e 686 kdamond_split_regions(ctx);
2224d848
SP
687 if (ctx->primitive.reset_aggregated)
688 ctx->primitive.reset_aggregated(ctx);
689 }
690
691 if (kdamond_need_update_primitive(ctx)) {
692 if (ctx->primitive.update)
693 ctx->primitive.update(ctx);
b9a6ac4e 694 sz_limit = damon_region_sz_limit(ctx);
2224d848
SP
695 }
696 }
f23b8eee
SP
697 damon_for_each_target(t, ctx) {
698 damon_for_each_region_safe(r, next, t)
b9a6ac4e 699 damon_destroy_region(r, t);
f23b8eee 700 }
2224d848
SP
701
702 if (ctx->callback.before_terminate &&
703 ctx->callback.before_terminate(ctx))
704 set_kdamond_stop(ctx);
705 if (ctx->primitive.cleanup)
706 ctx->primitive.cleanup(ctx);
707
708 pr_debug("kdamond (%d) finishes\n", ctx->kdamond->pid);
709 mutex_lock(&ctx->kdamond_lock);
710 ctx->kdamond = NULL;
711 mutex_unlock(&ctx->kdamond_lock);
712
713 mutex_lock(&damon_lock);
714 nr_running_ctxs--;
715 mutex_unlock(&damon_lock);
716
717 do_exit(0);
718}
17ccae8b
SP
719
720#include "core-test.h"